	REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM
	AFIT/CI/NR 84-34T	3. RECIPIENT'S CATALOG NUMBER
	4. TITLE (and Substitut)	S. TYPE OF REPORT & PERIOD COVER
	Adsorption Equilibria and Performance of a Pressure Swing Adsorption Air Separation Unit	THESIS/0188287ATION
		4. PERFORMING ORG. REPORT NUMBER
	7. AUTHOR(a)	P. CONTRACT OR GRANT NUMBER(.)
	George Walter Miller	
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS AREA & WORK UNIT NUMBERS
	AFIT STUDENT AT: The Ohio State University	
	11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT UATE
	AFTI/NK WRAFR OH AFA33	1984
		297
	14. MONITORING AGENCY NAME & ADDRESS(If dillerent from Controlling Office)	15. SECURITY CLASS. (of this report)
	1	UNCLASS
		154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	16. DISTRIBUTION STATEMENT (of this Report)	L
	APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED)
	17. DISTRIBUTION STATEMENT (al the abetract entered in Black 20, il dillerent fro	vm Report)
	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, 11 different fro	om Report)
	17. DISTRIBUTION STATEMENT (al the obstract entered in Block 20, 11 dillerent fro 18. SUPPLEMENTARY NOTES	MR Report)
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7	UNN E. WOLAVER Dean for Research and
_	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7	UNN E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A
	17. DISTRIBUTION STATEMENT (of the observant entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	Dean for Research and Professional Developm AFIT, Wright-Patterson A
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number,	Dean for Research and Professional Developm AFIT, Wright-Patterson A
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-V/7 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number, 4	Dom Report) Junn E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A DECTE
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number, c 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number)	MR Report) MR Report) LUNN E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A DTIC ELECTE JUL 1 1 1984
	 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, II different inclusion in Bl	Dean for Research and Professional Developm AFIT, Wright-Patterson A JUL 1 1 1984
NII LILE VOI -	 17. DISTRIBUTION STATEMENT (of the abeliact entered in Block 20, if different indifferent ind	om Report) LONN E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A DELECTE JUL 1 1 1984 E
nin file voi -	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number, 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) ATTACHED	The Report of th
nin rile out	17. DISTRIBUTION STATEMENT (of the aberract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse elde if necessary and identify by block number, 20. ABSTRACT (Continue on reverse elde if necessary and identify by block number) ATTACHED 8	AFIT. Wright-Patterson A DELECTE JUL 1 1 1984 4 07 10 16
NIN LIFE OUT	17. DISTRIBUTION STATEMENT (of the observed in Block 20, 11 different from 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/7 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number, 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) ATTACHED DD 1/AN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE	MR Report) MR Report) LUNN E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A DTIC SUL11 1984 E 4 07 10 16 UNCLASS
nin lite ou i	17. DISTRIBUTION STATEMENT (of the observed entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/2 19. KEY WORDS (Continue on reverse elde 11 necessery and identify by block number) 20. ABSTRACT (Continue on reverse elde 11 necessery and identify by block number) ATTACHED DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLA	MR Report) MR Report LONN E. WOLAVER Dean for Research and Professional Developm AFIT, Wright-Patterson A DTIC SULL 1 1 1984 E 4. 07 10 16 UNCLASS ASSIFICATION OF THIS PAGE (Mber Unit En
nin lite our	17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 11 different fro 18. SUPPLEMENTARY NOTES APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1/2 19. KEY WORDS (Continue on reverse eide if necessary and identify by block number, 20. ABSTRACT (Continue on reverse eide if necessary and identify by block number) ATTACHED DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLA	AFIT. Wright-Patterson A LUNN E. WOLAVER Dean for Research and Professional Developm AFIT. Wright-Patterson A DELECTE JUL 11 1984 E 4. 07 10 16 UNCLASS SSSIFICATION OF THIS PAGE (When Unio En

THESIS ABJTRACT

THE CHIC STATE UNIVERSITY GRADUATE SCHCCL (Please type.)

NAME: George Walter Miller

QUARTER/YEAR: Summer/84

DEPARTMENT: Chemical Engineering

DEGREE: M.S.

TITLE CF THESIS: Adsorption Equilibria and Performance of a Pressure Swing Adsorption Air Separation Unit

Summarize in the space below the purpose and principal conclusions of your thesis.

Current pressure swing adsorption (PSA) air separation units operating on short cycle times suffer a reduction in product oxygen concentration when subjected to lower ambient temperatures (i.e., less than -10°C). This work investigates this problem based on analysis of adsorption equilibria, column breakthrough studies, and actual PSA system data.

Pure and multicomponent data for nitrogen, oxygen, and air on molecular sieve 5A were collected at 24, -40, and -70°C up to pressures of 4.3 atmospheres absolute. Using a statistical thermodynamic model pure component data were adequately predicted over the entire temperature range (24 to -70° C). The multicomponent data were predicted at 24°C by a statistical thermodynamic model and ideal adsorbed solution theory. At the lower temperatures the gas mixture behaved nonideally.

Column breakthrough data taken at 24 and -40°C shows that the length mass transfer front during nitrogen breakthrough remains nearly constant. In contrast, the length of the mass transfer front for oxygen breakthrough increases significantly. This may indicate a difficulty in desorbing nitrogen at the low temperatures.

Actual PSA system experiments at 24 and -40°C indicate improved performance at -40°C could be obtained by lengthening the system cycle time. A six-step versus two-step per cycle comparison revealed the sixstep system had slightly higher oxygen purity and recovery at 24°C and both systems had little difference in product purity and recovery at -40°C.

Adviser's Signature

ADSORPTION EQUILIBRIA AND PERFORMANCE OF A PRESSURE SWING ADSORPTION AIR SEPARATION UNIT

A Thesis

Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

by

George Walter Miller, B.S.Ch.E.

The Ohio State University 1984

Access	on For		
NTIS DTIC T. Unanno Justif	GRAAI AB unced ication		
By Distri	bution	/ y Codes	_
Dist	Avail a Speci	and/er	
A-1			

1

Approved by

Adviser

Department of Chemical Engineering

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Dr. Kent S. Knaebel for his guidance and sincere interest in this work. In addition, the software he developed to control the pressure swing adsorption unit greatly improved the efficiency and accuracy of the data collection process.

Special thanks are extended to the U. S. Air Force School of Aerospace Medicine (USAFSAM), Brooks A.F.B., Texas, and the U. S. Air Force Institute of Technology, Wright-Patterson A.F.B., Ohio, who kindly supported this research work. Thanks are also due to Dr. Carter Alexander, Dr. Richard L. Miller, and Dr. Kenneth G. Ikels of USAFSAM/VN for providing facilities where this work could be conducted in an efficient manner.

I am grateful to Union Carbide Corporation, Molecular Sieve Division, for making available their isotherm data.

I would also like to express my deepest appreciation to my family, Maxine, Becky, and Steven, for their sacrifices on my behalf during this work.

TABLE OF CONTENTS	
Page	
TADLE OF FIGURES	
TABLE OF TABLES	
SUMMARY xxiii	
· · · · · · · · · · · · · · · · · · ·	
Chapter	
I INTRODUCTION 1	
II BACKGROUND 8	
III LITERATURE AND THEORY16	
IV EXPERIMENTAL	
V DATA AND RESULTS	
• DATA AND RESULTS	
VI CONCLUSIONS AND RECOMMENDATIONS	
APPENDIX A NOMENCLATURE	
APPENDIX B OPERATING PROCEDURE	
APPENDIX C DATA AND CALCULATIONS	
REFERENCES	
iii	

TABLE OF FIGURES

17.22

- 1

Figure	P	'age
2-1	Skarstrom's heatless adsorption dryer (27)	14
2-2	Schematic diagram of a two-man molecular sieve oxygen	
	generator (10)	15
3-1	Structural model of molecular sieve 5A	.58
3-2	Simplified diagram of a dual column PSA air	
	separation unit	.59
3-3	Valve positions during one cycle for the system shown in	
	Fig 3-2	. 60
3-4	Comparison of six-step and two-step cycle	.61
3-5	The Shendalman and Mitchell (35) four-step cycle	.62
4-1	Electron micrograph of molecular sieve 5A 20X40 mesh	
	pellet (20X magnification)	.80
4-2	Electron micrograph of molecular sieve 5A 20X40 mesh	
	pellet (50X magnification)	.81
4-3	Electron micrograph of molecular sieve 5A 20X40 mesh	
	pellet (90X magnification)	.82
4-4	Electron micrograph of molecular sieve 5A 20X40 mesh	

	crushed pellet (800X magnification)8
4-5	Electron micrograph of molecular sieve 5A 20X40 mesh
	crushed pellet (1000X magnification)8
4-6	Pure component equilibrium apparatus8
4-7	Photogragh of the pure component equilibrium apparatus8
4-8	Multicomponent equilibrium apparatus
4-9	Photogragh of the multicomponent equilibrium apparatus8
4-10	Photogragh of the multicomponent equilibrium apparatus
	with sample chamber inserted into the enviromental test
	chamber
4-11	PSA air separation unit9
4-12	Photograph of the PSA air separation unit
5-1	Oxygen on molecular sieve 5A at 24°C10
5-2	Oxygen on molecular sieve 5A at -40°C10
5-3	Oxygen on molecular sieve 5A at -70°C11
5-4	Nitrogen on molecular sieve 5A at 24°C
5-5	Nitrogen on molecular sieve 5A at -40°C
5-6	Nitrogen on molecular sieve 5A at -70°C
	v

5-7	Pure nitrogen and oxygen on molecular sieve 5A at 24° C114
5-8	Pure nitrogen and oxygen on molecular sieve 5A at -40 $^{\circ}$ C115
5-9	Pure nitrogen and oxygen on molecular sieve 5A at -70 °C116
5-10	Oxygen isotherms on molecular sieve 5A117
5-11	Nitrogen isotherms on molecular sieve 5A
5-12	Oxygen isotherm on molecular sieve 5A at 24°C shown with
, ,	the data of Union Carbide at low pressure
5-13	Oxygen isotherm on molecular sieve 5A at 24°C shown with
	the data of Union Carbide120
5-14	Nitrogen isotherm on molecular sieve 5A at 24°C shown with
5-14	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C121
5-14 5-15	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C121 Nitrogen isotherm on molecular sieve 5A at 24°C shown with
5-14 5-15	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C
5-14 5-15 5-16	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C
5-14 5-15 5-16 5-17	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C
5-14 5-15 5-16 5-17	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C
5-14 5-15 5-16 5-17 5-18	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C
5-14 5-15 5-16 5-17 5-18	Nitrogen isotherm on molecular sieve 5A at 24°C shown with the data of Peterson at 25 C

	5-20	Fitting a Sips equation to the nitrogen-5A data at
	· · ·	-40°C
	5-21	Fitting a Sips equation to the nitrogen-5A data at
. :	· · · ·	-70 [°] C
	5-22	Isosteres for oxygen on molecular sieve 5A
* 1 7 1	5-23	Isosteres for nitrogen on molecular sieve 5A
	5-24	Isosteric heat of adsorption for nitrogen and oxygen on
		molecular sieve 5A
	5-25	vant Hoff plot showing temperature dependence of K
	5-26	Theoretical equilibrium curves calculated using the
		statistical thermodynamic model
: •	5-27	Correlation of oxygen sorption on molecular sieve 5A at
ų.	ι.	24°C using a statistical thermodynamic model where:
	,	K = 0.0004234, $B = 38.8$, and $m = 20$
	5~28	Correlation of oxygen sorption on molecular sieve 5A at
		-40°C using a statistical thermonynamic model where:
. •		K = 0.002031, $B = 38.8$, and $m = 20$
	5-29	Correlation of oxygen sorption on molecular sieve 5A at
		-70°C using a statistical thermodynamic model where:
		K = 0.005952, $B = 38.8$, and $m = 20$ 136

Ţ

ſ.

vii

والمواصية المعالم والمراجعة المراجعة والمراجع والمحاصية والمحاصية والمحاصية والمراجع والمراجع والمحاص والمحاص و

- 5-34 Prediction of Union Carbide data for oxygen-5A sorption at 0^eC using the statistical thermodynamic model where: K = 0.0006969, B = 38.8, and m = 20141
- 5-35 Prediction of Union Carbide data for oxygen-5A sorption at -35°C using the statistical thermodynamic model where: K = 0.001735, B = 38.8, and m = 20142

- 5-37 Prediction of Union Carbide data for nitrogen-5A sorption at 0°C using the statistical thermodynamic model where: K = 0.003711, B = 89.3, and m = 8144
- 5-38 Prediction of Union Carbide data for nitrogen-5A sorption at -35°C using a statistical thermodynamic model where: K = 0.01261, B = 77.6, and m=10145

5-46	Oxygen loading at 24, -40, and -70°C for the air-5A
	system
5-47	Argon loading at 24, -40, and -70 $^{\circ}$ C for the air-5A
	sys tem
5-48	Pure and muticomponent data of nitrogen and oxygen on
	molecular sieve 5A at 24°C155
5-49	Pure and multicomponent data of nitrogen and oxygen on
	molecular sieve 5A at -40°C156
5-50	Pure and multicomponent data of nitrogen and oxygen
	on molecular sieve 5A at $-70^{\circ}C$ 157
5-51	Separation factors for the binary mixture of nitrogen
	and oxygen on molecular sieve 5A158
5-52	Prediction of nitrogen-oxygen adsorption on molecular
	sieve 5A at 24°C using a statistical thermodynamic
	model with pure component parameters
5-53	Prediction of nitrogen-oxygen adsorption on molecular
	sieve 5A at -40°C using a statistical thermodynamic
	model with pure component parameters
5~54	Prediction of nitrogen-oxygen adsorption on molecular
	sieve 5A at -70 $^{\circ}$ C using a statistical thermodynamic
	model with pure component parameters

(2)

x

- 5-60 Prediction of N2-02 sorption on molecular sieve 5A at -70°C using the ideal adsorbed solution theory167

5-64	Run 102714 : Column oxygen breakthrough at 24°C, 25 SLPM,
	and bed pressure of approximately 18.5 psia
5-65	Run 110407 : Column nitrogen breakthrough at -40°C,
	25 SLPM, and bed pressure of 25 psia172
5-66	Run 110413 : Column nitrogen breakthrough at -40°C,
	25 SLPM, and bed pressure of approximately 18.5 psia173
5-67	Run 110408 : Column oxygen breakthrough at -40° C,
	25 SLPM, and bed pressure of 25 psia
5-68	Run 110412 : Column oxygen breakthrough at -40 °C,
	25 SLPM, and bed pressure of approximately 18.5 psia175
5-69	Run 102709 : Measurement of distance/velocity lag time
	at 25 SLPM
5-70	Dependence on nitrogen breakthrough on flowrate at $24^{\circ}C$
	and bed pressure of 25 psia
5-71	Dependence of oxygen breakthrough on flowrate at 24° C and
	bed pressure of 25 psia
5-72	Dependence of nitrogen breakthrough on flowrate at -40°C
	and bed pressure of 25 psia179
5-73	Dependence of oxygen breakthrough on flowrate at $-40^{\circ}C$
	and bed pressure of 25 psia180

1223

l

1

7

aderic related

- 5-74 Effect of temperature on nitrogen and oxygen breakthrough for a flowrate of 25 SLPM and bed pressure of 25 psia181
- 5-75 Effect of temperature on nitrogen and oxygen breakthrough for a flowrate of 13 SLPM and bed pressure of 25 psia182

- 5-81 Product flow from the PSA unit operating at -40°C and configured for a 2 step cycle, 6 sec. cycle time, 0.020"

- 5-58 Effect of bed temperature on the PSA unit configured for a 2 step cycle, 6 sec. cycle time, 0.020" purge orifice,

xiv

and 100 seem product flow195

والمرجعة وال

5-95 Effect of product flowrate and cycle time on the PSA unit operating at -40° C and configured for 2 steps/cycle and

- 5-102 Product N2% for PSA unit configuration: 24°C, 6 step cycle (1sec,3sec,1sec), 10 sec cycle time, 0.020" purge orifice,

5-109 Effect of product flowrate and temperature on oxygen recovery for a 2 step system with a cycle time of 8 sec.

Beneral and a second secon

and a 0.020" purge orifice	بالمرؤمة والمقوة بالمائم فعلامكم		
and a 0.020" purge orifice	έ.		
and a 0.020" purge orifice	44 14		
and a 0.020" purge orifice			
and a 0.020" purge orifice			
and a 0.020" purge orifice			
and a 0.020" purge orifice			
and a 0.020" purge orifice			
 5-110 Comparison of oxygen recovery between a 2 step and 6 step system operating at 24°C			and a 0.020" purge orifice
 5-110 Comparison of oxygen recovery between a 2 step and 6 step system operating at 24°C	*. + 4		
 system operating at 24°C	5	-110	Comparison of oxygen recovery between a 2 step and 6 step
 system operating at 24°C	ب	•••	
 5-111 Comparison of oxygen recovery between a 2 step and 6 step system operating at -40°C			system operating at 24°C217
 5-111 Comparison of oxygen recovery between a 2 step and 6 step system operating at -40°C			
system operating at -40°C	5	-111	Comparison of oxygen recovery between a 2 step and 6 step
system operating at -40°C		•••	
5-112 Three dimensional plots showing oxygen, nitrogen, and total loading at 24°C using the predictions of the statistical thermodynamic model			system operating at -40°C218
5-112 Three dimensional plots showing oxygen, nitrogen, and total loading at 24°C using the predictions of the statistical thermodynamic model			
total loading at 24°C using the predictions of the statistical thermodynamic model	5	-112	Three dimensional plots showing oxygen, nitrogen, and
total loading at 24°C using the predictions of the statistical thermodynamic model	23 2	••	
statistical thermodynamic model			total loading at 24°C using the predictions of the
	Ň		statistical thermodynamic model

TABLE OF TABLES

• •

.

. .

. . . 1

Fable		Page
1	Common adsorption equations (73)	24
2	The apparent saturation of sorption at different	
	temperatures (21)	. 26
3	Diffusion data for 02, N2, and Ar on zeolite 5A (62)	, 44
4	Specifications of gases used in the equilibrium studies	64
5	Sample chamber volume determination using water	
	displacement	66
б	Charge chamber volume determination using water	
	displacement	. 67
7	Results from nitrogen and helium expansions into the	
	sample chamber	. 68
8	Determination of the true dead space of the sample chamber	70
9	Pressure range of the MGA gas sampling probes	. 74
10	Weight of molecular sieve in dual column PSA apparatus	• 77
11	Best fit parameters for the pure component data	. 93
12	Values of K_o and q_o giving the temperature dependence of K	• 97

n. Martin and a state of the state of the

13	Henry's Law constants and effective molecular volumes
	calculated from the pure component isotherms
14	Breakthrough (B.T.) experiment results at 24°C
15	Breakthrough (B.T.) experiment results at -40°C103
16	Separation factors reported by Domine and Hay (67)
17	Nitrogen-5A at 24 °C (Run 1)217
18	" " " (Run 2)232
19	" " -40°C (Run 1)232
20	" " " (Run 1 Desorption)233
21	" " " (Run 2)233
22	" " -70°C (Run 1)233
23	" " " (Run 1 Desorption)234
24	" " " (Run 2)234
25	Oxygen-5A at 24°C (Run 1)234
26	" " " (Run 2)235
27	Oxygen-5A at -40°C (Run 1)235

I s

Ŕ

'n

28	**	" " (Run 1 Desorption)
29	41	" -70°C (Run 1)236
30	n	" " (Run i Description)
31	Ħ	" " (Run 2)
32	Isoster	ric heat of adsorption for oxygen
33	17	" " " nitroger
34	Air-5A	at 24°C (Total Loading vs. Total Pressure) (Run 1)238
35	H T	" " (Nitrogen Loading vs. Total Pressure) (".)239
36	17 2 1	" " (Oxygen Loading vs. Total Pressure) (")239
37	ft f	" " (Argon Loading vs. " ") (")240
38	71 11	-40°C (Total Loading vs. " ") (")240
39	11 II	" " (Nitrogen Loading vs, Total Pressure)(")24
40	ff If	" " (Oxygen Loading vs. Total Pressure) (")241
41	IT 11	" " (Argon Loading vs. Total Pressure) (")242
42	1 1 11	-70°C (Total Loading vs. " ") (")242
43	91 II	" " (Nitrogen Loading vs. Total Pressure)(")243
44	H H	" " (Oxygen Loading vs. Total Pressure) (")243

45 " " " (Argon Loading vs. Total Pressure) (" 46 Air-5A at 24°C (Total Loading vs. Total Pressure) (Run 2)..244 " " " " (Nitrogen Loading vs. Total Pressure) (")..244 47. " " " (Oxygen Loading vs. Total Pressure) (")..245 48 ξ**11** " Argon Loading vs. " 49 (")..245 . łļ) " ~40°C (Total Loading vs. " ") (" 50 -5-0)..245 " " " (Nitrogen Loading vs. Total Pressure)(")..246 51 " " " (uxygén Loading vs. Total Pressure) (")..246 11. 53 54 . " -70°C (Total Loading vs. " (")..247 1 55 47 " (Nitrogen Loading vs. Total Pressure) (")..248 56 11 " " (Oxygen Loading vs. Total Pressure) (")..248 57 " " (Argon Loading vs. Total Pressure) (")..249

xx11

SUMMARY

The pure component isotherms of nitrogen and oxygen on zeolite molecular sieve 5A were determined through use of a volumetric technique at 24, -40, and -70° C up to absolute pressures of 4.3 atmospheres. Using parameters derived from the pure component data, i.e. Henry's Law constant and the effective molecular volume, a statistical thermodynamic model norrectly predicted the pure component data of Union Carbide.

The pure equilibrium apparatus was modified and multicomponent equilibrium data were collected using air and molecular sieve 5A. The pure component parameters were used with the extended statistical thermodynamic model and the IAST theory to predict the adsorption of nitrogen and oxygen from an air mixture on molecular sieve 5A. The predictions at $24 \ ^{o}$ C were excellent but those at -40 and -70 $\ ^{o}$ C had significant deviations. Adjustment of the apparent effective molecular volumes for nitrogen and oxygen led to a good fit of the data at the lower temperatures.

Breakthrough studies using one column of the pressure swing adsorption system revealed that the nitrogen breakthrough curves at 24° C and -40° C have the same shape and length, although due to the increased adsorption capacity of the bed at -40° C its front emerges from the bed at a later time. In contrast, when comparing oxygen breakthrough curves at these temperatures the time required to reach one percent

xxiii

concentration of nitrogen in the effluent is significantly longer at -40 C. These results imply that a longer cycle time should improve performance of a pressure swing adsorption unit operating at reduced temperature, however, the significantly longer time necessary for nitrogen desorption indicates performance should be less than that attained at room temperature. Data taken from an actual pressure swing adsorption unit appear to agree with these predictions.

A bench-scale pressure swing adsorption system was constructed to determine the effect of operating at room temperature and -40° C on system performance. Present systems experience reduced oxygen concentration at preset flow rates and cycle times while operating at low temperatures. It was determined that lengthening the system cycle time improved performance but the percent oxygen concentrations were still less than at room temperature. Cycles of six-steps versus two steps at both room temperature and -40° C were tried, with the six step system showing slightly better oxygen purity and recovery at room temperature and both systems having little difference in oxygen purity and recovery at -40°C.

xxiv

CHAPTER I

INTRODUCTION

Pressure swing adsorption (PSA) has emerged as a popular method for air separation due to economic and operational advantages. Where 95% or less oxygen concentration is required at small to moderate flow rates PSA systems can compete successfully with conventional techniques, i.e. cryogenic fractionation, due to reduced complexity and smaller energy requirements (1). The chemical industry has been aware of the advantages of PSA technology in such areas as gas purification, chemical oxidation processes, and water treatment (2,3,4,5,6,7). It has been suggested that flowrates in the range of 1 to 80 ton/day of enriched oxygen may be produced more economically by PSA (2). PSA systems have been employed by the medical profession for out-patient oxygen therapy and as a source of oxygen for field hospitals (6). In the future such systems may possibly reduce air pollutants in automobile emissions by improving the efficiency of the combustion process.

PSA systems separate air by cyclic variation of pressure in fixed beds of adsorbent which preferentially adsorb nitrogen from an entering air flow, thereby increasing the oxygen concentration in the gas phase. Following the adsorption step is a desorption step where regeneration of the beds is accomplished by pressure reduction and purging by recycling a portion of the product flow. Although the general concept of

separation has been in existence for the last two decades (28), the present impetus for its use is an economic one. The recent introduction of PSA systems operating on short cycle times has allowed these units to process large amounts of air with smaller bed sizes. Additionally, with adsorbent beds operated at ambient temperature and with the process being essentially isothermal the only energy consumed is that required for pressurizing the feed and cycling the valves.

Recently, the aviation industry and the military have placed significant emphasis on the development of an airborne oxygen generating system capable of separating air , and thus, provide an inexhaustable source of breathable oxygen for aircrew hypoxia protection (8,9,10). Presently, oxygen in either liquid or gaseous form is stored onboard the aircraft and depleted during each flight. These stored supplies are costly and place constraints on the aircraft's potential effectiveness. Obviously with conventional systems, any decision involving the basing of aircraft in a remote location must address the availibility of oxygen in both the proper quantity and quality. The development of a system capable of delivering high purity oxygen for extended periods of time would result in substantial economic savings, greater flexibility in aircraft basing, and eliminate hazards associated with handling supplies An onboard oxygen generating system utilizing the of pure oxygen. principle of pressure swing adsorption is considered the prime candidate for full scale production and installation aboard military tactical aircraft.

a la la la la la la la la la internetion de la c

Terrestial and airborne versions of the system employ molecular sieve 5A as the adsorbent, a synthetic zeolite, and are potentially capable of producing a product flow with a maximum oxygen concentration of approximately 95.7% with the remainder as argon. The breathing of this gas mixture, as opposed to 100% oxygen, by aviators has been shown to present no deleterious effects (11,12).

Environmental testing of a prototype onboard oxygen generating system resulted in an interesting observation. When a system producing approximately 95% oxygen at room temperature was subjected to a reduction in ambient temperature the oxygen product concentration also dropped significantly with the most dramatic rate of degradation occurring at approximately -20 °C. At -40 °C the product oxygen concentration had fallen to 70%. Clearly this poses a problem because the ambient temperature within the operational envelope of some aircraft may be as low as -40 °C.

This finding immediately presents two practical questions. Firstly, what mechanism is responsible for this decline in system performance at lower ambient temperatures. Secondly, what approach should be taken to nullify or minimize this reduction in oxygen concentration so that the system might return to an acceptable level of performance. An obvious first approach would involve thermal protection of the adsorbent beds, e.g. by electrical heating, to maintain a temperature above -20° C, maybe $+20^{\circ}$ C as previously suggested (10). This would certainly solve the problem for a powered aircraft which is

Land a the hardest a Landarka Karka Kar

gradually subjected to the lower temperatures. In contrast, an unpowered aircraft with adsorbent bads initially at a low temperature would most certainly require additional preparation time before flight due to the added requirement of heating the adsorbent beds to an operational temperature. The length of time required for heating the beds may be substantial due to the insulating characteristics of the molecular sieve. In most cases this may not pose a significant problem, but for a previously unpowered aircraft desiring an immediate departure, this delay could prove to be an unacceptable constraint. Although this problem could be solved by applying ground electricial power on a continous basis, the burden of providing suitable facilities and maintaining continuous service would make this option undesirable.

Providing answers to those questions is the focus of this work. The goals are twofold: one is to take a step toward understanding the mechanism which causes this reduction in performance: the second is to broaden the base of existing knowledge about PSA systems operating at The topics in this area include overall system low temperature. analysis, and since this is a stepwise approach into the low temperature regime, basic research in equilibria and kinetics of the process. Ultimately, these two mechanisms will control the theoretical and practical limits of the PSA process. wi11 readily ٨s become apparent, this work will stress equilibrium data (instead of kinetics), and methods which will predict this data with a reasonable degree of acouracy,

4

This investigation was organized into three general areas: equilibria, breakthrough data, and dual column PSA system expriments. As was previously mentioned, this work will stress the equilibrium data because accurate determination or prediction of isotherms is of fundamental importance in the design and modeling of PSA systems. Additionally, multicomponent equilibrium data are limited, and therefore, reliable techniques for predicting the behavior of the multicomponent system from the pure component data are crucial from a practical and theoretical standpoint. The multicomponent data may also lead to a better overall understanding of the interactions between the gas and solid phase.

Pure component data of nitrogen and oxygen, and multicomponent equilibrium data of air were measured at temperatures of 24, -40, and -70° C up to pressures of 4.3 atmospheres absolute. Any profound changes in the equilibrium adsorption isotherms would certainly affect the performance of the separation. Air was selected as the multicomponent mixture because its isotherms should come closest to simulating the actual PSA process. The adsorbent used in this work was Union Carbide Corporation of Tarrytown,New York, molecular sieve 5A due to its superior characteristics for air separation. Data at -70° C were included so that a more complete data set over a wider range of temperature would be available for analysis. It was thought if any unusual observations were noticed at -40° C their presence would be confirmed by a more pronounced effect occurring at -70° C. These

experiments were necessary because, in general, this data was not available in the literature. Considerable effort was expended in investigating techniques which could be employed to predict the experimental data within a reasonable degree of accuracy. Since multicomponent data collection is, in general, time consuming and tedious, reliable predictive models based on pure component data are of great value.

The breakthrough experiments were conducted at 24 and -40 $^{\circ}$ C, various flowrates, and pressures comparable to the actual column operating pressures, provided breakthrough curves which described the mass transfer zone within the column. Changes in the shape of the breakthrough curves and the time required to reach breakthrough would reveal any kinetic differences between operating the column at 24°C, as opposed to -40°C. In these experiments, one of the two column of the PSA apparatus was used and breakthrough curves were determined by flowing air and oxygen. Air and oxygen were chosen because these gases would better approximate the actual conditions within each PSA column, i.e. during the feed and purge steps.

A dual column, bench scale PSA apparatus was designed for laboratory use. Although built on a small scale, it is believed this system possessed similar characteristics of the larger systems. That is, trends occurring in the laboratory model should also present themselves in the larger scale models. Throughout these experiments the inlet pressure and exhaust pressure were held constant at 25 psia and

6

14.4 psia, respectively. Parameters varied were temperature (24 and -40 °C), cycle time, product flow rate, and purge flow rate. The purge flowrate was controlled by installation of different diameter orifices. The dependent variable of primary interest was the steady state oxygen concentration in the high pressure product. Data was collected only after the oxygen concentration in the product had reached a steady state value. The experiment was configured for both two-step and six-step cyclic operation, so that these configurations might be compared and contrasted based on product oxygen concentration, cycle time, and oxygen recovery.

CHAPTER II

BACKGROUND

This section presents a brief history behind the development of synthetic zeolites and the pressure swing adsorption process. Although zeolites have been applied widely in areas such as, catalytic cracking, isomerization, hydrocracking, etc., the ensueing discussion stresses zeolite development as it relates to air separation (13). It should become apparent that without the development of techniques for the manufacture of high quality synthetic zeolites pressure swing adsorption technology would not have evolved as a commercial separation method.

Baron Cronstedt, a Swedish mineralogist, discovered crystalline zeolites in 1756 and was the first to observe that upon heating water is evolved (13). In 1840 Damour noticed that these zeolites could be reversibly hydrated and dehydrated with no apparent change in the crystal structure whatsoever. One hundred and fifty three years after their first discovery Grandjean reported in 1909 that zeolites were capable of adsorbing organic vapors such as iodine, mercury, and ammonia (14). Weigel and Steinhoff in 1925 were the first to observe the molecular sieving properties of zeolites when they reported that chabazite adsorbed methanol, ethanol, and formic acid but excluded

acetone, ether, and benzene (15). McBain in 1926 analyzed the Weigel and Steinhoff observations and concluded that the adsorption or exclusion could be explained by a molecular size discrimination process. He proposed the name "molecular sieve" (13).

references in the second s

.

Although research on zeolites from 1926 to 1948 progressed at a slow pace, some important work was reported. In the 1930's the crytal structures of analcite and natrolite were identified bγ X~rav diffraction studies (16,17). Also during this period R.M. Barrer of England became intensely interested in zeolite research. His work was instrumental because it suggested future applications of zeolites. In 1938 his experiments with nitrogen and argon showed that nitrogen was more strongly adsorbed on the zeolite, chabazite (21). This he attributed to the polarity of the nitrogen caused by its quadrupole moment interacting with the ionic crystal structure of the zeolite. He is credited with proposing that zeolites could be applied to the separation of normal from isoparaffins and of polar molecules from nonpolar molecules (18,19,20). In 1956 Barrer and Sutherland (25) doncluded that the permanent gases nitrogen, oxygen, and argon are selectively adsorbed based on the magnitude of their quadrupole moments (N2>02,Ar), and thus the separation of nitrogen and oxygen occurred not due to any molecular sieving action but of different sorption affinity.

9

Although interest in zeolites grew during this period, the major obstacle confronting their commercial usage was the limited availability of zeolites. It was recognized by researchers at the time that the unique characteristics of zeolites could only be used to full advantage if the naturally occurring species could be synthesized on a large scale, but prior to 1948 attempts at synthesizing zeolites in the laboratory were unsuccessful.

While investigating new approaches to air separation R.M. Milton of the Union Carbide Corporation became interested in the natural zeolite, chabazite. His belief that a synthetic analogue to chabazite could be developed sparked a research program at Union Carbide which culminated in the development of many synthetic zeolites, some not found in nature. A technological breakthrough occurred when methods were devised to produce these synthetic varieties in large quantities The fundamental difference between Milton's approach and (22.23).earlier attempts was the use of lower crystallization temperatures. He performed his crystallizations at 25 to 150°C, in contrast, to other researchers who employed temperatures in the range of 200 to 400°C. By 1952 type A and type X zeolites had been successfully synthesized by researchers at Union Carbide. Today there are thirty-four known types of zeolitic minerals and about one hundred synthetic varieties (70).
These synthetic zeolites were formed by precipitation from a supersaturated aluminosilicate gel consisting of sodium hydroxide, sodium aluminate, and sodium silicate with excess caustic. The type of aomponents, their concentration in the gel, and a low crystallization temperature are critical factors in the synthesis of high quality synthetic zeolite materials. If the proper conditions are maintained, crystallization will be complete in two hours. This feature made the process economically feasible. A typical synthesis may be represented by the following equations (24),

> 20°C NaON(aq) + NaAl(OH) (aq) + Na SiO (aq)2 3 <150C [Na (A10) (S10) ,NaOH,H 0] 2 1 20 2 8 (gel) Na [(A10) (SiJ)] . w H 0 + solution 2 Y 2 x (zeolite crystals) where. number of water molecules. y/x = varies between 1 to 5.

After separation from the mother liquor and drying the final product of the above process is a white powder with a particle size of 1 to 5 microns. Before commercial use the powder is impregnated with 20% inert clay binder and formed into pellets to minimize attrition of the crystal structure.

First mention of an industrial process utilizing the concepts of PSA, although not for air separation, was in 1959 by C.W. Skarstrom of Esso Research and Engineering Company, Linden, New Jersey (26,27,28). The apparatus was called a heatless drier because it dried air from a moisture content of 3800 ppm to 1 ppm and exhibited nearly isothermal operation. The unit had two adsorbent beds containing either alumina or silica gel and operated in a cyclic manner by alternating the flow of wet feed air to the two beds (See Fig 2-1). While bed A received a flow of wet air and delivered a product of dry air, bed B was regenerated by venting to atmospheric pressure and purging with some product flow from bed A. The desorbed water vapor was exhausted to the atmosphere, thereby, preparing the bed for the next cycle of operation. The cycles were controlled by an electric timer. Skarstrom noted that the actual volume of the low pressure purge gas had to exceed the actual volume of the high pressure input gas if the system was to produce extremely dry air. The beds remained essentially isothermal because heat liberated during the adsorption step was reclaimed during the desorption or regeneration step.

Surprisely, a similiar system configuration with a different adsorbent finds use today in the area of air separation (See Fig 2-2). Although PSA systems for air separation have become more sophisticated as designers strive for optimization, all systems operate on the same principles as the Skarstrom's heatless drier. An excellent review of the most important patents up to 1973 has been prepared by Lee and Stahl

12

(1).

1

No. 1

Theoretical modeling of PSA systems has progressed in recent years but agreement between the predictions of theoretical models and experimental data rarely occurs unless some degree of empiricism has been incorporated into the model (35,36,37,38,39,40).

n Na sana na manana ma

FIG 2-1. SKARSTROM'S HEATLESS ADSORPTION DRYER (27).

A CARLES AND A CARLE

FIG 2-2. SCHEMATIC FLOW DIAGRAM FOR A TWO-MAN MOLECULAR SIEVE OXYGEN GENERATOR (10).

CHAPTER III

LITERATURE AND THEORY

Zeolite Structure

Smith defines a zeolite as " an aluminosilicate with a framework structure enclosing cavities occupied by large ions and water molecules, both of which have considerable freedom of movement, permitting ion exchange and reversible dehydration (29). The hydrated crystallographic unit cell of the type A zeolite is,

> Me [(A10) (S10)]. 27 H 0 12/n 2 12 2 12 2

where, n is the valence of the metal cation Me.

Upon dehydration the zeolite crystal structure will maintain its well defined shape and extremely uniform pore dimensions. The effective pore diameter of zeolites vary from 3 to 10 Angstroms depending on the type of zeolite and the cation present in the structure. The one univalent cation per (AlO_2) tetrahedral unit is necessary to maintain electrical neutrality within the structure. These cations are easily exchanged if a different pore size is desired, for instance the Na⁺ cations of molecular sieve 4A may be exchanged with Ca⁺ ions to form zeolite 5A.

The unit cell forms a cubo-ostahedron building block which is constructed from twelve (Al02) tetrahedral units, twelve (S102) tetrahedral units, and the required number of cations. These cubo-octahedrons are positioned at the corners of a 12.32 % cubic lattice (See Fig 3-1). Entry into the spherical space, alpha or super cage (diameter = 11.3 Å, volume = 776 cubic Augstroms), within the cube is gained by passage through six eight-membered rings of oxygen atoms. In the case of zeolite 5A the effective pore diameter is 4.3 Å but molecules with critical diameters up to 5.5 Å may enter because of the constant vibration of these oxygen molecules. The cubo-octahedron units at the corners also have an internal cavity, beta cage (diameter = 6.6 \ddot{A}), which can only be entered by the smallest molecules. The eight six-membered oxygen rings permitting access to the beta cage have an effective diameter of 2.2 Å. Only molecules such as water, helium, and ammonia are capable of entering this volume. Adsorption of nitrogen and oxygen only occurs in the alpha cage. The cubo-octahedron units are connected by cubes of oxygen atoms which attach to six four-membered rings. For complete descriptions of zeolite structure see Breck (7).

If an adsorbate molecule's effective diameter is larger than the zeolite pore diameter the molecule will be excluded from the intracrystalline volume, although it may be possible for the molecule to adsorb to the outer surface of the zeolite crystals. This outer surface only represents 1 of the inner surface area therefore, any adsorption here would be extremely small. The internal surface area has been

estimated in the region of 800 to 1000 sq. meters/gm (70). Separations based on the exclusion of one or more species are referred to as molecular sieving.

Zeolites interact vigorously with molecules possessing dipole or quadrupole moments due to the ionic nature of the crystal structure. Molecules such as water, carbon dioxide, and nitrogen energetically interact with the potential fields within the zeolite. The strong interaction between the quadrupole moment of the nitrogen molecule and zeolite 5A makes air separation possible.

Sorption in zeolites

Upon dehydration zeolites become active adsorbents. Zeolite adsorption data is usually presented as quantity adsorbed versus pressure of the adsorbate in the gas phase at constant temperature which is referred to as an "isotherm". Adsorption and desorption isotherms for zeolites are usually identical due to the uniform structure of the crystal framework, although hysteresis may occur for some complex molecules.

Since sorption in zeolites is a pore filling process internal volume is the critical parameter and surface area has little meaning. Use of the conventional B.E.T. method for surface area determination is not applicable to zeolites. The pore filling process occurs rapidly

sorption occurs nearly instantaneously (diffusional resistance lengthen this process) and is easily reversed returning the adsorb solecule and the surface of the zeolite to its original state, disussed by Young and Growell (32), Brunauer (81), Breek (7), and Os (30) in detailed treatments of physical adsorption. Thysical adsorption is always exothermic as will be shown by following thermodynamic relationship. $\Delta - \Delta H - \Delta \Sigma$ The more ordered state of the adsorbate molecule as opposed to its phase counterpart requires that the change in entropy decrease. Si adsorption occurs spontaneously, the ohange in the Gibbs free one must be negative and furthermore the change in enthalpy must agative. The magnitude of the interaction between a diffusing adsorb molecule and the seclite framework is directly related to the heat adsorption. At absolute zero (-273.15⁶C) (7), $\Delta Ha + 1 + 1 + 1 + 1 = 4$ D = R = 0Here,1 = energy contribution due to dispersion. $<math display="block">\frac{D}{R} = \frac{R}{R} = \frac{R}{R} = 0$ sorption occurs nearly instantaneously (diffusional resistance may lengthen this process) and is easily reversed returning the adsorbate molecule and the surface of the zeolite to its original state, as dicussed by Young and Crowell (32), Brunauer (81), Breck (7), and Oscik

Physical adsorption is always exothermic as will be shown by the

$$\Delta G = \Delta H - T \Delta S$$

The more ordered state of the adsorbate molecule as opposed to its gas phase counterpart requires that the change in entropy decrease. Since adsorption occurs spontaneously, the change in the Gibbs free energy must be negative and furthermore the change in enthalpy must be

The magnitude of the interaction between a diffusing adsorbate molecule and the zeolite framework is directly related to the heat of

= energy contribution due to electrostatic-dipole I E-D interaction. I = energy contribution due to electrostatic-quadrupole E-Q interaction. 6 2 I = -A / r= - TK/r I D E-D 2 3 = τQ[3 (cos φ) - 1] / 4 r 12 I = B / rI E-0 R / 2,r I = ~ωτ P where, τ = charge

 ω = polarizability

A PATENCE AND A PARA

- κ = dipole moment
- ϕ = angle between the axis of the quadrupole and the line between the centers of the two molecules.

The dispersion and repulsion energies are present whenever a sorbate molecule enters the zeolite framework. However, due to their small value these energies are only noticeable when the sorbate is a nonpolar molecular, such as argon or oxygen. Furthermore, as the concentration of a nonpolar adsorbate increases, the heat of adsorption also increases slightly reflecting the rise in dispersion/repulsion interactions (34).

The electrostatic interactions between specific adsorbate molecules and the zeolite may be substantial. The largest interaction energies (20-30 kcal/gmol) occur when molecules with permanent dipole moments water, ammonia, etc.) zeolite structure. The (i.e. enter the electrostatic-quadrupole interaction for nitrogen has been estimated at 1.5 to 2.5 kcal/mol (7). The initial heat of adsorption for molecules with dipole or quadrupole moments is generally large due to the availability of energetically active sites at low coverage and decreases monotonically with increasing sorbate concentration as the less energetic sites become occupied.

The strong positive charge of the exchangeable cation can induce dipoles on unsaturated molecules. The resulting polarized molecule is then strongly adsorbed. Attempts to predict equilibrium adsorption isotherms by modeling these interactions have not been successful (41).

The isosteric heat of adsorption, Ha, may be evaluated by applying the Clausius-Clapeyron equation to the two-phase system of gas and adsorbate.

$$\begin{bmatrix} \frac{dP}{dT} \end{bmatrix}_{c} = \Delta Ha / T(Vg - Va)$$

Since Vg>>Va we can neglect Va with negligible loss of accuracy. Applying the ideal gas law gives,

$$\Delta Ha = R \begin{bmatrix} dlnP \\ dT \end{bmatrix} c$$

If equilibrium isotherm data at various temperatures are available, the heat of adsorption may be evaluated. Reported values for oxygen and nitrogen adsorption on molecular sieve 5A are 3.3 and 5.0 Kcal/mole, respectively (46).

Isotherm Models

A. General

In general, the classical isotherm models, i.e. Langmuir, Freudlich, and Temkin (See Table 1), do not adequately represent sorption in zeolites (31,43,44,45,46,47,48). The Polanyi potential theory (61) has been extended for application to zeolitic adsorbents, although its primary value is the correlation of equilibrium data (31). Although these models may be of limited value in arriving at an empirical fit of zeolite data, the basic assumptions simply are not valid for zeolitic sorption.

le trata de la constate de la constate

Table 1	Common	adsorption	equations	(73)	•
			-		

Name	Equation
Langmuir	$\theta = \frac{CP}{1 + CP}$
Freundlich	$\theta = C P$
Temkin	$P = k \exp(\theta)$
Volmer	$P = \frac{k \theta}{1 - \theta} \exp[\theta (1 - \theta)]$
B.E.T.	$\theta = \frac{c x}{(1 - x) [1 + (c - 1)x]}$
Sips	$\Theta = \frac{(c p)^k}{1 + (c p)^k}$

Where: k = f(T), C and c = constants.

Although the Langmuir model has limited value in empirically fitting zeolite isotherm data for non-polar molecules, the basic postulates of this model render it useless in predicting zeolite adsorption isotherms. The assumption of a energetically uniform surface with distinct adsorption sites with no sorbate-sorbate interaction cannot explain the energetic heterogeneity of the zeolite toward molecules with dipole or quadrupole moments, nor can it account for the pore filling nature of zeolites.

and the second second and the second seco

The equation suggested by Sips (49) which combines the Freundlich and the Langmuir isotherms is successful as an empirical equation but the constants in this equation have little physical meaning. Additionally, the Sips model, Freundlich model, and Temkin model will not reduce to Henry's Law at very low pressures which Hill (50) has shown to be an important limit for adsorption equations.

B. Statistical Thermodynamic Approach

Ruthven (52) suggested an adsorption isotherm model based on statistical thermodynamics and applicable to zeolitic adsorption. He reasoned that zeolites are well defined, uniform structures and, therefore, it should be possible to analyze the adsorption process using statistical thermodynamics and arrive at a predictive model.

studies which A number of revealed volume filling the characteristics of zeolites led to the development of the statistical thermodynamic model. Barrer (21) observed that the apparent saturation values decrease linearly with temperature (See Table 2). He speculated that the volume of the sorbed molecules increase linearly with temperature. Barrer and Sutherland (53) concluded that at high temperatures the amount sorbed was determined by the affinity of the sorbate for the zeolite but at low temperatures and pressures the amount sorbed depended on the molecular volume of the sorbate molecule and its packing density. It appeared that the intracrystalline fluid had some

and a state of the second second

of the properties of the bulk liquid (25,51). Another has speculated that adsorption in zeolites might be viewed as filling the intracrystalline volume with liquid sorbate (31). By linear interpolation between the saturated liquid molecular volume at the normal boiling point and the van der Waals molecular volume b at the critical temperature, the effective molecular volume could be estimated (31,56,57) and the saturation capacity of the zeolite could be predicted with reasonable accuracy by dividing the cavity volume V by the effective molecular volume B (55). This concept of volume filling forms the basis of the statistical thermodynamic model.

Zeolite	Gas	Temp. (K)	Apparent Saturation (cc NTP/gm)
chabazite	N2	89.2 194.5	164.0 75.2
	* N2	83.0 193.0	170.0 90.0
analcite	N2	79.5 194.5	30.3 15.1
	Н2	62.2 78.5 90.0	33.0 27.7 23.7

Table 2. The apparent saturation of sorption at different temperatures (21).

+ Data of Rabinowitsch and Wood (54).

The derivation of the pure component isotherm equation based on the statistical thermodynamic model is presented below. More detail is given by Hill (50) and Ruthven (52).

Each zeclite cavity is assumed to be a totally independent site for adsorption, i.e. interaction with neighboring cavities are neglected. Consider a macroscopic system of M equivalent, independent, distinguishable cavities which contain s sorbate molecules where the number of sorbate molecules/cavity range from zero to m. Let the partition function below represent the cavity with s sorbate molecules adsorbed.

 $q(s) = \sum j \exp(-\epsilon(s) / kT)$

Let N be the total number of sorbate molecules in the system and a be s the number of cavities with s molecules, then the canonical ensemble partition function for the system is,

$$C(N,M,T) = M! q(0) q(1) \dots q(m)$$

$$\Sigma = a! a! \dots a!$$

$$0 1 m$$

where, $\underline{a} = a$, a,..., a satisfying the restrictions: 0 1 m

a Part a tradition of the for the for

The grand partition function G is:

Where the grand partition function may be represented as a product of a subsystem of grand partition functions,

$$M = Q(\lambda, M, T) = Q(\lambda, T)$$

where,

 $Q = q(0) + q(1)\lambda + ... + q(m)\lambda$

$$\prod_{\substack{s=0 \\ s=0}}^{m} q(s) \lambda$$
 or,

$$G(\lambda,M;T) = \begin{bmatrix} \Sigma & q(s) \\ \lambda \end{bmatrix} = Q$$

Finding the average number of molecules in the macroscopic system,

$$n = \overline{N} = \lambda \left[\partial \ln G / \partial \lambda \right] = M \lambda \left[\partial \ln Q / \partial \lambda \right]$$

$$M,T$$

$$T$$

Then the average number of molecules/cavity c is:

s s Since Z(s) a = q(s) λ where,

Z(s) is the configuration integral then,

		S				2			m	
c = n =	m	sZ(s)a	=	Ζa	+ 2Z	a	+	+	mZ a	
-	Σ			1		2	•		m	
M	s= 0			<u></u>		_				
		S					2		i	M
		Z(s)a		1 +	Ζa	+ Z	a + .	••	+ Z a	
					1	2			m	

where the configuration integral Z is:

$$Z = \frac{1}{s} \int_{V} \exp[-U(r...r)/kT] dr... dr$$

9

and r = position vector, V = volume of the cavity, k =
i
Boltzmann's constant, T = absolute temperature,U = potential
s
energy for the subsystem, a = activity of the sorbate = p/kT for
an ideal gas.

To evaluate the configuration integrals in terms of measurable quantities is very difficult therefore, the adsorbed molecules are treated as a van der Waals gas (52), and the following assumptions are applied:

- The form of the potential field within the cavity is independent of the number of molecules in the cavity.
- (2) When two or more molecules are in the cavity, they move randomly and independently, and the molecular interaction is simply expressed as a reduction in free volume.
- (3) The energy of interaction between sorbate molecules may be represented by the Sutherland potential as in the derivation of the van der Waals equation (50) :

 $U(r) = \infty, r < \sigma; U(r) = -\xi (\sigma/r), r \ge \sigma$

This potential assumes rigid spheres of diameter orwhich attract each other according to an inverse power law. This model is simple and fairly accurate (74). These approximations give the following configuration integral,

> s z = z (1 - sB/V) exp(sBξ/VκT) s1

> > 2 < 5 < V/B

where, ξ and σ are molecular constants from the Sutherland potential function

(in the absence of available Sutherland constants Lennard-Jones constants are generally used). The resulting equation for the adsorption of a pure component gas has been shown by Ruthven (52) to be:

$$c = \frac{2}{1 + Kp + 1(Kp)^{2}(1-2B/V)^{2} \exp(2B\xi/VkT) + \dots + (Kp)(1-mB/V)^{m} \exp(mB\xi/VkT)}{21}$$

$$m = \frac{m}{m}$$

$$m = \frac{m}{m}$$

Where K is the Henry's Law constant and,

$$Kp = Z a = Z p/kT$$

$$1 \qquad 1$$

$m \leq V/B$

c has units of molecules/cavity.

Based on estimates of available force constants it has been shown that the $\exp(mB\xi/VkT)$ term in the configuration integral which accounts for the intermolecular attraction of the sorbate molecules is generally small (46). Therefore, the configuration integral may be simplified to give,

$$S = S (1 - SB/V)$$

$$S = 1$$

$$S = 1$$

31

The resulting isotherm equation then is,

	2 Kp + (Kp) ((1 - 2B/V)	(m-1)! $(m-1)!$ $(m-1)$ $(m-1)!$ $(m-1)!$				
G =	1 + Kp + 1	2 (Kp) (1 -	2 • 2B/V) +	+ (Kp m1	m)) (1 -	m mB/V)	

The (1 - mB/V) term corrects for the reduction in cavity volume which implies the integer m < V/B since the correcting term must not be negative. Restricting m to integer values is a weakness in the model since experimental data generally do not conform to this assumption. In the model the Henry's Law constant K accounts for the sorbent-sorbate interaction and , B, the effective molecular volume, accounts for the sorbate-sorbate interactions. At low pressures this equation reduces to the familiar Henry's Law equation. Although K may be calculated theoretically for simple systems (52), generally its value is determined from experimental isotherm data at low pressures. A problem arises in selecting a value for B, the effective volume of the molecule, since the molar volume of the sorbate varies with temperature. The use of b, the van der Waals covolume, suggested in earlier work (52) has limited value. The value for B may be estimated by linear interpolation between van der Waals b at the critical temperature and the molecular volume of the saturated liquid at the boiling point (56,45). More recently Ruthven (46) suggested superimposing a plot of the theoretical isotherm curves with vary values of V/B over the actual isotherm data plotted on

32

the same coordinates. K values may be predicted over a range of temperature from a vant Hoff plot where the K values derived from the data have been fit to a straight line and represented by the equation,

$K = Ko \exp (qo / RT)$

Although the assumptions may seem crude, this model has been widely and successfully applied for zeolite adsorption (31,45,46,52,58,75). The model is not without limitations, however. For systems approaching saturation ($\Theta > 0.9$) this model may give unsatisfactory results (46). The model may also be inappropriate for adsorption of monotomic molecules and small polar molecules which tend to collect at the localized sites (31).

The statistical thermodynamic model can be extended to predict multicomponent mixture equilibria. Presented below is the derivation of the model equations for a binary mixture. For greater detail refer to Hill (50) and Ruthven (45). Proceeding with the same assumptions given for the pure component model, the grand partition function for the two component (A+B) mixture may be given as,

> $G = \begin{bmatrix} \Sigma & \Sigma & q(i,j) & \lambda & \lambda \end{bmatrix} = Q$ AB j (1) A B AB

where q(i,j) is the partition function for a cavity containing i molecules of A and j molecules of B. This summation must include all values of i and j which satisfy,

 $\begin{array}{ccc} \mathbf{i} \mathbf{B} + \mathbf{j} \mathbf{B} \leq \mathbf{V} \\ \mathbf{A} & \mathbf{B} \end{array}$

Since
$$q(i,j)$$
 $\stackrel{i}{\lambda}$ $\stackrel{j}{B} = 2(i,j)$ $\stackrel{i}{A}$ $\stackrel{j}{B}$ then,
 $\stackrel{a}{A} = \frac{A}{A} = \frac{A}{AB} = \frac{B}{AB} = \frac{A}{A} = \frac{A}{B}$ $\stackrel{j}{B} = \frac{E}{B} = \frac{E}{2} = \frac{E}{2} = \frac{1}{2} = \frac{1}{2} = \frac{1}{4} = \frac$

where the summations are carried out over all values i and j satisfying both restrictions:

 $i + j \ge 2$ and $iB + jB \le V$ A B

K,K,B,B are determined from the pure component isotherm data A B A B Since all parameters are known c and c may be calculated explicitly to A B

give the mixed gas equilibria from the pure component data. This binary model has been applied successfully to a number of systems (45, 46). Recently, the binary model gave an excellent representation of the oxygen-nitrogen equilibrium data of Sorial,Granville,and Daly (71) over the temperature range 278.15°K to 303.15°K and at total pressures of 1.7 and 4.4 bar. Furthermore, this method has been used to analyze the equilibrium data gathered in this work, as discussed in Chapter V.

C. The Ideal Adsorbed Solution Theory

The ideal adsorbed solution theory (IAST) of Myers and Prausnitz (60) represents zeolitic adsorption in certain systems (59). Ideal behavior implies that the components in a multicomponent mixture adsorb

as if they were present as pure components at their partial pressure in the mixture. Ruthven (45) has shown that when $B \approx B$ and either, A B

the statistical thermodynamic model predicts that ideal behavior should be observed even at high sorbate concentrations. In addition, ideal behavior will also occur if the sorbate concentration is less than about one molecule/cavity, even if the effective molecular volumes differ widely. Conversely, when these characteristics do not occur the system will tend toward nonideality.

IAST proposes that Raoult's Law, which has been used extensively for vapor-liquid equilibria of ideal mixtures, may be adapted for use in predicting mixed gas adsorption. Both equations are shown below for comparison,

T = constant

sat
P y = P(T) x (vapor-liquid equilibria)
i i i
P y = P(II) x (mixed gas adsorption)
i i i

where,

 Π = spreading pressure

sat P(T) = vapor pressure of component i at temperature T.i

 $P(\Pi)$ = pressure that would be exerted by pure i at the i spreading pressure of the system.

The adsorbates are assumed to have equal spreading pressures.

The thermodynamic equations which describe the mixed gas adsorption system require the following assumptions (60):

- (1) The adsorbent is assumed to be thermodynamically inert. This implies that the change in thermodynamic properties, such as enthalpy, internal energy, etc., are small compared to the changes of these same properties for the adsorbing gas.
- (2) The ideal gas law applies.

- (3) The adsorbent has a temperature invariant area for adsorption which is the same for all adsorbates.
- (4) Gibbs definition for adsorption applies (72), that is, ne, the surface excess amount of sorbed gas, is the excess number of moles of i present in the system above that number present in a reference system where no adsorption occurs at the same equilibrium pressure (30). The volumetric technique gives the experimental isotherms in terms of the surface excess (60).

The development of the IAST equations shown below may be found in Myers and Prausnitz (60). In writing the thermodynamic equations for the adsorbed phase, we substitute the spreading pressure, Π , for pressure, P, and substitute area, A, for the volume, V.

$$dU = TdS - \Pi dA + \sum \mu dn$$

$$i i$$

$$dG = -SdT + A d\Pi + \sum \mu dn$$

$$i i$$

Hence, the work term is (- Π dA), and since Π is positive for physical adsorption, the adsorbed phase does work on the adsorbent.

The Gibbs adsorption isotherm (72) is,

 $-\Lambda d\Pi + \Sigma n d\mu = 0$ (constant T) i i which upon integration gives,

$$\Pi(P) = \frac{RT}{A} \int_{t=0}^{0} n(t) dln(t)$$

where t is a dummy variable. This integral is evaluated o o o o graphically by plotting n / P versus P and finding i i i i the area under the curve. The evaluation of this integral requires the pure component isotherm data at the proper o o temperature, i.e. n = F(P). This step results with, i i

$$\begin{array}{ccc}
0 & 0 \\
\Pi & = F(P) \\
1 & 1 & 1 \\
0 & 0 \\
\Pi & = F(P) \\
2 & 2 & 2
\end{array}$$

We may then write:

$$\begin{array}{c} \mathbf{P} \mathbf{y} = \mathbf{P} \quad \mathbf{x} \\ 1 \quad 1 \quad 1 \end{array}$$

Assuming constant Π ,

There are nine unknowns and seven equations, so that, we must define two variables in order to analytically determine the remaining seven. The total adsorbed is subsequently found by,

where n and n are the amounts of pure component 1 and component 2 1 2 adsorbed at Π and T.

The advantages of the IAST are its elimination of a specific isotherm model and its simple computational method but this theory does have some drawbacks. Pure component data must be available at the desired temperature over a wide pressure range. Without a model, use of the theory outside the range of the available data is questionable. Assumption of equal areas of adsorption for all adsorbates may not be

valid for zeolites where the area will depend on the effective molecular volume of the sorbate (60). The assumption that the adsorbent is thermodynamically inert may not be completely valid for zeolites. These drawbacks are not drastic, however, for permanent gases in zeolite 5A. Results of data analysis by this method are given in Chapter V.

Diffusion

A. Background

Important factors which influence the rate of diffusion in zeolite systems are: temperature, the rate at which diffusing molecules can reach the surface of the crystals (here we assume a system of zeolite pellets), the size of the molecules with respect to the size of the zeolite pores, the strength of the interactions between zeolite and the molecules, and adsorbate concentration. The resistances to zeolitic diffusion can be categorized as: external fluid film, macropore or intercrystalline, and micropore or intracrystalline (31). The macropore and micropore resistances are generary considered the most important.

The external fluid film resistance which occurs at the boundary of the zeolite pellet has been well studied. This resistance is generally of little importance in zeolite systems because the bulk fluid velocity is usually sufficient to minimize this effect (31). On the other hand, the macropore resistance, which involves the passage of the molecules

through the elaborate pore system of the clay binder, may occur by the mechanism of Knudsen or by molecular diffusion, and has been shown (at least in some systems) to influence the overall rate of diffusion. Variation of the pellet size will reveal whether macropore resistance is significant. In many systems the rate of crystal surface diffusion is rapid, therefore, the assumption of local equilibrium at the crystal surface is valid (31). The relative magnitudes of external or bulk -1 -3 diffusion, macropore diffusion, and micropore diffusion are 10 ,10 , -11 2 10 cm /sec, respectively (7).

R

Intracrystalline diffusion in most cases is the rate limiting step in the diffusion process due to the combined effects of the molecular dimensioned channels and the strong potential fields emanating from the crystal framework. Investigations of activation energies and diffusion coefficients for the adsorption of gases suggest the diffusing molecule encounters periodic potential fields within the zeolite (7). As a result, attempts at predicting equilibrium isotherms, heats of adsorption, and diffusivities through the use of idealized models of the potential fields have been unsuccessful (41).

A number of investigations have attempted to determine whether the diffusion rate controlling step in zeolites occurs in the macropore or the micropores. Kondis and Dranoff (63) studied the diffusion of ethane in synthetic type A zeolite. Both pelleted and powdered zeolite gave identical diffusion rates and equilibrium data. Since the powdered form had no binder (hence no macropore system) it was concluded that

41

intracrystalline diffusion was the controlling mechanism. In another experiment using erionite, a natural zeolite, both 1/8" pellet and 20X35 mesh granules gave rates of diffusion of the same order of magnitude. therefore, intracrystalline diffusion was reported as the controlling mechanism (76). In a third study, the rate of diffusion was compared using synthetic zeolite NAA pellets with an inert binder and pure crystals. The equilibrium data were corrected due to the presence of the binder. The results of the work indicated both had identical rates of diffusion and equilibrium data, i.e. the binder did not affect the rate of diffusion (77). In a fourth experiment, the rates of diffusion through pellets of NaA and CaA were measured using ethane. The calculated micropore and macropore diffusivities revealed that for NaA micropore diffusion was the limiting rate mechanism, but for CaA both and micropore diffusion appeared to be important macropore (7). Obviously, intracrystalline diffusion plays a significant role in most zeolite systems.

Zeolite diffusivities display a dramatic exponential sensitivity toward temperature indicative of an activated rate process (31). At very low temperature CO2, N2, and Ar adsorption on zeolite 4A is hindered because these molecules do not possess sufficient activation energy to pass through the narrow openings. Breck (7) reports that the rate of adsorption of argon and nitrogen on zeolite A powder decreases rapidly with temperature. Nitrogen will require a large activation energy for diffusion because of its strong quadrupole interaction with

and the second second and the second second second and a second second second second second second second second

the zeolite (78).

where,

Ruthven's (31) study of the diffusion of monotomic and diatomic gases in type A zeolite shows an interesting concentration dependence. In zeolite 5A the diffusivity dramatically drops in the Henry's Law region from an initially high value to a minimum value at about one third of the saturation concentration, and as concentration increases the diffusivity dramatically rises (31). This behavior is indicative of a collisional diffusion mechanism where the mean free path of the diffusing molecule is determined by the intermolecular collisions. This suggests that, when the molecules are sufficiently small relative to the windows, they pass freely from cavity to cavity and the collisional mechanism controls diffusion.

It has been pointed out that the true driving force for diffusion in zeolites is the gradient of the chemical potential rather than the concentration gradient (31). Therefore, since most early studies were based on the concentration gradient their results, particularly at high concentrations of adsorbate are questionable. The proper equation for the Fickian diffusivity D is,

```
D = D (d lnp / d lnc)

o

D = D / c

o o

'

D = D exp(- E / RT)

o *

43
```

		D 1- 41-		
		0 is the	diffusivity a	it zero concentration.
	The term	(dinn/dina)	would be equ	al to one at low concentration
	ine term	(amp/ame)	WOULD DE EQU	
	at high conce	entrations	becomes sig	mificant. For diffusion data
	oxygen, nitrog	en, and arg	on on zeolite	5A (See Table 3).
	Table 3.	Diffusion d	lata for 02, N	12, and Ar on zeolite 5A (62).
			·	1 7
	System		E	D X 10
		(A)	(Keal)	<pre>* 2 (molecules cm / cavity sec)</pre>
	Ar-54	3.4	<<1.0	0.01
	02-54	2 5	1.0	0.026
		,		
	N2~5A	3.7	1.5	0.052
	In studie	s concernir	ng the diffusi	ion of water in zeolites the s
	In studie of the water	s concernir molecules	ng the diffusi a (2.8 Å) e	ion of water in zeolites the s eliminates any consideration t
	In studie of the water molecular size	s concernir molecules affects 1	ng the diffusi 3 (2.8 Å) e the diffusion	ion of water in zeolites the s eliminates any consideration t n trocess. Instead, the str
	In studie of the water molecular size	s concernir molecules affects t	ng the diffusi 3 (2.8 Å) e the diffusion	ion of water in zeolites the s eliminates any consideration t n process. Instead, the str
	In studie of the water molecular size dipole moment	s concernin molecules affects t of the wa	ng the diffusi a (2.8 Å) e the diffusion ater molecule	ion of water in zeolites the s eliminates any consideration t n process. Instead, the str interacts with the zeolite cati
	In studie of the water molecular size dipole moment such that the s	s concernin molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n p.ocess. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the s	s concernin molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n p.ocess. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects 1 of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n p.ocess. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n process. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernir molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n p.ocess. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the	s concernir molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n p.ocess. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects 1 of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n process. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects t of the wa molecules w	ng the diffusion (2.8 Å) e the diffusion ater molecule will actually	ion of water in zeolites the s eliminates any consideration t n process. Instead, the str interacts with the zeolite cati cluster at the sites (7).
	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects t of the wa molecules w	ag the diffusion (2.8 Å) end the diffusion ater molecule will actually 44	ion of water in zeolites the s eliminates any consideration t h process. Instead, the str interacts with the zeolite cati cluster at the sites (7).
·	In studie of the water molecular size dipole moment such that the r	s concernir molecules affects to of the wa molecules w	hg the diffusion (2.8 Å) end the diffusion ater molecule will actually 44	ion of water in zeolites the s eliminates any consideration t h process. Instead, the str interacts with the zeolite cati cluster at the sites (7).
·	In studie of the water molecular size dipole moment such that the r	s concernin molecules affects 1 of the wa molecules w	hg the diffusion (2.8 Å) e the diffusion ater molecule will actually 44	ion of water in zeolites the s eliminates any consideration t h process. Instead, the str interacts with the zeolite cati cluster at the sites (7).

B. Experimental Methods

A number of techniques are available for the experimental measurement of diffusivities such as volumetric, gravimetric, and chromatographic (31). The simplest method is to measure transient adsorption/desorption curves. For a system of spherical particles subjected to a step change in concentration,

$$\frac{m}{t} = \frac{2A}{\upsilon} \left(\frac{Dt}{\pi}\right)^{0.5} \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m / m < 0.25) \\ t = 0 \qquad (m /$$

and $A/\upsilon = 3/r$.

Listed below are some of the problem areas associated with obtaining reliable diffusivity data.

- (1) Intraparticle diffusion must be the rate limiting process.
- (2) Pressure (during step changes of concentration) must remain nearly constant.
- (3) Isothermal conditions must be maintained.
- (4) Differential measurements should be taken due to possible temperature effects over large intervals.
- (5) Zeolite must be activated thoroughly before use because water in the bed will greatly affect the results.
- (6) Crystals should not possess structural defects.

Rate experiments performed using breakthrough studies packed column filled with adsorbent should give, in principle, the same zeolitic diffusivities as those obtained from the gravimetric method, but this method is generally not reliable (64). Breakthrough curves obtained from this technique are simply concentration profiles representing the mass transfer front at the effluent end of the column when a step change in concentration is applied to the bed inlet. The shape and time required for breakthrough of the front provides valuable information about the mass transfer resistance and operational parameters of the column. The length of the front will vary depending on the inlet flowrate, temperature, precsure, particle size, and the effects of coadsorbables. Under isothermal conditions the shape of the front is partially dependent on the adsorption rate. If the adsorption process is rapid, the front would appear almost vertical for a favorable isotherm in the absence of dispersion effects.

Separation Factor

The binary mixture separation factor is defined as,

where,

X = mole fraction of component X in the adsorbed phase. A X = mole fraction of component X in the gaseous phase. G Y = " " " " Y " " adsorbed " . A Y = " " " " " " " adsorbed " . Y = " " " " " " gaseous " . G x = more strongly adsorbed component. y = less " " " " .

z = adsorbent.

9:4

For a binary mixture is a measure of the adsorption selectivity of the adsorbent toward adsorbates X and Y. If the value of $\alpha >>1$, the adsorbent preferentially adsorbs component X, thus separation of components X and Y is possible. If α^{-1} the separation of components X and Y will be difficult or impossible.

Since the value of d is based on equilibrium data an $\alpha > 1$ is a necessary but not a sufficient criteria in determining the feasibility of a separation process. An extremely slow rate may render the separation infeasible. Predictions of α from pure component data have been unsuccessful. Therefore, α should be ascertained experimentally.

Sorial, Granville, and Daly (71) report α (N2,02,5A) is relatively insensitive to temperature and pressure changes. about Ruthven (46) has drawn some general conclusions the relationship of the effective molecular volumes of the sorbates, factor, and system operating parameters. Where the separation component with the smaller effective molecular volume is adsorbed
more strongly increases with increasing pressure, and conversely, where the component with the larger effective molecular volume is more strongly adsorbed (as in the case of the N2-02 system) decreases with increasing pressure.

a a far far heilige a far far a

Domine and Hay report the following separation factors for the nitrogen-oxygen binary mixture at 20° C (See Table 16).

Hay (67).		
	5A	1 3X
(N2,02)	2.75	2.36
(02,Ar)	1.08	1.10

Table 16. Separation factors reported by Domine and Hay (67).

Description of a PSA Process

Pressure swing adsorption (or as a two column version of the process is sometimes called, heatless adsorption) is capable of separating gas mixtures due to preferential adsorption of one or more of the components in the gas mixture. The process is operated on short cycles, whereby the high pressure feed is introduced to the columns of adsorbent in an alternating fashion, consequently, the less strongly adsorbed component or components concentrate in the product flow and the more strongly adsorbed components are collected in the exhaust/waste stream. For a nitrogen- oxygen separation regeneration of the beds is accomplished by pressure reduction, and a combination of displacement and purge stripping with the low pressure oxygen enriched purge flow. Critical parameters in the operation of the system are cycle time and purge/feed ratio.

We restrict our discussion to a two column system capable of operation at two- or six-steps per cycle (See Fig 3-2 and 3-3). The six-step system will be discussed first because the two-step system is a simplification of this system. Nitrogen-oxygen separation is considered with an adsorbent of molecular sieve 5A. The exhaust pressure P_L is assumed to be atmospheric pressure. Argon is neglected in the discussion, although in an actual air separation process it usually emerges in the product or enriched oxygen flow. A simplified schematic diagram of the flows associated with a 6-step and a 2-step system is shown (See Fig 3-4).

5-Step Cycle:

<u>′ · </u>

- (1) Feed air at high pressure P_{H} enters column A through value 3 while product oxygen-enriched flow exits through value 5. Column B depressurizes from P_{H} to P_{L} by exhausting waste gas (slightly nitrogen-enriched air) through value 1.
 - (2) Feed air and product flows continue as in step 1 ,valve 7 opens diverting a portion of the product flow through an orifice and countercurrently down column B finally exhausting through valve 1. Henceforth, this product flow which passes

through the columns countercurrently will be referred to as low pressure purge flow. The orifice may have a fixed diameter or in more sophisticated systems will be replaced by a variable flow control valve.

(3) Feed air and product flows continue as in step 1 but value 1 closes and column B begins repressurization with a portion of the product flow from column A.

Column A and B reverse roles:

a server a s A server a se

- (4) Feed air at high pressure enters column B through valve 2 while product leaves through valve 6. Column A depressurizes through valve 4.
- (5) Feed air and product flows continue as in step 4 and valve 7 opens to begin purging column A.
- (6) Feed air and product flow continue as in step 4 but valve 4 closes as column A begins to repressurize with a portion of the low pressure purge flow from column B. This completes one cycle of operation.

2-Step Cycle.

- (1) Feed air at high pressure repressurizes column A, product flow exits column A, and purge flow from column A passes through column B discharging at valve 1. Column B depressurizes to P_L and is countercurrently purged by flow from column A.
- (2) Feed air at high pressure repressurizes column B, product

flow leaves column B, and purge flow from column B passes countercurrently through column A leaving through valve 4. Column A depressurizes to P and is purged by flow from column B. This completes one cycle of operation.

Brief Review of the Equilibrium Theory for Modeling PSA Processes

Shendalman and Mitchell (35) modeled a heatless adsorption process for separating a trace contaminant (1.09% CO2) which is preferentially adsorbed from a nonadsorbable carrier stream of helium. This specific feed gas was chosen to minimize the effect of coadsorbables and to ensure the concentration of CO2 at the feed pressure had nearly linear isotherms. The theoretical approach was based on the theory of parametric pumping developed by Pigford et.al. (79).

The model was applied to a four-step/cycle process (See Fig 3-5). During step 1 feed passes through column A producing a product flow and simultaneously a portion of this product flow is passed countercurrently through column B for purging accumulated adsorbate. In step 2 column A is depressurized and column B is repressurized to the inlet feed pressure. In step 3 and 4 the columns reverse roles. In step 3 high pressure feed enters column B and a product flow leaves while a portion of the product flow is diverted to column A for purging. In step 4 column A is repressurized to the feed pressure and column B enters blowdown or depressurization. It should be noted that during steps 2

and 4 the product flow from the columns ceases.

Two major assumptions were incorporated into the model equations. Firstly, equilibrium is always assumed to exist between the adsorbate and adsorbent. Secondly, a linear isotherm is assumed for the adsorption of CO2 at its concentration and pressure in the feed gas. Other assumptions believed to be of less importance were:

- (a) A non-adsorbing carrier gas, present in large excess.
- (b) Isothermal process.

- (c) One dimensional flow with no axial dispersion.
- (d) Negligible pressure drop through the bed. This implies a linear velocity gradient in the bed.
- (e) Ideal gas law applies.

A one dimensional component mass balance gives,

 ε [($\partial c/\partial t$) + $\partial (vc)/\partial z$] + (1 - ε) $\partial n/\partial t = 0$

 ε = void fraction.

c = molar density in the gas phase.

n = molar density in the adsorbed phase.

t = time.

z = position.

v = interstial velocity.

y = mole fraction of adsorbate in gas the gas phase.

P = total pressure.

k = partition coefficient.

For an ideal isothermal compressible flow the equation of continuity is,

$\partial P / \partial t + \partial v P / \partial z = 0$

Let n = kc and combine,

 $P[\varepsilon + (1-\varepsilon)k] \frac{\partial y}{\partial t} + \varepsilon p v \frac{\partial y}{\partial z} + (1-\varepsilon) ky \frac{\partial P}{\partial t} = 0$

This hyberbolic partial differential equation is solved by the method of Lagrange-Charpit or method of characteristics to yield a pair of ordinary differential equations,

$$dt/P[\varepsilon + k(1-\varepsilon)] = dz/\varepsilon Pv = -dy/(1-\varepsilon) ky (\partial P / \partial t)$$

The equations will then reveal the concentrations within the process with respect to time and position and afford an opportunity to investigate the effects of the individual parameters.

It was shown that only if the purge/feed ratio, $R = L_L/L_H > \{IP_H / P_L \in \mathcal{E} \neq k(1-\varepsilon)\}$ and no breakthrough of feed into the product occurs then the process will give perfect cleanup of the feed.

L = hypothetical penetration distance of a concentration front in a low pressure bed.

 L_{H} = hypothetical penetration distance of a concentration

front in a high pressure bed.

If $R \leq (P_H / P_L) \mathcal{E} / [\mathcal{E} + k(1-\mathcal{E})]$ the process has inadequate purge flow and is not capable of perfect cleanup. The experimental data indicated an Rerit (i.e. the minimum value of R which gives low concentrations of CO2 in the product) existed and was approximately equal to 1.2. The theory suggests that the CO2 level in the product is independent of R once the Rerit is reached.

The experimental data and the predictions from the model gave poor agreement. Possible reasons for the discrepancies were non-linear isotherm, rate processes, and dispersion. The model did give qualitative agreement and led to improved understanding of the process.

In a later study Mitchell and Shendalman (36) extended their mathematical model for a trace contaminent which is preferentially adsorbed in an non-adsorbable carrier to include a mass transfer resistance. In these experiments the configuration of the process remained unchanged. The previous assumptions of equilibrium between the adsorbate and the adsorbent was replaced by a single mass transfer coefficient. The controlling step was assumed to be in the pores of the adsorbent pellet. The final mass balance equation was,

> $EPv/RT \partial v/\partial z + Ep/RT \partial y/\partial t = -(1-E) k A (K Py/RT - n)$ p p $\partial n /\partial t = k A (Kpy/RT - n)$ p p k = mass transfer coefficient.p

A = mass transfer area. p The following characteristic trajectories were obtained using the method of characteristics,

 $-(1-\varepsilon)k A (KPy/RT - n)$ p p $dy/dz = \frac{p}{\varepsilon Pv/RT}$ dz/dt = v dz/dt = v p p dz/dt = k A (Kpy/RT - n) p p dz/dt = 0 (adsorbate)

Two approaches are undertaken in the analysis to identify the bounds of the process. In the first we assume equilibrium between the gas and sorbate occurs during steps 1 and 3 of the process. In the second we assume the pressure changes are so rapid that no mass transfer occurs between the gas and the solid. The values for K and $k_p A_p$ were determined by a breakthrough curve run at 4 atm. pressure. The mass transfer coefficient was assumed to be constant throughout the process. Comparison with experimental data was poor since the observed data fell between the two approaches taken but closer to the equilibrium approach. Qualitative agreement was achieved since the approaches did bracket the data.

Chan, Hill, and Wong (80) extended the equilibrium model to include separations of two components both adsorbable but one is a preferentially adsorbed trace contaminent. The assumptions were:

(1) Equilibrium exists between the gas and solid at all times.

(2) Isothermal operation.

(3) Pressure drop through each bed is small.

(4) Negligible dispersion axially and radially.

(5) Linear isotherms assumed.

(6) Ideal gas law applies.

in the

After a brief examination of the performance characteristics of the process they concluded that gas mixtures with large separation factors required less purge flow for complete removal of the trace contaminant than did mixtures with small separation factors. Additionally, when the gas mixture to be separated has a large separation factor the system performance may be improved by increasing the pressure ratio, P_H/P_L . Increasing the pressure ratio in a system with small separation factor will not improve performance. Experimental results were not presented to support their theoretical conclusions.

Knaebel and Hill (82) further extended the equilibrium theory to include separation of a binary feed of arbitary composition. The assumptions of their work were:

- (1) Linear, uncoupled isotherms
- (2) Isothermal operation

(3) Ideal gas law assumed

(4) Diffusional resistance and dispersion neglected.

It was concluded that when β is small (i.e. small concentration of the heavy component in the feed) the purge requirement is minimal, perfect cleanup occurs over all pressure ratios, recoveries increase with increasing pressure ratio, and pressurization with product gives higher recoveries than pressurization with feed.

 $\beta = \beta_A / \beta_B$ $\frac{\varepsilon}{1 - \varepsilon + (1 - \varepsilon) k}$ 1

k is the equilibrium distribution coefficient for species i.

Conversely, when β is large (i.e. large concentration of the heavy component in the feed) higher pressure ratios are required and recoveries are small.

at i a

FIG 3-1. STRUCTURAL MODEL OF MOLECULAR SIEVE 5A.

.

FIG 3-2. SIMPLIFIED SCHEMATIC DIAGRAM OF A DUAL COLUMN PSA AIR SEPARATION UNIT.

FIG 3-4. COMPARISON OF SIX-STEP AND TWO-STEP CYCLE.

STEP 1

STEP 2

-.

• • • •

PRODUCT

BLOWDOWN REPRES. WITH FEED

STEP 3

REPRES. BLOWDOWN WITH FEED STEP_4

FIG 3-5. SHENDALMAN AND MITCHELL FOUR-STEP CYCLE.

<mark>na na sana na s</mark>

CHAPTER IV

EXPERIMENTAL

A. Materials

The adsorbent employed in this work was Union Carbide Corp., 20X40 mesh (~0.0102" to ~0.0201" diameter), wedical grade, molecular sieve 5A (Lot No. 9427800171) (See Fig 4-1 to 4-5). This sieve is reported by the manufacturer to be 80\$ anhydrous crystals and 20\$ inert clay binder. The chemical formula for the anhydrous crystal is,

> Ca Na [(A10) (S10)] 4.5 3 2 12 2 12

Theoretically, the sieve is 75% exchanged with Ca .

The gases used in this work are listed in Table 4.

Table 4. Specifications of gases used in the equilibrium studies.

Gas	Purity	Supplier	Comment
Nitrogen	99.998\$	Burdett Gas Products Co.	Water pump
Oxygen	99.99%	Matheson Gas Products	Ultra-high purity
+ Air	20.95 02	Liquid Air Corp.	Compressed lin
	78.0 % N2	Lot. No.16787682C	Breathing quality
	0.96% Ar	· · · · · · · · · · · · · · · · · · ·	(oil free)
·	<30ppm H20	•	

Air purity determined using a Perkin-Elmer MGA-1100 medical gas analyzer and a dew point meter.

B. Pure Component Equilibrium Apparatus

A volumetric type pure component equilibrium apparatus Was constructed for measuring the isotherms of nitrogen and oxygen at 24, -40, and -70°C and up to pressures of approximately 4.3 atmospheres absolute (See Fig. 4-6 and 4-7). The unit was designed to patisfy five primary goals: accurate data collection; simple, reliable operation; sconomical construction; easy conversion to a multicomponent equilibrium apparatus; and convenient installation into the temperature controlled chamber. All the stated goals were attained. The apparatus had a length of approximately three feet, a width of one foot, a depth

64

e a fair a shafar a sha a shekar a shekar a bir a b

of 6", and weighed about 10 pounds.

The range of pressures and temperatures of operation prompted use of stainless steel construction. The sample chambers (C1 and C2) and their associated piping were mated through the use of stainless steel compression fittings with a design range which encompassed the range of operation. The sample chamber volumes (C1 and C2) were nominally 150 ml each and the outside diameter of the stainless steel tubing was largely 1/4" except for a short section of 3/8" tubing located at the inlet to the sample chamber (C1). The valves (V1~4) had stainless steel bodies and Kel-F seats for leakproof operation at both positive and negative pressures, and were manually operated.

System pressure measurements were accomplished through the use of Statham model PA208TC-50-350 stainless steel diaphragm pressure transducers (P1 and P2). The units outputted a low voltage DC signal which was sent to the electronics box (E) for signal conditioning, conversion to units of Torr or psia, and readout display. A high level conditioned DC signal was, simultaneously, sent to the strip chart recorder (S). The charge chamber temperature and sample temperature **measurements** were sensed by copper-constantan thermocouples and were displayed on readouts (R1 and R2) in units of ⁰C.

Other units of the system were the rotary vacuum pump (V), temperature controlled chamber (T), variable transformer (X), and an electric tape heater (H).

a second seco

The pressure transducers (P1 and P2) and the electronics box (E) were calibrated as a system over the range 0-75 psia with a calibrated high accuracy Wallace-Tiernan pressure gauges (Model FA129 and 61A-1A-0150). The transducer signals were linear from 0 to 75 psia and nonlinear above 75 psia.

1

and a second second

The determination of the volume of the sample and charge chamber and their associated piping was accomplished by a water displacement method and these results were checked using several gas expansions. The volume to be measured was evacuated to ~1 Torr and then distilled water at room temperature was permitted to fill the volume. The weight of the water was determined by the difference method and its volume was calculated based on the reported densities of water (65) (See Table 5 and 6).

Test No.	Dry Weight (gm)	Wet Weight (gm)	Water Weight (gm)	Water Temp. (°C)	Water Density (gm/ml)	Calc. Chamber Volume (ml)
1	1396.0	1565.4	169.4	28	0.996264	170.0
2	1395.7	1565.2	169.5	26	0.996814	170.0
3	1395.8	1564.9	169.1	27	0.996544	169.7
4	1395.9	1565.4	160.5	26	0.996814	170.0
5	1396.0	1565.3	169.3	26	0.996814	169.8

Table 5. Sample chamber volume determination using water displacement.

Sample chamber volume = 170.0 ml

Test No.	Dry Weight (gm)	Wet Weight (gm)	Water Weight (gm)	Water Temp. (C)	Water Density (gm/ml)	Calc. Chamber Volume (ml)
1	1206.8	1364.8	158.0	26	0.996814	158.5
2	1206.8	1364.6	157.8	Ħ		158.3
3	1206.9	1364.7	157.8	11	11	158.3
4	1207.3	1365.4	158.1	W	17	158.6
5	1207.5	1365.6	158.1	11	17	158.6

Table 6	5.	Charge	chamber	volume	determination	using	water
	•	displac	ement.				

Charge chamber volume = 158.6 ml

Several gas expansions were performed as a check of the results obtained using the water displacement method. The gas expansions were from the charge chamber (C2) into the sample chamber (C1) via valve (V3). The charge chamber volume was assumed to be 156.8 ml as previously determined from the water displacement experiment. The results of these experiments are shown below (See Table 7).

Run No.	Gas	Initial Charge Chamber Pressure (atm)	Initial Sample Chamber Pressure (atm)	Initial Volume of Gas (ml)	Temp. (C)	Final Pressure (atm)	Calc. Volume of Sample Chamber (ml)
1	N2	2.041	~0	158.6	25	0,986	169.5
2	He	2.041	**	**	69	0,980	171.8
3	#	1.000	11	11	ŧŧ	0.482	170.7

Table 7. Results from nitrogen and helium expansions into the

These results are in good agreement with the previous water displacement experiments, therefore, we conclude:

Volume of the Sample Chamber = 170.0 ml

Charge 11 = 158.6 "

Table 7. Results from ni
sample chamber.Run Gas Initial Init
No.Initial Init
Charge Samp
Chamber Cham
Pressure Press
(atm)1N22.0411N22.04131.000"31.000"These results are in
displacement experiments, the
Volume of th
" " "The anhydrous weight of
by regenerating the sample
of 12 hours. This regenerati
was accomplished before ea
the heating tape temperature
began "bolling" violently,
hydration. The results of th
Gross vo
Weight of sample befor The anhydrous weight of the molecular sieve sample was determined by regenerating the sample at <1 Torr pressure and 350°C for a minimum of 12 hours. This regeneration procedure became standard practice and was accomplished before each equilibrium run. It was noted that when the heating tape temperature reached approximately 300 °C the sample began "boiling" violently, apparently releasing the residual water of hydration. The results of the initial regeneration are shown below,

Gross volume of sample = 50 ml

Weight of sample before regeneration = 33.7 gm

Weight of sample after regeneration = 32.8 gm " lost during regeneration = 0.9 gm or

0.027 gm

gm anhydrous wt.

This residual weight (mostly water) is close to the specification of ~ 2% residual water stated by the manufacturer. The anhydrous weight of the molecular sieve sample will be taken as 32.8 gm. It should be noted that this same sample was employed in all the equilibrium experiments.

To calculate the amount adsorbed the true dead space of the sample chamber must be ascertained. We define the true dead space as the volume of the sample chamber minus the volume of the solid crystal.

This dead space volume was obtained by a helium displacement technique. It is assumed that helium will fill the entire void volume of the zeolite but adsorb in negligible quantities at room temperature. The advantage of this technique is that the pressure of the pressure of the helium can be related directly to the true dead volume. The experimental approach taken was to expand helium into the sample chamber a sufficient number of times, so that, through application of statistical analysis we might arrive at a reasonable value for the true dead space volume. The data from twenty expansions are presented (See Table 8). Helium is assumed to be an ideal gas over the range of pressure in which the experiment was conducted (66).

69

	Table 8. Det	ermination of	f the true (dead space	of the sample
		Tritial	Final		Calo True
	No.	Pressure (Torr)	Pressure (Torr) (ml)	Sample Volume (ml)	Dead'Space Volume
	1	1500	750	11.4	158.6
	2 3	2000 2500	1008 1246	13.92 10:38	156.08 159:62
	4 5	3000 3500	1495 1743	10.34 10.13	159.66 159.87
	6 7	1500 2000	998	10.76	159.24
	8 9	3000	1241 1495	10:34	159:66
	11	1500	750	11:40	158.90 158.60 159.24
	13	2500 3000	1246 1499	10.38	159.62 158.81
	15 16	3500 1500	1748 752	11.04 12.24	158.96 157.76
	17 18	2000 2500	1003 1246	12:35 10:38	157:65 159.62
	19 20	3000 3500	1500 1748	11.40 11.04	158.60 158.96
Resul Mean Stand Solid Solid	lts: Sample Volum dard Deviatio d volume base d density = 2	e = 11.05 ml n = 1.0004 m d on a 95% c .97 gm/m1	1 onfidence i	nterval- 11	.05 <u>+</u> 0.047 ml
FT Gu	CHESE I COULC	Solid Volume	of the Sam	ple = 11.05	5 ml
	True Dead Vo	lume in the	Sample Cham	lber = 158.9) ml
	The confiden	ce interval	assumes nor	mally distr	ibuted error in th
			t the tru	le mean. Si	nce the true standar
indi	vidual obsev	ations abou			
indi devia	vidual obsev ation is no	ations abou t known, a	two-taile	d t distr	ibution with 2.5

Table 8.	Determination	of	the	true	dead	space	of	the	sample
•	chamber.								

probability in each tail and nineteen degrees of freedom was employed in the calculation of the confidence interval.

The procedure for operating this apparatus is straightforward and presented in Appendix B. Before each data run the molecular sieve sample is regenerated by heating the sample to $350 \,{}^{\circ}\text{C}$ and applying a vacuum (< 1 Torr) for a minimum of twelve hours. After regeneration the temperature of the sample is stabilized at the desired experimental temperature. Injection of the gaseous phase adsorbate from the charge chamber to the sample chamber is accomplished by opening valve (V3). The quantity of adsorbate in the sample chamber is increased in a stepwise fashion and data are collected after equilibrium is reached in the sample chamber. Equilibrium was assumed to exist when the pressure in the sample chamber remained constant for at least a period of one hour. In general, an equilibrium state was reached after a period of six to eight hours. The amount adsorbed may then be determined by performing a mass balance (See Appendix C).

C. Multicomponent Equilibrium Apparatus

Modification of the pure component equilibrium apparatus to enable it to gather multicomponent data was accomplished by the addition of a gas sampling and analysis section (See Fig. 4-8, 4-9, and 4-10). This gas sampling soction was comprised of a Perkin- Elmer MGA-1100 medical gas analyzer (MGA), a dual channel strip chart recorder (SC), MGA gas sampling probe (PR), two three way values (V5 and V6), a MGA sampling volume (SV), and a rotary vacuum pump (V). Since the multicomponent system (N2-02-Ar-5A) has four degrees of freedom the gas phase concentrations of at least two components are required (plus the temperature and total pressure) to fully define the system. It should be clear that air is to be injected into the sample chamber in all experiments, therefore, the molar ratios of N2:02:Ar remain constant in the sample chamber. The advantage of this approach is that it should more closely simulate the actual gas concentrations in a PSA column.

Measurement of the gas phase concentrations poses a challenge. Direct measurement of the gas phase concentrations with the medical gas analyzer (MGA) would not allow accurate determination of the total mass removed from the sample chamber. This difficulty was overcome by allowing a small portion of the gas mixture to fill the previously evacuated MGA sampling volume (SV) so that a determination of the exact amount of mass of each component removed from the sample chamber (C1) could be made. The isolated gas mixture in the sampling volume (SV) is then permitted to flow through the gas sampling probe, and subsequently, to the MGA for concentration analysis.

The experimental technique adopted here represents somewhat of a departure from tradition methods. A traditional approach, considering only the binary system of nitrogen-oxygen, would dictate injecting the proper amounts of the pure gases so as to maintain the total pressure constant but vary the gas phase mole fractions from 0 to 1.0. A second

<mark>Endelsedente Bedelse haderbedente den de de la de la</mark> traditional approach would involve maintaining the gas phase concentrations constant and varying the pressure. Both traditional techniques require the injection of pure gases which could create areas of severe concentration heterogeniety. This difficulty is usually avoided through use of a circulation pump.

The approach of this work involves the injection of a homogeneneous mixture, therefore, the sample chamber is much less likely to possess the severe localized concentration gradients as the traditioal system would experience without the circulation pump. Our approach minimizes the complexity of the experiment without compromising the validity of the experimental results provided a sufficient period for gaseous diffusion is allowed. Also, as previously mentioned, the data obtained in this manner should approximate the concentrations in a PSA column. Comparison of the results of this work with other work will validate this technique.

The first step in the modification of the pure component apparatus was to determine the MGA sampling volume which would minimize the gas sampling time ,i.e. the volume of gas to be extracted, but allow ample time for the MGA to reach a steady state condition and thus provide stable signals at the strip chart recorder. The calibrated gas sampling probes used with the MGA covered four pressure ranges (See Table 9).

73

Probe No.	Pressure Range (Torr)				
1	140 to 214 214 to 326				
3	326 to 497 497 to 760				
	497 00 700				

Table 9. Pressure range of the MGA gas sampling probes.

This selection of probes permitted gas analysis from 140 Torr to the high pressure constraint of the apparatus, 75 psia. Gas analysis above atmospheric pressure was possible by venting the sample to the atmosphere, while simultaneously, withdrawing a small portion. Tests were conducted at various pressures above and below atmospheric pressure with pure gases and with air to ensure the technique would provide accurate readings. These tests showed the probes would give accurate reading of their calibrated range. During these tests the minimum sampling time was determined to be approximately three seconds when using probe number one. An additional constraint on the system requires that during the sampling process the pressure in the sample volume must remain within the calibrated range of the probe. The MGA draws approximately 1 ml/sec of sampling gas and has a response time of 100 milliseconds. Assuming the ideal gas law applies, solution of two simultaneous equations based on the conditions of minimized sample volume and minimum allowable sample pressure gave the following result,

Theoretical MGA sample volume = 12 ml

The apparatus was modified and the actual MGA sampling volume was calculated, instead of measured by a displacement technique, since the volume consisted almost entirely of 1/4" OD tubing. The calculated volume was,

Actual MGA sampling volume = 12.9484 ml

The strip chart recorder and MGA were calibrated as a system using nitrogen, oxygen, and air. Air allowed the calibration of the argon signal.

The operational procedure of this apparatus is similar to that of the pure component equilibrium apparatus and is presented in detail in Appendix B. The basic difference involves the removal of a small gas sample for gas concentration analysis. The frequent MGA gas sampling probe changes required to ensure an accurate signal from the MGA increased the complexity of this experiment. The final results were obtained by a mass balance (See Appendix C).

D. Dual Column PSA Apparatus

A bench-scale, dual column PSA air separation apparatus was constructed (See Fig. 4-11 and 4-12). The unit was comprised of two identical columns (CL1 and CL2), seven solenoid valves (V1-7), three mass flowmeters (F1-3), a purge orifice (0), four pressure transducers (P1-4), a plenum chamber (P), a manual needle valve (V8), an inlet

pressure gauge (PG), and a medical gas analyzer (MS) for monitoring the product concentration. The unit was operated at 24° C and then at -40° C to evaluate the effects of low temperature on system performance. The apparatus was entirely computer controlled and constructed of stainless steel tubing and valves. The unit was mounted horizontally to a wooden framework for convenient access.

The three flowmeters monitored the mass flow in the inlet, exhaust, and product flows. At 24° C the flowmeter was configured to monitor the exhaust flow from one column, and at -40° C the flowmeter was configured to monitor the flow from both columns. These units were calibrated with a Singer DTM-200 volumetric flowmeter used as a standard. All units gave linear and reproducible outputs.

1......

The columns of molecular sieve were contained within 1" 0.D. thin wall stainless steel tubing approximately 8.5" in length and 0.965" I.D. The sieve was secured by stainless steel screens on each end of the column supported by heavy metal springs, such that, movement of the molecular sieve bed during the pressure fluctuations of each cycle was highly unlikely.

The molecular sieve pellets were loaded into the columns by a method known as "snowpacking". This technique involves passing the pellets through a funnel in which screens of various sizes have been placed perpendicular to the flow. The method is simple and proved to give the greatest packing density. The columns were packed with the

induning administration for an anticipation in the instantical of a state of a taken in the second state of the

following amounts of molecular sieve,

Table 10. Weight of molecular sieve in dual column PSA apparatus

	240	· · · · ·	-40C	
Bed A	82.07	gn	78.0 gm	
Bed B	80.35	gm	84.7 gm	_

Data acquistion and valve control were accomplished through use of a PDP11/03 computer which precisely controlled the valve sequencing and collected ten channels of data. The data signals consisted of three flowmeter signals, four pressure transducer signals, and three gas concentration signals representing the composition of the product flow. Information required for control of each experimental run, such as cycle time, step times, etc., was stored in an input file which was read by the main control program prior to each run.

Several parameters of the system could be varied to investigate their effect on the oxygen concentration in the product flow. The configuration (6-step or 2-step) and cycle time were easily varied by changes to the computer program input file. The bed temperature was controlled by adjustment of the temperature setting on the environmental chamber. The PSA system was operated at two temperatures: 24° C and -40° C. The product flowrate was controlled by valve (V8) and monitored by flowmeter (F3). The purge flow was varied by installation of one of three different diameter orifices (0.010", 0.020", and 0.029"). The

inlet pressure was held constant at 25 psia throughout this work.

Since this experiment was computer controlled the operating procedure was quite simple and is described in Appendix B. Desired operating parameters were entered into an input data file (XBASE.DAT) which was read by the main control program (TT.FOR). This program is shown in Appendix C. Once the control program is initiated the PSA unit operates based entirely upon commands originated at the PDP11/03 computer which are further processed by electronics interface boxes. As the PSA unit is operating the data channels are displayed on the screen of a VT-54 terminal in engineering units. For this work data was collected once the oxygen concentration in the product reached a steady state value which was usually after about thirty minutes of operation, although this time lengthened somewhat when operating at -40°C. For actual data collection to commence the simply depresses the line feed key at the VT-54 terminal. The data for each run was stored on floppy diskettes initially and then transfered to the main facility computer for analysis.

Operation at -40 ^oC posed some special problems due to traces of water in the feed air. These traces caused significant degradation of the sieve requiring them to be repacked. This problem was eliminated by switching to bottled air and placing a molecular sieve 13X trap before the inlet.

Breakthrough experiments were conducted by using one column of the PSA apparatus. The bed temperature for the breakthrough runs were 24° C and -40° C, and the bed pressures were ~14.7 psia and 25 psia. The gases used were air and oxygen so as to simulate as closely as possible the actual conditions of the PSA process.

and the second secon

FIG 4-1. ELECTRON MICROGRAPH OF MOLECULAR SIEVE 5A (20X40) MESH PELLET (20X MAGNIFICATION).

FIG 4-2. ELECTRON MICROGRAPH OF MOLECULAR SIEVE 5A (20X40) MESH PELLET (50X MAGNIFICATION).

FIG 4-3. ELECTRON MICROGRAPH OF MOLECULAR SIEVE 5A (20X40) MESH PELLET (90X MAGNIFICATION).

FIG 4-4. ELECTRON MICROGRAPH OF MOLECULAR SIEVE 5A (20X40) MESH CRUSHED PELLET (800X MAGNIFICATION).

FIG 4-5. ELECTRON MICROGRAPH OF MOLECULAR SIEVE 5A (20X40) MESH CRUSHED PELLET (1000X MAGNIFICATION).

ง ๖.**८.๔.ศ.ศ.พ.ศ. ีย**.ศ.ีษ.ศ.ีษ.ศ.ีษ.ศ.ีษ.ศ.ีษ.ศ.ีษ.ศ.

ቚኯቚ፼ቚዀዀፙ**ዀዀዀዀዀዀዀዀ**፟፟፟፟፟፟፟፟፟፟፟፟፟፟

. (

1

FIG 4-6. PURE COMPONENT EQUILIBRIUM APPARATUS. C1. SAMPLE CHAMBER, C2. CHARGE CHAMBER, E. PRESSURE TRANS-DUCER ELECTRONICS BOX, G. BOTTLED GAS, H. HEATER, P1 AND P2. PRESSURE TRANSDUCERS, R1 AND R2. DIGITAL READOUTS, S. STRIP CHART RECORDER, T.ENVIRONMENTAL TEST CHAMBER, T1 AND T2. THERMOCOUPLES, V. VACUUM PUMP, V1-4. MANUAL VALVES, AND X. VARIAC.

and a second and the second and

PURE COMPONENT EQUILIBRIUM APPARATUS. THE FIG 4-7. PHOTOGRAPH OF

FIG 4-8. MULTICOMPONENT EQUILIBRIUM APPARATUS. C1. SAMPLE CHAMBER, C2. CHARGE CHAMBER, E. PRESSURE TRANS-DUCER ELECTRONICS BOX, G. BOTTLED GAS, H. HEATER, P1 AND P2. PRESSURE TRANSDUCERS, R1 AND R2. DIGITAL READOUTS, S. STRIP CHART RECORDER, T. ENVIRONMENTAL TEST CHAMBER, T1 AND T2 THERMOCOUPLES, V. VACUUM PUMP, V1-4. MANUAL VALVES, X. VARIAC, MGA. MEDICAL GAS ANALYZER, SC. MGA STRIP CHART RECORDER, PR. MGA GAS SAMPLING PROBE, SV. MGA SAMPLING VOLUME, AND V5-6. THREE-WAY VALVES.

Υ.

FIG 4-11. PSA AIR SEPARATION UNIT. F1-3. MASS FLOWMETERS, V1-7. SOLENOID VALVES, V8. MANUAL VALVE, P. PLENUM, MGA. MEDICAL GAS ANALYZER, P1-4. PRESSURE TRANSDUCERS, O. ORIFICE, CL1-2. COLUMNS OF MOLECULAR SIEVE, AND PG. PRESSURE GAUGE.

.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text>

The best fitting equations for the oxygen and nitrogen data were the Langmuir and Sips equations, respectively. The results are shown below,

			2	4		
Gas	Temp. (C)	Run	P1 X 10	P2 X 10	Р3	Minimum Residual
Oxygen	24	1	0.4730	0.4832	1.0	0.0695
n	11	2	0.4617	0.4477	· ##	0.1200
11	11	A11	0.4669	0,4629	17	0.3050
††	-40	1	2.311	2.247	11	1.03
tt	11	A11	2.340	2.318	11	2.01
n	-70	1	6.638	5.629	11	1.48
H	tt	2	6.273	5.345	17	0.396
11	11	A11	6.501	5.513	TT	19.9
Nitroge	en 24	1	4.696	4.947	0.8264	0.765
"	41	2	5.020	5.612	0.8210	0.134
11	11	A11	4:755	5.164	0.8263	1.09
11	-40	1	84.20	83.78	0.6573	2.23
11	11	2	73.60	75.77	0.6775	0.133
11	rt	A11	83.95	82.22	0.6545	3.17
77	-70	1	345.6	277.8	0.5509	1.32
11	H	2	349.1	280.2	0.5496	0.29
18	41	A11	348.0	279.8	0.5500	1.75

Table 11. Best fit parameters for the pure component data.

Note: Points of desorption have been included in the analysis where "All" appears.

The actual fit of these equations to the data may be observed by viewing Fig. 5-16 through 5-21. In subsequent calculations these equations are employed to represent the data.

B. Heat of Adsorption

The heat of adsorption for pure nitrogen and oxygen on molecular sieve 5A was determined through use of the Clausius-Clapeyron equation,

$$\left[dP / dT \right]_{C} = \Delta Ha / T(Vg - Va)$$

The ideal gas law is assumed to apply and the volume of the adsorbed layer is assumed to be negligible (compared to the gas volume). The final equation is,

$$\Delta Ha = R \begin{bmatrix} dlnP\\ \hline 1\\ d^{\frac{1}{T}} \end{bmatrix} c$$

The values for [dlnp / d(1/T)]c were determined from the slopes of the isosteric loading lines when lnp is plotted versus 1/T (See Fig. 5-22 and 5-23). The isosteric heat of adsorption for pure oxygen and nitrogen is plotted versus quantity adsorbed (See Fig. 5-24). The Ha for oxygen is nearly independent of the quantity adsorbed suggesting adsorption which occurs on an energetically homogeneous surface. The gradual rise in Ha as the loading increases has been observed for nonpolar molecules and was attributed to interprove output interactions between the sorbate molecules (34). The initial heat of sorption for oxygen extrapolated to the y-axis is 3.37 kcal/mol which is in agreement with reported values of 3.30 kcal/mol (31,46).

For nitrogen the high values of Ha at low loading is explained by the strong quadrupole-cation interactions with the active sites. These interactions diminish as the active sites become filled. For oxygen at high loading, i.e. > 55 ml STP/gm, a gradual increase in Ha is observed, probably due to intermolecular interactions. The general trends shown in Fig. 5-24, that is, decreasing Ha for a molecule with a strong quadrupole moment and increasing Ha for a nonpolar molecule are expected results (31). The difference between the value of Ha and the heat of vaporization represents the energy of the combined interactions between the zeolite framework and the molecule, i.e. dispersion, repulsion, electrostatic-quadrupole interaction, etc.

C. Correlation and Prediction of Pure Component Isotherms

By application of the statistical thermodynamic model the pure component data were correlated and the data of Union Carbide (69) were predicted with a reasonable degree of accuracy. The pure component equation based on the statistical thermodynamic theory is,

$$K_{p} + (K_{p})^{2} (1-2B/V)^{2} + \dots + \frac{(K_{p})^{m} (1-mB/V)}{(m-1)!}$$

$$(m-1)!$$

$$\frac{1+K_{p}+ 1(K_{p})^{2} (1-2B/V)^{2} + \dots + \frac{(K_{p})^{m} (1-mB/V)}{m!}$$

where $m \leq V/B$ (m is an integer).

.' MININA AND

The exponential factor shown in the equation in Chapter III has been omitted because its effect has been shown to be small (46). The two parameters which must be determined before this equation can be applied are K, Henry's Law constant, and B the effective molecular volume.

The values of K are found by analysis of the slope of the pure component isotherm in the region in which Henry's Law applies, i.e. the slope of the isotherm at low concentration. For oxygen, derivatives of the Langmuir equation were taken and p was set equal to zero to find K. For nitrogen the value of K was assumed to be the slope of the line from the origin to the first data point. This may have introduced some error in the analysis since the nitrogen isotherm rises steeply in the low pressure region. The values of K obtained by this method are shown in Figure 5-25 with other reported values in the literature (46). The K values obtained from data of this work agree with other literature values.

In the prediction of pure component isotherms of nitrogen and oxygen K values will be needed over a wide range of temperatures. Therefore, the K values previously obtained were fitted to the linearized form of the vant Hoff equation,

 $K = Ko \exp(qo / RT)$

by a linear least squares technique. The resulting values for K and q are presented below (See Table 12).

ystem	Ko (molecules/cavity Torr)	qo (kcal/mol)
	-7	
N2-5A	9.0209 X 10	4.52
	· -6	
02-5A	1.4050 X 10	3.37

1.1.39

Table 12. Values of Ko and qo giving the temperature dependence of K.

The only other parameter required is B. This value is found by a method suggested by Ruthven (46) in which the isotherms are superimposed on a family of theoretical isotherm curves (See Fig. 5-26). The isotherm data must be plotted on the same coordinate system as the theoretical curves. The values for B and K are tabulated (See Table 13).

System	Т(К)	K(molecules/cavity Torr)	V/B	B(cu.Angstroms)
N2-5A	203.15	0.06585	11	67
	233.15	0.01557	10	76
	297.15	0.001902	8	97
02-5 A	203.15	0.005952	20	38.8
	233.15	0.002031	20	38.8
	297.15	0.0004234	20	38.8

Table 13. Henry's Law constants and effective molecular volumes calculated from the pure component isotherms.

With these parameters identified the pure component isotherm data were correlated with reasonable results (See Fig. 5-27 through 5-32). To be able to predict isotherms of nitrogen and oxygen at other temperatures B was curve fit to a quadratic equation as a function of 1/T (See Fig. 5-33):

$$R = (1/T) (10) (T in degreesoK)$$

$$R = 5.465 R = 64.55 R + 252.4$$

With B and K defined for any temperature within the range of the - original data we may predict other pure component isotherms.

The isotherms of Union Carbide (69) were predicted by the method above (See Fig. 5-34 through 5-38). The prediction for the oxygen isotherms at 273.15K and 238.15K are in excellent agreement, even the extrapolated prediction at 303.15K is in gcod agreement. In the case of nitrogen the prediction gives good agreement at low pressures but at higher pressures the predicted curve deviates slightly from the actual data.

D. Prediction of the Multicomponent Data

The multicomponent equilibrium apparatus described in Chapter IV was employed in the collection of adsorption data for air on molecular sieve 5A at 24, -40, and -70 $^{\circ}$ C (See Fig. 5-39 through 5-41). The data at all temperatures show excellent reproducibility. The isotherm for

oxygen in the mixture appears to tend toward a saturation value at the lower temperatures. The argon loading is negigible at all temperatures when compared to the loading of the other components. The nitrogen mixture isotherm at the lower temperatures does not exhibit the marked curvature of the pure component isotherm at these temperatures.

1

In Figure 5-42 through 5-47 each component of the multicomponent mixture is plotted as quantity adsorbed versus its partial pressure in the mixture. The data plotted in this fashion display excellent reproducibility. This is evidenced by the argon data at very low partial pressures (See Fig. 5-47). Figures 5-48 through 5-50 show the partial pressures of nitrogen and oxygen in the multicomponent mixture plotted with the pure component isotherms. From these plots the departure from ideality of the mixture is evident at the lower temperatures. At 24°C both oxygen and nitrogen appear not to interact significantly since the mixture isotherms and the pure component isotherms are in most cases identical. For oxygen at higher pressure some interaction is occurring (See Fig. 5-48). We may conclude that at 24°C the lower concentration of molecules within the cavities of the zeolite permit each species to act independently. At the lower temperatures it is clear that significant intermolecular interactions are occurring.

The separation factors for this data are presented in Figure 5-51. At lower temperatures the separation factor exhibits a definite temperature dependence ,i.e. the separation factor is higher for the lower temperatures. We may conclude that the separation factor is inversely proportional to temperature at low pressures (<1 atm.) and at higher pressures (>1 atm.) the separation factor is nearly independent of temperature. The results shown on the plot agree with the published separation factor from the work of Domine and Hay (67).

In Figures 5-52 through 5-54 the multicomponent data were predicted by use of the binary statistical thermodynamic model where K and B are derived from the pure component data. At 24 o C the prediction gives excellent results, but at the lower temperatures deviation from the prediction is obvious. It should be noted that the model gives a reasonable prediction in the low pressure regime, i.e. where ideal behavior would be expected. Argon has been neglected in this prediction to minimize the complexity of the model. The assumption of a binary mixture should produce valid results since argon sorption is negligible.

In Figures 5-55 and 5-56 the value of B, the effective molecular volume, for oxygen and nitrogen was adjusted slightly and improved results were obtained. In Figure 5-57 the apparent effective molecular volumes for nitrogen and oxygen as a pure component and as a components in a binary mixture are plotted versus 1/T. This plot indicates that the apparent effective molecular volume of the nitrogen molecules is greater in a mixture with oxygen than for the pure component at the same

temperature. The trend of decreasing molecular volume with temperature for the nitrogen molecule still exists. The oxygen molecules in the binary mixture are apparently packed more tightly than might otherwise be expected due to the reduction in the apparent effective molecular volume at the lower temperatures.

For prediction of binary data at other temperatures but the same total molar ratio, it may be of value to use curve fitted values for B:

 $R = (1/T) (10^{3}) (\kappa^{-1})$ $BN2 = 1.454 R^{-2} 26.835 R + 170.8$ $BO2 = 4.463 R^{-4} 45.858 R + 142.5$

where,

BN2 - effective molecular volume for nitrogen in a binary mixture with the composition of air.

BO2 - effective molecular volume for oxygen in a binary mixture with the composition of air.

An attempt to predict the multicomponent data based on IAST theory lead to results similar to those obtained from the statistical thermodynamic model. The spreading pressure was calculated through use of the pure component isotherm fitting equations. The results of the predictions were obtained by an analytical method and are shown on Fig. 5-58 t'rough 5-60. The prediction at 24° is in excellent agreement with the observed data but at the lower temperatures the difference between

the prediction and the data are of approximately the same magnitude as those encountered when using the statistical thermodynamic model. The nonideality of the mixture at low temperature is quite evident. A prediction of the N2-O2 adsorption at 24 $^{\circ}$ C based on a statistical thermodynamic model is shown in Fig 5-112.

E. Breakthrough Experiments

Typical breakthrough data runs are shown on Fig. 5-61 through 5-68 for for a flowrate of 25 SLPM. The runs were made using two column pressures: 25 psia and atmospheric pressure. The gases used were air and oxygen so that the actual conditions of the PSA process could be approximated. Figure 5-69 shows a typical velocity/distance lag time plot which accounts for the time the gases are flowing through the associated piping. This lag time correction must be applied to the raw data to arrive at the true breakthrough time. This measurement is approached in the same manner as the column breakthrough experiments except the column of molecular sieve is absent. The spikes in the medical gas analyzer signal at about the one second mark in Figure 5-69 are due to this unit's pressure sensitivity upon switching of the gas flows. The final breakthrough results are shown below (See Fig. 5-70 through 5-73) :

Flowrate (SLPM)	N2 B.T. (sec)	02 B.T. (sec)	1\$ N2 (sec)
	High Pressure	(25 psia)	
1.0	49.81	30.81	144.91
2.5	31.97	17.77	87.27
6.2	13:32	7.62	42.12
13.0	· 4;97	2.2	14.23
25.0	2.55	0.68	6.8
	Low Pressure	(14.4 psia)	
1.0	45.0	15.2	77.7
6.2	13.02	4.06	23.4
13:0	4.79	1.59	9.8
25.0	2.59	0.86	5.87

Table 14. Breakthrough (B.T.) experiment results at 24°C.

Table 15. Breakthrough (B.T.) experiment results at -40°C.

P

Flowrate (SLPM)	N2 B.T. (sec)	02 B.T. (sec)	1 % N2 (sec)
	High Pressure	(25 psia)	
1.0	137.3	60.55	
6.2	38.89	14.66	244.96
13.0	12.81	-4.49	95.26
25:0	6.71	2.07	50:02
	Low Pressure	(14.4 psia)	
1.0	127.9	39.0	586.5
6.2	37.7	13.8	167.0
13:0	11.8	4:3	87.7
25.0	6.05	1.0	42.4

Our rationale will be to analyze the data based on one of the flowrates and examine the data for any differences due to the pressure or temperature of the experiment. We will assume a hypothetical case of

high pressure feed flow at 25 SLPM and a low pressure purge flow of 25 SLPM and analyze the effect of reduced temperature, i.e. 24° C to -40° C.

Reading from the above tables for 25 SLPM breakthrough runs at 24° C the time for high pressure nitrogen breakthrough, oxygen breakthrough, and 1% nitrogen concentration in the effluent are 2.55, 0.68, and 6.8 seconds, respectively. In comparison at 25 SLPM and -40° C these times at high pressure nitrogen breakthrough, oxygen breakthrough, and 1% nitrogen concentration in the effluent are 6.71, 1.0, and 42.4 seconds, respectively. It appears the lowered temperature has caused the nitrogen breakthrough period to lengthen by a factor of 2.6 and the period to reach 1% nitrogen in the effluent by a factor of 6.2.

The nitrogen breakthrough experiment relates to the high pressure feed step in the actual PSA process, and the oxygen breakthrough and attainment of 1% nitrogen in the effluent relates to the purge step in the actual PSA process. Inspection of the curves in Figures 5-74 and 5-75 shows that the lower temperature has increased the overall time for nitrogen breakthrough to occur but the length of the mass transfer front remains about the same at both temperatures. On the other hand, the mass transfer front at -40°C in the oxygen breakthrough experiment has lengthened considerably. This dramatic effect may possibly explain the reason for the observed reduction in system performance at -40°C. The increased length of the front may be due to a significant decrease in intracrystalline diffusion rate for nitrogen.

104

F. Dual Column PSA Experiments (2-Step and 6-Step Cycle)

Figures 5-76 through 5-87 show some typical data sets from the miniature PSA system configured for 2-step operation. A system optimized at 24° C was operated at -40° C to determine the effects of temperature. The data are presented in an alternating fashion, in that, the effect of reducing the operating temperature may be seen conveniently on each following page. Observing Figures 5-76 and 5-77, it can be seen that the inlet flowrate for the system at -40 $^{\circ}C$ is slightly greater due to the volume change at low temperature as we attempt to maintain the inlet pressure constant. The exhaust flowmeter (F2) was configured in the run at 24° C to monitor one of the column exhaust flows and at -40°C the flowmeter was setup to monitor exhaust both columns. flows from Since the flowmeter was outside its temperature range of operation at -40 $^{\circ}$ C its absolute readings are The actual exhaust flow was determined by a mass balance questionable. over one cycle based on the readings of the inlet flowmeter (F1) and the product flowmeter (F3). From Figures 5-80, 5-81, 5-84, and 5-85 it is observed that the product oxygen concentration is stable even though the the product flowrate is fluctuating.

With optimum system parameters for operation at 24 $^{\circ}$ C the ambient temperature was varied and the reduced performance reported by Miller et al. was observed (See Fig. 5-88). The significant decline in oxygen product concentration begins at approximately -10 $^{\circ}$ C as the ambient temperature is decreased. A limited number of runs were conducted at temperatures above ambient temperature up to 50° C with only a slight reduction in system performance observed.

Variation of purge flow, cycle time, and temperature was accomplished to determine their effect on the system performance (See Fig.5-89 through 5-91). The purge flow with the 0.020" orifice installed gave the best performance overall. The 2-step system configuration giving the highest purity of oxygen (94.2%) at 24° C had a 0.020" diameter purge orifice and operated on a six second cycle time. An improvement in performance at -40° C by lenthening the cycle time is worth noting, although attainment of 95% oxygen concentration was not observed (See Figure 5-90). This improvement was predicted by the breakthrough curves. The effect of product flowrate and temperature on the above 2-step system configuration giving highest purity is shown in Figures 5-92 through 5-95. The reduction in oxygen concentration with increased product flow occurs in all runs (See Figures 5-92 through 5-95).

A typical data set for a 6-step experiment is shown on Figures 5-96 through 5-107. With this system configuration all flows are much more stable. In Figures 5-96 and 5-97 the The 6-step system appears dependent on the purge flowrate but not as dependent on cycle time. The effect of cycle time and temperature on the 6-step/cycle system is shown in Figure 5-108. Oxygen recovery at 24° C is higher for the six-step system when compared to the 2-step but at -40° C they appear to be about

the same (See Fig. 5-109 through 5-111). The data may not be conclusive because breakthrough data were unavailable for guidance on getting the step times.

FIG 5-1. OXYGEN ON MOLECULAR SIEVE 5A AT 24 °C

FIG 5-2. DXYGEN ON MOLECULAR SIEVE 5A AT -40°C

<u>n na hana na h</u>a

arela catal di ci ci ci ci ci ca ca catal

وياهي فكرفارك المكرمين

as or a line of the second M

FIG 5-7. PURE NITROGEN AND OXYGEN ON MOLECULAR SIEVE 5A AT 24°C.

17.2.C.

FIG 5-9. PURE NITROGEN AND OXYGEN ON MOLECULAR SIEVE 5A AT -70°C.

and a standard a standard with the standard a standard with the standard and the standard as th

FIG 5-10. OXYGEN ISOTHERMS ON MOLECULAR SIEVE 5A.

<u>nen men her i h</u>er i her i h

FIG 5-13. OXYGEN ISOTHERM ON MOLECULAR SIEVE 5A AT 24°C SHOWN WITH THE DATA OF UNION CARBIDE.

And the second second and the second seco

FIG 5-14. NITHOGEN ISOTHERM ON MOLECULAR SIEVE 5A AT 24°C SHOWN WITH THE DATA PETERSON AT 25°C.

a the factor of the factor of

FIG 5-15. NITROGEN ISOTHERM ON MOLECULAR SIEVE 5A AT 24°C SHOWN WITH DATA OF UNION CARBIDE.

และและและเห็นและเห็นเห็นเห็นเห็นเห็นเห็นเห็นเห็นเห็นให้เป็นเห็นไห้เห็นไห้เห็นไห้เห็นไห้เห็นไห้เห็นไห้ไ

FIG 5-16. FITTING A LANGMUIR EQUATION TO THE OXYGEN-5A DATA AT 24 °C.

FIG 5-17. FITTING A LANGMUIR EQUATION TO THE OXYGEN-5A DATA AT -40°C.

FIG 5-18. FITTING A LANGMUIR EQUATION TO THE OXYGEN-5A DATA AT -70°C.

FIG 5-19. FITTING A SIPS EQUATION TO THE NITROGEN-5A DATA AT 24°C.

FIG 5-20. FITTING A SIPS EQUATION TO THE NITROGEN-5A DATA AT -40 °C.

127

. I I

FIG 5-21. FITTING A SIPS EQUATION TO THE NITROGEN-5A DATA AT -70 °C.

FIG 5-22. ISOSTERES FOR OXYGEN ON MOLECULAR SIEVE 5A.

FIG 5-23. ISOSTERES FOR NITROGEN ON MOLECULAR SIEVE 5A.

FIG 5-24. ISOSTERIC HEAT OF ADSORPTION FOR NITROGEN AND OXYGEN ON MOLECULAR SIEVE 5A.

<u>, and a second second</u>

FIG 5-27. CORRELATION OF OXYGEN SORPTION ON MOLECULAR SIEVE 5A AT 24°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K = 0.0004234, B = 38.8, AND m = 20.

and a standard and a standard and a standard a standard a standard a standard a standard a standard a standard

FIG 5-28. CORRELATION OF OXYGEN SORPTION ON MOLECULAR SIEVE 5A AT -40°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K = 0.002031, B = 38.8, AND m = 20.

 \sum

FIG 5-29. CORRELATION OF OXYGEN SORPTION ON MOLECULAR SIEVE 5A AT -70°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K = 0.005952, B = 38.8, m = 20.

"•] •]

ar an a strand an and a substant a substant and and a substant protection conduction when the conductor field o S

FIG 5-30. CORRELATION OF NITROGEN SORPTION ON MOLECULAR SIEVE 5A AT 24 °C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.001902, B=97, AND m=8.

BALLA INTERSESSA I INTERACIONALIA A COMPANYA INA MANANA INA MANANA INA MANANA INA MANANA INA MANANA INA MANANA MANANA INTERSESSA I INA A COMPANYA INA MANANA MANANA INA M

FIG 5-31. CORRELATION OF NITROGEN SORPTION ON MOLECULAR SIEVE 5A AT ~40°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.01557, B=76, AND m=10.

han marked a hand a shark a shark a hand a shark a hand a shark a

cash anti-

FIG 5-34. PREDICTION OF UNION CARBIDE DATA FOR OXYGEN-5A SORPTION AT 0°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.0006969, B=38.8, m=20.

กลายสินสาวสาวที่สาวที่สาวที่สาวที่สาวที่สาวที่ และสาวที่สาวที่สาวที่สาวที่สาวที่สาวที่สาวที่สาวที่สาวที่สาวที่

FIG 5-35. PREDICTION OF UNION CARBIDE DATA FOR OXYGEN-5A SORPTION AT -35°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.001735, B=38.8, m=20.

a se a la se a la serie de la serie de

FIG 5-36. PREDICTION OF UNION CARBIDE DATA FOR OXYGEN-5A SORPTION AT 30 °C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.0003771, B=38.8, m=20.

143

and a shake to a stand with the stand of the stand of the stand of the standard standard and the standard and s

FIG 5-37. PREDICTION OF UNION CARBIDE DATA FOR NITROGEN-5A SORPTION AT 0°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.003711, B=89.3, m=8.

FIG 5-38. PREDICTION OF UNION CARBIDE DATA FOR NITROGEN-5A SORPTION AT -35°C USING A STATISTICAL THERMODYNAMIC MODEL WHERE: K=0.01261, B=77.6, m=10.

1

FIG 5-39. AIR-5A AT 24 °C WHERE THE TOTAL MOLAR RATIO OF NITROGEN, OXYGEN, AND ARGON WITHIN THE SYSTEM IS CONSTANT AT 78.14 : 20.92 : 0.94, RESPECTIVELY.

FIG 5-40. AIR-5A AT -40 °C WHERE THE TOTAL MOLAR RATIO OF NITROGEN, OXYGEN, AND ARGON WITHIN THE SYSTEM IS CONSTANT AT 78.14 : 20.92 : 0.94, RESPECTIVELY.

MARCALLY

FIG 5-41. AIR-5A AT -70°C WHERE THE TOTAL MOLAR RATIO OF NITROGEN. OXYGEN, AND ARGON WITHIN THE SYSTEM IS CONSTANT AT 78.14 : 20.92 : 0.94, RESPECTIVELY.

FIG 5-43. MULTICOMPONENT DATA FOR THE SYSTEM AIR-5A AT -40 °C.

FIG 5-44. MULTICOMPONENT DATA FOR THE SYSTEM AIR-5A AT -70 °C.

٠.

FIG 5-45. NITROGEN LOADING AT 24, -40, AND -70°C FOR THE AIR-5A SYSTEM.

FIG 5-46. OXYGEN LOADING AT 24, -40, AND -70°C FOR THE AIR-5A SYSTEM.

FIG 5-47. ARGON LOADING AT 24, -40, AND -70°C FOR THE AIR-5A SYSTEM.

FIG 5-48. PURE AND MULTICOMPONENT DATA OF NITROGEN AND DXYGEN ON MOLECULAR SIEVE 5A AT 24°C.

BUDSEFER ENVERSE DEPARTE SERVERSE SERVERSE SECTOR OF SERVES INC.

generation and a second a second of the

· · ·

PARTIAL PRESSURE (TORA)

FIG 5-50. PURE AND MULTICOMPONENT DATA OF NITROGEN AND OXYGEN ON MOLECULAR SIEVE 5A AT -70°C.

FIG 5-51. SEPARATION FACTORS FOR THE BINARY MIXTURE OF NITROGEN AND OXYGEN ON MOLECULAR SIEVE 5A.

FIG 5-52. PREDICTION OF NITROGEN-OXYGEN ADSORPTION ON MOLECULAR SIEVE 5A AT 24°C USING A STATISTICAL THERMODYNAMIC MODEL WITH PURE COMPONENT PARAMETERS.

FIG 5-53. PREDICTION OF NITROGEN-OXYGEN ADSORPTION ON MOLECULAR SIEVE 5A AT -40°C USING A STATISTICAL THERMODYNAMIC MODEL WITH PURE COMPONENT PARAMETERS.

FIG 5-54. PREDICTION OF NITROGEN-DXYGEN ADSORPTION ON MOLECULAR SIEVE 5A AT -70 °C USING A STATISTICAL THERMODYNAMIC MODEL WITH PURE COMPONENT PARAMETERS.

FIG 5-56. PREDICTION OF N2-02 SORPTION AT -70 °C USING A STATISTICAL THERMODYNAMIC MODEL WITH ADJUSTED EFFECTIVE MCLECULAR VOLUMES (B02 = 25, BN2 = 74).

FIG 5-57. APPARENT EFFECTIVE MOLECULAR VOLUME FOR N2 AND 02 AS PURE COMPONENTS AND IN A N2-02-AR MIXTURE WITH TOTAL MOLAR RATIO OF 78.14 : 20.92 : 0.94 .

FIG 5-58. PREDICTION OF N2-02 SORPTION ON MOLECULAR SIEVE 5A AT 24 °C USING THE IDEAL ADSORBED SOLUTION THEORY.

FIG 5-59. PREDICTION OF N2-02 SORPTION ON MOLECULAR SIEVE 5A AT -40 °C USING THE IDEAL ADSORBED SOLUTION THEORY.

FIG 5-60. PREDICTION OF N2-02 SORPTION ON MOLECULAR SIEVE 5A AT -70 °C USING THE IDEAL ADSORBED SOLUTION THEORY.

FIG 5-61. RUN 102021 : COLUMN NITROGEN BREAKTHROUGH AT 24°C, 25 SLPM. AND BED PRESSURE OF 25 PSIA.

FIG 5-62. RUN 102712 : COLUMN NITROGEN BREAKTHROUGH AT 24°C, 25 SLPM, AND BED PRESSURE OF APPROXIMATELY 18.5 PSIA.

FIG 5-63. RUN 102023 : COLUMN OXYGEN BREAKTHROUGH AT 24°C, 25 SLPM, AND BED PRESSURE OF 25 PSIA.

67.832.842 19

変となる。これになっていたので、

FIG 5-64. RUN 102714 : COLUMN OXYGEN BREAKTHROUGH AT 24°C, 25 SLPM, AND BED PRESSURE OF APPROXIMATELY 18.5 PSIA.

and the second states of the second second

FIG 5-65. RUN 110407 : COLUMN NITROGEN BREAKTHROUGH AT -40°C, 25 SLPM, AND BED PRESSURE OF 25 PSIA.

FIG 5-66. RUN 110413 : COLUMN NITROGEN BREAKTHROUGH AT -40°C, 25 SLPM, AND BED PRESSURE OF APPROXIMATELY 18.5 PSIA.

FIG 5-67. RUN 110408 : COLUMN OXYGEN BREAKTHROUGH AT -40°C. 25 SLPM, AND BED PRESSURE OF 25 PSIA.

┍┲╍┲┍┥┥┑**┊╶┺╷╼**┍╼┍┍╷╝╗┥╖╝╖┥╖┥╷┥╷┥╖┥╵┥╷┥╷┥

FIG 5-68. RUN 110412 : COLUMN OXYGEN BREAKTHROUGH AT -40°C, 25 SLPM, AND BED PRESSURE OF APPROXIMATELY 18.5 PSIA.

. 1

here we have been a state of the second s

FIG 5-69. RUN 102709 : MEASUREMENT OF DISTANCE/ VELOCITY LAG TIME AT 25 SLPM.

وجوائي ويرقب أرجعت والمعاني ومراجع والمراجع المحاجي

6.04.3M.MA

FIG 5-70. DEPENDENCE OF NITROGEN BREAKTHROUGH ON FLOWRATE AT 24 °C AND BED PRESSURE OF 25 PSIA.

の人が日本があるのでの「「「「「」」のための「「「」」の人がない。「「「」」の人がない。「「「」」の人からないです。「「」」の人がない。「「」」の人がない。「」」、「」」、「」、「」、「」、「」、「」、 「」

• • • • • • • •

FIG 5-71. DEPENDENCE OF OXYGEN BREAKTHROUGH ON FLOWRATE AT 24°C AND BED PRESSURE OF 25 PSIA.

FIG 5-72. DEPENDENCE OF NITROGEN BREAKTHROUGH ON FLOWRATE AT -40°C AND BED PRESSURE OF 25 PSIA.

こう語言ででで、ここの言語がいいないできた思想でした。このでは、ほうい

FIG 5-73. DEPENDENCE OF OXYGEN BREAKTHROUGH ON FLOWRATE AT -40 °C AND BED PRESSURE OF 25 PSIA.

FIG 5-75. EFFECT OF TEMPERATURE ON NITROGEN AND OXYGEN BREAKTHROUGH FOR A FLOWRATE OF 13 SLPM AND BED PRESSURE OF 25 PSIA.

FIG 5-76. AIR FLOW INTO THE PSA UNIT OPERATING AT 24°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

はまたとうとうという

いたが、 国家からないない 日本 アイアン・アイド

FIG 5-77. AIR FLOW INTO THE PSA UNIT OPERATING AT -40°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-79. EXHAUST FLOW FROM THE PSA UNIT OPERATING AT -40°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

a na sana na s Na sana na sana

FIG 5-80. PRODUCT FLOW FROM THE PSA UNIT OPERATING AT 24°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-81. PRODUCT FLOW FROM THE PSA UNIT OPERATING AT -40°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

PROFESSION OF STREET, S

FIG 5-82. PRODUCT N2 FROM THE PSA UNIT OPERATING AT 24 °C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

N .:

FIG 5-83. PRODUCT N2 FROM THE PSA UNIT OPERATING AT -40 °C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-84. PRODUCT 02 FROM THE PSA UNIT OPERATING AT 24°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

. . . .

FIG 5-85. PRODUCT O2 FROM THE PSA UNIT OPERATING AT -40°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

<u>ĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨĨ</u>

FIG 5-86. PRODUCT AR FROM THE PSA UNIT OPERATING AT 24°C AND CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE DRIFICE, AND 100 SCCM PRODUCT FLOW.

ᇫᇯᄾᇧ**ᆒᇏᇵᇗᇗᇗᇯᇉᇏᇯᇗᇗᇗᇗᇯᇉᇉᇨᇨᇗᇝᇉᇉᇨᇨᅶᇗᇈᇉᇗᇗᇗᅶᅶᇉᇉᇉᇗᇗᅶᅶᅶᇉᇉᇉᇗᅸᇨᇈᇨᇈᇉᇥᇨᅸᇨᅶᇈᇉᇉᇉᇨᇨᇈᇉᇉᇨᇉᇗᇗᇗᇪᇤᆹᇨᇨᇧ** ᆕ

A CALLAND AND A CALLAND

FIG 5-88. EFFECT OF BED TEMPERATURE ON A PSA UNIT CONFIGURED FOR A 2 STEP CYCLE, 6 SEC. CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOWRATE.

195

1 - 1 - 1 - <u>1</u> -

FIG 5-89. EFFECT OF CYCLE TIME AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 2 STEPS/CYCLE, 0.010" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-90. EFFECT OF CYCLE TIME AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 2 STEPS/CYCLE, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-91. EFFECT OF CYCLE TIME AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 2 STEPS/CYCLE, 0.029" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-92. EFFECT OF PRODUCT FLOWRATE AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 2 STEPS/CYCLE, P SEC. CYCLE TIME, AND 0.020" PURGE ORIFICE.

FIG 5-93. EFFECT OF PRODUCT FLOWRATE AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 2 STEPS/CYCLE, 18 SEC. CYCLE TIME, AND 0.020" ORIFICE.

FIG 5-94. EFFECT OF PRODUCT FLOWRATE AND CYCLE TIME ON THE PSA UNIT OPERATING AT 24°C AND CONFIGURED FOR 2 STEPS/CYCLE AND 0.020" PURGE ORIFICE.

FIG 5-95. EFFECT OF PRODUCT FLOWRATE AND CYCLE TIME ON THE PSA UNIT OPERATING AT -40 °C AND CONFIGURED FOR 2 STEPS/CYCLE AND 0.020" PURGE ORIFICE.

202

このにいた。こので、こので、こので、こので、

FIG 5-88. INLET FLOW FOR PSA UNIT CONFIGURATION: 24°C. E STEP CYCLE (1SEC. 3SEC, 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE AND 100 SCCM PRODUCT FLOW.

FIG 5-97. INLET FLOW FOR PSA UNIT CONFIGURATION: -40°C, 6 STEP CYCLE(1SEC, 3SEC, 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE AND 100 SCCM PRODUCT FLOW.

and the second second

FIG 5-98. EXHAUST FLOW FOR PSA UNIT CONFIGURATION: 24°C, 6 STEP CYCLE (1SEC. 3SEC. 1SEC), 10SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-99. EXHAUST FLOW FOR PSA UNIT CONFIGURATION: -40°C.6 STEP CYCLE(1SEC.3SEC,1SEC),10 SEC CYCLE TIME, 0.020" PURGE ORIFICE,AND 100 SCCM PRODUCT FLOW.

and to take the

FIG 5-100. PRODUCT FLOW FOR PSA UNIT CONFIGURATION: 24°C, 6 STEP CYCLE (1SEC, 3SEC, 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

19 BUT BUT BUT BUT ST

FIG 5-101. PRODUCT FLOW FOR PSA UNIT CONFIGURATION: -40°C, 8 STEP CYCLE(1SEC, 3SEC, 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-102. PRODUCT N2% FOR PSA UNIT CONFIGURATION: 24°C, 6 STEP CYCLE(1SEC, 3SEC, 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-103. PRODUCT N2% FOR PSA UNIT CONFIGURATION: -40°C, 8 STEP CYCLE (1SEC. 3SEC. 1SEC). 10 SEC CYCLE TIME. 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-104. PRODUCT 02% FOR PSA UNIT CONFIGURATION: 24°C. 6 STEP CYCLE (1SEC. 3SEC. 1SEC), 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

FIG 5-105. PRODUCT 02% FOR PSA UNIT CONFIGURATION: -40°C.6 STEP CYCLE (1SEC.3SEC.1SEC).10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

212

FIG 5-106. PRODUCT AR% FOR PSA UNIT CONFIGURATION: 24°C.6 STEP CYCLE(1SEC.3SEC.1SEC).10 SEC CYCLE TIME. 0.020" PURGE ORIFICE.AND 100 SCCM PRODUCT FLOW.

FIG 5-107. PRODUCT AR% FOR PSA UNIT CONFIGURATION: -40°C, 8 STEP CYCLE (1SEC, 3SEC, 1SEC). 10 SEC CYCLE TIME, 0.020" PURGE ORIFICE, AND 100 SCCM PRODUCT FLOW.

and the second secon

FIG 5-108. EFFECT OF CYCLE TIME AND TEMPERATURE ON THE PSA UNIT CONFIGURED FOR 8 STEP OPERATION AND 100 SCCM PRODUCT FLOW.

FIG 3-109. EFFECT OF PRODUCT FLOWRATE AND TEMPERATURE ON OXYGEN RECOVERY FOR A 2 STEP SYSTEM WITH A CYCLE TIME OF 8 SEC AND A 0.020" PURGE ORIFICE.

:

FIG 5-111. COMPARISON OF OXYGEN RECOVERY BETWEEN A 2 STEP AND 6 STEP SYSTEM OPERATING AT -40°C.

N2 COMPONENT LOADING

FIG 5-112. PREDICTION OF 02-N2 ADSORPTION ON MOLECULAR Sieve 54 at 24 C based on the data of this work and a Statistical Thermodynamic Model.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

- The pure component isotherms of nitrogen and oxygen on molecular sieve 5A were correlated by a statistical thermodynamic model.
- 2. The pure isotherm data of Union Carbide (69) were predicted with reasonable accuracy using a statistical thermodynamic model with parameters determined from the pure component isotherm data of this work.
- 3. The multicomponent isotherms for the nitrogen and oxygen on molecular sieve 5A were predicted at 24°C by a statistical thermodynamic model and the IAST theory using the pure component data of this model.
- 4. The surface of the molecular sieve 5A is energetically heterogeneous to the nitrogen molecule and homogeneous toward the oxygen molecule. This is evident by viewing the plot of Ha versus loading (See Figure 5-24).

5. The breakthrough data taken at 24 and -40°C shows that the length of the mass transfer front during adsorption ,i.e. nitrogen breakthrough experiments, remains nearly constant. On the contrary, the length of the mass transfer front during desorption, i.e. oxygen breakthrough, is much greater at -40°C.

A decrease in the rate of diffusion of the nitrogen molecules during desorption may account for the reduced performance of PSA systems at lower temperatures.

an assessment of the second states of the second second second second second second second second second second

6. Optimum performance of a PSA system at -40°C requires lengthening of the cycle time. The optimum cycle times for the six step and two step system are nearly the same. Slightly higher oxygen product concentrations and oxygen recoveries were observed for six step system in comparison to the two step.

7. The separation factor for nitrogen-oxygen is constant above 1000 Torr and temperature dependent below 1000 Torr where it is inversely proportional to the temperature.

8. There is no improvement in the separation of argon at -40°C.

9. At 24 °C the O2-N2-5A system may be considered ideal.

B. Recommendations

The nonideality of the binary mixture of nitrogen and oxygen at low temperature should be investigated to determine the nature of the interaction of these molecules. Possibly, an extension to existing models could be used to predict sorption at these lower temperatures.

The effect of the argon in the multicomponent mixture with nitrogen and oxygen should be investigated to ensure the validity of neglecting argon in the present analysis.

- 3. The PSA unit used in this study should be run at -40° C to determine if greater oxygen concentrations can be achieved by optimization of the purge flow through use of a automatic flow controller.
- 4. Additional experimentation and analysis of the breakthrough curves at -40° C should conducted to determine the underlying causes of the significantly longer nitrogen desorption.
- 5. Futher studies comparing the two step and the six step cycle should be undertaken.

APPENDIX

i

, 시네로 가지 가지 않는 것은 것 때 (1977년 1977년 1977 19

i.

A NOMENCLATURE

B OPERATING PROCEDURE

C DATA AND CALCULATIONS

Anternet

APPENDIX A

NOMENCLATURE

= area = activity for an ideal gas (p/kT) а а = number of cavities with s sorbate molecules 8 B = effective molecular volume (cu. Angstroms) = sorbate concentration (molecules/cavity) C = canonical ensemble partition function С = zeolitic diffusivity (cm. sq./sec) D 11 11 at zero concentration D 0 = constant in units of (molecules)(cm.sq.)/(cavity)(sec) D 0 = pre-exponential factor (molecules)(cm.sq.)/(cavity)(sec) D = diffusional activation energy Ε = Gibbs free energy G H = enthalpyHa = isosteric heat of adsorption K = Henry's Law constant (c=Kp) (molecules/cavity/Torr) Ko = pre-exponential factor giving temperature dependence of K (molecules/cavity) (dyne/cm.sq.) = Boltzmann's constant k maximum number of molecules per cavity (saturation limit) m $(m \leq V/B)$

= mass of sorbate adsorbed or desorbed during time, t m = mass adsorbed or desorbed when time approaches infinity. П = number of cavities M N = total number of sorbate molecules in the system N = average number of molecules in the macroscopic system n = number of molecules adsorbed by a crystal P = total pressure Ρ = high pressure H P = low pressure L = partial pressure P q(s) = site partition function Q = subsystem of grand partition functions qc = limiting isosteric heat of sorption at zero concentration r = equivalent radius of a zeolite crystal R = universal gas constant - position vector in the Sutherland potential r 1 S = entropynumber of sorbate molecules occluded in a cavity 8 = temperature.⁰K T t = dummmy variable U = internal energy U = potential energy for the subsystem

LAND LASTAND TANIA UTUKANAN MANANAN MANANAN TANI ANG TANI ANG TANI MANANAN MANANAN MANANAN DI TANI ANG TANI AN Di

5 f. - 3

- Va = volume of the adsorbate
- Vg = volume of the adsorbate in the gas phase
- V = volume of the zeolite type A alpha cavity (776 cu. Angstroms)
- Z(s) = configuration integral for a system of s sorbate molecules in one molecular sieve 5A cavity
- Z(i,j) = configuration integral for a system of i molecules of species A and j molecules of species B within a molecular sieve 5A cavity
 - α = separation factor
 - ε = void fraction
 - θ = fractional coverage
 - $\lambda = \exp(\mu / kT)$
 - μ = chemical potential
 - σ, ξ = molecular constants in the potential energy function
 - τ = charge

- ϕ = angle between the axis of the quadrupole and the line between the centers of the two molecules
- ω = polarizability
- Π = spreading pressure

Subscripts

- A = component A
- B = component B
- i = number of molecules of species A

j = number of molecules of species B

227
APPENDIX B

OPERATING PROCEDURES

A. Brief Description of the Pure Component Apparatus Operating Procedure

- (1) Regenerate the adsorbent by heating to a temperature of 350° C while applying a vacuum of < 1 Torr for twelve hours. Close valve (V4), set the temperature controller on the environmental test chamber (T) and allow the sample to stabilize at the desired experimental temperature (See Fig. 4-6).
- (2) Open value (V2) to permit the gaseous adsorbate (pure nitrogen or oxygen) to enter the previously evacuated charge chamber (C2).
- (3) Close valve (V2) and annotate the temperature and initial pressure of the charge chamber (C2).
- (4) Ensure the adsorbent temperature (T1) is stable at the desired temperature of the experiment.
- (5) Inject a portion of the gaseous adsorbate from the charge chamber(C2) into the sample chamber (C1) by slightly opening valve (V3).
- (6) Monitor the sample chamber (C1) pressure through use of the strip chart recorder (S) to determine when equilibrium has been reached. In this work equilibrium required a minimum of six to eight hours for each data point.
- (7) Annotate the final pressure in the charge chamber (C2) and the equilibrium pressure in the sample chamber (C1).
- (8) The above procedure is repeated until the equilibrium pressure within the sample chamber (C1) reaches the high limit of the

calibrated range of the pressure transducers.

B. Brief Description of the Multicomponent Apparatus Operating Procedure

- (1) Follow step (1) through (6) as shown in the operating procedure for the pure component apparatus but use valve (V1) to draw vacuum on the sample chamber (C1) during the regeneration step (See Fig. 4-8). Air is permitted to enter the charge volume (C2).
- (2) Monitor the pressure in the sample chamber (C1) to determine when equilibrium has been attained.
- (3) Evacuate the MGA sampling volume (SV) by placing valve (V6) in the proper position.
- (4) Evacuate the MGA sampling probe (PR) by proper positioning of valves (V5 and V6).
- (5) Annotate the pressure in the sample chamber (C1) at equilibrium. Open valve (V1) momentarily to draw a small sample of gas from the sample chamber (C1) into the MGA sampling volume (SV).
- (6) Annotate the pressure in the sample chamber (C1) immediately after the gas sample has been removed.
- (7) Open valve (V5) to allow the gas sample to enter the gas sampling probe (PR) and the MGA for analysis.
- (8) Evacuate the sampling volume (SV) and the MGA gas sampling probe (PR) by positioning values (V5 and V6).
- (9) Repeat the above procedure to obtain other data points.

C. Brief Description of the PSA Unit Operating Procedure

- (1) Edit the data file XBASE.DAT to set the experimental configuration and the number of data channels.
- (2) Install the proper purge orifice for the desired configuration.
- (3) Set the inlet air regulator at 25 psia.
- (4) Ensure all data channels give the proper outputs and the calibration factors for each channel are correct.
- (5) Begin the experiment by running the main control program TT.FOR .
- (6) Set the product flow rate.
- (7) After a stable oxygen concentration is observed in the product flow depress the "line feed" key on the VT-54 terminal to begin the data collection process.
- (8) The data is displayed to the screen of the VT-54 in engineering units and stored on a floppy diskette in A/D counts.

APPENDIX C

DATA AND CALCULATIONS

Table 17. Nitrogen-5A at 24°C (Run 1).

•

•

. . . .

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
18	0.325
50	0.940
88	1.645
156	2.769
223	3:794
339	5.454
432	6:617
539	7.949
651	9÷158
690	9.567
759	10:282
823	10.905
959	12.196
1143	13.266
1391	15.310
1577	16.731
1867	18.727
2198	21.237
27 20	24:110
3067	25.863
3305	27:072
3439	28.041

R () A

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
143	2.742
274	4:724
415	6:606
563	8.382
750	10:316
1117	13.287
1355	15:502
1712	18.148
2120	20:779
2508	23.017
2901	25:039
3196	26.575
3382	27:541

Table 18. Nitrogen-5A at 24°C (Run 2)

Table 19. Nitrogen-5A at -40°C (Run 1)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
18	4.651
100	14:812
395	30,593
703	38:982
929	43.107
1443	49:376
1970	54.838
2441	58.716
2829	61.189
3118	62:898
3320	64:144

เมือง สินครั้ง เมืองสาวเราะสาวเสร็จ

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
2389	58.409
1779	53:469
1376	49.241

Table 20. Nitrogen-5A at -40°C (Run 1 Desorption)

Table 21. Nitrogen-5A at -40°C (Run 2)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)	
175	19.402	
553	34.532	
1112	45:126	
1676	52.256	

Table 22. Nitrogen-5A at -70°C (Run 1)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
38	20.927
174	40:319
454	56:236
931	67:720
1505	75:246
2032	80:253
2457	83:693
2808	85.847
3087	87.232
3299	88:081

Table 23. Nitrogen-5A at -70 °C (Run 1 Desorption)

Quantity Adsorbed (ml STP/gm)
83.123
78,697
74.574

Table 24. Nitrogen-5A at -70°C (Run 2)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
36	20,783
172	40.084
444	55:645
895	66.879
1402	74:896
1934	80.104

Table 25. Oxygen-5A at 24°C (Run 1)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
249	1.194
495	2,318
757	3:544
945	4.417
1520	6:545
2141	9.065
2544	10.736
3025	12,528
3320	13,560
3511	14.197
3620	14.561

	Table 26. Oxyg	$en-5A$ at $24^{\circ}C$ (Run 2)		
	Pressure	Quantity Adsorbed		
• • •	(Torr)	(ml STP/gm)		
	119 352	0.604 1.684		
	677	3:166		
	899	4.195		
a and the second second	1350	5.760		
	1795	7.558		
	2105	8.769		
· · ·	2040			
	3356	12,432	•	
	3532	14.054		
	3625	14.476		
	(Torr) 183 307 488 720 905 1458 1929 2358 2689	(m1 STP/gm) 4.228 6.799 10:282 14:657 17:863 24:837 30:717 35:353 38:660		
	2937	40.979		
	3124 3268	42.000		
	~~~~~		-	
		235		
		200		
		237		

Pressure (Torr)	sure Quantity Adsorbed rr) (ml STP/gm)	
183	4.228	
307	6.799	
488	10:282	
720	14.657	
905	17:863	
1458	24.837	
1929	30.717	
2358	35-353	
2689	38:660	
2937	40.979	
3124	42.560	
3268	43.812	

Pressure (Torr)	Quantity Adsorbe (ml STP/gm)	d
 2581	37.932	*
1996	31.620	
 1546	26.480	
1241	23:426	(

Table 28. Oxygen-5A at -40°C (Run 1 Desorption)

Table 29. Oxygen-5A at -70°C (Run 1)

P	ressure (Torr)	Quantity Adsorbed (ml STP/gm)
	176 342 532 682 833 1257 1639 2007 2301 2575 2782 3015 3165	10.826 19:252 27.040 32:742 38:275 48:164 56:334 62:263 66:689 70.033 72:437 74.090 75:512

Table 30. Oxygen-5A at -70 °C (Run 1 Desorption)

Pressure (Torr)	Quantity Adsorbed (ml STP/gm)	
2813	72.341	
2234	65,919	
1836	60.002	
1531	54.598	
1298	49,760	

# Table 31. Oxygen-5A at -70 °C (Run 2)

1	Pressure (Torr)	Quantity Adsorbed (ml STP/gm)
	285	15.083
• •	643	26.459
	926	38:772
· · · .	1314	48.513
•	1681	55.664
12.85	2032	61.240
	2340	65.601
·	2648	68.700
12.11	2875	71:043
	3077	72.724

اړ ...

· · · ·

S. S. S. S. S.

Table 32. Isosteric heat of adsorption for oxygen

Quantity Adsorbed (ml STP/gm)	- Ha (cal/mol)
1.0	3371
2.5	3372
5.0	3378
7.5	3382
10.0	2387
12.5	3392
15:0	3398
20.0	3317
25:0	3352
30.0	3392
35.0	3438
40.0	3490
45.0	3551
	<del>.</del>

Quantity Adsorbed (ml STP/gm)	- Ha (cal/mol)	
,	· · ··································	
1.0	7578	
2.5	6871	
5.0	6333	
7.5	6016	
10.0	5791	
12:5	5615	
15.0	5471	
20.0	5244	
25.0	5068	
30.0	4927	
35.0	4842	
40:0	4764	
45.0	4710	
50:0	4683	
55 0	1683	
50:0	1716	
55 O	4(1) h797	
02.0	4/0/	

Table 33. Isosteric heat of adsorption for nitrogen

Table 34. Air-5A at 24°C (Run 1) (Total Loading)

والمحاصية و

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)	
169	2-356	
372	4.727	
585	7:072	
882	9:713	
1252	12:651	
1836	16.860	
2405	20:507	
2803	22:745	
3051	24.048	

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
169	2,024
372	4.068
585	6:092
882	8:373
1252	10.962
1836	14.581
2405	17.715
2803	19:679
3051	20.845

Table 35. Air-5A at 24°C (Run 1) (Nitrogen Loading)

Table 36. Air-5A at 24°C (Run 1) (Oxygen Loading)

Total Pressure (Torr)	Quantity Oxygen Adsorbed (ml STP/gm)	
169	0.319	
372	0.633	
585	0.938	
882	1:283	·
1252	1:617	
1836	2.185	
2405	2:674	
2803	2.935	
3051	3:067	

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)
169	0.014
372	0:026
585	0.042
882	0.057
1252	0.072
1836	0:094
2405	0.118
2803	0.131
3051	0.136

Table 37. Air~5A at 24°C (Run 1) (Argon Loading)

Table 38. Air-5A at -40°C (Run 1) (Total Loading)

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)
168	10.325
280	15.960
444	22:664
666	29.558
1184	39:684
1670	46.584
2110	51:516
2457	54.410
2731	56.748
2968	58.392
3118	59:615

NA AL DA Na Al DA Na Al DA Na Al DA A AL DA AL DA

_____

١

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
168	8.629
280	13,351
111	18.985
666	24.838
1184	33:375
1670	39.189
2110	43.697
2457	46:078
2731 /	48.033
2968	49:462
3118	50.634

Table 39. Air-5A at -40°C (Run 1) (Nitrogen Loading)

Table 40. Air-5A at -40 °C (Run 1) (Oxygen Loading)

Total Pressure (Torr)	Quantity Oxygen Adsorbed (ml STP/gm)
168	1.626
280	2.501
444	3.526
666	4:522
1184	6:041
1670	7:080
2110	7.485
2457	7.968
2731	8:336
2968	8.538
3118	8;588

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)
168	0.069
280	0.107
<b>14 14 14</b>	0.153
666	0:197
1184	0.268
1670	0:316
2110	0.333
2457	0.363
2731	0.378
2968	0:391
3118	0:393

Table 41. Air-5A at -40°C (Run 1) (Argon Loadirg)

Table 42. Air-5A at -70°C (Run 1) (Total Loading)

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)	
168	24.632	
290	35.617	
427	44:188	
634	53.462	
1060	63:913	
1536	71.236	
1981	76:284	
2400	79.439	
2705	81:648	
2943	83.142	

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
168	20.030
290	29:048
427	36.146
634	43:859
1060	52:596
1536	58.827
1981	63.152
2400	65.877
2705	67.803
2943	69.217

Table 43. Air-5A at -70°C (Run 1) (Nitrogen Loading)

ためがは、彼らしていたとれた。 日本 アンドマング アンド

こうとうとうない 日本 かいかん ない 日本 シスクリンス 日本 シスクシス 日本 シスクシス シスクシス シスクロ ひょう システレ マン シング ひょう システレン シング ひょう システレン シング ひょう システレン シング ひょう システレン シング ひょう シング

Table 44. Air-5A at -70 C⁰(Run 1) (Oxygen Loading)

Total Pressure (Torr)	Quantity Oxygen Adsorbed (ml STP/gm)
168	4.415
290	6;295
427	7.704
634	9,198
1060	10.837
1536	11.875
1981	12.568
2400	12.973
2705	13.243
2943	13.315

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)	
168	0.192	
290	0:275	
427	0.338	
634	0.405	
1060	0.480	
1536	0.533	
1981	0.565	
2400	0:590	
<b>2705</b> i	0.602	
2943	0.611	

Table 45. Air-5A at -70°C (Run 1) (Argon Loading)

Table 46. Air-5A at 24°C (Run 2) (Total Loading)

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)
194	2.736
1169	11:691
1908	17.247
2467	20.497
2829	22.678

Table 47. Air-5A at 24°C (Run 2) (Nitrogen Loading)

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
194	2.351
1169	10.108
1908	14.917
2467	17.685
2829	19:598

Total Pressure (Torr)	Quantity (ml	Oxygen Adsorbed STP/gm)
194		0.369
1169		1:516
1908		2.231

2:695

2:952

Table 48. Air-5A at 24 °C (Run 2) (Oxygen Loading)

Table 49. Air-5A at 24°C (Run 2) (Argon Loading)

2467 2829

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)
194	0.015
1169	0.067
1908	0:099
2467	0.117
2829	0.128

Table 50. Air-5A at -40 °C (Run 2) (Total Loading)

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)	
199	12.048	
325	18:012	
458	23.163	
687	30:087	
1200	40:048	
1707	47:059	
2151	51.723	
2513	54.953	
2808	57.098	

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
199	10.060
325	15:062
458	19.410
687	25:263
1200	33.695
1707	39:537
2151	43.485
2513	46:255
2808	48.283

Table 51. Air-5A at -40°C (Run 2) (Nitrogen Loading)

ي ب

1.

Table 52. Air-5A at -40 °C (Run 2) (Oxygen Loading)

Total Pressure (Torr)	Quantity Oxygen Adsorbed (ml STP/gm)	
199	1.907	
325	2.828	
458	3:598	
687	4.629	
1200	6:084	
1707	7.199	
2151	7.882	
2513	8.320	
2808	8:433	

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)
199	0.081
325	0.122
458	0.156
687	0.196
1200	0.269
1707	0.323
2151	0.356
2513	0:377
2808	0.382

Table 53. Air-5A at -40°C (Run 2) (Argon Loading)

Table 54. Air-5A at -70°C (Run 2) (Total Loading)

e e estera com

Total Pressure (Torr)	Total Quantity Adsorbed (ml STP/gm)	
171	25.049	
289	35.728	
443	45.251	
688	55.163	
1122	65.464	
1608	72.520	
2053	76:911	
2431	80.141	
2731	82:298	

Total Pressure (Torr)	Quantity Nitrogen Adsorbed (ml STP/gm)
171	20.363
289	29:131
443	37.020
688	45:240
1122	53.892
1608	59:895
2053	63.736
2431	66:398
2731	68.394

Table 55. Air-5A at -70°C (Run 2) (Nitrogen Loading)

Giller and a second

Table 56. Air-5A at -70 °C (Run 2) (Oxygen Loading)

Total Pressure (Torr)	Quantity Oxygen Adsorbed (ml STP/gm)	
171	4.491	
289	6.321	
443	7:885	
688	9.503	
1122	11:079	
1608	12:082	
2053	12:609	
2431	13.148	
2731	13.303	

Total Pressure (Torr)	Quantity Argon Adsorbed (ml STP/gm)	
171	0.195	
289	0.276	
443	0.346	
688	0.420	
1122	0.494	
1608	0:542	
2053	0.566	
2431	0.594	
2731	0.601	

Table 57. Air-5A at -70°C (Run 2) (Argon Loading)

VOLUME.RES G.W.MILLER USAF SCHOOL OF AEROSPACE MEDICINE CREW TECHNOLOGY DIVISION BROOKS AFB,TEXAS

1.1

### DETERMINATION OF SAMPLE TRUE VOLUME AND TRUE DENSITY BY HELIUM DISPLACEMENT

SAMPLE: UNION CARBIDE MOLICULAR SIEVE 5A (20X40 MESH) AT 297.15K

NUMBER OF DATA POINTS: 20 SAMPLE WEIGHT (GM)= 32.8 VOLUME OF SAMPLE CHAMBER (ML)=170.0 VOLUME OF THE CHARGE CHAMBER (ML)=158.6

POINT NO: 1 INITIAL PRESSURE (TORR)= 1500. FINAL PRESSURE (TORR)= 750. MOLES ADDED (GM MOL*10**3)= 12.838 CALCULATED TOTAL VOLUME (ML)= 317.20 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.60 CALCULATED SAMPLE VOLUME (ML)= 11.40

POINT NO: 2 INITIAL PRESSURE (TORR)= 2000. FINAL PRESSURE (TORR)= 1008. MOLES ADDED (GM MOL*10**3)= 17.117 CALCULATED TOTAL VOLUME (ML)= 314.68 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 156.08 CALCULATED SAMPLE VOLUME (ML)= 13.92

POINT NO: 3 INITIAL PRESSURE (TORR)= 2500. FINAL PRESSURE (TORR)= 1246. MOLES ADDED (GM MOL*10**3)= 21.396 CALCULATED TOTAL VOLUME (ML)= 318.22 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 159.62 CALCULATED SAMPLE VOLUME (ML)= 10.38

POINT NO: 4

NITTAL PRESSURE (TORB) - 300.
FINAL PRESSURE (TORB) - 1995.
CLEQUATED SAMPLE VOLME (ML) - 10.31
NOINT NO: 5
FINAL PRESSURE (TORB) - 350.
FINAL PRESSURE (TORB) - 350.
FINAL PRESSURE (TORB) - 250.
FINAL PRESSURE (TORB) - 150.
FINAL PRESSURE (TORB) - 200.
FINAL PRESSURE (TORB) - 270.0.
FINAL PRESSURE (TORB) - 250.0.
CLEULATED SAMPLE CHARGER VOLME (HL) - 10.0.0.
CLEULATED SAMPLE CHARGER VOLME (HL) - 51.2.

CALCULATED SAMPLE CHAMBER VOLUME (ML)= 159.66 CALCULATED SAMPLE VOLUME (ML)= 10.34

POINT NO: 10 INITIAL PRESSURE (TGRR)= 3500. FINAL PRESSURE (TORR)= 1748. MOLES ADDED (CM MOL*10**3)= 29.955 CALCULATED TOTAL VOLUME (ML)= 317.56 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.96 CALCULATED SAMPLE VOLUME (ML)= 11.04

POINT NO: 11 INITIAL PRESSURE (TORR)= 1500. FINAL PRESSURE (TORR)= 750. MOLES ADDED (GM MOL*10**3)= 12.838 CALCULATED TOTAL VOLUME (ML)= 317.20 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.60 CALCULATED SAMPLE VOLUME (ML)= 11.40

POINT NO: 12 INITIAL PRESSURE (TORR)= 2000. FINAL PRESSURE (TORR)= 998. MOLES ADDED (GM MOL*10**3)= 17.117 CALCULATED TOTAL VOLUME (ML)= 317.84 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 159.24 CALCULATED SAMPLE VOLUME (ML)= 10.76

20

POINT NO: 13 INITIAL PRESSURE (TORR)= 2500. FINAL PRESSURE (TORR)= 1246. MOLES ADDED (GM MOL*10**3)= 21.396 CALCULATED TOTAL VOLUME (ML)= 318.22 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 159.62 CALCULATED SAMPLE VOLUME (ML)= 10.38

POINT NO: 14 INITIAL PRESSURE (TORR)= 3000. FINAL PRESSURE (TORR)= 1499. MOLES ADDED (GM MOL*10**3)= 25.676 CALCULATED TOTAL VOLUME (ML)= 317.41 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.81 CALCULATED SAMPLE VOLUME (ML)= 11.19 POINT NO: 15 INITIAL PRESSURE (TORR)= 3500. FINAL PRESSURE (TORR)= 1748. MOLES ADDED (GM MOL*10**3)= 29.955 CALCULATED TOTAL VOLUME (ML)= 317.56 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.96 CALCULATED SAMPLE VOLUME (ML)= 11.04

### POINT NO: 16 INITIAL PRESSURE (TORR)= 1500. FINAL PRESSURE (TORR)= 752. MOLES ADDED (GM MOL*10**3)= 12.838 CALCULATED TOTAL VOLUME (ML)= 316.36 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 157.76 CALCULATED SAMPLE VOLUME (ML)= 12.24

#### POINT NO: 17

INITIAL PRESSURE (TORR)= 2000. FINAL PRESSURE (TORR)= 1003. MOLES ADDED (GM MOL*10**3)= 17.117 CALCULATED TOTAL VOLUME (ML)= 316.25 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 157.65 CALCULATED SAMPLE VOLUME (ML)= 12.35

#### POINT NO: 18

INITIAL PRESSURE (TORR)= 2500. FINAL PRESSURE (TORR)= 1246. MOLES ADDED (GM MOL*10**3)= 21.396 CALCULATED TOTAL VOLUME (ML)= 318.22 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 159.62 CALCULATED SAMPLE VOLUME (ML)= 10.38

POINT NO: 19 INITIAL PRESSURE (TORR)= 3000. FINAL PRESSURE (TORR)= 1500. MOLES ADDED (GM MOL*10**3)= 25.676 CALCULATED TOTAL VOLUME (ML)= 317.20 CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.60 CALCULATED SAMPLE VOLUME (ML)= 11.40

POINT NO: 20 INITIAL PRESSURE (TORR)= 3500. FINAL PRESSURE (TORR)= 1748. MOLES ADDED (GM MOL*10**3)= 29.955

MEAN SAMPLE VOLUME (ML)= 11.05 STANDARD DEVIATION (ML)= 1.0004 SAMPLE VOLUME WITH 95% CONFIDENCE INTERVAL (ML)= 11.05 PLUS OR MINUS 0.47 SAMPLE DENSITY (GM/ML)= 2.97 С N2241.FOR С EQUILIBRIUM ADSORPTION PROGRAM С GEORGE MILLER С 23 JULY 83 DIMENSION PCHAR1(100), TCHARC(100), TSAMPC(100), PFINAL(100) DIMENSION XMOLTO(100), XMOLIN(100), XMOLGA(100), XMOLAD(100) DIMENSION VSTP(100), VOLWT(100), PCHAR2(100), Z1(100) DIMENSION Z2(100),Z3(100) OPEN (UNIT=1,NAME='N2241.GPH',TYPE='NEW',DISPOSE='SAVE') OPEN (UNIT=7, NAME='N2241.RES', TYPE='NEW', DISPOSE='SAVE') С PCHAR1=INITIAL CHARGE CHAMBER PRESSURE (TORR) PCHAR2=FINAL CHARGE CHAMBER PRESSURE (TORR) С С Z1=INITIAL CHARGE CHAMBER PRESSURE Z FACTOR С **Z2=FINAL CHARGE CHAMBER PRESSURE Z FACTOR** С Z3=EQUILIBRIUM Z FACTOR С TCHARC=TEMP IN THE CHARGE CHAMBER (DEG C) С TSAMPC=TEMP IN THE SAMPLE CHAMBER (DEG C) PFINAL=FINAL PRESSURE IN THE SAMPLE CHAMBER (TORR) С С XMOLTO=TOTAL MOLES ADDED (GM MOL) С XMOLIN=MOLES ADDED (GM MOL) С XMOLGA=MOLES IN GAS PHASE (GM MOL) XMOLAD=MOLES ADSORBED (GM MOL) С С VSTP=VOLUME ADSORBED (ML STP) VOLWT=VOLUME ADSORBED(ML STP)/WEIGHT OF SAMPLE (GM) C С SAMWT=SAMPLE WEIGHT (GM) С VCHARC=VOLUME OF THE CHARGE CHAMBER (ML) С VSAMPC=VOLUME OF THE SAMPLE CHAMBER (ML) С VSAMPL=VOLUME OF SAMPLE (ML) С VSAMPT=TRUE DEAD VOLUME IN SAMPLE CHAMBER (ML) NDATA=22 SAMWT=32.8 R=82.057 VCHARC=158.6 VSAMPC=170.0

CALCULATED TOTAL VOLUME (ML)= 317.56

CALCULATED SAMPLE VOLUME (ML)= 11.04

CALCULATED SAMPLE CHAMBER VOLUME (ML)= 158.96

VSAMPL=11.05 VSAMPT=VSAMPC-VSAMPL

С С

INPUT: EXPERIMENT NO.1

С

PCHAR1(1)=759. PCHAR1(2)=691. PCHAR1(3)=554; PCHAR1(4)=760: PCHAR1(5)=499; PCHAR1(6)=759. PCHAR1(7)=855. PCHAR1(8)=900. PCHAR1(9)=1000. PCHAR1(10)=827.4 PCHAR1(11)=1298. PCHAR1(12)=1292.7 PCHAR1(13)=1546:3 PCHAR1(14)=1551.4 PCHAR1(15)=2063.4 PCHAR1(16)=2322. PCHAR1(17)=2580.6 PCHAR1(18)=3097.7 PCHAR1(19)=3873:4 PCHAR1 (20)=3847.6 PCHAR1(21)=3878:6 PCHAR1(22)=3873.4

C

PCHAR2(1)=686. PCHAR2(2)=553: PCHAR2(3)=395. PCHAR2(4)=499. PCHAR2(5)=256. PCHAR2(6)=357. PCHAR2(7)=562. PCHAR2(8)=564. PCHAR2(9)=680; PCHAR2(10)=718.8 PCHAR2(11)=1106.7 PCHAR2(12)=1122.2 PCHAR2(13)=1189:4 PCHAR2(14)=1184.3 PCHAR2(15)=1463.5 PCHAR2(16)=1892;8 PCHAR2(17)=1949.6 PCHAR2(18)=2337.5 PCHAR2(19)=2859;8 PCHAR2(20)=3201.1

255

· · · ·

С

PCHAR2(22)=3573.5
PFINAL(1)=17.5
PFINAL(2)=50.
PFINAL(3)=88.
PFINAL(4)=156.
PFINAL(5)=223.
PFINAL(6)=339.
PFINAL(7) = 432.
PFINAL(8)=539.
PFINAL(9)=651
PFINAL(10) = 690.
PFINAL(11) = 750
PETNAL (12)-822
PEINAL (12)-023.
PETNAL(13)-939.
PFINAL(14)=1142.9
PEINAL(15)=1391.1
PFINAL(16)=1577.3
PFINAL(17)=1866:9
PFINAL(18)=2197.9
PFINAL(19)=2720.2
PFINAL(20)=3066.7
PFINAL(21)=3304.6
PFINAL(22)=3439.

PCHAR2(21)=3433.9

С

TCHARC(1)=24. TCHARC(2)=25. TCHARC(3)=25: TCHARC(4)=25. TCHARC(5)=25: TCHARC(6)=25: TCHARC(7)=25. TCHARC(8)=25. TCHARC(9)=25. TCHARC(10)=23. TCHARC(11)=24: TCHARC(12)=24: TCHARC(13)=24. TCHARC(14)=24: TCHARC(15)=25. TCHARC(16)=24. TCHARC(17)=24. TCHARC(18)=24. TCHARC(19)=24. TCHARC(20)=24: TCHARC(21) = 24. TCHARC(22)=24.

С

```
TSAMPC(1)=25.
    TSAMPC(2)=25.
    TSAMPC(3)=25.
    TSAMPC(4)=25.
    TSAMPC(5)=25.
    TSAMPC(6)=24:
    TSAMPC(7)=24.
    TSAMPC(8)=24.
    TSAMPC(9)=24.
    TSAMPC(10)=24.
    TSAMPC(11)=24.
    TSAMPC(12)=24:
    TSAMPC(13)=24.
    TSAMPC(14)=24.
    TSAMPC(15)=24.
    TSAMPC(16)=24.
    TSAMPC(17)=24.
    TSAMPC(18)=24.
    TSAMPC(19)=24.
    TSAMPC(20)=24:
    TSAMPC(21)=24.
    TSAMPC(22)=24:
С
    DO100 J-1,NDATA
    TCHARC(J)=TCHARC(J)+273.15
    TSAMPC(J) = TSAMPC(J) + 273.15
100 CONTINUE
    TOTAL=0.
    DO101 J=1,NDATA
    Z1(J)=(-2.565068585E-07*PCHAR1(J))+ 1.00000
    XMOL1=((PCHAR1(J)/760.)*VCHARC)/(R*TCHARC(J)*Z1(J))
    22(J) = (-2.565068585E - 07*PCHAR2(J)) + 1.00000
    XMOL2=((PCHAR2(J)/760.)*VCHARC)/(R*TCHARC(J)*Z2(J))
    XMOLIN(J)=XMOL1-XMOL2
    XMOLTO(J)=TOTAL+XMOLIN(J)
    TOTAL=XMOLTO(J)
    Z3(J)=(-2.565068585E-07*PFINAL(J))+ 1.00000
    XMOLGA(J)=((PFINAL(J)/760.)*VSAMPT)/(R*TSAMPC(J)*Z3(J))
    XMOLAD(J) = XMOLTO(J) - XMOLGA(J)
    VSTP(J)=XMOLAD(J)*R*273.15
    VOLWT(J)=VSTP(J)/SAMWT
101 CONTINUE
    DO103 J=1,NDATA
    XMOLIN(J)=XMOLIN(J)*1000.
    XMOLTO(J) = XMOLTO(J) * 1000
    XMOLGA(J)=XMOLGA(J)*1000.
    XMOLAD(J)=XMOLAD(J)*1000.
103 CONTINUE
    WRITE(7,15)
```

```
15 FORMAT(///.1X.'G.W.MILLER')
    WRITE(7,18)
18 FORMAT(1X, 'USAF SCHOOL OF AEROSPACE MEDICINE')
   WRITE(7, 19)
19 FORMAT(1X, 'CREW TECHNOLOGY DIVISION')
    WRITE(7,20)
20 FORMAT(1X, 'BROOKS AFB, TEXAS')
    WRITE(7.16)
16 FORMAT(//,1X,'ADSORPTION ISOTHERM EXPERIMENT NO.1')
    WRITE(7,1)
    FORMAT(1X, 'NITROGEN ON UNION CARBIDE MOLECULAR SIEVE 5A (20X40
1
     1MESH) AT 24 DEG C')
    WRITE(7,2)NDATA
2
    FORMAT(//,1X,'NUMBER OF DATA POINTS=',13)
    WRITE(7,3) SAMWT
    FORMAT(1X,'SAMPLE WEIGHT (GM)=',F6.1)
3
    WRITE(7,4) VCHARC
4
    FORMAT(1X, 'VOLUME OF CHARGE CHAMBER (ML)=', F6.1)
    WRITE(7.5) VSAMPC
5
    FORMAT(1X, VOLUME OF SAMPLE CHAMBER W/O ZEOLITE (ML)=', F6.1)
    WRITE(7,6) VSAMPL
6
    FORMAT(1X, 'TRUE VOLUME OF SAMPLE (ML)=', F6.2)
    WRITE(7.7) VSAMPT
    FORMAT(1X, 'TRUE DEAD VOLUME OF SAMPLE CHAMBER (ML)='.F6.1)
7
    DO105 J=1,NDATA
    WRITE(7.8)J
8
    FORMAT(//,1X,'POINT NO:',I3)
    WRITE(7,500) PCHAR1(J), XMOLIN(J)
500 FORMAT(1X, 'INITIAL CHARGE PRES (TORR)=', F7.1, 4X, 'MOLES ADDED (G
     1M MOL*10**3)=',F9.4)
    WRITE(7,501) PCHAR2(J), XMOLTO(J)
501 FORMAT(1X, 'FINAL CHARGE PRES (TORR)=', F7.1,6X, 'TOTAL MOLES (GM
     1 MOL#10##3)=',F9.4)
    WRITE(7,502) TCHARC(J),XMOLGA(J)
502 FORMAT(1X, 'CHARGE CHAMBER TEMP(K)=', F7.2,8X, 'MOLES IN GAS PHASE
     1(GM MOL*10**3)=',F9.4)
    WRITE(7,11) PFINAL(J); XMOLAD(J)
11 FORMAT(1X, 'EQUILIBRIUM PRES (TORR)=', F7.1,7X, 'MOLES ADSORBED (G
     1M MOL*10**3)=',F9.4)
    WRITE(7,12) TSAMPC(J),VSTP(J)
12 FORMAT(1X, 'SAMPLE CHAMBER TEMP(K)=', F7.2,8X, 'VOLUME ADSORBED (M
     1L) S.T.P.=',F9.4)
    WRITE(7,13) Z1(J),Z3(J)
13 FORMAT(1X,'INITIAL CHARGE PRES Z=',F8.5,8X,'EQUILIBRIUM PRES Z=
     1',F8.5)
    WRITE(7,600) Z2(J),VOLWT(J)
600 FORMAT(1X, 'FINAL CHARGE PRES Z=', F8.5, 10X, '(ML)S.T.P./GM OF ZEO
     1LITE=',F8.3)
105 CONTINUE
```

D0666 J=1,NDATA WRITE(1,667) PFINAL(J),VOLWT(J) 667 FORMAT(F7.0,3X,F8.3) 666 CONTINUE STOP END

for the fragment of the for th

ADSORPTION ISOTHERM EXPERIMENT NO.1 NITROGEN ON UNION CARBIDE MOLECULAR SIEVE 5A (20X40 MESH) AT 24 DEG C NUMBER OF DATA POINTS= 22 SAMPLE WEIGHT (GM)= 32.8 VOLUME OF CHARGE CHAMBER (ML)= 158.6 VOLUME OF SAMPLE CHAMBER W/O ZEOLITE (ML)= 170.0 TRUE VOLUME OF SAMPLE (ML)= 11.05 TRUE DEAD VOLUME OF SAMPLE CHAMBER (ML)= 158.9

#### POINT NO: 1

INITIAL CHARGE PRES (TORR)= 759 FINAL CHARGE PRES (TORR)= 686.0 CHARGE CHAMBER TEMP(K)= 297.15 EQUILIBRIUM PRES (TORR)= 17.5 SAMPLE CHAMBER TEMP(K)= 298.15 INITIAL CHARGE PRES Z= 0.99981 FINAL CHARGE PRES Z= 0.99982 MOLES ADDED (GM MOL*10**3)=0.6250 MOLES (GM MOL*10**3)=0.6250 MOLES IN GAS PHASE(GM MOL*10**3)=0.1496 MOLES ADSORBED (GM MOL*10**3)=0.1496 MOLES ADSORBED (GM MOL*10**3)=0.4754 VOLUME ADSORBED (ML) S.T.P.=10.6556 EQUILIBRIUM PRES Z= 1.00000 (ML)S.T.P./GM OF ZEOLITE=0.325

#### POINT NO: 2

Ś.

INITIAL CHARGE PRES (TORR)= 691 FINAL CHARGE PRES (TORR)= 553.0 CHARGE CHAMBER TEMP (K)= 298.15 EQUILIBRIUM PRES (TORR)= 50.0 SAMPLE CHAMBER TEMP (K)= 298.15 INITIAL CHARGE PRES Z= 0.99982 FINAL CHARGE PRES Z= 0.99986 MOLES ADDED (GM MOL*10**3)=1.1775 TOTAL MOLES (GM MOL*10**3)=1.8025 MOLES IN GAS PHASE(GM MOL*10**3)=0.4274 MOLES ADSORBED (GM MOL*10**3)=1.3751 VOLUME ADSORBED (ML) S.T.P.=30.8203 EQUILIBRIUM PRES Z=0.99999 (ML)S.T.P./GM OF ZEOLITE=0.940

#### POINT NO: 3

INITIAL CHARGE PRES (TORR) = 554 MOLES A FINAL CHARGE PRES (TORR) = 395.0 TOTAL M CHARGE CHAMBER TEMP (K) = 298.15 MOLES A EQUILIBRIUM PRES (TORR) = 88.0 MOLES A SAMPLE CHAMBER TEMP (K) = 298.15 VOLUME INITIAL CHARGE PRES Z = 0.99986 EQUILI

MOLES ADDED(GM MOL*10**3)=1.3566 TOTAL MOLES(GM MOL*10**3)=3.1591 MOLES IN GAS PHASE(GM MOL*10**3)=0.7523 MOLES ADSORBED(GM MOL*10**3)=2.4068 VOLUME ADSORBED(ML)S.T.P.=53.9449 EQUILIBRIUM PRES Z=0.99998

#### FINAL CHARGE PRES Z= 0.99990

(ML)S.T.P./GM OF ZEOLITE=1.645

TOTAL MOLES (GM MOL*10**3)=5.3861

VOLUME ADSORBED(ML)S.T.P.=90.8304

(ML)S.T.P./GM OF ZEOLITE=2.769

EQUILIBRIUM PRES Z=0.99996

MOLES ADSORBED(GM MOL*10**3)=4.0524

#### POINT NO: 4

INITIAL CHARGE PRES (TORR)= 760 MOLES ADDED(GM MOL*10**3)=2.2270 FINAL CHARGE PRES (TORR) = 499.0 CHARGE CHAMBER TEMP (K)= 298.15 MOLES IN GAS PHASE(GM MOL*10**3)=1.3336 EQUILIBRIUM PRES (TORR)=156.0 SAMPLE CHAMBER TEMP (K)= 298.15 INITIAL CHARGE PRES Z= 0.99981 FINAL CHARGE PRES Z= 0.99987

#### POINT NO: 5

INITIAL CHARGE PRES (TORR)= 499 FINAL CHARGE PRES (TORR)= 256.0 CHARGE CHAMBER TEMP (K)= 298.15 EQUILIBRIUM PRES (TORR)= 223.0 SAMPLE CHAMBER TEMP (K)= 298.15 INITIAL CHARGE PRES Z= 0.99987 FINAL CHARGE PRES Z= 0.99993

MOLES ADDED(GM MOL*10**3)=2.0731 TOTAL MOLES (GM MOL*10**3)=7.4592 MOLES IN GAS PHASE(GM MOL*10**3)=1.9065 MOLES ADSORBED(GM MOL*10**3)=5.5528 VOLUME ADSORBED(ML)S.T.P.=124.4586 EQUILIBRIUM PRES Z=0.99994 (ML)S.T.P./GM OF ZEOLITE=3.794

MOLES ADDED(GM MOL*10**3)=3.4300 TOTAL MOLES(GM MOL*10**3)=10.8892 MOLES IN GAS PHASE(GM MOL*10**3)=2.9080 MOLES ADSORBED (GM MOL*10**3)=7.9812 VOLUME ADSORBED (ML) S.T.P.=178.8891 EQUILIBRIUM PRES Z=0.99991 (ML)S.T.P./GM OF ZEOLITE=5.454

MOLES ADDED(GM MOL*10**3)=2.5001

TOTAL MOLES (GM MOL*10**3)=13.3893

MOLES ADSORBED(GM MOL*10**3)=9.6835

VOLUME ADSORBED(ML)S.T.P.=217.0439

EQUILIBRIUM PRES Z=0.99989

(ML)S.T.P./GM OF ZEOLITE=6.617

MOLES IN GAS PHASE(GM MOL*10**3)=3.7058

### POINT NO: 6 INITIAL CHARGE PRES (TORR)= 759 FINAL CHARGE PRES (TORR)= 357.0 CHARGE CHAMBER TEMP (K)= 298.15 EQUILIBRIUM PRES (TORR)= 339.0 SAMPLE CHAMBER TEMP (K)= 297:15 INITIAL CHARGE PRES Z= 0.99981 FINAL CHARGE PRES Z= 0.99991

#### POINT NO: 7

INITIAL CHARGE PRES (TORR)= 855 FINAL CHARGE PRES (TORR)= 562.0 CHARGE CHAMBER TEMP (K) = 298.15EQUILIBRIUM PRES (TORR)= 432.0 SAMPLE CHAMBER TEMP (K)= 297:15 INITIAL CHARGE PRES Z= 0.99978 FINAL CHARGE PRES Z= 0.99986

#### POINT NO: 8

SASASAN RUDDULL

When which the war war with

INITIAL CHARGE PRES (TORR)= 900 FINAL CHARGE PRES (TORR) = 564.0 CHARGE CHAMBER TEMP(K)= 298.15 EQUILIBRIUM PRES (TORR) = 539.0 SAMPLE CHAMBER TEMP(K)= 297.15 INITIAL CHARGE PRES Z= 0.99977 FINAL CHARGE PRES Z= 0.99986

MOLES ADDED (GM MOL*10**3)= 2.8671 TOTAL MOLES (GM MOL*10**3)= 16.2564 MOLES IN GAS PHASE(GM MOL*10**3)=4.6239 MOLES ADSORBED (GM MOL*10**3)= 11.6325 VOLUME ADSORBED (ML) S.T.P.= 260.7303 EQUILIBRIUM PRES Z= 0.99986 7.949 (ML)S.T.P./GM OF ZEOLITE-

POINT NO: 9 INITIAL CHARGE PRES(TORR)= 1000 MOLES ADDED (GM MOL*10**3)= 2.7307

a de la companya da la companya da la companya da companya da companya da companya da companya da companya da c

FINAL CHARGE PRES (TORR)= 680.0 CHARGE CHAMBER TEMP(K)= 298.15 EQUILIBRIUM PRES (TORR) = 651.0 SAMPLE CHAMBER TEMP(K) = 297.15 INITIAL CHARGE PRES Z= 0.99974 FINAL CHARGE PRES Z= 0.99983

# POINT NO: 10

INITIAL CHARGE PRES (TORR) = 827 FINAL CHARGE PRES (TORR) = 718.8 CHARGE CHAMBER TEMP(K) = 296.15EQUILIBRIUM PRES (TORR) = 690.0 SAMPLE CHAMBER TEMP(K) = 297.15 INITIAL CHARGE PRES 7= 0.99979 FINAL CHARGE PRES Z= 0.99982

#### POINT NO: 11

FINAL CHARGE PRES(TORR) = 1106.7 CHARGE CHAMBER TEMP(K) = 297.15EQUILIBRIUM PRES (TORR) = 759.0 SAMPLE CHAMBER TEMP(K) = 297.15INITIAL CHARGE PRES Z= 0.99967 FINAL CHARGE PRES Z= 0.99972

#### POINT NO: 12

CHARGE CHAMBER TEMP(K) = 297.15EQUILIBRIUM PRES (TORR)= 823.0 SAMPLE CHAMBER TEMP(K) = 297.15INITIAL CHARGE PRES Z= 0.99967 FINAL CHARGE PRES Z= 0.99971

#### POINT NO: 13

CHARGE CHAMBER TEMP(K) = 297.15EQUILIBRIUM PRES (TORR)= 959.0 SAMPLE CHAMBER TEMP(K) = 297.15INITIAL CHARGE PRES Z= 0.99960 FINAL CHARGE PRES Z= 0.99969

#### POINT NO: 14

TOTAL MOLES (GM MOL*10**3)= 18.9871 MOLES IN GAS PHASE(GM MOL*10**3)=5.5848 MOLES ADSORBED (GM MOL*10**3) = 13.4023VOLUME ADSORBED (ML) S.T.P.= 300.3973 EQUILIBRIUM PRES Z= 0.99983 (ML)S.T.P./GM OF ZEOLITE= 9.158

MOLES ADDED (GM MOL*10**3)= 0.9330 TOTAL MOLES (GM MOL*10**3)= 19.9201 MOLES IN GAS PHASE(GM MOL*10**3)=5.9195 MOLES ADSORBED (GM MOL*10**3) = 14.0006VOLUME ADSORBED (ML) S.T.P.= 313.8082 EQUILIBRIUM PRES Z= 0.99982 (ML)S.T.P./CM OF ZEOLITE« 9.567

INITIAL CHARGE PRES(TORR) = 1298 MOLES ADDED (GM MOL*10**3)= 1.6383 TOTAL MOLES (GM MOL*10**3)= 21.5583 MOLES IN GAS PHASE(GM MOL*10**3)=6.5115 MOLES ADSORBED (GM MOL*10**3) = 15.0468 VOLUME ADSORBED (ML) S.T.P.= 337.2574 EQUILIBRIUM PRES Z= 0.99981 (ML)S.T.P./GM OF ZEOLITE= 10.282

INITIAL CHARGE PRES(TORR) = 1292 MOLES ADDED (GM MOL*10**3)= 1.4601 FINAL CHARGE PRES (TORR) = 1122.2 TOTAL MOLES (GM MOL*10**3) = 23.0185 MOLES IN GAS PHASE(GM MOL*10**3)=7.0607 MOLES ADSORBED (GM MOL*10**3) = 15.9578 VOLUME ADSORBED (ML) S.T.P.= 357.6755 EQUILIBRIUM PRES Z= 0.99979 (ML)S.T.P./GM OF ZEOLITE= 10.905

INITIAL CHARGE PRES(TORR) = :546 MOLES ADDED (GM MOL*10**3)= 3.0567 FINAL CHARGE PRES (TORR)= 1189.4 TOTAL MOLES (GM MOL*10**3)= 26.0751 MOLES IN GAS PHASE(GM MOL*10**3)=8.2277 MOLES ADSORBED (GM MOL*10**3) = 17.8474VOLUME ADSORBED (ML) S.T.P.= 400.0292 EQUILIBRIUM PRES Z= 0.99975 (ML)S.T.P./GM OF ZEOLITE= 12.196

3.1440 INITIAL CHARGE PRES(TORR)# 1551 MOLES ADDED (GM MOL*10**3)= VERAL CHARGE PRES (TORR) = 1184.3 TOTAL MOLES (GM MOL*10**3) = 29.2192 NUTE DE CHAMBER TEMP(K)= 297.15 MOLES IN GAS PHASE(GM MOL*10**3)=9.8060 STATES ADSORBED (GM MOL*10**3)= 19:4132 CONTRACTOR MEMP(K)- 297.15 VOLUME ADSORBED (ML) S.T.P.= 435.1248

INITIAL CHARGE PRES Z= 0.99960 FINAL CHARGE PRES Z= 0.99970	EQUILIBRIUM PRES Z= 0.99971 (ML)S.T.P./GM OF ZEOLITE= 13.266
POINT NO: 15 INITIAL CHARGE PRES(TORR)= 2063 FINAL CHARGE PRES (TORR)= 1463.5 CHARGE CHAMBER TEMP(K)=298.15 EQUILIBRIUM PRES (TORR)= 1391.1 SAMPLE CHAMBER TEMP(K)= 297.15 INITIAL CHARGE PRES Z= 0.99947 FINAL CHARGE PRES Z= 0.99962	MOLES ADDED (GM MOL*10**3)= 5.1217 TOTAL MOLES (GM MOL*10**3)= 34.3408 MOLES IN GAS PHASE (GMOL*10**3)=11.9363 MOLES ADSORBED (GM MOL*10**3)= 22.4046 VOLUME ADSORBED (ML) S.T.P.= 502.1730 EQUILIBRIUM PRES Z= 0.99964 (ML)S.T.P./GM OF ZEOLITE= 15.310
POINT NO: 16 INITIAL CHARGE PRES(TORR)= 2322 FINAL CHARGE PRES (TORR)= 1892.8 CHARGE CHAMBER TEMP(K)= 297.15 EQUILIBRIUM PRES (TORK)= 1577.3 SAMPLE CHAMBER TEMP(K)= 297.15 INITIAL CHARGE PRES Z= 0.99940 FINAL CHARGE PRES Z= 0.99951	MOLES ADDED (GM MOL*10**3)= 3.6773 TOTAL MOLES (GM MOL*10**3)= 38.0181 MOLES IN GAS PHASE(GMOL*10**3)=13.5346 MOLES ADSORBED (GM MOL*10**3)= 24.4835 VOLUME ADSORBED (ML) S.T.P.= 548.7704 EQUILIBRIUM PRES Z= 0.99960 (ML)S.T.P./GM OF ZEOLITE= 16.731
POINT NO: 17 INITIAL CHARGE PRES(TORR)= 2580 FINAL CHARGE PRES(TORR)=1949.6 CHARGE CHAMBER TEMP(K)=297.15 EQUILIBRIUM PRES(TORR)=1866.9 SAMPLE CHAMBER TEMP(K)=297.15 INITIAL CHARGE PRES Z=0.99934 FINAL CHARGE PRES Z=0.99950	MOLES ADDED (GM MOL*10**3)= 5.4067 TOTAL MOLES (GM MOL*10**3)= 43.4248 MOLES IN GAS PHASE(GMOL*10**3)=16.0208 MOLES ADSORBED (GM MOL*10**3)= 27.4040 VOLUME ADSORBED (ML) S.T.P.= 614.2301 EQUILIBRIUM PRES 2= 0.99952 (ML)S.T.P./GM OF ZEOLITE= 18.727
POINT NO: 18 INITIAL CHARGE PRES(TORR)= 3097 FINAL CHARGE PRES (TORR)= 2337.5 CHARGE CHAMBER TEMP(K)= 297.15 EQUILIBRIUM PRES (TORR)= 2197.9 SAMPLE CHAMBER TEMP(K)= 297.15 INITIAL CHARGE PRES Z= 0.99921 FINAL CHARGE PRES Z= 0.99940	MOLES ADDED (GM MOL*10**3)= 6.5153 TOTAL MOLES (GM MOL*10**3)= 49.9401 MOLES IN GAS PHASE(GMOL*10**3)=18.8629 MOLES ADSORBED (GM MOL*10**3)= 31.0772 VOLUME ADSORBED (ML) S.T.P.= 696.5603 EQUILIBRIUM PRES Z= 0.99944 (ML)S.T.P./GM OF ZEOLITE= 21.237
POINT NO: 19 INITIAL CHARGE PRES(TORR)= 3873 FINAL CHARGE PRES (TORR)= 2859.8 CHARGE CHAMBER TEMP(K)= 297.15 EQUILIBRIUM PRES (TORR)= 2720.2 SAMFLE CHAMBER TEMP(K)= 297.15 EDITIAL CHARGE PRES Z= 0.99901 DEED CHARGE PRES Z= 0.99927	MOLES ADDED (GM MOL*10**3)= 8.6899 TOTAL MOLES (GM MOL*10**3)= 58.6300 MOLES IN GAS PHASE(GMOL*10**3)=23.3485 MOLES ADSORBED (GM MOL*10**3)= 35.2815 VOLUME ADSORBED (ML) S.T.P.= 790.7943 EQUILIBRIUM PRES Z= 0.99930 (ML)S.T.P./GM OF ZECLITE= 24.110

#### POINT NO: 20

INITIAL CHARGE PRES(TORR)= 3847	MOLES ADDED (GM MOL*10**3)= 5.5431
FINAL CHARGE PRES (TORR)= 3201.1	TOTAL MOLES (GM MOL*10**3)= 64.1731
CHARGE CHAMBER TEMP(K) = 297.15	MOLES IN GAS PHASE(GMOL*10**3)=26:3250
EQUILIBRIUM PRES (TORR)= 3066.7	MOLES ADSORBED (GM MOL*10**3)= 37.8481
SAMPLE CHAMBER TEMP(K) = 297.15	VOLUME ADSORBED (ML) S.T.P.= 848.3221
INITIAL CHARGE PRES Z= 0.99901	EQUILIBRIUM PRES Z= 0.99921
FINAL CHARGE PRES Z= 0.99918	(ML)S.T.P./GM OF ZEOLITE= 25.863

#### POINT NO: 21

INITIAL CHARGE PRES (TORR) = 3878 MOLES ADDED (GMOL*10**3)= 3.8131 FINAL CHARGE PRES (TORR)= 3433.9 TOTAL MOLES (GMOL*10**3)= 67.9862 CHARGE CHAMBER TEMP(K)= 297.15 MOLES IN GAS PHASE(GMOL*10**3)=28.3689 EQUILIBRIUM PRES (TORR)= 3304.6 MOLES ADSORBED (GMOL*10**3)= 39.6173 SAMPLE CHAMBER TEMP(K) = 297.15 VOLUME ADSORBED (ML) S.T.P.= 887.9771 INITIAL CHARGE PRES Z= 0.99901 EQUILIBRIUM PRES Z= 0.99915 FINAL CHARGE PRES Z= 0.99912 (ML)S.T.P./GM OF ZEOLITE= 27.072

#### POINT NO: 22

INITIAL CHARGE PRES (TORR) = 3873 MOLES ADDED (GM MOL*10**3)= 2.5716 FINAL CHARGE PRES (TORR)= 3573.5 TOTAL MOLES (GM MOL*10**3)= 70.5578 CHARGE CHAMBER TEMP(K) = 297.15 MOLES IN GAS PHASE(GNOL*10**3)=29.5237 EQUILIBRIUM PRES (TORR)= 3439.0 MOLES ADSORBED (GM MOL*10**3)= 41.0341 VOLUME ADSORBED (ML) S.T.P.= 919.7330 SAMPLE CHAMBER TEMP(K) = 297.15 INITIAL CHARGE PRES Z= 0.99901 EQUILIBRIUM PRES Z= 0.99912 FINAL CHARGE PRES Z= 0.99908 (ML)S.T.P./CM OF ZEOLITE= 28.041

#### ***

#### С T241.FOR

- С TERNARY EQUILIBRIUM ADSORPTION PROGRAM (AIR AT 24 C)
- С G.W. MILLER
- С 8 AUG 83 DIMENSION PCHAR1(100), TCHARC(100), TSAMPC(100), PFINAL(100) DIMENSION XMOLTO(100), XMOLIN(100), XMOLGA(100), XMOLAD(100) DIMENSION VSTP(100), VOLWT(100), PCHAR2(100), Z1(100) DIMENSION Z2(100),Z3(100),XN2MGA(100),X02MGA(100),XARMGA(100) DIMENSION Z4(100), TN2SAM(100), T02SAM(100), TARSAM(100) DIMENSION XN2ADD(100), X02ADD(100), XARADD(100) DIMENSION XN2GAS(100), X02GAS(100), XARGAS(100) DIMENSION XN2ADS(100), X02ADS(100), XARADS(100) DIMENSION VOLN2(100), VOLO2(100), VOLAR(100) DIMENSION VOWTN2(100), VOWTO2(100), VOWTAR(100) DIMENSION PMGAVO(100), XMOLRE(100), XN2REM(100) DIMENSION XO2REM(100), XARREM(100), SEPFAC(100) DIMENSION XMF02A(100), XMFARA(100), XMFN2A(100)

С
OPEN(UNIT=1,NAME='TAI241.DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=2,NAME='TN2241.DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=3,NAME='TO2241:DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=4,NAME='TAR241.DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=5,NAME='SEP241.DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=7,NAME='T241.RES',TYPE='NEW',DISPOSE='SAVE') C С INPUT DATA FROM EXPERIMENT C С SAMWT=SAMPLE WEIGHT (GM) С VCHARC=VOLUME OF THE CHARGE CHAMBER (ML) С VSAMPC=VOLUME OF THE SAMPLE CHAMBER (ML) С VSAMPL=VOLUME OF SAMPLE (ML) С VSAMPT=TRUE DEAD VOLUME IN SAMPLE CHAMBER (ML) С VOLMGA=VOLUME OF THE MGA SAMPLE CHAMBER (ML) С PCHAR1=INITIAL CHARGE CHAMBER PRESSURE (TORR) С PCHAR2=FINAL CHARGE CHAMBER PRESSURE (TORR) С TCHARC=TEMP IN THE CHARGE CHAMBER (DEG C) TSAMPC=TEMP IN THE SAMPLE CHAMBER (DEG C) С С PFINAL=EQUILIBRIUM PRESSURE IN THE SAMPLE CHAMBER (TORR) С XN2MGA-MOLE FRACTION OF NITROGEN IN THE MGA SAMPLE VOLUME С XO2MGA=MOLE FRACTION OF OXYGEN IN THE MGA SAMPLE VOLUME С XARMGA=MOLE FRACTION OF ARGON IN THE MGA SAMPLE VOLUME PMGAVO=FINAL PRESSURE OF THE MGA SAMPLE VOLUME (TORR) С С С CALCULATED VALUES С С **Z1=INITIAL CHARGE CHAMBER PRESSURE Z FACTOR** С **Z2-FINAL CHARGE CHAMBER PRESSURE Z FACTOR** С Z3=EQUILIBRIUM PRESSURE Z FACTOR Z4=MGA SAMPLE VOLUME Z FACTOR С С XMOLTO=TOTAL MOLES IN SAMPLE CHAMBER (GM MOL) TN2SAM-TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL) С TO2SAM=TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL) С TARSAM-TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL) С С XMOLIN=MOLES ADDED (GM MOL) С XN2ADD=MOLES OF NITROGEN ADDED (GM MOL) С XO2ADD=MOLES OF OXYGEN ADDED (GM MOL) С XARADD=MOLES OF ARGON ADDED (GM MOL) С XMOLGA=MOLES IN GAS PHASE (GM MOL) С XN2GAS=MOLES OF NITROGEN IN THE GAS PHASE (GM MOL) С XO2GAS=MOLES OF OXYGEN IN THE GAS PHASE (GM MOL) С XARGAS=MOLES OF ARGON IN THE GAS PHASE (GM MOL) С XMOLAD=MOLES ADSORBED (GM MOL) XN2ADS=MOLES OF NITROGEN ADSORBED (GM MOL) С XO2ADS=MOLES OF OXYGEN ADSORBED (GM MOL) С С XARADS=MOLES OF ARGON ADSORBED (GM MOL) С XMFN2A=MOLE FRACTION OF NITROGEN ADSORBED XMFO2A=MOLE FRACTION OF OXYGEN ADSORBED С

264

```
С
    XMFARA=MOLE FRACTION OF ARGON ADSORBED
С
    VSTP=VOLUME ADSORBED (ML, STP)
С
    VOLN2=VOLUME OF NITROGEN ADSORBED (ML STP)
С
    VOLO2=VOLUME OF OXYGEN ADSORBED (ML STP)
С
    VOLAR=VOLUME OF ARGON ADSORBED (ML STP)
С
    VOLWT=VOLUME ADSORBED(ML STP)/WEIGHT OF SAMPLE (GM)
С
    VOWTN2-VOLUME NITROGEN ADSORBED (ML STP)/WEIGHT OF SAMPLE (GM)
С
    VOWTO2=VOLUME OXYGEN ADSORBED (ML STP)/WEIGHT OF SAMPLE (GM)
С
    VOWTAR=VOLUME ARGON ADSORBED (ML STP)/WEIGHT OF SAMPLE (GM)
С
    SEPFAC-SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN NEGLECTING
С
    ARGON.
С
    NDATA=9
    SAMWT=32.8
    R=82.057
    VCHARC=158.6
    VSAMPC=170.0
    VSAMPL=11.05
    VSAMPT=VSAMPC-VSAMPL
    VOLMGA=12.9484
    AIRN2=0:7814
    AIR02=0.2092
    AIRAR=0:0094
С
С
        INPUT: EXPERIMENT NO.4
С
    PCHAR1(1)=763.
    PCHAR1(2)=1034.3
    PCHAR1(3)=1789.3
    PCHAR1(4)=2311.6
    PCHAR1(5)=2802.9
    PCHAR1(6)=3351.1
    PCHAR1(7)=3868.3
    PCHAR1(8)=3868.3
    PCHAR1(9)=3868.3
С
    PCHAR2(1)=189.
    PCHAR2(2)=413.7
    PCHAR2(3)=1142.9
    PCHAR2(4)=1520:4
    PCHAR2(5)=1856.6
    PCHAR2(6)=1949.6
    PCHAR2(7)=2534.
    PCHAR2(8)=2901.2
    PCHAR2(9)=3180.5
С
    PFINAL(1)=169.
    PFINAL(2)=372.
    PFINAL(3)=585.
                      265
```

	PFINAL(4)=882.
	PFINAL(5)=1251.5
	PFINAL(6) = 1835.9
	PFINAL(7) = 2404.7
	PFINAL(8)=2802.9
	PFINAL(9) = 3051.2
С	
•	TCHARC(1)=25.
	TCHARC(2)=24
	TCHARC(3)=25
	$TCHARC(\mu)=2\mu$
	TCHARC(5) = 25
	TCHARC(6)-24
	TCHARC(7) = 24
	TCHAPC(8) = 2H
	TCHARC(0)=24.
C	100  MRG(9) = 24
U I	TEAMDC(1) OH
	1  SAMPU(1) = 24.
	TSAMPU(2)=25.
	ISAMPC(3)=24
	TSAMPC(4)=25.
	TSAMPC(5)=24:
	TSAMPC(6)=24.
	TSAMPC(7)=24
	TSAMPC(8)=24.
_	TSAMPC(9)=24:
C	
	XN2MGA(1)=0.5973
	XN2MGA(2)=0.6157
	XN2MGA(3)=0.6289
	XN2MGA(4)=0.6457
	XN2MGA(5)=0.6536
	XN2MGA(6)=0.6705
	XN2MGA(7)=0.6832
	XN2MGA(8)=0.6906
	XN2MGA(9)=0.6962
С	
	XO2MGA(1)=0.3847
	X02MGA(2)=0.3666
	X02MGA(3)=0.3551
	X02MGA(4)=0.3390
	X02MGA(5)=0:3314
	X02MGA(6)=0.3150
	X02MGA(7)=0.3031
	X02MGA(8)=0.2961
	X02MGA(9)=0.2907
С	
	XARMGA(1)=0.0180
	YARMCA(2)-0 0177

С

С

La Bu

XARMGA(2)=0.0177

XARMGA(4)=0.0153 XARMGA(5)=0.0150 XARMGA(6)=0;0145 XARMGA(7)=0.0137 XARMGA(8)=0:0133 XARMGA(9)=0.0131 С PMGAVO(1)=164. PMGAVO(2)=359. PMGAVO(3)=564. PMGAVO(4)=847. PMGAVO(5)=1205. PMGAVO(6)=1753.1 PMGAVO(7)=2291. PMGAVO(8)=2663.3 PMGAVO(9) = 2890.9С DO100 J=1,NDATA TCHARC(J) = TCHARC(J) + 273.15TSAMPC(J)=TSAMPC(J)+273.15 **100 CONTINUE** TOTAL=0. TOTN2=0. TOT02=0: TOTAR=0. С DO101 J=1,NDATA Z1(J) = (-4.204836514E - 07*PCHAR1(J)) + 1.00000XMOL1 = ((PCHAR1(J)/760.) + VCHARC)/(R+TCHARC(J) + Z1(J))Z2(J)=(-4.204836514E-07*PCHAR2(J))+ 1.00000  $XMOL_2=((PCHAR_2(J)/760.)*VCHARC)/(R*TCHARC(J)*Z2(J))$ XMOLIN(J)=XMOL1-XMOL2 XMOLTO(J)=TOTAL+XMOLIN(J) TOTAL=XMOLTO(J) XN2ADD(J)=AIRN2*XMOLIN(J) XO2ADD(J) = AIRO2 * XMOLIN(J)XARADD(J)=AIRAR*XMOLIN(J) TN2SAM(J)=TOTN2+XN2ADD(J) TOTN2=TN2SAM(J) TO2SAM(J)=TOTO2+XO2ADD(J) TOTO2=TO2SAM(J) TARSAM(J)=TOTAR+XARADD(J) TOTAR=TARSAM(J) ZPURN2=(~2.565068585E-07*PFINAL(J))+ 1.00000 ZPURO2=(-8.333328077E-07*PFINAL(J))+ 1.00000 **ZPURAR=(-8.617667817E-07*PFINAL(J))+ 1.00000**  $Z_3(J) = (ZPURN2*XN2MGA(J)) + (ZPURO2*XO2MGA(J)) + (ZPURAR*XARMGA(J))$ XMOLGA(J)=((PFINAL(J)/760.)*VSAMPT)/(R*TSAMPC(J)*Z3(J))

XARMGA(3)=0.0160

XN2GAS(J) = XMOLGA(J) * XN2MGA(J)XO2GAS(J)=XMOLGA(J)*XO2MGA(J) XARGAS(J)=XMOLGA(J)*XARMGA(J) XMOLAD(J) = XMOLTO(J) - XMOLGA(J)XN2ADS(J) = TN2SAM(J) - XN2GAS(J)XO2ADS(J) = TO2SAM(J) - XO2GAS(J)XARADS(J) = TARSAM(J) - XARGAS(J)XMFN2A(J) = XN2ADS(J) / XMOLAD(J)XMF02A(J)=X02ADS(J)/XMOLAD(J) XMFARA(J)=XARADS(J)/XMOLAD(J) VSTP(J)=XMOLAD(J)*R*273.15VOLN2(J)=XN2ADS(J)*R*273.15 VOLO2(J) = XO2ADS(J) * R * 273.15VOLAR(J)=XARADS(J)*R*273.15 VOLWT(J)=VSTP(J)/SAMWT VOWTN2(J)=VOLN2(J)/SAMWT VOWTO2(J)=VOLO2(J)/SAMWT VOWTAR(J)=VOLAR(J)/SAMWT ZPURN2=(-2.565068585E-07*PMGAVO(J))+ 1.00000 ZPURO2=(-8:333328077E-07*PMGAVO(J))+ 1:00000 ZPURAR=(-8.617667817E-07*PMGAVO(J))+ 1.00000 Z4(J) = (ZPURN2*XN2MGA(J)) + (ZPURO2*XO2MGA(J)) + (ZPURAR*XARMGA(J))XMOLRE(J) = ((PMGAVO(J)/760.) * VOLMGA)/(R*TSAMPC(J) * Z4(J))XN2REM(J) = XN2MGA(J) * XMOLRE(J)XO2REM(J) = XO2MGA(J) * XMOLRE(J)XARREM(J) = XARMGA(J) * XMOLRE(J)TOTAL=TOTAL-XMOLRE(J) TOTN2=TOTN2-XN2REM(,J) TOTO2=TOTO2-XO2REM(J) TOTAR=TOTAR-XARREM(J) XX1 = XO2MGA(J) + XARMGA(J)XX2=XMFO2A(J)+XMFARA(J)SEPFAC(J) = (XMFN2A(J) * XX1) / (XN2MGA(J) * XX2)**101 CONTINUE** D0103 J=1,NDATA XMOLIN(J)=XMOLIN(J)#1000. XMOLTO(J) = XMOLTO(J) + 1000. XMOLGA(J) = XMOLGA(J) * 1000.XMOLAD(J) = XMOLAD(J) * 1000. TN2SAM(J) = TN2SAM(J) * 1000. TO2SAM(J) = TO2SAM(J) * 1000. TARSAM(J)=TARSAM(J)*1000: XN2ADD(J) = XN2ADD(J) * 1000. XO2ADD(J) = XO2ADD(J) * 1000. XARADD(J) = XARADD(J) + 1000. XN2GAS(J) = XN2GAS(J) + 1000XO2GAS(J) = XO2GAS(J) * 1000. XARGAS(J)=XARGAS(J)*1000. XN2ADS(J) = XN2ADS(J) = 1000.

XO2ADS(J) = XO2ADS(J) * 1000.XARADS(J)=XARADS(J)*1000. XMOLRE(J) = XMOLRE(J) = 1000. XN2REM(J)=XN2REM(J)*1000. XO2REM(J) = XO2REM(J) * 1000. XARREM(J)=XARREM(J)*1000. **103 CONTINUE** WRITE(7.15) FORMAT(/,1X,'G.W.MILLER') 15 WRITE(7, 18)18 FORMAT(1X,'USAF SCHOOL OF AEROSPACE MEDICINE') WRITE(7,19) 19 FORMAT(1X, 'CREW TECHNOLOGY DIVISION') WRITE(7,20)20 FORMAT(1X, 'BROOKS AFB, TEXAS') WRITE(7, 16)16 FORMAT(//.1X, 'ADSORPTION ISOTHERM EXPFRIMENT NO.5') WRITE(7,1)FORMAT(1X,'AIR ON UNION CARBIDE ZEOLITE 5A (20X40 MESH) AT 24 D 1 1EG C') WRITE(7,2)NDATA FORMAT(//,1X,'NUMBER OF DATA POINTS=',13) 2 WRITE(7,3) SAMWT FORMAT(1X,'SAMPLE WEIGHT (GM)=',F6.1) 3 WRITE(7,4) VCHARC 4 FORMAT(1X, VOLUME OF CHARGE CHAMBER (ML)=', F6.1) WRITE(7.5) VSAMPC 5 FORMAT(1X, 'VOLUME OF SAMPLE CHAMBER W/O ZEOLITE (ML)=', F6.1) WRITE(7,6) VSAMPL WRITE(7,33) VOLMGA 33 FORMAT(1X, 'MGA SAMPLE VOLUME (ML)=', F6.2) FORMAT(1X, 'TRUE VOLUME OF SAMPLE (ML)=', F6.2) 6 WRITE(7.7) VSAMPT FORMAT(1X,'TRUE DEAD VOLUME OF SAMPLE CHAMBER (ML)=', F6.1) 7 WRITE(7,850) AIRN2 850 FORMAT(1X, 'MOLE FRACTION OF NITROGEN IN THE BOTTLED AIR=', F7.4) WRITE(7,851) AIRO2 851 FORMAT(1X, 'MOLE FRACTION OF OXYGEN IN THE BOTTLED AIR-', F7.4) WRITE(7,852) AIRAR 852 FORMAT(1X, 'MOLE FRACTION OF ARGON IN THE BOTTLED AIR-', F7.4) WRITE(7,300) WRITE(7,301) D0105 J=1.NDATA WRITE(7.8)J 8 FORMAT(//,1X,'POINT NO:',I3,/) WRITE(7,333) 333 FORMAT(1X,'INPUT:',/) 269

WRITE(7,700) PCHAR1(J) 700 FORMAT(1X,'INITIAL CHARGE PRESSURE (TORR)=',F7.1) WRITE(7,701) PCHAR2(J) 701 FORMAT(1X, 'FINAL CHARGE PRESSURE (TORR)=', F7.1) WRITE(7,702) TCHARC(J) 702 FORMAT(1X, 'TEMPERATURE OF THE CHARGE CHAMBER (K)=', F7.2) WRITE(7,706) PFINAL(J) 706 FORMAT(1X,'EQUILIBRIUM PRESSURE (TORR)=',F7.1) WRITE(7,707) TSAMPC(J) 707 FORMAT(1X, 'TEMPERATURE OF THE SAMPLE CHAMBER (K)-', F7.2) WRITE(7,708) XN2MGA(J)708 FORMAT(1X, MOLE FRACTION NITROGEN IN THE MGA SAMPLE=',1X,F6.4) WRITE(7,709) X02MGA(J) 709 FORMAT(1X, 'MOLE FRACTION OXYGEN IN THE MGA SAMPLE=', 1X, F6.4) WRITE(7,710) XARMGA(J) 710 FORMAT(1X, MOLE FRACTION ARGON IN THE MGA SAMPLE=', 1X, F6.4) WRITE(7,711) PMGAVO(J) 711 FORMAT(1X, 'MGA SAMPLE VOLUME PRESSURE (TORR)=', F7.1) WRITE(7,712) 712 FORMAT(//,1X,'OUTPUT:',/) WRITE(7,713) Z1(J) 713 FORMAT(1X, 'INITIAL CHARGE PRESSURE Z=', F8.5) WRITE(7,714) Z2(J) 714 FORMAT(1X; 'FINAL CHARGE PRESSURE Z=', F8.5) WRITE(7,715) Z3(J) 715 FORMAT(1X,'EQUILIBRIUM PRESSURE Z=',F8.5) WRITE(7,716) Z4(J) 716 FORMAT(1X, 'MGA SAMPLE CHAMBER Z=', F8.5,/) WRITE(7,717) XN2ADD(J) 717 FORMAT(1X; 'MOLES OF NITROGEN ADDED (GM MOL*10**3)=',F10.4) WRITE(7,718) XO2ADD(J)718 FORMAT(1X, 'MOLES OF OXYGEN ADDED (GM MOL*10**3)=', F10.4) WRITE(7,719) XARADD(J) 719 FORMAT(1X, MOLES OF ARGON ADDED (GM MOL*10**3)=', F10.4) WRITE(7,720) XMOLIN(J) 720 FORMAT(1X, 'TOTAL MOLES ADDED (GM MOL*10**3)=', F10.4,/) WRITE(7,721) TN2SAM(J) 721 FORMAT(1X, 'TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MO 1L*10**3)=',F10.4) WRITE(7,722) TO2SAM(J) 722 FORMAT(1X.'TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL* 110**3)=',F10.4) WRITE(7,723) TARSAM(J) 723 FORMAT(1X, 'TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*1 10**3)-',F10.4) WRITE(7.724) XMOLTO(J) 724 FORMAT(1X, 'TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)='.F 110.4./)

 $\mathbb{C}$  . The second secon

WRITE(7,725) XN2GAS(J)

725 FORMAT(1X, MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)=',
WRILE((,)(20) AU2GAS(J) 726 Format(1X,'Moles of oxygen in the gas phase (cm mol*10**3)='.F1
WRITE(7,727) XARGAS(J)
727 FORMAT(1X,'MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)=',F10
WRITE(7,728) XMULGA(J) 728 Format(1y itotal moles in the gas phase (om moltiotiz)_i eig di)
$\frac{1}{1000} = \frac{1}{1000} = 1$
450 FORMAT(1X, 'MOLE FRACTION OF NITROGEN IN THE GAS PHASE=',2X,F6.4
1)
WRITE(7,451) X02MGA(J)
451 FORMAT(1X, MOLE FRACTION OF OXYGEN IN THE GAS PHASE=',2X,F6.4)
452 FORMAT(1X.'MOLE FRACTION OF ARGON IN THE GAS PHASE='.2X.F6.4./)
WRITE(7,729) XN2ADS(J)
729 FORMAT(1X, MOLES OF NITROGEN ADSORBED (GM MOL*10**3)=', F10.4)
WRITE(7,730) X02ADS(J)
(30 FORMAT(1X, MOLES OF OXIGEN ADSORBED (GM MOL*10**3)=',F10.4) WRTTE(7 721) YARADS(1)
731 FORMAT(1X.'MOLES OF ARGON ADSORBED (GM MOL*10**3)=',F10.4)
WRITE(7,732) XMOLAD(J)
732 FORMAT(1X, 'TOTAL MOLES ADSORBED (GM MOL*10**3)=', F10.4)
WRITE(7,453) XMFN2A(J)
453 FORMAT(1X, MOLE FRACTION OF NITROGEN ADSORBED=',2X,F0.4)
454 FORMAT(1X.'MOLE FRACTION OF OXYGEN ADSORBED=1.2X.F6.4)
WRITE(7,455) XMFARA(J)
455 FORMAT(1X, 'MOLE FRACTION OF ARGON ADSORBED=',2X,F6.4,/)
WRITE(7,733) VOLN2(J)
733 FORMAT(1X, VOLUME OF NITROGEN ADSORBED (ML STP)=', F10.3)
734 FORMAT(1X, VOLUME OF OXYGEN ADSORBED (ML STP)=', F10.3)
WRITE(7,735) VOLAR(J)
735 FORMAT(1X, VOLUME OF ARGON ADSORBED (ML STP)=', F10.3)
WRITE(7,736) VSTP(J)
736 FORMAT(1X, 'TOTAL VOLUME ADSORBED (ML STP)=', F10.3,/)
WRITE(7,737) VOWINZ(0) 737 FORMAT(1X, VOLUME OF NITROGEN ADSORBED (ML STP/GM)=1,F9,3)
WRITE(7.750) VOWTO2(J)
750 FORMAT(1X, 'VOLUME OF OXYGEN ADSORBED (ML STP/GM)=', F9.3)
WRITE(7,751) VOWTAR(J)
751 FORMAT(1X, VOLUME OF ARGON ADSORBED (ML STP/GM)=', F9.3)
WRIIE(/,/52) VOLWI(J) 752 FORMAT(1Y 'TOTAL VOLUME ADSORBED (ML STP/CM)=' F9 3./)
VRITE(7.753) XN2REM(J)
753 FORMAT(1X, MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)=
271

1',F10.5) WRITE(7,754) XO2REM(J) 754 FORMAT(1X, MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)=', 1F10.5) WRITE(7,755) XARREM(J) 755 FORMAT(1X, 'MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)=',F 110.5) WRITE(7,756) XMOLRE(J) 756 FORMAT(1X,'TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)='.F10. 15) WRITE(7,777) SEPFAC(J) 777 FORMAT(/,1X,'SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN=',F7 1.3) WRITE(7,757) WRITE(7, 320)320 FORMAT(1X, '* **105 CONTINUE** D0555 J=1,NDATA WRITE(1,551) PFINAL(J),VOLWT(J) 551 FORMAT(F7.0,3X,F8.3) 555 CONTINUE DO556 J=1,NDATA WRITE(2,551) PFINAL(J),VOWTN2(J) 556 CONTINUE D0557 J=1,NDATA WRITE(3,551) PFINAL(J), VOWTO2(J) 557 CONTINUE D0558 J-1.NDATA WRITE(4,551) PFINAL(J), VOWTAR(J) 558 CONTINUE D0559 J=1,NDATA WRITE(5,551) PFINAL(J),SEPFAC(J) 559 CONTINUE STOP END T241.RES G.W:MILLER

G.W.MILLER USAF SCHOOL OF AEROSPACE MEDICINE CREW TECHNOLOGY DIVISION BROOKS AFB,TEXAS

ADSORPTION ISOTHERM EXPERIMENT NO.5 AIR ON UNION CARBIDE ZEOLITE 5A (20X40 MESH) AT 24 DEG C

Sector Sector

NUMBER OF DATA POINTS= 9 SAMPLE WEIGHT (GM)= 32.8 VOLUME OF CHARGE CHAMBER (ML)= 158.6 VOLUME OF SAMPLE CHAMBER W/O ZEOLITE (ML)= 170.0 TRUE VOLUME OF SAMPLE (ML)= 11.05 MGA SAMPLE VOLUME (ML)= 12.95 TRUE DEAD VOLUME OF SAMPLE CHAMBER (ML)= 158.9 MOLE FRACTION OF NITROGEN IN THE BOTTLED AIR= 0.7814 MOLE FRACTION OF OXYGEN IN THE BOTTLED AIR= 0.2092 MOLE FRACTION OF ARGON IN THE BOTTLED AIR= 0.0094

POINT NO: 1 INPUT:

and and a second and

E

INITIAL CHARGE PRESSURE (TORR)= 763.0 FINAL CHARGE PRESSURE (TORR)= 189.0 TEMPERATURE OF THE CHARGE CHAMBER (K)= 298.15 EQUILIBRIUM PRESSURE (TORR)= 169.0 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.5973 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3847 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0180 MGA SAMPLE VOLUME PRESSURE (TORR)= 164.0

OUTPUT:

INITIAL CHARGE PRESSURE Z= 0.99968 FINAL CHARGE PRESSURE Z= 0.99992 EQUILIBRIUM PRESSURE Z= 0.99992 MGA SAMPLE CHAMBER Z= 0.99992

MOLES OF NITROGEN ADDED (GM MOL*10**3)= 3.8274 MOLES OF OXYGEN ADDED (GM MOL*10**3)= 1.0247 MOLES OF ARGON ADDED (GM MOL*10**3)= 0.0460 TOTAL MOLES ADDED (GM MOL*10**3)= 4.8981

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3) = 3.8274TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3) = 1.0247TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3) = 0.0460TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3) = 4.8981

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 0.8659 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 0.5577 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.0261 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 1.4497 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.5973 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3847 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0180

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 2.9614 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 0.4670

MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.0199 TOTAL MOLES ADSORBED (GM MOL*10**3)= 3.4484 MOLE FRACTION OF NITROGEN ADSORBED= 0.8588 MOLE FRACTION OF OXYGEN ADSORBED= 0.1354 MOLE FRACTION OF ARGON ADSORBED= 0.0058

VOLUME OF NITROGEN ADSORBED (ML STP)=66.377VOLUME OF OXYGEN ADSORBED (ML STP)=10.467VOLUME OF ARGON ADSORBED (ML STP)=0.447TOTAL VOLUME ADSORBED (ML STP)=77.291

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 2.024 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 0.319 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.014 TOTAL VOLUME ADSORBED (ML STP/GM)= 2.356

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.06845 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.04409 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.00206 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 0.11460

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 4.100

POINT NO: 2 INPUT: INITIAL CHARGE PRESSURE (TORR)= 1034.3 FINAL CHARGE PRESSURE (TORR)= 413.7 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TORR)= 372.0 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 298.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6157 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3666 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0177 MGA SAMPLE VOLUME PRESSURE (TORR)= 359.0

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99957 FINAL CHARGE PRESSURE Z= 0.99983 EQUILIBRIUM PRESSURE Z= 0.99982 MGA SAMPLE CHAMBER Z= 0.99983

 MOLES OF NITROGEN ADDED (GM MOL*10**3)=
 4.1529

 MOLES OF OXYGEN ADDED (GM MOL*10**3)=
 1.1118

 MOLES OF ARGON ADDED (GM MOL*10**3)=
 0.0500

 TOTAL MOLES ADDED (GM MOL*10**3)=
 5.3146

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 7.9118 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 2.0924 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.0939 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 10.0981

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 1.9583 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 1.1660 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.0563 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 3.1807 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6157 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3666 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0177

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)=5.9534MOLES OF OXYGEN ADSORBED (GM MOL*10**3)=0.9264MOLES OF ARGON ADSORBED (GM MOL*10**3)=0.0376TOTAL MOLES ADSORBED (GM MOL*10**3)=6.9175MOLE FRACTION OF NITROGEN ADSORBED=0.8606MOLE FRACTION OF OXYGEN ADSORBED=0.1339MOLE FRACTION OF ARGON ADSORBED=0.0054

VOLUME OF NITROGEN ADSORBED (ML STP)= 133.440 VOLUME OF OXYGEN ADSORBED (ML STP)= 20.764 VOLUME OF ARGON ADSORBED (ML STP)= 0.844 TOTAL VOLUME ADSORBED (ML STP)= 155.047

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 4.068 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 0.633 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.026 TOTAL VOLUME ADSORBED (ML STP/GM)= 4.727

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.15395 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.09167 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.00443 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 0.25005

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 3.855

POINT NO: 3 INPUT: INITIAL CHARGE PRESSURE (TORR)= 1789.3 FINAL CHARGE PRESSURE (TORR)= 1142.9 TEMPERATURE OF THE CHARGE CHAMBER (K)= 298.15 EQUILIBRIUM PRESSURE (TORR)= 585.0 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6289 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.6289 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3551 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0160 MGA SAMPLE VOLUME PRESSURE (TORR)= 564.0

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99925 FINAL CHARGE PRESSURE 2= 0.99952 EQUILIBRIUM PRESSURE Z= 0.99972 MGA SAMPLE CHAMBER Z= 0.99973

MOLES OF NITROGEN ADDED (GM MOL*10**3)= 4.3137 MOLES OF OXYGEN ADDED (GM MOL*10**3)= 1.1549 MOLES OF ARGON ADDED (GM MOL*10**3)= 0.0519 TOTAL MOLES ADDED (GM MOL*10**3)= 5.5205

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 12.0715 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 3.1556 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.1414 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 15.3685

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 3.1566 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 1.7823 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.0803 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 5.0192 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6289 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3551 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0160

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)=8.9150MOLES OF OXYGEN ADSORBED (GM MOL*10**3)=1.3733MOLES OF ARGON ADSORBED (GM MOL*10**3)=0.0611TOTAL MOLES ADSORBED (GM MOL*10**3)=10.3494MOLE FRACTION OF NITROGEN ADSORBED=0.8614MOLE FRACTION OF OXYGEN ADSORBED=0.1327MOLE FRACTION OF ARGON ADSORBED=0.0059

VOLUME OF NITROGEN ADSORBED (ML STP)= 199.819 VOLUME OF OXYGEN ADSORBED (ML STP)= 30.782 VOLUME OF ARGON ADSORBED (ML STP)= 1.369 TOTAL VOLUME ADSORBED (ML STP)= 231.970

VOLUME OF NITROGEN ADSORBED (ML STP/GM)=6.092VOLUME OF OXYGEN ADSORBED (ML STP/GM)=0.938VOLUME OF ARGON ADSORBED (ML STP/GM)=0.042TOTAL VOLUME ADSORBED (ML STP/GM)=7.072

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.24791 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.13998 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.00631 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 0.39419

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 3.667

POINT NO: 4 INPUT: INITIAL CHARGE PRESSURE (TORR)= 2311.6 FINAL CHARGE PRESSURE (TORR)= 1520.4 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TORR)= 882.0 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 298.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6457 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.6457 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3390 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0153 MGA SAMPLE VOLUME PRESSURE (TORR)= 847.0

# OUTPUT:

2000年になったというでは、「たちからないない」であったのでは、たちたたないでは、「たちょう」というには、たちょう

INITIAL CHARGE PRESSURE Z= 0.99903 FINAL CHARGE PRESSURE Z= 0.99936 EQUILIBRIUM PRESSURE Z= 0.99959 MGA SAMPLE CHAMBER Z= 0.99961

MOLES OF NITROGEN ADDED (GM MOL*10**3)- 5.2998 MOLES OF OXYGEN ADDED (GM MOL*10**3)= 1.4189 MOLES OF ARGON ADDED (GM MOL*10**3)= 0.0638 TOTAL MOLES ADDED (GM MOL*10**3)= 6.7824

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 17.1234 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 4.4345 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.1989 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 21.7568

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 4.8705 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 2.5571 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.1154 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 7.5430 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6457 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3390 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0153

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 12.2529 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 1.8775 MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.0834 TOTAL MOLES ADSORBED (GM MOL*10**3)= 14.2138 MOLE FRACTION OF NITROGEN ADSORBED= 0.8620 MOLE FRACTION OF OXYGEN ADSORBED= 0.1321 MOLE FRACTION OF ARGON ADSORBED= 0.0059

VOLUME OF NITROGEN ADSORBED (ML STP)= 274.635 VOLUME OF OXYGEN ADSORBED (ML STP)= 42.081 VOLUME OF ARGON ADSORBED (ML STP)= 1.870 TOTAL VOLUME ADSORBED (ML STP)= 318.586

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 8.373 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 1.283 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.057 TOTAL VOLUME ADSORBED (ML STP/GM)= 9.713

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.38101 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.20003 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.00903 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 0.59007

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 3.429

FOINT NO: 5 INPUT: INITIAL CHARGE PRESSURE (TORR)= 2802.9 FINAL CHARGE PRESSURE (TORR)= 1856.6 TEMPERATURE OF THE CHARGE CHAMBER (K)= 298.15 EQUILIBRIUM PRESSURE (TORR)= 1251.5 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6536 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3314 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0150 MGA SAMPLE VOLUME PRESSURE (TORR)= 1205.0

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99882 FINAL CHARGE PRESSURE Z= 0.99922 EQUILIBRIUM PRESSURE Z= 0.99943 MGA SAMPLE CHAMBER Z= 0.99945

MOLES OF NITROGEN ADDED (GM MOL*10**3)= 6.3196 MOLES OF OXYGEN ADDED (GM MOL*10**3)= 1.6919 MOLES OF ARGON ADDED (GM MOL*10**3)= 0.0760 TOTAL MOLES ADDED (GM MOL*10**3)= 8.0876

TOTAL MOLES OF NITROGEN IN THE SAMFLE CHAMBER (GM MOL*10**3)= 23.0620 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 5.9264 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.2658 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 29.2543

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 7.0202 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 3.5595 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.1611 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 10.7408 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6536 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3314 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0150

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 16.0419 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 2.3669 MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.1047 TOTAL MOLES ADSORBED (GM MCL*10**3)= 18.5135 MOLE FRACTION OF NITROGEN ADSORBED= 0.8665 MOLE FRACTION OF OXYGEN ADSORBED= 0.1278 MOLE FRACTION OF ARGON ADSORBED= 0.0057

VOLUME OF NITROGEN ADSORBED (ML STP)= 359.560 VOLUME OF OXYGEN ADSORBED (ML STP)= 53.052 VOLUME OF ARGON ADSORBED (ML STP)= 2.348 TOTAL VOLUME ADSORBED (ML STP)= 414.960

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 10.962 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 1.617 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.072 TOTAL VOLUME ADSORBED (ML STP/GM)= 12.651

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.55062 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.27918 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.01264 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 0.84244

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 3.440

POINT NO: 6 INPUT: INITIAL CHARGE PRESSURE (TORR)= 3351.1 FINAL CHARGE PRESSURE (TORR)= 1949.6 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TORR)= 1835.9 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6705 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.6705 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3150 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0145 MGA SAMPLE VOLUME PRESSURE (TORR)= 1753.1

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99859 FINAL CHARGE PRESSURE Z= 0.99918 EQUILIBRIUM PRESSURE Z= 0.99918 MGA SAMPLE CHAMBER Z= 0.99922

MOLES OF NITROGEN ADDED (GM MOL*10**3)= 9.3936 MOLES OF OXYGEN ADDED (GM MOL*10**3)= 2.5149 MOLES OF ARGON ADDED (GM MOL*10**3)= 0.1130 TOTAL MOLES ADDED (GM MOL*10**3)= 12.0215

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 31.9050TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 8.1621TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.3662TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 40.4334

in the second second

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 10.5672 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 4.9645 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.2285 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 15.7602 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6705 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3150 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0145

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 21.3378 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 3.1977 MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.1377 TOTAL MOLES ADSORBED (GM MOL*10**3)= 24.6732 MOLE FRACTION OF NITROGEN ADSORBED= 0.8648 MOLE FRACTION OF OXYGEN ADSORBED= 0.1296 MOLE FRACTION OF ARGON ADSORBED= 0.0056

VOLUME OF NITROGEN ADSORBED (ML STP)= 478.263 VOLUME OF OXYGEN ADSORBED (ML STP)= 71.673 VOLUME OF ARGON ADSORBED (ML STP)= 3.086 TOTAL VOLUME ADSORBED (ML STP)= 553.022

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 14.581 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 2.185 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.094 TOTAL VOLUME ADSORBED (ML STP/GM)= 16.860

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.82197 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.38616 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.01778 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 1.22591

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 3.144

POINT NO: 7 INPUT: INITIAL CHARGE PRESSURE (TORR)= 3868.3 FINAL CHARGE PRESSURE (TORR)= 2534.0 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TORR)= 2404.7 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6832 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.6832 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.3031 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0137 MGA SAMPLE VOLUME PRESSURE (TORR)= 2291.0

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99837 FINAL CHARGE PRESSURE Z= 0.99893 EQUILIBRIUM PRESSURE Z= 0.99894

### MGA SAMPLE CHAMBER Z= 0.99899

 MOLES OF NITROGEN ADDED (GM MOL*10**3)=
 8.9474

 MOLES OF OXYGEN ADDED (GM MOL*10**3)=
 2.3954

 MOLES OF ARGON ADDED (GM MOL*10**3)=
 0.1076

 TOTAL MOLES ADDED (GM MOL*10**3)=
 11.4504

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 40.0304 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 10.1714 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.4561 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 50.6579

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 14.1066 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 6.2584 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.2829 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 20.6479 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6832 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.3031 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0137

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 25.9238 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 3.9130 MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.1732 TOTAL MOLES ADSORBED (GM MOL*10**1)= 30.0100 MOLE FRACTION OF NITROGEN ADSORBED. 0.8638 MOLE FRACTION OF OXYGEN ADSORBED= J.1304 MOLE FRACTION OF ARGON ADSORBED= J.0058

VOLUME OF NITROGEN ADSORBED (ML STP)=581.052VOLUME OF OXYGEN ADSORBED (ML STP)=87.706VOLUME OF ARGON ADSORBED (ML STP)=3.882TOTAL VOLUME ADSORBED (ML STP)=672.640

VOLUME OF NITROGEN ADSORBED (ML STP/GM)=17.715VOLUME OF OXYGEN ADSORBED (ML STP/GM)=2.674VOLUME OF ARGON ADSORBED (ML STP/GM)=0.118TOTAL VOLUME ADSORBED (ML STP/GM)=20.507

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 1.09477 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.48569 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.02195 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 1.60241

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 2.942

POINT NO: 8 INPUT: INITIAL CHARGE PRESSURE (TORR)= 3868.3 FINAL CHARGE PRESSURE (TORR)= 2901.2 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TORR)= 2802.9 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6906 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.2961 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0133 MGA SAMPLE VOLUME PRESSURE (TORR)= 2663.3

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99837 FINAL CHARGE PRESSURE Z= 0.99878 EQUILIBRIUM PRESSURE Z= 0.99878 MGA SAMPLE CHAMBER Z= 0.99884

 MOLES OF NITROGEN ADDED (GM MOL*10**3)=
 6.4860

 MOLES OF OXYGEN ADDED (GM MOL*10**3)=
 1.7365

 MOLES OF ARGON ADDED (GM MOL*10**3)=
 0.0780

 TOTAL MOLES ADDED (GM MOL*10**3)=
 8.3005

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 45.4217 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 11.4222 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.5121 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 57.3560

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 16.6234 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 7.1274 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.3201 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 24.0710 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6906 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.2961 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0133

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)=28.7983MOLES OF OXYGEN ADSORBED (GM MOL*10**3)=4.2948MOLES OF ARGON ADSORBED (GM MOL*10**3)=0.1920TOTAL MOLES ADSORBED (GM MOL*10**3)=33.2851MOLE FRACTION OF NITROGEN ADSORBED=0.8652MOLE FRACTION OF OXYGEN ADSORBED=0.1290MOLE FRACTION OF ARGON ADSORBED=0.0058

VOLUME OF NITROGEN ADSORBED (ML STP)= 645.481 VOLUME OF OXYGEN ADSORBED (ML STP)= 95.263 VOLUME OF ARGON ADSORBED (ML STP)= 4.303 TOTAL VOLUME ADSORBED (ML STP)= 746.047

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 19.679 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 2.935 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.131 TOTAL VOLUME ADSORBED (ML STP/GM)= 22.745

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3) 1.28665 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3) 0.55166 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3) 0.02478 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3) 1.86310

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 2.876

POINT NO: 9 INPUT: INITIAL CHARGE PRESSURE (TORR)= 3868.3 FINAL CHARGE PRESSURE (TORR)= 3180.5 TEMPERATURE OF THE CHARGE CHAMBER (K)= 297.15 EQUILIBRIUM PRESSURE (TO^T 3051.2 TEMPERATURE OF THE SAMPLE CHAMBER (K)= 297.15 MOLE FRACTION NITROGEN IN THE MGA SAMPLE= 0.6962 MOLE FRACTION OXYGEN IN THE MGA SAMPLE= 0.2907 MOLE FRACTION ARGON IN THE MGA SAMPLE= 0.0131 MGA SAMPLE VOLUME PRESSURE (TORR)= 2890.9

OUTPUT: INITIAL CHARGE PRESSURE Z= 0.99837 FINAL CHARGE PRESSURE Z= 0.99866 EQUILIBRIUM PRESSURE Z= 0.99868 MGA SAMPLE CHAMBER Z= 0.99875

 MOLES OF NITROGEN ADDED (GM MOL*10**3)=
 4.6134

 MOLES OF OXYGEN ADDED (GM MOL*10**3)=
 1.2351

 MOLES OF ARGON ADDED (GM MOL*10**3)=
 0.0555

 TOTAL MOLES ADDED (GM MOL*10**3)=
 5.9040

TOTAL MOLES OF NITROGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 48.7485 TOTAL MOLES OF OXYGEN IN THE SAMPLE CHAMBER (GM MOL*10**3)= 12.1057 TOTAL MOLES OF ARGON IN THE SAMPLE CHAMBER (GM MOL*10**3)= 0.5429 TOTAL MOLES IN THE SAMPLE CHAMBER (GM MOL*10**3)= 61.3970

MOLES OF NITROGEN IN THE GAS PHASE (GM MOL*10**3)= 18.2446 MOLES OF OXYGEN IN THE GAS PHASE (GM MOL*10**3)= 7.6181 MOLES OF ARGON IN THE GAS PHASE (GM MOL*10**3)= 0.3433 TOTAL MOLES IN THE GAS PHASE (GM MOL*10**3)= 26.2059 MOLE FRACTION OF NITROGEN IN THE GAS PHASE= 0.6962 MOLE FRACTION OF OXYGEN IN THE GAS PHASE= 0.2907 MOLE FRACTION OF ARGON IN THE GAS PHASE= 0.0131

MOLES OF NITROGEN ADSORBED (GM MOL*10**3)= 30,5039 MOLES OF OXYGEN ADSORBED (GM MOL*10**3)= 4.4876 MOLES OF ARGON ADSORBED (GM MOL*10**3)= 0.1996 TOTAL MOLES ADSORBED (GM MOL*10**3)= 35.1911 MOLE FRACTION OF NITROGEN ADSORBED= 0.8668 MOLE FRACTION OF OXYGEN ADSORBED= 0.1275

### MOLE FRACTION OF ARGON ADSORBED= 0.0057

VOLUME OF NITROGEN ADSORBED (ML STP)= 683.711 VOLUME OF OXYGEN ADSORBED (ML STP)= 100.584 VOLUME OF ARGON ADSORBED (ML STP)= 4.473 TOTAL VOLUME ADSORBED (ML STP)= 788.768

VOLUME OF NITROGEN ADSORBED (ML STP/GM)= 20.845 VOLUME OF OXYGEN ADSORBED (ML STP/GM)= 3.067 VOLUME OF ARGON ADSORBED (ML STP/GM)= 0.136 TOTAL VOLUME ADSORBED (ML STP/GM)= 24.048

MOLES OF NITROGEN REMOVED BY THE MGA (GM MOL*10**3)= 1.40806 MOLES OF OXYGEN REMOVED BY THE MGA (GM MOL*10**3)= 0.58794 MOLES OF ARGON REMOVED BY THE MGA (GM MOL*10**3)= 0.02649 TOTAL MOLES REMOVED BY THE MGA (GM MOL*10**3)= 2.02249

SEPARATION FACTOR BETWEEN NITROGEN AND OXYGEN= 2.840

#### RUTHVE.FOR С PREDICTION OF PURE COMPONENT ISOTHERM DATA USING RUTHVEN'S EQN. С OWNER: G.W.MILLER С С DATE: 20 FEB 84 С FILENAME: RUTHVE.FOR С IMPLICIT REAL # 8 (A-H,O-Z) DIMENSION C(40), XNUM(20), XDEN(20), XP(40) OPEN (UNIT=7, NAME='NEW.DAT', TYPE='NEW', DISPOSE='SAVE') С С NOMENCLATURE: С C = AMOUNT ADSORBED [ML STP/GM(CRYSTAL+BINDER)] XK=HENRY'S CONSTANT(MOLECULES/(CAVITY*TORR)) С С XP = PRESSURE (TORR)B - EFFECTIVE MOLECULAR VOLUME OR VAN DER WAALS COVOLUME (A**3) С V = CAVITY VOLUME (A**3)С M - MAXIMUM NO. OF MOLECULES/CAVITY (LESS THAN OR EQUAL TO V/B) С С С INPUT: С XK- 0.01261D00 B = 77.63D00V = 776.0000 $M = 10^{-1}$ C С CALCULATIONS: С

Section Sector

284

XPP = 0.0D0500 II=1,40 XP(II) = XPP + 100. XPP = XP(II)XKP = XK * XPP XNUSUM = 0.0XDESUM = 0.0XNUM(1) = XKPXDEN(1) = 1. + XKPD0100 I=2,M  $\mathbf{L} \doteq \mathbf{I}$ XNUM1 = (XKP**L) * (( 1.- ((L*B)/V))**L) PFACT1 = 1MMIN1 = L - 1DO200 J=1,MMIN1 K1 = JPFACT1 = PFACT1 * K1 200 • CONTINUE XNUM(I) = XNUM1/PFACT1 100 CONTINUE D0300 I=2,M N = IXNUM2 = (XKP**N) * (( 1.-((N*B)/V))**N) PFACT2 = 1D0400 J=1;N K2 = JPFACT2 = PFACT2 * K2 400 CONTINUE XDEN(I) = XNUM2/PFACT2300 CONTINUE D0600 I=1,M XNUSUM = XNUSUM + XNUM(I)XDESUM = XDESUM + XDEN(I) 600 CONTINUE C(II) = XNUSUM / XDESUM D0900 I=1,20 XNUM(I) = 0.0XDEN(I) = 0:0900 CONTINUE 500 CONTINUE С С OUTPUT TO DATA FILE: С D01000 I=1,40 C(I)= C(I) # 11.2111 1000 CONTINUE D0700 I=1,40 WRITE (7,800) XP(I),C(I) 700 CONTINUE

800 FORMAT (1X,F7.1,3X,F9.3) TYPE*, 'RENAME NEW DATA FILE' STOP END С RUBI24.FOR C PREDICTION OF BINARY DATA AT 297.15 K С С **OWNER: G.W. MILLER** С DATE: 2 APR 84 С FILENAME: RUBI24.FOR С С IMPLICIT REAL * 8 (A-H,O-Z) DIMENSION XPO2(30), XPN2(30), XPT(30), CO2(30), CN2(30) OPEN(UNIT=7,NAME='RBIN24.DAT',TYPE='NEW',DISPOSE='SAVE') OPEN(UNIT=9,NAME='RBIO24.DAT',TYPE='NEW',DISPOSE='SAVE') С С NOMENCLATURE: С С CO2 = AMT OXYGEN ADSORBED (MOLECULES/CAVITY) С CN2 = AMT NITROGEN ADSORBED (MOLECULES/CAVITY) С XKO2 - HENRY CONSTANT FOR OXYGEN (MOLECULES/CAV*TORR) С XKN2 - HENRY CONSTANT FOR NITROGEN (MOLECULES/CAV*TORR) С BO2 = OXYGEN EFFECTIVE MOLECULAR VOLUME (A**3)С BN2 = NITROGEN EFFECTIVE MOLECULAR VOLUME (A**3) V = CAVITY VOLUME (A**3) С С MO2 = NUMBER OF OXYGEN MOLECULES PER CAVITY AT SATURATION MN2 = " " NITROGEN 11 11 11 1<u>1</u> С С **XPO2 = OXYGEN PARTIAL PRESSURE (TORR)** С XPN2 = NITROGEN PARTIAL PRESSURE (TORR) С NDATA = NUMBER OF DATA POINTS С С INPUT: С XKO2 = 0.0004234D00XKN2 = 0.001902D00BO2 = 38.8D00BN2 = 97.000 $M02 = 20^{\circ}$ MN2 = 8V = 776.000NDATA = 14С XPO2(1) = 65.1D00XPO2(2) = 75.2D00XPO2(3) = 135.8D00XPO2(4) = 207.7D00286

```
XPO2(5) = 299.D00
    XPO2(6) = 403.2000
    XPO2(7) = 415.5D00
    XPO2(8) = 578.3D00
    XPO2(9) = 619.1D00
    XPO2(10) = 728.9D00
    XPO2(11) = 755.6D00
    XPO2(12) = 829:9D00
    XPO2(13) = 847:D00
    XPO2(14) = 887.D00
С
    XPN2(1) = 100.9D00
    XPN2(2) = 115.3D00
    XPN2(3) = 229.9D00
    XPN2(4) = 367.9D00
    XPN2(5) = 569.8D00
    XPN2(6) = 747.2000
    XPN2(7) = 817.2D00
    XPN2(8) = 1230.9D00
    XPN2(9) = 1261.2D00
    XPN2(10) = 1642.9D00
    XPN2(11) = 1676.7D00
    XPN2(12) = 1935.7D00
    XPN2(13) = 1944.1D00
    XPN2(14) = 2124.2D00
С
С
    CALCULATIONS:
С
    DO6 M-1,NDATA
    XPT(M) = XPO2(M) + XPN2(M)
   CONTINUE
 6
    BA = BO2
    BB = BN2
    INUMJ = MN2 + 1
    IDENJ = INUMJ
    INUMI = MO2 + 1
    IDENI = INUMI
    DO100 III=1,NDATA
    ICHECK = 0
    XKAPA = XKO2 * XPO2(III)
    XKBPB = XKN2 * XPN2(III)
 2222
             XDEN = 0.0
    XNUM = 0.0
С
С
С
    CALCULATION OF DOUBLE SUMMATION IN NUMERATOR:
    D0200 J=1,INUMJ
    JN = J - 1
    XJN = JN
```

```
PFACJN = 1.
   IF(JN) 9999,903.904
904
            D0300 K=1, JN
   KA = K
    PFACJN = PFACJN * KA
 300
            CONTINUE
 903
           DO400 I=1, INUMI
   IN = I - 1
    XIN = IN
    CHKERN = (XIN * BA) + (XJN * BB)
    IF(CHKERN.GT.V) GO TO 400
    MN = JN + IN
        C2 = (XKAPA**IN) * (XKBPB**JN)
    XMAJ1= C2 * ((1.DOO-((XIN*BA)/V)-((XJN*BB)/V))**MN)
    PFACIN = 1.
    IF(IN) 9999,919,911
 911
            D0912 K=1, IN
  KB = K
   PFACIN = PFACIN * KB
 912
            CONTINUE
            IF(ICHECK) 9999,913,914
 919
            MGAS = IN
 913
  · GO TO 915
 914
            MGAS = JN
 915
        CN = ((MGAS * XMAJ1) / PFACIN) * (1.D00 / PFACJN)
    XNUM = XNUM + CN
 400
            CONTINUE
 200
            CONTINUE
С
    CALCULATION OF DOUBLE SUMMATION IN DENOMINATOR:
С
С
    DO500 J=1.IDENJ
    JD = J - 1
    XJD = JD
    PFACJD = 1.
    IF(JD) 9999,916,917
 917
            D0600 K=1,JD
    KC = K
    PFACJD = PFACJD * KC
 600
            CONTINUE
            DO700 I=1,IDENI
 916
        ID = I - 1
    XID = ID
    CHKERD = (XID * BA) + (XJD * BB)
    IF(CHKERD.GT.V) GO TO 700
    PFACID = 1.
    IF(ID) 9999,918,933
 933
            D0800 K=1,ID
    KD = K
```

```
PFACID = PFACID * KD
 800
            CONTINUE
            MD = JD + ID
 918
        C4 = (XKAPA**ID) * (XKBPB**JD)
    XMAJ2= C4 * ((1.D00-((XID*BA)/V)-((XJD*BB)/V))**MD)
    CD = (XMAJ2 / PFACID) * (1.D00 / PFACJD)
        XDEN = XDEN + CD
 700
            CONTINUE
 500
            CONTINUE
    IF(ICHECK) 9999,920,921
С
С
    CALCULATION OF ADSORBED CONCENTRATIONS:
С
 920
            CO2(III) = XNUM / XDEN
    ICHECK = ICHECK + 1
    GO TO 2222
 921
            CN2(III) = XNUM / XDEN
 100
            CONTINUE
    DO333 LL=1,NDATA
    CO2(LL) = CO2(LL) * 11.2111D00
    CN2(LL) = CN2(LL) * 11.2111D00
 333
            CONTINUE
С
С
    OUTPUT:
С
 922
            DO1100 N=1,NDATA
    WRITE(9,14) XPO2(N),CO2(N)
 1100
            CONTINUE
 14 FORMAT(1X,F7.1,3X,F9.4)
    DO1200 N=1,NDATA
    WRITE(7,15) XPN2(N),CN2(N)
 1200
            CONTINUE
 15 FORMAT(1X,F7.1,3X,F9.4)
 9999
            STOP **
    END
С
        IAST24.FOR
    THIS PROGRAM CALCULATES x02,qT,q02, and qN2
С
С
    AT 297.15 K USING THE IAST THEORY OF MYERS AND
С
    PRAUSNITZ.
С
    IMPLICIT REAL * 8 (A-H,O-Z)
    DIMENSION XPO2(30), XPN2(30), PT(30), YO2(30), YN2(30)
    DIMENSION X02(30), XN2(30), PO2PU(30), PN2PU(30), XN02PU(30)
    DIMENSION XNN2PU(30), XNT(30), XNO2(30), XNN2(30)
    OPEN(UNIT=7,NAME='IASO24.DAT',TYPE='NEW',DISPOSE='SAVE')
    OPEN(UNIT=8,NAME='IASN24.DAT',TYPE='NEW',DISPOSE='SAVE')
```

	OPEN(UNIT=9,NAME='IAST24.RES',TYPE='NEW',DIS	POSE='SAVE')
C C C	INPUT:	
	XPO2(1) = 65.1D00 XPO2(2) = 75.2D00	
•	XPO2(3) = 135.8000 XPO2(4) = 207.7000 XPO2(5) = 299.000	
· · · · ·	XPO2(6) = 403.2D00 XPO2(7) = 415.5D00	2* ** 
-	XPO2(8) = 578.3D00 XPO2(9) = 619:1D00 XPO2(10) = 728.9D00	
	XPO2(11) = 755.6D00 XPO2(12) = 829.9D00 XPO2(13) = 847.D00	
C	XPO2(14) = 887.000	· · ·
<i>.</i>	XPN2(2) = 115.3D00 XPN2(3) = 229.9D00 XPN2(4) = 367.9D00	
t.	XPN2(5) = 569:8D00 XPN2(6) = 747:2D00 XPN2(7) = 817:2D00 XPN2(8) = 1220.9D00	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	·
с с	NDATA - 14	
C	PARAMETERS FOR CALC. OF THE SPREADING PRESS. SOP1 = .0045521D00 SOP2 = 2.2479D-05 SOP3 = 1.00323D00	OF 02.
č	PARAMETERS FOR CALC. OF THE SPREADING PRESS. SNP1 = .054163D00 SNP2 = 2.2830D-04 SNP3 = 0.83329D00	OF N2.
C	PARAMETERS FOR CALC. OF THE N2 ISOTHERM. QOP1 = 0.00466905D00 QOP2 = .0000462853	

. •

с, Б

```
C
С
    PARAMETERS FOR CALC. OF THE O2 ISOTHERM.
    QNP1 = 0.0475481
    QNP2 = 5.16372D-04
    QNP3 = .8263D00
С
С
    CALCULATIONS:
С
    D0100 I=1.NDATA
    PT(I) = XPO2(I) + XPN2(I)
 100
            CONTINUE
    DO200 I=1,NDATA
    Y02(I) = XP02(I) / PT(I)
    YN2(I) = XPN2(I) / PT(I)
 200 *
            CONTINUE
    D0888 I=1,NDATA
    ICHECK = 0
    XXPN2 = XPN2(1) + 1.000
            T1 = ((XPO2(I) * XXPN2) / (XXPN2 ~ XPN2(I)))**SOP3
 500
    T2 = (T1 * SOP1) / (1.D00 + (SOP2 * T1 ))
    T3 = XXPN2**SNP3
    T4 = (T3 * SNP1) / (1.D00 + (SNP2 * T3))
    T5 = T4 - T2
    GO TO(600,601,602) ICHECK
 600
            IF(T5) 501,555,502
 501
            XXPN2 = XXPN2 + 1.D00
   GO TO 500
 502
            XXPN2 = XXPN2 - 1.D00
    ICHECK = ICHECK + 1
    GO TO 500
 601
            IF(T5) 650,555,651
 650
            XXPN2 = XXPN2 + .1D00
    GO TO 500
 651
            XXPN2 = XXPN2 - .1D00
    ICHECK = ICHECK + 1
    GO TO 500
 602
            IF(T5) 660,555,555
 660
            XXPN2 = XXPN2 + .01D00
    GO TO 500
 555
            PN2PU(I) = XXPN2
 888
            CONTINUE
С
   DO700 I=1.NDATA
   C1 = PN2PU(I) - XPN2(I)
   PO2PU(I) = (XPO2(I) * PN2PU(I)) / C1
700
            CONTINUE
   DO800 I=1,NDATA
   XO2(I) = XPO2(I) / PO2PU(I)
   XN2(I) = 1.000 - X02(I)
```

```
800
           CONTINUE
   DO900 I=1,NDATA
   C2 = 1.D00 + (QOP2 * PO2PU(I))
   XNO2PU(I) = (QOP1 * PO2PU(I)) / C2
   C3 = PN2PU(I) **QNP3
   C4 = 1.000 + (QNP2 * C3)
   XNN2PU(I) = (QNP1 * C3) / C4
900
           CONTINUE
   D01000 I='1,NDATA
   RNT = (XO2(I) / XNO2PU(I)) + (XN2(I) / XNN2PU(I))
   XNT(I) = 1.000 / RNT
   XNO2(I) = XNT(I) * XO2(I)
   XNN2(I) = XNT(I) * XN2(I)
1000
           CONTINUE
   DO1100 I=1,NDATA
     ''II = I
   WRITE(9,930) II
   WRITE(9,901) XPO2(I), XPN2(I), PT(I), PO2PU(I), PN2PU(I)
   WRITE(9,902) YO2(I), YN2(I), XO2(I), XN2(I)
   WRITE(9,903) XNO2(I),XNN2(I),XNO2PU(I),XNN2PU(I),XNT(I)
1100
           CONTINUE
930
           FORMAT(//,1X,'POINT NO.:',13)
901
           FORMAT(1X,'PO2=',F8.2,' PN2=',F8.2,' P=',F8.2,'
                                                                PO2*=',F8.
    12,' PN2#=',F8:2)
           FORMAT(1X,'Y02=',1X,F6.4,1X,' YN2=',1X,F6.4,'
902
                                                            X02=',2X,F6.4,
    11
        XN2=',1X,F6.4)
903 .
           FORMAT(1X,'Q02=',F8.3,' QN2=',F8.3,' Q02*=',F8.3,' QN2*=',F8.
    13,' QT=',F8.3)
   D01200 I=1,NDATA
   WRITE(7,904) XPO2(1),XNO2(1)
   WRITE(8,904) XPN2(1),XNN2(1)
1200
           CONTINUE
           FORMAT(1X,F8.2,3X,F8.3)
904
   STOP
   END
```

## REFERENCES

K

- Lee, H. and D.E. Stahl, AIChE Symposium Series, No.134, Vol.69, 1,(1973).
- (2) Davis, J.C., Chemical Engineering, Oct, (1972).
- (3) Stewart, H.A., and J.L. Heck, Chemical Engineering Progress, Vol.65, No.9, (1969).
- (4) Heck, J.L., Oil and Gas Journal, Vol. 78, 122, (1980).
- a5) Alexis, R.W., Chemical Engineering Progress, Vol. 63, No. 5, 69, (1967).
- (6) Keller, G.E., and R.L.Jones, ACS Symposium Series, No. 135, 275, (1980).
- (7) Breck, D.W., "Zeolite Molecular Sieves", Wiley, New York, (1974).
- (8) Manatt,S.A., Aviat.Space and Environ. Med. (52)11:645-653, (1981).
- (9) Hinman, P.V., AFFDL-TM-75-178, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, OH, (1976).
- (10) Miller, R.L., K.G.Ikels, M.J.Lamb, E.J.Boscola, and R.H.Ferguson, Avait. Space Environ. Med. 51(7):665-673,(1980).
- (11) Cooke, J.P., K.G.Ikels, J.D.Adams, and R.L. Miller, Avait. Space Environ. Med., 51:537-541, (1980).
- (12) Horrigan, D.J., C.H. Wells, M.M.Guest, G.B.Hart, and Goodpasture, Avait. Space Environ. Med., 50:357-362, (1979).
- (13) Milton,R.M., "Commercial Development of Molecular Sieve Technology", in "Molecular Sieves", Soc. for Chemical Industry,London, (1968)
- (14) Grandjean,F.,C.r.hebd.Seanc. Acad. Sci. Paris,Vol.149,866, (1909).
- (15) Weigel, 0., and E.Z.Steinhoff, Kristallogr. Kristallgeom., Vol.61,125,(1925).
- (16) Pauling, L., Proc. Nat. Acad. Sci., U.S., Vol. 16, 453, (1930).

(17) Taylor, W.H., Z. Krist., Vol.74, 1, (1930).

- (18) Barrer, R.M., and D.A. Trans. Faraday Soc., Vol. 40, 195, (1944).
- (19) -----, J. Soc. Chem. Ind., Vol. 64, 130, (1945).
- (20) -----, and L.Belchetz, Ibid, Vol. 64, 131, (1945).
- (21) -----, Proc.Roy.Soc. (London), A167, 392, (1938).
- (22) Milton,R.M., "Molecular Sieves", Soc. of Chem.Ind. (London), (1968).
- (23) Milton,R.M., Union Carbide Corporation, U.S.Patent 2,882,244 (1959).
- (24) Breck, D.W., and E.M.Flanigen, in "Molecular Sieves", Soc. for Chemical Industry, London, (1968).
- (25) Barrer,R.M., and J.W.Sutherland, Proc.Roy.Soc., A237, 439, (1956).
- (26) Skarstrom, C.W., Esso Research and Engineering, U.S. Patent No. 2,944,627 (1960).
- (27) -----, Annals of New York Academy of Science, Vol.72,751,(1959).
- (28) -----, C.W., British Patent 850, 443.

- (29) Smith, J.V., Mineralogical Soceity of America, Special Paper No.1, (1963).
- (30) Oscik, J., "Adsorption", John Wiley and Sons, New York, (1982).
- (31) Ruthven, D.M., Separation and Purification Methods, 5(2), 189-246, (1976).
- (32) Young, D.M., and A.D.Crowell, "Physical Adsorption of Gases", Butterworth and Co., London, (1962).
- (33) Smith, J.V., J. Chem. Soc., p. 3754, (1964).
- (34) Derrah, R.I., and D.M. Ruthven, Canad. J. Chem., Vol. 53, 996, (1975).
- (35) Shendalman, L.H., and J.E.Mitchell, Chemical Engineering Science, Vol. 27, 1449-1458, (1972).
- (36) Mitchell, J.E., and L.H.Shendalman, AIChE Symposium Series, Vol.69, No.134, 25, (1973).

. . . . . . . .

- (37) Weaver, K., and C.E.Hamrin, Chem.Eng.Sci., Vol. 29, 1873, (1974).
- (38) Whitley, M.D., and C.E.Hamrin, Jr., ACS Symp.Ser., No.135, (1980).
- (39) Collins, H.W., and K.C. Chao, AIChE Symposium Series, No.134, Vol.69,
- (40) Stuart, F.X., and D.T.Camp, AIChE Symposium Series, No.134, Vol.69,
- (41) Sargent,W.H., and C.J.Whitford,Adv.Chem.Series,Vol.102,144, (1971).
- (42) Breck, D.M., Journal of Chemical Education, Vol. 48,678, (1964).
- (43) Barrer, R.M., and J.A.Davies, Proc. Roy. Soc., A320, 289, (1970).
- (44) Dorfman,L.R., and R.P.Danner,AIChE Symposium Series,No.71, 152,(1975).
- (45) Ruthven, D.M., K.F.Lougalin, and K.A.Holborrow, Chem.Eng.Sci., Vol.28,701,(1973).
- (46) Ruthven, D.M., AIChE Journal, Vol. 22, No. 4, 753, (1976).
- (47) Barrer, R.M., and J.A.Lee, Surface Science, Vol. 12, 354, (1968).
- (48) Schirmer W., G.Fiedrich, A.Grossman, and H.Stach, First Conference on Molecular Sieve Zeolites, London, (1967); proceedings Soc.Chem.Ind., 276, (1968).
- (49) Sips,R.,J.Chem.Phys.,Vol.16,490,(1948).

- (50) Hill, T.L., "Introduction to Statistical Thermodynamics", Addison-Wesley, Reading, Mass., (1960).
- (51) Barrer, R.M., F.W. Bultitude, and J.W.Sutherland, Trans. Faraday Soc., Vol.53, 1111, (1957).
- (52) Ruthven, D.M., Nature Phys. Sci., Vol. 232, 70, (1971).
- (53) Barrer, R.M., and J.W.Sutherland, Proc. Roy. Soc. (London), A237, 439-463, (1956).
- (54) Rabinowitsch, E. and W.C. Wood, Trans. Faraday Soc., Vol. 32, 947-956, (1936).
- (55) Breck, D.M., and R.W.Grose, Adv. in Chem., Vol. 121, 319, (1973).

(56) Dubinin, M.M., Chem. Revs., Vol. 60, 235, (1960).

- (57) -----,0. Kadlec, and A. Zukal, Coll.Czech.Chem. Commun., Vol. 31, 406, (1966).
- (58) Ruthven, D.M., and K.F.Loughlin, J.Chem.Soc.Faraday Trans. I, Vol.68,696, (1972).
- (59) Glessner, A.J., and A.L.Myers, C.E.P. Symposium Series, Vol.65, 73, (1969).

and the second second

- (60) Myers, A.L., and I.M. Prausnitz, AIChE Journal, Vol. 11, 121, (1965).
- (61) M.Polanyi, Ver handt. Deut. Phys., Geo., Vol. 16, 1012, (1914).
- (62) Ruthven, D.M., and R.I.Derrah, J.Chem.Soc.Faraday Trans I, Vol.71,2031,(1975).
- (63) Kondis, E.S., and J.S.Dranoff, "Molecular Sieve Zeolites", Adv.Chem.Sec.102, Am.Chem.Soc., Washington, D.C., p171, (1971).
- (64) Garg, D.R., and D.M.Ruthven, Chem. Eng. Sci., Vol. 29, 571, (1974).
- (65) Weast, R.C., ed., "Handbook of Chemistry and Physics", 56th, Ed., CRC Press, (1975).
- (66) Maslan,F.D., and T.M.Littman, Ind.Eng.Chem., Vol. 45, 1566, (1953).
- (67) Domine, D., and L.Hay, "Molecular Sieves", 204, Soc. of Chem. Ind., London, (1968).
- (68) Peterson, D., in "Adsorption and Ion Exchange with Synthetic Zeolites", W.H.Flank, ed., (1980).
- (69) Data of Union Carbide Corporation presented here by permission.
- (70) Schweitzer, "Handbook of Separation Techniques", Mcgraw-Hill Book Co., (1979).
- (71) Sorial, G.A., W.H. Granville, and W.O. Daly, Chemical Engineering Science, Vol. 38, No.9, 1517, (1983).
- (72) Van Ness, H.C., Ind. and Eng. Chem. Fund., Vol.8, No.3, (1969).
- (73) Sircar, S., and R.Gupta, AIChE Journal, Vol. 27, No. 5, 806, (1981).

(74) Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., "Molecular Theory of Gases and Liquids", Wiley, New York, (1954).

- (75) Derrah, R.I., K.F.Loughlin, and D.M.Ruthven, J.Chem.Soc., Faraday Trans I, Vol.68, 1947, (1972).
- (76) Eberly, P.E., IE Chem. Prod. Res. Dev., Vol.8, 140, (1969).
- (77) Kondis, E.S., and J.S. Dranoff, Ind. Eng. Chem. Proc. Design Dev., Vol. 10, 108, (1971)
- (78) Mckee, D.W., and Hamlen R.P., Union Carbide Corporation, unpublished results.
- (79) Pigford, R.L., Baker B., and Blum D.E., Ind. Eng. Chem. Fund., Vol.8, 144, (1969).
- (80) Chan, Y.I., F.B.Hill, and Y.W.Wong, Chem.Eng.Sci., Vol. 36, 243-251, (1981).
- (81) Brunauer, S., "The Adsorption of Gases and Vapours", Princeton University Press, Princeton, (1945).
- (82) Knaebel, K.S., and F.B.Hill, Chem. Eng. Sci., (submitted 1983).

- California