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- ABSTRACT

kﬂv

: 3 Supply support of a Naval Air Rework Facility (NARF)

‘*S - should consider both on-site inventories of spare repair

f‘ parts as well as back-up resupply from the local Naval Supply
~§ Center (NSC). This thesis presents a model for such a sys-

§£ tem for a limited time horizon. The decision variables are

‘-_ the number of units of an item to stock on-site and the length
ﬁg of time between deliveries once the on-site inventory is

{Ef depleted. The determination of the optimal values of these
&; variables required evaluation of the total expected variable
ég? costs for each given set of parameters. After identification
2;? ; of optimal values of both decision variables, a comparison

; between the minimum total expected costs of this model and

$3 an earlier model without on-site spares was conducted. The
%S results suggest that the on-site spares model is preferable to

one without spares. However, because the outcome of such a
comparison is strongly dependent on the cost values assumed,

additional analyses are needed before a general statement can
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I. INTRODUCTION

A. BACKGROUND

2 - In 1978, the Department of Defense Material Distribution

System Study recommended the consolidation of wholesale

d

supply support between the Naval Supply Centers (NSC) at

Norfolk, San Diego, and Oakland, and their local Naval Air

WA NN W

Stations.
As part of a study of how to improve the local area
& material distribution at Oakland and San Diego, McMasters
e [Ref. 1: pp. 1-6] addressed the problem of providing supply
g support for the Naval Air Rework Facility in each air station.

In that report, he suggested several support methods. One

was to provide on-site inventories at the NARF. The advan-

¥ LA
L]

tages of such a plan would be quicker response time to the

¥ o AP

customer, reduced transportation costs, and reduced customer
delay costs. The costs of maintaining a separate inventory,
however, would be a disadvantage. Another support method was
through direct delivery by the NSC, with no on-site spares. A
third possibility was a combination of the two methods; on-

site inventories at the NARF with direct deliveries from the

S R gt A g I o

NSC when demand exceeds on-site inventories. The optimum solu-
tion of such a problem should be a trade off between customer
. needs, delivery costs, transportation costs, and costs which

result from maintaining a separate inventory.
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In the process of modelling these alternatives, McMasters
[Ref. 2: pp. 4-14] developed a model for determining the
depth of repair parts to be stocked on-site using a time
independent delay cost. This model also addressed costs of
establishing an inventory on site, penalty costs for being
out of stock at some time before the end of a fixed time
period, and surplus costs for having units remaining at the
end of the fixed time period. He also modelled three alterna-
tive methods of providing direct delivery support [Ref. 1:
pp. 7-42]. The costs included in these models were delivery
costs, time dependent customer delay costs, and time indepen-
dent customer delay costs. No attempt was made to combine

the models.

B. PURPOSE

This thesis will develop a model which combines both an
inventory system for on-site spares and a direct delivery
model. The direct delivery model to be used is the scheduled
delivery model which provides for delivery of all demands at
the end of every N periods if there is at least one demand
during those N periods. The cost of a delay for this model
will include a time dependent as well as time independent
costs. The resulting formulas will be subjected to parametric
analysis for determination of optimum methods. The objective

of the model will be to determine the on-site quantity which

minimizes the total costs over N periods.
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,._2: C. THESIS ORGANIZATION
EE Chapter I gives the background of the problem, the purpose,
is and the organization of this thesis. Chapter II establishes
:E the probabilistic basis of the time dependent delay costs
TSj . incurred by the NARF waiting for delivery from the NSC, given
" that there are N periods of time between deliveries. This
=§ result is conditioned by the probability that the on-site
?E items are consumed before the end of N periods. Each element
38 in the total cost equation is also examined, and the associated
‘é expected values are developed. Chapter III analyzes the model
. developed in Chapter II and seeks to identify the optimum
‘; number of on-site spares for various values of important
3 parameters. Chapter IV compares the total cost results using
f no on-site spares and scheduled delivery as determined by
) Davidson [Ref. 3: pp. ;8-35] to the optimal results of Chapter
g III. Chapter V summarizes the finding of Chapters III and IV
o and makes recommendations as the possible uses of the results

and areas of further research.
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(22 II. MODEL DEVELOPMENT
&- »
:{3 This chapter develops the combination of an on-site
W
‘3Q - inventory system and the scheduled direct delivery models of

References 1 and 2.

2B
=
o A. ASSUMPTIONS

e The work load schedule at a NARF is such that inductions
;: of a component into overhaul occur at a specified constant

oy
B

;S rate during a quarter. As a consequence, the time between
W

i inductions is also a specified constant and can be used as a
)
a'i convenient measure of time. In this thesis it will be referred
WAL

W,
Sty to as a time "period."
N

” Under scheduled deliveries without an on-site inventory

system, the NSC's truck makes a delivery at the end of every

N periods if there is at least one demand during the N periods.

If, however, stock exists on-site then it can be used to £fill

ﬁy demand and thus reduce the chance that the truck will need to
?4 make a delivery during N periods.
K s .
- In the development of the combined model the following
¢ assumptions will be made:
™
'; 1. The time between potential demands is the time between
2
e inductions of a component.
B , ,
g’ 2. At most one unit of a given repair part is required by
?ﬁ, each aircraft component undergoing rework at a NARF.
Se g g
h
‘k pl
550
1 ’-.ié
o 10
At

: ‘.-‘!., - " “ ‘."'.*. COeCT f -
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3. The probability that the component requires the repair
part is p.
g: 4, There are Y spare units of a given part on-site that
.Ei will be consumed before requisitioning additional units
Eg; . from the supply center.
) 5. Delivery will be made at the end of N periods if at
ﬁ% least Y+1 units are demanded during N periods.
t? As an example of the process, consider Figure 2.1. There
¥~ are six inductions per quarter, and Y = 1. The probability
i&é that a part will require replacement is 0.4. The first period
:Ei induction requires a spare which is satisfied by the on-site
;f; spare. The induction of periods 2 and 3 do not require spares.
‘Sif Another spare is required in period four and, since no stock is
;%? ) available, the part is requisitioned from the local NSC. An
e additional spare is required in period six creating two shortages
%g during the quarter. Since delivery is scheduled for the end
{%? of the quarter, delivery of both parts will be made to the NARF.
P The process will continue during the next quarter with the
ZE§ assumption of Y spares on-site.
8%

o ' D e %
- 0 2 4 6
-
N X=DEMAND]  [©=NO DEMANDI

5]

X

‘

‘

Figure 2.1 Example of Schedule Delivery with On-site
Spareswith N = 6, Y = 1, and p = 0.1.
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Cost elements of the model will include Ct, the total

round-trip costs of a delivery. These include the costs of

a truck and a driver from the time it starts loading at the
NSC to the time it returns to the NSC from its delivery.
There also will be special handling costs, Ch, and processing
costs, Cp, incident to the expense of establishing a unit in
inventory on-site at the NARF.

Delay costs are costs incurred at the NARF as a conse-
quence of not having a needed part the instant it is required.
Two elements will compose the delay costs. One is S, which
is the cost associated with putting a component aside. The
second element is Cd, a time dependent delay cost, which will
represent the delay cost per demanded unit per period. This
element may include labor cost due to work stoppage, inventory
holding costs, and cost associated with the non-availability of

a repaired component to a fleet unit.

B. DETERMINISTIC DEMAND
If demand from a customer occurs with certainty once
every time period, the demand is deterministic. 1If a truck
is dispatched every time a demand is received, the cost per
unit delivered is Ct. If k demanded units are allowed to
accumulate before delivery then the cost per unit delivered
is Ct/k. 1If the truck capacity is n units, then the delivery
cost per unit is minimized by waiting until the truck is full.
If Y > N, there will be no delays as the on-site spares

will satisfy all demand requirements of the system. However,

12
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if Y < N, and if we define k as (N-Y), then as k units accumu-
late, the NARF experiences delay costs from lost production
while awaiting parts. If we refer to the cost of delay of
one time period as Cd, and if the NARF must wait until k
demands are accumulated before the supply center makes a
delivery, the total delay cost incurred by the NARF is
Cdk (k-1)
S
This formula is based on the deterministic demand of one
unit per time period. If a unit is demanded during the first
period after a delivery then there will be a delay of k-1
periods until the arrival of the spare. Likewise, a demand
on the second time period after a delivery will have a delay
of k-2 time periods. So the total delay time from delivery
to delivery will be

(k-1) + (k=2) + ... + 1+ 0 k(k-1)

which can be rewritten, with the addition of the Cd term,

as

C. RANDOM DEMAND
Equation (1) assumes that a demand is made every period.

This is analogous to a part that is replaced in every component

13
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undergoing an overhaul. If the repair part has a proba-
bility, p, 0 < p < 1, that it will be replaced in the component
during overhaul, we then must consider a case where delay

costs are a function of the probability of demand, as well

as N and Y. Our goal is how to determine the expected costs
per period associated with the system.

The first stage of development will determine the expected
total delay time given that there are Y repair items on-site.
In order for a delay to occur, there must be Y+1 units demanded
before the end of the Nth time period. If we consider the
process of replacement of a part of a component as an indepen-
dent Bernoulli trial with probability p, then we must determine
the distribution of the number of independent Bernoulli trials
required for Y demands during N periods. This process is des-
cribed by the negative binomial probability distribution.

Let n be the number of trials (periods of demand), neces-

sary to observe Y demands. Clearly, the range of n is

R=Y,¥+l, ..., ». The negative binomial probability function

for a giv-n Y is

P(n;Y) = (S:i)py(l-p)n-Y : (2) ;

where

ne {Y,y+l, ...,=} .

14
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In our problem, (2) represents the probability that it
will take exactly n periods for a total demand of Y to occur.
As an example of Equation (2), let us say there are a total
of 6 time periods, (N = 6), and the number of units on hand,
Y, is one. The probability, p, of a demand during each time
period is 0.4. The figure below illustrates the probability
that the Yth demand first occurs on each of the periods one
through six. Since we have restricted the range of n to have
an upper bound of N = 6, the sum of the probabilities will

be less than one.

01608 0.1920 0.1728 0.1382 0.1037 0.0744

L 1 1 L | 1 1

1 2 3 4 S 6

o

Figure 2.2 Distribution of Negative Binomial with
n=1, N=6, and p = 0.4.

Given that it takes n periods for the Yth demand to
occur, there will be exactly (N-n) time periods before a
delivery is made if there is an additional demand before the
end of the N periods. In determining the expected total
delay cost for scheduled delivery with Y items on site where
there are (N-n) periods remaining for a delay, it is useful

to review the steps for obtaining the expected delay costs

for N periods as presented in Reference 1.

OGNy \.J
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Delays are a function of the number of configurations
that demands can take in N periods. The total number of
configurations where exactly x demands occur is expressed

by

) . (3)

The total number of configurations which can occur with at

least one demand is

N-1 (4)

To determine the expected total delay associated with the
n configurations given by (3), we first consider only those
configurations having exactly x demands where x > 1. The

probability of each such configuration is
P(x;N) = p*(l-pi7¥ . (5)

The number of configurations having a demand in period

1l <3j<Nis

a

N-1
(1) - (6)

It is significant that m is independent of j. Those

demands occurring in period j will have to wait until period

16
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N for delivery and hence each must wait N-j periods. The

e total of all delays for those configurations having x demands
([ is
N-1

(,_7) (N=3)
1 x-1

L TD(x,N) =

|
e~

ot i)
'-"1.";.'«'

Pd

N

N-1 .

= (P I (=3
j=1

N

o
[y
- Lo

..""l‘ *
o
C RN R

N(N-1)

TD(x,N) = s (N-l)

x-1

F oAy,
&d
Sl

. (7)

Pt

adin
AL From (5) and (7) we can find the expected total delays over
NS LAY

02 all x values:

2

g

A N

NN ETD(N) = )} TD(x,N)P(x,N)

NN x=1

BT

'\ <

R. ¢ - ? N(N-1) N-1) x g _.)N-X

e 2 x-1’" P 13

o x=1

10

3a bt

% _ ON(N-D) Y N-l, x N-x

20 ETD(N) = —=—= [ (,7) p" (1-p) . (8)
e x=1

A

L
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S By factoring the summed terms,

N
‘pro(wy = NN-UP Zl Gop P L -pi* .
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‘E&' The summation term is now equal to one and our expression
:ﬁi reduces to
{

o )

o erp(y) = MNP, (9)
N

Now, given that the last of the Y repair items is demanded

in the nth time period, it easily follows that there are

L

yxXacr
AN
2Ll

sf, (N-n) time periods remaining in which demands may occur, the
o expected total delays can be expressed as
Y
Yt

\Q
§,1 .1
z-‘ TD(N-n) = Non) m; n)-1lip (10)
Ld—.
o~
:%3 However, since there is a probability associated with n time
o periods being required for the Yth demand to occur, Equation
5,, (10) must be multiplied by that probability, given in (2),
,'\ and the result summed over n to get the expected total delay
ﬁﬁ over N time periods, given an on-site inventory of Y. The |
A expected total delay cost is: ‘
-V'u‘ ]
g. N |
ETDC(N;¥) = ca ] (BI1pY(1-p) PY (ARERLURERI Ry (g {
v W]
2 |
Vigt! : . .
A Upon examination of Equation (11), we see that for a
-

. fixed N, the expected total delay cost is monotonically

decreasing with an increasing Y. Furthermore, ETDC(N,Y) -+ 0

i 2 .
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2:5:
\:; D. COSTS INCURRED WITH THE ESTABLISHMENT OF Y ITEMS ON~-SITE
?;: Reference 2 identified two costs, special processing and
i% holding, associated with locating Y items on-site. Special
E:; processing costs, Cp, are those paperwork and processing
?3 costs charged when placing an item in an on-site store.

o If a quantity of Y items are placed into an on-site store the
fq total processing costs will be Cpy.

%: The space required to store on-site units must be large
;5 enough to accommodate all Y units. 1In addition, the cost of
éi that space can be expected to be constant even during periods
:< when the number of items on-hand are less than the quantity Y.
27 The total holding costs will therefore be Chy.

o

3 E. TIME INDEPENDENT DELAY COSTS

| The cost per unit associated with putting a component
é: ' aside when all Y spares are expended before delivery at time
$$ N will be denoted as S. This cost is assessed only at the

. time of the demand and is not therefore time dependent. It
§§ can include the cost of placing a component in storage and

Sﬁ documentation of the status of repair and requisitions. To

o

‘l

find the associated expected delay cost we must first find

the expected number of components that will suffer delays

DL |

because of lack of repair parts when required.

e If x is the number of units demanded in N periods, then

gé when x > Y the number of components set aside will be the

0 difference (x-Y). The probability distribution that describes
B the total number of demands for a series of independent

i

S
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Bernoulli trials is the binomial distribution. Therefore the

expected time independent delay costs are

N-1
s ) x=n Q) pF a-pNTF . (12)
x=Y+1

Note that the upper bound of the summation is N-1, for if a
demand occurs in the Nth time period it is assumed to be

filled immediately and no delay occurs.

F. SURPLUS COSTS

Reference 2 also examines surplus costs. The unit cost
for having a surplus of items in on-site inventory at the end
of N time periods is kC where C is the unit cost and k is
a factor which may be greater than 1.0. If x < Y, then the
cost of surplus in N time periods is kC(Y-x). The expected
total surplus cost may be found by the same method as the

time independent delay cost.

Y-1
kC J (2
x=0

) p¥X (1-p)NT¥ (13)

G. DELIVERY COSTS
When considering delivery cost, the cost associated with
making a delivery at time N will be denoted by the term Ct.

Since a delivery only can occur if the number of demands x

exceeds the on-site spares Y in N time periods, the probability

20
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}$ of x exceeding Y will be the sum of the binomial probabilities
} ( for x from Y to N. Therefore the expected delivery cost will
\

be:
\‘ﬁ-
X
=N N N X N-x

‘ ce } () p (l-p) . (14)
’1

*‘h

1

}\

Ay H. EXPECTED TOTAL COSTS WITH A FIXED N
N
;;§ The expected total cost over a fixed total number of
K™

':3 periods N is found by summing all of the expected cost
N
e elements described above.

%é ETC(Y;N) = (Special Handling ) + (Surplus)

420 ’ - + Processing Costs Costs

< + (Time Independent) + (Delivery)

;‘ Delay Costs Costs

§€ Time Dependent,

¥ + Delay Costs ) (15)
o Y-1 -

xﬁ ETC(Y;N) = (Cp+Ch)Y + kC (N) px (l-p)N X

> X

. N -

% +s § xv Q pF a-pt ¥

3 x=Y+1

N

e
e N N X N-x

X +ct ] () P (1-p)

A ! x=Y+1

’.:

Ry

& N n-1 n n-Y (N-n) ((N=-n)-1)p

. : +cd | () p (1-p) [ > ] .

‘l'\‘! n=Y

%g (16)
>

x,

E;
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This chapter has developed a formula for expected total
costs for a system which combines an inventory system for
on-site spares and a direct delivery model. Equation (16)
will next be analyzed in an attempt to determine the optimal

values of the decision variables Y and N.
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IIT. OPTIMIZATION ANALYSIS

Since N and Y can take on only discrete values, the use
of finite differences is appropriate for determining their
optimal values. However, since optimization formulas for N
and Y based on finite differences were as complex as the
original cost equation (16), an APL program was written which
numerically determined the expected total cost for a range of
N and Y values. The program is included in Appendix A. The
results were then plotted and optimal values were determined
by examination of the graphical results.

In order for this analysis to be comparable with Reference
1 and Davdison's analysis in Reference 3, the following values

were assumed for the cost terms:

Time dependent delay cost (Cd) $50 per unit per period
Time indepedendent delay cost (S) $20 per unit

Special handling cost (Ch) $0.01 per unit

Special processing cost (Cp) $1.00 per unit

Surplus cost (kC) $250 per unit

Since the total number of time periods and probability of
demand are likely to be fixed in practice, the analysis uses

fixed values of N and p and varies Y.

Figure 3.1 provides a look at the total cost of a scheduled

delivery scheme with fixed N between from 10 and 50 and

23
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p = 0.1. Although the total cost values are discrete, a curve
is drawn through those points for clarity. The N values were
chosen to illustrate the general shape of the curve for a
range of N. This figure also illustrates the convexity of
the curves when costs are presented on a linear scale. Subse-
quent figures will use a log scale for total costs to facili-
tate comparison between parameters and may not appear convex.

Note that the number of on-site spares, ¥, was limited
to a maximum value of N. This is consistent with the develop-
ment of the model because if Y exceeded N then the number of
on-site spares would always exceed total demand and this
situation clearly would not lead to an optimal solution,
The cost curves illustrate this observation as the total
cost approaches its maximum as the value of Y approaches N.
As would be expected with a small probability of demand,
the optimum value of Y is small relative to N. The time
dependent delay costs are small with low demand and the
surplus and épecial handling and processing costs will increase
with a large Y.

Figure 3.2 illustrates the components of the expected
total cost curve as described by Egquation (16) for the case
of N = 50. Figure 3.2 shows that the major components of the
total cost curve are the time dependent delay cost, Cd, and
the surplus cost, kC. For the given parameters, the delivery
cost, Ct, and the time independent delay cost, S, do not have
a significant impact on total cost. As expected, both of these

terms strictly decrease as Y increases. The special handling
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Figure 3.2 Components of the Total Cost with
N = 50 and p = 0.1.
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and processing cost term, increases linearly with increasing
Y but due to the value assigned to (Cp +Ch), the term has
little impact on total cost.

Figure 3.3 presents total cost curves on a log scale for
varying Y with a fixed N and three different values for the
probability of demand, p. The first graph in 3.3 represents
the same situation as Figure 3.1 but with costs presented
with a log scale. As can be seen from the graphs, as the
probability of demand increases so does the number of on-
site spares required for optimality for the same N. This is
due to the increase in both delay cost terms when the demand
exceeds Y, which is more likely with an increasing p. These
costs will outweigh surplus costs for excess Y, which are
less likely with increased probability of demand.

Figure 3.4 illustrates how the optimal value of Y varies
with N. The figure emphasizes the discrete values of N and
optimum Y. The distinct break points for p = 0.1 become less
pronounced as p increases, becoming nearly linear as p ap-
proaches 1.0. When p = 1.0, Y = N, both delay cost and

surplus costs will be zero, and the only costs with a positive

}‘.

value will be the Ch and Cp terms, which are linear in Y.

"
U N

This result should apply whenever Ch and Cp are much less

7

than Cd, S, and kC.
Figure 3.5 shows how the total costs vary over a range of
probabilities of demand for a fixed N and selected Y values.

These graphs also show that for a given N value, systems
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with low probability of demand require smaller on-site stores
to minimize total cost, as was noted earlier.

Figure 3.6 shows the relationship between optimal Y and
the probability of demand for three values of N. Though p
is continuous, for the purposes of illustration, the proba-
bilities of demand are varied from 0.1 to 1.0 with increments
of 0.1. Again, as probability of demand approaches 1.0,
the optimum value of Y approaches N. For the given set of
cost parameters these plots show that optimal Y is approxi-
mately equal to the expected demand pN. The relationship
between Y and pN becomes more nearly linear with increasing

N.
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) IV. COMPARISON TO A SCHEDULED DELIVERY
, SYSTEM WITHOUT ON-SITE SPARES
]ﬁ
é; Davidson in Reference 3 performed a parametric analysis
b of costs of a scheduled delivery system with no on-site
g} spares. The cost equation used by Davidson was developed by
N‘
3 McMasters in Reference 1 and is of the form,
Ak,
N N
3% N > N .
2 (1-p)
LY
e
. Equation (17) describes the expected costs per period and
I
‘ X there are only two cost elements, delay cost and delivery
Y
A& cost. For a comparison between (16) and (17), an adjustment

to (17) was made. Eguation (17) was multiplied by N to
obtain a total cost value over N and the time independent

delay cost term from (16) was added. The result is Equation

L g

‘ (18) .

o

3 N

T ETC(N) = Cd[EiE%llB] + S z (ﬂ)?x(l'P)N-x
x=1

)

£,

e,
re

N
sct ] Mpfa-pV=x . (18)
x=1 *

s )

The expected total costs of both (16) and (18) were

numerically evaluated using the same values for Cd, S, and

Ct as the examples presented in Chapter III. The Cp and

RN 33
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Ci)
f; Ch terms in (16) were also the same as those used in Chapter
';3:3 III.
yé . Table la presents the results of the comparison when the
Sﬁ probability of demand is 0.1. It displays the total expected
?3 ) cost for the two models. Model 1 corresponds to Equation (16)

3 with an optimal number of on-site spares, and Model 2 corres-
%2 ponds to Equation (18) for the same N values. Tables 1lb and
l‘* lc present the results for probability of demand of 0.5 and
f~: 0.8, respectively. As Table 1 shows, the model employing an
ﬁg optimal number of on-site spares has a smaller expected total
:Q cost than a system not employing on-site spares and the
EEE savings provided by an on-site system can be significant.

fj The total expected costs with no on-site spares start substan-
'?: tially higher for all three probability values, and increase
jﬁ; faster with increasing N than they do for the on-site spares
;;é model. This difference can be explained by the impact of the
Wy Cd term. In the case of no on-site spares, the Cd term,
.
% caN (.I;-l) P

3
;% increases at a geometric rate with an increasing N, whereas
255 in the on-site model, cost savings are achieved by delaying
';j the application of the Cd term.
?é A key question in the future comparison of these two
;s ' models will be: "At what point do the costs of the imple-
Y ] mentation of an on-site system no longer make it preferable
%% to a system without on-site spares?"
4
e 34
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o Comparison of Model 1 and Model 2 with p = 0.1, 0.5, 0.8
{

.= Table la

- Probability of Demand = 0.1

Y

Number of Total Expected Total Expected
"; Periods Costs Model 1 Costs Model 2
i

X 10 172.29 310.13

N 20 305.65 1077.84
s 30 432.70 2330.76
"ﬁ 40 506.33 4078.52
BTy 50 587.53 6324.48

ke Table lb

o

ao Probability of Demand = 0.5

~

\,‘

A Number of Total Expected Total Expected
- Periods Costs Model 1 Costs Model 2
o 10 240.95 1324.70

3 20 371.01 5049.50

R 30 485.14 11275.00

e 40 591.55 20000.00

‘.£ 50 693.14 31225.00

3*‘ Table lc

g& Probability of Demand = 0.8

)

' Number of Total Expected Total Expected
A Periods Costs Model 1 Costs Model 2
5 10 169.41 463.5

Py 20 254.17 8015.39

%}; ' 30 328.71 17979.23

) 40 397.93 31939.89
‘;: ’ © 50 463.7 49899.48

",t‘i:",-
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Upon examination of Equation (16), we find that the
special processing and handling costs, (Cp +Ch), and the time
independent delay costs, S, can be examined to answer this
question. The condition of indifference between the two

methods is described by equating (16) and (18), or,
ETC(Y*;N) = ETC(N)

where Y* is the value of Y that minimizes total expected

costs.

Both the (Cp +Ch) term and the S term will affect the
value of Y¥Y* as they are varied. The effect of the (Cp +Ch) term
is suggested as follows. Suppose that we represent Equation

(16) by
TVC = fl(y) + (Cp+Ch)Y , (19)

where £f(Y) represents all other cost elements of the equation
excluding (Cp +Ch). If Equation (19) were continuous in
Y we could take the derivative with respect to Y and set the

result equal to zero, or,

aTve dfl(Y)

Rearranging terms gives,
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s

dfl(Y)

—av = =-(Cp+Ch) , (21)

and Y* could be determined from Equation (21). Equation
(21) clearly shows that a change in Cp +Ch will affect the
value of Y¥*,

The determination of the breakeven point for the (Cp +Ch)
term can be found by fixing the value of all parameters with
the exception of (Cp +Ch) and determining Y*. The expected
total cost of (16) with Y* and N is compared to (18) with the
same ﬁi The value of (Cp +Ch) is varied and Y is recomputed
and again the total costs of the two equations are compared.
The process continues until the value of (Cp +Ch) is found
that makes the expected total cost of (16) and (18) equal.

The effect of a change in S, the time independent delay
costs, with respect to ¥Y* is similar. Any change in S will
change the shape of the total expected cost curve which in
turn will affect ¥Y*. The procedure described above can be
used to find the breakeven point for S.

Variation of the Ct and Cd values will have no effect on
the preference of the model described by (16) over that des-
cribed by (18). Upon examination of the Ct and the Cd terms
in Equation (16), it is easy to see that the expected costs
of these two component terms are maximized when Y = 0. Clearly
at that point, the terms in Equation (16) are identical to
their analog in (18). Therefore, a change in either Ct or

Cd will not affect the preference of (16) over (18).
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V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

This thesis addressed the problem of supply support for a
NARF by the local NSC. A model using a combination of
scheduled deliveries from the NSC and on-site spares at the
NARF was developed. The optimal results of the model were
obtained for several values of the probability of demand.
These results were also compared to an earlier model for
scheduled delivery without on-site spares, developed in
References 1 and 3.

The most noteworthy point of this thesis is that the model
that uses on-site spares was found to have significantly lower
total expected costs than the model that does not use on-site
spares. Although several of the cost values chosen were
hypothetical since data for the delay costs does not exist,
they do serve to provide a relative comparison. If the actual
values of the cost parameters can be established, the analysis
can be repeated easily to determine how much better performance
can be obtained with a combined on-site spares/scheduled
delivery model than with the pure scheduled delivery model, and
the optimal number of on-site spares.

Also of note is the utility of Figures 4 and 6 in the
management of a supply support system. If such a set of

figures were available for actual cost values and changes did
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occur in the probability of demand for an item, or the
total number of time periods, the new optimal number of

on-site spares could be readily determined from such figures.

B. RECOMMENDATIONS

McMasters in Reference 2 proposed two other delivery
methods. One method assumed that a delivery is delayed until
some fixed number of units of an item have been demanded.
Delivery is then assumed to take place as soon as the last
demand occurs. The second method starts by counting time from
when the first demand occurs after the truck has returned from
the NARF and is ready for further deliveries. Delivery is
made M-1 periods after the first demand. These two models
should also be evaluated since they might provide lower costs
than the current scheduled delivery model when combined with
the on-site stocking.

However, comparison between the three combinations of
on-site delivery when those inventories are depleted will
require the evaluation of total variable costs per time period.
Thus, a renewal argument will be needed. The basis for that
argument has already been established by Reference 1. The
first step of such an analysis is to relax the constraint
imposed in Chapter II that n < N. 1In fact, n has an infinite
upper bound as Equation (2) has indicated. From Equation (2)

the probability of no delivery in the first N periods is

Y p(n;y) , (22)
n=N
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3 and the probability of no delay during the first delivery
AR

NI period is

'_.

v

“

<z ®

¢ ] pin;y) . (23)
+ n=N-1

&

q These two probability statements can be subdivided into
*l

a sequence of many periods of length N. We can then consider

the possibilities of Y not being used up in N periods, 2N

LN

periods, etc., and extend the model of Chapter II to cover

ol

those mutually exclusive alternatives.

c»’

Finally, an aspect which should be considered in these

e
PR P

two delivery methods is when the on-site spares should be

-

ot

replenished as this event constitutes a renewal. Perhaps
ff . the next delivery after Y has been depleted should include Y

units in addition to the demands which have occurred since

,.'1. Pay

the first Y was depleted.
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APPENDIX A

APL PROGRAM FOR NUMERICALLY EVALUATING EXPECTED TOTAL COSTS

e GTEST
{17 annnARAAARARRARARAARRARARARAARRARRRARRRAARARARAARAAAAAARARARARARRAARAA
{21 » THIS APL FUNCTION COMPUTES THE EXPECTED TOTAL COST OF A
{31 @& COMGINED ON-SITE SPARES/SCHEDULED DELIVERY SYSTEM. THE TOTAL
(4] & NUMBER OF PERIODS N. IS INPUT BY THE (iSER AND THE FUNCTION
{5] o COMPUTES TOTAL COSTS FOR THE SYSTEM WITH THE NUMBER OF ON-SITE
(6] » SPARES VARYIMG FROM § TO N. THE RESULTING ARRAY IS THEN EXAMIMED
[7] o TO DETERMINE THE VALUE OF Y THAT YIELDS THE LEAST TOTAL COST.
[8] » THE ARRAY OF Y VALUES NITH THEIR CORRESPONDING TOTAL COST ARE
{91 & PRINTED ALONG NITH THE VALUE OF Y THAT MINIMIZES TOTAL LOST.
[10] AARARARARAARARRARAAARRRARARAARAANARGARANAARNARAARAARRHARAARAAARARARAARA
($1 2 VARIABLE NAKES ASSIGNED TO PARAMETERS
[12) » P{--===—==——-PROBARILITY OF DEMAND

(131 & CD--mmommmeeme TIAE DEFENDENT DELAY COST
(14 0 CP-—mvovmmemee FROCESSING COST .
b I ¥ HOLDING COSY

[16] »  §----------—--TINE INDEPENDENT DELAY COST
(1718 KC-m-oommmemme SURPLUS PENALTY

(8] ¢ (LT-------~———DELIVERY COST

(191

{297 ARARAARAARRARARAAARNARAARRAAAARRAAAAANRANRRARRARAAARKARRARRARARAAARAAR
(211

[22) & THE FUNCTION PRONPTS THE USERS FOR TOTAL MUsBER OF FERIOD.

[23] ‘ENTER N'

[24) Nel

{25)

[25] NARAARARARAAARARAAANAAAAARARARARANRANARARARARAAARARAAANRAAANAARARRARA
(2n

(28] » PARAMETER INITIALIZATION

(291 #ATS¢ i 2 90

(361 Pi#d.5

[(3f] CDeSH

[32) CPef

(331 CHed.i

[34] S¢20

(351 KCe250

[36] CTetoo

(371

[38] AARARAANARRAAAARARARAARARAARAARARAAAARAANRARRARRAARARARRARARARARARARAN
rsmn
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[40] # ECHD OF PARAMETER VALUES

[41] 'PROBABILITY CF DEMAND ' TP

[42] 'DELAY COST o 18]

(431 'PROCESSING COST ', TP

{44] 'HOLDING COST ', 7CH

[45) 'SHORTAGE PEHALTY "1

[43] 'SURPLUS FEMALTY o | (M

[47] 'DELIVERY COST 1T

{48]

[49] AARARAAARAAAARARRAAARARRARAAANARRARARARRAARANRARRAARAARARARRAARARAARAAR
(56}

[54] » COUNTER FOR VALUE OF Y INITIALIZED AND RANGE OF Y ESTABLISEED

(527 A AND PARAMETERS FOR BINOMIAL PROBABILITIES ARE INITIALIZED.

[531 L1:COUNTERef

[54] TIKEeN

(551 ONSITEHTINE

[56] PAR+TIKE,P{

(57

(58] AAAANAARRARARARAAARAAARARAANAARARARARRRRNARRNARRAARANARAARARARARARAARG
{591

{406 n BEGIN ALGOR1TRM TO COMFUTE EXFECTED TOTAL COST

(611 » NEXT VALUE OF v SELECTED

[62] L2: YeONSTTE[COUNTE]

[63] o THE EXPECTED COST OF THE TIHE INDEPENDENT DELAY CLST IS COMPUTED
[64] » USING A FUNCTION THAT DETERWINES TOTAL EXPECTED DELATY AS LESCRIZED
{651 » IN EGUATION (14).

[66] ATeCDXY NEGBIN TIME

[én

[58] NARRARRAARARARARARARARRARAAAANRARARARARIAARARAARANNARAAARAANARARARAAAR
[491 o SPECIAL HANDLING AND PROCESSIHG COSTS ARE DETERSINED BY MULTIFLYING
[78] » (CP+CH) AND THE CURRENT VALUE OF Y.

[T1] A264CP+CH)zY
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(72
(73] ARRARRARARARANARAAARAARARRARAARARRARARARARAARRAKARARAAARAAANRRARARARAA
{74}
(751 » THE TIME INDEPENDENT DELAY COSTS, SURPLUS COSTS, AND DELIVERY LOSTS
{74 & ARE DETERMINED BY MULTIPLYING EACH PARAMETER NITH A FUNCTIOM
[771 & THAT EVALUATES THE EXFECTED NUSBER TINE PERIODS DELAYED, SURPLUS
[78) & UNITS, AND PROBABILITY OF A DELIVERY, RESPECTIVELY.
[791 AJeSx{')',(7Y)) BINOMIAL3 PAR
[806] A4ekCx('(',(TY)) BINCHIAL2 PAR
(811 AS«CTX('}',(¥Y)) BINOMIAL PAK
(82)
[83] AMRAARARARRRANAAARAAARRAARARAAARAARAARRANAARRARRARRANARAAARRARAAAARNR
[84)
(85 » THE SUM OF ALL TERMS IS COMPUTED AND THE RESULTED IT PLACED
(846 a IN AN ARRAY
{871 TOTALEAT+A2+4AT+A44AS
(88] LINEt#?,TOTAL
{891 MATieHATi, {17 LIMES
[99]
[91] AARARRARARARARRRARARAAARARRARRAARRARARARAAARAAARARARARRARRANRAAARARRA
[922)
[93) a THE VALUE OF Y IS INCREASED AND CHECKED TO SEE IF IT EXCEEDS
{94] » THE TOTAL MUMBER CF FERIDDS,
(951 COUNTER-COUNTER#
[96] <+(COUNTER(TINE)/L2
(971
[98] AARARAAANRAAARARAAAAAANAARANARRARARARRANAARARANANAARRRARAARARARRRRARA
(991
[199] # THE ARRAY IS PRINTED AMD ANOTHER FUNCTION DETERMINES THE VALUE
[f61] & OF Y THAT MINIMIZES EXPECTED TOTAL COSTS.
[102) MATi& § & ¥HATY
[183] FRINT dATH
(194 +
v
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