
AD-fl142 855 A MODEL FOR NARF (NAVAL RIR REWORK FACILITY) SUPPLY i/l
SOPPORT WHICH INCLUDE..(U) NAVAL POSTGRADUATE SCHOOL
MONTEREY CA V D BERRY MAR 84

UNC LASSIIED G 155

IIIIIIIIIIIIII...
IIIIIIIIIIIIII...f
Eu....'



IL25 1lAM 166

MICROCOPY EOUINTS HR

NATIONAL BUR AUO NAD-%



NAVAL POSTGRADUATE SCHOOL
Monterey, California

It

0

'44

THESIS
A MODEL FOR NARF SUPPLY SUPPORT

WHICH INCLUDES BOTH
ON-SITE SPARES AND SCHEDULED DELIVERY

C_
by

LAU
I Vance D. Berry, Jr.

C. March 1984

* Thefsis Advisor: A.W. McMasters

Approved for public release; distribution unlimited.

84 07 11 043

. '. ... *."( , .;r;i '! ,' ' '.r ,., . .. .,. . ,.,.. ,,... . ... , ..... . ,. . , .". .. . . ;,....



.

UNCLASS IFIED
SECURITY CLASSIFICATION OF THIS PAGE (lten Does Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REORT NMBER2. GvACE 1 04I~ NT'S CATALOG NUMB3ER

4. TITLE (and SabtlIls) 5. TYPE OF REPORT & PERIOD COVERED

A Model for NARF Supply Support Which Master's Thesis;
Includes Both On-Site Spares and March 1984
Scheduled Delivery 6. PERFORMING ORG. REPORT NUMBER

7. AUTMOR() I. CONTRACT OR GRANT NUMIERra)

Vance D. Berry, Jr.
9. |*EP6ORMINGORGANIZATION NAME AN AOOESS 10. PROGRAM ELEMENT, PROJECT, TASK

Naval Postgraduate School AREA I WORK UNIT NUMBERS

Monterey, California 93943

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Postgraduate School March 1984
Monterey, California 93943 45 UNSEROPPAGES

__ _ _ _ _ _ __._ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _45

14. MONITORING AGENCY NAME & AODRESS(II dillfernt tain Controllng Office) IS. SECURITY CLASS, (of thie report)

Unclassified

1ea. DECLASSIFICATION, DOWNGRADING
SCHEDULE

1S. DISTRIBUTION STATEMENT (ol tlhis fIoetl)

Approved for public release; distribution unlimited.

17. DISTRIUTION STATEMENT (el tIhe abstract see ed In Block 20, It different tDi Report)

I#. SUPPLEMENTARY NOTES

19. KEY WORDS (Conewe anl eirvee eide It noeset' ? ae d Ide ntifyt by block number)

Inventory Models Depots
Inventory Control Physical DistributionScheduled Delivery

Trade Off Analysis

20. ABSTRACT (Colhatttf am roerwe. aide It necessay and idenfy by block nuber)

*Supply support of a Naval Air Rework Facility (NARF) should
consider both on-site inventories of spare repair parts as well
as back-up resupply from the local Naval Supply Center (NSC).
This thesis presents a model for such a system for a limited time
horizon. the decision variables are the number of units of an
item to stock on-site and the length of time between deliveries
once the on-site inventory is depleted. The determination of

DO I1 1473 EDITION OF I NOV 6 IS OBSOLETE UNCLASSIFIED
S/N 0102* LF. 014- 6601 SECURITY CLASSIFICATION OP TIS PAGE (Whenl Dte nte*,

,'..



UNCLASSIFIED
S5CuRIY CLASSIFICAION OF THIS PAGZ (11km, DAIS En#...4

* - #20 - ABSTRACT - (CONTINUED)

the optimal values of these variables required evaluation
of the total expected variable costs for each given set
of parameters. After identification of optimal values
of both decision variables, a comparison between the
minimum total expected costs of this model and an earlier

.-"model without on-site spares was conducted. The results
. suggest that the on-site spares model is preferable to one

without spares. However, because the outcome of such a
comparison is strongly dependent on the cost values
assumed, additional analyses are needed before a general
statement can be made.

Acogslon For

NTIS GRA&I
DTIC TAB
Unannounced 'I
Justification

By ,
Distribution/ 71
Availability Codes

jAvail and/or
Dist Special

N 0102- L.- 014- 6601 2 UNCLASS IFIED
j . ~ ~SECuMITY CL.ASS/IFICATION OF THIS PAGg~ffrhn DeGIS Bnf*ed)

-!-2%



Approved for public release; distribution unlimited.

A Model for NARF Supply Support
Which Includes Both

On-Site Spares and Scheduled Delivery

by

Vance D. Berry,Jr.
Lieutenant, United States Navy

B.S., United States Naval Academy, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL

March 1984

Author: _- _.

Approved by: _ ___________ __

Thesis Advisor

Second Reader

Chai mfan, Department of Operations Research

Dean of lnformL ndPicy Sciences

3

UP. - - . . . . S -



ABSTRACT

Supply support of a Naval Air Rework Facility (NARF)

- should consider both on-site inventories of spare repair

parts as well as back-up resupply from the local Naval Supply

Center (NSC). This thesis presents a model for such a sys-

tern for a limited time horizon. The decision variables are

the number of units of an item to stock on-site and the length

of time between deliveries once the on-site inventory is

V depleted. The determination of the optimal values of these

variables required evaluation of the total expected variable

costs for each given set of parameters. After identification

* of optimal values of both decision variables, a comparison

between the minimum total expected costs of this model and

an earlier model without on-site spares was conducted. The

results suggest that the on-site spares model is preferable to

one without spares. However, because the outcome of such a

comparison is strongly dependent on the cost values assumed,

additional analyses are needed before a general statement can

be made.
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I. INTRODUCTION

A. BACKGROUND

In 1978, the Department of Defense Material Distribution

System Study recommended the consolidation of wholesale

supply support between the Naval Supply Centers (NSC) at

Norfolk, San Diego, and Oakland, and their local Naval Air

Stations.

As part of a study of how to improve the local area

material distribution at Oakland and San Diego, McMasters

[Ref. 1: pp. 1-6] addressed the problem of providing supply

support for the Naval Air Rework Facility in each air station.

In that report, he suggested several support methods. One

was to provide on-site inventories at the NARF. The advan-

tages of such a plan would be quicker response time to the

customer, reduced transportation costs, and reduced customer

delay costs. The costs of maintaining a separate inventory,

however, would be a disadvantage. Another support method was

through direct delivery by the NSC, with no on-site spares. A

third possibility was a combination of the two methods; on-

site inventories at the NARF with direct deliveries from the

NSC when demand exceeds on-site inventories. The optimum solu-

tion of such a problem should be a trade off between customer

needs, delivery costs, transportation costs, and costs which

result from maintaining a separate inventory.

7



. . . . . . .

in the process of modelling these alternatives, McMasters

%5i [Ref. 2: pp. 4-14] developed a model for determining the

depth of repair parts to be stocked on-site using a time

V independent delay cost. This model also addressed costs of

establishing an inventory on site, penalty costs for being

out of stock at some time before the end of a fixed time

period, and surplus costs for having units remaining at the

end of the fixed time period. He also modelled three alterna-

tive methods of providing direct delivery support [Ref. 1:

pp. 7-42). The costs included in these models were delivery

costs, time dependent customer delay costs, and time indepen-

dent customer delay costs. No attempt was made to combine

V the models.

B. PURPOSE

This thesis will develop a model which combines both an

inventory system for on-site spares and a direct delivery

model. The direct delivery model to be used is the scheduled

delivery model which provides for delivery of all demands at

the end of every N periods if there is at least one demand

during those N periods. The cost of a delay for this model

will include a time dependent as well as time independent

costs. The resulting formulas will be subjected to parametric

analysis for determination of optimum methods. The objective

of the model will be to determine the on-site quantity which

minimizes the total costs over N periods.

8



C. THESIS ORGANIZATION

Chapter I gives the background of the problem, the purpose,

and the organization of this thesis. Chapter II establishes

the probabilistic basis of the time dependent delay costs

incurred by the NARF waiting for delivery from the NSC, given

that there are N periods of time between deliveries. This

result is conditioned by the probability that the on-site

items are consumed before the end of N periods. Each element

in the total cost equation is also examined, and the associated

expected values are developed. Chapter III analyzes the model

developed in Chapter II and seeks to identify the optimum

number of on-site spares for various values of important

parameters. Chapter IV compares the total cost results using

no on-site spares and scheduled delivery as determined by

Davidson [Ref. 3: pp. 18-351 to the optimal results of Chapter

III. Chapter V summarizes the finding of Chapters III and IV

and makes recommendations as the possible uses of the results

and areas of further research.

9
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II. MODEL DEVELOPMENT

This chapter develops the combination of an on-site

inventory system and the scheduled direct delivery models of

References 1 and 2.

A. ASSUMPTIONS

The work load schedule at a NARF is such that inductions

of a component into overhaul occur at a specified constant

rate during a quarter. As a consequence, the time between

inductions is also a specified constant and can be used as a

convenient measure of time. In this thesis it will be referred

to as a time "period."

Under scheduled deliveries without an on-site inventory

5' - system, the NSC's truck makes a delivery at the end of every

N periods if there is at least one demand during the N periods.

If, however, stock exists on-site then it can be used to fill

demand and thus reduce the chance that the truck will need to

make a delivery during N periods.

In the development of the combined model the following

assumptions will be made:

1. The time between potential demands is the time between

inductions of a component.

2. At most one unit of a given repair part is required by

each aircraft component undergoing rework at a NARF.

10



3. The probability that the component requires the repair

part is p.

4. There are Y spare units of a given part on-site that

will be consumed before requisitioning additional units

from the supply center.

5. Delivery will be made at the end of N periods if at

least Y+l units are demanded during N periods.

As an example of the process, consider Figure 2.1. There

are six inductions per quarter, and Y = 1. The probability

that a part will require replacement is 0.4. The first period

induction requires a spare which is satisfied by the on-site

spare. The induction of periods 2 and 3 do not require spares.

Another spare is required in period four and, since no stock is

available, the part is requisitioned from the local NSC. An

additional spare is required in period six creating two shortages

during the quarter. Since delivery is scheduled for the end

of the quarter, delivery of both parts will be made to the NARF.

The process will continue during the next quarter with the

assumption of Y spares on-site.

02 4 6

Figure 2.1 Example of Schedule Delivery with on-site
Spareswith N =6, Y = 1, and p = 0.1.



Cost elements of the model will include Ct, the total

round-trip costs of a delivery. These include the costs of

a truck and a driver from the time it starts loading at the

* * 4NSC to the time it returns to the NSC from its delivery.

-~ There also will be special handling costs, Ch, and processing

costs, Cp, incident to the expense of establishing a unit in

inventory on-site at the NARF.

Delay costs are costs incurred at the NARF as a conse-

quence of not having a needed part the instant it is required.

Two elements will compose the delay costs. One is S, which

;4~ is the cost associated with putting a component aside. The

second element is Cd, a time dependent delay cost, which will

represent the delay cost per demanded unit per period. This

element may include labor cost due to work stoppage, inventory

holding costs, and cost associated with the non-availability of

a repaired component to a fleet unit.

B. DETERMINISTIC DEMAND

If demand from a customer occurs with certainty once

every time period, the demand is deterministic. If a truck

is dispatched every time a demand is received, the cost per

unit delivered is Ct. If k demanded units are allowed to

accumulate before delivery then the cost per unit delivered

is Ct/k. If the truck capacity is n units, then the delivery

cost per unit is minimized by waiting until the truck is full.

If Y > N, there will be no delays as the on-site spares

will satisfy all demand requirements of the system. However,

12
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if Y < N, and if we define k as (N-Y), then as k units accumu-

late, the NARF experiences delay costs from lost production

while awaiting parts. If we refer to the cost of delay of

one time period as Cd, and if the NARF must wait until k

demands are accumulated before the supply center makes a

delivery, the total delay cost incurred by the NARF is

Cdk(k-i)

This formula is based on the deterministic demand of one

unit per time period. If a unit is demanded during the first

period after a delivery then there will be a delay of k-i

periods until the arrival of the spare. Likewise, a demand

on the second time period after a delivery will have a delay

of k-2 time periods. So the total delay time from delivery

to delivery will be

(k-l) + (k-2) + ... + 1 + 0 k(k-l)
2

which can be rewritten, with the addition of the Cd term,

as

Cdk (k-l) (1)

2

C. RANDOM DEMAND

Equation (1) assumes that a demand is made every period.

:This is analogous to a part that is replaced in every component

q "13



undergoing an overhaul. If the repair part has a proba-

bility, p, 0 < p < 1, that it will be replaced in the component

during overhaul, we then must consider a case where delay

costs are a function of the probability of demand, as well

* as N and Y. Our goal is how to determine the expected costs

per period associated with the system.

The first stage of development will determine the expected

total delay time given that there are Y repair items on-site.

In order for a delay to occur, there must be Y+1 units demanded

before the end of the Nth time period. If we consider the

.:. .process of replacement of a part of a component as an indepen-

dent Bernoulli trial with probability p, then we must determine

A" the distribution of the number of independent Bernoulli trials

required for Y demands during N periods. This process is des-

cribed by the negative binomial probability distribution.

Let n be the number of trials (periods of demand), neces-

sary to observe Y demands. Clearly, the range of n is

R = Y,Y+l, ..., -. The negative binomial probability function

for a giv-n Y is

= n- Y n-Y (2)

where

~~~n [ Y,Y+I, ..

14
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In our problem, (2) represents the probability that it

will take exactly n periods for a total demand of Y to occur.

As an example of Equation (2), let us say there are a total

of 6 time periods, (N = 6), and the number of units on hand,

Y, is one. The probability, p, of a demand during each time

period is 0.4. The figure below illustrates the probability

that the Yth demand first occurs on each of the periods one

through six. Since we have restricted the range of n to have

an upper bound of N = 6, the sum of the probabilities will

be less than one.

0.1608 0.1920 0.1728 0.1382 0.1037 0.0744

.p I I . . I

o 2 3 4 5 6

Figure 2.2 Distribution of Negative Binomial with
n = 1, N = 6, and p = 0.4.

Given that it takes n periods for the Yth demand to

occur, there will be exactly (N-n) time periods before a

delivery is made if there is an additional demand before the

end of the N periods. In determining the expected total

delay cost for scheduled delivery with Y items on site where

there are (N-n) periods remaining for a delay, it is useful

to review the steps for obtaining the expected delay costs

for N periods as presented in Reference 1.

15



Delays are a function of the number of configurations

that demands can take in N periods. The total number of

configurations where exactly x demands occur is expressed

by

n = N) (3)
nx x

The total number of configurations which can occur with at

least one demand is

N N N 2N-1n = nx = N ( 2 (4)

x=l x=l

To determine the expected total delay associated with the

n configurations given by (3), we first consider only those

configurations having exactly x demands where x > 1. The

probability of each such configuration is

P(x;N) = px (l-p) N-x (5)

The number of configurations having a demand in period

1 < j < N is

SN-1I6

m = (n-l) . (6)

It is significant that m is independent of j. Those

demands occurring in period j will have to wait until period

16
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*.P. N for delivery and hence each must wait N-j periods. The

total of all delays for those configurations having x demands

is

!4 N- N
TD(xN) N(N- ) (N-j)

jl

NN-1)I (N)

TD(x,N) N(N-1)2 x-1 (7)

From (5) and (7) we can find the expected total delays over

*all x values:

N
ETD(N) = [ TD(x,N)P(x,N)

x=1

N N (N-i) N-1 x N- x

x~i 2 x-1) (l-p)

N(N-l) N-i x N-x(8
ETD(N) = N px) p (1-p)

By factoring the summed terms,

N(N-l) P N N-I x-I N-x
ETD(N) = I x-1 p (l-p)

x=l

17



The summation term is now equal to one and our expression

reduces to

ETD(N) N(N-i)p (9)

Now, given that the last of the Y repair items is demanded

in the nth time period, it easily follows that there are

(N-n) time periods remaining in which demands may occur, the

expected total delays can be expressed as

TD(N-n) (N-n) [(N-n)-lip (10)2 (

However, since there is a probability associated with n time

periods being required for the Yth demand to occur, Equation

(10) must be multiplied by that probability, given in (2),

and the result summed over n to get the expected total delay

over N time periods, given an on-site inventory of Y. The

expected total delay cost is:

N n-i Y- Nn ((N-n)-l)p1 .(i

ETDC(N;Y) = Cd N (n- 1 )p (p) nY(Nn) 2 (1)

n=Y

Upon examination of Equation (11), we see that for a

fixed N, the expected total delay cost is monotonically

decreasing with an increasing Y. Furthermore, ETDC(N,Y) -+ 0

as Y approaches (N-l).

18



D. COSTS INCURRED WITH THE ESTABLISHMENT OF Y IESON-SITE

Reference 2 identified two costs, special processing and

holding, associated with locating Y items on-site. Special

processing costs, Cp, are those paperwork and processing

4 costs charged when placing an item in an on-site store.

If a quantity of Y items are placed into an on-site store the

total processing costs will be CpY.

The space required to store on-site units must be large

enough to accommodate all Y units. In addition, the cost of

that space can be expected to be constant even during periods

when the number of items on-hand are less than the quantity Y.

The total holding costs will therefore be ChY.

E. TI.ME INDEPENDENT DELAY COSTS

The cost per unit associated with putting a component

aside when all Y spares are expended before delivery at time

N will be denoted as S. This cost is assessed only at the

time of the demand and is not therefore time dependent. It

can include the cost of placing a component in storage and

documentation of the status of repair and requisitions. To

find the associated expected delay cost we must first find

the expected number of components that will suffer delays

because of lack of repair parts when required.

If x is the number of units demanded in N periods, then

when x > Y the number of components set aside will be the

difference (x-Y). The probability distribution that describes

the total number of demands for a series of independent

19



Bernoulli trials is the binomial distribution. Therefore the

expected time independent delay costs are

N-1 -
S I (X-Y)( N) pX (lp)N-x (12)

x=Y+I x

Note that the upper bound of the summation is N-l, for if a

demand occurs in the Nth time period it is assumed to be

filled immediately and no delay occurs.

F. SURPLUS COSTS

Reference 2 also examines surplus costs. The unit cost

for having a surplus of items in on-site inventory at the end
4

of N time periods is kC where C is the unit cost and k is

a factor which may be greater than 1.0. If x < Y, then the

cost of surplus in N time periods is kC(Y-x). The expected

total surplus cost may be found by the same method as the

time independent delay cost.

kC Yl 1N px (lp)N-x (13)
x=0

G. DELIVERY COSTS

When considering delivery cost, the cost associated with

making a delivery at time N will be denoted by the term Ct.

Since a delivery only can occur if the number of demands x

exceeds the on-site spares Y in N time periods, the probability

20



of x exceeding Y will be the sum of the binomial probabilities

for x from Y to N. Therefore the expected delivery cost will

be:

'

Ct N (N) pX (l-p) N-x (14)
x=Y+I

H. EXPECTED TOTAL COSTS WITH A FIXED N

The expected total cost over a fixed total number of

periods N is found by summing all of the expected cost

elements described above.

ETC(Y;N) Special Handling + (Surplus
Processing Costs " Costs

" (Time Independent + (Delivery)
Delay Costs Costs

" (Time Dependent (15)Delay Costs

Y-I

ETC(Y;N) = (Cp +Ch)Y + kC 1 (N) pX (l-p)N-x
x=0

N N x N-x
+S I (x-Y) (N) p (1-p)

x=Y+l

+ Ct x (N pX (l-p) N-x

x=Y+l

N n-l n n-Y (N-n) ((N-n)-l)p .
+ Cd I (Y-1) p (l-p) 2

n=Y
(16)

21
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This chapter has developed a formula for expected total

costs for a system which combines an inventory system for

on-site spares and a direct delivery model. Equation (16)

will next be analyzed in an attempt to determine the optimal

-values of the decision variables Y and N.

22
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III. OPTIMIZATION ANALYSIS

Since N and Y can take on only discrete values, the use

of finite differences is appropriate for determining their

optimal values. However, since optimization formulas for N

and Y based on finite differences were as complex as the

original cost equation (16), an APL program was written which

numerically determined the expected total cost for a range of

N and Y values. The program is included in Appendix A. The

results were then plotted and optimal values were determined

by examination of the graphical results.

In order for this analysis to be comparable with Reference

1 and Davdison's analysis in Reference 3, the following values

were assumed for the cost terms:

Tiedpnetdlycs .d 5 e ntprpro

Time idependent delay cost (Cd) $50 per unit prpro

Tpeime anpdlnetde cost ( ) $0.0 per unit

Special handlsing cost (C) $0.01 per unit

Surplus cost (kC) $250 per unit

Since the total number of time periods and probability of

demand are likely to be fixed in practice, the analysis uses

fixed values of N and p and varies Y.

Figure 3.1 provides a look at the total cost of a scheduled

delivery scheme with fixed N between from 10 and 50 and

23



PROBABILITY OF DEMAND=0.1

-~ N=50

x

N-=40

0

_j N=330
0

0
i- x

0
C)

I??

N=10
0

10 20 30 40 50

NUMBER OF ONSITE SPARES, Y

Figure 3.1 Total Cost as a Function of On-site
Spares with Varying Values of N.
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p =0.1. Although the total cost values are discrete, a curve

is drawn through those points for clarity. The N values were

chosen to illustrate the general shape of the curve for a

range of N. This figure also illustrates the convexity of

the curves when costs are presented on a linear scale. Subse-

quent figures will use a log scale for total costs to facili-

tate comparison between parameters and may not appear convex.

Note that the number of on-site spares, Y, was limited

to a maximum value of N. This is consistent with the develop-

ment of the model because if Y exceeded N then the number of

on-site spares would always exceed total demand and this

situation clearly would not lead to an optimal solution.

The cost curves illustrate this observation as the total

cost approaches its maximum as the value of Y approaches N.

As would be expected with a small probability of demand,

the optimum value of Y is small relative to N. The time

dependent delay costs are small with low demand and the

surplus and special handling and processing costs will increase

with a large Y.

Figure 3.2 illustrates the components of the expected

:8. total cost curve as described by Equation (16) for the case

of N = 50. Figure 3.2 shows that the major components of the

total cost curve are the time dependent delay cost, Cd, and

the surplus cost, kC. For the given parameters, the delivery

cost, Ct, and the time independent delay cost, S, do not have

- a significant impact on total cost. As expected, both of these

terms strictly decrease as Y increases. The special handling

25



PROBABILITY OF DEMAND=O.1

NC

0

oo ' TOTAL. COST

KC

.

...... (CP.CH), S, CT
--L7 ....

4 8 12 16 20

NUMBER OF ONSITE SPARES, Y

Figure 3.2 Components of the Total Cost with
N = 50 and p = 0.1.
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Y and processing cost term, increases linearly with increasing

Y but due to the value assigned to (Cp + Ch), the term has

little impact on total cost.

Figure 3.3 presents total cost curves on a log scale for

varying Y with a fixed N and three different values for the

probability of demand, p. The first graph in 3.3 represents

the same situation as Figure 3.1 but with costs presented

with a log scale. As can be seen from the graphs, as the

probability of demand increases so does the number of on-

site spares required for optimality for the same N. This is

V due to the increase in both delay cost terms when the demand

exceeds Y, which is more likely with an increasing p. These

costs will outweigh surplus costs for excess Y, which are

less likely with increased probability of demand.

Figure 3.4 illustrates how the optimal value of Y varies

with N. The figure emphasizes the discrete values of N and

optimum Y. The distinct break points for p = 0.1 become less

pronounced as p increases, becoming nearly linear as p ap-

proaches 1.0. When p = 1.0, Y = N, both delay cost and

surplus costs will be zero, and the only costs with a positive

value will be the Ch and Cp terms, which are linear in Y.

This result should apply whenever Ch and Cp are much less

than Cd, S, and kC.

Figure 3.5 shows how the total costs vary over a range of

probabilities of demand for a fixed N and selected Y values.

~ These gr aphs also show that for a given N value, systems
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Figure 3.3 Total Cost as a Function of the Number
of On-site Spares for Varying Values of
N and p = 0.1, 0.5, and 0.8.

• 28



-. . .-.. . . .. . . . .... ,,.,. , - - , ... , .-. -

- I.

pRowALfY OF DO lAD-O.t PROBABLItY OF DEMAND-O.5

0 ..°.

3--

0
Fa

CL ., .

0 so

10 0o ....0 0

• i*

zz

- ...... , .,-. , , , I i , i i

o1 0 o o 30 40 o
NUI[R OI TIE PE[RIOOS. N NUUR Or TIMO PTPRIOOD. N

Fi ur 3.PROBABlur Or OE fO-O nS
3,-

Io.
o

I .

In*
I- 0

as.i *a F

22

NTIBR M 11 PERIODS. N'

Figure 3.4 The Optimal Number of On-site Spares Y
i as a Function of the Number of Time
i Periods N for p = 0.1, 0.5, and 0.8.

29

,. " - 4 0 ': '; . "'T & , * . ; .,'. .-..-...



4-

Yv-2 .

10

00

3Y-0

I.'.



with low probability of demand require smaller on-iesos

* to minimize total cost, as was noted earlier.

Figure 3.6 shows the relationship between optimal Y and

the probability of demand for three values of N. Though p

* is continuous, for the purposes of illustration, the proba-

bilities of demand are varied from 0.1 to 1.0 with increments

of 0.1. Again, as probability of demand approaches 1.0,

the optimum value of Y approaches N. For the given set of

cost parameters these plots show that optimal Y is approxi-

mately equal to the expected demand pN. The relationship

between Y and pN becomes more nearly linear with increasing

N.

I
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IV. COMPARISON TO A SCHEDULED DELIVERY
SYSTEM WITHOUT ON-SITE SPARES

Davidson in Reference 3 performed a parametric analysis

of costs of a scheduled delivery system with no on-site

spares. The cost equation used by Davidson was developed by

McMasters in Reference 1 and is of the form,

ECP(N) = N I + Cd (N(I)1p-ln[-)(l-p) N ]

N 2 (lp)N

Equation (17) describes the expected costs per period and

there are only two cost elements, delay cost and delivery

cost. For a comparison between (16) and (17), an adjustment

to (17) was made. Equation (17) was multiplied by N to

obtain a total cost value over N and the time independent

delay cost term from (16) was added. The result is Equation

(18).

..rN(N-1)P N N xPN-x

ETC(N) Cd 2 + S I (N) X(1-p)
x=1

Ct N (N) x( 1 -p) N-x (18)
x=l X

The expected total costs of both (16) and (18) were

numerically evaluated using the same values for Cd, S, and

Ct as the examples presented in Chapter III. The Cp and
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Ch terms in (16) were also the same as those used in Chapter

Table la presents the results of the comparison when the

probability of demand is 0.1. It displays the total expected

* cost for the two models. Model 1 corresponds to Equation (16)

with an optimal number of on-site spares, and Model 2 corres-

ponds to Equation (18) for the same N values. Tables lb and

lc present the results for probability of demand of 0.5 and

0.8, respectively. As Table 1 shows, the model employing an

optimal number of on-site spares has a smaller expected total

cost than a system not employing on-site spares and the

savings provided by an on-site system can be significant.

The total expected costs with no on-site spares start substan-

tially higher for all three probability values, and increase

faster with increasing N than they do for the on-site spares

model. This difference can be explained by the impact of the

Cd term. In the case of no on-site spares, the Cd term,

CdN(.N-l) p
2

increases at a geometric rate with an increasing N, whereas

* in the on-site model, cost savings are achieved by delaying

the application of the Cd term.

A key question in the future comparison of these two

models will be: "At what point do the costs of the imple-

mentation of an on-site system no longer make it preferable

to a system without on-site spares?"
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t TABLE I

Comparison of Model 1 and Model 2 with p =0.1, 0.5, 0.8

Table la

Probability of Demand =0.1

Number of Total Expected Total Expected
Periods Costs Model 1 Costs Model 2

10 172.29 310.13

20 305.65 1077.84

30 432.70 2330.76

40 506.33 4078.52

50 587.53 6324.48

Table lb

Probability of Demand =0.5

Number of Total Expected Total Expected

Periods Costs mIodel 1 Costs Model 2

10 240.95 1324.70

20 371.01 5049.50

30 485.14 11275.00

40 591.55 20000.00

50 693.14 31225.00

Table lc

Probability of Demand 0.8

Number of Total Expected Total Expected
Periods Costs Model 1 Costs Model 2

10 169.41 463.5

20 254.17 8015.39

30 328.71 17979.23

40 397.93 31939.89

50 463.7 49899.48
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Upon examination of Equation (16), we find that the

special processing and handling costs, (Cp +Ch), and the time

independent delay costs, S, can be examined to answer this

question. The condition of indifference between the two

V Imethods is described by equating (16) and (18), or,

ETC(Y*;N) = ETC(N)

where Y* is the value of Y that minimizes total expected

costs.

Both the (Cp +Ch) term and the S term will affect the

value of Y* as they are varied. The effect of the (Cp +Ch) term

is suggested as follows. Suppose that we represent Equation

(16) by

TVC = fl(Y) + (Cp+Ch)Y , (19)

where f(Y) represents all other cost elements of the equation

excluding (Cp +Ch). If Equation (19) were continuous in

Y we could take the derivative with respect to Y and set the

result equal to zero, or,

dTVC -dfl (Y)
= dY + Cp + Ch = 0 . (20)

Rearranging terms gives,
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,df I (Y)
dY - = -(Cp +Ch) (21)

and Y* could be determined from Equation (21). Equation

(21) clearly shows that a change in Cp +Ch will affect the

value of Y*.

The determination of the breakeven point for the (Cp +Ch)

term can be found by fixing the value of all parameters with

the exception of (Cp +Ch) and determining Y*. The expected

total cost of (16) with Y* and N is compared to (18) with the

same N. The value of (Cp +Ch) is varied and Y is recomputed

and again the total costs of the two equations are compared.

The process continues until the value of (Cp +Ch) is found

that makes the expected total cost of (16) and (18) equal.

*The effect of a change in S, the time independent delay

costs, with respect to Y* is similar. Any change in S will

change the shape of the total expected cost curve which in

turn will affect Y*. The procedure described above can be

used to find the breakeven point for S.

Variation of the Ct and Cd values will have no effect on

the preference of the model described by (16) over that des-

cribed by (18). Upon examination of the Ct and the Cd terms

in Equation (16), it is easy to see that the expected costs

of these two component terms are maximized when Y = 0. Clearly

at that point, the terms in Equation (16) are identical to

their analog in (18). Therefore, a change in either Ct or

Cd will not affect the preference of (16) over (18).
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V. CONCLUSION AND RECOMMENDATIONS

A. CONCLUSION

This thesis addressed the problem of supply support for a

NARF by the local NSC. A model using a combination of

scheduled deliveries from the NSC and on-site spares at the

NARF was developed. The optimal results of the model were

obtained for several values of the probability of demand.

These results were also compared to an earlier model for

scheduled delivery without on-site spares, developed in

.3 References 1 and 3.

% The most noteworthy point of this thesis is that the model

that uses on-site spares was found to have significantly lower

%I total expected costs than the model that does not use on-site

spares. Although several of the cost values chosen were

hypothetical since data for the delay costs does not exist,

they do serve to provide a relative comparison. If the actual

values of the cost parameters can be established, the analysis

can be repeated easily to determine how much better performance

can be obtained with a combined on-site spares/scheduled

delivery model than with the pure scheduled delivery model, and

the optimal number of on-site spares.

Also of note is the utility of Figures 4 and 6 in the

management of a supply support system. If such a set of

figures were available for actual cost values and changes did

38
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4 occur in the probability of demand for an item, or the

total number of time periods, the new optimal number of

on-site spares could be readily determined from such figures.

* B. RECOMMENDATIONS

McMasters in Reference 2 proposed two other delivery

methods. One method assumed that a delivery is delayed until

4 some fixed number of units of an item have been demanded.

Delivery is then assumed to take place as soon as the last

demand occurs. The second method starts by counting time from

when the first demand occurs after the truck has returned from

the NARF and is ready for further deliveries. Delivery is

made M-1 periods after the first demand. These two models

should also be evaluated since they might provide lower costs

than the current scheduled delivery model when combined with

the on-site stocking.

However, comparison between the three combinations of

on-site delivery when those inventories are depleted will

require the evaluation of total variable costs per time period.

Thus, a renewal argument will be needed. The basis for that

argument has already been established by Reference 1. TheI first step of such an analysis is to relax the constraint

imposed in Chapter II that n < N. In fact, n has an infinite

upper bound as Equation (2) has indicated. From Equation (2)

- the probability of no delivery in the first N periods is

Sp(n;Y) ,(.22)
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and the probability of no delay during the first delivery
4
qi period is

Sp(n;Y) .(23)

n=N-I

These two probability statements can be subdivided into

a sequence of many periods of length N. We can then consider

the possibilities of Y not being used up in N periods, 2N

periods, etc., and extend the model of Chapter II to cover

those mutually exclusive alternatives.

Finally, an aspect which should be considered in these

two delivery methods is when the on-site spares should be

replenished as this event constitutes a renewal. Perhaps

the next delivery after Y has been depleted should include Y

units in addition to the demands which have occurred since

the first Y was depleted.
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APPENDIX A

APL PROGRAM FOR NUMERICALLY EVALUATING EXPECTED TOTAL COSTS

V GTEST

[2] o THIS APL FUNCTION COMPUTES THE EXPECTED TOTAL COST OF A
[3) A COMBINED ON-SITE SPARES/SCHEDULED DELIVERY SYSTEM. THE TOTAL
(4) NUMBER OF PERIODS N, IS INPUT BY THE USER AND THE FUNCTION
[5] A COMPUTES TOTAL COSTS FOR THE SYSTEA WITH THE NUMBER OF ON-SITE
[6] A SPARES VARYING FROM I TO N. THE RESULTING ARRAY IS THEN EXAMINED
[7] a TO DETERMINE THE VALUE OF Y THAT YIELDS THE LEAST TOTAL COST.
[8] A THE ARRAY OF Y VALUES WITH THEIR CORRESPONDING TOTAL COST ARE
[9] a PRINTED ALONG WITH THE VALUE OF Y THAT INIMIHZES TOTAL COST.

(il] A VARIABLE NAMES ASSIGNED TO PARAMETERS
U1 h P1 ------- PROBABILITY OF DEMAND
(13] a CD ---------- TIME DEPENDENT DELAY COST(1-4] CP-- - ---- PROCEPING COST

[15] A CH ------- HOLDING COST "
(16) a S5-------- -TIME INDEPENDENT DELAY COST
(17] A KC ---------- SURPLUS PENALTY
(f81 A CT. - -D ELIVERY COST
[19)

[21]
[22] I THE FUNCTION PROMPTS THE USERS FOR TOTAL NUMBER OF PERIOD.
[23] 'ENTER N'
[24) NO
(25]
[26] IIAI SBIAAIRA A fRIAIA R A
(27]
(28] a PARAbETER INITIALIZATION
[29] MAT1 i2 0
[30] PifO.5

'I'.:,[31] CDiS!O
[32] CP41

[351 KC#.250
(36] CTNOO
(37]

r391
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[40] a ECHO OF PARAMETER VALUES
4i] 'PROBABILITY CF DEMAND 'TPI

(423 'DELAY COST ',TCD
(433 'PROCESSING COST 'TCP
(44] 'HOLDING COST ',TCH
[45] 'SHORTAGE PENALTY ',TS
(46] 'SURPLUS PENALTY TKC
(47) 'DELIVERY COST TCT
[48]
(49] iAAAAAAI AAAiAAAARRAAAAAAAAA A AAfIAAAS aAAAAflIRAAAAAAAAAA

(501
[51] a COUNTER FOR VALUE OF Y INITIALIZED AND RANGE OF Y ESTABLiSFED
[52] a AND PARAMETERS FOR BINOMIAL PROBABILITIES ARE INITIALIZED.
[53] Lt:COUNTERfl
(54] TIMEHN
(55] GNSlTE#-iTIME
[56] PAR'TIbE,PI
[57]
(58] aiiaAaaaaaalaaaaaa~aaaaaaaaaaaaaila~naiaaaa aaaaaaaiB~aamsiaaaaaa

[59]
[60] a BEGIN ALGOR 7"Hm TO COMUTE EXPECTED TOTAL COST
(61] I NEXT VALUE OF i SEECTED
(62) L2:YfONSITE(COUNT.,]
[63] THE EXPECTED COST 'f THE TIME INDEPENDENT DELAY UCST IS COMPUTED
(64] 4 USING A FUNCTION THAT DETERMINES TOTAL EXPECTED DELAY AS tESCRIBED
(65] A IN EQUATION (16).
[663 A+CDY NEGDIN TIME
(673
(68] iailiiliamaniiiimaaiamaaiaaiainsmnisauaaamaamilmiaaanaaaaaiiiaiaa

[69] a SPECIAL PARINGL AND PROCESSING COST# ARE DETERMINED BY AULTIFL!ING
(70] A (CP+C34) AND THE CURRENT VALUE OF Y.
(i7] A2t' .CH)IxY
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[72]
[73] ftAAtA AAAAAAAAtAAAAAAAAAAAtAAAAAnRnRA fAAA AAAtfAtAfAtAftAdARRAARfi

[74]
(75] A THE TINE INDENPEDENT DELAY COSTS, SURPLUS COSTS, AND DELIVERY COSTS
(76] A ARE DETERINED BY HULTIPLYING EACH PARAkETER WITH A FUNICTION
[77] A THAT EVALUATES THE EXPECTED NUOBER TIME PERIODS DELAYED, SURPLUS
(78] A UNITS, AND PROBABILITY OF A DELIVERY, RESPECTIVELY.
[79] A3(Sx(')',(TY)) BINOMIAL3 PAR
[80] A4RKCx('(',(TY)) BINONIAL2 PAR
[81] A5 CTx(')',(TY)) BINOMIAL PAR
[82]
[83] AftfimaAAa AAAAA AAAAfAAtfAAAAAAAAAAA AAAAAAAfftAft AAAftAAAAAAA

[84]
[85] A THE SUN OF ALL TERMS IS COMPUTED AND THE RESULTED IS PLACED
[6] A IN AN ARRAY
[87) TOTALAI +A2+A3+A4+A5
(88) LINEIIY,TOTAL
(89] NATi+MATi,Ci] LINEi
[90]

[93] A THE VALUE OF Y IS INCREASED AND CHECKED TO SEE IF IT EXCEEDS
(94] A THE TOTAL NUMBER CF PERIODS.
[951 COUNTERfCOUNTER+l
[96] 4(COUNTERTIME)/L2
(97]

(99]
1001) 4 THE ARRAY IS PRINTED AND ANOTHER FUNCTION DETERIINE$ THE VALUE
[10i] A OF Y THAT MIHIMIZES EXPECTED TOTAL COSTS.
[102] MATi- 1 0 +NATi
[1031 PRINT MATi
[104] 40

4
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