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ABSTRACT

In response surface modeling, simple graduating functions such as

low-degree polynomials are used to approximate complex, unknown response I
functions. Several authors have suggested Bayesian generalizations of

response surface models that incorporate prior belief as to the (in)adequacy

of a graduating function to represent a response function. We show that the

models of Smith (1 73), Blight and Ott (1975), and O'Hagan (1978) are

equivalent statements. We also show, how their models are related to the

generalized smoothing splines of Wahba (1978) and to Young's (1977) proposal

for Bayesian polynomial regression. Finally, 'we suggesta canonical

representation of the models in terms of generalized Fourier series expansions

of the response function and show how such expansions can be used to develop

reasonable prior distributions.

AMS (MOS) Subject Classifications: 62F15, 62J05

Key Words: Response Surface Models; Bayesian Linear Model; Hierarchical
Linear Model; Localized Regression Model; Smoothing Splines;
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SIGNIFICANCE AND EXPLANATION

Scientists often wish to describe the relationship between a response

variable and a collection of explanatory variables. When the particular

nature of the relationship is unknown, as is often the case, a common strategy

is to develop an empirical model by using a simple graduating function such as

a low-degree polynomial to approximate the true relationship. The techniques

of response surface methodology were developed to accomplish this goal.

Several authors have proposed generalizations of standard response

surface models that attempt to take into account the approximate nature of the

graduating functions that are used. In this paper we show that the models of

Smith (1973), Blight and Ott (1975), and O'Hagan (1978) are equivalent to one

another. These models share a common Bayesian approach in which probability

distributions are used to reflect the scientist's prior beliefs about the

(in)adequacy of the graduating function to represent the true responseI

function. We also show how the models are related to Wahba's (1978)

generalized smoothing splines and to Young's (1977) Bayesian approach to

polynomial regression. Finally, we consider a Bayesian model that involves an

expansion of the response function as a convergent series of functions, with

special attention to an expansion using Hermite polynomials.
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BAYESIAN MODELS FOR RESPONSE SURFACES I: THE EQUIVALENCE OF
SEVERAL MODELS AND THEIR RELATIONSHIP TO SMOOTHING SPLINES

David M. Steinberg

1. INTRODUCTION

Many scientific investigations are designed to explore the relationship

%! between a response variable Y and a set of explanatory variables,

X I s .... ,Xk Sometimes the physical nature of the problem suggests a specific

functional form linking the response to the input variables. Often, however,

the functional nature of the response is either unknown or is too complicated

to provide a useful representation. A strategy that is often employed in

these situations is to seek an empirical model which, it is hoped, will

provide a good local approximation to the response function for those combina-

tions of the explanatory variables considered to be of greatest interest.

An important body of statistical techniques that has been developed for

empirical modeling problems in which all or most of the explanatory variables

are continuous is known as response surface methodology (see, for example, Box

and Wilson 1951, Box 1954, Box and Youle 1955, Myers 1976). Traditionally,

response surface models have exploited simple graduating functions, such as

low-degree polynomials, to approximate the true response function. Section 2

describes these models and establishes some notation.

Several authors have proposed Bayesian generalizations of classical

response surface models that are designed to take into account the approximate

*nature of empirical graduating functions. Section 3 discusses the rationale

4 behind the Bayesian approach to response surface models, compares it to

'This work forms part of the author's doctoral dissertation written under the
direction of Professor G. E. P. Box. The author is grateful to Professor Box
for his many valuable comments.

This research was sponsored by the United States Army under Contract No.
DAAG29-S0-C-0041. This material is based upon work supported by the National
Science Foundation under Grant No. MCS-8210950.
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IS', similar Bayesian models for other estimation problems, and then

discusses the models suggested by Smith (1973), Blight and Ott

(1975), and O'Hagan (1978). In particular, we show that these three

'p* models, although expressed in different forms and justified by

different arguments, are in fact equivalent statements. Section 4

shows how these Bayesian models are related to the generalized

smoothing splines of Wahba (1978). 
Section 5 describes a canonical

form for the models in terms of generalized Fourier series

expansions of the response function, discusses the significance of

* ~'.,assuming an improper prior for the regression coefficients, and

indicates how the models are related to Young's (1977) Bayesian

* 4~.method for polynomial regression and to ridge regression. Section 6

considers a particular application of the generalized Fourier series

approach to develop a reasonable prior distribution, and Section 7

summarizes the results and discusses the use of Bayesian models to

. represent model inadequacy.

The implications of the Bayesian models for estimating a

'p response surface will be described in a sequel to this paper.

2 CLASSICAL RESPONSE SURFACE MODELS

Response surface models were first proposed by Box and Wilson

(1951) as a technique to study the relationship between an observed

experimental response variable Y and a set of continuous

I.explanatory variables X1 ......Xk, with the goal of finding

settings of the explanatory variables that optimize the response.

The explanatory variables might be the raw inputs to the system or
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suitably transformed functions of the raw inputs (found, say, by

transforming to a more appropriate metric or siiaply by centering and

scaling).

Suppose the true response function relating the response

variable to the explanatory variables is g(x), where z denotes a

point in the explanatory variable space. The basic idea behind

response surface models is to approximate g by a simple graduating

function, at least over a limited region of interest in the

explanatory variable space. The graduating functions which have

been used most often in response surface models are low-degree

polynomials, and the simplest of these is a first degree polynomial:

~k

44 g(x) - 60  + Xi  (2.1)0 mi-I

.. If (2.1) is judged to be an inadequate representation of the true

response function, a second degree polynomial might be used:

k k k
g(x) " 0  + X + i.XX. (2.2)i=i iii Ji-ij

Polynomial models of higher degree can be defined in an analogous

manner, with the d'th degree polynomial including all terms of the

form:

i k a(i)
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where the a(i) are non-negative integers whose sum is less thin

equal to d.

In order to estimate the unknown parameters in a polynomial

model, experimental data {Y,x i n must be gathered in which the

response variable is observed at n settings of the explanatory

-M variables. For any polynomial graduating function, the ith data

point can be modeled as:

Y, a f(i)" +  (2.3)

,. where f is a vector of functions whose elements are the

*appropriate powers of xi ,  is a vector of coefficients that must

4 -"

be estimated from the data, ei denotes experimental error, and

,% .. primes denote transposes. The entire data vector Y can then be

written as the approximate linear model:

* , 0 - X 0 + C, (2.4)

where X is the matrix whose ith row is f(xi)'.

The polynomial models defined above are useful when the

explanatory variables are continuous, but special consideration is

... necessary for categorical variables. The true response function

will not be continuous with respect to categorical input variables

* ,4 so that it does not make sense to attempt to "graduate" the response

between levels of a categorical variable. Box (1954) suggested that

the best approach in an experiment involving both continuous and

categorical inputs would be to carry out a separate investigation at

each categorical factor combination. Such terms can be included in

the general linear model (2.4) simply by adding appropriate elements

4E'4
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to f. Thus (2.4) is also appropriate when there are both continuous

and categorical explanatory variables.

3. BAYESIAN RESPONSE SURFACE MODELS

The regression function in a response surface model is chosen

with the hope that it will provide a good local approximation to the

true response function. Analysis of the model typically proceeds,

however, as though the regression function were an exact

representation. The stimulus for the Bayesian models that will be

discussed here is an attempt to achieve a more realistic model by

describing the uncertainty about the response function in terms of

prior probability distributions. This section will describe the

models that have been proposed by Smith (1973), Blight and Ott

(1975), and O'Hagan (1978). Each employs prior distributions to

reflect the extent to which an empirical graduating function is

believed to provide an adequate approximation to the true response

function and, although each does so in a different way, we will show

that the three models are in fact equivalent.

3.1 Smith's Hierarchical Model

Smith (1973) proposed a hierarchical Bayesian linear model to

represent the relationship between a response vector Y and a

matrix X of regressor variables associated with the dose

administered in a dose-response experiment. It is simple and

straightforward to extend Smith's model to arbitrary response

-5-
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surface models and we do so here. The hierarchical structure

consists of three tiers and provides the mechanism for building

prior uncertainty about the response function into the statistical

model. The model is a special case of the general three-tiered

Bayesian linear model analyzed by Lindley and Smith (1972) so that

all of their results may be applied here.

The model reads as follows:

Y/O1 N( 11 2I) . (3. la)

- 1/02 N(X02V). (3. 1b)

0 2  - N(031V1 ). (3. Ic)

The first tier of the model (3.la) simply states that the observed

V. responses Y are normally distributed and vary about their

respective expected values 01 with common variance 2 ; the

assumption of normality here is exactly analogeus to the common

assumption in linear model theory of normally distributed error

terms.

The second tier (3.1b) invokes the linear model structure by

asserting that the vector of expected values, Ol, has a

multivariate normal distribution with mean vector X02, where 02

is a vector of regression coefficients and corresponds directly to

0 in equation (2.4). The variance matrix V indicates the

experimenter's a priori confidence in the adequacy of the linear

model. If the elements of V are all quite small, then the model

claims that the expected value vector 01 follows the linear

model X02 closely; i.e., the linear model is assumed to be a good

-6-
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representation of the true response function. If, on the other

hand, the elements of V are rather large, this reflects ,rior

belief that the true response may deviate considerably from the :
linear model, even though it may be the best current guess for the

response function.

.j The final tier of the model simply assigns a prior distribution

to the regression parameters. A diffuse prior is often deemed

appropriate for the regression parameters and, following the

argument of Lindley and Smith (1972), this can be achieved by

-1
considering limiting forms as V1  converges to 0.

"Ci' There is an interesting difference between Smith's model and

A most hierarchical Bayesian models. Such models are usually formed

by taking as the first tier a conventional parametric sampling

theory model that depends on some unknown parameters. Each

successive tier of the model states a prior distribution for the

(hyper)parameters appearing in the previous tier. Smith's model

differs from this approach in that the hierarchical structure is

used to break up the conventional linear model Y - IS + C into two

different tiers, with the mediating parameter 01 separating the

observed response vector from the linear model. We find this

approach intriguing and wonder if it might not be useful in other

contexts, as well.I 3.2 Slight and Ott's Approximating Function + Bias Model
Blight and Ott (1975) proposed a Bayesian model for polynomial

7P
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regression. They considered only experiments with a single

explanatory variable, but their ideas, like Smith's, can easily be

extended to handle more general response surface problems and the

presentation here will be appropriate for any number of explanatory

variables. Their model represents each experimental response as a

* sum of three components:

Response =Low-degree polynomial approximation

.4.. + deterministic error (bias)

*+ random (experimental) error. (3.2)

The first term is a classical response surface model such as (2.3)

and the last term is identical to the random error term in (2.3).

What distinguishes Blight and Ott's model is the second term, which

is an explicit statement of the approximate nature of the

polynomial.

Mathematically, Blight and Ott's model for the ith observation

can be written:

Y = f(x 1 )'B + ni+ ei. (3.3)

The three terms on the right-hand side of (3.3) correspond to the

respective components of (3.2). observe that (3.3) is identical to

the classical response surface model (2.3) but for the addition of

V the "bias" term, fli, and the assumption that this term permits an

exact representation of Y1, so that an equals sign is now

justified.

Blight and Ott completed their model specification by making

the following distributional assumptions:

%.
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B N(6 0 ,V1 ). (3.4a)

n N(O,V), where "' = (nl ..... r n )
. (3.4b)

- - N(0,021), where (' = (e1 ..  ,n.  (3.4c)

n and C are distributed independently. (3.4d)

Equation (3.4b) is more general than the assumption actually made by

Blight and Ott, who stated a specific form for the elements of the

matrix V that they felt would be appropriate for the polynomial

regression situation studied in their paper.

A simple rationale underlies the distributional assumptions.

Equation (3.4a) provides a prior distribution for the regression

parameters and is directly analogous to (3.1c) in Smith's model.

Again, a diffuse prior for the regression coefficients can be

-1
entertained by considering limiting forms as V1  tends to a 0

matrix. Assimuption (3.4c) is identical to that in the standard

linear model.

The distribution of the vector n of bias terms given in

(3.4b) is justified by appealing to prior belief about the ability

of the linear response surface model to represent the true response

function. The bias term represents that part of the response

function not captured by the approximating polynomial. Since the

approximating polynomial typically represents the best current guess

as to how the response depends on the explanatory variables, it is

reasonable to assign the bias at any point a prior mean of 0. The

variance matrix in (3.4b) should suggest the possible severity of

the bias. The diagonal elements of V can be interpreted as

- 9-
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reflecting the suspected magnitude of the bias at the respective

design pointsi the off-diagonal elements reflect prior assumptions

about how similar the bias is likely to be at corresponding pairs of

design points which are closely related to prior convictions about

the smoothness of the response function, since a response function

which is smooth will have similar biases at proximate design points.

Theorem 3.1 The Smith model and the Blight-Ott model are

mathematically equivalent.

Proof: The proof is quite simple and relies on a trivial

re-writing of Smith's model. We simply write each of the first two

stages in Smith's model as the sum of a deterministic term (the

expected value) plus a random term with an appropriate covariance

matrix. Thus, we rewrite equation (3.la) as:

. - 1 + 6, where C N(0,a2 I). (3.5a)

Similarly, we rewrite equation (3.1b) as:

01 W Z2 + q, where N(O,V). (3.5b)
-.v 'li

Now, substituting (3.5b) into (3.5a) gives:

Y = 1e2 + R +, (3.5c)

where the distributions of A and Z are given above, the
mw*. -

distribution of 02 is given in (3.lc), and the three terms are

. independent. This is precisely the model for Y suggested by

Blight and Ott, with 02 in place of 0.

3.3 O'Hagan's Localized Regression Model

O'Hagan (1978) suggested a different way to modify (2.3) to

-10-
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reflect uncertainty as to the form of the response function. He

argued that, while (2.3) may be adequate to describe the response

function in the immediate neighborhood of any particular point

x (Xl, ....,Xk), it is unlikely to be valid over the entire range

of explanatory variable settings that might be used. This led him

to generalize (2.3) by allowing the parameter vector P to be a

function of x, characterizing the manner in which S varies

with x in terms of a prior probability distribution. O'Hagan

called this the "localized regression model."

O'Hagan formally defined the localized regression model by

specifying the appropriate distributional assumptions for each
.4

point x in the explanatory variable space. Denoting by Yx an

observation at the point x, he assumed that:

Y /6(x) - N(f(x) '(x),c 2), (3.6a)
X

I(x)/b 0 - N(b o w (zz)}). (3 .6b)

Finally, he assumed that the joint distribution of the O(x) was

normal with covariance function given by:

EI ((x,, - ](6(z 2) - b0 I'/b 0 1 - wx, 2 ,. (3.6c)

We can interpret b0 as the parameters of a global regression

function about which there is local variation. When prior %

information does not suggest a specific global regression function,

O'Hagan advocated using a vague prior distribution for b0, which

can be accomplished by assuming that:

b 0  N(O,kI),

and considering limiting forms as k + . 0

Ze.

S- 11 - S
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The matrix V in (3.6c) reflects the extent to which the

parameters values are believed, a priori, to vary from one point to

another. Thus W, like the matrix V in the Blight-Ott model, is

related to prior beliefs about the smoothness of the response

function. large diagonal elements in W reflect prior belief that

the parameters may fluctuate considerably, while large off-diagonal

elements suggest that the parameter values should be quite similar

at the respective points. O'Hagan was aware that the Blight-Ott

model "shows many similarities" to his own (p. 23). However,

concentrating on the specific covariance function analyzed in detail

by Blight and Ott, he concluded that their model is a special case

of the localized regression model. By considering Blight and Ott's

model in the more general form described in (3.2) and (3.3), we now

show that it is actually equivalent to O'Hagan's model.

Theorem 3.2: The model specification of (3.6a-c) is identical to

that of (3.2)-(3.4), with b0  in place of B and

V - f)'W(zi,z )(x ). The two models are equivalent if the

vector of regression functions f includes a constant function.

Proof: The proof parallels that of Theorem 3. 1. We begin by

rewriting (3.6a) as:

Y - f(x)'P(x) + ex, (3.7a)

where ex - N(0,0 2). Now rewrite (3.6b) as:

w(z) - b + C(x), (3.7b)

pwhere (x) -N(O,W(x,x)). Substituting (3.7b) into (3.7a):

Y- " f(x)l'b 0 + f(x)'C(x) + C

-12-
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Sf(x)l'b0 + nx + x' where x= f(x)' (x).

This is precisely the form of (3.3). All that remains to complete

. the proof is to show that n' - (l' .. , n ) has the distribution

claimed in the theorem, and this can be trivially verified. Note

that the reverse implication will be true if and only if the

. .covariance function V(x1,z2 ) for n. speicified in a Blight-Ott

model can be expressed in the form f(xl)'W(x1 , 2 )f(x2)

corresponding to a localized regression model. If the vector f

includes a constant term (say the first element in f), then

setting W1,1(x1,m 2 ) equal to V(xlx 2 ) and making the other

entries in V equal to 0 reproduces the Blight-Ott model. If the

vector f does not include a constant function, it is easy to show

examples of covariance functions V that cannot be achieved by a

localized regression model. It seems rather unlikely that a

localized regression model would be used without a constant term, so

this restriction is of no practical significance.

5. It should be noted that O'Hagan (1978) also proposed a

generalization of the localized regression model that allowed for a

vector-valued response variable, non-homogeneous error variances,

and a general explanatory variable space (he restricted the

localized model to a single explanatory variable). He also allowed

for the prior expectation of the response variable to be an

arbitrary function, not necessarily a polynomial of low degree.

None of these generalizations affects the above Theorem. The

extensions to a vector response and to non-homogeneous error

-13-



variance are straightforward and could be applied just as easily to

Blight and Ott's model. The assumption of a general explanatory

K variable space has already been incorporated above. The prior

expectation function was assumed to be a low-degree polynomial by

Blight and Ott, but their model could also be used with any other

* type of approximating function, be it a fixed function or a

parametric function with unknown parameters. Thus the

- correspondence between O'Hagan's model and Blight and Ott's model is

valid also for O'Hagan's generalized model.

4. GENERALIZED SMOOTHING SPLINES

The spline function approach, on the surface, appears quite

unrelated to the models described In Section 3. However, results of

Wahba (1978) show that generalized smoothing splines are equivalent

to the Bayesian response surface models when the regression

coefficients are assigned a diffuse prior.

Generalized smoothing splines for estimating a response

function of uncertain form were derived as solutions to a problem in

functional approximation: find that member of a specified function

space that most closely fits the observed data subject to a

.4' smoothness restraint. The solution in the general case exploits the

structure of reproducing kernel Hilbert spaces (r.k.h.s.) (see

Aronszajn (1950) for the general theory of r.k.h.s.). First, denote

by -fj1j-1 the functions that constitute the elements of the

r vector f in (2.3). For standard response surface models, the

-14 -
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f will simply be the monomials that appear in the approximating

polynomial, although in theory any desired collection of regression

" functions might be used. Let Hi be a r.k.h.s. of functions

defined on the explanatory variable space that contains the fj and

has reproducing kernel K(xl,z 2 ). It can be shown that H. has a

representation as the direct sum of span Jfl'..fp| and a

r.k.h.s. HQ, which has reproducing kernel Q(xl,z 2 ). Let PQ be

the orthogonal projection operator from HK onto HQ* Then the

generalized smoothing spline gX is defined as the solution to

the problem: find g e H. to minimize

-. - n
[g'n- [gi) 1- 1 g 2(4.1)

.. r + ip

where the sunmation is over the n observed data points and the

A latter term is the squared norm (in H.) of the projection of g

onto HQ times a smoothing parameter X.

much of the work on smoothing splines has focsed on the case

where the design space is the interval [0,1], HK is the Sobolev

space: W2 - 1g: grg', * abs. cont.

fj(x) - xJ- 1, j-1,.... ,p and nPQ(g)n- I (dpg/dxp) 2 dx. In this

case, it is well known that gn,X is a polynomial spline of

degree 2p-I and is uniquely determined provided the data cannot be

exactly interpolated by the approximating polynomial (see Wahba

1978). A common choice for p has been p-2, in which case

EPQ(g) 2 
- f(g(2)(x))2dx and has a direct interpretation as a

"-.' - 15 -
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measure of the smoothness of the solution. The choice of

" controls the tradeoff between how smooth the solution will be and

'J.. how closely it will match the observed data.

Wahba (1978) proved the following theorem which relates spline

smoothing to Bayesian estimation of a stochastic process.

Theorem 4.1: Suppose the true response function is g(x), so that

the Ith data point is

¥i " 9(x) + Li,

2where C - (CI ...... n)' N(O,G2I). Suppose the prior distribution

of g(x) is the same as that of the stochastic process

T(x) - f( b1 /2z(Z), (4.2)
i-i

where B - ( I...B )' - N(30, &I), b)O is fixed and Z(x) is a zero

mean Gussian stochastic process with E{Z(x1 )Z(x2 )} - Q(xlX 2).

Then for any fixed point x,

gn,- x lim E {g(x)TY},

where o2/nb and Eg denotes expectation with respect to the

posterior distribution of g(x) given the prior (4.2). Thus the

smoothing spline solution gn,X is the limiting posterior

expectation of the response function given (4.2) when the prior

distribution of the parameters in the approximating polynomial is

made diffuse.

-16-
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The characterization of spline smoothing in Theorem 4. 1 as a

form of Bayesian estimation suggests a similarity with the models

defined in Section 3. We prove this in the following theorem.

Theorem 4.2: Under the prior specification (4.2) of the last

theorem, the prior distribution of the data vector Y is given by

the Blight-Ott model ((3.3) and (3.4)) with V, - FI and with

i,:i - b~,z)

Proof: The i'th observation is Yi - g(xj) + Ei. Then, given

(4.2), the prior distribution for the i'th observation is the same

as the distribution of

j jB fj(xi) + b 1/2Z(Xi) +

1 0 B:f(xi) + ni + ci"

The full data vector Y thus has a prior distribution identical to

the distribution of

I, + 11 + C

where X is an nxp matrix with 2 - fj(xi) ( ... p)'

and 4 - (nl, .... nn'. The prior distributions of B, i, and C

are easily seen to be those claimed in the theorem.

Thus Theorems 4.1 and 4.2 demonstrate that the Bayesian models

proposed by Smith, Blight and Ott, and O'Hagan all give rise to

generalized spline estimates of the response function when the

regression coefficients are assigned a vague prior distribution.
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5. A GENERALIZED FOURIER SERIES APPROACH

/. The use of a generalized Fourier series to represent a response

function is a broad generalization of the classical response surface

approach. whereas the classical response surface models described

in Section 2 consist of a linear combination of a small number of

simple graduating functions (e.g. the monomials which constitute a

low degree polynomial), the generalized Fourier series models will

provide an exact representation of the response function as a linear

combination of an infinite sequence of functions. This section will

show that the generalized Fourier series approach is equivalent to

the Bayesian models described in Section 3 when appropriate prior

assumptions are made about the coefficients in the series. The form

of the generalized Fourier series models will then be exploited to

discuss the significance of assigning the regression coefficients an

improper prior and to point out relationships with ridge regression,

multiple regression, and Young's (1977) Bayesian approach to

polynomial regression.

5.1 Representing the Response Function

"S.....Denote the explanatory variable space by X, let V be any

0r-finite measure on X, and suppose the true response function g(x)

belongs to the space L 2(pi). it is well known that L 2 ) is a

,%O separable Hilbert space (see Rudin 1974, p. 81), so that any

-~ function in the apace can be represented in terms of a sequence of

basis functions, much as a vector space can be decomposed using a

- 18-
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sequence of basis vectors. Further, suppose that the basis for

2 IIpLW) includes graduating functions {fJlj. 1  that constitute a

classical response surface model. Then the response function g

has an exact representation as the convergent series:

g(x) - B.f (x) + , (5.1)
J-1i ig

where the functions {gili-0 complete the basis. Note that (5.1)

could be written as a single infinite summationj we set off the

first p terms to emphasize the way in which the Fourier series

approach generalizes classical response surface models.

The generalized Fourier series (5.1) contains infinitely many

parameters and cannot be used to model experimental data unless oeP

assumptions are made about them. We do so in the form of prior

distributions. Suppose that:

0 - N(SoV 1 ) (5.2a)

2
si e N(O,mi) independent. (5.2b)

As with the previous models, it will often be of interest to assign

a vague prior to B and this can be done by considering limiting

• forms as V-1 + 0.

The rationale behind these prior assumptions is similar to that

for the Bayesian models described in Section 3. The terms in the

second summation in (5.1) can be thought of as the residual part of

the response function that the classical model is unable to

represent. Since the classical model is typically the best current
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guess as to the nature of the response function, it seems reasonable

to assume, a priori, that the {il will have zero means; their

prior variances reflect the extent to which the experimenter is (or

is not) confident that these terms make only a minimal contribution

to the response function. For example, if the gi are polynomials

of increasing degree, then one might choose prior variances that

decrease monotonically in i, progressively damping out the higher

degree terms. A similar strategy might be invoked if the gi are

-'2 sines and cosines, with prior variances chosen to damp out the high

frequency terms. The assumption that the {oil are independent

does not seem unreasonable provided we choose the basis functions to

be an orthogonal sequence in L2 ( P ).

5.2 Equivalence of the Fourier Approach and the Bayesian Models

We now prove that, under mild conditions, the generalized

Fourier series approach is equivalent to the Bayesian models

described in Section 3.

Theorem 5.1: Suppose an observed response variable Y(x) is the

sum of an unknown response function g(x) and a random error:

Y(x) g(x) + Ex .

Suppose that the response function is modeled as a Bayesian

generalized Fourier series:

gx) - Bjf () + igi(X),
i- i-o

- 20 -
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where, a priori,

*6N(BY) and f, 2

•. No1) n N(O,mi

.

subject to the restraint that 2 g2(x) < =  for all x e x.
irno

Then Y(x) follows the Blight-Ott model described in Section 3 (or

equivalently the Smith model or the O'Hagan model). If, in

addition, the explanatory variable space is compact, then the

Bayesian models in Section 3 admit a generalized Fourier series

representation of the above form.

Prooft First, define:

nX -M •gi W(5.3)

4

Given the above prior specification for the {o}, and the

5$ restraint on the prior variances, n. is a Gaussian process defined

5, .on the explanatory variable space X with:

in.1 vxex, (5.4a)
'.,

Varri I - m 22(x), and (5.4b)
imo

Cov{11'In I m2 gi(xgi(z). (5.4c)Z i-o
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°'7 "2

The above distributional properties follow immediately from

consideration of the limit of the characteristic function of the

n'th partial sum.

The model for an observation at x can now be written:

Yx) = f l Bf.(x) + nx  + Cx,

where ex  denotes the random error term for the observation. This

is precisely the Bayesian model advocated by Blight and Ott

(equation 3.3), with the approximating function given by the initial

sum and the "bias" defined by n.

If the explanatory variable space is compact, it is also

possible to deduce a Fourier series representation for any Blight-

Ott model. First, suppose that there is only one explanatory

variable. Gihman and Skorohod (1974) proved that any mean square

continuous Gaussian process nx defined on a closed interval of the

real line aduits the series expansion:

T1 = I 8igi(x). (5.5)
i=0

where the ei are independent, mean-zero, normal random

variables. The expansion is derived by considering the covariance

function of the Gaussian process as an integral operator (i.e. the

kernel of an integral transform). It then follows from Mercer's

Theorem (see Courant and Hilbert 1953, p. 138) that the covariance

function can be expanded in terms of the eigenvalues and

- 22-
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eigenfunctions of the integral operator providing an analogue to

equation (5.4c). Moreover, this series expansion converges

absolutely and uniformly, not just in a normed sense. The series

expansion of nx then follows directly. The extension of Gihman

and Skorohod's proof to compact domains in higher dimensional space

is straight-forward, since the relevant theorems for integral

equations are still valid (see, for example, Zabreyko, at. al. 1975,
°°..

pp. 61-62).

The generalized Fourier series approach provides a potentially

useful way to interpret the Bayesian models discussed earlier and

emphasizes another way in which these models generalize classical

response surface models, by adding extra regression functions whose

coefficients are assumed, a priori, to be small.

5.3 The Significance of Vague Priors

Smith, Blight and Ott, and O'Hagan all advocated the use of a

vague prior distribution for 0, the vector of coefficients in the

first summation of (5.1), and it was shown in Section 4 that a vague

prior leads to generalized spline estimates. The special case of a

vague prior for such parameters was also studied in detail by

Lindley and Smith (1972). The generalized Fourier series

representation of these models lends insight into the importance of

*' assuming a vague prior. In particular, consider what would happen

to the generalized Fourier series model (5.1) if a confirmed

Bayesian statistician, with an aversion to vague priors, were to

- 23 -
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assign proper prior distributions to all the coefficients i

(5.1). The resulting model could then be written as a spec

of (5.1) in which only the second summation appears. In B]

Ott's terminology, such a model would have no approximatinc

function, only bias.

If, however, some of the coefficients in (5.1) are ass

improper prior distributions, those terms cannot be include

second summation without violating the restraint that the I

finite prior variance at all points. Consequently, all tex

coefficients have an improper prior must be treated separat

all terms whose coefficients have a proper prior so that tl

-'division of (5.1) into two summations is not merely for coi

rather, it is a necessary implication of the use of vague

the corresponding coefficients. The use of vague priors fc

coefficients thus results in a fundamentally different modf

5.4 Relation to Ridge Regression

Hoerl and Kennard (1970) discussed the use of ridge r4

estimates for linear models Y - KB + E in which there is

multicollinearity of the columns of the X matrix. They 4

family of biased estimates of 0 by:

O(k) - (X + kI) -1

where k is a parameter chosen to "stabilize" the ill-con4

matrix X1X. It is often recommended that the original rei

variables be centered and scaled before applying (5.6).V-.



Hoerl and Kennard (1970) observed that the estimators (5.6)

could also be given a Bayesian justification, as the posterior mean

estimate given the prior assumption that

P N(O, k- I), (5.7)

that is, given the prior assumption that the regression coefficients

are close to the origin. This fact has led some authors to

criticize indiscriminate use of ridge regression without thought as

to whether the above assumption is plausible (see, for example,

Draper and Smith 1981, pp. 322-324 and the references therein).

Assumption (5.2b) of the generalized Fourier series approach is

exactly analogous to (5.7), so that the Bayesian models can also be

interpreted as complex ridge regression models. There are, however,

several important differences. In the Bayesian models, the

parameter of regression coefficients may be infinite and the prior

covariance matrix is assumed to be diagonal but not proportional to

the identity. The generalized Fourier series approach introduces

assumption (5.2b) precisely because it is assumed to accurately

reflect prior belief about the regression coefficients in the second

summation of (5.1); the numerical considerations that inspired ridge

regression play no role at all. Finally, the Fourier series

approach applies this assumption to coefficients for the "extra"

terms not included in a standard model; ridge regression applies the

assumption to the original terms (the first summation in (5.1)) and

does not add any extra terms.
.4
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5.5 Relation to Multiple Regression

Another special case of the generalized Fourier series is a

Bayesian version of conventional multiple regression, in which the

sampling theory model (2.3) is augmented with prior information

about the regression coefficients, but no extra regression functions

are introduced. If all p terms in the multiple regression model

are assigned improper priors, the Bayesian model yields the ordinary

least squares estimates of the parameters, so that ordinary least

squares multiple regression is also a special case of (5.1). An

alternative, and instructive, way to derive this special case is to

delete the extra functions in (5.1) by recruiring their coefficients

to be 01 that is, assume that

g(X) 0 1 9igi(N),

where the single summation includes the p terms corresponding to

the multiple regression functions, and assume that 8. - N( 2),

2
where mi=- if gi is one of the p multiple regression

2
functions, and mi=O otherwise. Thus ordinary least squares

multiple regression can be derived as a special case of (5.1) in

which the variances of the model coefficients are allowed to take on

only two values, 0 or -. The great flexibility of the Bayesian

approach lies precisely in the ability to assign the prior variances

intermediate values between these two extremes. As Morris (1983)

observed, commenting on a similar model, a much richer class of
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models is made available by considering positive, but finite, prior

variances for model parameters.

5.6 Relation to Young's Method for Polynomial Regression

Young (1977) proposed a Bayesian method for polynomial

regression in which a response to a single input variable is

represented by an expansion in terms of a large, but finite, number

K-..of orthogonal polynomials, with prior distributions assigned to the

S. coefficients of the polynomials. Clearly, such a polynomial

expansion is a special case of the generalized Fourier series model

(5.1). Young argued that *the best approach to prediction using

-. polynomials is to fit the largest possible degree commensurate with

our computing and statistical skills" (p. 309). As the results of

this section make clear, there is no need to impose any maximal

degree on the terms included in a Bayesian polynomial model,

provided that the X matrix corresponding to those terms that are

P assigned improper prior distributions has full column rank and that

the restraint cited in Theorem 5.1 is satisfied.

6. M~INING PRIOR DISTRIBUTIONS

It is clear that the prior covariance structure is an important

* aspect of the Bayesian models discussed here. In particular, it can

be shown that the form of estimates from these models depends on the

form of the covariance function V(xl1z2) (aee Wahba 1978 and

Steinberg 1983). Thus considerable thought must be devoted to
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selecting a plausible covariance function. In this Section, we show

how the generalized Fourier series approach discussed in Section 5

might be used to derive reasonable prior distributions.

Following Young's (1977) suggestion, a useful way to

approximate a response which is a function of a single variable is

to expand the response function in terms of a set of orthogonal

polynomials: {Pi(x)}i:0 where Pi(x) is a polynomial of degree i.

We will consider in detail the use of the Hermite polynomials,

H (x)1 to represent a response function in terms of a single
i 10

input variable. The classical Hermite polynomials are defined to be

orthogonal on the entire real line with respect to the measure space

induced by the weight function w(x) - exp(-x 2). (See Szeg5 1978,

pp. 105-110 for basic properties of the classical Hermite

polynomials.) We will assume, instead, that the weight function has

been normalized to have measure 1, making it a normal (0,1/2)

density function, and that the polynomials have been normalized to

have square integral 1. Denoting the normalized Hermite polynomials

by HI(x) and the classical polynomials by Hi(x):
H*(x) - 2 -1/2(il) -1/2 H(x),  i-0,1.... (6.1)

i i

We consider expansions of the response function of the form:

-a
g(x) = eH*(x). (6.2)

1-0

Suppose, first, that proper priors are assigned to all the

coefficients in (6.2)i then the corresponding covariance function
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will have the form:

V(x 1 1 2  - H mH(x )H (X2) (6.3)

2
For arbitrary choices of the prior variances, mi, there does not

appear to be a closed form solution for this series. A closed form

solution does exist, however, for a useful parametric family: if

2mi 2 TO2Wi 0 O that the prior variances decrease exponentially in

the degree of the polynomial, then (6.3) is given by a slight

modification (to account for the normalization) of Mehler's formula

(see Watson 1933):

V(x1 ,X2uv) - TO 2 ) wiH(x)H*(x 2 ) (6.4)
* i-0

O- 2 (i- 12expf[2x xiw - (x2 + X2)w /( 2
) '2 p[2 1 2  1 2

T02(.1-w2 - 2exp{-(X-x 2)
2w 2/( 1w1texp2Wxlx2/(l-w)I,

where 0 measures the magnitude of experimental error, T

reflects the extent of the bias relative to experimental error,

and w e [0,1) and controls the rate at which polynomials of

increasing degree are discounted; small values of w correspond to

prior belief that only polynomials of low degree are likely to be

important components of the response function and large values of

w reflect prior belief that higher-degree polynomials may also be

important. The family of covariance functions defined by (6.4)
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provides a flexible class of representations in which the parameters

have straightforward interpretations in terms of prior beliefs about

the nature of the experimental response.

It was assumed above that proper prior distributions would be

assigned to all the coefficients in the expansion of the response

function. It is a simple matter to modify (6.4) if it is desired to

assign improper priors to coefficients for some of the low degree
.-.--

terms: one need only break the expansion into a finite summation,

containing the terms whose coeeficients are assigned improper

. * priors, and a second summation containing the rest of the terms, as
"-o.,

in (5.1). The second summation would then correspond to the abias"

component of the model and its covariance function could be found by

subtracting off the appropriate terms from (6.4). For example, if

improper priors were assigned to the constant and linear terms in

(6.2), the resulting covariance function would be:

V (X1,~w 2 O w1H*(x )H,(x2  (6.5)
....0lxl w) - To 12  1 l (x2)

Vlx- 2[.;1x,) H;(x ) + wH*(x,)H(
' ~1 x2 ;w) - To (x2)xI 0 2 1 1

We should remark that the modification described in the

preceding paragraph is actually unnecessary: if the model contains

a linear and constant term whose coefficients are assigned improper

priors, then using either (6.4) or (6.5) to define the bias results

in the same model for the response function. On the surface, the

last statement may seem surprising, since a model that contains the

,,- - 30-
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same terms in the approximating model and in the bias would appear

to suffer from problems of identifiability. To understand why the

A. same model results in either case, consider for a moment just the

constant term. Suppose the original covariance function (6.4) is

used so that the approximating model contains the term SOH8(x) and

the bias contains the term 80 H8(x), where 80 has the proper

prior distribution eo - N(0,Ta 2 ), and R0 is assigned an improper

prior by assuming that 00 - N(0,k) and considering limiting forms

as k + -. These two terms, however, can be combined into the

single term Y0H8(x), where Y0 - So + 80. The prior distribution

for would then be: YO - N(0,To 2 + k). Considering limiting

forms as k + - thus assigns an improper prior to Y0 . The

resulting model is precisely that which would result had the

v ."~ modified covariance function (6.5) been used, with the single term

YO H8(x) in the approximating model. Of course, the parameters in

the model do depend on which covariance function is used, since the

single coefficient when (6.5) is used is the sum of tne two

coeffiente that appear when (6.4) is used (it is here that the

identifiability problem resides). In terms of the model for the

response function, however, the two models are equivalent.

Although the discussion above has been restricted to the use of

Hermite polynomials to represent the response function, other sets

of orthogonal polynomials or, more generally, of orthogonal

functions could also be used. For Jacobi polynomials, a formula

analogous to (6.4) is given by Bailey (1938); however, it is more
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complicated than (6.4) and requires the evaluation of a

trigonometric integral to obtain the value of the covariance

function for each pair of points.

One useful aspect of the Hermite polynomial expansion is that

it has a natural extension to higher dimensions. Suppose u and

C.' v are vectors in k-dimensional Euclidean space and define:

Vk(u,vw) = To 2Rk(uv;w), where (6.6)

Rk(u,v;w) = exp{-(u-,v)'(u-v)w2 /(1-w 2 ) }

x exp{2wu-v/(1-w)1 / ( 1 -w2)k/2 (6.7)

This clearly reduces to (6..4) when k=1, and it is easy to show that

(6.6) is a legitimate covariance function on RkxR.

It is also possible to represent Vk by an expansion in terms

of Hermite polynomials. For any u, v e R, we can write:

k'.. Rk (u,viv) - I R , ,J(w).

where the Jth term in the product on the right-hand side of the

equation is proportional to the one-dimensional covariance function

(6.4) evaluated at the Jth coordinates of u and v. Substituting

in the series expansion that led to the one-dimensional covariance

function yields:

k
R I w iH(u )H(v). (6.8)Rk.-,w) i iJ=,1 i-o

a Cauchy product of series expansions in the normalized Hermite
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polynomials for each of the k coordinates.

To interpret (6.8), it is easiest to consider first the case

k-2. It is not difficult to rewrite the Cauchy product as:

R2(U,'V;w) " . wi+JH*(u,)R*(v )H*(u )H*(v2). (6.9)i=0 j=0

Thus the covariance function for k=2 involves cross products of

the terms in the one-dimensional (coordinatewise) covariance

functions, with each term discounted exponentially in accord with

the sum of the degrees of the respective polynomials. Moreover,

(6.9) suggests (by analogy to (6.4)) how to define a stochastic

process on R2 that has the covariance function V2. Let:

g(u) = e . 1 HI(u 1 )H*(u 2), for u E R2, (6.10)

i=0 J

and suppose that the coefficients {ei } are independent normal

random variables with mean 0 and variance To2wi+ j. Then g(u) is

a Gaussian stochastic process with covariance function V2.

A natural interpretation of (6.10) is to view q(u) as an

expansion in terms of the two-dimensional orthogonal polynomials

fH*(u )H'(u )}i 0 It is thus also a natural Fourier series
i 1 j 2

extension of classical two-dimensional response surface models which

would begin by including linear terms in each coordinate, then add

pure and mixed quadratic terms, then all cubic terms, etc, so that

the degree d model would have the same form as (6.10), but with
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the summation extending over all i and j for which i + 1 ' d,

rather than over all possible combinations. The notion that all

term ofthesam dereeshould be treated similarly is reflected

above in the assumption that the prior variance of all coefficients

of dth degree terms is equal to TOl Wd

For k>2, the Cauchy product (6.8) can be expanded in an

exactly analogous manner. Again, the expansion can be shown to

* correspond to a generalization of classical k-variate response

surface models. The exact formulas involve rather cumbersome

lol Inotation and will be omitted.

The particular generalized Fourier series expansion used here,

based on Hermits polynomials, seems intuitively appealing in the

response surface context because it provides a natural

generalization of the classical response surface models. It

provides a simple parametric form for the covariance function and

-. has the attractive property that it can be readily extended to

handle several explanatory variables. It is, however, only one

among many alternatives, and we suspect that consideration of other

expansions will suggest additional useful covariance functions.

9. DISCUSSION

Scientists often use empirical models to describe the

relationship between a response variable and a collection of

I explanatory variables. The models presented here all propose to
account for the inability of any empirical graduating function to
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perfectly represent an unknown response function. We have shown

that the models of Smith (1973), Blight and Ott (1975), Young

(1977), and O'Hagan (1978), although they are expressed in slightly

different forms, are in fact equivalent to one another. We have

also shown that they are closely related to smoothing splines (see

Wahba 1978) and have argued that consideration of generalized

Fourier series expansions of the response function provides a useful

P canonical form for the models.

We find it interesting that all the above authors were led to

consider Bayesian models for the problem of representing model

inadequacy. With conventional linear regression models, the only

allowance made for the possibility that the given regression model

may be inadequate is to posit a model that includes additional

regression functions (e.g., if a straight line doesn't provide an

adequate fit, use a quadratic). of course, only a finite number of

regression functions can be used and, as their number approaches the

number of observations, the estimates can be quite unstable. 'The

Bayesian approach seems to provide a much more realistic alternative

for representing model inadequacy. By allowing the model to include

an arbitrary number of regression functions, provided they are

'S suitably downweighted, we can achieve a unified approach to model

inadequacy instead of ad hoc attempts to find a combination of

regression functions that fits the observed data. We think that

4 Bayesian models such as those described here offer the only

reasonable approach to the problem of model inadequacy.

V. ~35-
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