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NOTATION
Mean blade root duct pressure, psig

Amplitude of first-harmonic blade root duct pressure, psi
2
tip)

*
Nondimensional correlation parameter, Alle

Thrust coefficient, T/(npR?V

Amplitude of first-harmonic blade root flapping moment, ft-1b
Mf cos (wf)

Rotor radius, ft

Radial coordinate from hub center, ft
Thrust, 1b

Free-stream velocity, knots
Free-stream velocity, ft/sec

Tip speed, ft/sec

Inflow velocity normal to disk, ft/sec
Shaft angle, deg

Collective blade angle, deg

Inflow ratio, w/Vtip

Mean value of A

First-harmonic cosine component of A

Advance ratio, Vo/Vtip

Normalized value of u, u/VCTIZ

Normalized value of Ao’ Ao/¢CT72

Normalized value of Xj, A1//CT/2




s Kbk

- i i g

¥

%

% i )\: Value of A: predicted by Reference 1
2 S I *

» AT Value of A; predicted by Reference 1

Ambient air density, slugs/ft3

i, |
hel

Azimuthal phase angle of Mf, deg

Rt e e o Al
<
(a1

Azimuthal phase angle of Bl, deg

srrv
<

h 2
A A

R e ata s A
T B R

e

<Lz Py ey T PRI

e 2 - —

I jecession Fnr

7

CNTTS CRARI
L pTIT T

}

!

‘l

:} & i Veannoinend 0

i LTI T T TIkI ¥ o IS
’ -

L3 » somreRen T

: B . e a

: i} ‘ Lottt tand _
N Vg it teer N

= el v Coles
'E S, andfor

N F :

s——

i !

e+ e s bk

*
-t

- < o o |
U (ol

-
-
A
L]
*®

s

)

.
H

¥
K

. Cw - . R - o Cagtalte P R L
n'® o A, - ‘. N \ R P I S TS A, ' \A\':‘-P?-&\‘ ‘,,\"_\_\~_p\_\ N L AR L) PRI RAT S PRI




":\'.:' m b

L)
o

ABSTRACT
.- A joint Navy/NASA experimental investigation was conducted
) in October 1983 in the Langley Research Center VSTOL Wind

Tunnel to test the hypothesis that helicopters with unusually
hub-weighted radial load distributions should experience a more
severe first-harmonic inflow velocity field during transition
than ordinary helicopters. This report presents an approximate
analysis of the experimental results. The hypothesis is

N strongly supported. Compared to the rotor configuration with
the most tip-weighted load distribution, the configuration
with the most hub-weighted distribution appears to have experi-
- enced an approximately 50 percent greater first-harmonic inflow
! at a 50 percent greater critical flight speed.
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ADMINISTRATIVE INFORMATION
This analysis and the Navy participation in the experiments on which it is
based were funded by the Independent Exploratory Development Program. The

&

"l

experiments were performed in the 4- by 7-Meter Wind Tunnel at the Langley

Research Center courtesy of the National Aeronautics and Space Administration
(NAsA) .

Bl

INTRODUCTION

In late 1979, flight tests were undertaken by Kaman Aerospace Corporation

A PO
Ve,

-I on an H-2 helicopter equipped with an experimental circulation control rotor
% ? (XH-2/CCR). It was found to be much more difficult to trim the helicopter in
% av pitch at low speeds than anticipated; in fact, the flight tests were eventually
3 ~ abandoned with no flights at speeds execeeding the critical transition speed.

Although a number of problems were found which could qualitatively explain
the pitch trim difficulty, it was hypothesized that, because the radial load

O

distribution on a circulation control rotor is much more hub-centered than that
on an ordinary rotor, the transition inflow field at critical speed might be
more severe. Although analyses of the flights completed did not indicate unusual

inflow characteristics, the possibility remained that unusual effects, including

g% |

'_..
& mS %%

a higher-than-normal critical transition speed, might have shown up had further

flights at higher speeds been possible,
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In 1983, an agreement was reached between the David Taylor Naval Ship

i\g Research and Development Center (DTNSRDC) and the National Aeronautics and Space -
g Administration to conduct experiments in the Langley Research Center (LRC) VSTOL A
' Wind Tunnel to seek evidence concerning possible effects of radial load distri-
;iﬁ bution on the transition inflow field. These experiments were completed in j}
g: October 1983 by a joint LRC/DTNSRDC team using an existing DINSRDC circulation
%} control rotor model. This report presents an approximate analysis of the results. :i
._ 2 EXPERIMENTS %I
:ﬁz The rotor model was 80-in. in diameter with four, 5-in.-chord blades. These -
tf: blades were judged small enough to yield reasonably valid transition data in the i
hid LRC VSTOL Wind Tunnel (Figure 1). The model was equipped with a pneumatic valve
Ei system capable of providing blade duct mean pressures up to 10 psig and y
g azimuthal l-per-rev harmonic variation of the pressure of amplitude up to about :;
~é 60 percent of the mean. The valve characteristic was such that a 2-per-rev
_ harmonic variation one-third the amplitude of the l-per-rev component and 90 deg .
N out of phase with it also resulted. The model was equipped with blade duct =
E?s pressure transducers, blade root flapping moment strain gages, and azimuth t
;é reference signal generators. A more complete description of the model is given '
in Reference 1.
;t} The model was mounted on a four-component DTNSRDC load cell balance designed X
j*j to measure thrust, pitching moment, rolling moment, and yawing moment during
Ef hover tests. All tests were performed at a tip speed of 500 ft/sec. The thrust ;»
-— reading of this balance was also to be used for the forward flight tests. )
» : Unfortunately, the balance system malfunctioned during early hover tests. Enough f:
R data, however, were acquired before the malfunction to confirm that the model was -
;}% functioning properly and to establish an approximate correlation between the first- .
-~ harmonic flapping moment strain gage measurements and the actual root (hub-center)
flapping moment. All analyses of the transition data then had to be performed in :
terms of root flapping moment. i

A tabulation of the experimental results for the transition inflow analyses
is presented in Table 1. In addition to the tabulated data, a number of other

data channels were recorded including the azimuth angle of the maximum opening
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Figure 1 - Rotor Model in Langley Research Center
4- by 7-Meter Wind Tunnel
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of the pneumatic valve (which was of the eccentric-circular-cam type) and the

output of blade duct pressure transducers located at the tip and a mid-radius
position, in addition to the "blade root" (10 percent-radius) transducer output
used in the analysis. Comparison of the first-harmonic phase angles of these
various quantities with each other and with the recorded cam angle reveals
random inconsistencies in the phase angles on the order of *10 deg. Since LRC
was unable to provide on-site reduction of the high-speed data, the unusually
large error band was not detected in time to initiate efforts to identify and
correct the cause.

In addition to the random inconsistencies, there are also regular incon-
sistencies—notably that the recorded phase angle (i.e., azimuthal position
of first-harmonicApeak) of the duct pressure at the blade tip lags that at the

root by about 3 deg on average; whereas, due to the time lag involved in near-

sonic transport of a pressure signal from root to tip, the blade root first-

harmonic pressure peak should lead that at the tip by about 23 deg. The results
of the analyses suggest that the recorded tip pressure phase is more nearly :si
correct. -
3
AERODYNAMICS PERFORMANCE CODE 3
The performance code used in the analyses is an undocumented code developed o
by the author on an HP-9836 desk computer for quick-look investigations of the ;&
effects of various design parameters on the performance of circulation control
and X-Wing rotors. The code employs a curve-fit approximation to the experi- FS
mentally determined two-dimensional characteristics of the circulation control o
airfoils used on this model rotor, including Reynolds number and compressibility .
effects. It also employs a "distributed momentum' variation of the approximate g
inflow equations presented by Blake and White.2 The Blake and White formulation -
can be written as: ;2
= 3 4] t/R cos (0] o2 (1) &
Ko
X
4 »q
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where

X = Van®® - %272 @)

A= VB ur/(a*h 4 142 (3)

The "distributed momentum" variation merely replaces the quantity A by the

quantity A leocal disk loading)/(average disk loading).

In the present investigation, a further modification was introduced. The
quantity AT was replaced by the quantity KlamAT so that the first-harmonic in-
flow term could be easily varied iteratively (by varying Klam) to determine
what value of this term was needed for best correlation with the experimental
results. For purposes of this investigation, the '"rigid rotor" option of the
code was used; that is, elastic deflections of the blade were neglected.

It was intended to validate the aerodynamics performance code (and, 1if
needed, make empirical adjustments to it) by comparing calculated to measured
thrust and hub moments in hover at three blade angles and several combinations
of blade duct mean and cyclic pressure. As previously mentioned, only one
collective angle was completed before the thrust balance malfunctioned, and
only a few cyclic pressures at that collective angle were completed before the
hub moment balance began to behave erratically.

Correlation of the few valid thrust data points with previous measurements
(unpublished) and with the calculated behavior is shown in Figure 2. It is
concluded that (1) the model was functioning properly, and (2) the thrust pre-
dictions from the aerodynamics performance code are satisfactory.

The few valid hub moment measurements were used to establish the approxi-

mate relationship:

Mean Hub Moment = 2.5 Mfe

2 T N PR P Y Pt [P . . . .
I A A A DY P R Y i e e T T T O R T TN R
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( '! where Mfe is the first-harmonic amplitude of measured flapping moment (measured

") by a strain gage bridge at the 12-percent radius station). From this it is
™.
Zj = deduced that:
wal e,
- =
ol M 2 1.25 M
Al
23
31 X where M is the root (hub center) flapping moment. This relationship was employed
DR
-

in all subsequent analyses,

2 Correlation of the measured flapping moments with calculated behavior is
,3 - shown in Figure 3. The flapping moment predictions from the aerodynamics per-
N

~ A formance code are also satisfactory. Consequently, empirical adjustments to the
o' A

N code were not needed.

2

".’] R

ﬁq _ﬁ- ANALYTICAL PROCEDURE

:‘ ) No inflow quantities were directly measured in the experiment. The plan
L . was to determine for each experimental data point the value of

\ oy

*

,‘3 N A=Ky oA

LA
by %

' which, when substituted for A; in Equation (1), would yield agreement between
g '3 the measured and calculated first-harmonic root flapping moment amplitude and
) phase (Mf,wf). The calculation would have employed the measured values of

' -

:; S: root pressure zeroth, first- and second-harmonic amplitude and first- and second-
M

harmonic phase.
S In view of the random and systematic irregularities in the pressure phase
measurements, this plan was modified slightly:

- 1. It was assumed that the best first estimate of actual effective root

[~ pressure phase was a value leading the measured phase by 20 deg.

20 | \DIBRRRR.

. 2. From this estimate, random variations on the order of *10 deg can be

expected.

-
o

LA
R
-

3. To reduce the time required for analysis, it was decided to define
"agreement" by:
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Figure 3 - Comparison of Measured and Calculated Hub Moments
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a. Measured M, cos “’f = Calculated M, cos wf.

b. Discrepancies between measured wp and calculated input ¢ _ should
both be '"reasonable" in light of the above-discussed data
irregularities.

These regrettably soft criteria may become more understandable in light of
the example presented in Figure 4. Here the experimental results for Run 61/Test
Point 1 are shown with the calculated results for various combinations of input
pressure phase, wp’ and input inflow correlation parameter, Klam' Note that the
"reasonable" range of input wp (+1 deg - 20 +10 deg = -9 to -29 deg) brackets the

input wp of -12 deg required to produce agreement in both M_ cos ¢f and Mf sin wf.

More importantly, note that the value of Kzam required to p:oduce agreement in
Mfcoswf alone is rather insensitive to small errors in either wf or wp. This
insensitivity to errors in wp prevails so long as wp is near zero (or 180 deg),
and the insensitivity to errors in wf prevails so long as wf is_near 180 deg

(or zero). Fortunately, a goodly fraction of the duta were taken under conditions
meeting both of these criteria, tending to strengthen what would otherwise be
very low confidence in the results of the analyses.

In view of the data uncertainties and the rather time-consuming calculation
procedure (about 10 min per calculated point), the actual analysis procedure did
not use an orderly grid of calculated points such as illustrated in Figure 4.
Rather, from a first guess at wp and Klam’ subsequent iterative estimates (usually
two or three) were made until the result was judged "close enough,' and the last
estimate was recorded in Table 1. Thus, these estimates could be improved upon
by further analysis, if desired.

The second-harmonic pressure amplitudes and phases are not recorded in Table
1; in all cases, they are close to one~third the amplitude of the first-harmonic
and 90 deg out of phase. The second-harmonic component is included in the
calculations. The effect of the second-harmonic component is to make the

pressure wave broad/flat on top and narrow/peaky on the bottom.
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RESULTS AND DISCUSSION-

* *
The results are summarized as plots of )} versus u in Figure 5. There is

a systematic variation with collective blade angle, with the results for
© = 0 deg falling in reasonably good agreement with the predictions of Reference
1. The results for © = -3 deg and © = -6 deg, however, fall progressively
further above the predictions of Reference 1. This is consistent with the
original hypothesis that the first-harmonic inflow term might be greater for
rotors with relatively hub-weighted radial load distributions.

Figure 6 shows the calculated blade load per foot at the advancing
(¢ = 90 deg) and retreating (y = 270 deg) blade positions for two thrust co-
efficients at each of the blade collective angles. At O = 0 deg, blade loading
tends to increase with increasing radius over most of the blade (as it does for
all conventional rotors); at © = -3 deg, the blade loading is approximately
constant over most of the blade; and at © = -6 deg, blade loading decreases
rapidly 'with increasing radius over the outer half radius.

The theory of Reference 1 is a rather heuristic one. It represents the
wing-like component of rotor lift, as determined from simple momentum theory,
by a horseshoe vortex of span equal to rotor diameter and estimates A; from
the normal-to-disk induced velocities of this vortex system on the centerline
at the disk leading and trailing edges. If these simple assumptions give a
correct estimate for an ordinary rotor (i.e., one with heavily tip-weighted
radial load distribution), it might be assumed that a similar estimate using a
horseshoe vortex of span less than rotor diameter would be more appropriate for
a rotor with a heavily hub-weighted radial load distribution. Alternatively,
this speculation can be expressed in the form that such a rotor should behave
(for purposes of first-order inflow estimates) like an ordinary rotor at the
same thrust but reduced diameter; or like an ordinary rotor of the same diameter
but greater thruet coefficient. Such an estimate is achieved by plotting
KAT versus Ku*, K>1, where XT (u*) is taken from Equations (1) through (3).

Such estimates are compared to the results of Figure 5 in Figure 7. Values
of K= 1.25 and K = 1.53 are found to correlate the O = -3 deg and O = -6 deg
data, respectively. (The constants 1.25 and 1.53 were selected purely to fit

the data and not from any theoretical considerations.) The degree of data fit
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achieved in this way does tend to support these heuristic arguments and suggests
that some further simple theoretical explorations seeking to connect the constant
K to the radial load distribution in a quantitative way might be productive.
Because of the substantial uncertainties surrounding the experimental data,
it 1s necessary to question whether any reasonable systematic error could produce
the trend exhibited in Figure 7 artificially. The most obvious such possibilitcy,
since there was no valid measurement of thrust during the transition tests, is
the possibility of a systematic error in the calculated thrust. If the cal-
culation procedure systematically underestimated the thrust at © = -6 deg and/or
overestimated the thrust at © = 0 deg, an artificial difference similar to that
displayed in Figure 7 would result. However, to produce the magnitude of

difference shown in Figure 7 would require that

Calculated thrust @ © = 0 deg Calculated thrust @ 0 = -6 deg

Actual thrust @ © = 0 deg Actual thrust @ O = -6 deg
be equal to 1.532 = 2.33. This is regarded as extremely unlikely.

A second possibility is that the decision to base the analysis on root
(hub-center) flapping moment which, in turn, was estimated as 1.25 x (measured
flapping moment at l2-percent radius) might produce a systematic error. However,
re~analysis of a typical data point at each © was performed in terms of the
measured l2-percent radius flapping moment (with no additional calibration factor
applied). The result was to reduce the estimated value of XT by about 3 percent
in each case. In other words, there was no effect on the trend displayed in
Figure 7.

It is concluded that, although significant quantitative errors are possible,
the trend displayed in Figure 7 is almost surely real, and rotors with unusually
hub-centered radial load distributions do indeed experience unusually severe

transition inflow fields.
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