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LONGITUDINAL AND TRANSVERSE INSTABILITIES
IN A HIGH CURRENT MODIFIED

BETATRON ELECTRON ACCELERATOR

1. INTRODUCTION

In this paper we examine a number of potentially destructive instabilities which can arise in a high
current modified betatron electron accelerator. One of our main results is that the negative mass/kink
type of instability can in an ultra high current modified betatron, be stabilized by a combination of a
strong toroidal magnetic field and energy spread on the injected electron beam.1 The modified betatron
accelerator consists of an external toroidal magnetic field in addition to the usual external betatron field
components (see Fig. 1). The strong toroidal magnetic field B9 is the salient feature of the modified
betatron accelerator. We will show that the addition of this field component greatly improves the stabil-
ity characteristics of the intense electron ring. In order for the toroidal magnetic field to be effective in
stabilizing the various instabilities, it is necessary that IB, l >> JBJ where B, is the vertical magnetic
field. Although the toroidal field is beneficial in so far as stability is concerned, it requires a somewhat
more involved electron beam injection scheme. 2,3

From simple space charge considerations alone, it has been shown that the total number of elec-
trons (current) that can be contained in the modified betatron field greatly exceeds the number that can
be contained in a conventional betatron configuration."- 5 Taking Nmb to be the maximum number of
electrons that can be stably confined in a modified betatron and NpT to be the corresponding number for
a conventional betatron, it has been found that solely from space charge considerations

Y.Vm - I (Bl B..)2 Nh,

where IBI << IB.I. For a relativistic electron beam the maximum injection current that can be
confined in a modified betatron accelerator is

Ib.ax 2.1 (rl/ro)2 y 3 (Bd/B) 2 lkAl,

where rb and r0 are the minor and major electron ring radii respectively and y is the usual relativistic
factor. It is clear from the expression for lb, ., that for injection energies in the MeV range extremely
high currents (in the tens of kiloampere range) can be confined in the modified betatron for very mod-
est values of rb, r0 and B9.

There are, however, numerous beam instabilities which may also place limits on the beam
current, especially at the early stages of the acceleration process, when the beam energy is lowest.
Some of the instabilities that have been found to limit the current in conventional low current betatrons
are the negative mass, longitudinal resistive wall, transverse resistive wall and resonant instabilities.
These instabilities, associated with conventional cyclic accelerators, have been examined in great detail
and are well understood. A large body of literature exists on this subject and a number of excellent
papers and review articles discuss these and other instabilities for conventional tenuous beam cyclic
accelerators.1"23 Far less is known, however, of the corresponding instabilities for intense electron rings
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in a modified betatron accelerator. In this paper we derive a general dispersion relation which describes
longitudinal and transverse instabilities associated with an intense relativistic electron ring in a modified
betatron field configuration. A recent analysis of longitudinal instabilities, i.e., negative mass and resis-
tive wall, in the modified betatron has been performed.2 3 The theoretical model used in Ref. (23) does
not provide for transverse oscillations of the beam center and, therefore, a comparison with our results
cannot be made. The present analysis of instabilities in high current modified betatrons does not con-
sider resonant instabilities due to errors in the external fields. This general class of instabilities has
been addressed in a separate paper.24 In the present analysis the intense electron ring is non-neutralized
in both charge and current and, hence, self field effects are included in our analysis. Self field effects,
as measured by the self field index n5, are shown to play an important role in so far as the strength of
the various instabilities are concerned. Since the electron ring is confined in a toroidal chamber of
finite conductivity, induced fields from the image charges and currents are included in our model. We
also allow the beam center to undergo self-consistent transverse oscillations. In all parameter regimes.
this extra degree of freedom for the beam dynamics is very important in the negative mass type of ins-
tability in the modified betatron.

Although we are considering high current electron rings (multi-kiloampere range) we will limit
ourselves to low 1/y beams where v - le 12N/(27rm0cr 0) is Budker's parameter (N is the total number
of electrons in the ring). The low v/V beam assumption places only weak limitations on the analysis
since it does not necessarily imply low beam currents. There are however a number of physical impli-
cations associated with low v/y beams. The fractional change in beam energy in traversing the minor
radius of the beam is proportional to v/y. Hence, by employing the low v/-y approximation we are
neglecting this energy shear. Due to the particle drifts associated with the self forces of the beam. i.e..
electric and magnetic forces, and the external toroidal magnetic field Bq, the beam electrons rotate in
the poloidal direction. This poloidal motion generates a toroidal diamagnetic field which opposes the
external B. field. However, for beams with v/V << I this diamagnetic field may be neglected. Because
of these and other simplifying assumptions our analysis assumes that v/y << 1.

The derivation of the linear dispersion relation is performed in Section 2. Here, the fields are
expressed as the sum of external and perturbed fields. Azimuthal density perturbations as well as
transverse beam displacements are considered in our analysis since both are coupled in the modified
betatron field configuration. The resulting dispersion relation describing longitudinal (azimuthal) and
transverse beam instabilities in a modified betatron is analyzed in various limits in the subsequent sec-
tions. In Section 3 the emphasis is on the various limiting regimes associated with the dispersion rela-
tion. In Section 3a the kink (purely transverse mode) is analyzed and the growth rate for the
transverse resistive wall instability obtained. In the following sections the coupled azimuthal and
transverse modes (negative mass/kink) modes are analyzed. In Section 3b we consider the special case
of an intense electron beam in a conventional betatron (B, - 0) and in Section 3c a tenuous electron
beam in a modified betatron is considered. The most interesting and perhaps relevant limit is that of an
intense beam in a modified betatron. This special case is studied in Section 3d in some detail. In :his
section we first evaluate the growth rate associated with a nonthermal beam in a toroidal chamber of
infinite conductivity. The resulting instability is shown to be a hybrid mode associated with the cou-
pling of transverse and azimuthal beam oscillations. In this limit the effects of a finite wall resistivity
are shown to be in general negligible. We also find that a modest amount of beam energy spread will
stabilize the instability even for electron beam currents as high as 10 kA. Finally in Section 4 we dis-
cuss our results and assess the potential realization of an ultra high current modified betatron accelera-
tor.

2. DERIVATION OF DISPERSION RELATION

Our model consists of an intense non-neutral electron ring confined within a conducting toroidal
chamber as shown in Fig. 2. The electron ring is assumed to have a circular cross section with minor
radius rb and center at r - ro + Ar(O,t) and z - 4 z(0.t). The beam is enclosed in a toroidal chamber

2
-I,



of finite conductivity, o-, with minor radius a >> rb and major radius re >> a. The beam center is
initially centered at (re, 0) but can undergo small displacements, hence 1Ar I, AzI << a.

The containment of the beam in a conventional betatron is accomplished by an applied axial mag-
netic field B, with a local variation proportional to r- ", where n - -(r/B,) dB./dr is the external field
index. A radial component B, is present, to account for the nonuniformity in B_ The modified
betatron utilizes an additional azimuthal magnetic field B0 , with a free-space spatial variation propor-
tional to r- 1 . Expanded about (r0, 0), these fields are

B. - Bo,(1 - n(r - ro)/ro), (1a)

B, - - Bo. nz/ro, (1 b)

B, - Bo, (1 - (r - ro)/ro), (1c)

where Bo0 , Be, are constant.

It is convenient at this point to define a reference particle in perfect unperturbed circular motion
about the axis with r - ro and z - 0. Under the condition that the electron beam itself is also centered
at (ro,0), the orbit of the reference particle is governed solely by the external fields (neglecting toroidal
effects). The azimuthal velocity of this particle is v0 - ro floz/yo, where yo - (1 - vd/c 2)- 1/2 and

0l.- e I Bo/ moc. Furthermore, since the canonical angular momentum P is defined to within an
additive constant, we take it to be zero for the reference particle. Note that Gaussian units are used
throughout this paper, and Ie and me are the elementary charge and the electron rest mass while c is
the speed of light.

The total unperturbed fields acting on the particles consist of the external fields, Eqs. (1). as well
as the self and induced fields. The induced field contribution results from a displacement of the beam
from the center of the chamber. In the absence of toroidal effects, image charges and currents are
induced on the conducting chamber walls only when the beam is displaced off center. These image
charges and currents result in the induced field contribution. The self fields, on the other hand, are
simply the self electric and magnetic fields associated with an unconfined beam. Assuming a constant
profile for both the beam charge and current density it is straightforward to show that within the beam,
the combined expressions for the self and induced fields E,(), EP(1), , B..(I) are to lowest order

E,()- -2r leIno[r - ro- (- r/a 2 )Ar],

E ) - -21rlelno[z - (Q - rdla 2)AZI,

(2)

B,( -
) - - 21rIeigono[z - ( - rb/a 2)(1 + f)AzJ,

B ) - 2irlelpono[r - re - (1 - rd/a2 )(1 + f)Ar],

where no is the uniform equilibrium number density, 3o - vdc is the uniform normalized azimuthal
velocity, 0- (1 + 1)(rd/(a 2 - ri)) '.117 (8/a), 8 - c/-,/ Tw1 is the skin depth associated with
the finite conductivity chamber and w is the frequency associated with the perturbed beam displacement
(for example in the case of a pure negative mass instability, w z WI o/,o where I is the harmonic
number).
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The perturbing fields excited by the perturbed charge and current density of the beam within the
conducting chamber can be found in the usual way by solving Maxwell's equations. It will become
clear later that it is necessary to express only the perturbed azimuthal electric field Eoi) -

Et exp [1(19 - (at)] in terms of the perturbing line charge 0 ) - A exp [(MO - (at)] where I is an
integer and (a is the frequency of the perturbation. Since the perturbed field Eg") varies slightly across
the beam when rb << a, we will use its value at the center of the beam in our analysis. For an elec-
tron beam centered at (ro, 0) and having a uniform density and current profile, the relationship between
- and A can be shown to be

- t ( +21n a/rb)ro 2  (

where ,- 1o-v7_c(aIcu(8/a)/(l + 2 In a/rb). The yo term in (3) is a electromagnetic contribution.
In obtaining Eqs. (2) and (3) we have assumed that the wavelength of the perturbation is large com-
pared to the torus minor radius, i.e., 2irro/I >> a and that toroidal effects can be neglected, i.e.,
v/yo << 1. It has also been assumed that the azimuthal phase velocity of the perturbation is very close
to the beam velocity, i.e., w' = hdo/ro - Iflo:/Yo. It should be noted that Eq. (3) is valid for a beam
centered at (r0 , O) whereas our analysis will be applicable for a beam with a general displacement cen-
tered at (r0 + .Ar, Az). We will show later that the beam displacement from the center of the torus is
itself proportional to &"), if the beam is initially centered at (ro, 0). Hence, for a beam displaced off
center by (At,Az). the correction to Eq. (3) is of higher order in the perturbing field and therefore will
be neglected. The external fields in Eq. (1), the self and induced fields in Eq. (2) as well as the per-
turbing azimuthal field in Eq. (3) will be used in the particle orbit equations to obtain the linearized
particle trajectories. Knowledge of the linearized particle trajectories will permit the evaluation of the
perturbed line charge as a linear function of E,. The remainder of our analysis deals with deriving the
self consistent linear relationship between the perturbed line charge and perturbing azimuthal electric
field. Coupling this relationship with Eq. (3) will result in a dispersion relation for the various modes
which include the negative mass, longitudinal resistive wall and transverse resistive wall instabilities.

Employing a Lagrangian representation for the particle dynamics, the line charge of the beam is
A-- le) Jnbr(rz.,t,)dS, where f dS is the integral over the beam cross sectional area and nh(r,z ,)

is the beam density. The line charge can be expressed in the form

- I norof0 Pb pdpfo daoq(poao) f' dAPg(AP) f dO0 8(0 - O)/F (4)

where no is the ambient beam density, (po,a o) are the particle's initial poloidal radial distance and angle
measured from the center of the beam, T (po, aO) denotes the initial distribution of Po and aot, AP is the
particle's initial can nical angular momentum, g (AP) describes the initial distribution of AP and is nor-
malized such that dAPg(AP) - 1, 00 is the particle's initial azimuthal angle, 0 - 4(po,,ao,AP,N0,t) is
the particle's azimuthal angle at time r and F - F(po, ao,,IP, Oo,t) is the particle's radial position at time
t. To find a linear expression for the perturbed line charge 0"l , we expand the particle trajectories in
terms of the perturbing field, i.e., F - r (° ) + r(t ) and 9 - 00 + 1O0) + q(I) where r(t) and 0(") are linear
in Eo") . Performing this expansion on Eq. (4) we find that

x) - Ielno fo' podpofo2" daov f: gdAP(O('/1 8Oo + 106 .  5)

It now remains to evaluate the linear part of the trajectories r(1D and 911), in order to obtain the
linear perturbed line charge. Using the external as well as the self and induced fields in Eqs. (1) and
(2) we find that the linearized particle equations, correct to first order in A r. Az and E., are

4

____________ , ....



0,_ 1 P floo (I o,~ I ifl p1,(r- o) _ 1 (1- )Ar+ (6a)yo yomoro Vo oT I La 2  o yomoro

+o2: + -ro - 2/211 22

W + r -k n l  rb/a 03,o)Az, (6b)

0. -r-roI AP +POP
- ro - 3mor (60

where w ' 2 (1 - n - n,)(flo./,yo),, wa: - (n - ns)(flo:/,o) 2, n is the external field index, n, -
8b'/(2 Vyfofl2) is the self field index, W2 - 4,re 12no/mo, fn0o/yo _ le IBoj/yomo is the toroidal cyclotron

frequency and Pj") is the first order perturbing canonical angular momentum which is shown later to be
proportional to E,)). The self field index n, is a measure of the electron beam self fields and is related
to Budker's parameter by the relation n, - 2 (/yo)(c/fno~rb) 2. Note that for a low beam current, and
no toroidal field, i.e., n, - 0 and Bo@ - 0, the terms w, and w: reduce to the usual radial and axial
betatron frequencies. In obtaining Eqs. (6) we made use of the following linearized relations

Y YO + (AP + p1 ) 0 /('Yomoc 2 ), (7 a)

v VLJ 4- (AP + pjI))/(Y moro), (7b)

where y - (1- v/c 2)- /"2 and v, is the azimuthal particle velocity correct to first order. As a re-
minder, we note that the Ar and Az terms in Eqs. (6a,b) are to be considered first order terms.

The significance of the toroidal magnetic field on the stability of the particle orbits, under the
influence of only self field forces (space charge forces), can be seen from an examination of Eqs.
(6a,b). To study the orbit stability due to only self field forces we set Az, Ar and pl) equal to zero in
Eqs. (6a,b). The frequencies w, and ci, may be imaginary for large values of n, (which is the present
case of interest). However, unlike the conventional betatron, particle orbit stability is achieved by hav-
ing a large toroidal magnetic field. It can be shown4 from Eqs. (6a,b) that under the influence of only
self fields, particle orbit stability is obtained if n, < (BO#/2B,) 2 when Bog >> B0:. In conventional
betatrons, on the other hand, orbit stability due to self field forces require that n, 4 1/2. Since n, is
proportional to the beam current the conditions for stability against self field forces show that the
modified betatron field configuration can confine far higher beam currents than the conventional beta-
tron.

The zero order solution to Eqs. (6) are

r °) = ro + f, 0.- AP -(8a)Y/o YomorooJ ,

.-o). 0, (8b)

(O0) - (flo,/y o + kAP). (8c)
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where k - [I/y0 - 1/(0 - n - n,)/yomor. In obtaining Eqs. (8) we have neglected the homogene-
ous part of the solution and will, henceforth, not consider the effects due to finite amplitude betatron
oscillations in our model. These effects, however, can be included in a straightforward way. To solve
for the first order solutions to Eqs. (6) we first note that the perturbed canonical momentum satisfies

-) le 100 a(A#(' - /'l 1))/O6, where A~1 ) and 0(1) are the perturbed vector and scalar poten-
tials associated with the perturbed charge and current density of the beam. Since the perturbing azimu-
thal electric field is

E,1 -1 exp [i(O - wt)] - c-1aAJD/1t- ro l)/Y0

we find that to lowest order

pl) - ia l Ie roFo el"o'f), (9)

where again we are considering frequencies near harmonics of the cyclotron frequency, i.e., w
1floz/Vo and Awl - (a - (fl/y o + kAP). To solve for the first order trajectories we first represent
the center of the beam displacement and the first order solution as

(Ar~ ) , z~ l ) -(A .A ,e ' ° -° ' .(10a)

(r'11,:Z1 ) ) - ( ',D)e
i l - t  G ,ze ' O - t .  QlOb)

Using this representation together with Eq. (9) we find that the first order solution to Eqs. (6) is given
by

D-1 [(a)I - ( os1)fnIo  a  09y())l411 + (I e/ IA w Ao 4. ) (0la)

where D - (c] - Aw1)o - Alw ) - Awfl1 /y and f0 - n,(1 - r/a 2)(1 - ,y 26) fl:/v&. Equa-
tions (11) state the first order solutions in terms of A ., A! and Eq. To obtain P and i in terms of only
E, we note that the average value of (?,.) over all the particles is just (A, ). Since we are disregard-
ing the effects of finite amplitude betatron oscillations, the average of (A.) over all particles in any
given beam cross section, denoted by (<>, < > ), is

(<>,<>) =f dAPg (AP)( 0,1) - (A P, AZ,(12

Performing this particle average over Eq. (1) we obtain

de( C, (13a)
yomo R

I Jel E4, (13b)
y0mo R

6



where

R- <Q.><Q,> - 4<AcujD-1>1fl( /y2.

2 + 2Q, -I+ A, (,), D ,,) - ', D -I+n2,, x,?o

c- j 2o n,- -/ -I - <Q,
YO D 7 D?

C- fz L 1 <Q.> f2 10 A 2YO I yo o D o

Combining Eqs. (12) and (13) we find

d l R-1_If o2aaC+,2~~ tl .Ra2A ) lfl , (14a)

yomo S " Yo Yo

C.-.f..2(wR2-Afl(a C,-f ( -- ):+R 2Lo (14b)
Yomo I Yo Yo Yo

We can now evaluate the perturbed line charge given in Eq. (5). From Eq. (6c) we find that

0. ro, r (1) + P"1)
YO ro y~mor

where r (t ) and pl) are given by Eqs. (14a) and (9). Substituting 0(1) into Eq. (5) and using Eq. (14a)

together with Eqs. (9) we find that the perturbed line charge is

AM - it -- b -L <a.&-2 (l/y - D-'(fl0o'/Yo)( 1  - a,))
470 ro

- fl2(4jWDR)- (flo/yo) [( d - - , > e (15)

In obtaining Eq. (15) we have assumed a constant density profile beam, i.e., "n(po,ao) I 1 and have
neglected finite amplitude betatron oscillations.

7



Combining Eqs. (3) and (15) we obtain te following dispersion relation

2 2 2 1 1 1 (  AW.,.2) f 2 / 2

4y r, 2 +- 2 in al/rb)( Q 14EII) .. L.I
1- 4f,Y r " ' - -0 D

.IwDR "10Y .~ I

Equation (16) is the complete linear dispersion relation for an intense electron ring in a modified beta-
tron confined in a conducting chamber of finite conductivity. The azimuthal and transverse modes of
oscillation are coupled via the presence of the external azimuthal magnetic field. Thus, for example,
the negative mass instability in the modified betatron excites both azimuthal and transverse oscillations.
In a conventional betatron field configuration longitudinal oscillations are excited by the negative mass
instability. As is the case in a conventional betatron a pure kink type mode can exist in a modified beta-
tron (Section 3a). In this case the radial and axial beam displacements are, however, coupled through
the presence of the external azimuthal magnetic field. This is unlike the situation in a conventional
betatron where the transverse oscillations are uncoupled. In the following section we examine the gen-
eral dispersion relation given by Eq. (10) in various limiting situations.

3. LIMITING REGIMES OF DISPERSION RELATION

a. Kink instability (transverse resistive wall).

Due to the finite wall conductivity a kink instability can develop on the electron ring. In the case
of finite wall conductivity this instability is referred to as the transverse resistive wall instability. If the
dissipative mechanism were collisions with say a background plasma we would refer to the instability as
the hose instability. The transverse resistive wall instability is characterized by a uniform density in the
azimuthal direction, hence E t ) - 0. Since the beam undergoes a transverse displacement we see from
Eqs. (13a,b) that the dispersion relation for this mode is R - 0. When B, - 0, this reproduces the
dispersion relations of Ref. (11). For B0, * 0 and an external field index equal to 1/2, i.e., n - 1/2.
the dispersion relation for the transverse resistive wall instability becomes

2 g(AP)d(.P) 0, (17)
z " - ICU?± AI og//0

where ca,2 has been used for both wrF and w" (since n - 1/2).

For a highly conducting chamber, the skin depth is small compared to the minor radius a. i.e..
8/a << 1. Then, for a cold beam, g(AP 0 ) - 5(P 0 ). the growth is

F- go a'o n o)0(/~ (18)

Boo Yo V'1 + 4(Bo/Bo )2(1/2 - n~r /a 2)

This relation shows that for B0./Boo << 1, the growth rate is proportional to the vanishingly small ratio
B 0 /Bo0. On the other hand, if Boo - 0, then Eq. (18) reproduces the result of Ref. (1 1). for n - 1/2.

8
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In addition if the conductivity of the wall is taken to be infinite, the dispersion relation in Eq.
t07) gives, for a cold beam and for n - 1/2, the following four stable transverse beam modes:

II1w t oT 1 (±t) 1, + 4 -. n (19)

Since 1/2 - n(rb/a) 2 is necessarily much less than (Bo912 Bo,) 2, there are two pairs of stable
transverse modes of oscillation, viz. with Ao - : (fl 0 Iyo), i.e., the fast oscillation, and Awl - ±0.5,
i.e., the slow oscillation, where

wB - (1/2 - n,(rba)2)(Bo0 /BoO)f0o./,o

is the bounce- frequency. The slow oscillation at the bounce frequency is the result of the E x B drift,
caused by the transverse induced image fields and the applied azimuthal magnetic field.

In the following subsections the instabilities associated with the azimuthal and transverse beam
oscillations are analyzed for a number of limiting cases.

b. Negative Mass and Longitudinal Resistive Wall Instability
in a High Current Conventional Betatron (Bo - 0 and n, ;d 0).

In this subsection we consider the negative mass and longitudinal resistive wail instability in a
conventional betatron, B0 - 0. with self field effects included, m, d 0. In this limit the dispersion
relation in Eq. (16) simplifies substantially since the coupling term which is proportional to Bog van-
ishes. For a cold electron beam, i.e., g(AP) - 8(.%P) the dispersion relation takes the form

O i (1 - ici) (1 - a )/,0) J, (20)
y'0

where

72 - (cub/4yo)(rbro)2 (1 + 2 In a/rb)/3 y (c/ro)2 (v/yo)(1 + 2 In a/rb)/l.o

and a - /( - n - nsr/a2). Except for the self field term nsrb/a 2 in the expression for a, Eq. (19)
is identical to the usual dispersion relation describing the negative mass and longitudinal resistive wall
instability in a conventional betatron. 1,,3,14 In a conventional betatron the self field index n, must be
less than 1/2 to insure particle orbit stability, i.e., wc,4 and a. > 0. Since (rb/a)2 << I the term
n,(rb'a) 2 can be omitted. Thus in a conventional betatron self field effects play a substantially more
important role in particle orbit stability than in the negative mass/longitudinal resistive wall instability.

c. Negative Mass and Longitudinal Resistive Wall Instability
in a Low Current Modified Betatron (B0o 0, n, Z 0).

In this limit we consider the instabilities in a low current, n, = 0, modified betratron, B0, ;d 0,
accelerator. The dispersion relation in Eq. (16) again simplifies substantially since fl, - 0 and
Q, - Q - R - 1. The resulting expression is

'2f d(4P)g(P) _J (iCI ca'1 12(1 - iE1 ) 70"  A 2  1  I -- D J (21)

where 1o - - Il" ,/yo and D - (w2 
- Ao7) ( - AI7) - I Aofk1 . For perfectly conducting

walls, i.e., eI, - (o- - -), the dispersion relation in Eq. (21) describes the negative mass instability in
a low current, i.e., n, - 0, modified betatron and is identical to the result in Ref. (16) for the case of
zero betatron amplitudes. In the limit that B0 >> BO, the term Aw 2 can be neglected compared to (,
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and a(a but not compared to W 2(a/flo./1-o)2 . For a cold electron beam, i.e., g(AP) - &(AP), the

leading term of the growth rate in this limit is

r 8 o, -01n/2j 1 I n 12 (22)

The growth rate in Eq. (22) is independent of beam density and is proportional to the vanishingly small
ratio Bo./ Bo9.

d. Negative Mass/Kink and Longitudinal Resistive Wall Instability in a High Current Modified Betatron
(Bo >> Bo. and n >> 1).

From space charge considerations alone we have seen that the modified betatron configuration can
confine ultra high current electron beams if the azimuthal magnetic field is sufficiently strong. In fact
for space charge confinement in the modified betatron we require that n, be less than (Bo./2B,) 2.
Since Bo >> Bo, the self field index n, may be much greater than unity. In conventional betatrons,
on the other hand, n, is limited to values less than 1/2. We will now examine in some detail the
dispersion relation in Eq. (16) in the high current regime, i.e., n, >> I but less than (B,0 /2BO) 2 . In
this regime the quantities iao4, 1wil, f)"I and (fWolyo) 2 are much greater than (.o:/yo) 2, whiie
'ca + flZ, I CU+ 0 -I and 1w,2,!/(floo/yI)21 are comparable to (flo,/yo)2 . We also note that
ACo,] <<fo./V', where Auo- w - lfo,/yo. In view of these observations and inequalities the

dispersion relation in Eq. (16) for a cold electron beam, i.e., g(AP) , 8(1P) becomes

-12--Y,:- i Q ) I-a + (23)
(1-O AwAI Awo ~WBj-c~l j

where Et" y- i03 (8/a)i(l + 21na/rb) and ej - -2 vod3 ns(rb/a)2 (8/a) (1/2 - nsrb/a)- '.
For a highly conducting chamber ell << 1 and ej << 1. To investigate the nature of the roots of the
dispersion relation in Eq. (23) for a perfectly conducting wall, i.e., eq - 4, - 0, we define

(A(a2) - a + a (24)
,Ado Aw, -(0

The dispersion relation is then simply F(Awo,) - (d,) 2 . The function F(4uoj) is depicted in Fig. 3
and has singularities at ,Aw6' - 0 and Aawi - j. These singularities correspond respectively to the
azimuthal and transverse (kink) modes of oscillations on the beam. The nature of the roots of the
dispersion relation F(.awo,) - (yo/ h) 2, depend upon the sign of a as can be seen in Fig. 3.

We first consider the situation where a < 0. Fig. 3a. For (y,/'17) 2 sufficiently large, i.e.. low
beam density and/or high beam energy, the dispersion relation has two real positive roots for .Aw v
Hence, the roots of the primarily azimuthal mode, Ao, - 0. and of the primarily transverse mode,
Aa 0j - t &D are stable. If on the other hand (yo/171) 2 is significantly small, i.e., high beam density
and/or low beam energy, there are again two real positive roots for AQ0. These roots are stable and
represent primarily the transverse modes of the beam since AwaI, > (1 - a0ch. For intermediate
values of (yo/ Iq)2 the roots Awol are complex and the azimuthal and transverse modes couple, resulting
in an unstable hybrid mode.

We now consider the situation where a > 0. If a is positive it must be greater than 2y, >> 1.
In this case the function F(4aw ,) takes the form shown in Fig. 3b. Here there are two real roots for
A(, the positive root satisfying Aaw?, > cuj and the negative satisfying (Q - a)WJ < Aa2 < 0. The
positive root is of course stable while the negative root is unstable regardless of the value of (Y0/l h 1 .
Since this unstable root satisfies llw)j < (a - )wj - a0.j, the growth rate is bounded by ,4aYWB.
Therefore, the maximum growth rate decreases as the azimuthal magnetic field Bog is increased.

The two possible regimes, i.e., ct < 0 and a > 2y >> 1, correspond to values of "'o less than
'Ytran and V/o greater than -/tn respectively, where

10
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n I + 27L (.o8,)213. (25)

A typical curve of the real and imaginary part of 66w, for a cold beam and infinite wall conductivity is
shown in Fig. 4. The growth rate as a function of 7o is double-peaked. The peak located at 7o < 7,n
corresponds to the regime where a < 0 and is the unstable hybrid mode, i.e., strongly coupled azimu-
thal and longitudinal beam mode. The peak in the growth rate occurring at 70 > ya corresponds to
the a > 27y0 regime and is again a hybrid mode resulting from the coupling of the azimuthal and
transverse modes.

From the dispersion relation in Eq. (23) the growth rate in the regime YO > Ytran is given by

r - Im(w) - " 4aw ' 1
_2 fl1/2

- + T (26)

For 70 slightly greater than 7 rn the growth rate in Eq. (26) reduces to
r -Ba1/2, 70 _ Yran. (27)

For 7o much greater than yt, the growth rate in Eq. (26) reduces to

r - 1(%/Yo)al
/ 2 , 70 >> Ycran. (28)

It should be noted that the growth in Eq. (28), i.e., for y0 >> Ytran, is identical to the growth rate in
the absence of the applied toroidal magnetic field, see Eq. (20). The upper bound for the growth rate
in the regime where yo > Ycran is

r < (,So1,/yO)1/ 2aJ / 4 
- 0.62(1 + 21na/rb) /2(C/ro)V1/6V-./~firO (a/ro) / 6. (29)

For yo < yr, (a < 0) the dispersion relation in Eq. (23) yields either two real and positive solu-
tions for 402l or a pair of complex conjugate roots for - l. If

>I In - 12(30)
4 1 70yiJ 5  171

the roots are complex and the growth rate is given by

M _ Iwo _ I - L _ . (31)

If the inequality in Eq. (30) is not satisfied the hybrid mode is stable.

In Figs. 5 through 8 the cold beam growth rate is shown as a function of beam energy for various
system parameters. In all these figures the growth rate is a double peaked function of energy,
i (Y - 1)moc2. As has been discussed earlier, the first peak (7o < ) is the unstable mode
hybrid mode while the second peak (yo > ,,,) is primarily the azimuthal oscillation mode. For
70 >> yan the unstable mode becomes the usual negative mass instability and the growth rate is
independent of the applied toroidal magnetic field. The transition between these two regions occur at

'- 'rb - (yt. - 1) m0 c2 where yu is given by Eq. (25).

In Fig. 5 the growth rate is given for various values of beam current. For ef > em the peak
growth rate scales as Il/6 in agreement with Eq. (29). The growth rate for various values of applied
toroidal magnetic field is given in Fig. 6. Here in accordance with Eq. (29) the peak growth rate is pro-
portional to BJ 2 for i > X'., Figure 7 gives the growth rate for various values of the major beam
radius. In this figure the peak growth rate is proportional to rj,513 again in agreement with Eq. (29).

11



Finally, in Fig. 8 the growth rate is plotted for various values of the azimuthal harmonic number I as a
function of beam energy. For ef > 1,,,, the peak growth rate is proportional to 11/2 as given in Eq.
(29).

The effects of finite wall conductivity are represented in the dispersion relation, Eq. (23), by the
terms Ell and El. These terms describe the effects of wall resistivity on the azimuthal and transverse
beam oscillations respectively. For a good but not perfect conductor both ell and Ei are small compared
to unity. The presence of resistivity primarily affects those modes that would have been stable, if the
chamber walls were perfectly conducting. For those modes which are unstable for perfectly conducting
walls, resistivity introduces only slight changes in the real and imaginary parts of the frequency.

The discussion so far has been limited to monoenergetic beam distributions. As the growth rates
in Figs. 5 through 8 show the instabilities for ultra high current beams are unacceptably high. How-
ever, actual beams have a spread in the canonical angular momentum (energy spread) which can sub-
stantially reduce the instability growth rate. For purposes of showing the stabilizing effects of tempera-
ture we will use a Lorentzian beam distribution,

g(,IP) - , (32)
ap2 + P '

where Pt denotes the thermal spread in canonical angular momentum. The convenient feature of the
Lorentzian distribution function is that

I r -dA Pf(A P) 1__(33)__f-- ( 'T (-i 0g + iIkPlhD)

for any integer j > 0. With the relationship in Eq. (33) it can be seen that in the general dispersion
relation of Eq. (16), or any simplified version such as Eqs. (23), the growth rate for a thermal beam is
simply given by

rth ' - IP, h JkI (34)

where r is the corresponding growth rate for a cold beam, Pt - 0.

Using Eq. (7a) we find that the thermal spread in the canonical angular momentum Pm is related
to the thermal spread in the beam energy irth - Vth Moc2 by

1th - Pth/mocrO. (35)

Setting r'h equal to zero and using Eq. (35) we find that the thermal energy spread necessary to
stabilize the instability is

V1h > F/(Imocro IkI) (36)

where F is the cold beam growth rate.

Figures (9) and (10) illustrate the stabilizing effects of a thermal energy spread on the negative
mass/kink instability. In these figures the parameter values are r0 - 100 cm, a - 10 cm, rb - 2 cm
B00 - 10 kG and I - 10 kA and 5 kA. The fundamental azimuthal harmonic number, I - 1, was used
in both figures. If the fundamental mode is stabilized by an energy spread so are the higher order
modes. In Fig. 9 the entire growth rate spectrum is stabilized for Vth = 0.55. For an injection energy
of if - ('O - 1) m0 c2 - 3 MeV, a 10% energy spread is needed to insure stability against the negative
mass/kink instability. Whereas in Fig. 10 we see that for a 5 kA injected electron beam of 9'- 3
MeV, a 5% energy spread would be necessary to insure stability. Unlike conventional betatrons, the
electron beam of an ultra high current modified betatron can tolerate a substantial energy spread
without significant expansion of the beam's minor radius.
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4. SUMMARY

In this paper, we have investigated the transverse and longitudinal instabilities on an intense,
confined electron ring in a modified betatron field configuration. The analysis in Sec. 2 resulted in a
general dispersion relation for these instabilities. Of paramount importance in the analysis was the free-
dom of the beam center to oscillate in a self-consistent manner within the torus. We found that the
transverse beam oscillation is not only relevant for the transverse resistive wall instability but is an
important aspect of the negative mass type of instability.

The dispersion relation was evaluated for various limiting cases in Sec. 3. We first investigated
the transverse resistive wall instability in the modified betatron. The applied azimuthal magnetic field
couples both transverse oscillation directions and substantially reduces the growth rate of the instability.

In Sec. 3b we considered the limiting case of a conventional betatron (B0 , - 0) and found that
self field effects could be neglected provided n, < 1/2. The condition that n, < 1/2 is also the require-
ment for space charge confinement.

In Sec. 3c we considered the low current, i.e., n, << 1/2, modified betatron, i.e., B 0 0. Our
results in this limit are in agreement with those in Ref. 16.

Finally in Sec. 3d the instabilities associated with an ultra high current, i.e., n, >> 1, modified
betatron with Boo >> B,, were studied. We found that in the modified betatron the conducting
chamber walls coupled the .longitudinal and transverse oscillations, resulting in a hybrid mode. The
negative mass instability, which in the conventional betatron is primarily a longitudinal mode of oscilla-
tion, becomes a hybrid mode of oscillation in the modified betatron. In general, for a cold beam the
hybrid mode is found to be unstable. However, stabifity can be achieved by a moderate amount of
beam energy spread. Numerous illustrations of the functional dependence of the growth rate on the
system parameters are given for a 10 kA injected electron ring.

ACKNOWLEDGMENTS

We would like to thank C. A. Kapetanakos, D. Chernin. I. Bernstein and I. Haber for useful dis-
cussions. This work was supported by the Office of Naval Research.

REFERENCES

I. In a conventional betatron accelerator the introduction of an energy spread on the electron beam
seriously disrupts the beam equilibrium. It has been shown, however, that in an ultra high
current modified betatron accelerator a substantial energy spread can be tolerated without a
significant expansion of the beam minor radius. This work is in the process of being submitted
for publication.

2. J. Benford, B. Ecker and V. Bailey, Phys. Rev. Lett. 33, 574 (1974).

3. P. Sprangle, C.A. Kapetanakos and S.J. Marsh, 4th Int'l. Conf. on High Power Electrons and Ion
Beams, June 29-July 3, 1981, Palaiseau, France. P. Sprangle, C.A. Kapetanakos and S.J. Marsh,
NRL Memorandum Report No. 4666 (1981).

4. P. Sprangle and C.A. Kapetanakos, J. Appl. Phys. 49, 1 (1978).

5. N. Rostoker, Bull. Am. Phys. Soc. 25, 854 (1980).

6. D.W. Kerst, Phys. Rev. 60, 47 (1941).

13

.... -- --' --:= , -.... ...



7. D.W. Kerst, Handbuch Der Physik Encyclopedia of Physics, Ed. S. Flugge/Marburg, Vol. XLIV,
Springer-Verlag/Berlin-Gottingei-H-eidelberg (1959).

8. C.E. Nielson, A.M. Sessler and K.R. Symon, Int. Conf. on High-Energy Accel., CERN, 239
(1959).

9. A.A. Kolomenskii and A.N. Lebedev, Int. Conf. on High-Energy Accel., CERN, 115 (1959).

10. V.K. Neil and W. Heckrotte, J. Appl. Phys. 36, 2761 (1965).

11. L.J. Laslett, V.K. Neil and A.M. Sessler, Rev. Sci. Instrum. 36, 436 (1965).

12. H.P. Furth, Phys. Fluids 8, 2020 (1965).

13. V.K. Neil and A.M. Sessler, Rev. Sci. Instrum. 36, 429 (1965).

14. R.W. Landau and V.K. Neil, Phys. Fluids 9, 2412 (1966).

15. R.J. Briggs and V.K Neil, Plasma Phys. 9, 209 (1967).

16. R.W. Landau, Phys. Fluids 11, 205 (1968).

17. A. Nocentin, H.L. Berk and R.N. Sudan, J. Plasma Phys. 2, 311 (1968).

18. Y.Y. Lau and R.J. Briggs, Phys. Fluids 14, 967 (1971).

19. D.G. Koshkarev and P.R. Zenkevich, Part. Accel. 3, 1 (1972).

20. R.C. Davidson and Hwan-sup Uhm, Phys. Fluids 20, 1938 (1977).

21. 1. Hofmann, Part. Accel. 8, 151 (1978).

22. R.C. Davidson, Theory of Nonneurral Plasmas, Frontiers in Physics, Lecture Note Series (1974).

23. R.C. Davids and Hwan-sup Uhm, Phys. Fluids 25, 2089 (1982).

24. D.P. Cherniri and P. Sprangle, Part. Accel. 12, 101 (1982) and NRL Memorandum Report No.

4691 (1982).

14



STABILIZING
TORC)IDAL FIELD Bz (VERTICAL FIELD)

CONDUCT!NG
CHAMBER

ELECTRON

Fig. I - Configuration of the modified betatron electron accelerator. An intense electron ring is confined within a
toroidal conducting chamber of major radius ro and minor radius a The external magnetic fields consist of the nonuni-
form axial field B,. the associated radial field B, and the stabilizing azimuthal field Bg.

MAJO AXI V8ELECTRON
;Z RING

e r

TOROIDAL CHAMBER
OF Z ONDUCTIVITY,

Fig. 2 - Location of the beam relative to the conducting toroidal chamber in a modified betatron accelerator.
The conducting torus is centered at ('c, 0) and has a minor radius a The beam has a circular cross-section of
radius rb and moves at a velocity v,,. At time tand azimuthal angle 9. the center of the beam cross-section is
boated at ('o + A, Az).
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2 0.9. 
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Fig. 3 - Determination of stability or the roots of the dispersion relation for a

cold beam. (a) For a < 0. i.e., Yo~ <y,, the roots, laj,, are unstable for

intermediate values of (,yvI) 2  (b) For a > 0, i.e., yo > -Yj both roots.

Awfare real. One root is, however. negative resulting in instability.
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R ( 0 y) I b x10kA, re = 150 cm
a:= 5cm, rb = cm .

0

r (GROWTH RATE;

0 5 10 .A20

YO Ara

Fig. 4 - Growth rate r (solid curve) and real frequency shift Re (w~ - flo.1Iyo) vs -to. For -yo > yum the real frequency
shift is zero. The beam and betatron parameters are Ib- 10 kA, ro -150 cm. a -5cm. 'b - 1cm. Boo -10kG, n -
0.5 and I - 1.

Boo =10 kG, a=5 cm

ro=150 cm, rb= I1cm AQ I

21-

00 2 48
BEAM ENERGYj MeV1

Fig. 5 - Growth rate r vs beam energy E - (lv. - D moc2 for the parameters of Fig. 4 for

various values of beam current 4b - 2 kA. 5 kA and 10 kA.
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7 Eb= 10kA, a z 5cm

r0 : 150cm, rb = I cm, .1:I

107k

0 2 4 68
DCAM ENER"'1NVj\

Fig. 6 -Growth rate r vs beam energy for the parameters of Fig. 4. for various values
of the azimuthal magnetic field Doe, - 2 kG, 5 kG and 10 kG.

Q I I

7 a 5 cm, rb 1c ,.=! -

oo 15 cm6

BEAM ENERGY, LMeV]
Fig. 7 - Growth rate r vs beam energy for the parameters of Fig. 4, for various values of the

major radius ro 100 cmn, 200 cm and 150 cm.



IO Ib 10 kA, Boo 10 kG, ro=10 Ocm-s 5 cm, r b  1 Cm

Lj 2

0 2 4 r6  8
BEAM ENERGY, :ijeV]

Fig. 8 - Growth rate r vs beam energy for the parameters of Fig. 4. for various values of the
azimuthal harmonic number, I - 1, 2, 3, 4, and 5.

8! I I

r 0 Ocm, a =O cm, rb=2cm

, = !O ,Bo 8 =IOkG, . =I

6- X- th Q

II

.0.

0.2

cc 1 2 r 5

BEAM ENERGY, [MavJ
Fig. 9 - Stabilization of the instability with a beam thermal spread 1/1h in a modifted betatron with ro -1 00 cn. ,
10 cm. rb - 2 cm, I - 10 kA. Sop - 10 kG,. - 0.5 and I- 1. The distribution'of the beam is taken to be
Lorentzian in AP - moc0 (, - yo).
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r0  =1OOcm, a= O cm, rb= 2cm
Tb  = 5 kA, S =IOkG, .. = I

, 6 -
-iC.)

x

0 0

L2 , th

C I 2 4 5
BE4&M ENERGY, 'Me"!/i

Fig. 10 - Stabilization of the instability wth a thermal spread in a modilled beatron with :he

parameters of Filg. 9 but with a current 1, - 5 kA.
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