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LONGITUDINAL AND TRANSVERSE INSTABILITIES
IN A HIGH CURRENT MODIFIED
BETATRON ELECTRON ACCELERATOR

1. INTRODUCTION

In this paper we examine a number of potentially destructive instabilities which can arise in a high
current modified betatron electron accelerator. One of our main results is that the negative mass/kink
type of instability can in an ultra high current modified betatron, be stabilized by a combination of a
strong toroidal magnetic field and energy spread on the injected electron beam.! The modified betatron
accelerator consists of an external toroidal magnetic field in addition to the usual external betatron field
components (see Fig. 1). The strong toroidal magnetic field B, is the salient feature of the modified
betatron accelerator. We will show that the addition of this field component greatly improves the stabil-
ity characteristics of the intense electron ring. In order for the toroidal magnetic field to be effective in
stabilizing the various instabilities, it is necessary that |B,| >> |B,| where B, is the vertical magnetic
field. Although the toroidal field is beneficial in so far as stability is concerned, it requires a somewhat
more involved electron beam injection scheme.?3

From simple space charge considerations alone, it has been shown that the total number of elec-
trons (current) that can be contained in the modified betatron field greatly exceeds the number that can
be contained in a conventional betatron configuration.*® Taking N,, to be the maximum number of
electrons that can be stably confined in a modified betatron and N, to be the corresponding number for
a conventional betatron, it has been found that solely from space charge considerations

N,y = % (By/B,)? N,y

where |B,| << |B,|. For a relativistic electron beam the maximum injection current that can be
confined in a modified betatron accelerator is

Iy max = 2.1 (ry/rg)*y® (By/B,)? (kA ],

where 7, and ry are the minor and major electron ring radii respectively and y is the usual relativistic
factor. It is clear from the expression for J, .. that for injection energies in the MeV range extremely
high currents (in the tens of kiloampere range) can be confined in the modified betatron for very mod-
est values of r,, ry and B,.

There are, however, numerous beam instabilities which may also place limits on the beam
current, especially at the early stages of the acceleration process, when the beam energy is lowest.
Some of the instabilities that have been found to limit the current in conventional low current betatrons
are the negative mass, longitudinal resistive wall, transverse resistive wall and resonant instabilities.
These instabilities, associated with conventional cyclic accelerators, have been examined in great detail
and are well understood. A large body of literature exists on this subject and a number of excelient
papers and review articles discuss these and other instabilities for conventional tenuous beam cyclic
accelerators.>> Far less is known, however, of the corresponding instabilities for intense electron rings
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in a modified betatron accelerator. In this paper we derive a general dispersion relation which describes
longitudinal and transverse instabilities associated with an intense relativistic electron ring in a modified
betatron field configuration. A recent analysis of longitudinal instabilities, i.e., negative mass and resis-
tive wall, in the modified betatron has been performed.?® The theoretical model used in Ref. (23) does
not provide for transverse oscillations of the beam center and, therefore, a comparison with our resuits
cannot be made. The present analysis of instabilities in high current modified betatrons does not con-
sider resonant instabilities due to errors in the external fields. This general class of instabilities has
been addressed in a separate paper.?* In the present analysis the intense electron ring is non-neutralized
in both charge and current and, hence, self field effects are included in our analysis. Self field effects,
as measured by the self field index n,, are shown to play an important role in so far as the strength of
the various instabilities are concerned. Since the electron ring is confined in a toroidal chamber of
finite conductivity, induced fields from the image charges and currents are included in our model. We
also aillow the beam center to undergo self-consistent transverse oscillations. In all parameter regimes,
this extra degree of freedom for the beam dynamics is very important in the negative mass type of ins-
tability in the modified betatron.

Although we are considering high current electron rings (muiti-kiloampere range) we will limit
ourselves to low v/y beams where v = |e|?N/ (2w myc®ry) is Budker’s parameter (V is the total number
of electrons in the ring). The low »/y beam assumption places only weak limitations on the analysis
since it does not necessarily imply low beam currents. There are however a number of physical impli-
cations associated with low »/y beams. The fractional change in beam energy in traversing the minor
radius of the beam is proportional to v/y. Hence, by employing the low v/y approximation we are
neglecting this energy shear. Due to the particle drifts associated with the seif forces of the beam. i.e..
electric and magnetic forces, and the external toroidal magnetic field B,, the beam electrons rotate in
the poloidal direction. This poloidal motion generates a toroidal diamagnetic field which opposes the
external B, field. However, for beams with »/y << 1 this diamagnetic field may be negiected. Because
of these and other simplifying assumptions our analysis assumes that v/y << 1.

The derivation of the linear dispersion relation is performed in Section 2. Here, the fields are
expressed as the sum of external and perturbed fields. Azimuthal density perturbations as well as
transverse beam displacements are considered in our analysis since both are coupled in the modified
betairon field configuration. The resulting dispersion relation describing longitudinal (azimuthal) and
transverse beam instabilities in a modified betatron is anaiyzed in various limits in the subsequent sec-
tions. In Section 3 the emphasis is on the various limiting regimes associated with the dispersion rela-
tion. In Section 3a the kink (purely transverse mode) is analyzed and the growth rate for the
transverse resistive wall instability obtained. In the following sections the coupled azimuthal and
transverse modes (negative mass/kink) modes are analyzed. In Section 3b we consider the special case
of an intense electron beam in a conventional betatron (B, = 0) and in Section 3c a ienuous electron
beam in a modified betatron is considered. The most interesting and perhaps relevant limit is that of an
intense beam in a modified betatron. This special case is studied in Section 3d in some detail. In :his
section we first evaluate the growth rate associated with a nonthermal beam in a toroidal chamber of
infinite conductivity. The resulting instability is shown to be a hybrid mode associated with the cou-
pling of transverse and azimuthal beam oscillations. In this limit the effects of a finite wall resistivity
are shown to be in general negligible. We also find that a modest amount of beam energy spread will
stabilize the instability even for electron beam currents as high as 10 kA. Finally in Section 4 we dis-
cuss our results and assess the potential realization of an uitra high current modified betatron accelera-
tor.

2. DERIVATION OF DISPERSION RELATION
Our model consists of an intense non-neutral electron ring confined within a conducting toroidal

chamber as shown in Fig. 2. The electron ring is assumed to have a circular cross section with minor
radius r, and center at r = ry + Ar(9,1) and z = Az(4,r). The beam is enclosed in a toroidal chamber




of finite conductivity, o, with minor radius @ >> r, and major radius r, >> a. The beam center is
initially centered at (rg, 0) but can undergo small displacements, hence [Ar{, |Az| << a.

The containment of the beam in a conventional betatron is accomplished by an applied axial mag-
netic field B, with a local variation proportional to r~" where n = —(r/B,) dB,/dr is the external field
index. A radial component B, is present, to account for the nonuniformity in B.. The modified
betatron utilizes an additional azimuthal magnetic field B,, with a free-space spatial variation propor-
tional to r~!. Expanded about (ry,0), these fields are

B, = By, (1 ~ n(r — rgd/ry), (la)
B, - -BOzﬂZ/fo, (1b)
By = By, (1 = (r—ryry), (1c)

where By,, By, are constant.

It is convenient at this point to define a reference particle in perfect unperturbed circular motion
about the axis with r = ry and z = . Under the condition that the electron beam itself is also centered
at (ry,0), the orbit of the reference particie is governed solely by the external fields (neglecting toroidal
effects). The azimuthal velocity of this particle is vo = ry Q¢,/v¢, Where yo= (1 — v¢/c?)~V? and
Qo, = lelBy,/moc. Furthermore, since the canonical angular momentum P, is defined to within an
additive constant, we take it t0 be zero for the reference particle. Note that Gaussian units are used
throughout this paper, and le| and mq are the elementary charge and the electron rest mass while c is
the speed of light.

The total unperturbed fields acting on the particles consist of the external fieids, Egs. (1). as well
as the self and induced fields. The induced field contribution resuits from a displacement of the beam
from the center of the chamber. In the absence of toroidal effects, image charges and currents are
induced on the conducting chamber walls only when the beam is displaced off center. These image
charges and currents result in the induced field contribution. The self fields, on the other hand, are
simply the self electric and magnetic fields associated with an unconfined beam. Assuming a constant
profile for both the beam charge and current density it is straightforward to show that within the beam,
the combined expressions for the self and induced fields £V, E/V, BV, BV are to lowest order

E'”) - —21r[e[n0[r —rp—({1- r,,z/az)Ar],

E/V = —2mlelnglz — (1 = r¥/a?Acz],

)

BV = = 2mleiBonglz — (1 — r/a® (1 + £)Azl,

BV = 2zrlelBonglr — rg = (1 = r¥/a®D (1 + £)Ar],

where ng is the uniform equilibrium number density, 8¢ = v¢/c is the uniform normalized azimuthal !
velocity, £ = (1 + ) (r#/(a* = r})) VIwl/w (8/a), 5 = ¢/~ 2walw]| is the skin depth associated with b
the finite conductivity chamber and w is the frequency associated with the perturbed beam dispiacement ‘
(for example in the case of a pure negative mass instability, w = /Q,,/y, where / is the harmonic

number).
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The perturbing fields excited by the perturbed charge and current density of the beam within the
conducting chamber can be found in the usual way by solving Maxwell's equations. It will become
clear later that it is necessary to express only the perturbed azimuthal electric field E/V =
E, exp [i(16 = )] in terms of the perturbing line charge A" = A exp [i(/0 — we)] where [ is an
integer and w is the frequency of the perturbation. Since the perturbed field £, varies slightly across
the beam when r, << a, we will use its value at the center of the beam in our analysis. For an elec-
tron beam centered at (r,0) and having a uniform density and current profile, the relationship between
E, and A can be shown to be

. (1+21 ) .
Eym-iL —T——?—a-/l (1= ie)A (3)
"o Y4

where €, = y§B8iv w/wid/a)/(1 + 21n a/r,). The y4 term in (3) is a electromagnetic contribution.
In obtaining Egs. (2) and (3) we have assumed that the wavelength of the perturhation is large com-
pared to the torus minor radius, i.e., 2mry// >> a and that toroidal effects can be neglected, i.e.,
v/yo << 1. It has also been assumed that the azimuthal phase velocity of the perturbation is very close
to the beam velocity, i.e., @ = lvy/rg = IQg./ve- It should be noted that Eq. (3) is valid for a beam
centered at (ry, 0) whereas our analysis will be applicable for a beam with a general displacement cen-
tered at (ry + A7, AZ2). We will show later that the beam displacement from the center of the torus is
itself proportional to £.'. if the beam is initially centered at (ry,0). Hence, for a beam displaced off
center by (Ar, Az), the correction to Eq. (3) is of higher order in the perturbing field and therefore will
be neglected. The external fields in Eq. (1), the seif and induced fields in Eq. (2) as well as the per-
turbing azimuthal field in Eq. (3) will be used in the particle orbit equations 1o obtain the linearized
particle trajectories. Knowiedge of the linearized particle trajectories will permit the evaluation of the
perturbed line charge as a linear function of E,. The remainder of our analysis deals with deriving the
self consistent linear relationship between the perturbed line charge and perturbing azimuthal electric
field. Coupling this relationship with Eq. (3} wil{ resuit in a dispersion refation for the various modes
which include the negative mass, longitudinal resistive wall and transverse resistive wall instabilities.

Employing a Lagrangian representation for the particle dynamics, the line charge of the beam is
A=—lel | m(rz8,0)dS, where } &S is the integral over the beam cross sectional area and n,(r.z,6,7)
is the beam density. The line charge can be expressed in the form

14 2w o 2w -
A= =telnoro [ ° podpo f, daomipo.ar) [ daPg(aP) [ a0y 50 - Ay 4)

where ng is the ambient beam density, (og, ap) are the particle’s initial poloidal radial distance and angie
measured from the center of the beam, n{pg, ag) denotes the initial distribution of pg and ag, AP is the
particle’s initial cangnical angular momentum. g(AP) describes the initial distribution of AP and is nor-
malized such that | dAPg(AP) = 1, 8 is the particle’s initial azimuthal angle, & = 9(pg, ag, AP, 8o,1) is
the particle’s azimuthal angle at time ¢ and 7 = 7(pg, ag, AP, fg,?) is the particle’s radial position at time
t To find a linear expression for the perturbed line charge A", we expand the particle trajectories in
terms of the perturbing field, i.e., 7 = r'® + V) and § = 9 + 8'© + 9'V where r{” and 'V are linear
in E;V. Performing this expansion on Eq. (4) we find that

’ b +a ;
AV = lelng [ podpo J, daon [ 2daP@6/a6y + rV/r )| )

L)
Agme—9

It now remains to evaluate the linear part of the trajectories r'!’ and 8'V’, in order to obtain the
linear perturbed line charge. Using the external as well as the self and induced fields in Egs. (1) and
(2) we find that the linearized particle equations, correct to first order in Az, Az and £,, are




. Q, AP Qg . ¢ ’bz Q, PV
F+wir—ry)—— - tm=——=p |l - =1~ E)VAr + —
Yo YoMolo Yo 73 ! a? ﬂ&yof Yo YoMorlg

, (6a)

" Qoo . ¢
I+wlz+ y—°‘r -~ —2 n,(1 = r¥a) (1 - Bdyd€)As,
0 Yo

(6¢)

2] 3 -
Yo Yo Mol

- no,[l_ r—r0]+ AP + PV
ry

where w?= (1 —1n— n)(Qy./y0)*, w?= (n— n)(Qq./ye)?. n is the external field index, n, =

wd QyoQ¢,) is the self field index, wi = 4w lel?ny/ my, Qop/yo = leiBoy/yomy is the toroidal cyclotron
frequency and P,Y is the first order perturbing canonical angular momentum which is shown later to be
proportional to E/V. The seif field index n, is a measure of the electron beam self fields and is related
to Budker’s parameter by the relation n, = 2(v/yg) (c/Qq,7,)2. Note that for a low beam current, and
no toroidal field, i.e., n, — 0 and By — 0, the terms w, and w. reduce to the usual radial and axial
betatron frequencies. In obtaining Egs. (6) we made use of the following linearized relations

Y ™ Yo + (AP + P,,“) )Qoz/(yomocz). (73)

vy = vy + (AP + P/ (yimgry). (7b)

where y = (1 — v#/c)~Y2 and v, is the azimuthal particle velocity correct to first order. As a re-
minder, we note that the Ar and Az terms in Eqs. (6a,b) are 1o be considered first order terms.

The significance of the toroidal magnetic field on the stability of the particle orbits. under the
influence of only self field forces (space charge forces), can be seen from an examination of Egs.
(6a,b). To study the orbit stability due to only self field forces we set Az, Ar and PV equal to zero in
Egs. (6a,b). The frequencies w, and w, may be imaginary for large values of n, (which is the present
case of interest). However, unlike the conventional betatron, particle orbit stability is achieved by hav-
ing a large toroidal magnetic field. It can be shown* from Eqgs. (6a,b) that under the influence of only
self fields, particle orbit stability is obtained if n, € (Bg,/28y,)? when By, >> By,. In conventional
betatrons, on the other hand, orbit stability due to self field forces require that n, € 1/2. Since n, is
proportional to the beam current the conditions for stability against self field forces show that the
modified betatron field configuration can confine far higher beam currents than the conventional beta-
tron.

The zero order solution to Eqs. (6) are

0 ,
rO m gy + —22 .Y <. (8a)
Yo YoMmolow,
29 =, (8b)
9(0) - (002/70 + kAP)l. (8¢)




where k = [1/yd — 1/(1 = n ~ n))/yomori. In obtaining Eqs. (8) we have neglected the homogene-
ous part of the solution and will, henceforth, not consider the effects due to finite amplitude betatron
oscillations in our model. These effects, however, can be included in a straightforward way. To solve
for the first order sofutions to Egs. (6) we first note that the perturbed canonical momentum satisfies
PV = —elB, 3(4Y — B5'91)/36, where A" and ¢ are the perturbed vector and scalar poten-
tials associated with the perturbed charge and current density of the beam. Since the perturbing azimu-
thal electric field is

E/V = E exp [i(10 — wn)] = =¢34, /80 — rg'90'V/86

we find that to lowest order

it18g—aw i)

PV =~ iAw] ! elrgky e , (9)

where again we are considering frequencies near harmonics of the cyclotron frequency, i.e., w =
1Qg./v0 and Aw; = w = [(Qg,/yo + kAP). To solve for the first order trajectories we first represent
the center of the beam displacement and the first order solution as

(AI’“'.AZ(”) - (AF.AE)e‘“O-mr)’ (10a)

a Ay iCom way  i(I0g=8a0)
(rM zD) = (7,3)i10-w0) = (3 3)¢" 0" (10b)

Using this representation together with Eq. (9) we find that the first order soiution to Egs. (6) is given
by

. (1] )
;o D*‘[—(:.., - AwP)QF + A (Qe/y)) QA2 —;‘e' (w?- w,)—:fﬁ’ﬁ- 9]. (11a)
om @/
- ~1 . a4 © 2 2 2 r L |8| QOO QO.
2w D= iAw (Qu/ve) QA — (0} — AwP)QAZ + —=E,, (11b)
YoMmo Yo Yo
where D = (0? = Ao} w? - Aw?) ~ Aw}Q/yvd and Q2 = (1 — r}/a®) (1 - B&y&é)ﬂ&./yo Equa-

tions (11) state the first order soluuons in terms of A7, Az and E, To obtain 7 and Z in terms of only
E, we note that the average value of (7,3) over all the particles is just (A7, A3). Since we are disregard-
ing the effects of finite amplitude betatron oscillations, the average of (7.3 over all pariicles in any
given beam cross section, denoted by (<>, <z>), is

(<#>,<3>) = [ daPg(AP)(72) = (A7,A3). (12)

Performing this particle average over Eq. (11) we obtain

(13a)




R=<Q0.><@> - 0<dw,D7'>204/v4.

O =1+0No}—Aw)D!, Q. =1+ 0Hol-AwP)D7},

C = QO', (}19 >(Aw,> <w —.\w,><Q,
Yo Yo Aw,D
Q Q A w?— A
Co=Bouifu 1 5, q2lw - < wf
Yo | Yo Aw,D

Combining Egs. (12) and (13) we find
Q
=X1E,  (4a)

Q
R D_l[— QHul-2A0)C +QHw, jin,—R (wl-AwPAo!
0

Fom
YoMg
w | [y Q Q) A
tm el R-ip-028a, 2% € - 02! - AwDC, + R —2% —2|£, (14b)
YoMy Yo Yo Yo

We can now evaluate the perturbed line charge given in Eq. (5). From Eq. (6¢c) we find that

(1
Q’Oz f(l) + Pﬂ) i

HON. ‘
Yo To  ydmord

where rV) and P/ are given by Egs. (14a) and (9). Substituting 9" into Eq. (5) and using Eq. (14a)
together with Eqs. (9) we find that the perturbed line charge is

2 2
AD - %”- 2 cdwii/yd = DH Qo v w? — Awd)

o o
- 024w, DR (Qg,/yp) [(w? - AwP)C, - Aw,(ﬂoq/)'o)C.]>E eitit-on) (15)

In obtaining Eq. (15) we have assumed a constant density profile beam, i.e., n{pg, o) = 1 and have

neglected finite amplitude betatron oscillations




Combining Egs. (3) and (15) we obtain the rollowing dispersion relation

2,2 (02 = AwD) Q2 v
1_&%’_5212(14_21[1 G/’b)(l—'ﬁu)[ _1’. _12,_ W, w; 0./“/0
4v6 ro Aof | yd D
QIQo./v0 |, , ) 2o, .
- 5270 Y0 —AwdC - Aw 2| | (
3@ DR (! — Aw})C, — Aw; ” C. 16)

Equation (16) is the complete linear dispersion relation for an intense electron ring 1n a modified beta-
tron confined in a conducting chamber of finite conductivity. The azimuthal and transverse modes of
oscillation are coupled via the presence of the external azimuthal magnetic field. Thus, for example.
the negative mass instability in the modified betatron excites both azimuthal and transverse oscillations.
In a conventional betatron field configuration longitudinal oscillations are excited by the negative mass
instability. As is the case in a conventional betatron a pure kink type mode can exist in a modified beta-
tron (Section 3a). In this case the radial and axial beam displacements are, however, coupled through
the presence of the external azimuthal magnetic field. This is unlike the situation :n a conventional
betatron where the transverse oscillations are uncoupled. In the following section we examine the gen-
eral dispersion relation given by Eq. (10) in various limiting situations.

3. LIMITING REGIMES OF DISPERSION RELATION

a. Kink instabilitv (transverse resistive wall).

Due to the finite wall conductivity a Kink instability can develop on the electron ring. In the case
of finite wall conductivity this instability is referred to as the transverse resistive wall instability. If the
dissipative mechanism were collisions with say a background piasma we would refer to the instability as
the hose instability. The transverse resistive wall instability is characterized by a uniform density in the
azimuthal direction, hence E,,‘ D = 0. Since the beam undergoes a transverse displacement we see from
Egs. (13a,b) that the dispersion relation for this mode is R = 0. When B, = 0, this reproduces the
dispersion relations of Ref. (11). For By, # 0 and an external fieid index equal 1o 1/2, t.e., n = 1/2,
the dispersion relation for the transverse resistive wall instability becomes

|+ Qlf g(AP)d(AP)
: w?—Aw? £ Aw,Qo/vo

0, (17

where w? has been used for both w? and w? (since n = 1/2).

For a highly conducting chamber. the skin depth is small compared to the minor radius a. i.e..
8/a << 1. Then, for a cold beam, g(AP,) = §(APy). the growth is

e By, Qg nBdyé(8/a)ri/ a? (18)
Bw o /1 +4(By,/Be)*(1/2 = nri/a®)’

This relation shows that for By,/ By << 1, the growth rate is proportional to the vanishingly smail ratio
Bo,/ Bge. On the other hand, if By, = 0, then Eq. (18) reproduces the result of Ref. (11). for n = 1/2.




In addition if the conductivity of the wall is taken to be infinite, the dispersion relation in Eq.
{17) gives, for a cold beam and for n = 1/2, the following four stable transverse beam modes:

_ ]
1 0 Bo:l 1 ’b”
= - — =] |= - - (
Aw; IZ ” l(:::)\/1+4 3 lz n,la l 19)

Since 1/2 = n,(r,/a)? is necessarily much less than (Bg/2 By,)?, there are two pairs of stable
wransverse modes of oscillation, viz. with dw; = £ (Q/ye), i.e., the fast oscillation, and Aw; = twg.
i.e., the slow oscillation, where

wg = (1/2 - ﬂ,(fb/d)z) (BO:/BOQ)QOZ/'YO

is the bounce frequency. The slow oscillation at the bounce frequency is the resuit of the E x B drift,
caused by the transverse induced image fields and the applied azimuthal magnetic field.

In the following subsections the instabilities associated with the azimuthal and transverse beam
oscillations are analyzed for a number of limiting cases.

b. Negative Mass and Longitudinal Resistive Wall Instability
1n a High Current Conventional Betatron (B¢, = 0 and n, = 0).

In this subsection we consider the negative mass and longitudinal resistive wall instability in a
convenuonal betatron, By, = 0. with self field effects included. n, = 0. In this limit the dispersion
relation in Eq. (16) simplifies substantially since the coupling term which is proportional to By, van-
ishes. For a cold electron beam, i.e., g{AP) = §(AP) the dispersion refation takes the form

[y 12
0= =% [In (1=~ ie) = a)yd ] . (20)
Yo

where
n? = (w/dy) (ry/ re)2(1 + 2 1n a/ry)/yd = (c/re)*(w/ye) (1 + 2 1n a/r,)/vé.

and a = y¢/(1 ~ n ~ n,r3/a*). Except for the self field term n,7}/a* in the expression for a, Eq. (19)
is identical to the usuai dispersion relation describing the negative mass and longitudinai resistive wall
instability in a conventional betatron.®? 13-4 In a conventional betatron the seif field index n, must be
less than 1/2 to insure particle orbit stability, i.e., w? and w? > 0. Since (r,/a)? << 1 the term
n,(ry/a)? can be omitted. Thus in a conventional betatron self field effects play a substantially more
important role in particle orbit stability than in the negative mass/longitudinal resistive wall instability.

¢. Negative Mass and Longitudinal Resistive Wall Instability
in a Low Current Modified Betatron (Bge #= 0, n, > 0).

In this limit we consider the instabilities in a low current, »n, = 0, modified betratron, By #= 0,
accelerator. The dispersion relation in Eq. (16) again simplifies substantially since 1, = 0 and
Q. = Q, = R = 1. The resulting expression is

2 2.2 4
- (] — -2 d(AP)g(AP) _ Y w,w:— day
1= (1 - iey) v52 f |- T2 T Q1)

where Aw, = w — IQ0,/yp and D = (0} ~ Aw}) (w? - Aw?) — Aw?Q&/y?. For perfectly conducting
walls, i.e., €, = 0(c = o), the dispersion relation in Eq. (21) describes the negative mass instability in
a low current, i.e., n, = 0, modified betatron and is identical to the result in Ref. (16) for the case of
zero betatron amplitudes. In the limit that Boy >> By, the term Aw} can be neglected compared to w}?
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and w? but not compared t0 ww/(Q/yy)?. For a cold electron beam, i.e., g(AP) = 5(AP), the
leading term of the growth rate in this limit is

r=qg, B g0 (- Lza)” (22)
- 0 ——— — A ——— .

* Bog vd
The growth rate in Eq. (22) is independent of beam density and is proportional 10 the vanishingly small

ratio 80:/ Bog

d. Negative Mass/Kink and Longitudinal Resistive Wail Instability in a High Current Modified Betatron
(Boy >> By and n, >> 1).

From space charge considerations alone we have seen that the modified betatron configuration can
confine ultra high current electron beams if the azimuthal magnetic field is sufficiently strong. In fact
for space charge confinement in the modified betatron we require that n, be less than (Bg,/28,,)%
Since By, >> B,,, the self field index n, may be much greater than unity. In conventional betatrons,
on the other hand. n, is limited to values less than 1/2. We will now examine in some detail the
dispersion relation in Eq. (16) in the high current regime, i.e., n, >> 1 but less than (By,/28y,)%. In
this regime the quantities lw?l, lw2l, 102 and (Qg/yq)? are much greater than (Q,./y,)?, whiie
'wl!+ 0, wl+ 0 and lwiw/ (Qa/ye)?! are comparable o (Q,/ys)?. We also note that
Awgl << Q4./vq, where Awg; = w — [Qg,/yo. In view of these observations and inequalities the
dispersion reiation in Eq. (16) for a cold electron beam, i.e.. g(AP) = 5{AP) becomes

P= 20 (1= ey |15+ ——E (23)
vd Awg; Awd — wgl(l + i¢)

where €, = y§ B¢ Viel/w (8/a)/(1 + 2Ina/r,) and ¢ = =2 ydB8¢ n(r/a)*/a) (1/2 = nry/a)~'.

For a highly conducting chamber €, << 1 and ¢, << 1. To investigate the nature of the roots of the

dispersion relation in Eq. (23) for a perfectly conducting wall, i.e., €, = ¢, = 0, we define

l—a a

FlAwd) = + : (24)
wot Awozl Aw&, - wh

The dispersion relation is then simply F(Awd) = (yy/In)?. The function F(Awd) is depicted in Fig. 3

and has singularities at Awd, = 0 and Awd, = w}. These singularities correspond respectively to the

azimuthal and transverse (kink) modes of oscillations on the beam. The nature of the roots of the

dispersion relation F(Awd,) = (y¢/In)?, depend upon the sign of a as can be seen in Fig. 3.

We first consider the situation where a < 0. Fig. 3a. For (y¢/In)? sufficiently large, i.e.. low
beam density and/or high beam energy, the dispersion relation has two real positive roots for Awd,.
Hence, the roots of the primarily azimuthal mode, Awg, = 0. and of the primarily transverse mode.
Awg; = * wp are stable. If on the other hand (yy//n)? is significantly small, i.e., high beam density
and/or low beam energy, there are again two real positive roots for Awg,. These roots are stable and
represent primarily the transverse modes of the beam since Awd > (1 — a)w3. For intermediate
values of (yo/ In)? the roots Awg, are complex and the azimuthal and transverse modes couple, resulting
in an unstable hybrid mode.

We now consider the situation where a > 0. If a is positive it must be greater than 2y¢ >> 1.
In this case the function F(Awd,) takes the form shown in Fig. 3b. Here there are (wo real roots for
Awé;, the positive root satisfying Awd, > w} and the negative satisfying (1 — @)w} < Awd, < 0. The
positive root is of course stable while the negative root is unstable regardless of the value of (yo/ In)2.
Since this unstable root satisfies [Awd| < (@ — Jw} = aw}, the growth rate is bounded by vawg.
Therefore, the maximum growth rate decreases as the azimuthal magnetic field By, is increased.

The two possible regimes, i.e., @ < 0 and a > 2y$ >> 1, correspond to values of yq less than
Yusn and yq greater than y,,, respectively, where

10
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(Bow)¥3. (25)

Yrn = 1 +

ro
2 —=
a

A typical curve of the real and imaginary part of Aw, for a cold beam and infinite wall conductivity is
shown in Fig. 4. The growth rate as a function of y, is double-peaked. The peak located at yg < ¥y
corresponds to the regime where a < 0 and is the unstable hybrid mode, i.e., strongly coupled azimu-
thal and longitudinal beam mode. The peak in the growth rate occurring at yy > y,,, corresponds to
the @ > 2y¢ regime and is again a hybrid mode resuiting from the coupling of the azimuthal and
transverse modes.

From the dispersion relation in Eq. (23) the growth rate in the regime yg > ¥4, iS given by

2 1122
+ lw} - 1237
Yd

12
] . (26)

For yq slightly greater than y,,, the growth rate in Eq. (26) reduces to

[= wﬂallzv Yo ?_ Y iran- (27)

1 )
[ =Im) = 2= “4@5[1;”10-

2

m§ + P21
2

Y0

For yo much greater than y,,, the growth rate in Eq. (26) reduces to
T = ln/yo)a,  v0 >> Ve (28)

It shouid be noted that the growth in Eq. (28), i.e., for yg >> y.,, is identical 10 the growth rate in
the absence of the applied toroidal magnetic field, see Eq. (20). The upper bound for the growth rate
in the regime where yy > Y, iS

T < (wgln/yp2al/* = 0.62(1 + 2Ina/r,)V2(c/re)vV/lc/ Qogro (a/ ro) Vs, (29)

For vg < yyuan (@ < 0) the dispersion relation in Eq. (23) yields either two real and positive solu-
tions for Awd, or a pair of complex conjugate roots for Awd. If
2

—_ > 1l iy _ Yws (30)
4 |yows i
the roots are complex and the growth rate is given by
1 ny2
I'--;—[I?:L\/——a -m,—i—;T-J_l—_a]] . (31)
0 0

If the inequality in Eq. (30) is not satisfied the hybrid mode is stable.

In Figs. 5 through 8 the cold beam growth rate is shown as a function of beam energy for various
system parameters. In ail these figures the growth rate is a double peaked function of energy,
& = (yo— 1)mgc®. As has been discussed earlier, the first peak (yy < yuan) is the unstable mode
hybrid mode while the second peak (yg > yy.,) is primarily the azimuthal oscillation mode. For
Yo >> yu the unstable mode becomes the usual negative mass instability and the growth rate is
independent of the applied toroidal magnetic field. The transition between these two regions occur at
&= & o™ (Yian — 1) moc? where v, is given by Eq. (25).

In Fig. 5 the growth rate is given for various values of beam current. For & > # ., the peak
growth rate scales as [}/S in agreement with Eq. (29). The growth rate for various values of applied
toroidal magnetic fieid is given in Fig. 6. Here in accordance with Eq. (29) the peak growth rate is pro-
portional to Bdj? for & > #.,,. Figure 7 gives the growth rate for various values of the major beam
radius. In this figure the peak growth rate is proportional to ;5 again in agreement with Eq. (29).




Finally, in Fig. 8 the growth rate is plotied for various values of the azimuthal harmonic number /as a
function of beam energy. For & > #.,, the peak growth rate is proportional to /? as given in Eq.
(29).

The effects of finite wall conductivity are represented in the dispersion relation, Eq. (23), by the
terms €, and ¢,. These terms describe the effects of wall resistivity on the azimuthal and transverse
beam osciilations respectively. For a good but not perfect conductor both ¢, and ¢, are small compared
to unity. The presence of resistivity primarily affects those modes that would have been stable, if the
chamber walls were perfectly conducting. For those modes which are unstable for perfectly conducting
walls, resistivity introduces only slight changes in the real and imaginary parts of the frequency.

The discussion so far has been limited to monoenergetic beam distributions. As the growth rates
in Figs. 5 through 8 show the instabilities for ultra high current beams are unacceptably high. How-
ever, actual beams have a spread in the canonical anguiar momenium (energy spread) which can sub-
stantially reduce the instability growth rate. For purposes of showing the stabilizing effects of tempera-
ture we will use a Lorentzian beam distribution,

Py/m
AP+ P’
where P, denotes the thermal spread in canonical angular momentum. The convenient feature of the
Lorentzian distribution function is that

g(AP) = (32)

(33)

L[ daPeap) I
(Aw ) > (Aw)/ Quwg + iilkpml)’

for any integer j 2 0. With the relationship in Eq. (33) it can be seen that in the general dispersion
relation of Eq. (16), or any simplified version such as Egs. (23), the growth rate for a thermal beam is
simply given by

rm-F-IP,hlk[ (34)

where I" is the corresponding growth rate for a cold beam, P, = 0.

Using Eq. (7a) we find that the thermal spread in the canonical angular momentum P,, is related
1o the thermal spread in the beam energy &., = yu, moc2 by

Yih = Pm/mocrg. (35)

Setting T, equal to zero and using Eq. (35) we find that the thermal energy spread necessary to
stabilize the instability is

yu = T/ Umgerg k1) (36)
where I' is the coid beam growth rate.

Figures (9) and (10) illustrate the stabilizing effects of a thermal energy spread on the negative
mass/kink instability. In these figures the parameter values are 7o = 100 cm, a = 10cm, 7, = 2 cm
By = 10 kG and / = 10 kA and 5 kA. The fundamental azimuthal harmonic number, / = 1, was used
in both figures. If the fundamental mode is stabilized by an energy spread so are the higher order
modes. In Fig. 9 the entire growth rate spectrum is stabilized for y,, = 0.55. For an injection energy
of &= (yg— 1) myc? = 3 MeV, a 10% energy spread is needed to insure stability against the negative
mass/kink instability. Whereas in Fig. 10 we see that for a § kA injected eleciron beam of =3
MeV, a 5% energy spread would be necessary to insure stability. Unlike conventional beiatrons, the
electron beam of an ultra high current modified betatron can tolerate a substantial energy spread
without significant expansion of the beam’s minor radius.
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4. SUMMARY

In this paper, we have investigated the transverse and longitudinal instabilities on an intense,
confined electron ring in a modified betatron field configuration. The analysis in Sec. 2 resulted in a
general dispersion relation for these instabilities. Of paramount importance in the analysis was the free-
dom of the beam center to oscillate in a self-consistent manner within the torus. We found that the
transverse beam oscillation is not only relevant for the transverse resistive wall instability but is an
important aspect of the negative mass type of instability.

The dispersion relation was evaluated for various limiting cases in Sec. 3. We first investigated
the transverse resistive wall instability in the modified betatron. The applied azimuthal magnetic field
couples both transverse oscillation directions and substantially reduces the growth rate of the instability.

| In Sec. 3b we considered the limiting case of a conventional betatron (Bgy = 0) and found that
5 self field effects could be neglected provided n, < 1/2. The condition that n, < 1/2 is also the require-
ment for space charge confinement.

In Sec. 3¢ we considered the low current, i.e., n, << 1/2, modified betatron, i.e., By # 0. Our
results in this limit are in agreement with those in Ref. 16.

Finally in Sec. 3d the instabilities associated with an ultra high current, i.e., n, >> 1, modified
betatron with By >> B, were studied. We found that in the modified betatron the conducting
chamber walls coupled the . longitudinal and transverse oscillations, resulting in a hybrid mode. The
negative mass instability, which in the conventional betatron is primarily a longitudinal mode of oscilla-
tion, becomes a hybrid mode of oscillation in the modified betatron. In general, for a cold beam the
hybrid mode is found to be unstable. However, stability can be achieved by a moderate amount of
beam energy spread. Numerous illustrations of the functional dependence of the growth rate on the
system parameters are given for a 10 kA injected eiectron ring.
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Fig. 1 — Configuration of the modified betatron eiectron accelerator. An intense electron ring is confined within a
toroidal conducting chamber of major radius rq and minor radius a. The external magnetic fields consist of the nonuni-
form axial field B,, the associated radial fieid B, and the stabilizing azimuthai field B,.
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Fig. 2 = Location of the beam relative 1o the conducting toroidal chamber in a modified bewatron accelerator.
The conducting torus is centered at (ry,0) and has a minor radius a. The beam has a circular cross-section of

radius r, and moves at a velocity v,. At time ¢ and azimuthal angle 0, the center of the beam cross-section is
located at (rg + A7, A2).
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Fig. 3 — Determination of stability of the roots of the dispersion relation for a
coid beam. (a) For & < 0, i.e., Yo < Yians the roots, Awg,, are unsubie for
intermediate values of (yy/in)? (b) For @ > 0, i, v > Yy DOIN 10O
Awd;, are real. One root is, however, negative resulting in instablity.
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Fig. 4 — Growth rate I (solid curve) and real frequency shift Re (w ~ Q4,/yg) vs yo. For yg > ynq the real frequency
shift is zero. The beam and betatron parameters are [, = 10 kA, ro= 150 cm. a = Scm. r, = I cm, Bgg = 10 kG, n =

05and /= 1.
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Fig.§ - Growth rate I vs beam energy £ = (yo — 1)myc? for the parameters of Fig. 4 for
various values of beam current /, = 2 kA, 5 kA and 10 kA.
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Fig. 6 ~ Growth rate I’ vs beam energy for the parameters of Fig. 4, for various values
of the azimuthal magnetic field By, = 2 kG, 5 kG and 10 kG.
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Fig. 7 — Growth rate I’ vs beam energy for the parameters of Fig. 4, for various values of the
major radius 7, = 100 cm, 200 cm and 150 cm.
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Fig. 8 — Growth rate I' vs beam energy for the parameters of Fig. 4. for various vaiues of the
azimuthal harmonic number, /= 1, 2, 3, 4, and 5.
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Fig. 9 = Suabilization of the instability with a beam thermal spread y,,, in a modified betatron with ro = 100 cn:, ¢ =

10cm, ry, = 2cm, /, = 10 kKA, By = 10 kG, n = 0.5 and / = 1. The distribution of the beam is taken to be
Lorentzian in AP = mgcry (y = yp).
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