
ļ	AD-A14	12 818	A R For DC	EVIEN THE N A N F R-83-6	OF TH	E AIR Ing O. May 8	CHEMIS . (U) N 4 NRL-	TRY AN IAVAL F MR-534	ID REL RESEAR	EVANT Ch lab -Ad-Fr	PARAME WASHI 00 577	TERS	1/1	
1	UNCLAS	SIFIE	⊃ MĬP	R-83-6	59						F/G 4	//1	NL	
						2.3								
ļ														
ļ														
										-				
		* =-%												and the

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

1

1

The second second second

ADECOUST

NRL Memorandum Report 5341

A Review of the Air Chemistry and Relevant Parameters for the Modelling of the Nuclear Induced Lightning

A. W. ALI

Plasma Physics Division

May 31, 1984

This work was supported by the Defense Nuclear Agency under Subtasks X99QAXV/C and X99QMXVC, work units 00040 and 00015 and work unit title "Nuclear Induced Lightning."

818

AD-A142

÷.,

1

JUL 5 1984 JUL 5 1984 B NAVAL RESEARCH LABORATORY Washington, D.C. Approved for public release, distribution unlimited 84 07 08 088

			S PAGE						
				REPORT DOCUM	ENTATION PAGE				
	SECURITY C	LASSIF CA	TION		10 RESTRICTIVE MARKINGS				
	SSIFIED								
A SECURI	TY CLASSIFIC	ATION AU	THUNITY		3 DISTRIBUTION A	VAILABILITY OF	REPORT		
DECLAS	SIFICAT ON	DOWNGRA	DING SCHE	DULE	Approved for	public release	; distributio	on unlimited.	
PERFOR	WING ORGAN	ZATION	EPORT NUN	ABER(S)	5 MONITORING OR	GANIZATION RE	PORT NUMBER	(S)	
NRL M	emorandur	n Repor	t 5341						
A NAME O	FPERFORM	NG ORGAN	IZATION	5b OFFICE SYMBOL If applicable	7. NAME OF MONIT	ORING ORGANI	ATION	·	
Naval Research Laboratory Code 4700									
SC ADDRES	SS City State	and ZIP Cue	le ·	· · · · · · · · · · · · · · · · · · ·	76 ADDRESS (City)	State and 71P Code			
Washing	ton, DC	20375							
				BD OFFICE SYMBOL If applicable:	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
Defense Nuclear Agency					MIPR No. 83-6	559 and 84-60	01		
Be ADDRESS (its State and ZIP Code)					10 SOURCE OF FUN	DING NOS			
					PROGRAM	PROJECT	TASK	WORK UNIT	
Washing	ton, DC	20305			ELEMENT NO	NO.	NO	NO	
	Inciude Segurii				62715H	1		47-1924-0	
(See pag						1			
<u> </u>	AL AUTHOR	(S)							
A. W. A				<u>-</u>					
	OF REPORT		136 TIME					5 PAGE COUNT	
Interim	MENTARY N		FROM 4	183 <u>to 10/83</u>	3 May 31, 1984 50				
		JIANUN							
(Qaa nac	ge ii)								
(Dee pag	COSATI CODES			18 SUBJECT TERMS (Continue on reverse if ne	cessary and identify	y by block numb	Ner:	
(See pag	COSATI	CODES			Attachment				
	GROUP		B GA	Air chemistry	Attach	ment			
17	T		B GA	Air chemistry Reaction rates		ment bination			

20 DISTRIBUTION AVAILABILITY OF ABSTRACT	21 ABSTRACT SECURITY CLAS	SIFICATION
UNCLASSIFIED UNLIMITED 🕈 SAME AS APT 🗉 DTIC USERS 🗔	UNCLASSIFIED	
220 NAME OF RESPONSIBLE INDIVIDUAL	226 TELEPHONE NUMBER	220 OFFICE SYMBOL
A. W. Ali	(202) 767-3762	Code 4700.1

DD FORM 1473, 83 APR

DITION OF 1 JAN 73 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

1. Al ma

SECURITY CLASSIFICATION OF THIS PAGE

£

11. TITLE (Include Security Classification)

A REVIEW OF THE AIR CHEMISTRY AND RELEVANT PARAMETERS FOR THE MODELLING OF THE NUCLEAR INDUCED LIGHTNING

la se indreite for for a la state

16. SUPPLEMENTARY NOTATION

This work was supported by the Defense Nuclear Agency under Subtasks X99QAXVC and X99QMXVC, work units 00040 and 00015 and work unit title "Nuclear Induced Lightning."

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

	SYNOPSIS iv
1.	INTRODUCTION 1
2.	ATTACHMENT 3
2.1	THREE-BODY ATTACHMENT (M=O ₂) 6
2.2	THREE-BODY ATTACHMENT (M=N ₂) 9
2.3	THREE-BODY ATTACHMENT (M=H ₂ O)11
2.4	THREE-BODY ATTACHMENT IN DRY AIR
2.5	THREE-BODY ATTACHMENT IN WET AIR
3.	THE ELECTRON TEMPERATURE
4.	ION-ION RECOMBINATION
4.1	TWO BODY ION-ION RECOMBINATION
4.2	THREE BODY ION-ION RECOMBINATION
5.	IONIZATION FREQUENCY 19
6.	ASSOCIATION REACTIONS
7.	THERMAL PROCESSES
7.1	THERMAL DISSOCIATION AND IONIZATION
8.	FINAL REMARKS
	REFERENCES

Accession For NTIS CRAEL DT11 TAD Unaunour 2-2 [] Justification. By_____ Distribution/ Availability Codes Avail and/or Special Dist

iii

SYNOPSIS

To model the nuclear induced lightning, the basic processes responsible for this phenomenon must be understood. The air chemistry plays an essential role in such a modelling. However, a self consistent approach to the modelling requires the incorporation of the best available reaction rates and cross sections for the basic processes. A review of these processes and the relevant rates is undertaken for the sake of a realistic modelling of NIL.

A SAVAN - A ANA A RURAR - A RURAR - A RURAR

A REVIEW OF THE AIR CHEMISTRY AND RELEVANT PARAMETERS FOR THE MODELLING OF THE NUCLEAR INDUCED LIGHTNING

1. INTRODUCTION

Nuclear induced lightning (NIL) has been observed¹ from detonations at the sea level (sunface bursts). These discharges occur some distance away (900 - 1400 meters) from the burst point and they grow, from the top of structures which are above ground by some meters, upwards to the cloud level. The growth velocity of the discharge is found¹ to be $\sim 1 - 2 \times 10^{-7}$ cm/sec and that the discharge luminosity lasts for times of ~ 0.1 sec.

The mechanism for the discharge propagation, i.e., the streamer initiation and propagation, requires the presence of charges and electric fields. These physical quantities arise from the interaction of γ -rays, produced by the nuclear detonation, with the air molecules. The interaction produces Compton electrons which move outward, ionizing air species in its path, resulting in a plasma current moving in the opposite direction. These processes are understood to generate, the charges and electric fields which are responsible for the discharge initiation near sharp objects. A simple and semi-quantitative analysis for the electric field has been performed in Ref. 1, where the the radial electric field is estimated to be 300 Vcm⁻¹. This value for the field is much below the air breakdown threshold field² of 30 Vcm⁻¹ Torr⁻¹.

The NIL phenomenon is complex and requires a multidisciplinary approach for its understanding and modelling. The modelling should comprise the following areas of physics and chemistry: interaction of radiation with air species, ionization of air and generation of air conductivity, electromagnetic equations to solve for the electric field in conjunction with the <u>Manuscript approved March 9, 1984</u>.

conductivity, the air chemistry, air heating, hydrodynamic and flow equations, breakdown, streamer propagation, and discharge radiation.

A comprehensive modelling of NIL in time and space, which encompasses all physics aspects discussed above, is an approach which could lead to a complete understanding of the phenomenon, even though such an approach may be an ambitious one. A step in this direction has been undertaken by Longmire, et al^3 . The success of the modelling of NIL or any other phenomenon, however, depneds on a large measure on the assumptions made, the availability and accuracy of the relevant data used for the basic processes involved. For nuclear induced lightning the air chemistry plays an important role. This role is apparent in two important areas of the lightning discharge. The first, clearly is exhibited in the γ -ray generated conductivity in the disturbed region of the atmosphere, and the other is the air chemistry at the tip of the sharp object from which the streamer propagates.

This report deals with the air chemistry relevant to NIL, where it reviews the rate coefficients for the apporpriate processes and provides current and best values for modelling purposes. Various atmospheric models exists for EMP calculations and a study⁴ has been made to determine the uncertainties in these calculations due to various chemistry models and coefficients. Scheibe⁵ have considered the generation of smog! and its role in the electron attachment in an EMP environment at the sea level. Grover and Gilmore⁶ have reviewed the mobility and attachment data for the EMP environment.

An important element in the NIL modelling is the air conductivity whose calculation depends heavily on the air chemistry. The conductivity is a function of the electron density, and ion density when the conductivity is due to ions, and their collision frequencies with the neutral species. The electron and ion density calculations require a set of rate equations which

determine their production and loss mechanisms. These processes are numerous and involve a large number of reaction and their coefficients which are temperature dependent. The collision frequency, on the other hand, can be obtained if the appropriate velocity distributions are known along with the relevant cross sections. This approach requires one to solve the Boltzmann equation. Other approaches are also available, e.g. assuming a Maxwellian velocity distribution for the electrons, or utilizing the appropriate particle mobilities obtained experimentally as a function of E/p and the average electron energies, also obtained experimentally as a function of E/p. The air chemistry near the tip requires a detailed treatment of air heating processes and the energy flow into various modes of freedom, e.g. kinetic, vibrational, etc. as well as the ionization frequency as a function of E/p.

This report deals with the prospect of a comprehensive NIL modelling and tries to provide the basic data for the most important processes. These processes are: attachment, ion-ion recombination, ionization frequency, association reactions, dissociative recombination, vibrational excitation and relaxation, the electron temperature, thermal processes and others.

2. ATTACHMENT

The electron attachment to 0_2 in air proceeds mainly by the following processes

$$e + 0_2 + 0^- + 0$$
 (1)

$$e + 0_2 + M + 0_2^- + M$$
 (2)

The first process, the dissociative attachment, has a threshold of ~ 4.3 eV and hence it is important when the electron energy is high. The cross section⁷ for the dissociative attachment has been averaged⁸ with the electron velocity over a Maxwellian electron velocity distribution and the corresponding rate coefficient is given in Table 1 as a function of the electron temperature.

			2
T _e (eV)	<pre>Rate Coefficient(cm³/sec)</pre>	T _e (eV)	Rate
0.1	6.42(-30)	2.6	2.57(-11)
0.2	1.89(-20)	2.7	2.67(-11)
0.3	3.61(-17)	2.8	2.76(-11)
0.4	1.78(-15)	2.9	2.84(-11)
0.5	1.93(-14)	3.0	2.91(-11)
0.6	9.58(-14)	3.1	2.97(-11)
0.7	3.0 (-13)	3.2	3.03(-11)
0.8	7.0 (-13)	3.3	3.08(-11)
0.9	1.35(-12)	3.4	3.12(-11)
1.0	2.25(-12)	3.5	3.15(-11)
1.1	3.4 (-12)	3.6	3.19(-11)
1.2	4.76(-12)	3.7	3.21(-11)
1.3	6.28(-12)	3.8	3.24(-11)
1.4	7.93(-12)	3.9	3.25(-11)
1.5	9.65(-12)	4.0	3.27(-11)
1.6	1.14(-11)	4.1	3.28(-11)
1.7	1.31(-11)	4.2	3.29(-11)
1.8	1.48(-11)	4.3	3.29(-11)
1.9	1.65(-11)	4.4	3.30(-11)
2.0	1.81(-11)	4.5	3.29(-11)
2.1	1.96(-11)	4.6	3.29(-11)
2.2	2.10(-11)	4.7	3.29(-11)
2.3	2.35(-11)	4.8	3.28(-11)
2.4	2.36(-11)	4.9	3.27(-11)
2.5	2.47(-11)	5.0	3.26(-11)

Table I The Dissociative Attachment Rate Coefficient for 0_2

The data of Table I, however, can be expressed (within 20%) and in the temperature range of (0-5) eV by the following expression

$$a_2 = 1.0 \times 10^{-11} [2.28 + 11.6 T_e - 1.75 T_e^2] T_e^{-0.5} Exp(-4.2/T_e)$$
 (3)

Where T_e is in units of eV.

The three-body attachment process as given by Eq. 2 indicates that M is the third body which may be 0_2 , N_2 , H_20 , $C0_2$ and any other molecular compound generated in the disturbed air.

Considerable measurements on the three-body attachment rate coefficient exists, indicating the predominance of this attachment for electrons with energy⁹ of < 1.0 eV. The Measurements, prior to 1971, have been reviewed by Phelps^{9,10} and recommended rate coefficients for attachment to 0_2 are given for various third bodies appearing in Eq. 2. These and more recent measurements which are reviewed here, have been performed for thermal electrons and over a limited range of E/p. And are mainly obtained from swarm and electron beam experiments.

2.1 THREE BODY ATTACHMENT (M=0₂)

For the three body attachment in pure 0_2 and for thermal electrons at 300° K, the measured values of various workers are in good agreement. These values, in units of cm⁶/sec, are: $(2.8 \pm 0.5) \times 10^{-30}$ [Ref. 11], 2.0×10^{-30} [Ref.12], $(2.4 \pm 0.1) \times 10^{-30}$ [Ref. 13 and 14], $(2.1 \pm 0.2) \times 10^{-30}$ [Ref. 15], 3.8×10^{-30} [Ref. 16], 2.1×10^{-30} [Ref. 17], $\sim 2.5 \times 10^{-30}$ [Ref. 18]. It seems that a value of 2.4×10^{-30} cm⁶/sec is a resonable value for thermal electrons at gas temperature of 300° K. The temperature dependence of the

three-body rate coefficient, $a_3(\hat{u}_2)$, where 0_2 is the third body, have been obtained in swarm experiments from the attachment coefficients per unit length, n, which are measured^{11,12,19} as a function of $\frac{E}{N}$ (or E/p). In general, $a_3(0_2)$ is related to n according to (4)

$$n V_{d} = a_{3}(0_{2}) 0_{2}^{2}$$
(4)

where V_d is the electron drift velocity which is a function of E/N (or E/p) and has been measured in a large number of gaseous media²⁰. The attachment coefficient per unit length signifies the total attachment in O_2 , i.e., the two-body and the three-body processes delineated experimentally where the two body is independent of pressure and important at high E/p, in contrast the three-body is pressure dependent and predominates in the regions of low E/p. These characteristics can be seen in Figure 1 which is based on data from Reference 19.

The three-body attachment rate coefficient, $a_3(0_2)$ can be obtained from data such as the one given in Figure 1, Equation 3 and the drift velocity as a function of E/p. In addition one needs the data for the mean electron energy or the characteristic energy (${}^{-}T_e$) which are also measured as a function of E/p. From these considerations one obtains $a_3(0_2)$ as a function of T_e , where most of the data are basically for electron temperatures of leV and lower with the gas temperature at 300°K. However, several measurements have been made where the gas temperature, T_g , is varied. Such data are as follows: Chanin, et al¹¹ for T_g between 77°K and 370°K, Pack and Phelps¹² for T_g between 300°K.

following expression for the three-body attachment for thermal electrons when the gas temperature is varied from 300°K to 600°k

$$a_3 (0_2) = (1.4 \pm 0.2) \times 10^{-29} \left(\frac{300}{T_g}\right) Exp \left(-\frac{600}{T_g}\right)$$
 (5)

On the other hand, the measured rate coefficient of $Truby^{15}$ fits the following expression.

$$a_3 (0_2) = 4 \times 10^{-30} \text{ Exp} (-193/T_{o})$$
 (6)

However, eventhough the measurements of Truby¹⁵ are for temperatures below 300, his expression (Eq. 6) can be used for higher temperatures (up to 600° K) where it differs in value by 10% from that of Phelps¹⁰ (Eq. 5).

The attachment rate coefficients as a function of the electron temperature are shown in Figure 2 based on various swarm data. These data show a smooth variation of the coefficient with the electron temperature. However, the data from the electron beam experiment¹⁸, also shown in Figure 2, show definite structures as a function of the electron temperature. The peaks of the structures occur at the positions of the vibrational levels of the 0_2^- system. This compound (resonance) state decays by autodetachnment which accounts¹⁸ for the vibrational cross section of 0_2 . However, this state can be stabilized in collisions with 0_2 resulting in a stable 0_2^- . The structures observed by Spence and Schulz¹⁸ establish the validity of the assumption²¹ that the three-body attachment is a two step process, i.e.,

$$e + 0_2 + (0_2^-)^*$$
 (7)

$$(0_2^-)^* + 0_2 \rightarrow 0_2^- + 0_2$$
 (8)

The structure in the rate coefficient has also been observed by McCorkle, et al^{16} especially for electrons with temperature below 0.1 eV as shown in Figure 2.

2.2 THREE-BODY ATTACHMENT (M=N₂)

The attachment to O_2 with N_2 as the third body has been measured by many workers 11,13,14,16 where the room temperature values of a_3 (N₂) are: 5.6 x 10^{-32} cm⁶/sec [Ref. 11], 1.5 x 10^{-31} [Ref. 16], and 8.5 x 10^{-32} [Refs. 13 and The last value falls almost midway between the other two measurements 147. and hence may be used as an average value at room temperature. The most recent measurements 13,16 which are performed at high pressure (< 300 Torr) are higher than the swarm data which were performed at pressures much lower than 300 Torr. These recent measurements indicate that at higher pressures 13 the attachment rate data do not reflect the three-body process and that one has to also invoke a four-body process 13, 16, 22. These processes (see Eqs. 9 and 10) follow those in Eqs. 7 and 8 where the excited negative ion $(0_2)^*$ is converted into a coumpound of the form $[0_2^{-*} - N_2]$ in collisions with N₂. This compound then is stablized through a collision with 0_2 or N_2 , resulting in a stable 0_2^- :

$$(0_2^{-})^{*} + N_2 + [0_2^{-*} - N_2]$$
 (9)

$$[0_2^{-*} - N_2] + 0_2 \rightarrow 0_2^{-} + N_2 + 0_2$$
(10a)

$$[0_2^{-*} - N_2] + N_2 + 0_2^{-} + N_2 + N_2$$
(10b)

The temperature dependence of $a_3(N_2)$ based on the data of References 11, 16 and 22 are shown in Fig. 2. McCorkle, et al^{16} indicate that if they replot the data of Chanin, et al^{11} by obtaining the mean energy from the know electron energy distribution in N_2 , an excellent agreement between such a plot and McCorkle et al^{16} data is realized.

In the four-body process (see Eqs. 9 and 10), it is found¹³ that 0_2 is more effective than N_2 in stabilizing 0_2^- . The room temperature values for the four body attachment rate coefficients where 0_2 and N_2 are the fourth bodies are⁷:

$$\alpha_4$$
 (0₂) = 1.0 x 10⁻⁴⁹ cm⁹/sec (11)

$$\alpha_4$$
 (N₂) = 6.6 x 10⁻⁵² cm⁹/sec (12)

These processes increase the three body attahcment in one atmosphere of air at room temperature by \sim 20%.

2.3. THREE-BODY ATTACHMENT (M=H₂0)

The three-body attachment to 0_2 with H_20 as the third body has been measured^{23,24} for electrons at room temperature. The coefficients for a_3 (H_20) are: (1.4 ± 0.2) x 10^{-29} cm⁶/sec [Ref. 23] and (1.4 ± 0.5) x 10^{-29} cm⁶/sec [Ref. 24] which are in excellent agreement. However, no data exist for this attachment for electron temperature above 400°K.

2.4 THREE-BODY ATTACHMENT IN DRY AIR

The coefficients obtained experimentally for the three-body and four-body attachment rates to 0_2 with the third-body being 0_2 and N_2 can be utilized to obtain the attachment rate in air. However, direct meansurements of the attachment rate in air also exists and are reviewed in this section. The room temperature rate coefficient for the three body attachment in air, a_3 (air), is $(1.1 \pm 0.07) \times 10^{-31} \text{ cm}^6/\text{sec}$ [Ref. 17] which is obtained in air like mixture $(4N_2:0_2)$. The electron life time measurements²⁵ in air afterglow plasma for air pressures between 50 and 600 Torr yield the following expression (which may have an uncertainty of ~ 30%)

$$\tau = \frac{6.4 \times 10^{-3}}{p}$$
(13)

where p is in Torr. Accordingly, the life time of thermal electrons in one atmosphere is 1.1×10^{-8} sec. Similar results have been obtained by Price and VanLint²⁶. Relation (13) implies that total attachment in air at 760 Torr is 1.24×10^{-31} cm⁶/sec. If we accept the average values of a_3 (0_2) and a_3 (N_2) as 2.4×10^{-30} cm⁶/sec and 8.5×10^{-32} cm⁶/sec, respectively, the three-body attachment rate coefficient in air will be 1.05×10^{-31} cm⁶/sec. If one

adds ~ 20% increase due to four body effects one obtains a rate coefficient of $1.25 \times 10^{-31} \text{ cm}^6/\text{sec}$ which is in good agreement with the lifetime measurement²⁵ and is shown in Fig. 3.

The temperature dependence of the three-body attachment in air has been measured by Schneider and Brau²⁷ in the temperature range of 0.45 to 1.2 eV. These measurements are shown on Fig. 3 along with the calculated values from the data of Fig. 2 where

$$a_3$$
 (air) = 0.04 a_3 (0₂) + 0.16 a_3 (N₂) (14)

In this case we have utilized the data for N₂ by McCorkle, et al¹⁶ which is in excellent agreement with the data of Chanin, et al¹¹, replotted as a function of the average electron energy¹⁶. As for O₂, the data of Chanin, et al¹¹ and McCorkle, et al¹⁶ were treated separately and the results are shown on Fig. 3 as a function of the electron temperature. It is obvious from the figure that good agreement exists for the coefficients for $T_e < 0.1$. Above $T_e > 0.1$ the two sets differ by as much as a factor of 3. However, the set obtained from the data of McCorkel, et al¹⁶ merges in a resonable manner with those high temperature measurements of Schneider and Brau²⁷. It is possible that if the right energy scale is utilized for a₃ (O₂) of Ref. 11 its data will be shifted towards lower temperature resulting in better agreement with the data of Ref. 16.

2.5 THREE-BODY ATTACHMENT IN WET AIR

There are no temperature depended measurements for the three-body attachment to 0_2 with H_20 as the third body. The data^{23,24} for thermal

electrons at 300°K are in good agreement with a value of 1.4 x 10^{-29} cm⁶/sec. This value indicates that H₂O is 6 times more effective than O₂ as a third-body in stabilizing O₂⁻⁻. If we assume that the temperature dependence of attachment with H₂O as the third body is similar to that with O₂ as the third body, then the three-body attachment rate with H₂O as the third body should follow the data in Fig. 2 with an increase in magnitude by a factor of 6. This has been done and the results are shown in Fig. 4.

If we utilize the room temperature value of the three body attachment to 0_2 with H_20 as the third body (1.4 x 10^{-29} cm⁶/sec) and 1.25 x 10^{-31} cm⁶/sec in dry air we obtain attachment rate for moist air. We consider three values of 2%, 4% and 5% for H_20 in air and calculate the attachment rate in moist air. The results are shown in Fig. 5 along with the experimental results of VanLint and Price²⁸.

3. THE ELECTRON TEMPERATURE

In Section 2 we discussed the attachment rates in dry and wet air. It is obvious that these rates are dependent on the electron temperature which has to be known as a function of E/p for a realistic modelling of nuclear induced lightning. The electron temperature, defined¹² in the swarm experiments as the characteristic energy is often obtained as a function of E/p by measuring D_t/μ . Where D_t is the diffusion coefficient transverse to the direction of the electric field and μ is the electron mobility. The electron temperature, T_e , in dry air has been measured by many investigators²⁹⁻³³ for a wide range of E/p. These measurements compiled by Gallaher et al³⁴ are shown in Figures [6 a,b] where good agreement is apparent, whenever more than one measurement exists for a given range of E/p. However, no measurement of T_e exists for E/p below 0.1 V-cm⁻¹-Torr⁻¹. On the other hand, T_e has been measured and calcualted³⁵⁻⁴⁰ in both N₂ and O₂ for values of E/p far below 0.1 V cm⁻¹

Torr⁻¹. For N₂ the data of Jory³⁸ and Crompton and Elford³⁶ are shown in Figure [6b] along with the theoretical values of Hake and Phelps⁴⁰ for T_e in O_2 .

It is interesting to note that the electron temperature measurements of Crompton et al³² in air fall between the T_e values in N_2 and O_2 except for the data at lowest end of E/p. Furthermore, the T_e values in N_2 and O_2 get closer as E/p gets lower converging to the thermal value as expected. Assuming that the diffusion coefficient D_t is the same in N_2 and O_2 one can utilize the data for T_e in N_2 and O_2 to obtain T_e in air. This we have done and the result is shown in Fig. [6b].

However, for most modelling purposes one is also interested in the electron tempeature in moist air. Unfortunately no such measurement exists. On the other hand, measurements and calculations of T_{ρ} in pure water vapor exists. This data is shown in Fig. [6a] for the sake of comparison with T_{ρ} in dry air and is obtained from the measurements of Parr and Moruzzi⁴¹ and that of Wilson, et al⁴² whose D_i / μ measurements agree well with the theoretical values of Lowke and Parker³⁹. From this figure one sees that the electron temperature rises very rapidly for E/p between 15 and 30 V cm⁻¹ Torr⁻¹. For $E/p > 20 V cm^{-1} Torr^{-1}$ the electron temperature in H_20 is slightly higher than that in dry air. However, for $\frac{E}{P}$ < 10 V cm⁻¹ Torr⁻¹, the electron temperature in H_2O is much lower than that in dry air. In this region $(\frac{E}{D} < 10 \text{ V cm}^{-1} \text{ Torr}^{-1})$ the electron temperature in H₂0 is thermal (i.e. ~ 300° k) while the electron temperature in dry air is much higher (see Fig. 6a). Between E/p = 1.0 to 10.0 V cm⁻¹ Torr⁻¹ the electron temperature in air is 12 to 40 times higher than that in water vapor. Therefore, in moist air, the electron temperature will be lower than in the case of dry air, in the E/p range just alluded to. If one assumes, for the sake of argument that

the diffusion coefficient in H_20 is the same as in dry air then for air with 2.5% of H_20 the average electron temperature will be lowered from 1.3 eV for dry air to 0.55 eV which implies that water vapor has a large influence on the electron temperature for $E/p < 10 \text{ V cm}^{-1}$ Torr⁻¹.

4. ION-ION RECOMBINATION

In air a variety of positive and negative ions are formed as a result of the ionization of air molecules and the subsequent chemical processes. The positive ions recombine with the free electrons and the negative ions. The reocmbinations of the positive and negative ions proceed through the two and three-body neutralization processes i.e.,

$$A^{+} + B^{-} + A + B$$
 (15)

$$A^{\mathsf{T}} + B^{\mathsf{T}} + M \neq A + B + M \tag{16}$$

where A^+ and B^- denote atomic, molecular and cluster ions.

4.1 TWO BODY ION-ION RECOMBINATION (α_2)

The two body mutual neutralization of positive and negative ions has been measured by the SR1 group⁴³ using the merging beam technique. Most of these measurments were concerned with atomic and molecular systems of interest shown in TABLE II.

TABLE II: TWO BODY MUTUAL NEUTRALIZATION COEFFICIENT

In Units of 10^{-7} cm³/sec (Ref. 43 & 46) and 10^{-8} cm³/sec (Ref. 44 & 45)

Reaction	Ref. 43	Ref. 46	Ref. 44 & 45
0 ⁺ + 0 ⁻	2.7 ± 1.3		
$N^{+} + O^{-}$	2.6 ± 0.8		
$0_2^+ + 0^-$	1.0 ± 0.4		
$0_2^+ + 0_2^-$	4.2 ± 1.3	1.0 ± 0.1	
$N_2^+ + 0_2^-$	1.6 ± 0.5		
$N0^{+} + 0_{2}^{-}$	5.8 ± 1.0		
$N_{2}^{+} + NO_{2}^{-}$	1.3 ± 0.5		
$N0^{+} + N0_{2}^{-}$	5.1 ± 1.5	1.75 ± 0.6	6.4 ± 0.7
$0_2^+ + NO_2^-$	4.1 ± 1.3		
$NO^+ + NO_3^-$	8.1 ± 2.3	0.34 ± 0.12	5.7 ± 0.6
$0_{2}^{+} + NO_{3}^{-}$	1.3 ± 0.4		

$$H_30^+$$
 $(H_20)_3 + N0_3^-$ 5.5
 H_30^+ $(H_20)_3 + N0_3^- + HN0_3$ 5.7

However, the mutual neutralizaiton rate coefficient, at room temperature, given in Table II by the SR1 group⁴³ are obtained by extrapolation. The actual measurements are at energies of 0.15 eV and higher. These measurements are fit to a theoretical form predicted by Landau-Zener theory⁴³, and extrapolated to thermal energies and a rate coefficient is obtained from the product of the relative velocity of the ions and the cross section for neutralization. However, the afterglow measurements of Smith et al⁴⁴ and Smith and Church⁴⁵, for the reactions of NO⁺ with NO₂ and NO₃⁻, predict

neutralization values which are an order of magnitude smaller than those of Moseley et al⁴³. Eisner and Hirsh⁴⁶ have also measured these two reactions and obtained $[1.75 \pm 0.6] \times 10^{-7}$ cm³/sec and $(3.4 \pm 1.2) \times 10^{-8}$ cm³/sec for the neutralization of NO⁺ with NO₂ and NO₃, respectively. These values are lower from those predicted by Moseley et al⁴³ by a factor of 3 and 30 for the corresponding neutralizations, respectively. The discrepancy may lie in the extrapolation methods of Ref. [43].

Smith and his colleagues^{44,45} have measured the neutralization coefficients for more complex ions (hydrates), in addition to those discussed above. they find that NO_3^- ions and their clusters, regardless of the degree of clustering behave similarly, i.e., the mutual neutralization coefficients of these simple and complex ions are in the range of (5-6) x 10^{-8} cm³/sec (see Table II). This value is in good agreement with the measurements of Ulwick⁴⁷ in the upper atmosphere (50 - 75 km) which give a value of 6.5 x 10^{-8} cm³/sec.

The temperature dependence of the ion-ion neutralization coefficient has the form of $(T_g)^{-0.5}$ which is predicted theoritically^{48,49}, and hence it can be utilized to obtain the coefficients at temperatures other than at 300°K.

Theoretical calculations of the ion-ion neutralization coefficients have been carried out by 01sen^{48} based on a semiemperical absorbing sphere model. The predicted values in the majority of the cases, presented in Table II, are always below the experimentally obtained ones. It is interesting to note that in the case of $N0^+ + N0_3^-$ calculated value is lower by a factor of 7. For atomic and molecular ions, however, experimental predictions are higher by a factor of 2 compared to the calculated values.

A middle ground, for modelling purposes is to use a value of $1.5 \times 10^{-7} \left(\frac{300}{T_g}\right)^{0.5}$ for all neutralization which involve an atomic and molecular ion. However, whenever a triatomic or heavier molecule is involved,

the measured value of 5 x 10^{-8} cm³/sec should be utilized. This same value should also be utilized for complex ions (hydrated ions).

4.2 THREE BODY ION-ION RECOMBINATION (α_3)

The three body ion-ion recombination of various air species ions of interest have been measured by McGowan⁵⁰ at room temperature and 760 Torr. These measurements are performed in clean air where the possible positive and negative ions were, N_{4}^{+} , N_{3}^{+} , N_{0}^{+} , 0_{2}^{-} , 0_{4}^{-} , N_{0}^{-} .

The recombination rate coefficient varied from 2.28 x 10^{-6} cm³/sec to 2.18 x 10^{-6} cm³/sec which imply a third body rate coefficient of 8.5 x 10^{-26} cm⁶/sec and 8.10 x 10^{-26} cm⁶/sec, respectively. When air contained water vapor, the ion-ion recombination rate coefficient varied from 6.1 x 10^{-26} cm⁶/sec to 5.3 x 10^{-26} cm⁶/sec for a relative humidty of 38% and 32%, respectively.

The value of ion-ion recombination coefficient in one atmosphere of air, 2.2 x 10^{-6} cm³/sec, obtained by McGowan⁵⁰ is in good agreement with that measured by Sayers⁵¹. However, a recent determination⁵² of α_3 in dry air (1 atm, 300°k) gives a value of 5.0 x 10^{-7} cm³/sec which is smaller by a factor of 4 compared to that measured by McGowan⁵⁰.

From the theoretical point of view, the first attempt to calculate α_3 was made by Thompson⁵³. Thompson's theory predicts results in good agreement with experimental findings for pressures below one atmosphere. The success of this theory, however, is largely fortuitous⁵⁴ and various attempts have been made^{53,54} to refine it. At higher pressures, on the other hand, Langevin's Theory⁵³ is more appropriate and has a simple expression for the recombination based on the ionic mobility. Thus

$$\alpha_3 = 4\pi e^2 (\mu^+ + \mu^-)$$
 (17)

Using the mobility data⁵⁵ for air ions, one obtains $\alpha_3 = 4.7 \times 10^{-6} \text{ cm}^3/\text{sec}$ at 1 atmosphere which is larger by a factor of 2 compared to the measurements of McGowan⁵⁰

5. IONIZATION FREQUENCY

The ionization frequency in air, v_i , as a function of E/p is another important parameter for the modelling of the nuclear induced lightning. The ionization frequency, in general, is obtained from the ionization coefficient (Townsend coefficient) α and the drift velocity V_d where

$$v_i = \alpha V_d \tag{18}$$

The ionization coefficient in air has been measured by many investigators $^{33,56-59}$ and for a wide range of E/p. These measurements, (Ref. 3, 56 to 59) are in reasonable agreement especially those which are for clean air⁵⁸⁻⁵⁹. The old measurements^{56,57} are not reliable at low E/p since they were contaminated²⁰ with mercury which has low ionization potential. A best fit to the data of Reference (58) yields the following expressions⁶⁰ with an error of < 14%

$$\frac{\alpha}{p} = 8.34 \text{ Exp} (-273.8/\text{E/p}) \quad 120 > \frac{\text{E}}{p} > 54 \tag{19}$$

$$\frac{\alpha}{p}$$
 = 16.0 Exp (- 359/E/p) 1000 > E/p > 120 (20)

The drift velocity in air, on the other hand, can be expressed 60 as

$$V_{d} = 6.0 \times 10^{6} + 2.5 \times 10^{5} (E/p)$$
 54 < E/p < 120 (21)

$$V_d = 3.38 \times 10^6 (E/p)^{1/2}$$
 120 $\leq E/p \leq 1000$ (22)

These expressions are obtained 60 using the measured drift velocities in nitrogen and oxygen. The corresponding ionization frequency in air is

$$\frac{9_{i}}{p} = [6.0 \times 10^{6} + 2.5 \times 10^{5} (E/p)] 8.34 \text{ Exp} \left(\frac{-273.8}{E/p}\right)$$
(23)
for $54 \le E/p \le 120$

$$\frac{v_i}{p} = 54.08 \times 10^6 (E/p)^{1/2} Exp(\frac{-359}{E/p})$$
(24)
or 120 < E/p < 1000

fo

For the region below $\frac{E}{p} = 50 \text{ V cm}^{-1} \text{ Torr}^{-1}$, the drift velocity^{61,62} in air fits the following expression

$$V_{d} = 8.7 \times 10^{5} (E/p)^{0.76}$$
 30 < E/p < 50 (25)

to within 10% of the data. For E/p below 54 V cm⁻¹ Torr⁻¹, the ionization

coefficient can be expressed as

$$\frac{\alpha}{p} = 12.0 \text{ Exp} \left(\frac{-273.8}{E/p}\right) \qquad 37 < \frac{E}{p} < 54$$
 (26)

which fits the measured⁵⁹ data to better than 10%. Thus the ionization frequency in air for $E/p = 37 - 54 \text{ V cm}^{-1}$ Torr⁻¹ is

$$\frac{v_i}{p} = 1.04 \times 10^7 (E/p)^{0.76} Exp \left(\frac{-273.8}{E/p}\right)$$
(27)

This may be extended down to $\frac{E}{p} = 30 \text{ V cm}^{-1} \text{ Torr}^{-1}$ which is the standard reduced breakdown field in air.

6. ASSOCIATION REACTIONS

In dry air the primary ions generated are N_2^+ , O_2^+ , N^+ and O^+ which undergo certain association reactions that convert them into heavier ions, e.g.,

$$N_2^+ + N_2 + N_2 \rightarrow N_4^+ + N_2$$
 (28)

$$N^{+} + N_2 + N_2 + N_3^{+} + N_2$$
 (29)

$$0_2^+ + 0_2 + 0_2 \rightarrow 0_4^+ + 0_2$$
 (30)

$$0_2^+ + N_2 + N_2 + 0_2^+ \cdot N_2 + N_2$$
 (31)

$$NO^{+} + N_{2} + N_{2} + NO^{+} \cdot N_{2} + N_{2}$$
 (32)

The dissociative recombinations of these air ion clusters with the plasma electrons proceed at a rapid rate compared to those of the light ions and hence affect drastically the plasma decay.

The association rate coefficient for reaction (28) has been measured⁶³⁻⁷¹ at room temperature and as a function of E/p where the most recent measurement⁷¹ gives a value of 5.0 x 10^{-29} cm⁶/sec. However, the dependence of this coefficient on the gas temperature has been investigated by Good, et al⁶⁸ in the temperature range of 300°k to 380°k and by Dheandhanoo, et -!⁷¹, in the temperature range of 120°k to 480°k. A temperature dependence of $T_g^{-4.0}$ can be inferred⁷² from the measurement of Good et al⁶⁸, while the most recent measurement⁷¹ gives a $T_g^{-2.2}$ dependence and it should be preferred since it is obtained over a wider range of T_g . Hence the most current rate coefficient for reaction (28) is 1.50 x 10^{-32} $(\frac{1}{T_g})^{2.2}$ cm⁶/sec where T_g is in eV.

The coefficient for reaction (29) has been measured^{68,69,71,73} and the room temperature value, in units of 10^{-29} cm⁶/sec, is 2.7 [Ref 70], 5.0 [Ref 68], 1.8 [Ref 73] and 2.0 [Ref 71]. The most recent measurement⁷¹ also provides the temperature dependence of the reaction which follows $(T_g)^{-2.0}$. Hence the most current coefficient for reaction (29) is $1.25 \times 10^{-32} (\frac{1}{T_g})^{2.0}$, with T_g in eV.

The coefficient for reaction (30) has been measured at room temperature^{74,75} and as a function of the gas temperature^{75,76} for the range of 80°k to 300°k (Ref. 75) and 300°k to 340°k (Ref. 76). The room temperature value is ~ 2.5 x 10^{-30} cm⁶/sec and the temperature dependence varies as $T_g^{-2.8}$. Thus the rate coefficient for reaction (30) is $9x10^{-35}(T_g)^{-2.8}$ where T_g is in eV.

As for reaction (31), its coefficient and temperature dependence, in a limited range, has been obtained most recently by Dheandhanoo, et al⁷¹. The coefficient is 7.5 x 10^{-36} (T_g)^{-3.2} where T_g is in eV. However, for most modelling purposes one can ignore 0_2^+ .N₂, for two reasons. One, its collisional breakup with N₂ (~ 2 x 10^{-11} cm³/sec)⁷⁶ is as rapid as its formation (in one atmosphere) and second is its rapid switching reaction⁷⁷ with 0₂ leading to the formation of 0_4^+ .

The last reaction in this section for the dry air clusters (Eq. 32) has recently been meausred⁷¹ and the coefficient is 2.68 x 10^{-38} (T_g)^{-4.4} where T_g is in eV.

7. THERMAL PROCESSES

The streamer propagation is initiated near a sharp metallic tip which enhances the electric field. The ionization and heating of air in this region, which occurs as a result of ohmic heating, requires a detailed treatment of the air heating processes. The energy gained from the field by the electron is expended in collisions with the air molecules. These collisions are elastic and inelastic in nature and result in direct or indirect heating of the air species. The inelastic processes and their contribution to the heating of air molecules are

a) The Ionization Energy

Part of this energy returns into the gas through the dissociative

recombination of the molecular ions. If the ions are N_2^+ and 0_2^+ , the contributions per recombination to air heating are ~ 5.8 eV and 6.96 eV, respectively. On the other hand if these molecules are converted to N_4^+ and 0_4^+ which is highly probable when the air is not heated at the beginning, then the contributrions per recombination to air heating are ~ 15.0 eV and 11.6 eV, respectively. This arises from the fact that the dissociative recombination of N_4^+ and 0_4^+ result in excited N_2 and 0_2 molecules which in turn are quenched by other molecules, resulting in heating of the air species.

b) Excitation of Electronic States

The energy lost by electrons in the excitation of the electronic states of N_2 and O_2 , can be considered as indirect heating of the air species, because of their rapid quenching by N_2 and O_2 . For example the $N_2(C, v=0)$ state is quenched by N_2 and O_2 with a rate coefficient of 1.12 x 10^{-11} cm³/sec and 2.9 x 10^{-10} cm³/sec. In one atmosphere of air, where most of our concern is, these coefficients imply that the (C, o) state is quenched with a rate of ~ 1.6×10^9 sec⁻¹ which is ~ 50 times faster than the radiative decay rate of the state. Hence, most of the energy lost by electron into the electronic states, of N_2 , especially the triplets below 12 eV will be converted into the gas kinetic energy of the air molecules. However, the $A^{3}\Sigma$ state may result in the dissociation of 0_2 . For electronic states, higher than 12 eV, the most probable product is the dissociation⁷⁹ of the molecule. However, the electron energy loss to 0_2 would result mainly in the dissociation of the molecule and the excitation of a Δ and b Σ states which are metastable and are quenched in time scales much longer than $\sim 1 \text{ m sec}$. However, they are destroyed by electron deexitation and by detachment of 0_2^- . The rate of energy loss

to various states can be found in Ref. (60).

c). The Rotational and Vibrational Excitations

The electron energy loss to the rotational mode of the molecules is an inelastic process which indirectly heats the air moleucles. The rotational energy is rapidly converted into moleuclar kinetic energy. This is due to the fact that only few collisions are needed for the rotational energy relaxation into the thermal energy.

However, the electron energy loss into the vibrational mode generates an energy reservoir which does not return rapidly into the thermal mode. Therefore, it must be accounted separately with a detailed consideration for its coupling to the electron temperature and the gas kinetic temperature. This requires a master equation⁸⁰ for the vibrational level with electron excitation and dexcitations, vibrational-vibrational and vibrational-translational trasitions. The rate coefficients for the excitations of the first eight vibrational levels of N₂ is given in Table III. These coefficients are obtained^{8,81} using the measured cross sections⁸²⁻⁸⁴ averaged with electron velocity over an electron Maxwellian velocity distribution. The generation of excitation to higher levels, by electron impact, can be obtained from the following relation

$$X_{v, v+\Delta v} = X_{o, \Delta v}$$
(33)

The relaxation of the vibrational energy through heavy particle collisions i.e., the vibrational-translational transitions, mainly occur in collision of the vibrational levels with atomic oxygen which is the most effective agent. The rate coefficient 85 for the deactivation of the v=o level by oxygen atom can be expressed as

$$K_{10} = 1.1 \times 10^{-10} \text{ Exp} (-69.9/T_g^{1/3})$$
 (34)

where T_g is in units of eV. The corresponding excitation rate coefficient can be obtained by detailed balance. For the vibrational-vibrational exchange process, the rate coefficient⁸⁶ is

$$R_{0,1}^{1,0} = \langle \sigma v \rangle \langle P_{01}^{10} \rangle = 3.8 \times 10^{-11} (T_g)^{3/2}$$
 (35)

Where the exchange probability $\langle P_{01}^{10} \rangle$ is for a harmonic osillator and symmetric resonance exchange. For transition between different vibrational levels with $\Delta v = \pm 1$, harmonic oscillator relations can be utilized. Such a treatment not only will describe appropriately the energy flow between the vibrational and translational modes but also will give the molecular dissociation through the vibrational ladder.

7.1 THERMAL DISSOCIATION AND IONIZATION

In addition to the ionization of air species by electron impact, the air molecules can be dissociated and ionized through thermal collisions. The thermal dissociation rate⁸⁷ of N_2 for reaction (36)

$$N_2 + N_2 \rightarrow N + N + N_2 \tag{36}$$

is 1.90 x 10^{-9} T_g^{-1.6} Exp (-9.76/T_g) where T_g is in units of eV and is valid for the temperature range of 0.5 eV to 1.3 eV. The accuracy of this coefficient is within a factor of 3. The thermal dissociation of 0₂ with 0₂ and N₂ as the collision partner have the following rate coefficients⁸⁸ 5.8 x 10^{-9} T_g^{-0.83} Exp(-5.12/T_g) and 2.7 x 10^{-10} T_g^{-1.7} Exp (-5.12/T_g), respectively, where T_g is in units of eV and their accuracy is within a factor of 3.

8. FINAL REMARKS

A review of major processes and their rate coefficients relevant to the NIL modelling is presented. Schemes for the calculation of the electron energy flow into various modes are also discussed along with the basic air heating processes. The uncertainties in the rates are discussed and recommended values are given. Other chemical processes affecting the NIL modelling will be discussed in a future report along with recommendations for measurements of specific reactions.

Table	III	- E'	ectron	impact	excitatio	n rate	coefficients	of
eig	ght o	grour	d state	e vibra	tional lev	els of	N ₂ (cm ³ /sec)	

τ	×1	×2	x ₃	X ₄	×5	× ₆	×7	x ₈
0.1	5.16E-13	3.30E-16	1.45E-16	3.31E-17	1.34E-17	2.48E-18	1.48E-18	4.49E-20*
0.2	1.77E-11	3.15E-12	1.79E-12	8.31E-13	4.69E-13	2.09E-13	1.37E-13	1.87E-14
0.3	1.42E-10	5.97E-11	3.60E-11	2.04E-11	1.31E-11	7.59E-12	5.15E-12	1.01E-12
0.4	4.58E-10	2.42E-10	1.48E-10	9.16E-11	6.27E-11	4.11E-11	2.85E-11	6.70E-12
0.5	9.17E-10	5.32E-10	3.27E-10	2.12E-10	1.51E-10	1.05E-10	7.44E-11	1.95E-11
0.6	1.43E-09	8.68E-10	5.32E-10	3.55E-10	2.50E-10	1.90E-10	1.35E-10	3.79E-11
0.7	1.912-09	1.20E-09	7.30E-10	4.96E-10	3.71E-10	2.78E-10	2.00E-10	5.90E-11
0.8	2.33E-09	1.49E-09	9.05E-10	6.23E-10	4.73E-10	3.61E-10	2 . 61E-10	8.01E-11
0.9	2.67E-09	1.73E-09	1.05E-09	7.29E-10	5.60E-10	4.34E-10	3.16E-10	9.98E-11
1.0	2.95E-09	1.92E-09	1.16E-09	8.13E-10	6.31E-10	4.94E-10	3.61E-10	1.17E-10
1.1	3.16E-09	2.075-09	1.25E-09	8.78E-10	6.87E-10	5.42E-10	3.99E-10	1.31E-10
1.2	3.31E-09	2.18E-09	1.31E-09	9.26E-10	7.29E-10	5.79E-10	4.27E-10	1.43E-10
1.3	3.41E-09	2.26E-09	1.35E-09	9.60E-10	7.50E-10	6.07E-10	4.49E-10	1.52E-10
1.4	3.48E-09	2.31E-09	1.38E-09	9.82E-10	7.81E-10	6.27E-10	4.65E-10	1.59E-10
1.5	3.51E-09	2.34E-09	1.39E-09	9.94E-10	7.94E-10	6.40E-10	4.76E-10	1.64E-10
1.6	3.52E-09	2.35E-09	1.40E-09	9.99E-10	8.01E-10	6.47E-10	4.83E-10	1.68E-10
1.7	3.51E-09	2.35E-09	1.39E-09	9.98E-10	8.02E-10	6.50E-10	4.86E-10	1.71E-10
1.8	3.49E-09	2.33E-09	1.38E-09	9.92E-10	8.00E-10	6.50E-10	4.87E-10	1.72E-10
1.9	3.45E-09	2.31E-09	1.37E-09	9.82E-10	7.94E-10	6.57E-10	4.85E-10	1.72E-10

* 4.49E-20 reads 4.49 x 10^{-20}

TABLE III (Continued)

Electron impact excitation rate coefficients of

eight ground state vibrational levels of N_2 (cm³/sec)

T	x ₁	x ₂	×3	×4	x ₅	× ₆	×7	x ₈
2.0	3.41E-09	2.29E-09	1.35E-09	9.70E-10	7.85E-10	6.42E-10	4.82E-10	1.72E-10
2.1	3.36E-09	2 .25 E-09	1.32E-09	9.55E-10	7.76E-10	6.35E-10	4.78E-10	1.72E-10
2.2	3.30E-09	2.22E-09	1.30E-09	9.40E-10	7.65E-10	6.26E-10	4.72E-10	1.70E-10
2.3	3.24E-09	2.18E-09	1.28E-09	9.23E-10	7.52E-10	6.17E-10	4.65E-10	1.68E-10
2.4	3.18E-09	2.14E-09	1.25E-09	9.05E-10	7.39E-10	6.07E-10	4.58E-10	1.66E-10
2.5	3.11E-09	2.09E-09	1.22E-09	8.83E-10	7.26E-10	5.97E-10	4.51E-10	1.64E-10
2.6	3.05E-09	2.05E-09	1.20E-09	8.69E-10	7.11E-10	5.86E-10	4.43E-10	1.62E-10
2.7	2.98E-09	2.01E-09	1.17E-09	8.50E-10	7.09E-10	5.74E-10	4.35E-10	1.59E-10
2.8	2.92E-09	1.96E-09	1.15E-09	8.32E-10	6.83E-10	5.63E-10	4.27E-10	1.57E-10
2.9	2.85E-09	1.92E-09	1.12E-09	8.14E-10	6.68E-10	5.52E-10	4.18E-10	1.37E-10
3.0	2.79E-09	1.88E-09	1.09E-09	7.95E-10	6.54E-10	5.40E-10	4.10E-10	1.51E-10
3.1	2.73E-09	1.84E-09	1.07E-09	7.78E-10	6.40E-10	5.29E-10	4.02E-10	1.48E-10
3.2	2.67E-09	1.80E-09	1.04E-09	7.60E-10	6.25E-10	5.18E-10	3.93E-10	1.45E-10
3.3	2.61E-09	1.76E-09	1.02E-09	7.43E-10	6.12E-10	5.07E-10	3.85E-10	1.43E-10
3.4	2.55E-09	1.72E-09	9.98E-10	7.25E-10	5.99E-10	4.96E-10	3.77E-10	1.40E-10

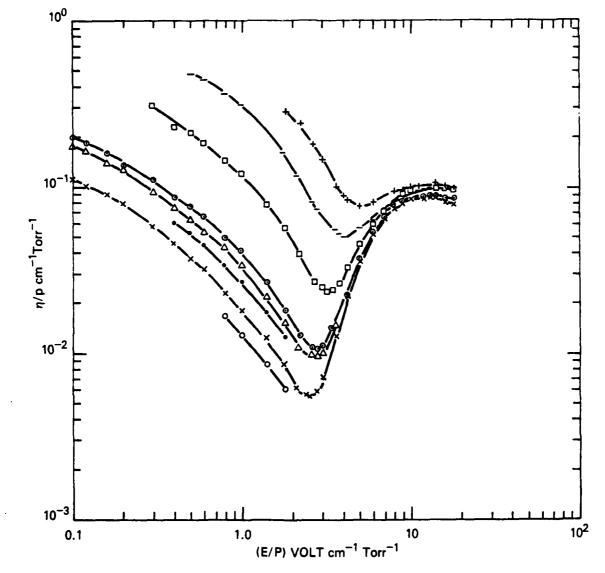


Fig. 1. The attachment coefficient per unit length in 0_2 as a function of E/p for various pressures in Torrs (0,0 = 14.9, xx = 21.0, •• = 29.7, $\Delta\Delta$ = 36.4, $\Theta\Theta$ = 44, = 132, -- = 440 and ++ = 880.

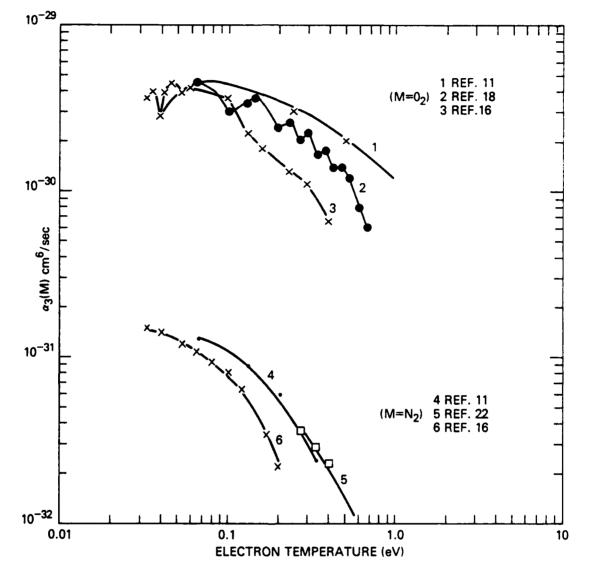


Fig. 2. The attachment rate coefficient with $M = O_2$ and N_2 as a function of the electron temperature.

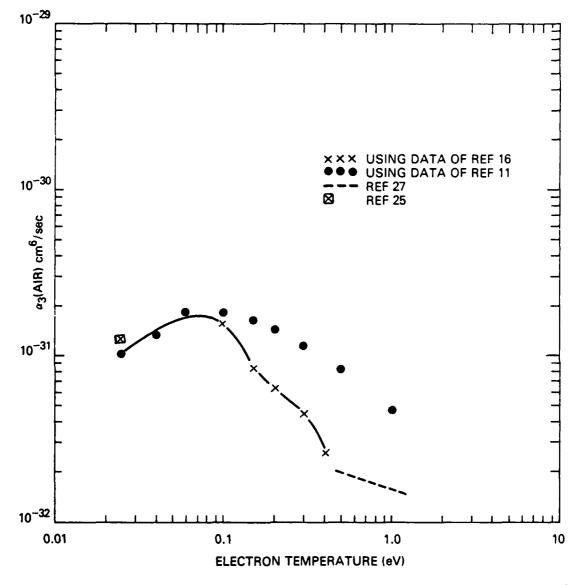


Fig. 3. The attachment rate coefficient in dry air as a function of the electron temperature.

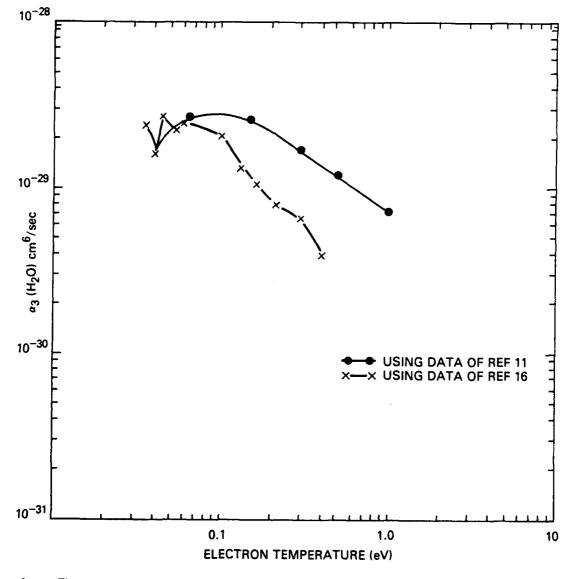
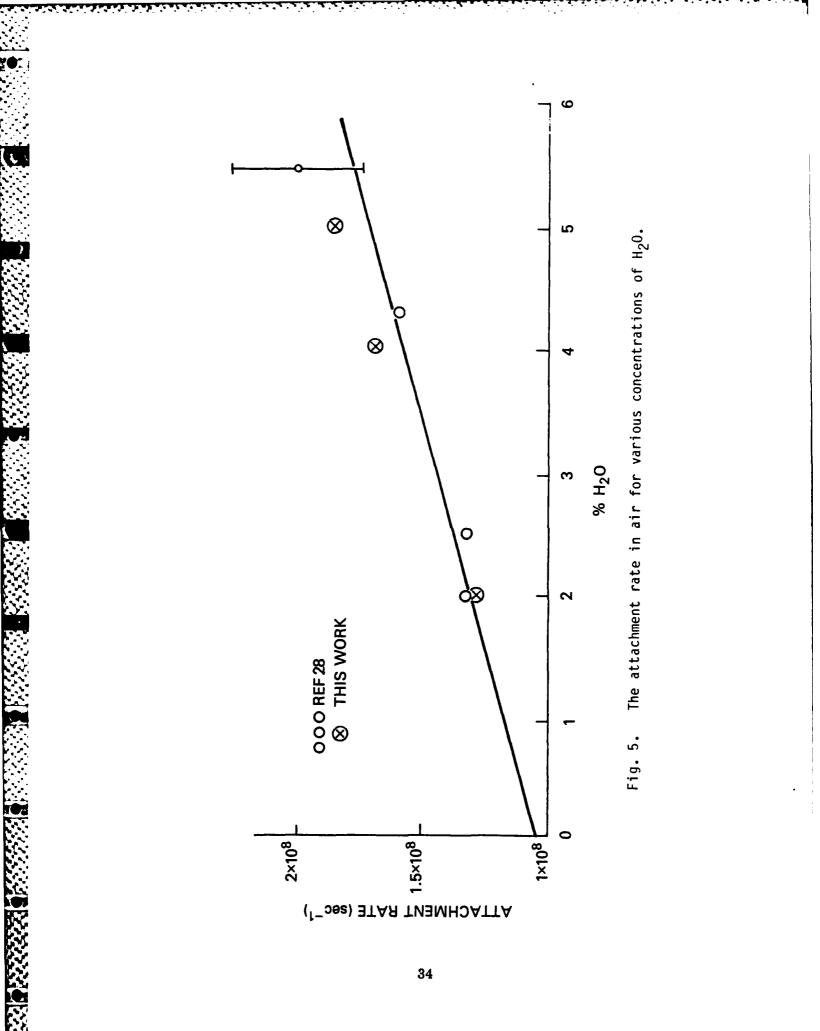
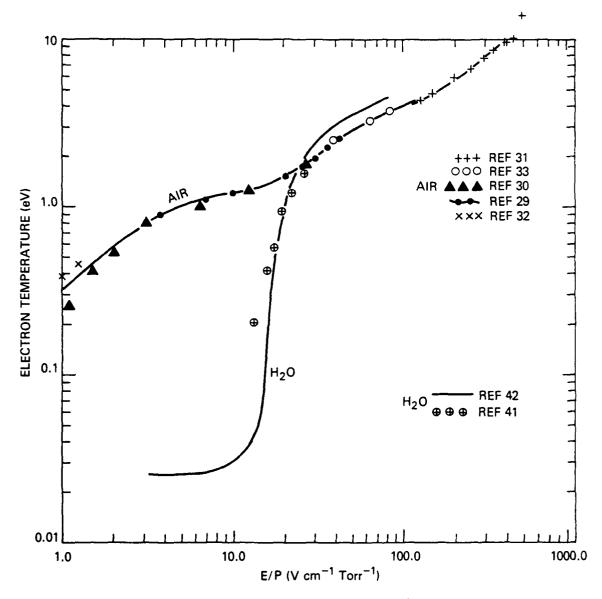
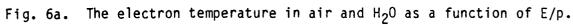
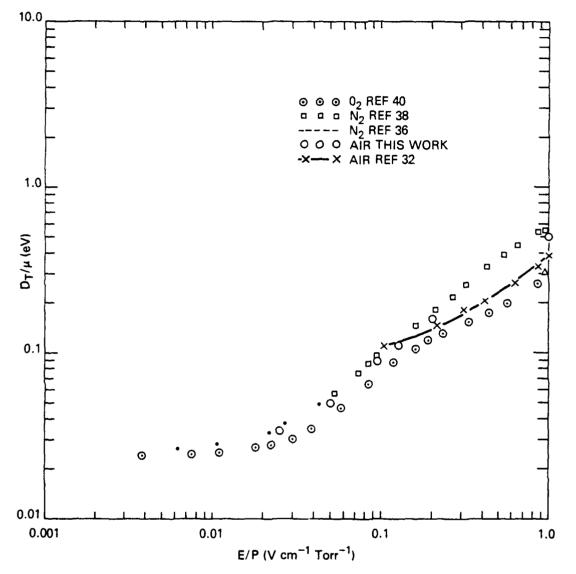







Fig. 4. The attachment rate coefficient with $M = H_20$ as a function of the electron temperature.

REFERENCES

- M. A. Uman, D. F. Seacord, G. H. Price and E. T. Pierce, J. Geophys. Res. <u>77</u>, 1591 (1972).
- 2. A. D. MacDonald, "Microwave Breakdown in Gases" (Wiley, New York, 1966).
- 3. C. L. Longmire, R. L. Gardner, J. L. Gilbert and M. H. Frese, Lightning Phenomenology Notes, Note 4, A Physical Model of Nuclear Lightning (March 1982) Mission Research Corporation.
- 4. D. A. Reib "Uncertainties in the Calculations of High Altitude EMP", AFWL-TR-79-205 Air Force Weapons Laboratory, Kirtland Air Force Base, NM (1981). (AD-B056 361L)
- 5. M. Scheibe "The Increased Attachment Due to Ionizations Induced Smog in EMP Environments" DNA 5077F, Defense Nuclear Agency (1979). (AD A087-850)
- M. K. Grover and F. R. Gilmore "A Review of Data for Electron Mobility, Energy, and Attachment Relevant to EMP Air Chemistry" DNA 5457T, Defense Nuclear Agency (1980). (AD A098847)
- 7. D. Rapp and D. D. Briglia, J. Chem. Phys. 43, 1480 (1965).
- 8. S. Slinker and A. W. Ali, "Electron Excitation and Ionization Rate Coefficients for N₂, O₂, NO, N and O", NRL Memo Report 4756 (1982). (ADA110988)
- 9. A. V. Phelps, Canad, J. Chem. 47, 1783 (1969) and references therein.
- A. V. Phelps, Chapter 17, "DNA Reaction Rate Handbook," DNA 1948H, Bortner and Baurer, Eds., DASIAC, DOD Nuclear Information and Analysis Center GE-Tempo, Santa Barbara, CA (1972). (AD-821 457L)
- 11. L. M. Chanin, A. V. Phelps and M. A. Biondi, Phys. Rev. 128, 219 (1962).
- 12. J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
- 13. H. Shimamori and Y. Hatano, Chem. Phys. 12, 439 (1976).
- 14. H. Shimamori and Y. Hatano, Chem. Phys. 21, 187 (1977).
- 15. F. K. Truby, Phys. Rev. A <u>6</u>, 671 (1972).
- D. L. McCorkle, L. G. Christophorou and V. E. Anderson, J. Phys. B. Atom. Mol. Phys. <u>5</u>, 1211 (1972).
- 17. M. N. Hirsh, P. N. Eisner and J. A. Slevin, Phys. Rev. 178, 175 (1969).
- 18. D. Spence and G. J. Schulz, Phys. Rev. A, 5, 724 (1972).
- 19. R. Grünberg, Z. Naturfrosh, 24a, 1039 (1969).
- 20. See e.g. J. Dutton, J. Phys. Chem. Ref. Data 4, 577 (1975).

21.	F. Bloch and N. E. Bradbury, Phys. Rev. <u>48</u> , 689 (1935).
22.	G. S. Hurst and T. E. Bortner, Phys. Rev. <u>114</u> , 116 (1959).
23.	J. L. Pack and A. V. Phelps, J. Chem. Phys. <u>45</u> , 4316 (1966).
24.	J. A. Stockdale, L. G. Christophorou and G. S. Hurst, J. Chem. Phys $\underline{47}$, 3267 (1967).
25.	V. N. Kapinos, Yu. A. Medvedev, N. N. Morozov and B. M. Stepanov, Soviet Phys. Tech. Phys. <u>19</u> , 1507 (1975).
26.	M. L. Price and V. A. Van Lint "Measurement of Electron Attachment and Mobility in Dry and Wet Air" MRC/SD-R-31, DNA (1978), Mission Research Corp., (AD-A071 333)
27.	B. I. Schneider and C. A. Brau, J. Phys B, Atom. Mol. Phys. <u>15</u> , 1601 (1982).
28.	V. Van Lint and M. Price, Mission Research Corporation Report July 17 (1979) DNA Contract DNA 001-78-C-0141.
29.	J. A. Rees and R. L. Jory, Aust. J. Phys. <u>17</u> , 307 (1964).
30.	C. Raja Rao and G. R. Govinda Raju, J. Phys. D <u>4</u> , 769 (1971).
31.	C. S. Lakshminarasimha and J. Lucas, J. Phys D <u>10</u> ,313 (1977).
32.	R. W. Crompton, L. G. H. Huxley and D. J. Sutton, Proc. R. Soc. London A <u>218</u> 507 (1953).
. 33.	V. N. Maller, M. S. Naidu, Indian J. Pure. Appl. Phys. <u>14</u> , 733 (1976).
34.	J. W. Gallagher, E C. Beaty, J. Dutton and L. C. Pitchford, JILA Information Center Report #22, University of Colorado, Boulder, CO. 1982.
35.	L. S. Frost and A. V. Phelps, Phys. Rev. <u>127</u> , 1621 (1962).
36.	R. W. Crompton and M. T. Elford, Proceedings of the Int. Conf. Ionization Phenomena in Gases, Paris (1963). V. 1, p. 337.
37.	L. W. Cochran and D. W. Forester, Phys. Rev. <u>126</u> , 1785 (1962).
38.	R. L. Jory, Aust. J. Phys. <u>18</u> , 237 (1965).
39.	J. J. Lowke and J. H. Parker, Jr., Phys. Rev. <u>181</u> , 302 (1969).
40.	R. D. Hake, Jr., and A. V. Phelps, Phys. Rev. <u>158</u> , 70 (1967).
41.	J. E. Parr and J. L. Moruzzi, J. Phys. D, <u>5</u> , 514 (1972).
42.	J. F. Wilson, F. J. Davis, D. R. Nelson, and R. N. Compton, J. Chem. Phys. <u>62</u> , 4204 (1975).
	38

43.	J. T. Moseley, R. E. Olson and J. R. Peterson "Case Studies in Atomic Physics" <u>5</u> , 1, (1976) North-Holland (New York), and References therein.
44.	D. Smith, N. G. Adams and M. J. Church, Planet Space Science <u>24</u> , 697 (1976).
45.	D. Smith and M. J. Church, Planet Space Sci. <u>25</u> , 433 (1977).
46.	P. M. Eisner and M. N. Hirsh, Phys.Rev. Lett. <u>26</u> 87 (1971).
47.	J. C. Ulwick, "Proc. COSPAR Symp. on Solar Particle Event of Nov. 1969" AFCRL-TR-72-0474, Special Report #144,511 AFCRL, Bedford, MA (1972). (AD-763081)
48.	R. E. Olson, J. Chem. Phys, <u>56</u> , 2979 (1972).
49.	D. R. Bates, Advances in Atomic and Molecular Physics <u>15</u> , Bates and Bederson, Eds., Academic Press (New York) (1979). p. 235-262.
50.	S. McGowan, Can. J. Phys. <u>45</u> , 439 (1967).
51.	J. Sayers, Proc. Roy. Soc. (London) Ser. <u>A 169</u> , 83 (1938).
52.	J. G. Chervenak and V. A. J. Van Lint, Private communication to A. Phelps (1980).
53.	See e.g., E. W. McDaniel, "Collision Phenomena in Ionized Gases", Wiley, New York (1973).
54.	B. H. Mahan, Adv. Chem. Phys. Vol. 23 Wiley, New York (1973). p. 1-40.
55.	A. Phelps, JILA, University of Colorado, private communications (1983).
56.	F. H. Sanders, Phys. Rev. <u>44</u> , 1020 (1933).
57.	K. Masch, see e.g. Reference 20.
58.	C. Raja Rao and G. R. Govinda Raju, J. Phys. <u>D4</u> , 494 (1971)
59.	J. L. Moruzzi and D. A. Price, J. Phys. <u>D7</u> , 1434 (1974)
60.	A. W. Ali, "The Electron Avalanche Ionization of Air and a Simple Air Chemistry Model", NRL Memo Report 4794 (1982). (AD-A113501)
61.	H. Ryzko, Proc. Phys. Soc (London) <u>85</u> , 1283 (1965).
62.	L. Frommhold, Fortschr. Physik <u>12</u> , 597 (1964).
63.	R. N. Varney, Phys. Rev. <u>89</u> , 708 (1953).
64.	R. N. Varney, J. Chem. Phys. <u>31</u> , 1314 (1959).
65.	R. N. Varney, J. Geophy. Res. <u>72</u> , 5578 (1967).
66.	R. N. Varney, Phys. Rev. <u>174</u> , 165 (1968).

þ

ļ.

67.	P. Warneck, J. Chem. Phys. <u>46</u> , 502 (1967).
68.	A. Good, D. A. Durden and P. Kebarle, J. Chem. Phys. <u>53</u> , 4723 (1970).
69.	J. L. Payzant and P. Kebarle, J. Chem. Phys. <u>53</u> , 4723 (1970).
70.	J. L. McCrumb and P. Warneck, J. Chem. Phys. <u>66</u> , 5416 (1977).
71.	S. Dheandhanoo, R. Johnsen and M. A. Biondi, 35 <u>th</u> Gaseous Electronics Conf., U. of Texas at Dallas Oct. 19 (1982).
72.	A. W. Ali, "On Electron Beam Ionization of Air and Chemical Reactions for Disturbed Air Deionization", NRL Memo Report 4619 (1981).
73.	J. T. Mosely, R. M. Snuggs, D. W. Martin and E. W. McDaniel, Phys. Rev. <u>178</u> , 240 (1969).
74.	C. J. Howard, V. M. Bierbaum, H. W. Rundle and F. Kaufman, J. Chem. Phys. <u>57</u> , 3491 (1972).
75.	D. J. Payzant, A. J. Cunningham and P. Kabarle, J. Chem. Phys. <u>59</u> , 5615 (1973).
76.	D. A. Durden, P. Kebarle and A. Good, J. Chem. Phys. <u>50</u> , 805 (1969).
77.	D. L. Albritton, Atomic Data and Nuclear Tables <u>22</u> , 1 (1978).
78.	See e.g. A. W. Ali, "The Fundamentals of the 3914A and 3371A Emissions for N ₂ and Air Plasma Diagnostics", NRL Memo Report 4927 (1982).
79.	E. C. Zipf and R. W. McLaughlin, Planet. Space Sci. <u>26</u> , 449 (1978).
80.	A. W. Ali and S. Slinker, 16 th Int. Conf. Phenom. Ioniz. Gases, Botticher, Wenke and Schulz-Gulde Eds., Volume 4, 596, Dusseldorf (1983).
81.	A. W. Ali and A. D. Anderson, "Low Energy Electron Impact Rate Coefficients for Some Atmospheric Species", NRL Report 7432 (1972).
82.	G. J. Schulz, Phys. Rev. <u>135</u> , A988 (1964) and References therein.
83.	H. Ehrhardt and R. Willman, Zeits, Phys. 204, 462 (1967).
84.	D. Spence, J. L. Mauer and G. J. Schulz, J. Chem. Phys. <u>57</u> , 5516 (1972).
85.	R. J. McNeal, M. E. Whitson and G. R. Cook, J. Geophys. Res. <u>79</u> , 1527 (1974).
86.	A. W. Ali, Unpublished.
87.	D. L. Baulch, D. D. Drysdale, D. G. Horne and A. C. Lloyd "Evaluated Kinetic Data for High Temperature Reactions", Vol. 1, CRC Press (1972).
88.	M. H. Bortner, NBS Technical Note 484 (1969).

k

E

DISTRIBUTION LIST

Director Defense Advanced Research Projects Agency Architect Building 1400 Wilson Blvd. Arlington, VA 22209 ATTN: Nuclear Monitoring Research Strategic Tech Office

Director Defense Nuclear Agency Washington, DC 20305 ATTN: STVL TITL (4 copies) DDST RAAE (3 copies)

Commander Field Command Defense Nuclear Agency Kirtland, AFB, NM 87115 ATTN: FCPR

Defense Technical Information Center Cameron Station 5010 Duke Street Alexandria, VA 22314 (2 copies)

Commander/Director Atmospheric Sciences Laboratory U.S. Army Electronics Command White Sands Missile Range, NM 88002 ATTN: DELAS-E0 F. Niles

Director U.S. Army Ballistic Research Laboratory Aberdeen Proving Ground, MD 21005 ATTN: Tech Library Naval Research Laboratory Washington, D.C. 20375 ATTN: Code 4700 S. L. Ossakow (26 copies) Code 4701 I. Vitkovitsky Code 4780 J. Huba Code 7500 Code 4763 J. R. Grieg Code 4763 R. Fernsler Code 2628 (20 copies) Code 4700.1 A. W. Ali (30 copies) Office of Naval Research Arlington, VA 22217 ATTN: Code 465 Code 461 Code 402 Code 420 Code 421 Air Force Geophysics Laboratory Hanscom AFB, MA 01731 ATTN: OPR Harold Gardner LKB Kenneth S. W. Champion OPR Alva T. Stair PHD Jurgen Buchau PHD John P. Mullen Berkeley Research Associates, Inc. P. O. Box 983 Berkeley, CA 94701 J. Workman ATTN: C. Prettie S. Brecht JAYCOR 11011 Torreyana Road P. 0. Box 85154 San Diego, CA 92138 ATTN: J. L. Sperling JAYCOR P. O. Box 30281 Santa Barbara, CA 93130 ATTN: W. A. Radasky

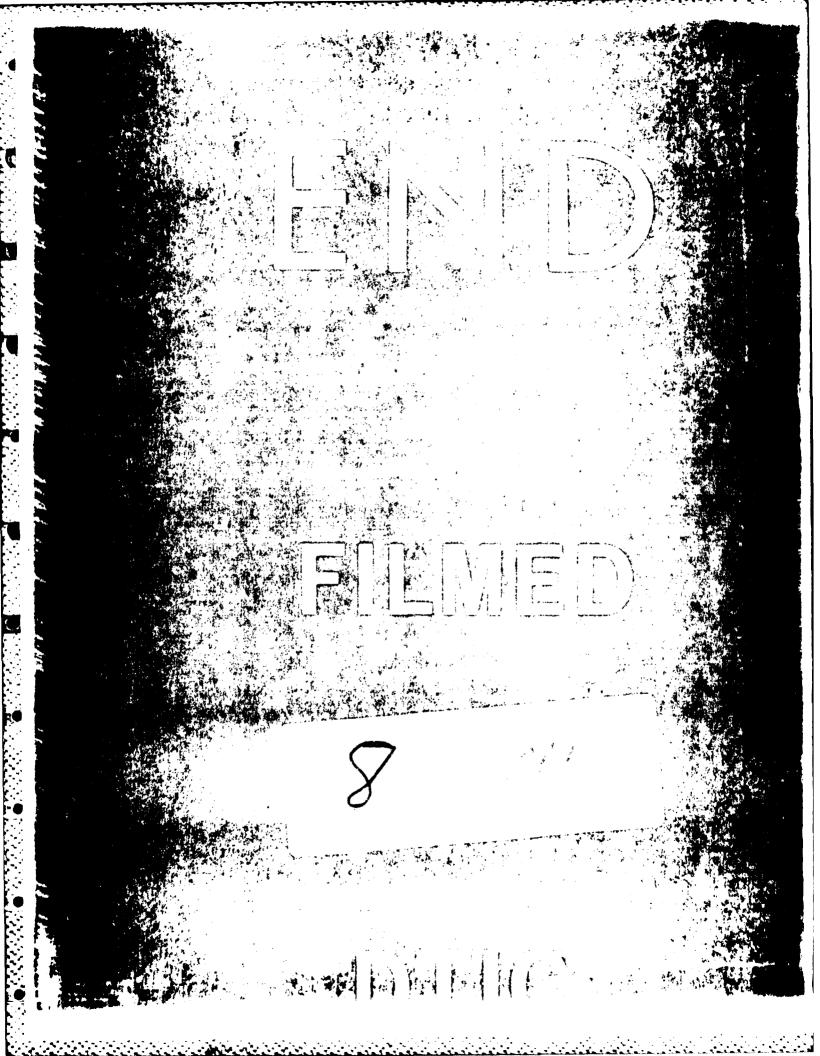
Kaman Tempo-Center for Advanced Studies 816 State Street P.O. Drawer QQ Santa Barbara, CA 93102 ATTN: DASIAC Warren S. Knapp William McNamara B. Gambill

Lockheed Missiles & Space Co., Inc. 3251 Hanover Street Palo Alto, CA 94304 ATTN: Martin Walt Dept. 52-12 W. L. Imhof Dept. 52-12 Richard G. Johnson Dept 52-12 J. B. Cladis Dept 52-12

Los Alamos National Laboratory Mail Station - E-531 P. O. Box 1663 Los Alamos, NM 87545 ATTN: J. D. Colvin

Mission Research Corporation 735 State Street Santa Barbara, CA 93101 ATTN: M. Scheibe Conrad L. Longmire

Mission Research Corporation 1720 Randolph Road, S.E. Albuquerque, NM 87106 ATN: L. Wright


Pacific-Sierra Research Corp 12340 Santa Monica Blvd. Los Angeles, CA 90025 ATTN: E. C. Field, Jr.

Photometrics, Inc. 4 Arrow Drive Woburn, MA 01801 ATTN: Irving L. Kofsky R & D Associates P. O. Box 9695 Marina Del Rey, CA 90291 ATTN: Forest Gilmore Robert F. Lelevier

The Rand Corporation 1700 Main Street Santa Monica, CA 90406 ATTN: Cullen Crain Ed Bedrozian

Science Applications, Inc. 1150 Prospect Plaza La Jolla, CA 92037 ATTN: Daniel A. Hamlin

SRI International 333 Ravenswood Avenue Menlo Park, CA 94025 ATTN: Walter G. Chesnut

