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A bst ract

hine learning strives to dc'clop methods and techniques to automate thc acquisition of new
:w skills. and ncw ways of organi/ing existing information. In this article. we review the major
nachinc learning in s~mholic domains. covcring thc tasks of carning conccpt% from ex.amples. 6 0
imethods. conceptual clustering. and language acquisition. Wc illustrate each of the basic .

paradigmatic examples.,-. .
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1. Introduction: Why Machine Learning?
Learning is ubiquitous in intelligence. and it is natural that Artificial Intelligence (Al). as die sence of

intelligent behavior, be centrally concerned with learning. Ihere are two clear reasons for this concern. one
practical and one theoretical. With respect to the first. Al has now demonstr cd the utilit. of expert systcms.
but these systems often require scveral man-ycars to construct. Nn expert syStem consists Of a symbolic
reasoning cngine plus a large domain-specific knowledge base. F-xpert Svstcins tlt rival or surpass luman

% performance at %ery narrowl defined tasks arc proliferating rapidl. as AI is applied to new doinans. A better
understanding of learning methods would enable us to automate the acquisition of the domin,-spccific
knowledge bases for new expert sstcms. ,nd thu, greatly specd the developnent of apphed \1 programs. On
the theoretical side. expert s)stcms are unattracti e because the. lack thc getcraU11 that se ce requires of its
theories and explanations. On this dimension, the study of learning may rceeal general principles that ipply
across many different domains.

A third research goal is to emulate human learning mechanisms, and thus come to a better
understanding of the cognitive processes that undcrly human knowledge and skill acquisition. In addition to
improving our knowledge of human hcha ior. studying human learning ma produce benefits for Al. since
humans are the most flexible and robust (if slow) learning systems in existence. Hence. one objective of
machine learning is to combine the capabilities of modern computers with the flexibility and resiliance of
human cognition. As Simon [11 has pointed out. if learning could be automated and the results of that
learning transferred directly to other machines which could further augment and refine the knowledge, one
could accumulate expertise and wisdom in a way not possible by humans - each individual person must
learn all relevant knowledge without benefit of a direct copying process. T'hus, no single mind can hold the
collective knowledge of the species.

2. A Historical Sketch
Historically. researchers havc taken two approaches to machine learning. Numerical methods such as

discriminant analysis have proven quite usefil in perceptual domains, and have become associated with the
paradigm known as Pallern Recognition. In contrast. Artificial Intelligence researchers have concentrated on
symbolic learning methods which have proven useful in other domains. Ihe symbolic approach to machine
learning has received growing attention in recent years. and in this paper we review some of the main
approaches that have been taken within this paradigm. and outline some of the work that remains to be done.

Within the symbolic learning paradigm, work first focused on learning simple concepts from examples.
This originally involved artificial tasks similar to questions found in intelligence tests given to children, such
as "What do all these pictures have in common?" and "Does this new picture belong in the group?" Such
tasks involve the form1ation of some hypothesis that predicts which instances should be classified as
examples of the concept. Not too surprisingly, psychologists were among the active researchers in this early
stagc (e.g.. Hunt. Marin and Stone [31). Subsequent work focused on learning progressively more complex
concepts. often requiring larger numbers of exemplars. Recent work has focused on more complex learning
tasks, in which the lcarner does not rely so heavily on a tutor for instruction. For example, some of this
research has focused on learning in the context of problem solving, while others have explored methods for

* -learning by observation and discovery. Learning by analogy with existing plans or concepts has also received
4considerable attention.

In the following pages. we examine four categorical tasks that have been addressed in the machine
learning literature - learning from examples, learning search heuristics, learning by observation, and
language acquisition. These four representative tasks do not. by any means, cover all approaches to machine
learning, but they should provide an illustrative sample of the issues, methods, and techniques of primary

1Samul's 21 early chedken l rning systen was a notable exception to the later trcnd. relying mainly on a parameter fitUng methods

(..,e, to improve peromiacM

X
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concern to the ficid. In each case. we describe the task. consider the main approaches that hac been
* employed. and identify some open problems in the area. As is typical in a sur~c. article. we can onl) highlight

the best known approaches and results in the area of machine learning, gi% ng the reader a feeling for where
the field as a whole has been and where it is heading. Ihe scrious reader is encouraged to digest other rcvicws
of machine learning work by Mitchll [4]. l)icttcrich and Michalskil5. ,nd Michalski. Carboncll. and
Mitchell [6].

Figure 1. Positive and negative instances of "arch".

3. Learning Concepts From Examples
Methods for learning concepts from examples have received more attention than any other aspect of

* machine learning. 'T'hc task appears straightforward: given a set of positive and negative instances of a
concept. generate some rule or de.scription that correctly identifies these and all future examples as instances

.:.r ~ or non-instanccs of the concept. However. despite its apparent simplicity, the approaches taken to sol ing this
problem arc nearly as numerous as the people who have worked on it. Below. we consider one approach to
learning from examples. and then examine some of the dimensions along which different approaches to this
problem vary. After this, we discuss some open issues in learning from examples that remain to be addressed.

3.1. An Example

Perhaps the best known research on learning from examples is Winston's [71 work on the "arch"
concept. Figure I presents two examples of this concept and one counterexample that are very similar to those
presented to Winston's system. Given these instances, one might conclude that

"An ARCH consists of two vertical blocks and one horizontal block".

This hypothesis covers both positive instances and excludes the negative one. Alternately. one could define
"arch" as simply a union of all positive examples of ARCH ever encountered. However. the principles of
brevity and generality preclude us from formulating such a definition, since we would like our concept to be
as simple as possible, and for it' to be able to predict new positive and negative instances. Given the first
hypothesis, there is hope that a simple and general definition of "arch" will converge and help us recognize
future examples of arches.

Now let us consider the two instances shown in Figure 2. Upon considering the positive instance, we
realize that our concept of arch is too restrictive, since it excludes this instance. Therefore, we revise the
concept to

"An ARCH consists of two vertical blocks and one horizontal object".

However, this new hypothesis covers some of the negative instances, suggesting that it is overly general in
some respect. Revising the definition to exclude these instances, we might get:

"An ARCH consists of two vertical blocks that do not touch and a horizontal object that rests atop
both blocks.

One can continue along these lines, gradually refining the concept to include all the positive but none of the
negative examples. New positive instances that are not covered by the current hypothesis (crrors of omission)

iP% • ,, . , • , • . . o q . . ,, .. • - - " ' - . , " .' ' . • . . - - . . , . . . ." . _' . . . . .

'. . . ,' , , .. - . , % . , , .. , . . • .. . . .. . • . . • . , . . . . , , . • . '. . . . .' ." ,. ... , ....- , ', ..
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tell us that the concept being formulated is orhy specific. while new negatie examples that are cmered by
the hypothesis (error, ofcommision) tell us it is oCrI general. We ha- e not been CT\ specific about how
the lcarner responds to these two situations, hut we consider some of the ,lternmatacs below. N1l skstems that

*,learn from examples employ these two t. pes of intbrmation. though we w ill see that the. use them in quite
different ways.

LiE1Ei
Figure 2. Additional positive and negative examples of"arch".

L.est the reader get the false impression that modifying an existing definition of a concept to
accommodate a new positive or negative exemplar is always a simple process. we offer the positi.e and
negative examples in Figure 3. We challenge the readcr to deise an automated process that can modify

* "ARCH" to account for these examples. One insight that arises from these instances is that our concept of
ARCH might involve some functonal aspects as well as the structural ones we hae focused on so far. We
shall have more to say on this matter later.

3.2. The Dimensions of Learning

As Mitchell [41 and I)ietterich and Michalski [51 have pointed out. all Al systems that learn from
examples can be viewed as carrying out search through a space of possible concepts, represented as
recognition rules or declaratie descriptions. Moreover. this space is partially ordered 2 along the dimension of
generality, and it is natural to use thi, partial ordering to organi/e the search process. Howecr. at this point
the similarity between systems ends. I hc first dimension of %ariation relates to the direction of the search
through the rule space. Discrimina ion-based concept learning programs begin with ,ckry general rules and
make them more specific until all instances can be correctly classified, while gencraliaton-based systems
begin with very specific rules and make them more general. Since these two methods approach the goal
concept from different directions and more than one concept may be consistent with the data. the two
methods need not arrive at the same answer. l)ietterich and Michalski hasc called the rules learned by
discrimination systems discrintinant descriptions, and the rules learned by gcncrali/ation systems
characteristic descriptions. In general, the latter will be more specific than the former.

A second dimension of variation relates to the manner in which search through the rule space is
controlled. Some systems carry out a depth-first search through the space of rules, while others employ a
breadih-first search. In dcpth-first search, the learner focuses on one hypothesis at a time. generating more
general or more specific versions of this (depending on the direction of the search) until it finds a description

*OI that accounts for the observed instances. In hreadth-first search, the system considers a number of alternate
hypotheses simultaneously, though many are eliminated as they fail to account for the data. Iircadth-first
search strategies have greater memory requiremcnts than depth-first methods, but need never back up
through the search space.

A third dimension of variation involves the manner in which data is handled. All-al-once systems

2 t is this parTid/ordering that leads to branching, and thus to search. If the space were completely ordered, then the task of Ierning
rules would be much simpler.

',V
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require all instances to be present at the outset of the learning process. while incremetal systems deal with
instances one at a time. Ibe formcr (end to be more robust with respect to noisc. while the latter are more
plausible models of the human learning process. Finally. concept learning programs diiTcr in the operators
they ise to move through the rule space. lala-driven systems incorporate iStIaCCS in the generation of new
hypotheses. while enupwirafive smstems - use somc othcr source of know ledge to generate sLites. and employ
data only to evaluate these states.

Figure 3. Still more positive and negative instances of"arch".

Given these four dimensions. wc can determine that 24 = 16 basic types of concept learning systems are
possible. at least in principle. New researchers in machine learning might take as an exercise the task of
classifying existing systems in terms of these dimensions, and brave individuals might attempt to develop a
learning system that fills one of the unexplored combinations. In order to clarify the dimensions along which
concept learning systems vary. let us examine two programs that lic at opposite ends of the spectrum on each
dimension. For the sake of clarity. we will simplify certain aspects of the programs. lhe first is Quinlan's 11)3
systcm 181. which has been tested in the domain of chess cndgames. where the concepts to be learned are "lost
in one move". "lost in two moves" and so forth.T1he second is Hayes-Roth and MclX-rmott's SPROUY I 19J
which has been tested on a number of complex relational instances like those in Figure 1 through 3.

11)3 represents concepts in terms of discrimination networks, as with the disjunctive concept ((largc and
red) or (blue and circle and small)), shown in Figure 4. The system begins with only the top node of a
network, and grows its decision tree one branch at a time. For instance, the system would first create the (red
or blue) branch emanating from the top node. Next. it would create a branch coming from one of the new
nodes, if necessary. Ihe tree is grown downward, until terminal nodes are reached which contain only positive
or negative instances. Thus. the system can be viewed as discriminatuon-based moving from %er) general rules
to very specific ones. At each point, it must select one attribute as more discriminating than others, so it

°-. carries out a depth-first search through the space of rules. 113 is given a list of potentially rele'ant attributes
by the programmer. so that in deciding which branch to create, it uses the data only in caluating these
attributes. The system is thus enumerative rather than data-driven in its search through the rule space. Finally,
the program has all data available at the outset, so that it can use statistical analyses to distinguish
discriminating attributes from undiscriminating ones: as a result. 11)3 is an all-at-once concept learning system
rather than an incremental one. he exact evaluation function Quinlan uses to direct search is based on
information theory, but Hunt. Marin. and Stone (31 have used another evaluation function, and the exact
function seems to be less important than the overall search organization.

Hayes-Roth and McDermott's SPROUTER [91 is historically interesting, since it was one of the first
alternatives to Winston's early work on learning from examples. This program attempts to learn conjunctive

3Mitchell (4] has called these $enerae and tst systems. while Dicuench and Michaiski [5 have called them model-driven systemL.
Howevcr. Al aociatcs the first term with systems that proceed exhausuvely through a list of alternauves, and associates the second term
with syslaha tlt rely on large amounts of domain-specific knowledge. We prefer the temi enume'ttve. since a learning system can
enumeMt set of alternate hypothes at esch aie in its search, without being either of diL

%
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characteristic descriptions for a set of data. moving from a %ery specific initial h'4pothesis based on the first
positive instance to more general rules as more insunces arc gathered. I hus. I laIes-Roth and Mcl)ermott's
concept learning system is generalhzativn-bascd rather than discriiniation-based. SPROL I I:R also differs
from 11)3 in carrying out a breadth-first search through the rule space. rathcr than a depth-tirst search. With

- respect to positive instances. the system is dalt-drvent. since it uIseC these inisLinces to generate new hypothcscs
. by finding common structures between them and the current hypotheses. Ilowkeer. the program is

- enumerative with respect to negative instances. since it uses these onl. to clininate o e rly general hypothescs.
Similarly. SPROUIFR processes positive instances in an incremenhal fashion. reading them in one at a time
and generalizing its hypotheses accordingly. However, it retains all negatisc infstances in order to ealuate the
resulting hypotheses, and processes them in an all-at-once manner. Ihus. SPROU IFR Is something of a
hybrid system in that it treats positive and negati'.e instances in quite different ways.

smam large circle sur

\ /*1

small large

Figure 4. A concept expressed as a discrimination network.

3.3. Open Problems in Learning from Examples

A number of problems remain to be addressed with respect to learning from examples. Most of these
relate to simplifying assumptions that have typically been made about the concept learning task. For instance.
many researchers have assumed that no noise is present (i.e.. all instances are correctly classified). However.
there arc many real-world situations in which no rule has perfect predictive power, and heuristic rules that are
only usually correct must bc employed. Some learning methods (such as Quinlan's) can be adapted to deal
with noisy data sets. while others (such as Haycs-Roth and Mcl)ermott's) seem less adaptable. In any case,
one direction for future work would be to identify those approaches that are rohust with respect to noise, and
to identify the reasons for their robustness. Most likely. tradeoffs exist between an ability to deal with noise
and the number of instances required for learning, but it would be useful to know the exact nature of such
relationships.

A related simplification is that the correct representation is known. If a learning system employs an
incomplete or incorrect representation for its concepts, then it may he searching a rule space that does not
contain the desired concept. One approach is to construct as good a rule as possible with the representation
given: any system that can deal with noise can handle incomplete representations in this manner. A more
interesting approach is one in which the system may improve its representation. This is equivalent to changing
the space of rules one is searching. and on the surface at least, appears to be a much more challenging
problem. Little work has been done in this area, but Utgoff[101 and Lenat 1111. have made an interesting start

on the problem.

r ,, • % . .. . . . . . . . . . . . . . . . . . . .* . . . . . . .
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A final simplifying assumption that nearly all concept learning researchers hac made is that the
concept to be acquired is all or none. In other words, an instancc eidhcr is an example of the concept or it is
not: there is no middle ground. However. almost none of our evcryda concepts are like this. Some birds fit
our bird stereotype better than others. and some chairs are nearer to the protot(pi.,l chair than others. (is a
)odo a bird? Is a Platypus a better bird? If t person sits on a log. is it a chair? Is it a better chair if we add

stubby lcgs and uic a cond log as a backrest?) Unfortunately. all of the existing concept leirning systems

rely fairly heavily on die sharp and uncquimtl distinction between positive and negative instanccs, and it is
not clear how they might be modified to deal with fu/iily-defined concepts ;uch as birds and chairs. Ibis is
clearly a challenging direction for future research in machine learning.

'Thc vast majority of work on learning concepts from examples has assumed that a number of instances
must be available for successful learning to occur. However. recently a few machine learning researchers have
taken a somewhat different approach. I)cJong 1121 has explored the use of causal information to determine
the relevant features in a positive instance of a complex concept, such as kidnappoig. fly focusing on causal
connections between events (such as the reason one would pay money to ensure another's safety), his system
is able to formulatc a plausible hypothesis on the basis of a single positive instance and no negative instances.
Winston 1131 has taken a similar approach to learning concepts such as cup. His system is presented with a
functioal description of a cup (e.g.. that it must be capable of containing liquid, that it must be capable of
being grasped) and a single positive instance of the concept. I'he system then uses its knowledge of the world
to decide which structural features of the example allow the functional features to be satisfied, again using
causal reasoning. "Ihese structural features are used in formulating the definition of the concept. Both
approaches rely on causal information, and both relate this to some form offunctiunal knowledge. 'l'his new
approach promises concept learning systems that arc much more efficient than the traditional syntactic
methods, while retaining the generality of the earlier approaches. We expect to see much more work along
these lines in the future.

4. Learning Search Methods

One of the central insights of Al is that intelligence involves the ability to solve problems by searching
the space of possible actions and possible solutions, and to employ knowledge to constrain that search. In fact.
one of the major differences between novices and experts in a complex domain is that the former must search
extensively, while the liatter use domain-specific heuristics to achieve their goal. In order to understand the
nature of these heuristics, and how they may be learned, we must recall that search involves slates and

, % operators. A problem is stated in terms of an initial state and a goal. and operators are used to transform the
initial state into one that satisfies the goal. Search arises when more than one operator can be applied to a
given state, requiring consideration of the different alternatives. Of course. some constraints are usually given

- in terms of the legal conditions under which each operator may apply. but these constraints arc seldom
sufficient to eliminate search. In order to accomplish this. the learner must also acquire heuristic conditions on
the operators. For example. Figure 5 presents a simple search tree involving two operators (01 and 02). with
the solution path shown in bold lines. If the problem solver knew the heuristic conditions on each operator, it
would be able to generate the steps along the solution path without considering any of the other moves. [he
task of learning search methods involvcs determining dese hcuristic conditions.

The problem of learning search heuristics from experience can be divided into three steps. First. the
system must generate the behavior upon which learning is based. Second. it must distinguish good behavior
from bad behavior, and decide which part of the performance system was responsible for each. In other
words, it must assign credit and blame to its various parts. Finally the system must be able to modify its
performance so that behavior will improve in the future. Diffcrent learning programs can vary on each of
these three dimensions. For instance, though their initial performance component will carry out search, it may
use depth-first search, breadth-first search, means-ends analysis, or any one of many other methods for

*directing the search process. Below we consider some alternative approaches to dealing with credit assignment
and modification of the performance system.

4F ?. . . -.
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Given this framework. the ask of learning from examples is casilv seen as a special case task of learning
search heuristics. in which a single operator is involved and for which the solution pad is but one step long.
No true search control is neccssary for the performance component, since tfedhack occurs as Soon as a single
.move" has been taken. Credit assignment is trivialicd. since the responsible component is etsilb identified
as die rule suggesting the "move". tlowcver. the modificition problem remains significall and in fact the
task of learning from examples can he viewed is an artificial domain designed for stuiding the modification
problem in isolation from other aspects of the learning prowess. In a similar Idshion. thE lesk of learning search
heuristics can be seen as the general case of learning from examples. in which a different "concept" must be
learned for each operator. I carning heuristics is considcrabl) more difficult than learning from examples,
since the learner must generate its own positive and ncgative instances, and since the credit assignment,'-

problem is nontrivial.

01 0.1

4'5

Figure 5. A simple search tree.

4.1. Assigning Credit and Blame
As we have discussed, if a learning system is to improve its behavior, it must decide which components

of its performance system are responsible for desirable behavior, and which led to undesirable behavior. In
general. assigning credit and blame can be difficult because many actions maN he taken before knowledge of
results is obtained, and any one of these actions may be responsible for the error. For instance, if the
performance component is represented as a set of production rules, one must decide which of those rules led
the system down an undesirable path. The problem of credit assignment is trivial in learning from examples
since feedback is given as soon as a rule applies. Howecr. the task is more formidable in the area of learning
search heuristics, and recent progress in this area has resulted mainly from new insights about methods for
assigning credit and blame.

The most straightforward of these approaches relies on waiting until a complete solution path to some
problem has been found. Since moves along the solution path led the system toward the goal. one can infer
that every move on this path is a positive instance of the rule that proposed the move. Similarly. moves that
lead one step uff of the solution path are likely candidates for negative instances of the rules that proposed
them (though it is possible that alternate solutions starting with these moves were overlooked). Let us return
to the problem space in Figure 5. with the solution path shown in bold. The move from state I to state 2 and
from state 3 to state 6 would be classified as good instances of operator 01. while the move from state 2 to
state 5 would be markcd as a good instance of operator 02. In contrast. the moves from state I to state 3. and
from state 5 to state 7 would be labeled as bad instances of 01. while the moves from state 2 to 4. and from
state 5 to 8 would be noted as bad instances of 02. Moves more than one step off the solution path (these are
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not shown in the figure) are not classificd: since they were not responsihle for tie initial step awa. from the

goal. they are not at fault. At least two recent strategy learning s.stems - Mitchell. L tgoff. and lanerji's LEX

and I.angley's SAGF - have used this heuristic as thcir hasic method for assingig credit and blame to p
components of their performance systems. Other systems. including Ir idil', I:1 M 1141 and Kibler and
Porter's learning system 1151. haC used a similar technique. though their prograns required the solution path
to he provided b% a hene\olent tutor. Sleeman. I angley. and Mitchell [161 ha%e discussed the advantages of
this method for "learning from solution paths".

One limitation of this approach is that it encounters difficulty in domains inolhing '.er. long solution
paths and extensive problem spaces. Oh\ iously. one cannot afford t)i search cxhauticly in I domain such as
chess. In response. some researchers hae begun to examine other methods that assign1 credit and blame while
the search process is still under way. I hCNe iicltde such heuristics as noting loops and unneessarily long
paths. noting dead ends. and noting failure to progress towards the goal. S ,stcms that Incorporate such
"learning while doing" methods include An/ai', IIAPS [171. Ohkson's L 'I 11,1. and I .angle%'s SAGF.2 [191.
Ironically. these systems have all been tested in simple pu//le-sol ing domains, w-here the "learning from
solution paths" method is perfectly adequate. One obvious research project would involve applying these and
other methods to more complex domains with long solutions and extensive search spaces.

4.2. Modifying the Performance System

Once credit and blame has been assigned to the moves made during the search process. one can modify
the performance system so that it prefers desirable moves to undesirable ones. If the performance component
is stated as a set of condition-action rules, then one can employ the same methods used in learning from
examples. In other words, one can search the space of conditions, looking for some combination that will
predict all positive instances but none of the negative instances. However. since multiple operators are
invohed. one must search a separate rule ,pace for each operator. When one or more rules ha~e bc,:n found
for each operator, they can be used to direct search through the original problem space: if these riles are
sufficiently specific. they will eliminate search enurely.

However, the task of learning search heuristics does place some constraints on the modification ncthod
that is employed. In particular. the learning system must be able to generate both positi'e and negative
instances of its operators. This poses no problem for discrimination-hased learning systems. since thcy begin
with o~erl, general move-proposing rules that lead naturally to search." loeveer. generali/ation-based

systems arc naturally conservative, preferring to make errors ;f omission ramther than errors of commission.
Such an approach works well ifa tutor is present to prouide psiti,.e and negati\ e examples. hut it encounters
difficulties if a system must generate its own behavior. Ohlsson I 1,I has reported a mixed approach in which
specific rules are preferred. but very general mome-proposing rules are rctained and used in cases where none
of the specific rules arc matched. However. in its pure form. generali/atmon-based methods do not seem
appropriate for heuristics learning.

4.3. Open Problems in Heuristics Learning

We have seen that heuristics learning can be viewed as the general case of learning from examples, and
".' many of the open problems in this area are closely related to those for concept learning. For insunce, one can

imagine complex domains for which no perfect rules exist to direct the search process. In such cases, one
might still be able to learn probabilistic rules that will lead search dow n the optimum path in most cases. This
situation is closely related to the task of learning concepts from noisy data. Similarly, one can imagine
attempting to learn search heuristics with an incorrect or incomplete rcpresentation. Finally, there are many
domains in which some moves are better than others, but for which no absolute good or bad moves exist. As

- . with learning from examples, most of the existing heunstics learning systems assume that "all or none" rules

4 ,Neither does any problem &inse for bi-directional approaches such as Mitchell's version space method, since these can use the general
boundary in propohing move

@°1
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*, exist. Thus, even if one could modify the credit assignment methods to deal with such continuous
classifications. it is not clear how one would alter the modification components of these s% stems. Fach of these
problems have been largely ignored in the machine learning literature, but we expect to see more work on

i' , them in die future.
One recent departure from the s1iacItc methods we described aho c corresponds closch with the

causal reasoning approach to learning from examples. Rather than reking on multiple solution paths to learn
i the heuristic conditions on a set of operators. Mitchell. Ltgoff. and Bancrjit [201 hae explored , method for

gathering maximum information from a single solution path. I his method mnokes reasoning hackwards from
the goal state. and determining which features of each pre ous state allowed the hinal operator in the
sequence to apply. This method is used for each operator along the solutU'I path, csultmg n a macro-

- operator that is guaranteed to lead to the goal state. I his method is %er.% similar to that employed by Fikes.
. Hart. and Nilsson [211 in their early S IRIPS system. Carbonell 122. 231 has explored J somew hat different but

related approach in his work on problem solving by analogy. l)uring its attempt to solve a problem.
, Carbonell's system retains information not only about the operators it has applied. but about the reasons they

were applied. Upon coming to a new problem. the system determines if similar reasons hold there. and if so.
attempts to solve the current problem by analogy with the previous one, Both Mitchell's and Carbonell's
methods involve analyzing the solution path in order to take advantage of all the asailable information. As

* with learning from examples, this approach to learning search heuristics has definite advantages over the
more syntactic approaches. and we expect it to become more popular in the future.

5. Learning from Observation: Conceptual Clustering
For the moment, let us return to the task of learning concepts from examples. Another of the

. simplifying assumptions made in this task is that the tutor provides the learner with explicit feedback by
4 telling him whether an instance is an example of the concept to be learned. However, if we examine very

young children. it is clear that they acquire concepts such as "dog" and "chair" long before they know the
words for these classes. Similarly. scientists form classification schemes for animals, chemicals, and even

, galaxies with no one to guide them. Thus, it is clear that concept learning can occur w ithout the presence of a
benevolent tutor to provide feedback. The task of learning concepts in this way is sometimes called learning
by observation.

5.1. The Conceptual Clustering Task 6'

ilicrc are different types of learning by observation, but let us focus on what Michalski and Stepp [241
have called conceptual clustering, since this bears an interesting relation to learning from examples. In the
conceptual clustering paradigm, one is presented with a set of objects or observations, each having an
associated set of features. I'he goal is to divide this set into classes and subclasses, with similar objects being
placed together. [he result is a taxonomic tree similar to those used in biology for classifying organisms. In
fact. biologists and statisticians have developed meth6ds for generating such taxonomies from a set of
observations. However. these methods (such as cluster analysis and numerical taxonom)) allow only numeric

-. attributes (e.g., length of tail). while the conceptual clustering task alsc allows symbolic features.

Consider the set of objects shown in Figure 6. which vary on four binary attributes - site. shape, color.
and thickness of the border. Only four out of the sixteen possible objects are observed, and the task is to
divide these into disjoint groups that cover the observed objects, but that do not predict any of the
unobserved ones. The classification tree shown in the figure satisfies these constraints while reflecting the
regularities in the data. For instance, size and shape are the only features that are completely correlated, since
all large objects are red, and all small objects are blue. Thus. these two features are ideal for dividing the
observations into two groups at the highest level. However. within these groups finer distinctions can be
made, and the features of border-thickncss and shape are useful at this level.

,. *This example points out two additional complexities in the conceptual clustering task over learning
from examples. First, classification schemes nearly always involve disjunctive classes, and any successful "

...........................- -. N..- .X- . .
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method must bc able to handle them. (A conjuncti'e clustering task would he one in whic
object was obser.ed, and would not be 'er% interesting.) Seco0nd. cOnICcpts must he leairned at
For instance. n the aboe example the concept ((largc and red) or (,,nall and IhdUC) luTIst I
thc first lcecl. while thc concept%; ((hick and squarc) or (thin and circle)) and ((thick and circ
square)) must he learned at the second Iccl. I hus. the Lisk o' conceptual clustering can I

ersion of learning from examples that is more diffiCult along a nMinher of dinensions - narm
of explicit feedback, the presence of disjuncts, and the need for concepts at muliplc le els otd4

i'.large&while small~black

thick&square hincircie thick&circihin

Figure 6. A simple classification tree.

5.2. Approaches to Conceptual Clustering

Michalski and Stepp's [241 approach to conceptual clustering takes adxantage of th
Basically. thc employ a method for learning conjuncti%,e concepts from examples to detcrmir
(or concepts) at each le'el in the classification tree. starting at the top and working do nward.
this, their system must ha'e a set of posite and negati e instances. Ihese are based on a
randomly selected seed objects, and concepts are learned for each of these seed objects in suc&
they do not cover any of the othei seeds. Based on these concepts. a new set o seeds are p
represent the central tendency of each concept. and the process is repeated. generating a
concepts. Ihis strategy continues until the seed objects stabilie. gt. ing an optimal set of \ disj

addition, the system must decide hoK maty classes should he used at each leel in the classific
is done by considering different numbers of seeds. and e,.aluating the resulting seLs of concept
the data. The best of these sets is used to add branches to the tree. and objects are sorted dow n 1
branches. The entire process is then repeated on each of these subsets of objects, in order to
branches to the classification scheme.

As with learning from examples. approaches to conceptual clustering can vary alonl
dimensions. For instance. though Michalski and Stepp's method requires all data to be preser

*l one can imagine systems that work in an incremental fashion. In fact. Lebowitz [251 has rel
incremental system. These two systems also differ in the way they organi/e search throug
classification trees. Both systems carry out a depth-first search through this space. starting at thc
general classes and adding more specific subclasses later. Howe%.cr. since Michalski and Stepp'

• ""all relevant data available at the outset. it can use this information to select the best branch at
*" contrast. Lebowitz's system is sometimes forced to restructure a classification tree as new ol

made; this is equivalent to backing up through the space of classification trees, and trying an
This appears to be another casc of the well-known Al tradcoff between knowledge and sc

=.s,
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knowledge that is available (in this case in the form of data), the less search is rcquircd (in this case through
the space of classification trees).

A final dimension of variation involves the order in which the classification tree is constructcd. I)th
Michalski and Stepp's and lebowitz's approaches begin at the top of the tree and work downward. For
example, given the objects in Figure 6. the distinction between large red objects and small bluc objects would
be made first, followed by the "finer" distinctions at lower levels in the tree. Iloweer. there is no reas(on why
a taxonomic scheme could not be generated in the opposite order. classifving the most similar objects together
first. and grouping the resulting classes afterwards. In fact. two s.stems that form co)nceptual clusters in this
manncr have been described in the Al literature. Wolffs [261 M K 10 and SNPR 1271 programs, which operate
in the domain of grammar acquisition. form classes such as noun. verb. and adjc've carl. in the learning
process. and form more abstract classes in terms of these at a later time. Similarl. the GI AL IFR program
described by Langley, Zytkow, Blradshaw, and Simon 128] discovers regularities in chemical reactions first by
defining classes such as alkalis and mcals. and only later defines classes such as bases in terms of them.
Hopefully, future work will reveal the advantages and disadvantages of different approaches to the conceptual
clustenng task.

5.3. Open Problems in Conceptual Clustering

Most of the existing conceptual clustering systems are designed to handle attribute-value
representations. Thus. one direction for future research in this area would involve extending these approaches
to deal with relational or structural information. In addition, the reader may recall that the task of learning
from examples can be transformed into the conceptual clustering task by removing the simplifying
assumption of explicit feedback. However. most work in conceptual clustering retains the assumption that the
learned concepts are "all or none". Thus. a second direction for research would involve extending these
methods. enabling them to learn inexact concepts such as dog or chair in which some features are more
central than others. Since conceptual clustering methods do not rely on a strong distinction between positive
and negative instances, this should be reasonably straightforward. It simply has not been a major focus of the
researchers in this area.

A final research area relates to the importance of funciion in our everyday concepts. Nelson 1291 has
argued that children's very early concepts are often functional in nature. For example. a ball is something that
one can bounce, and a chair is something that one can sit on. Only later, Nelson claims, are structural features
added to these concepts. This suggests that a child's goals play an important role in the way he organizes his
view of the world. Moreover. this ties in with Winston's approach to learning from examples, in which the
learner uses a functional description to simplify the learning of structural descriptions. One can imagine a
learning system that. starting with certain goals, formulatcd a set of function-based core concepts without
using explicit feedback, and which then used Winston's method to add structural information. l'his would be
a radically different approach to conceptual clustering, but one which appears to have considerable potential F
for modeling the human process of concept formation.

6. Language Acquisition
A fourth major area of machine learning research has dealt with the acquisition of language. In many

ways, the literature on language learning stands apart from other work in the field. For instance, more of the
researchers in this area have been concerned with modeling the human learning process than have workers in
other areas of machine learning. In addition, relatively little contact has been made between work in this area
and the work on concept learning and strategy learning. For this reason, and for lack of space, we will not
attempt to cover Al approaches to language acquisition is as much detail as we have other areas. Rather, we
will attempt to state the problem and provide a simple example. More detailed reviews of computational
approaches to language learning can be found in Anderson [301. Pinker [31], and Langley (321.

*Early research on language acquisition focused on inducing grammars to predict a set of sample
sentences [33, 34]. More recently, most workers have reformulated the task in terms of learning a mapping

. ...... .................. ...............
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between a set of sentences and their meanings. Anderson 1301 has argued that this situation is similar to that

encountered by children. since early sample sentences generally refcr to some situation or event present in the
child's environment. Figure 7 presents such a simple sentence and its meaning. Some workers have focused
on sentence generation (most of the psychological data concerns children's utterances). others ha~e studied
learning to undersiand sentences, and still oihcrs have been concerned with both issues. Some researchers
have assumed that connections between concepts and their associated words are already known, while others
attempt to learn this mapping along with tie relation between meaning structures and grammatical structures.

• "-,agent obiect

J action |

type

*boy "bounce *red *ball

The boy bounce ed the red ball.

Figure 7. A simple sentence and its meaning.

In modeling language acquisition. the learning system is presented with a set of legal sentences and their
associated meanings. The reader will recall that negative instances play an important role in learning from

*.:., examples and learning search methods. and one would expect a similar situation here. Thus. the fact that only
legal sentences are presented might be viewed as a serious problem for language learning systems. However,

, recall that the task is to learn a mapping between sentences and their meanings. This mapping is never carried
*out by a single rule. but rather by some set of rules. For a given sentence-meaning pair. some of these rules

may apply correctly, some may fail to apply when they should, and still others may apply when they should
not. The latter two cases correspond to positive instances (errors of omission) and negative instances (errors of
commission), respectively. Thus. at the appropriate level of analysis, both positive and negative instances do
arise in the language learning task.

For example. in order to describe the meaning structure in Figure 7. the learner must have some rule for
saying the word "the". another for "boy", another for "bounce", perhaps another for "ed". and so forth. Fach
of these rules may be overly specific or overly general. leading to errors of omission or commission. In terms
of finding the correct conditions on such rules. the language learning task is more difficult than the others we
have examined, since arbitrary exceptions often occur. Thus. the learner may decide to say "ed" after the

P word for any past action, and then discover the numerous exceptions to this rule. In fact. young children often
produce overgeneralizations like "runned" and "hitted". though they eventually recover from these

*gl problems.5 In addition, in order to organize its knowledge. the language learner may also need intermediate
level rules for describing the agent of an event, the action, and so on. This further complicates the learning
task, since errors can occur at different levels in such hierarchical schemes, making credit and blame difficult
to assign.

In summary, the language acquisition task involves learning a mapping between sentences and their
*g meanings. In turn, this provides the equivalent of positive and negative instances, letting the learner acquire

SSelfride 135) hao developed a compuational model of this process of overgencradimation and recovery.

'p.
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rules in much the same fashion as in other areas of machine learning. However. the task is more difficult than
most in that it often involves arbitrary exceptions. as well as intermediate lcscl rules t'r which one can ncvcr

N . attain complete feedback. The langtage acquisition task is complex enough that we cannot hope to cover it
adequately here: however, this brief otcricw may have givcn the reader some idea of its relation to. and
differences from. other areas of machine learning.

7. Conclusions
In this paper. we cxamined some of the task domains Studied h rcsearchers in machine learning -

learning from examples, learning search methods. conceptual clustering, and langu,,ge acquisition - and
considered some relations between those domains. A number of common threads emerged from this
examination. One of these was the notion of search through a space of rules, and %arious methods for
directing the search through this space. Nnothcr was the idea that learning from examples can be viewed as a
simpler version of the more complex tasks of learning search heuristics and conceptual clustering, in that
credit assignment is simplified and feedback is present. We found that some areas, such as data-driven
approaches to learning from examples, appear to relatively well understood, while in other areas, such as
learning during the search process, much work remains to be done. In each of the domains we examined, we
found a number of open issues that remain to be explored. Among the most exciting of these was the
potential for using functional or causal information in directing the learning process.

In addition to those aspects of machine learning we have covered. ongoing research is addressing a
number of exciting topics we have not had the space to discuss. One of these involves attempts to automate
the process of scientific discover. 1. 3(01: ultimately this may lead to advisory systems that aid scientists in
their research. Another area that has received considerable attention recently concerns methods for reasoning
by analogy with prior experience 1231: systems that solve problems in this manner could be considerably more
flexible than existing Al programs. Another research focus is learning from instruction, in which the system
acquires knowledge directly from a textbook or tutor. 'his is probably the most immediately applicable of all
machine learning methods, due to recent advances in natural language processing. Machine learning, despite
its recent emergence. has developed nearly as many fascinating problems as researchers to pursue those
problems. As a result, more colleagues are always welcome, and we hope we have communicated some of the

" excitement in this rapidly developing field to the reader.
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