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APPROACHES TO MACHINE LEARNING

Pat Langley
Jaime G. Carbonell
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213
Febhruary 16 1984

Abstract

hine learning strives to develop methods and techniques to automate the acquisition of new
w skills. and new ways of organizing cxisting information. In this article, we review the major
achinc lcarning in symbolic domains. covering the tasks of learning concepts from examples,
methods. conceptual clustering, and language acquisition. We illustrate cach of the basic
paradigmatic cxamples. :
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‘:j::-j 1. Introduction: Why Machine Learning?
Y I.carning is ubiquitous in intclligence. and it is natural that Artificial Intclligence (A1), as the science of
1 intelligent behavior, be centrally concerned with learning.  There are two clear reasons for this concern, one
Ao practical and onc theoretical. With respect to the first, Al has now demonstrated the utility of expert systems,
:_-:l': but these systems often require several man-years 10 construct. An expert system consists of a symbolic
:;:-;-: rcasoning cngine plus a kirge domain-specitic knowledge base. Fxpert systems that rival or surpass human
-\::\‘ . performance at very narrowly defined tasks arc proliferating rapidly as Al is applied 1o new domains. A better
D understanding of Icarning methods would cnable us o automate the acquisiton of the doman-specific
o~ knowledge bascs for new expert systems, and thuy greatly speed the deselopment of applied A} programs, On
e the theoretical side. expert systems are unattractive hecause they lack the generaliuy that science requires of its
f‘: theorics and explanations. On this dimension, the study of learning may reveal general principies that apply
i across many different domains,
= A third rescarch goal is to emulate human Icarning mcechanisms. and thus come to a better
da undcrstanding of the cognitive processes that underly human knowledge and skill acquisition. In addition to
:"_ improving our knowledge of human behavior. studying human lcarning may produce bencefits for Al since
»,‘:,: humans arc the most flexible and robust (if slow) learning sysiems in cxistence. Hence, one objective of
:‘:{, machinc lecarning is to combine the capabilitics of modern computers with the flexibility and resiliance of
EAG

human cognition. As Simon [1] has pointed out. if lcarning could be automated and the results of that
lcarning transferred dircctly to other machines which could further augment and refine the knowledge, one
could accumulate cxpertise and wisdom in a way not possible by humans — cach individual person must
learn all relevant knowledge without bencefit of a direct copying process. ‘Thus, no single mind can hold the
collective knowlcdge of the specics.

2. A Historical Sketch

4 Historically. rescarchers have taken two approaches to machine learning. Numerical methods such as

'
P

.

:’. discriminant analysis have proven quite usceful in perceptual domains. and have hecome associated with the
T paradigm known as Patiern Recognetion. In contrast. Artificial Intelligence rescarchers have concentrated on
j; symbolic learning methods.! which have proven uscful in other domains. 'The symbolic approach to machine
:‘_l(. lcarning has reccived growing attention in recent years, and in this paper we review some of the main
- appruaches that have been taken within this paradigm. and outline some of the work that remains to be done.
B Within the symbolic learning paradigm, work first focused on learning simple concepts from examples.
'.;‘ This originally involved artificial tasks similar to questions found in intelligence tests given to children, such
::'.‘f:: as "What do all these pictures have in common?" and “Does this new picture belong in the group?” Such
- wsks involve the formdlation of some hypothesis that predicts which instances should be classified as
S examples of the concept. Not too surprisingly. psychologists were among the active rescarchers in this carly
. stage (c.g.. Hunt, Marin and Stonc [3]). Subscquent work focused on learning progressively more complex
:-f-'_‘ concepts, often requiring larger numbers of excmplars. Recent work has focused on more complex learning
-:::- tasks, in which the lcarner does not rcly so heavily on a tutor for instruction. For cxample, some of this
: :..'. rescarch has focused on learning in the context of problem solving, while others have explored methods for
W lcarning by obscrvation and discovery. [.carning by analogy with cxisting plans or concepts has also received

- &

considcrable attention.

In the following pages. we examine four categorical tasks that have been addressed in the machine
learning literaturc - Icarning from cxamples, learning scarch hcuristics, lcarning by obscrvation, and
language acquisition. These four representative tasks do not, by any means, cover all approaches to machine
learning, but they should provide an illustrative sample of the issucs, methods, and techniques of primary

lSmmel's {2} carly checkers learning system was a nowable exception to the later trend, relying mainly on a parameter fitting methods
10 improve performance.
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concern to the ficld. In cach case. we describe the task. consider the main approaches that have been
employed. and identify some open problems in the arca. As is typical in a survey article, we can only highlight
the best known approaches and results in the arca of machine Icarning, giving the reader a feeling for where
the ficld as a whole has been and where it is heading. Phe serious reader is encouraged to digest other reviews
of machinc Ilcarning work by Mitchell [4). Dictterich and Michalski 5], and Michalski. Carbonell, and
Mitchell [6).

I ER=

+ + -

Figure 1. Positive and negative instances of "arch”.

3. Learning Concepts From Examples

Mecthods for icarning concepts from cxamples have reccived more attention than any other aspect of
machine lcarning. The task appcars straightforward: given a set of positive and ncgative instances of a
concept. generate some rule or description that correctly identifies these and all future cxamples as instances
or non-inistances of the concept. Howcever. despite its apparent simplicity. the approaches taken to solving this
problem arc ncarly as numcrous as the pcople who have worked on it. Below, we consider one approach to
learning from cxampics. and then examine some of the dimensions along which different approaches to this o
problem vary. After this. we discuss some open issucs in fcarning from examplces that remain to be addressed. ]

3.1. An Example

Perhaps the best known rescarch on icarning from cxamples is Winston's [7] work on the "arch”
concept. Figure | presents two examples of this concept and onc counterexample that are very similar to those
presented to Winston's system. Given thesce instances. one might conclude that

"An ARCH consists of two vertical blocks and one horizontal block™.

‘This hypothesis covers both positive instances and excludes the negative one.  Alternately, one could define
"arch” as simply a union of all positive cxamples of ARCH cver encountered.  However. the principles of
brevity and generality preclude us from formulating such a definition. since we would like our concept 1o be
as simple as possible, and for it to be able to predict new positive and ncgative instances. Given the first
hypothesis. there is hope that a simple and general definition of "arch™ will converge and help us recognize
future cxamples of arches.

P ININ I GV EN BTV O R Y]

Now let us consider the two instances shown in Figure 2. Upon considering the positive instance, we
realize that our concept of arch is too restrictive, since it excludes this instance. ‘Therefore, we revise the
concept to

“An ARCH consists of two vertical blocks and one horizontal object”.

However, this new hypothesis covers some of the ncgative instances, suggesting that it is overly gencral in
some respect. Revising the definition to exclude these instances, we might get:

"An ARCH consists of two vertical blocks thar do not touch and a horizontal object that rests atop
both blocks.

(o One can continuc along these lines, gradually refining the concept to include all the positive but none of the
> negative examples. New positive instances that are not covered by the current hypothesis (errors of omission)
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. tell us that the concept being formulated is overly specific. while new negative cxamples that are covered by K
(8 ) .o . .
N the hypothesis (errors of commission) (el us it is overly general. We have not been very specific about how '1

: the learner responds to these two situations, but we consider some of the alternausves below. Al systems that 1
j:‘- lcarn from cxamples employ these two types of information, though we will see that they use them in quite -
'-:(_ different ways.
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AN Figure 2. Additional positive and negative cxamples of “arch”.
lest the rcader get the false impression that modifying an existing definition of a concept 10
v accommodate a ncw positive or negative cxemplar is always a simple process. we offer the positive and
R necgative examples in Figure 3. We challenge the reader 1o devise an automated process that can modify
< "ARCH” to account for these examples. Onc insight that ariscs from these instances is that our concept of
:}: ARCH might involve some fitncrional aspects as well as the structural oncs we have focused on so far. We
o shall have more to say on this matter later.
> 3.2. The Dimensions of Learning
L As Mitchelt [4] and Dictterich and Michalski [S] have pointed out. all Al systems that learn from
o cxamples can be viewed as carryving out search through a space of possible concepts, represcnted as
Y recognition rules or declarative descriptions, Moreover. this space 1S parually ordered- along the dimension of
o generality, and it is natural to usc this partial ordering to organize the search process. However, at this point
AN the similarity between systems ends. | he first dimension of variation relates to the direction of the search
! . . R - -
through the rule space. Discrinunation-based concept learning programs begin with very genceral rules and
- makc them more specific until all instances can be correctly classified. while generalization-based systems }
o begin with very specific rules and make them more gencral. Since these two methods approach the goal .
N concept from different dircctions and more than one concept may be consistent with the data. the two 1
LA . . . . 9
: methods need not arrive at the same answer. Dictterich and Michalski have called the rules lcarned by g
e discrimination systems discriminant dcescriptions. and the rules lcarncd by gencralization  systems
| characteristic descriptions, In gencral, the latter will be more specific than the former., 3
N A sccond dimension of variation relates o the manner in which scarch through the rule space is .
"~ controlled. Some systems carry out a depeh-first scarch through the space of rules, while others employ a X
~ breadth-first scarch. In depth-first scarch, the learner focuses on one hypothesis at a time, generating more “
) . - . . . . . . . g
-:} general or more specific versions of this (depending on the direction of the scarch) unul it finds a description 4
. that accounts for the observed instances. In breadth-first scarch, the system considers a number of alternate '1!
hypothceses simultancously, though many arc climinated as they fail to account for the data. Breadth-first .
e scarch stratcgics have greater memory requirements than depth-first mcthods, but need never back up
. through the search space. 8
". . . . . . . . . i 9
N A third dimension of variation involves the manner in which data is handled. All-at-once systems
‘-ﬁ zlt is this partial ordering that leads to branching. and thus to search. If the space were complctely ordered, then the task of lcaming
e rules would be much simpler.
-.:
‘:..
:
A
\'
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require all instances to be present at the outset of the learning process. while meremental sysiems deal with
instances one at a time. The former tend to be more robust with respect to noise. while the latter are more
plausiblc modcls of the human Icarning process.  Finally, concept learning programs diifer in the operators
they use to move through the rule space. Data-driven systems incorporale instances m the generation of new
hypotheses. while enumerative ss)slcm.«s3 usc some other source of knowledge to generate states, and ecmploy
daw only to evaluare these states.

+ -
Figure 3. Still morc positive and ncgative instances of "arch”.

Given these four dimensions. we can determine that 2* = 16 basic types of concept learning systems are
possible. at lcast in principle. New rescarchers in machine learning might take as an excrcisc the task of
classifying cxisting systems in terms of these dimensions, and brave individuals might attempt t develop a
learning system that fills onc of the unexplored combinations. In order to clarify the dimensions along which
concept Icarning systems vary, let us cxamine two programs that lic at oppusite ends of the spectrum on cach
dimension. FFor the sake of clarity. we will simplify certain aspects of the programs. ‘The first is Quinlan’s 11)3
svstem [8]. which has been tested in the domain of chess endgames, where the concepts to be learned are “lost
in onc move”, Most in two moves” and so forth. The second is Hayes-Roth and McDermatt’s SPROLUTER [9)
which has been tested on a number of complex relational instances like those in Figure 1 through 3.

1133 represents concepts in terms of discrimination networks, as with the disjunctive concept ((Lirge and
red) or (bluc and circle and small)). shown in Figure 4. The system begins with only the top node of a
network, and grows its decision tree one branch at a time. For instance, the system would first create the (red
or blue) branch cmanating from the top node. Next, it would create a branch coming from onc of the new
nodes. if necessary. The tree is grown downward. until terminal nodes are rcached which contain only positive
or ncgative instances. Thus, the system can be viewed as discrimination-based. moving from very general rules
to very specific ones. At cach point, it must select one attribute as more discriminating than others, so it
carries out a depth-first scarch through the space of rules. (13 is given a list of potentially relevant attributes
by the programmer. so that in dcciding which branch to create, it uscs the data only in cvaluating these
attributes. The system is thus enumerative rather than data-driven in its scarch through the rule space. Finally,
the program has all data availubic at the outsct, so that it can use statistical analyses to distinguish
discriminating attributes from undiscriminating oncs: as a result. 113 is an ali-ur-once concept learning system
rather than an incremental one. ‘The exact evaluation function Quinlan uscs to dircct scarch is basced on
information theory, but Hunt, Marin. and Stonc [3] have used another evaluation function, and the cxact
function scems to be lcss important than the overall scarch organization.

Hayes-Roth and McDermouw's SPROUTER [9)] is historically interesting. since it was onc of the first
alternatives to Winston's carly work on Icarning from cxamples. This program attempts to lcarn conjunctive

3Miu:hcll (4] has called these generare and test sysiems, while Dictiench and Michalski [S] have called them model-driven systems.
However, Al associates the first term with systems that proceed exhaustively through a list of alternauves, and associates the second term
with sysiems that rely on large amounts of domain-specific knowlcdge. We prefer the term enumerative, since 8 lcaming system can
enumcrate a set of alternate hypothescs at cach swage in its scarch, without being cither of these.
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characteristic descriptions for a sct of data. moving from a very specific initial hypothesis based on the first
pusitive instance o more general rules as more instances are gathered. 1hus. Hayes-Roth and McDermott's
concept lcarning system is generalization-based vather than discrimimation-based. SPROUTER also differs
from 11)3 in carrying out a breadth-first scarch through the rule space. rather than a depth-first scarch. With
respect to positive instances. the system is dara-drivert, SINCS 1t uses these instances to gencrate new hypotheses
by finding common structures between them and the current hypotheses. However. the program s
enumerative with respect 1o negative instancges. sincc it uses these only o eliminate overly general hypothescs.
Similarly. SPROUTER processes positive instances in an imcremental fashion. reading them i one at a time
and generalizing its hypotheses accordingly. However, it retains all negative instances in order to evaluate the
resulting hypothescs. and processes them in an d/f-ar-once manner. Thus, SPROUI'ER s somcething of a
hybrid system in that it trcats positive and negative instances in quite different ways.

smalt circle

large square

large

+ -
Figure 4. A concept expressed as a discrimination network.,

3.3. Open Problems in Learning from Examples

A number of problems remain to be addressed with respect to Iearning from cxamples. Most of these
relate to simplifying assumptions that have typically been made about the concept learning task. For instance,
many rescarchers have assumed that no noisc is present (i.c.. all instances are correctly classificd). However,
there arc many rcal-world situations in which no rule has perfect predictive power. and heuristic rules that are
only usually correct must be employed. Sume Icarning methods (such as Quinlan’s) can be adapted to deal
with noisy data scts. while others (such as Hayes-Roth and Mclermott’s) scem less adaptable. In any case,
one direction for future work would be to identify those approaches that are robust with respect to noise, and
to identify the rcasons for their robustness. Most likely, tradcoffs cxist between an ability to deal with noise
and the number of instances required for learning, but it would be uscful o know the exact nature of such
rclationships.

A rclated simplification is that the correct representation is known. If a lcarning system cmploys an
incomplete or incorrect representation for its concepts, then it may be scarching a rule space that does not
contain the desired concept. Once approach is to construct as good a rule as pussible with the representation
given; any system that can deal with noise can handle incomplete represcntations in this manner. A more
interesting approach is one in which the system may improve its representation. This is equivalent to changing
the space of rules one is scarching. and on the surface at lcast. appears to be a much more challenging
problem. Littlc work has been done in this arca, but Utgoff {10} and Lenat [11), have made an interesting start
on the problem.

P
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A final simplifying assumption that ncarly all concept earning rescarchers have made is that the
concept to be acquired is all or none. In other words. an instance cither 1s an example of the concept or it is
not: there is no middle ground. However, almost none of our everyday concepts are like this. Some birds fit
our bird stercotype better than others. and some chairs arc nearer to the prototypical chair than others. (Is a
Dodo a bird? Is a Platypus a better bird? [f a person sits on a log. s 1t a chair? s it a beuer chair if we add
stubby legs and use a second log as a backrest?) Unforwnately. all of the exisung concept learning systems
rely fairly heavily on the sharp and unequivocal distinction between positive and negative instances, and it is
not clcar how they might be maodified to deal with fusszily-defined concepts such as birds and chairs. This is
clearly a challenging direction for future rescarch in machine Icarning.

‘The vast majority of work on lcarning concepts from examples has assumed that a number of instances
must be available for successful lcarning to occur. However, recently a fow machine icarning rescarchers have
taken a somewhat different approach. DeJong [12] has explored the use of causal information to determine
the relevant features in a positive instance of a complex concept. such as kidnapping. By focusing on causal
connections between cvents (such as the reason one would pay money to ensure another's safety). his system
is able to formulate a plausible hypothesis on the basis of a single positive instance and o negative instances.
Winston [13] has taken a similar approach to learning concepts such as cup. His system is presented with a
Junctional description of a cup (c.g.. that it must be capable of containing liquid. that it must be capable of
being grasped) and a single positive instance of the concept. The systemn then uses its knowledge of the world
to decide which structural features of the example allow the functional featurcs to be satisficd. again using

AN causal reasoning. ‘These structural features arc used in formulating the definition of the concept.  Both
::' N approaches rcly on causal information. and both relate this to some form of functional knowledge. This new
w.:: . approach promises concept learning systems that are much more cfficient than the traditional syntactic
"4:::- mcthods. while retaining the gencrality of the carlier approaches. We cxpect to sec much more work along
. these lines in the future.
i 4. Learning Search Methods
;:;:','—' One of the central insights of Al is that intelligence involves the ability to solve problems by searching
- the space of possible actions and possible sulutions, and to employ knowledge to constrain that scarch. In fact,
j:,j:. onc of the major differences between novices and experts in a complex domain is that the former must search
T extensively. while the latter use doman-specific heuristics to achieve their goal. In order to understand the
’ naturc of these heuristics, and how they may be learned. we must recall that scarch involves siates and
;: operators. A problem is stated in terms of an initial state and a goal. and operators arc uscd 10 transform the
) initial statc into onc that satisfics the goal. Scarch arises when more than one operator can be applied to a
".'_:’_'.j given state, requiring consideration of the different alternauves. Of course, some constraints are usually given
0N in terms of the /egal conditions under which cach operator may apply. but these constraints arc scldom
sufficient to climinate scarch. In order 0 accomplish this. the learncr must also acquirc hewrisiic conditions on
- the operators. For example, Figure 5 presents a simple search tree involving two operators (O1 and 02), with
the solution path shown in bold lines. If the problem solver knew the heuristic conditions on cach operator, it
would be able to gencrate the steps along the solution path without considering any of the other moves. ‘The
task of lcarning scarch methods involves determining these heuristic conditions.
e The problem of learning scarch heuristics from experience can be divided into three steps. First, the
iVl system must gencrate the behavior upon which learning s based. Sccond. it must distinguish good behavior
;:2 from bad behavior, and decide which part of the performance system was responsible for cach. In other
:.; words. it must assign credit and blame to its various parts. Finally, the system must be able to modify its
‘ :s performance so that behavior will improve in the futurc. Different Icarning programs can vary on cach of
'f' ;' these three dimensions. For instance. though their initial performance component will carry out search, it may
- usc depth-first scarch, breadth-first scarch, means-cnds analysis, or any one of many other mcthods for
D dirccting the scarch process. Below we consider some alternative approaches to dealing with credit assignment
o and modification of the performance system,
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} Given this framework, the task of fcarning from cxamples is casily seen as a special case task of learning
- scarch heuristics. in which a single operator is involved and for which the solution path 1s but ong step long.
\ ' No true scarch control is necessary for the performance component. since feedback occurs as soon as a single
'{-j “move” has been taken. Credit assignment is trivialized. since the responsble component is casily idenufied
o as the rule suggesting the "move”. However. the modification problem remains significar” and in fact the
:'_-': sk of learning from examples can be viewed as an artificial domam designed for studying the modification
j-::j ‘ problem in isolation from other aspects of the learning process. Ina similar tashion, the Lisk of learning scarch
3 heuristics can be seen as the general case ot lcarning from examples. in which a different “concept”™ must be
learned for cach operator. | carning heuristics is considerably more difficult than learming from cxamples,
:‘_:-I since the learner must generate its own positive and negative instances. and since the credit assignment
b~ problem is nontrivial.
< ‘
\ -
-
]
)
-]
o'\d
h‘-.
e
‘ ] :
A 1
“ | |
Cuy Figure S. A simple scarch tree, 4
- 4.1. Assigning Credit and Blame s
oo As we have discusscd. if a lcarning system is to improve its behavior, it must decide which components 1
.::-{ of its performance system are responsible for desirable behavior, and which led to undcsirable behavior. In Q:
N gencral. assigning credit and blame can be difficult because many actions may be taken before knowledge of ;.
j::- results is obtained. and any onc of these actions may be responsible for the crror. For instance, if the 8
. performance component is represented as a sct of production rules. one must decide which of those rules led K
e the system down an undcsirable path. The problem of credit assignment 1s trivial in learning from cxamples |
\: since fecdback is given as soon as a rulc applics. However, the task is more formidable in the arca of learning 1
g scarch hcuristics, and recent progress in this arca has resulted mainly from new insights about methods for 3
5 assigning credit and blame. ]
:::: The most straightforward of these approaches relics on waiting until a complete solution path to some J
problem has been found. Since moves along the solution path led the system toward the goal. one can infer |
i that every move on this path is a positive instance of the rule that proposcd the move. Similarly, moves that 1
; -;j Icad onc step off of the solution path arc likcly candidates for negative instances of the rules that proposed
'2-: them (though it is possible that alternate solutions starting with these moves were overlooked). [.et us return )
o to the problem space in Figure §, with the solution path shown in bold. The move from state 1 to state 2 and ,
- from state 5 to state 6 would be classified as good instances of operator Ol, while the move from state 2 to 1
d state 5 would be marked as a goud instance of operator O2. In contrast. the movces from state 1 to state 3, and “
2, from state § to statc 7 would be labceled as bad instances of Ol, while the moves from state 2 to 4, and from .
o state 5 to 8 would be noted as bad instances of 02. Moves more than one step off the solution path (these are )
L, :
L 9
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'f:.'j not shown in the figure) are not classified: since they were not responsible for the inttial step away from the ]
goal. they are not at fault. At least two recent strategy learming systems — Mitchell. Utgott, and Baneryr's 1LEX )
A and Langley's SAGE — have used this heuristic as their basic method for assmging credit and blame to X
- components of their performance systems. Other systems. including Brazdil's 1M [14) and Kibler and )

Porter’s lcarning system [15]. have used a sumilar technigue. though their programs required the solution path
to be provided by a benevolent witor. Sleeman. | angley, and Mitchell [16] have discussed the advantages of
this mcthod for “lcarning from solution paths”. Kk

One limitation of this approach is that it encounters difficulty i domains involving very long solution
paths and extensive problem spaces. Obviously. one cannot atford to scarch exhaustinvely i a domain such as
o chess. In response. some rescarchers have hegun o examine other methods that assign credit and blame while
the scarch process is stll under way.  These include such heurnisties as noting Toops and unnccessarily long
paths, noting dead cnds. and notng failure to progress towards the goal. Systems that incorporate such
. “learning while doing” methods include Anzars HAPS [17] Ohlsson’s UPE {18]. and | angley's SAGE.2[19].
Tronically. these systems have all been tested 1n simple puz/ie-solving domains, where the “learning from )
solution paths” method is perfectly adequate. One obvious rescarch project would involve applying these and -
other methods to maore complex domains with long solutions and extensive scarch spaces.

-,"'1 4.2. Modifying the Performance System

Once credit and blame has been assigned to the moves made during the scarch process. one can modify
the performance system so that it prefers destrable moves to undesirable ones. If the performance component )
is stated as a set of condition-action rules. then one can employ the same methods used in learning from
cxamples. In other words, onc can scarch the space of conditions, looking for some combination that will
predict all positive instances but nonc of the negative instances. However, since multiple operators are

) involved, onc must scarch a separate rule space for cach operator. When one or more rules have been found
for cach operator. they can be used to direct scarch through the oniginal problem space: if these rules are
sufficiently specific. they will eliminate scarch entirely.

N L

f:-f However, the task of learning scarch heuristics does place some constraints on the modification method -
that is cmployed. In parucular. the lcarming system must be able to generate both positive and negative K
instances of its operators. This poses no problem for discrimination-based lcurning systems, since they begin

with overlv gencral move-proposing rules that lead naturally to search.® Howeser. generalization-based
. systems are naturally conservative, preferring to make crrors ¢f omnsion rather than errors of commission, :
SR Such an approach works well if a tutor 1s present to provide positne and negative examples. but it encounters
' difficultics 1f a system must generate tts own behavior, Ohisson {18} has reported g mixed approach in which
specific rules arc preferred, but very general move-proposing rules are retained and uscd in cascs where none .
. of the specific rules are matched. However, in its pure form, genceralizauon-based methods do not seem -
' appropriate for heuristics learning.

4.3. Open Problems in Heuristics Learning

We have scen that heuristics Icarning can be viewed as the general case of lcarning from examples, and
many of the open problems in this arca are closely related to those tor concept Iearning, For instance, one can
imagine complex domains for which no perfect rules exist to direct the scarch process. In such cascs, one
might still be ablc to learn probabilistic rules that will lead scarch down the opumum path in most cascs. This
situation is closcly related to the task of lcarning concepts from noisy data. Simularly. onc can imagine
attempting to lcarn scarch heuristics with an incorrect or incomplete representation. Finally, there are many
domains in which some moves arc better than others, but for which no absolute good or bad movcs exist. As
. with learning from examples, most of the cxisting heunstics lcarning systems assume that “all or none” rules

o
I
2%

‘Ncithcr docs any problem arise for bi-dirccuonal approaches such as Mitchell's version space method, since these can usc the general
boundary in proposing moves.
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P cxist. Thus, even if one could modify the credit assignment methods to deal with such continuous )
classifications. it is not clear how one would alter the maodification components of these systems. Fach of these ;‘

3 problems have been largely ignored in the machine learning literature. but we expect to see more work on

» them in the future.

One recent departure from the svaractie methods we described above corresponds closely with the
causal reasoning approach to lcarning from examples. Rather than relying on muluple soluton paths o learn
the heuristic conditions on a set of operators. Mitchell. Ligotf, and Banerji [20] have explored o method for P
gathering maximum information from a single solution path. s method involves reasoning backwards from
the goal state. and determining which features of cach previous state allowed the final operator in the
sequence (0 apply. This method 1s used for cach operator along the solution path, resulting in 3 magro-
operator that is guaranteed to lcad to the goal state. This method 15 very similar to that employed by Fikes,
Hart. and Nilsson [21] in their carly STRIPS system. Carbonell [22. 23] has explored a somewhat different but
related approach in his work on problem solving by analogy. During s attempt to solve a problem,
Carbonell’s systiem rctains information not only about the operators 1t has applied. but about the reasons they
were applied. Upon coming 10 a new problem. the system determines if similar reasons hold there. and if so,
attempts to solve the current problem by analogy with the previous one. Both Mitchell’'s and Carbonell's
methods involve analyzing the solution path in order to take advantage of all the available information. As
with Icarning from examples, this approach to learning scarch hcuristics has definitc advantages over the
more syntactic approaches. and we cxpect it to become more popular in the future.
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5. Learning from Observation: Conceptual Clustering

For the moment, let us return to the task of learning concepts from examples. Another of the -
simplifying assumptions made in this task is that the tutor provides the learner with cxplicit feedback by
telling him whcether an instance is an cxample of the concept to be Icarned. However. if we examine very
young children, it is clear that they acquire concepts such as “dog™ and “chair™ long before they know the
words for these classes.  Similarly, scientsts form classification schemes for animals. chemicals, and cven
galaxics with no one to guide them. Thus, it is clear that concept learning can occur without the presence of a j'f
benevolent wtor o provide feedback. The task of Icarning concepts in this way is sometimes called learning
by observation. N

5.1. The Conceptual Clustering Task .‘

There are different types of Iearning by observation, but let us focus on what Michalski and Stepp [24)
have called conceptual clustering, since this bears an interesting relation to Icarning from cxamples. In the
conceptual clustering paradigm. onc is presented with a sct of objects or obscrvations, cach having an -
associated sct of features. The goal is to divide this set into classes and subclasses. with similar objects being -
placed together. The result is a taxonomic tree simular to those used in biology for classifying organisms. In o
fact. bivlogists and statisticians have developed methods for generating such taxonomics from a set of
obscrvations. Howevcr, these methods (such as cluster analysis and numerical taxonomy) allow only numeric
attributes (c.g., length of tail), whilc the conceptual clustering task alse allows symbolic features.

e oo
PRI

Consider the sct of objects shown in Figure 6, which vary on four binary attributes — sizc, shape. color,
and thickness of the border. Only four out of the sixteen possible objects arc obscrved, and the task is to

divide these into disjoint groups that cover the obscrved objects, but that do not predict any of the .
2 unobscerved ones. The classification tree shown in the figure satisfics these constraints while reflecting the N
- regularitics in the data. For instance, sizc and shape arc the only features that are completely correlated. since
_:- all large objects are red. and all small objccts are biue. Thus, these two features are idecal for dividing the -
-j observations into two groups at the highest level. However, within these groups finer distinctions can be :-:j
made, and the features of border-thickness and shape are uscful at this level. ®

This cxample points out two additional complexitics in the conceptual clustering task over learning -
from examples. First, classification schemes ncarly always involve disjunctive classes, and any successful L

o clame
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V—'f_ method must be able to handle them. (A conjunctive clustering task would be one in whic
- ubject was observed, and would not be very nteresting.) Sccond. coneepts must be learned at
‘:ﬂ For instance, in the above example the “concept” ((Yarge and red) or (small and bluc)) must |
the first level. while the concepts ((thick and squire) or (thin and cirele)) and ((thick and cire
::}j square)) must be learned at the second level, Thus, the sk of conceptudd clustening can |
= version of Icarning from examples that 1s more ditficult along a number of dimensions — nam
- of expiicit feedback. the presence of disjuncts. and the need tor concepts at muluple levels of

large&white small&black

thick&square thin&circle thick&circle thin&s

Figure 6. A simple classification tree.

5.2. Approaches to Conceptual Clustering

Michalski and Stcpp’s [24] approach to conceptual clustering takes advantage of th
- Basically. they employ a method for learning conjunctive concepts from cxamples to determir
(or concepts) at cach level in the classification tree. starting Jat the top and working downward.
) this, their systcm must have a sct of posttive and negative nstances. These are based on d
randomly sclected seed objects, and concepts arc kearned for cach of these sced objects in such
they do not cover any of the othet sceds. Based on these concepts. a new set of sceds are p
: represent the central tendency of cach concept. and the process 1s repeated. gencrating a
o concepts. This strategy continues until the seed objects stabilize. giving an opumat sct of N dis)
A addition, the system must decide how marny classes should be used at cach fevel in the classific
is done by considering different numbers of seeds, and cvaluating the resuiung scts of concept
the data. The best of these sets is used to add branches to the tree. and objects are sorted down |
branches. ‘The entire process is then repeated on cach of these subscts of objects, in order o
g branches to the classification scheme,

Wt
O

As with Icarning from cxamplics. approaches to conceptual clustering can vary along
dimensions. For instance, though Michalski and Stepp’s method requires all data to be preser

s
.

_! one can imagine systcms that work 1n an increinental fashion. In fact. Lebowits [25] has rej
- M incremental system. These two sysiems also differ in the way they organize scarch throug
j::- classification trees. Both systems carry out a depth-first scarch through this space. staruing at the
<. general classes and adding more specific subclasses later. However, since Michalski and Stepp’
:{ all relevant data available at the outsct. 1t can use this information to sciect the best branch at
. contrast. Lebowitz’s system is sometimes forced to restructure a classification tree as new ol
] made; this is cquivalent to backing up through the space of classification trecs, and trying an
',:; This appears to be another casc of the well-known Al tradcoff between knowledge and sc:
Q

W) SEVRED R VR VR o GRS,




A BT At ol A B AR SR AN A R e A OO T A U S et e i A At A A AR A T o O c e ”1

MACHINE 1 EARNING PAGE 1]

knowledge that is available (in this casc in the form of dat). the less scarch is required (in this case through
the space of classification trees).

A final dimension of variation involves the order in which the classification tree is constructed. Both
Michalski and Stepp's and 1.cbowits's approaches hegin at the tp of the tree and work downward. For
example, given the objects in Figure 6, the disunction between targe red objects and small bluc objects would
be madec first, foilowed by the "finer” distinctions at lower levels in the tree. However, there is no reason why
a axonomic scheme could not be generated in the opposite order. classifving the most similar objects together
first. and grouping the resulting classes afterwards. In fact, two systems that form conceptual clusters in this
manner have been described in the Al literature. WolfFs [26] MK 10 and SNPR {27] programs. which operate
in the domain of grammar acquisition, form classes such as nown. verb. and adjeciive carly in the learning
process. and form more abstract classes in terms of these at a later ume. Similarly. the GI AL BER program
described by ).angley, Zytkow, Bradshaw, and Simon [28] discovers regularitics in chemical reactions first by
defining classes such as alkalis and merals. and only later detines classes such as bases in terms of them.
Hopcfully, future work will reveal the advantages and disadvantages of different approaches to the conceptual
clustering task.

5.3. Open Problems in Conceptual Clustering

Most of the cxisting conceptual clustering systems are designed to handle attribute-value
representations. ‘Thus, one direction for future rescarch in this arca would involve extending these approaches
to deal with relational or structural information. In addition. the rcader may recall that the wsk of lcarning
from cxamples can be transformed into the conceptual clustering task by removing the simplifying
assumption of explicit fecedback. However, most work in conceptual clustering retains the assumption that the
learncd concepts are “all or none”. Thus. a second direction for rescarch would involve extending these
mecthods. cnabling them to learn incxact concepts such as dog or chair in which some features arc more
central than others. Since conceptual clustering methods do not rely on a strong distinction between positive
and ncgative instances. tis should be rcasonably straightforward. It simply has not been a major focus of the
rescarchers in this area.

A final rescarch area relates o the importance of function in our cveryday concepts. Nelson {29] has
argucd that children’s very carly concepts are often functional in nature. For example. a ball is something that
onc can bounce. and a chair is somcthing that one can sit on. Only later, Nelson claims, arc structural features
added to these concepts. This suggests that a child’s goals play an important role in the way he organizes his
view of the world. Morcover. this tics in with Winston's approach o Icarning from cxamples, in which the
learner uscs a functional description to simplify the learning of structural descriptions. One can imagine a
learning system that. starting with certain goals, formulated a set of function-based core concepts without
using cxplicit feedback. and which then used Winston's method to add structural information. This would be
a radically diffcrent approach to conceptual clustering. but onc which appears to have considerable potential
for modcling the human process of concept formation.

6. Language Acquisition

A fourth major arca of machinc learning research has dealt with the acquisition of language. In many
ways, the litcrature on language Icarning stands apart from other work in the ficld. For instance, more of the
researchers in this area have been concerned with modeling the human Icarning process than have workers in
other arcas of machinc Icarning. In addition. relatively little contact has been made between work in this arca
and the work on concept learning and strategy learning. For this reason, and for lack of space, we will not
attempt to cover Al approachcs to language acquisition is as much detail as we have other arcas. Rather, we
will attempt to state the problem and provide a simple cxample. More detailed reviews of computational
approaches to language lcarning can be found in Anderson [30). Pinker [31], and Langley [32].

Early rescarch on language acquisition focused on inducing grammars to predict a set of sample
sentences [33, 34]. More recently, most workers have reformulated the sk in terms of learning a mapping
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between a set of sentences and their meanings. Anderson [30) has argued that this situation is similar to that
o encountered by children. since early sample sentences gencrally refer to some situation or cvent present in the
child's environment. Figure 7 presents such a sample sentence and its mcaning, Some workers have focused
on sentence gencration (most of the psychological data concerns children’s utterances). others have studied
learning to understand sentences. and still others have been concerned with both issucs. Some rescarchers
have assumed that connections between concepts and therr associated words are aircady known, while others
attempt to Icarn this mapping along with the relation between meaning structures and grammatical structures.

\ )
.:\
N
LD
)
*boy *bounce *red *ball '
b - The boy bounce ed the red ball.
o Figure 7. A simple sentence and its meaning,
.
3 In modcling language acquisition. the learning system is presented with a sct of Iegal sentences and their '
i associated mcanings. The recader will recall that negative instances play an important role in Icarning from
O cxamples and learning scarch methods. and one would expect a similar situation here. Thus, the fact that only
NG legal sentencces are presented might be viewed as a scrious problem for language lcarning systems. However, .
o recall that the task is to lcarn a mapping between sentences and their meanings. ‘This mapping is never carried
o cut by a single rule. but rather by some ser of rules. For a given sentence-meaning pair. some of thesc rules
may apply correctly, some may fail to apply when they should. and still others may apply when they should
. not. The latter two cases correspond to positive instances (errors of omission) and negative instances (errors of
- commission). respectively. ‘Thus. at the appropriate level of analysis. both positive and negative instances do
- arisc in the language lcarning task.
.::‘ For example. in order to describe the meaning structure in Figure 7. the learner must have some rule for
: saying the word “the”, another for "boy”, another for "bounce”, perhaps another for "cd”, and so forth. Each
» of these rules may be overly specific or overly general, Ieading to errors of omission or commission. In terms -
N of finding the correct conditions on such rules. the language Icarning task is more difficult than the others we -
o have cxamined. since arbitrary exceptions often occur. Thus, the learner may decide to say “cd” after the X
g word for any past action, and then discover the numerous exceptions to this rule. In fact, young children often y
J produce overgencralizations like "runned” and "hitted”. though they cventually recover from these g
(] problcms.s In addition, in order to organizc its knowledge. the language fcarner may also need intcrmediate
s level rules for describing the agent of an cvent, the action, and so on. This further complicates the Icarning ‘
" task, since crrors can occur at different levels in such hierarchical schemces, making credit and blame difficult )
N to assign.
o In summary, the language acquisition task involves lcarning a mapping between sentences and their
" meanings. In turn, this provides the equivalent of positive and negative instanccs, letting the learner acquire
’.
'Q
L sSelfﬁd;e [35] has devcioped a computational model of this process of overgencralization and recovery.
X
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rules in much the same fashion as in other areas of machine learning. However. the tisk 1s more difficult than
most in that it often involves arbitrary excepuions, as well as intermediate Ievel rules tor which one can never
attain complete feedback. ‘The lunguage acquisition task is complex enough that we cannot hope to cover it
adequately here: however, this brief overview may have given the reader some idea of its relation to, and
differences from, other arcas of machine learning.

7. Conclusions

In this paper. we examined some of the task domains studied by rescarchers in machine learning —
Icarning from cxamples. Icarning scarch methods. conceptual clustening. and language dequisition — and
considered some relations between those domans. A number of common threads emerged from this
X cxamination. One of these was the notion of scarch through a space of rules. and various methods for
directing the scarch through this space. Another was the idea that learming from examples can be viewed as a
) simpler version of the more complex sks of learning search heuristics and conceptual clustering, in that
credit assignment is simplificd und feedback is present. We found that some arcas, such as data-driven
approaches to lcarning trom cxamples. appear to refatively well understood. while in other arcas, such as
learning during the scarch process. much work remains to be done. In cach of the domains we cxamined. we
found a number of open issucs that remain to be explored. Among the most exciting of these was the
T potential for using functional or causal information in directing the Icarning process.

In addition to those aspects of machine learning we have covered. ongoing rescarch is addressing a

. number of exciting topics we have not had the space to discuss. One of these involves attempts to automate
. the process of scientific discovery [11, 36]: ultimately this may icad to advisory systems that aid scicntists in
their rescarch. Another arca that has received considerable attention recently concerns methods for reasoning
by analogy with prior experience {23]: systems that solve problems in this manner could be considcrably more
.. flexible than cxisting Al programs. Another rescarch focus is Icarning from instruction. in which the system
g acquires knowledge directly from a textbook or tutor. This is probably the most immediately applicable of all
machine learning methods. duc to recent advances in natural language processing. Machine learning, despite
its recent emergence. has devcloped ncarly as many tascinating problems as rescarchers to pursuc those
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. problems. As a result. more collcagucs arc always welcome, and we hope we have communicated some of the
e excitement in this rapidly developing ficld to the reader.
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