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L‘ ABSTRACT
‘iThis paper investigates the formalization of an important class of
management decision problems. The problems considered are those of making
equitable workload assignments to personnel. The paper proposes a series of
intuitively appealing assignment rules, including random assignment, fixed
assignment, block rotation and rules that reverse inequities caused by the
last period's assignments. It is shown that in the two-person case none of
these rules satisfies the simple criterion that cumulative differences of
workload assignments among personnel become and remain small. Differences in
the properties of these rul1s are investigated under three additional but less
strenuous criteria. It is shown that a new assignment rule called the
"counter-current” rule does satisfy the criterion stated above; further, it is
shown that it is an optimal rule under a fairly weak set of requirements. The

extension of the results from the two-person case to the n-person case to the

n-person case is discussed briefly and some initial results are presented.
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. . SIGNIFICANCE AND EXPLANATION

ls: Consider the following assignment problem. A car rental company wishes
x:E . to assign cars in such a way so as to equalize wear. The assignment rule must
55 reflect the fact that the wear introduced by a customer is a random

ii quantity. A similar situation is faced by a manager who must assign random
:if workloads to employees in an equitable manner. In this paper, we consider

A decision rules for problems of the above type. We show that while a number of
?ﬂ commonly used decision rules have undesirable asymptotic properties, there

ES exists a rule, which we call countercurrent, that has good long-run

characteristics and is optimal for a reasonable criterion function.

Lo
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Furthermore, the countercurrent decision rule is easy to implement.
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EQUITABLE ASSIGNMENT RULES

P. Glynn and J. L. Sanders

1. Introduction

Consider a facility with two employees that is required to process two tasks
per day. Assume that each task has an associated index of effort and that
the task effort indices form stochastic sequences. The goal of the facility

manager is to assign tasks to employees in as "equitable" a manner as

possible,

The concept of equitable treatment of employees is common in the organiza-
tional behavior literature., In particular, the perceived equity of pay
received for work delivered has received attention. According to Shapiro and
Wahba (1978), "Dissatisfaction (with pay) results in many dysfunctional
reactions such as turnovers, absenteeism, alcohol and drug problems, union
formations, strikes, slowdowns, decreased performance, grievances, increased
training costs, high accident rates and in turn increased unemployment and
sceident insurance costs.”™ Also of interest are definitions of perceived
equity based on perceptions of the ratio of rewards to the individual from
the organization to the input effort provided by the individual and the com-
parison of these reward ratios among individuals in the organization. (Adams

(1963 and 1965))

Shapiro and Wahba (1978) in their empirical study, show that social comparison
of pay received for work done is the single most important variable in
explaining pay dissatisfaction. Andrews and Henry (1963), who surveyed
managers who were dissatisfied with their pay, report that 37% of those

managers felt that their subordinates had a better outcome/input ratio than

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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I they did. Lawler (1971) reports similar results. In the area of pay satis-
: ':: faction, perceived equity clearly is an important, and possibly the premier
ro tasue,
L |
) Communications with a number of directors of nursing in acute care hospitals
LA
2 J indicate that perceived inequities of work assigmments among staff nurses can
Ea, 3
B ) profoundly disrupt a nursing unit, resulting in absenteeism, turnover and
) other problems cited by Shapiro and Wahba. In this case, the equity issue
| g\: surfaces around work assignment alone, aside from any differences in pay.
‘fl
A ,,,
In a related setting, Adams (1963) has developed a theory of motivation
N2 related to perceived equity of rewards. He explores the implications of
Y
! equity for prediction of individual behavior in business organizations.
L
= In our case, we assume that the manager is only free to adjust work assign- |

ments. Thus, the equity issue refers to equalization of the work effort

assigned to the employee pool.

(1.1) Exsmple. A director of nursing msnages two nurses and two nursing

uits., Assume that the difficulty of each assigmment is given by the combined
:‘;35 patient care acuity measure associated with the patients on a unit for the
gs‘i shift of duty being considered.

f»"l

.::.z‘ Nursing care acuity measures are systems that survey the patient's need for
:z:s‘ clinical care, assistance with daily living (e.g. feeding, bathing, etc.),
V% education, emotional support and other aspects of nursing care. They are not
—‘; designed to assess the severity of illness of the patient. They are instead

used primsrily to assess the smount and level of nursing care required.
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Clearly, as patients come and go, the sum of the acuity levels of patients on
a unit may fluctuate unpredictadly. In some cases, the acuity assessments
made on a unit at the beginning of a shift will remain sccurate over the
entire shift. In this case we know in advance the level of effort and skill
required to staff that unit on that shift, In other cases, such as psychia-
tric and geriatic units, the assessments made at the beginning of the shift
may be grossly inaccurate at the end of the tour. Older patients may become
confused and psychiatric patients may experience an exacerbation of their con-
dition, thus requiring higher levels of attention. In the first case, we
assume that we know the acuity requirement in advance of the work assignment
event though that level varies stochastically from assignment period to
assigmment period. In the second case, we cannot predict the level of acuity
associated with an assigmment in advance, although we may know the average

value of acuity associated with the assignment.

The prodlem of equalizing effort also srises outside of the nursing context

described above.

(1.2) Example. The manager of a typing Pool receives two typing assign-

ments per day. The goal of the manager is to assign the typing tasks among

the two available typists so as to equalize the amount of work assigned to the

employees over s given time horizon.

(1.3) Example. Consider s factory production unit with two machines. On

each day, the unit is required to process two tasks. The goal of the produc-

tion manager is to assign tasks to the available machines so as to equalize




(1.8) Example. The manager of a car rental company wishes to assign the ]

company's two cars to customers so as to equalize mileage.

In this paper, we will analyze decision rules for the above task assignment

.“}i problems. Section 2 develops the mathematical framework for the problem and
1N
“,} discusses basic properties of several common, intuitively appealing decision

rules. In Section 3, we examine a rule, which we call counter-current, which

is optimal with respect to a number of different criteria. Section U4 is

devoted to the finer stochastic properties of the counter-current decision
< { rule. Finally, in Section 5, we briefly discuss the n-task, n-person case,
3 and offer some concluding remarks.
P
N
' 2. The Class of Task Assignment Rules
:: In order to develop a mathematical framework for the task assignment problem,
F“‘ we consider Example 1.1. Let the acuity measures on day n for the two
01 '
v aursing units be given by Vn and Hn, We assume, throughout this paper, that:

At. ((Vn. Hn) tn > 1)} is a sequence of independent, identically
distributed (1.i.d.) random vectors (r.v.'s)

A2, there exists K < = such that P([D | <K} =

A3. "Dn < x} has a density which is positive on [-K,K]
vhere Dn = vn - Hn

AV, ED > 0.
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E. 2 . We also suppose that there exists an independent sequence {U :n > 1} of {.1.d.
.~1 n
"\,'-2 uniform r.v.'s.
3t
La e
22
- A decision rule is a sequence {Gn:n 2 1} of r.v.'s taking values in {0,1},
; , A decision rule is said to be a randomized non-anticipating decision rule
A
AN
Eﬁ.{' 1 v W a v, W)
abs o =Ly <p 1l %% 0 Ta-1t Tacl, Ta-lt et e

NN a=—"n
4
é; ::i for some Borel-measurable function f, and real number g (IA denotes a r.v.
Ao
t» which i3 1 or 0 depending on whether or not A has occurred). A rule is said
)

‘v to be randomized and strictly non-anticipating if it can be represent-
M od as
SN ]
Nty E(V, W ,0 v W a ).
L %~ I{Unf_pn} athir Mm%t 7t Ta-1® Ta-l’ Ta-l
b A
KhY
Set
n

X =Lfav, +(1-a)v

o 1_11 i 171
)l a
“3 Y, =L (1-0)V +au.
;. 2 i=1
LM
' N If we follow the nursing unit example, we interpret xu and Yn as the cumula-

:;', tive smount of task effort assigned to nurses 1 and 2, respectively, by time
» b
,,.;- n.
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(2.1) Example. Set a = 1. Since EDu > 0, Zn + = 3.3, where

2‘ s Xn - Yn.

Such a decision rule is clearly inequitable, due to an obvious lack of

symmetry. Any "good® rule should be symmetric in the sense that for all n,

-> ->
’{"n - olvn. wn} ® 1/2 a.s.

shere Vﬂ = (Vl .....Vn). ﬁ’n 2 (H‘,....Hn). Other desirsble properties of a

decision rule are:
(P1). the r.v. llnl should grow as slowly as possible
(P2). E(T |X > Y ) should be ss mall as possible, where
T, = dnflm > a:X <Y}
(P3). N, /n should be as close to 1/2 as possible, where
o
. - £ I{xk > Y )

Before proceeding to a discussion of optimal decision rules in Section 3, we

first examine five decision rules that either have been used in practice for

scheduling or are intuitively appealing as assigmment rules,
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(R1). a =1,, vhere A= {u, < 172}
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@ 41 " 1T, vhere A= {ul < 1/2}

(n2). am - IA,

(R3). o -‘IA‘. vhere A = {Un < 1/2}

150 - -
¢ (®4). o 1“. vhere B = v cy2b, s =z _ <z .}, forn>2.

2. d @s). a = I‘n. vhere 8 = (U <12}, 8 =z , <z ,, 0 >0l

(z“_1

Sy

>2 ,, D <0} fora > 2.
-~ "a=2" "n -
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by flipping a fair coin. However, once these assignments are made they are
assumed to remain there indefinitely. 1In other words, if nurse "A" draws Unit
2 on the first assignment it is assumed that she/he remains on assignment
there in the future. This rule is "fair" in the sense that both nurses have

equal probability of being assigned to a particular unit.

Rule R2 makes the first assignment as in Rule R1 but thereafter strictly
rotates the nurses between assignments, This rule is a trivial example of
the "Block Rotation™ systems that have been used in personnel scheduling for
some time. The rule is "fair® in the sense that both nurses are assigned to a

given duty station the same fraction of the time.

Rule R3 assigns personnel to duties by extending the randomization employed
at the beginning of Rule Rt to every period. This "purely random" rule could
be realized in practice by repeated application of the "coin tossing"
mechanism and may be approximated by haphazard processes where the assignment
mechanisa employed no previous memory of previous assigrments or their

outcomes,

Rules R4 and RS look to the previous period and examine the outcome of the
assigrmuents of that period. The assignment made in this period attempts to
reverse the inequities of the previous period. In RS, the rule is "clair-
voyant®; it assumes knowledge of the true acuity measures for the shift before
the sssigments are made. Rule R4 is the non-clairvoyant version of RS, in
wvhich the outcome of the assignment is unpredictable. Both are "fair"--they

try to continually reverse any inequities that arose from the previous

-8~
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period's assignment. While it may be difficult to point to instances in
which these rules are employed explicitly, they represent a natural tendency

of management to compensate employees for previous inequities.

The following table summarizes the behavior of the five rules under criteria

P1 - P3 (all limits are limits in weak convergence).

i Pl lewl/2{z| | = s c s.C gc gC

[ 2  ad

vy >
y P2 | E{r |x >V} = w © w ®

P3 lim Nn/n L L L L L

[ pand

In the above table, the limit r.v.'s C, L , and L have distributions given by
1 2

=~ P{C < x} = (zlu)llzf‘ (-t¥/2)de; x >
"\(' < 3 exp(- 2) t; x>0

s 1’{1.l <xt=l0;x<o0

e 1/2; 0<x<1
e

) 1; x>1

1Y
L] kx

P(Lz _<_x} - z(arcam(xllz))/n’ 0<x<1
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O g = (var(D ))]'/2
RO ] i
- 2:1/2
7 9, (EDi)
K- ¢ = (ED? - (ED,-E|D, [)/P{D, > oh /2
:: » i i 1 1=
/‘.i 1/2 :
" . - 2 _ 2
X o, = (ED} (z|01|) )
.‘1
-,
N While the rules R1, R2, R3, and R4 have some intuitive appeal as "fair"
LS
i assigmment rules, we see from the table above the none of these simple rules
e
&:: satisfies performance criteria necessary for a truly equitable assigmment
Y
A"
S0 rule. First, all the rules have the property that the cumulative difference
~
Py in acuity measures ( Zn) grows as the square root of n or faster (in the case
x o
N of R1). In the case of property P2 we find that if, on a given trial, one of
,,‘-'i the nurses is ahead of the other nurse in cumulated acuity measure, then in
o
7
f.‘:-f the case of R1, R2 and R3 the e) »ected time required to equalize the cumulate
b
iy
05 scuity measures is infinite. In the case of the third property, we wish to
Y know the fraction of the time that one nurse finds her/himself with a higher
.
:‘.'.j oumulative acuity measure than the second nurse. Ideally, this random vari-
E ‘4.
o able would converge to a distribution with a single atom at 1/2. We see that
ud
e none of the rules has this property. In the case of R1, the distribution
\. .'q converges to a single atom at 0 or 1; in the other cases, the convergence is
O
1 .\ﬁ t0 the arosin law, which guarantees that although the limiting distridbution
"_"
“'_4 is symmetric, 1/2 is the least likely region for the limit random variadble.
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With the exception of the Ri entry for criterion P1, all entries of the tadle
may be verified by routine application of the central limit theorem (CLT) for
1.i.d. r.v.'s, classical random walk results (Theorem 8.4.4 of Chung, (1974)),

and the functional form of the arcsin law (Billingsley, (1968) p. 80).

One merely uses the following representations for Z :

a
m). 2z, = (2, - 1@ D)
( n A ju1 1
a
R2).  Zyq = @I, -DE Dy = Dyyy)
: )
B . z - z (21 - 1 D
(23) RN N
a
(). 1z, = (- 1)(1§1|ou_ll - Iny, 0

vhere A = (D‘ >0,0 = 1Y {l)1 < 0,3 s 0}. The R4 entry uses the fact
that zn then has the form

n £(4)
z, - (21A - 1)‘:1(-1) D,

where A has been defined above and £(1) = max{k:S, < 1]}, where S, = 1 and

Sp4q = infla > §.:0, > 0}

To obtain a CLT for Z,, note that

a-lSkn
zg = (2 -1(p |+ L C-" E D
n A 1 el =5, 41

o]+ T n¥8)
@1, - V(D | + L (-1
4 @1y U gl k
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where (B :k > 1} 13 1.1.d. Now, 0%(Zg ) = no®(8) and
n

2 - gl - 2 - 2 _ A
q(Bl) o(ol)l-:(sz s‘)+o(st sl)(ED‘) +zz-:n‘(|-:(sz s‘)sl)

A
where By ® Bk - (skﬂ - sk)EDI: the above equality is the second moment
version of Wald's identity. To simplify the above expression, observe that

32 - !’;l is geometric so

E(s, -5) ~ 1/1’(»l > o}

s - - 0}2. .

a’(s, - s) plp < o}/e{p > }
Also,

E{(s -s)B|s -s =k} = k(E{D |D = 0} + (k-1)E{D |D < O}y
2 1 1) 2 1. 1 1 - 1 1

B(S, - 5,8, = (ED + “";I(n‘ < op))/R(D 2 0F.

Substituting the above relations in our expression for o (Bx) and simplifying,

we find thato?(Z ) = nol/P(D, > O}. Application of the classical CLT there-
-3
fore proves that

1/2

2V zzs - (a*/e{p, > O}) N(0,1)
L}

as n + », where =>denotes weak convergence, and N{(0,1) is a normal r.v. with
zero mesn and unit variance. Since £(n)/n ->P(Dl: 0} as n + =, we may apply

Theores 7.3.2 of Chung (1974) to conclude that

t V2, = @iy > oh'? weo,1)
L(a)
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4'; as n+ o, Noting that n'l’z(ls - ln) =->0, a standard argument then i
-, L(n)
- yields
h H
-1/2 b § |
a z‘ - 0. §(0,1) i
N |
4
. as n+ =, which is P1; for P3, we apply the continuous mapping theorem to an
"4
s * invariance principle version of the above CLT.
f The following inequalities are easily proved c:z < 0',, o. < az, as < az.
>
% Thus, in terms of criterion P1, R1, R3, and R2 are the worst, second worst,
snd third worst decision rules, respectively. Somewhat surprisingly, it can
be shown by example that both o. < <:vs and 0, < 0‘ are possible -- the direc-
»
:‘f tion of the inequality (and thus the P! performance) depends on the joint
~
N distribution of (Vi. "1)'
X
i 3. Counter—current Decision Rules: Definition and Basic Properties
N
Consider the deterministic situation where D, = U > 0, We then have
pd
N a
i (3.1) Lemma: The rule (ui.:l < 1 < n} which minimizes E{I lzkll is given
' k=1
o
N by
:" G = I(u < 1,2}, Ck - l( < o}, k>1.
0 ! - zk-l
-
£
- Proof: Observe that
W
1
% ~13-
-
‘ k
14
A
.,‘l
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Ve claim that for each k > 1,

%
a3 x . k+l

b a4 Itzoj-1|+|l:2aj-1|31

b - -l

* i=1 b

" for if either term vanishes, then the other term must equal 1. Hence,
gy

g a

. 3.2 g |z]> g

'y k=1 %

.

..f ifn=2jor 2)-1, MNow, it is trivially verified that the rule given in
'§ the leama attains the lower bound. ||
. The sbove rule behaves nicely for deterministic sequences. For example,
% |2, | rematns bounded (see P1), E(Ty[Xy - Yo} = 1 (see P2), and N /n +1/2
P
b ': (see P3). This behavior suggests that one should try to generalize the
; rule to the stochastic case,

g*

§ (3.3) Definition: We call the rule defined by

a =1 a = I
x 1 "o 12 T T e, <o

the strict counter-current decision rule, and the rule

adn)

= B )

° " Hu <2}

-Tatyl

¥ 29

- +1
%"z _ <o, p >0 "z, >0, 0 <0
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:w'; ' the counter-current decision rule.

::, The strict counter-current decision rule is strictly non-anticipating and the
:"1' counter-current decision rule is anticipsting. We now proceed to derive
<.

. certain asymptotic properties of {Zn n > 1} under the two decision rules.
\-’ First, we examine the counter-current decision rule. Note that for n > 2,
X

- (3.9) 2z =2 - (sign2) |DM_1|

Q and hence Z i3 a Markov chain (M.C.) on the real line R; its transition
. y - kernel is given by

; !‘(x,:) [y ’{zn-bl < xlzn = g)

n)‘

b2

k] 1-6G(z-x); >0

"" ®lo(zx-2); 2 <0

1 1 vhere G(x) = P(lbnl £x}l. It is easily verified that

Y

% 1 -

(3.5 n(y - PR Q - oyl

e

! “

;.3 1s & stationery density for {Z :n > 1) (see Feller, (1971) p. 208) for
'#

.
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cslculation of a closely related density). For further analysis of this

M.C., it is convenient to introduce the following notion.

(3.6) Definition. A M.C. {Zﬂ tn > 1} on R is said to be A-irreducible
1f there exists a probability measure A(.) such that if A(E) > 0 (E a Borel

set), then

-
£ 2%{zcE|2z =z} >0
a=1 o 1

for all z.

(3.7) Lemma: Under A1 - A%, then M.C. (%:n > 1) defined by (3.4) is

A-irreducidble.

Proof. Taking A to be normalized Lebesque measure on (-K/2,K/2) we

observe that by choosing n = [z/K) + 2, ([] denotes greatest integer) one

obtains
r(znezlz‘ =2z} >0

for sny E for which A(E) > 0.]]
We can now prove the following ergodic theorem.

(3.8) Theorem. Let {Z :n > 1} be defined by the counter-current decision

rule, and suppose that A1 - A3 hold. Then, for any function k(.) satisfying

7 1kty) |k (y)dy < =,

=16~
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AE B9 1z wzer kinn (ydy a.s.
s B jo1 - 1
D Proof. By Lemma 3.7, we have that Z'l is A-irreducidble; thus h!(.) is the
*' unique stationary probability of {zn :n > 1) (Revuz (1975)). It follows that
$ ifr z, has the stationary distribution, then lZn n > 1} is a stationary ergodic
sequence (Ash (1972)), so one may apply Birkhoff's ergodic theorem (Lamperti
_‘;,"w' (1977), p. 92) to conclude that
i
i
- 1 a L)
s h(:)r{; L k(zj)*f k(y)h (y)dy|Z =3} =1
R -- j-l - 1 1
L}
: 1 0 - .
e, (3.10) t.e. P2 T K(ZP*S k(y)h (y)dylz =2} =1
i . . j=1 - H 1
%
:;, for a.e. z ¢ [-K,K] (observe that by A3, h(.) vanishes for |z| > K). But if
§
! zn evolves according to the counter-current decision rule, then |[Z | = lel .
¥ 1
and sO ll is concentrated on {-K,K] and has a density there, Thus, (3.9)
follows immediately from (3. 10).||

- .

e
o

In particular, setting k(x) = I[O ) (x), 1t is immediate that
]

t o

ll/n -+ 1/2 a.8.

Thus, the counter-current rule leads to a 2'l sequence with a "good" P3

|
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property. Also, (3.5) implies that Zn remains "bounded® in some sense, and

thus improves on decision rules R1 - RS (in which |7“| grows at rate n]'/z ).

As for criterion P2, observe that on {zn > 0},

B
e T - staf{k:[D_ .| + ... +|Dn+k| >z}
%
I‘
¢ from which it follows that r-:('rnlzn} on {Z, > O} is given by M(Z) + 1,
» where M(x) is the renewal function given by
4 .
e
=
‘ M(x) = -ax{k:IDlI ...+ |Dk| < x}.
]
A
W2 Thus, by the elementary renewal theorem, E{‘rnlzn} 1s a symptotic to znlzlnnl
i'-ij'
n : for z‘ large. Hence, (Zn:n 2> 1) performs well under criterion P2 when a
.'V H
& ! counter-current policy is followed.
1’: We turn now to the asymptotic behavior of Z_ under the strict counter-
n
:" ocurrent policy. Once again, {zn:n 2 1} is a Markov chain, this time
L
,‘ defined recursively by
W (3.11) 2 z_ - sign(Z)° D
“"’- 3. ntl * & - SiEN(L, o+l
LK
Y 24
.
Our first order of business is to show that Z possesses a stationary
2 distribution under the strict counter-current rule. Let Tn = |zn| H
e
f observe that I satisfies, for n 21,
‘K]
Y
— (3.12) T, = IT, = Doyl
‘N
N
s‘) ]
s -18-
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I3 We shall need the following result,

e

o

Y

(3.13) Lemma. Let En be defined by

L +

. - - L] - Th
:1: & (€, = Dpyy) s foran 2 1, with E‘ |n‘| en,

:-:. < .
oo Te 2 &+

* Proof. For n = 1, the result is trivial, Proceeding by induction,
. =200

P4

.’i assume the inequality holds for n = k, and consider:

£, .

;»;f. Pyer = max{ly = Dpys Dy = Ty

.

]

” < lax(l‘k = Diyre K}

U

e Sux{f +K-D ., K

et

P, +

1 . < nax{K + [Ek k+1] , K}

A .

® K+ I8 - Dyl
s
: "k+8a
¢ The next result follows easily from Lemms 3.13.

(3.18) Proposition. The M.C. (an 2 1} defined by (3.11) possesses a
o5

, stationary distribution.

3

; Proof. First, observe that since !Dt > 0, the process En possesses a
] limiting distribution (Kiefer and Wolfowitz (1956)). As a consequence, for
"'

:‘ € > 0, theire exists K such that

s
¥
.,

R 7. ez A

taf P(E <K} >1-¢
k .
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(' o from which it follows that
A
SRy
o ing P, <k +K>1-¢
oSy k
Thus, the probabilities P(I‘ke-) are tight (see Billingsley (1968), p. 37),
::-: from which it follows that the probabilities P(Zke-) are ~ight. A glance at
SR
«s}- (3.11) shows that the recursion is continuous in Zn. and hence a well-known
i
o :?. theorem on weakly continuous kernels may be applied (see, for example, Karr,
, (1975)) to conclude that Z possesses an invariant probability.
'. ..
22
44
252 Given Lemma 3.13 and Proposition 3.14, the proof of the following theorem
b
> follows the ssme pattern as that of Theorem 3.8.
Yo
A (3.15) Theorem. Let (Zn:n > 1] be defined by the strict counter-current
1
1
%‘\ decision rule, and suppose that A1 - Al hold. Then, 2n possesses a unique
stationary density ha and for any k(.) satisfying
. , .
N ! et n (ndy <=
& e
U it follows that
.47
g 12 -
| (3.16) = L k(Z,)*f k{y)h (y)dy a.s.
"J'I 8 a1 b M, 2
-
ol
A Observe that if hz(z) is stationary for zn. then so is hz(-z). Thus, by

uniqueness of the stationary distridbution, hz(z) z hz(-z) and therefore

f n,(2)dz = 1/2.
o

So we have, by applying (3.16), that Nn/n-'llz a.s.
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and therefore the strict counter-current rule behaves well in terms of both

eriterion P1 and P3 ((3.16) says that IZn| remains "bounded").

As in the case of the counter-current rule, the analysis of property P2

requires the representation

T - -tn(kzbnﬂ +...4D . > zn}

vhich 1is valid on (Zn> 0l. Although the D 's are not positive r.v.s, it

18 still true that the renewal-type result

!(T,I z )~z /ED

L}
holda for Zn large. If U(n.m) = Dn+1 ¢ eee @ Dn-hn' Wald's equality implies
that B(U(n.‘l‘n)lzn} = z{'rnlznr ED . But the boundedness of the D 's implies
that 7, < U(n,T;) £ %, + X, from which the asymptotic relation follows.

Thus, the strict counter-current policy behaves well under P2,

Finally, we shall show that introduction of "noise"™ into the problem always
leads to a degradation {n the behavior of counter-current-type rules. From

(3.5) we have that

EID lﬁl

-
r n
LA v
for r > 0. 1In particular, taking r = 1 and applying (3.9), we obtain
2
a !Du !Dn Vlr(Dn)

1
(Ban =L jz)+ « 24
B kel %) 2elp | 2 zlnnl

a.8. From Lemma 3.1, {t follows that snn/z is the deterministic lower bound;

-2]~
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introduction of stochastic noise leads to the presence of an additional

positive term given by var(bn)/EDn.

This discussion also carries over to the strict counter-current decision rule.
The argument {n this case centers around (3.12). If ' has the distribution

of |2|. where Z has stationary distribution hz. then from (3.12),

(3.18) rD [T - p|

(2 denotes equality in distribution), where T and D are independent. It is

evident from Lemma 3.13 that

P(I > x} < P{E + K > x}

where £ is the limiting distribution of Ek. It is well-known that under A3,

ﬁk < o for all k, (Kiefer and Wolfowitz (1956)), and thus EI'k < o for all k.

S0, we square both sides of (3.17) and cancel common terms to obtain
- ep .2
2=/ |ylh (ndy - 2t

P .
ZEDn_u

Thus, we obtain that under the strict counter-current decision rule,

2
!Dnﬂ a.s.

2 EDu-&-l.

Ly |z
(3.19) = hd
B =1 %

It is worth observing that since I-:Dn < E|Dn| » the strict counter-current rule
behaves worse than the counter-current rule under the "sum of the absolute

value® criterion (compare (3.17) and (3.19)).

-22-
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.::.-_ 4, Optimality of Counter-current Decision Rules

v‘!'

Ll

'h:\. :

:‘.‘}'.. In Section 3, we saw that counter-current decision rules enjoy a number of
- deairable properties —- in this section, we shall show that counter-current

::"»’.l rules possess certain optimality characteristios.

(4,1) Theorem, Let (Zn tn > 1} be constructed according to the counter-

current decision rule. Then, under A1 - Ali, the counter-current decision

rule minimizes a.s. both

n+T -1
n
1.) L q(z) on {zn > 0}, where q(.) 1s any increasing function

-~ ken

{2 —_—

e 11.) unlznl >K

e a
"‘~ﬂ:
L\ over the class of non-snticipating decision rules.

)
X '.‘\'
by
_\3_' Proof. For 1,), suppose that the counter-current rule is first violated
B Uy

' at time k, where n < k <n + T . Then, for k <m < n « T , we have
hl >z, . +|p] -1[D,.] -|o] =2 +|p|
%) (4.2) 2,2 2, ) + 10l = Dyl =eevem 101 = 2, + 1D

5%

ot
'-:\'4 shere Z' is constructed from the counter-current rule. Inequality (4.2)
'\.

immediately implies (4.1) 1.).

NNy

\_,ﬂ.:

:-'_.'- For 11.), it is clearly sufficient to prove that for any non-anticipating
X
-s:,,.-: decision rule,
- _

(4.3) 11m|2y| > K a.s.;

o, n

oG

-f:d'.

<,

O,

"\3_" -23-
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the result then follows since the counter-current decision rule clearly

KA~ v

I L

attains the lower bound of (4.3).

-J
~
i Note that for fixed € > 0, and any non-anticipating decision rule,
- A A
J (4.4) 1'{IL>M__1 -K| <¢, |D,-K-2]|<e¢,

W s - Rl <elz, Lo, z)

AN a

-

( (Q+e) -F(K-E)) (F(Z +l<+e) - Kz, +K-e))

2 >( min, F(ejf2) - F(e(§ - 1)/2))* > 0

o 1 <3 <¥Ke

"

A

vhere ﬁ = [K/7€] ([] = greatest integer function); Because of the uniformity

of (4.%) over Z;. one can agpply the conditional Borel-Cantelli Lemma (Doob

Nalaln. 8

(1953), p. 323) to infer that

T

el

(4.5) rfln“l -x] <e¢, IDn+z K- znl <e,

'Dn+3 - K| < € infinitely often} = 1

Letting T be a generic time at which the inequalities (4.5) are satisfied,

}

one can easily check (just go through the eight different cases for

Nauch that |z,..] > K ~ 3¢, if |2,| < ®/2.

(Spare Ope20 Op43 43

A similar argument to that used sbove shows that for any decision rule,

AR

T L
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I%nl < K/2 must occur infinitely often, from which it follows that

unlznl > K - 3¢, proving 11.).]]

Recall that in Section 3, we proved that counter-current policies suffer a
degradation in performance when stochastic "noise"™ is introduced. We shall
now show that counter-current policies are optimal for the L' criterion,
thus proving that the optimal policies suffer in the presence of "noise."

To accomplish this goal, we will invoke the theory of Markov decision chains

on R,

We will first deal with the strictly non-anticipating situation. The

decision chain involves two actions @ = 0 ora 1), and consequently two

transition kernels. A cost equal to the absolute value of the state occupied

is charged for each transition; costs are independent of action. With this

framework, the optimality equation for the average cost decision process is

given by

(4.6) Y + n(2) = |z| + ain{Ea(z + D)), E=(z - Dx)}

vhere m(z) is the optimal return function,

(8.7) Proposition. Under A1 - AU, a solution pair (Y, m) exists to

(8.6) and is given by
a(z) = zzlzzn‘

2
Ys zn‘/zanl

-25=
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Proof. Observe that

g

Y J
a
A nin{En(z + Dl), Ea(z - Dl)} - (2! + ED:)IZED' + mnin{-z,2}
4
o =n(z) +v - |z|.]]
g
2%
Al
S
A% e To give a concise proof of the next theorem, we shall consider a restricted
24 class of decision rules,
~
ey 8={@,a,..):lin EZ/a = 0}
L) *\ 1 2 n
Y Note that if a decision rule is not in A, then E; is of order n, which
ad
V .: indicates that Iznl is growing unboundedly in expectation; clearly this is
::;::: undesirable from a practical viewpoint. We henceforth restrict ourselves
-,63 to decision rules in A. ]
"
o
oy (5.8) Theorem. Under A1 - AN,
) .
LY
o n 0?
b3 .9 T celz)> =
L . z
. a g1 K T 2ED

for any randomized strictly non-anticipating decision rule in A; the

:'_'f;; ainimum in (4.9) 1is attained by the strict counter-current decision rule.

j

:j Proof. We apply a theorem due to Ross [1968]. Our class of randomized

"jg strictly non-anticipating decision rules corresponds to the set of policies
.2‘@ enunciated there. Following Ross's proof, we see that for any randomized
'T"; strictly non-snticipating decision rule (whether in or not tnd), Zn satisfies
¥

-26-
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(4.10) ,—-‘- < zz’ - l-:z’ + t :Izkl;
k=l

thus, if the rule is in A, one obtains (4.9) (since E2: < KY. As usual,
equality in (H.10) occurs if one uses the policy which consistently minimizes
the right-hand side of the optimality equation (%.6); this minimizing policy
i3 easily seen to be the strict counter-current rule. However, because of our
A restriction, we still need to show that the strioct counter-current rule is

in A,
From Lemma 3.13, it follows that
(8.11) 7 < 2(x® + EED).

Now, it is well-known that En is stochastically increasing to its steady-state
€ and that EE? < = since zn: < ® (see Kiefer and Wolfowitz (1956)).

Hence, Ez:/n + 0 for the strict counter-ourrent rule.]|

We conclude this section with a statement and short proof of the corresponding

result for the counter-current decision rule.

(3.12) Theorem. Under A1 - AN,
D’

(4.13) lUag t slzk | > —1—

a zzln |

for sny randomized non-anticipating decision rule in A; the msinimum in (¥4.13)

-27-
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{ I is sttained by the counter-current decision rule.
-':.l
ﬁ(
;’ The key idea here is to define an appropriate state space for the decision
= chain. We choose to use states of the form (z,d), where the z component cor-
” ] responds to the current value of the sum of absolute values of Zi's: d cor-
228 responds to the current value of the r.v. Dk Letting m(z,d) be the optimal
XY,
'B return function for the decision chain, it is easily seen that the optimality
equation now takes on the form
N
. 3 Yy +u(s,d) = nin{|z + 4] + Ea(z +d, D), |2 - d| + Ex(z - 4, D)}.
}“‘ 1 1
B
l‘\’!
.Yy The pair (Y,m) which solves the above equation is given by
A v = eoi/2efo |
|
\§ a(z,d) = (|z]| - IdI)IIZEID‘I.
X
.‘-{1 again, the counter-current rule is the minimizing rule for the optimality
S equation. Since lzil < K under the counter-current rule, it lies in A.
.*;
; ?‘.ﬁ Note that the optimality results given above show that the optimality of
,.\
A counter-current decision rules does not depend on the detailed form of the

distridbution of the Dk's. Hence, one expects these results to be quite

robust in practice.

SUMMARY AND CONCLUSIONS

3
o N
)

%

In the previous sections we have formalized sn important class of management

deciston problems, investigated the properties of a number of intuitively

|«

-y
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appealing assignment rules and developed a new class of assigmnment rules, the
ocounter-current policies. We have argued, by citing a number of examples,
that the decision problem under investigation finds application in a wide

variety of circumstances.

Ve have shown that ordinary intuition is often of little assistance in
developing equitable assigmment policies. It is remarkable that none of the
easily conceived assigment rules will assure reasonable local or asymptotic
properties., (This raises a number of interesting psychological and philoso-
phical questions about our ability to make informed judgments about the pro-
perties of stochastic processes from the properties of the "generating”
mechanisa.) We have shown that among the rules considered, rule R1 is worst,
followed by R3 and R2. Rules R& and RS are better than the others, but one
cannot lmow which of these is "better® without examining the distribution of
the D 's in some detail. "Better" refers to the rate of growth of lznl . wWith
faster growth being "worse.® To restate the results in less formal terms, we
see that "Fixed Assigmment™ is worse than "Random Assignment," which in turn
is worse than "Fixed Alternation" (or "Block Rotation"). Both of the rules
which attempt to reverse the last period's inequities (i.e. RE and RS) are
better than the other rules. An interesting new result emerges: under cer-
tain circumstances the "clairvoyant" rule, RS, is inferior to R4, a rule that

does not assume knowledge of the severity of the assignments in advance.

Despite the disappointing performance of the more obvious rules we have
proposed a class of rules (counter-current), which not only have the desired

ssymptotic and locsal properties but also are optimsl in the sense described in

«20a
" a ATt A E A e s T e a e AN RN et a " h aeahn .
LN X o ,-_'.\,\,:.f-__.f.__.:..a\.',.a_..:,_._\.:2.-,_. s
"Y ROV 75 G NS I SIS




ol Aad e % e el e ' R IR

N Sections 3 and 4.

3 N

3 ,-\

‘N

£,

NN An important question arises at this point. Is it possible to extend these

results to the n-person assigmment problem? The negative results of Section

2 almost certainly will carry over into the multi-person problem. More

:: importantly, is there a multi-person analogy for the counter-current rule?
-, Does it have the same properties as the two-person case? In the n-person
‘ amslogue to the counter-current rule, one assigns duties in any period in the
‘;:3 following way: the individual with the largest cumulative workload measure
;I 3 to date receives the assigmaent with the smallest value or smallest expected
“ value. That individusl is removed from the 1ist of individuals to be con-
s sidered and the rule is repeated with n-1 remaining assigments. It can be
‘3‘! shown relatively easily from the results of Section 4 that this n-person
s% generalization of the counter-current rule has at least the following
L desirable property.
5‘
q Lot (X7, ..., X)) be the duty assignments on units 1, ..., n in period t
.‘;b and we assume that the joint density of (xf. cove X:) J18 everywhere positive
¥ on l!:l £ X and lx:l <K for everyi{ =1, ..., n, and every t = 1, 2, ....
; ‘ If the X-veators are 1.i.d., then for any assigment rule
‘:;:: “1ia  max |B: - :l 2K
bl j.k<n
; ' vhere l.l: i3 the sum of all workload measures for individual i through time
:“‘i t. Further, the lower bound of this inequality is obtained by using the
K- n=person counter-current rule discussed sbove. This follows from the fact
:, that 1 U} > j. then the assignment of individual § will be greater than
g
e .
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that to individual { at time t « 1,

A number of related mathematical and psychological issues deserve additional
investigation. The n-person case presents interesting challenges. Consider
areas of application such as equitable distribution of merit pay among univer-
sity faculty or public school teachers. These issues require more complex
sodels since they presuppose inherent inequalities in "true® performance,

though they do share characteristics with examples we have discussed.
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