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DIFFERENTIAL ABSORPTION LIDAR: EFFECTS OF
SPECKLE NOISE

KJELL OSTBERG

1. INTRODUCTION

There is today a need for methods for remote monitoring
in real time of air pollutants. Among the methods studied
for this purpose during the last years, the differential
absorption lidar (DIAL) technique has been found to be
the most promising one '(/Igi_l_dd & Byer, 1971; Byer &
Garbuny, 1973; Hinkley, 1976). |

<Tn the DIAL technique one uses a laser radar with a
frequency which can be tuned in the neighborhood of an
absorption line of a gas in the atmosphere. One measures
the intensity of light backscattered from atmospheric
aerosol particles, a topographical target, or a retrore-
flector. From the ratio of backscattered intensity at two
wavelengths, one on and one off the particular absorption
line, the gas content in the air column between the laser
radar and the scattering volume can be obtained. )4/"(

It is advantageous to make DIAL measurements in the '
infrared region of the spectrum. Most molecules have
absorption lines in that region, and, furthermore, infrared
lasers are eye-safe. However, the direct-detection tech-
nique, which has mostly been used for DIAL measure-
ments so far, is comparatively insensitive in the infrared.
The sensitivity of the DIAL measurement will be limited
by the thermal noise in the detector. It was therefore
suggested by Inaba & Kobayasi (1975) and Kobayasi &
Inaba (1975) that one should instead use heterodyne de-
tection in the DIAL scheme. Then it would ideally be
possible to obtain quantum-limited operation, i.e., shot
noise induced by the local oscillator would -become theé
dominating noise source. They estimated that the DIAL
sensitivity could be increased by several orders of magni-
tude. Later, Menzies & Shumate (1976) and Menzies
(1978) made successful DIAL measurements with hetero-
dyne detection of ozone, nitric oxide, and ethylene. In
these measurements they used CW lasers, and the light
was backscattered from a retroreflector or from rough
surfaces. :

With a pulsed lidar system and utilizing the light back-
scattered from atmospheric aerosol particles, it is possible
to obtain range-resolved measurements. However, if het-
erodyne detection is used in this case, there will be large
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fluctuations from pulse to pulse in the received signal.
The reason is that the backscattered electromagnetic
fields from all the aerosol particles interfere with each
other to set up the total backscattered field. In a time of
the order of 4/v =~ 1us (A =wavelength, v = typical aerosol-
particle speed), the particles have reshuffled so that a new
sample of the random backscattered field is obtained. If
the pulse time ¢, is <A/v, the coherence time instead is
set by i,, since after that time, there also is a new inde-
pendent sample of the backscattered field. This phenom-
enon has been studied for a long time in connection with
microwave radars (see, e.g., Marshall & Hitschfeld, 1953;
Wallace, 1953). In optics these fluctuations in received
intensity are named speckle noise (Dainty, 1975; Good-
man, 1976). It is to be expected that this speckle noise
will seriously degrade the sensitivity of a range-resolving
DIAL system with heterodyne detection. The operation
of the system will then no longer be quantum limited.

The problem with the speckle noise is in general much
smaller by direct detection. The reason for this is that
the backscattered field has a finite lateral coherence
length. By heterodyne detection, reception takes place
over only one coherence area. By direct detection, on the
other hand, there usually is a spatial averaging over many
coherence areas in the receiver aperture. Thus, the vari.
ance of the intensity fluctuations is correspondingly de-
creased in that case. Furthermore, averaging in the fre-
quency domain also may take place in the direct-detec-
tion case.

The purpose of this report is to demonstrate, in more
detail, the difference between direct detection and hetero-
dyne detection with regard to the speckle noise. This is
done in Chapters 2-4. Then, in Ch. 5, I consider the sen-
sitivity limitations imposed by the speckle noise on a
range-resolving differential absorption lidar with hetero-
dyne detection.

2. DIRECT DETECTION

I shall derive an expression for the signal-to-noise ratio
which takes into account the speckle noise. The incident
light intensity is J. The detected power becomes




= [[ 10,

where the integration is over the receiving aperture ares
A. The mean value of the detected power is

Py= (P)=J.J;(I>d’r=<l>.4.

There are two noise sources by the detection: noise from
the detector, and noise inherent in the received power P.
The detector noise is in the IR-spectral region usually
thermal noise and can be represented by a noise-equiva-
lent power NEP. The noise inherent in the received power
may be set equal to a;, the standard deviation of P. Since
these two noise sources are independent, the total noise

becomes
N=V(NEP)*+qi.

Thus, the signal-to-noise ratio by direct detection can be
written

____!l___ 1Y)
VINEP}+ 0%

We shall now calculate the variance o} =(P? —(P>? in
terms of the statistical properties of the incident light.

(P‘)=<jLI(rl)d‘r,J’LI(r,)d’r,>

- fJ:d’r, .”; Iy dhr,,

whm II‘I(r!) and I,nl(l").
We introduce the normalized intensity covariance by

0,= il = <D’

o

(S/N)g=

and assume that C; only depends on g=|r,~r,], ie.,
C;~Cy(g). Then,

®>-red [ o, f [o@en @

Now, the backscattered field is to a good approximation
a complex Gaussian procees, i.e., the amplitude is Ray-
leigh distributed, the phase is uniformly distributed, and
the intensity has a negative exponential distribution. This
is true when the field is backscattered from an inccherent
target (e.g., atmospheric aerceol particles) and in the ab.
sence of atmospheric turbulence (Goodman, 1976). But it
is also true both at sufficiently weak turbulence and strong
turbulence (Lee et al., 1976; Clifford et al., 1978; Pinous
et al., 1978). For intermediate values of the turbulence,
Pincus ot al. (1078) experimentally found a small devia-
tion (st most about 12%) from the unity value of the
standard deviation of the intensity predicted by the com-

2

plex Gaussian process model of the backscattered field.
Thus, in the following we assume the backscattered field
to be a complex Gaussian process.

Then (see Appendix A),
o} =<3, 3)
and
CHe) =y*e), 4)
where
E, E2
7(e)= <—<“l IE l‘:’;

is the coherence function for the received field E. As be-.
fore, E, = E(r,), etc.
Substitution of Eqs. (3) and (4) into Eq. (2) gives

&= [[ @ [[ roen

It is convenient to define

1 e R

Phygzically, m can be interpreted as the number of correla-
tion cells over the aperture area (Goodman, 1965a).
We obtain

<P‘>-PS(1+£).
a-2,
m

and finally from Eq. (1)

(S/N)y= ——T2.

V(NEP)’ +

. 8
7 (6)
»m
The expression for m [Eq. (5)] can be simplified in the
following way: Introduoce the pupil function

1 when r<r,,
D) {o when r>r,,
where r, is the radius of the circular area 4. Furthermore,
change the variables of integration by
p=nNn—Tn,
2K-ll+l'..
Then

m=2([[ " rwae [[ D+ i1 - o)
-A‘(”:r’(e)ﬂ(e)d’e)-l.

where

M)~ [[ Do+ 4o Dl - o1
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It is not difficult to realize that M(g)=the shaded area
in Fig. 1. By simple geometrical arguments, we find

Q0 for 9> 2r,,

Mg)=
4

m= g,;' (f‘r’(e)ﬂ(e)ede)—l

T 1 -1
=E(Le(arccose-eVl-e’)y'(ed)de) , (M

e ¢
2rf.ureoos-——er§— = for o< 2r,.
2r,

where d is the diameter 2r,.

The coherence function y(p) appearing in the expression
for m has recently been studied by Clifford et al. (1978)
and Yura (1978). They consider a lidar system with back-
scattering from aerosol particles and take into account
near-field effects and atmospheric turbulence. The field
distribution E, over the lidar transmitter aperture is as-
sumed to be Gaussian (this corresponds to the lowest-
order mode of a laser with confocal mirrors):

nenen[-(#]. ®

Here, E, is the field at the aperture center, r is the dis-
tance from the center, ¢ is the 1/e intensity radius, k=
2n/A, and f is the focal length. The coherence function

becomes
sor=exa[- (&)]. .

with the coherencs length p, given by

=) [0+ @+ )T oo
Here, z is the distance to the acattering region, and g, is

the coherence length for a spherical wave which has prop-
agated a distance z through a turbulent atmosphere,
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Fig. 2. (A) The ber, m, of correlation cells in the receiver
aperture as & function of dfp,, where d is the aperture diameter,
and g, is the lateral coherence length of the incident light. (B) The

asymptote §(d/g.)*.

o= [1.451&l fo (o) (c;)"'* da] -

C,, is the index-of-refraction structure function and is a
measure of the fluctuations in the index-of-refraction.
Substitution of Eq. (9) into Eq. (7) gives

m= lfé (J:g(arc cos g—-elfl_——gi) exp[—-2 (z-i:).] dg)-l.
)

This function m =m(d/g.) was calculated numerically and
is shown in Fig. 2. Asymptotically m tends to }(d/p.)?,
which can be found by approximating

o(arc cos p— V1 —g*) = §mp

in the integrand in Eq. (11). The integral can then be
solved analytically.

To demonstrate the effects of the speckle noise on a
direct-detection lidar, we now consider the following ex-
ample of lidar data:

NEP =107 watt

Transmitted pulse energy=14J

Optical efficiency =0.3

Backscattering coefficient =10~ m-1 gr-?

Atmospheric attenunation coefficient =0.1 km-!

Receiver diameter =0.5 m

Radins of transmitted beam (the quantity a in Eq. (8))=
0.1m

= oo {collimated beam)

Wavelength =10 um.

Figs. 3-5 show results of numerical calculations obtained
from these assumptions. Fig. 3 shows the coherence length
@c 88 a function of the distance z caloulated from Eq. (10).
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Fig. 3. (A) The lateral coherence length, g, as a funotion of the dis-
tanoe, z, for a case with atmospherio turbulence (C} = 10-3¢ m—%),
(B) 8ame for a case with no atmospheric turbulence (C% = 0).

Results are shown both for the case where there is no
turbulence {C7 =0) along the propagation path, and where
there is turbulence (C% =10-1¢ ;~%3),

Fig. 4 shows the corresponding values of the number
m of correlation cells calculated from Eq. (11).

Finally, Fig. 5 shows (S/N), calculated from Eq. (6).
The atmospheric turbulence does not affect the result, at
least not as long as C% $10-1 %3, In the figure is also
shown P,/NEP, which is the value of the signal-to-noise
ratio without regard to the speckle noise.

It is seen from Fig. 5 that there is a considerable de-
crease in the signal-to-noise ratio at short distances from
the lidar due to the speckle noise. In a real direct-detec-
tion lidar system this decrease can be smaller for a number
of reasons.

One reason is that in addition to the spatial averaging
just discussed, there may also be an averaging in the
frequency domain. The necessary wave-number change

") 4 I
L)

X] D [ 0
£ fowd

Fig. 4. (A) The number, m, of correlation cells in the receiver
aperture as a function of the distance, 2, for the case with atmo-
spheric turbulence (O} =10-1¢ m~-*?), (B) Bame for the case with
0o atmospheric turbulence (7 =0).

4
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Fig. 5. The signal-to-noise ratio, S/N, as a function of the distance,
z. {A) Without regard to the speckle noise (Po/NEP). (B) With
regard to the speckle noise. The atmospheric turbulence does not
affect th:.multa of this example, at least not as long as Ch 5
10-1¢ m~313,

in order to get a new independent sample of the back-
scattered field is 1/I, where I =ct, is the pulse length, ¢ =
velocity of light, and t, the pulse width (Marshall &
Hitschfeld, 1953; Wallace, 1953). Assume that the spec-
tral width of the backscattered light is Ak>1/l wave-
numbers. Then the number m, of independent samples
over which averaging occurs, is

In calculating (S/N), from Eq. (6), one has to replace m
by mm,.

The spectral width of the backscattered light may either
be defined by the initial laser line width or by the Doppler
broadening. If the Doppler broadening dominates, Ak =
vfic, and

where t,=A/v is the time scale for the speckle noise due
to the turbulent velocity v in the scattering volume.

As an example, for 8 NASA direct-detection DIAL
under development (Stewart & Bufton, 1978), the laser
line width will be 0.033 cm~! and the pulse width 50 ns.
Then, from Eq. (12), m;=>50.

The speckle noise can of course also be reduced by aver-
aging in the time domain. If the integration time or gate
time ¢,>Min (i, ¢,), then there will be an averaging over
m, independent samples, where

- e
™= Min(, )’

A further reason for the signal-to-noise decrease to be
smaller than shown in Fig. § is that the spatial averaging
over the receiver aperture can be more effective than cal-
culated. In the derivation of Eq. (10} it was assumed that
the laser was in single-mode operation. However, for a

FOA Reports, Vol. 13, No. 1, 1979




laser in multi-mode operation, the beam divergence can
be larger. This results in a smaller coherence length g,,
a larger number of correlation cells over the receiver aper-
ture, and a more effective spatial averaging. If atmo-
spherio turbulence effects are negligible, the coherence
Jength can be estimated from the van Cittert-Zernike
theorem (Born & Wolf, 1985, p. 508). Approximately, in
the far field the coherence length g, becomes /0, where §
is the beam divergence.

Finally, I want to point out, that in this analysis at-
mospheric turbulence has been considered only with re.
gard to its effects on the coherence length g.. But the
turbulence also gives rise to extra noise (scintillations) in
the signal. This effect has not been taken into account.
However, it is probably often a small effect, as mentioned
before.

3. HETERODYNE DETECTION

In the same way as Eq. (1) was used for a direct-detection
system, we set for the signal-to-noise ratio of a lidar with
heterodyne detection

P,
L)) . — 1
(SI¥h V(NEP)} + 6% (13)

P, is now no longer the intensity integrated over the total
receiver area, but instead (Goodman, 1965b)

P0= <I>A.ﬂ9

with the effective area

e[ ffpencs

There is no spatial averaging of the intensity fluctuations.
Therefore, assuming, as before, a negative exponential
distribution for the intensity,

op =P,

The NEP now is the noise-equivalent power due to the
local oscillator shot noise,

Nep="5,
7

Here & is Planck’s constant, » the frequency, B the IF
bandwidth, and 5 the quantum efficiency. Often, P>
NEP, and then (S/N),~1.

Usually one chooses B=1/t,. Since the necessary fre-
quency change to get an independent sample of the back-
scattered field also is 1/t,, we see that there can usually
be no averaging of the speckle noise in the frequency
domain.

However, if P,>NEP, we can in fact increase the
signal-to-noise ratio by choosing B>1/t,. The variance

FOA Reports, Vol. 18, No. 1, 1979
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o} will be decreased by the factor m, = Bt,. From Eq. (13)
we get

P,
V)2
n/ B
It is easy to show that the highest, in this way, attainable
signal-to-noise ratio is

(8[N)y=

(8/N)s = 0.89[(S/N),)*?,
where
= Doty
(8]H)= =4

is the signal-to-noise ratio in the absence of speckle noise
and with B=1/,.

The corresponding optimal value of the IF bandwidth
is
_ 0.79{(S/N)J"*

B A

(14)
A necessary condition for these results is of course that
the bandwidth of the backscattered light is > B.

4. COMPARISON BETWEEN DIRECT DETECTION
AND HETERODYNE DETECTION

It may be of interest to try to compare a lidar system
with direct detection and one with heterodyne detection.
For simplicity, let us assume that the two systems are
identical (same pulse energy, optical efficiency, etc.) ex-
cept for the detection technique. The noise-equivalent
power for the direct-detection system is (NEP), and is
determined by the detector thermal noise. For the hetero-
dyne case it is (NEP),, the shot noise induced by the
local oscillator. Typically, at IR wavelengths (NEP), is
larger than (N EP), by several orders of magnitude. How-
ever, in ihe direct-detection system the speckle noise is
effectively averaged out in the spatial and frequency do-
mains, and it may often be possible to obtain

Py
In the heterodyne case, on the other hand, we get, as
was shown above, at most

PO 1/3
(NEP)

(S/N), =0.89 (

Therefore, the direct-detection technique gives a higher
signal-to-noise ratio, at least as long as

P _p A"
(NEP),>0'89((NEP) ’
or

(NEP)S?

P. >0.85 W.




If the IF bandwidth is not optimized in the sense of
Eq. (14), but is B=1/t,, we get instead

P,> (NEP),.

In conclusion, the direct-detection system has the largest
signal-to-noise ratio at short distances, whereas at longer
distances the heterodyne-detection system is superior.

5. DIFFERENTIAL ABSORPTION

In this chapter we will consider the sensitivity limitations
imposed by the speckle noise on differential-absorption
measurements with a heterodyne-detection lidar.

To start with, let us set up the basic equations. The
lidar equation can be written

CB(z)

Py= 2

exp[—2fz(aN,+a)dz], (15)
[1]

where P, is the average received power, f(z) is the back-
scattering coefficient at distance z, ¢ is the absorption
cross section for the gas of interest, « is the attenuation
coefficient due to all other constituents of the atmosphere,
N_ is the gas concentration at distance z, and C is a con-
stant.

It follows from Eq. (15) that the average gas concen-
tration N, over the distance 2z, —z,, i.e.,

J N.dz
23

N0=—-_—,
H— 2
is given by
1. Py(dy, 2,) Py(4y, 25)
N.=-h [ 1/~ 0\l l_’ 16
07 Py, 2) Poly, 2) (19
where

T =2[0(d) —0(A)](z,—2,),

o(A,) =molecular absorption cross section on an absorp-
tion peak of the gas of interest,

o{A;) =molecular absorption cross section off the absorp-
tion peak, and

Py(4,, z;) =averaged received power at wavelength 4, and
range z,.

For the derivation of Eq. (18) it was assumed that 4, and
A4 are so close to each other that the backscattering co-
efficient § and the attenuation coefficient « have the same
values at the two wavelengths. This is 2 quite reasonable
assumption for 8, but may not always be true for a be-
cause of interference from other gases. However, by dif.
ferent compensation techniques these interference effects
can be made negligible (Murray, 1978).

An estimate N of the gas concentration is obtained by

N I 22) Plln, 2a) an

We will consider the large-signal case, i.e., where Pg>
NEP. Then the uncertainty oy in the estimate N is due
to fluctuations in the received power P. These fluctua-
*ions in turn are due to speckle noise, atmospheric tur-
bulence, and variations in the backscattering coefficient
B and the attenuation coefficient o.

The time scale for the turbulence-induced fluctuations
is V).—z/v, where v is the wind velocity transverse to the
propagation path (Clifford et al., 1978). Typically, VAz/v ~
10-2—10-2s. The time scale for the variations in back-
scattering coefficient § and the attenuation coefficient o
is larger than 10-3s (Schotland, 1974). It is therefore
strongly to recommend that the measurements on and off
the absorption line be made within a time which is smaller
than about 10-3 s, since then the fluctuations due to tur-
bulence and variable aerosol structure cancel out in the
power ratios in Eq. (17). The best is, of course, if the
power measurements are made simultaneously (Derr
et al., 1974; Stewart & Bufton, 1978).

The wavelength dependence of the turbulence effects
in Eq. (17) is negligible. The characteristic transverse
length for correlation of the intensity fluctuations is Viz
(Fante, 1975). Furthermore, in a differential-absorption
measurement the fractional wavelength shift typically is
about 0.2%. Therefore, the power scintillations at 4, and
A, can be considered to be completely correlated, and they
cancel out in the power ratios in Eq. (17).

In the following we assume that the measurements on
and off the absorption line are made effectively simul-
taneously. The only contribution to the uncertainty oy
then comes from the speckle noise. The four samples
P(Ay, 2,), P(Ay, 2,). P(4,, 2,), and P(A,, z,) are certainly in-
dependent with regard to the speckle noise. This follows
since an independent sample of the speckle noise is ob-
tained if |z, —2z,| >1 or |4, —4,] >A2/l, where [ =¢t, is the
pulse length.

From Eq. (17) we get

Var (N)= 1 {Var[ln P(4,, z;)]1+ Var[ln P(Z,, z,)]

TZ
+V&l‘ [ll’l P(;'ls zl)] + Va.r [lﬂ P(}'Iv Z:)]},

where Var(:) denotes the variance. The probability dis-
tribution function for P is

1 P
w0=g, w23

where P,, as before, denotes the mean value. We obtain
(Gradshteyn & Ryzhik, 1965, 4.331 and 4.335):

Var(in P)=(In*P) — (in P)*
= f P(P) In* PdP~— (r p(P)In Pdp)’
1]
Y
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Fig. 6. The standard deviation, 7oy, of the estimate of the gas
concentration as a function of the number, m, of mdependent
samples The function is calculated from (A) an approximate ex-
pression (Eq. (19)), and from (B) an exact expression (Eq. 20)).

Thus,

2

Var (N)= 3—2 ,

and

= VVar(N)=-2-£_=z§.
Vg T

In a sensitivity analysis it is reasonable to set the minimum
detectable gas concentration, Np,,, equal to the standard
deviation oy. Thus, N,=2.6/r. If we average over n
pulses, the standard deviation of course instead becomes
ox/ V.

Finally, it can be of some interest to consider the case
where there is averaging of the speckle noise in the fre-
quency domain, as discussed in Ch. 3. Then we have in-
stead of Eq. (17):

=1 04, 2) @Ay, 2)

T Q(4y, 2) @4y, 25)° (18)

with

%P (A4 2y),

1
m

Q(Zb z/ =

and m is the number of independent samples of P over
which averaging takes place. It follows that
1
Var ()= {Var{In @4y, )]+ Var{In @A, 2)]

+ Var [ln Q("ls zl)] + Vﬂl’ [ln Q()'!v z!)]}’
Now, if m is sufficiently large, then the probability dis-

tribution for @ is sufficiently narrow, and we can approxi-

mate (Bevington, 1969, p. 59):

d(ln @)

vertn @)= (X29)° var(o)-T5@),

FOA Reports, Vol. 13, No. 1, 1979

where Q, =P, is the mean value of Q. But

Var (@)= YEB)_Bs.
Thus,
Var(ln @)=,
and
Var (N)= 174"?
oy = ;-%7‘. a9)

It is possible to show (see Appendix B) that for a general
value of m > 1, we instead get

V_ 51 (20)

vlv

The standard deviation calculated from Egs. (19) and (20)
is shown as function of m in Fig. 6.
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APPENDIX A

RELATION BETWEEN INTENSITY COVARIANCE AND
COHERENCE FUNCTION

The field £ is assumed to be a complex Gaussian process,
ie.,
E=|E|?¥=z+iy,

where z=|E| cos ¢ and y=|E| sin ¢ are independent,
zero mean Gaussian random variables with variances o2.
The probability distribution is

-1 (_ _’f'_)
p(Z) dVE;’E exp 20’3 *
The intensity is
I=|Ejt=a%+ys
Thus

I =<2 +<y* =243,
{I% = {ah) + (Y + 2D (Y?) = Bot.
It follows that

of = IH <KD =<D?,
-+hich is Eq. (3).

‘We shall now relate
_<I1I|>‘<I>’ =<E1E;)
O= R ey

I 1y = (i +341) (25 + 12)>
={afad) + <o) (U + <z <y + GivD)
=2((A 2} + 0%),

where we have used that {(x*) =(y®)=0¢* and, by sym-
metry, <yiy3> =(ziz3>. (225 can be expressed in (z,7,)
in the following way (Burdic, 1968, p. 277):

Introduce 8 new variable z by z,=cx, +2, where the
constant ¢ is defined by c=(z,z,>/6%. It is then easy to
show that z, and z are uncorrelated, i.e., {z,z)>=0. But
since z; and z also are Gaussian, it follows that they also
are independent. We then find that

(R 2B = (2ilozy +2)D = 3(zzt +0%:D).

Furthermore,

@ == cnty =t~ S
Therefore,
(e = 2(nzpt+ ot

Now,
- Iyl - <I>’_ {%, z,)’

BT

- <E1E:> - {2y
4B o

G

Combination of the last two equations finally gives

CI == y.,
which is Eq. (4).
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APPENDIX B

DERIVATION OF A FORMULA FOR THE STANDARD DEVIATION
OF ESTIMATED GAS CONCENTRATION

The basic equation is Eq. (18):

7 QlAy, 2) Qlhy, 25)° (B-1)

with
)
Q(lh Z,) = '—n % P(lh zl)'

The probability distribution pp(P) for the received power
P is the negative exponential,

PP(P)"'"exP( }I:

From this, we can derive the probability distribution
pn(N) and the standard deviation g, for the estimate N
defined in Eq. (B-1).

First we note that the probability distribution function
Po(@) for Q is the gamma distribution (Marshall & Hitsch-
feld, 1953; Wallace, 1953):

mm 1 mQ
PelQ)= Gm=1)! Q" " exp (" 6;) )

where @, =P, is the mean value of Q and P.
Next, introduce random variables X, X,, and X, by

X = QA ) _Ql4y, 25)

Ul z) " Qpzy T Xe

80 that
N= ! In X,.
T
Now, in general, if >0 and y >0 are independent random
variables with probability density functions p.(z) and

P,(y), and if z=z/y, then the probability density function
for z is

Plz)= .‘; y:(y2) Dy(y)dy.

If, instead, z =2y, then

1 z
Plz)= f ; P: (1—1) 7,(y) dy.

With these formulas, the probability density functions
for X;, X,, and X, can be derived. Furthermore, the
probability density functions py(N) acd px(X,) for N
and X, are related by

PN} = Te prle™).
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In this way py(N) can be calculated. The result is

(2m—~1)!

)= [{(m IF

] 7 exp[mT(N — Ny)}

] t2m~ldt
) fo (t+1)*{¢+ exp [v(N — No)l}™

Here N =N, is the mean value of N,, and is defined in
Eq. (16). The kth moment of N becomes

(NFy = f Nepy(N)dN

(2m l)' 0 tzm—l
[[(m 1)'12] J.o e

“© N¢oxp[mN=Np)] v,
"f ¥ exp [V — N o

Change of variable of integration in the last integral by

_exp[t(N—Ny)]

t
gives
_|Em-1y 21 (™ ¢t
s [[(m—l)flz] ™ Jo (41"

{Info exp ("1,
e e . ds
0 (s+1)

dt
X

If we furthermore utilize that

{In[st exp (tN)]}* = (In s+ In t + TNG)*
= z z ( ) (;) (In s "(In t)* (TNy)" ",

v=0 =0
then
k M}' L (k v . .
= t*[[(m ny v‘?o rgo ("’) (l‘) Audi (TN,

where
a0 tm-l(ln ”II

A=), T

dt. (B-2)

The problem of evaluating (N is thus reduced to evalu-
ating integrals of the type 4, in Eq. (B-2). It can be
shown that

A, =0 when u is odd,

PR3

TR T
[n =P (2 "1
42 o m( .?]»')

B |

e e ——— ————————



With these results it follows that

(N> =N,
4 (¢ ")
<~v-M+s(;:§;l
and
2 5 B "1

which is the desired result. For this to be consistent with
Egq. (19), it has to be shown that gy given by Eq. (B-3)
tends to 2/(tr}'m) when m-»co. To this end, we first note
that

21 _a
e
and therefore
.‘«'l’ m-1 1 [ ] 1 o 1
il 3 L= — -
6 50 ,‘.,z,. »? ,§, »+m)*

10

But (Gradshteyn & Ryzhik, 1965, 8.360 and 8.363)

[- 1 dt
2 orap T

where I'(z) is the gamma function.

Also,
InT'(z) =2zlnx when z—oo.
Therefore,
S »—l— when z—+ o
r=0 (‘V+Z)2 ?
m— ll
-~ - —-— when m-» oo,
6 v=1 V
and
=—=when m— o0,
rf
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