
D-AiL42 888 INCENTIVE CONTROL FOR A TACTICAL AIR CONTROL SVSTEM) i/l
AIR FORCE INST OF TECH WRIGHT-PRTTERSON AFB OH
S VAN TONNINGEN 1984 AFIT/CINR-84-32T

UNCLASSIFIED F/G 5/1 NL

llllllsllllll
lllmllsllllllEEEEEEEEh



111 1.0 t., I28
36

16LA IL' .°L

11.25 "I .4 0.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS. 1963-A

..° 9,o

,°'.,"

•I.



T I 1 ._T T

jNrl A%
SECURITY CLASSIFICATION OF THIS PAGE (Whem DattEntered):

READ INS1'UCTIONSREPORT DOCUMENTATION PAGE BEFORE COISPLEfNG FO U
. REPORT NUMBER I2. GOVT ACCESSION No. 3. RECIPIENT'S CATALOG NUMB

AFIT/CI/NR 84-32T
s 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD VERE

Incentive Control For A Tactical Air Control THESIS/DAI AJWTAON
System

4 6. PERFORMING OIRG. REPORT NUMBER

7. AUTHOR() B. CONTRACT OR GRANT NUMBER(*)

o Scott Van Tonningen

9. PERFORMING ORGANIZATION NAME AND ADDRESS 0.PROGRAM ELEMENT. PROJECT. TASKC
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: University of Illinois

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AFIT/NR 37? WPAFB OH 45433 13. NUMBER OF PAGES

1984
I. MONITORING AGENCY NAME AOORESS(If different from Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASS
ISa. OECLASSIFICATIONiOOWNGRADING

SCHEDULE

%l. ISTRI BUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, if different from Report)

IS. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190- WOLAVER y( Dean for Research andProfessional Developmen

AFIT, Wright-Patterson AFB OH
I9. KEY WORDS (Continue on reverse side if necessary and identify by block number)

~DTIC
--" J kELECTE "'O";

20. ABSTRACT (Continue an revere side It necesry and Identify by block number) JUL 11984

ATTACHED .

84 07 10 157
D ,A

SSECURITY CLASSIFICATION OF THIS PAGE ("en Data Entered)

• q~ • ol e al q i • lot • %



1. INTRODUCTION

1.1 The Problem of Control in Decentralized Organizations

In recent years, much emphasis has been placed on decentralized

decision-making in large organizations. This is due to the fact that very

sophisticated decision aids, large amounts of decision information, and the

need for quick response have made it impossible to refer all critical

decisions to-the top levels of the hierarchy. This thrust toward decen-

".1 tralized control has led to several new problems, however. One such issue

concerns the need for higher hierarchical levels to monitor the decisions

made at lover levels, and, if necessary, intervene in the event of unsatis-

factory performance. In general, three steps are involved in any. approach

to this problem: first, the organization and its elements must be mathema-

tically modeled; second, the associated information structure or flow must

be determined; and final';, the appropriate monitoring and control strategy

must be selected for that organization. Much work has been done in the

first two areas, particularly in the modeling of strategic and tactical

military structures [i]. But the third area, at least in the military

application, still relies heavily on traditional command structures,

channels, and leadership theory (21.

Recently, several papers have been published which formalize the

notions of incentives in organizations whose participants have different

objective functions, mainly due to competition between members ((31 and

[4)). An important result of this work is that virtual cooperation

between the members can be induced by selecting an appropriate control

strategy, while the members continue to maximize their own objectives.

% "
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1. INTRODUCTION

1.1 The Problem of Control in Decentralized Organizations

In recent years, much emphasis has been placed on decentralized

decision-making in large organizations. This is due to the fact that very

sophisticated decision aids, large amounts of decision information, and the

need for quick response have made it impossible to refer all critical

decisions to the top levels of the hierarchy. This thrust toward decen-

tralized control has led to several new problems, however. One such issue

concerns the need for higher hierarchical levels to monitor the decisions

made at lower levels, and, if necessary, intervene in the event of unsatis-

factory performance. In general, three steps are involved in any approach

to this problem: first, the organization and its elements must be mathema-

tically modeled; second, the associated information structure or flow must

be determined; and finally, the appropriate monitoring and control strategy

must be selected for that organization. Much work has been done in the

first two areas, particularly in the modeling of strategic and tactical

military structures [1]. But the third area, at least in the military

application, still relies heavily on traditional command structures,

channels, and leadership theory [2].

Recently, several papers have been published which formalize the

notions of incentives in organizations whose participants have different

objective functions, mainly due to competition between members ([3] and

[41). An important result of this work is that virtual cooperation

between the members can be induced by selecting an appropriate control

strategy, while the members continue to maximize their own objectives.
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1.2 Outline of a Proposed Solution

It is the purpose of this thesis to demonstrate how incentive theory

may be applied to the problem of hierarchical control within the Tactical

0Air Control System (TACS). In Chapter 2, we supply the necessary back-

ground in incentive theory, as it applies to organizations and their

elements whose operations can be modeled by objective functions. Also in

this Chapter, we briefly define the structure of a typical TACS. Then, in

Chapter 3, we provide a very simple model of the basic building block of

the TACS, the Modular Control Element (MCE). Finally, in Chapters 4 and 5,

we propose two methods for applying incentive control to the leader-

follower relationship between the Tactical Air Control Center (TACC) and

a-. the MCE. The first method, the piece-wise linear approach, provides total

insensitivity to variations in an internal parameter of the MCE model,

while the second method, the quadratic approach, provides only minimum

sensitivity but is more analytically appealing. Each of these chapters

also contains a numerical example to help illustrate the concepts.

-'"
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2. BACKGROUND

2.1 Incentive Theory in Organizations

The problem that is addressed in incentive control is that of ensuring

that the members of a particular organization behave in a manner that opti-

mizes the performance of the entire organization [3]. We will assume that

the participants in the organization each have an individual objective

function which must be optimized, denoted J i There is also an overall

organizational objective function, Jo, which must be optimized by the

organizational leader.

Suppose that each organizational element has an objective function of

the form

Ji . f(8irn), (1)

where r is an independent variable, 8 is a characteristic, internal,

constant parameter of the element, and n is a parameter which depends upon

external data. Suppose further that the overall organizational objective

function is a linear combination of the elemental objective functions:

Jo = a1 JI + a2 J2 + "'" + aNJN (2)

Finally, we assume that each J is a convex function in r, so that each
i

element is responsible for maximizing its individual objective by finding

the corresponding r1 , denoted ri*, such that

J i =f(oi'n'r *)

max

ri* - {r: dJi/dr a 0} (3)
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It is apparent from Equation (2) that if each element maximizes its own Ji'

then J will also be maximized.

The problem arises when a participating element, which we shall call

follower, has a different perception of its own objective function than

does the organizational manager, whom we denote leader. One interpretation

of this problem is that the follower has a different perception of its

internal parameter, Bi, although the structure of its function remains

unchanged. Suppose the leader assumes that the follower has parameter a',

while the follower thinks he is characterized by a slightly different

constant, B (the subscript i is dropped from now on). If the maximization

in Equation (3) depends upon 8, then the follower will arrive at a dif-

ferent r* than the value calculated by the leader, denoted r*'. Once the

leader observes this discrepancy, he must consider two issues:

(1) Is the discrepancy large enough to worry about?

(2) Is the leader's perception of 8 more appropriate?

If the answer to both questions is affirmative, the leader may want to

intervene using an incentive strategy [3].

An incentive strategy is a function, announced by the leader to the

follower, which induces the follower to maximize the leader's objective

function, while still maximizing its own objective. In this case, it would

induce the follower to behave as if its internal parameter were 8', instead

of 0, thus maximizing Ji at r*'. In order to implement any type of incen-

tive control, however, the leader must have at least partial control over

one of the objective function parameters, and this parameter must sub-

sequently affect the output. Referring to Equation (1), we assume the

leader can partially control the external variable n.
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Noaw the leader constructs n as a function of r, the independent

variable. This function, denoted ;, is announced to the follower, who can

incorporate n into its objective function before maximizing. If n is

constructed properly, the follower's new objective function will have its

maximum at r*', even though the follower continues to use , rather than

6'. This effect is illustrated in Figure 1. In Figure l(a), the control

- is a constant (incentive not used) so the follower, using 8, maximizes at

r*, instead of the desired r*'. In Figure 1(b), a is a function of r, so

-" constructed that the maximum now occurs at r*', the leader's maximum

point, though MCE still assumes 8.

J (r) J' (r)
Ji

max max

mxmax'

- J

r r r* r

-(a) n = constant (b) n = function of r

~Figure 1. Typical follower objective function

-',Note that J' may not be the same as Jmx but this is not important
" max

since the leader .is assuming that B, which the follower perceives, is not

; -; ".: -'"--.''-- '-.v .. '', . >.,' . '.. --,-,' -4 -. 4-." . . ' -,.. " . . ..- -* .- .'. . ---- - .-
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accurate anyway. The important fact is that with the control, the follower

maximizes at r*', which corresponds to a'.

An additional desired quality of this control scheme is robustness.

That is, the incentive strategy should be designed so that the follower

will maximize at r*' for a range of 8, since the leader will not, in

general, know the exact 8 which the follower will assume.

2.2. The Tactical Air Control System (TACS)

The TACS is a hierarchical, command, control, and communications (C3)

network, whose purpose is the detection, identification, tracking and

control of aircraft in a defined geographical area. Under the distributed,

decision-making concept, each level of the TACS is tasked with certain func-

tions, such as surveillance, and has the distributed data and hardware

available to make accurate and timely decisions. The general structure of

TACS is very flexible, to allow tailoring to a specific geographical

threat, but for this thesis, can be modeled as in Figure 2:

"2 T.CC -Threat
TAC Prosecution

(More MCE units at lower levels as required)

Figure 2. Typical TACS organization

-,,, .,'. f e V .- , " . . , .*,- .- o *.-. - ,5 *.-* . . - .- .- .- .. - . -. ...... . . .. .. -. -... .. . -. ..* .'...-.. -
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The Tactical Air Control Center (TACC) is assigned overall control of

the system and, under present TACS organization, has a lateral information

flow relationship with the threat prosecution assets. The Modular Control

Elements (MCE) are the distributed decision-makers of the system, and can

assume various levels in the TACS hierarchy, as depicted in Figure 2. The

focus of this thesis will be on the direct relationship between TACC and

one subordinate MCE. The results of this treatment will be equally appli-

cable to all subordinate MCEs on an individual basis.

q1

•.-.

|.4 € ," ' . ' ,:i: " ' : ' o.,r'"'" 7 ' 2""' ' ," ' " """ """ ' " """ *" ' "" '
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3. THE MODEL

We mentioned in Chapter I that extensive work has already been done in

the area of modeling the components of C3 organizations and associated

information structures. Therefore, no attempt is made in this thesis to

provide a realistic, detailed model. Instead, a very simplistic model is

developed, so that the concepts of incentive control may be clearly pre-

sented and easily understood.

3.1 General Structure of the Follower (MCE)

4 The first task in developing a suitable model for the MCE (and ultima-

tely, its objective function) is to distinguish between two subsystems at

work within MCE:

(1) The command subsystem, which is MCE commander or the command

structure.

(2) The execution subsystem, which carries out the MCE function, at

the direction of the commander.

The command subsystem, for the purposes of this thesis, simply has the job

of maximizing the MCE objective function, J, given n and determining a

value of 0. Using terminology developed in [5], the parameter n will be

the number of "customers" which MCE must process. The output of the MCE

commander is r, which we call the "customer processing rate." This dic-

tated rate then becomes the input to the execution subsystem, which is also

influenced by n and 8, but simply reacts to the input r. Finally, the out-

put of the execution subsystem is the objective function, J, evaluated at r.

It is for TACC, then, to sample the output, r, of the command sub-

system, and observe J, to determine if MCE needs control. TACC, in
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general, does not have access to 8, which is MCE commander's perception of

the internal parameter, but must generate an estimate, a'. Finally, if

TACC does decide to intervene, the resulting n which he computes is

*" announced to the command subsystem but enforced, if necessary, at the exe-

cution sybsystem. Figure 3 shows a block diagram of the complete system.

-
,_ k" TACC

vi

I COMMAND EXECUTION
I SUBSYSTEM SUBSYSTEM

Figure 3. Block diagram of TACC-MCE interaction

3.2 Modeling of MCE

The next step in the process, as it applies to TACS, is to model the

MCE execution subsystem. One of the more documented methods of modeling

human system elements is the transfer function approach [6]. It is par-

ticularly suited to our problem since r, the MCE independent rate variable,

is easily viewed as a frequency domain variable (operations/time unit).

The main problem encountered in the transfer function approach to

human modeling is that it is almost universally accepted that human com-

ponents are non-linear, while the transfer function is a linear analysis

tool. The transition from a non-linear model to a linear one is provided

V,; -.,'.-=".;.:.,,:. .-,;-.-.;-.-.,-..: ..:-- -:. .--. -. -.- -:--.,.,.,
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by [71, where linear and non-linear components of the human system, in the

frequency domain, are combined as

J(r) - H(r) • X(r) + Jr (4)

where J(r) is the output, H(r) is a linear transfer function, X(r) is the

input, and Jr is a "remnant" term, containing sytem non-linear and random

elements. It is incumbent upon the TACS engineer, therefore, to justify

assumptions which make ar negligibly small. These assumptions must deal

with environmental factors, human inconsistencies and just simply non-

linear subtasks. The first two of these factors can be very subjective,

while the last can often be handled by linear approximation techniques.

The easiest way to guarantee linearity is to model the subsystem using

only four basic sub-elements: integration, differentiation, algebraic

addition and multiplication by a constant [8]. In [61, there are several

possible combinations of these building blocks discussed for a variety of

human operations in tracking. One of the simplest versions is the classi-

cal, first-order, low-pass filter, as shown in Figure 4. Note that the

forward gain parameter, X, is actually composed of two cascaded gains, one

which can be controlled externally and one which cannot. Obviously, an

increase in either n or y will result in a decrease in forward gain of the

system. For simplicity, the feedback gain has been made unity, although

this restriction is removed in the two-parameter discussion in Appendix 2.



X~r -- J (r)

-.
11

.' -iFigure 4. Simple model of the MCE execution subsystem

We now go to the frequency domain, where the model is easier to use

'J'land understand. Using the variables as indicated in Equation (4) and

i!. Figure 4, we have:

X7r H(r) AJr)

H](r) - I/(Jynr + 1) (5)

Disregarding the phase information, we keep only JR(rOl. The sketch of

Figure 5(a) shows the low-pass characteristics of [H(r)i and yields two

%"i important (and logical) insights into this model:

(1) It recognizes that at higher frequencies, performance, on an

~operation by operation basis, declines.

(2) It incorporates both internal and external parameters which can

greatly alter the transfer characteristic.

,.4-.-..,.,.. - . '\ .,,,-.. - . -%,%,,,.,,.,...- .-.-. ,. ' \ . ',",.,. ,, , .,, ,.. -, . .- . , .
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The transfer function of Figure 5(a) is still difficult to work with,

however, so it will be approximated by a different function. Note that the

JH(r)J G(r)

1. 1.0 ,S
I .5-

(a) 1r I +
F I .5 T5o

..'r. - eI, 6

SII

II
C ~ I

r r r rC C

a) IH~r) l if (ynr) 2 + 1 (b) G(r) =2 -enr

Figure 5. Transfer characteristics of the MCE model

convex portion of IH(r)Il, in Figure 5(a), is similar to an inverted expo-

nential. In fact, if H(r) l is truncated at rc, it cnb prxmtdb

G(r) - 2- •0nr, (6)

where 1B = le, for som constant k. In this for, we have the familiar

internal parameter, 8. Figure 5(b) demonstrates how closely the truncated

portion of IH(r)I may be approximated by G(r).

The final step in the modeling process is to form J(r), the objective

function of MCE and the output of the MCE execution subsystem. Recall from

.6
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Section 2.1 that the input to the execution subsystem was simply r, the

operating rate. Starting with the general form of J(r), we have:

J(r) -IH(r)l • IX(r)l

J(r) = G(r) • IX(r) I

= r (2- es nr) (7)

Equation (7) is the final form of the model, which will be used for the

%!. remainder of the thesis (except Appendix 2). It is convex for all positive

values of r, n, and 0, and, if n is treated as a constant (no control), is

maximized as follows:

S(r)a x - J(r*)

r- 1r: dJ(r)/dr - 0}

dJ/dr - 2 - (Onr* + 1) e(Onr*) . 0

r* - .375/n (8)

J(r*) - (.375/0n) (2 - e(-3 7 5 )) - .204/On (9)

Figure 6 compares the objective function, J(r), for different values of n,

with 0 fixed, and different values of 8, with n fixed. It also depicts the

location of r* for each curve.

C,

.5 . . % % % o. . .
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J (r) J (r)

2.5- 5.0

*0
2.0 :=.00

1.5, /lo I3.0
n-7

1.01..15 2.0 I

• 1.
1. .0015

A 
I

","t 
; t I:

0 

0 
1

1.0 2.0 3.0 4.0 r 1.0 2.0 3.0 4.0 r

(a) 8-0.15 (b) n -10

Figure 6. The ideal MCE objective function

In summary, we have developed a model for the execution subsystem of

. lMCE, which is the frequency domain objective function J(r). The input, r,

is a rate value dictated by the command subsystem, which must maximize

J(r). The model contains two parameters: 0, an internal parameter, which

is characteristic of the execution subsystem; and n, the number of custom-

ers, which can be affected externally. We now turn our attention to the

manner in which this model may be controlled.

, :; ;..: ;." €,€, .-),;. . •, .'-' •-.. ".• , . ,. .... . . " . •. .... . ... • .. . .. ... ... L. i... • 1.. . .. .,-
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4. THE PIECE-WISE LINEAR APPROACH

A significant problem in the incentive control approach is finding the

9 strategy which will bring about the desired response in the follower In

[3] and [4] it is seen that if the strategy is made a function of the dif-

ference between the actual and desired responses, the follower, when he

substitutes the incentive into his own objective function, will be forced

to maximize at or near the desired point.

In Section 2.1, the variable n became the leader-follower control

variable, as a function n. This is the same n as in Equation (7) of the

MCE model, and it will be the control for MCE, with TACC, the leader,

determining n. It is tempting, at first, to use a linear construction of

the control:

=n - n + k (r - r*), n > 0, k > 0 (10)

where n is a constant term, representing the number of customers MCE will

have to handle no matter what (TACC may have no control over n ); r is the

independent rate variable; r* is the solution to Equation (8), given no and

'.-,4 0'; and k is a gain parameter which is calculated by TACC.

The problem with Equation (10) is that if (r - r*) < 0, then ; <n 0

It is seen from Figure 6(a) that smaller and smaller values of n lead to

larger and larger maximum values of J(r) and allow higher r*. In fact, if

(r - r*) - -n , then n - 0 and MCE has no customers to process and achieves

its highest maximum! It was stipulated, however, that no was the minimum

number of customers that must be serviced, so we are led to propose a

slightly different n.

4"



16

4.1 The Control Structure

Consider the following control structure:

"-n - n 0+ k ir - r*J .  (11)4 o4

With this function, which shall be called the piece-wise linear incentive

strategy, n > no for any r and k > 0. In view of Figure 6(a), MCE can do

no better than processing n customers at r*:o

= + klr* - r*I = no (12)

Before the effect of this control is investigated, it must be noted

that the piece-wise linear approach does not lead to a continuously dif-

ferentiable objective function in r, but contains a discontinuous slope at

r - r* (see Figure 7(c)). Therefore, Equation (3) cannot be used to find

r*. Instead, the slope of the objective function must be calculated on

each side of the "peak" at r*, to ensure that the largest value of J(r)

occurs at that peak.

Suppose TACC announces a strategy of the form in Equation (11). The

MCE commander, in order to effectively maximize his objective function,

must substitute n for n in Equation (7):

J(r) - r (2 - er)

= r (2 - •O[n° + kIr-r*I] r) (13)

Now equation (13) must be analyzed for two intervals of the r-axis: r > r*

and 0 < r < r*.

a'..
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4.1.1 Case I: r > r*

Statement: Suppose n is known and ' is estimated by TACC, so that r*
0

can be calculated by Equation (8). Suppose also that the minimum

expected value of 0, denoted al, is known. Then a sufficient con-

/.
-  dition for J(r) to have a negative slope on the interval [r*, ] is to

* choose a k satisfying:

2 - ( 1nr* + 1) e 
(nor*)

, k > r*2e n0r)(14)
.4. lr,2e(B1nor*)

Proof: The objective function, for this interval, can be written:

Jr),r2- eB[no + k(r-r*)]r' ,J(r) - r (2 -) (15)

If J(r) has a negative slope for all r in [r*,-] and 0 in a given range,

B > 01, then its maximum value will occur at r*. This can be stated

mathematically:

dJ/dr < 0
. le(Bnr)

2 - [0 G + dn/dr) r + le < 0

dn/dr - k, based on Equation (15),

so 2 - (1Onr + 1) e(l r) - k~r2 e(Br) < 0 (16)

The worst case for ensuring Inequality (16) is if B and r are at their

minimum values. Therefore, let B - 0,, r - r*, and thus n - no .

Inequality (16) becomes:

( r*)2- (01) (Bnr*e - kOIr* 2 e 0
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2 n~ 0nr* + 1) e( n 0r*)

C. Therefore, k > 2 nr*)
, B i8r*2 eInr

Therefore, when TACC announces this strategy, he will have to select k

based on Inequality (14). However, there is another side of the function

which must be considered.

4.1.2 Case II: 0 < r < r*

This case is a little more difficult to analyze. Normally, it would

, be sufficient to guarantee a positive slope at r*, but if k is made large

enough, a cubic-like oscillation (maximum followed by a minimum) is induced

on [O,r*1. Therefore, k must be large enough to provide a positive slope

at r*, but not so large as to induce an oscillation between 0 and r*.

Statement: Suppose n is known and 0' estimated by TACC, so r* can be

calculated. Suppose that the maximum expected value of 8, denoted 82,

is also known. Then a sufficient condition for J(r) to have a positive

slope on the interval [O,r*J is to choose a k satisfying:

2 - (82nor* + 1) e(02nor*)

k > 02 12r* 2 e(02n0 r*) (17)

provided there is no real solution, in the interval [O,r*], to the

equation d J/dr -, 0.

Proof: For this interval, the objective function becomes:

J(r) - r(2 -eBIn + k(r*-r)]r (18)

As mentioned earlier, the first task is to guarantee a positive slope at

r - r*, with 8 in a given range (8 < 82):
42
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dJ/r > 0 and dn/dr = -k

AA(anr) 2 (8nr2 -(Onr + 1) e + k,6r e > 0. (19)

Finally, making the substitutions r = r*, = , and n = nO0

2 - (B2nr* + 1) e(02n0r*) + ka2r*
2 e 02n0r*) > o

Therefore, 
k > - 2 - (0 2n0r* + 

1) e ( 2n0r*)

.

2 e 02n2 ( nr*)

In summary, if TACC decides to use the piece-wise linear approach, he

must calculate a minimum value of k for both sides of the slope discon-

a" tinuity at r*. He then must select a k which satisfies both cases but is

not so large that a maximum-minimum pair forms on [O,r*]. The following

example will help greatly in understanding the preceding discussion.

4.2 An Example

Suppose that TACC estimates that MCE should have an internal parameter

8' - .01, and it is given that n = 10. Figure 7(a) depicts the ideal MCE

objective function (without control). The r* corresponding to the maximum

is found by Equation (8):

r* - .375/0'no = .375/(.01)(10) - 3.75

It is assumed that TACC's estimate of 8' is correct, but that MCE commander

perceives a different internal parameter, 8 .008. Therefore, MCE will

use a different objective function to maximize, which is depicted in Figure

7(b). Because of this, he will actually drive the MCE at some r r*,

-N-
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where

r = .375/(.008)(1o) = 4.69

When TACC observes MCE operating at this unexpected rate, he may wish to

intervene, using the piece-wise linear approach.

First, TACC must estimate the range in which 8 falls. Suppose the

*- estimated range is .006 < 8 < .012.
r*al + )

Case I: r > 3.75 2 - (81nr* + 1) e(0lnor*)

k > (a nor *

• "
1 r* 2e' )

and if 81 .006, no 1 10, and r* = 3.75, then k > 4.41 (20)

Case 1I: 0 < r < 3.75 2 - (32nr* + 1) e(20
2 0 8n~*k > r * 2 e (0 2n 0r* )

and 82 .012, so k > 1.04. (21)

Therefore, in order to satisfy both Inequalities (20) and (21), TACC

decides to pick k = 5. The incentive strategy that he announces is:

n = 10 + 51r - 3.75j. (22)

Once MCE substitutes Equation (22) into his objective function, his new

curve will appear as in Figure 7(c). Note that the function must be maxi-

mized at r - r* - 3.75 and that no cubic oscillations occur on [0,r*].

Figure 7(d), however, demonstrates how a large enough gain (k = 17) can

induce the maximum-minimum pair.SP%'

S
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It is important to remember that although 8=.008 is used to generate

curves (b), (c), and (d) in Figure 7, any B in the interval [.006,.0121

would have yielded the same r*, although the shapes of the curves and the

resulting J mxvalues would vary. Because of this, r* is considered insen-

sitive to changes in 8,for the range .006 < 8< .012.
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5. THE QUADRATIC APPROACH

5.1 The Control Structure

There is an alternative approach to controlling the MCE, and that is

to use a control variable of the form:

A 2
n= n + k1 (r - r*) + k2 (r - r*) (23)

In this case, n and r* are the same as in the piece-wise linear approach,

but now two gain constants, k1 and k2, have been introduced. One of the

advantages of this structure is that n is a continuous function, so MCE's

objective function will also be continuous when this control is substituted

for n. Therefore, J(r) does not have to be evaluated for two different

cases, as in the former approach, and r* can be found using Equation (3):

r* -{r: dJ/dr = O} (24)

dJ/dr - 2 - [Or[(dn^/dr)r + n^] + 11 e (O*r ) . 0 (25)

where dn/dr - 2k1(r - r*) + k2. Therefore, by substitution:

dJ/dr = 2 - [Br[(2kl(r-r*) + k2)r + (n +

k1 (r-r*)
2 + k2 (r-r*))] + 1} e($8r) - 0 (26)

The solution of Equation (26) is not a trivial matter, and we found it

convenient (and very accurate) to use the following procedure:

e(8r)

dJ/dr - 2 - [f2(r) + fl(r) + 1] e - 0

where fW(r) and f2(r) are determined from Equation (26). Thus

r - {ln(2) - ln[f 2(r) + fl(r) + 1}/Bn

., .-.-. ,4,L." . .. -". . . - . ',.. .... "' . . ' .,,",.....".".' . .".@. . " . ' . • " .. . ., , . .,". ,, ,
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Using a first order Taylor series approximation of the second logarithmic

term about r*, the problem eventually reduces to a cubic equation, which is

solved by computer using the cubic formula.

Calculation of the constants k and k by TACC is relatively easy,

however, if we remember that TACC's goal is to have Equation (26) satisfied

at r-r*. By substituting r* into Equation (26), it is seen that most terms

drop out, and the remaining equation is:

2 - (Or*[k2r* + n o ] + 1) e ( On 0 r * ) 
0 0

(Bnor*)

2 - (On r* + ) e 0

k2 2 e (On0r,) (27)
!Br*2e

It is interesting to note that Equation (27) depends only on k2. This is

significant in that if TACC knew exactly which 0 MCE was going to assume in

its maximization, he could simply calculate k 2 by Equation (27) and use any

kl, with the resulting objective function maximized at r*.

In reality, however, 8 is not known by TACC, and it is desired to

minimize the sensitivity of r* to fluctuations in 0. Again, it is assumed

that $ can be confined to a range, such as 11 < 82. Additionally, an

average 8 for the range, 8 c' must be selected by TACC. Equipped with this

data, TACC can methodically select k1 and k 2 so that if MCE uses 8 c, he

will maximize exactly at r*, and if he uses some other 8 in [81,821, his
- 12

maximization will remain within a given tolerance of r*. One additional

advantage of this policy is that 0', the value which TACC thinks actually

characterizes MCE and upon which r* is based, does not have to be in the

interval [8, 821. If 0' does fall in [81,82], however, it is convenient

to let Oc -8' for analysis and calculation purposes.

%%
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The procedure for finding k and k2 is as follows:

(1) Define the anticipated range of a, by seLecLing l l and a

(2) Compute r* for the ideal objective function and specify the

allowable tolerance in r, the operating rate of MCE, about r*.

This is also expressed as an interval, [r1,r2 ], containing r*.

(3) Using n, r* and 8c calculate k2 using Equation (27).

(4) Using equation (26) and the above computed value of k2, find kI

at each boundary of [rlr 21:

a. At rl, use B2

b. At r2, use B
1

.The final k that TACC selects must be larger than the largest

k I computed for both of the above cases.

There is one more consideration in selecting ki: if k1 is too large,

the induced MCE objective function will have a very sharp "peak" at its

maximum. This could mean that even if MCE is maximizing within [ri,r2 ]

tolerance, the maximization point, r, may still be far enough away from r*

to cause a substantial increase in ;. Recall that n is based on deviations

in r from the ideal r*. If k is large enough, even a small deviation in r

will cause n to be enforced (i.e., extra customers are given to MCE for not

"cooperating"). This is inconsistent, however, with the fact that MCE is

within tolerance.

The solution to this dilemma lies in analyzing the "discrete" nature

of n. Since TACC cannot give fractions of customers to MCE, only integral

values of n are permitted. Therefore, TACC must wait until n increases

sufficiently over n0 to actually increment with an additional customer

'':-x.';';
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(enforce). For this thesis, we assume that if n n + .5, the control

will be enforced. This discussion leals us to a fifth step:

(5) Compute kI , such that for r in [rl,r 21, n < n + .5. This
max

last step may be accomplished precisely by evaluating Equation

(23) at r1 and r2 or by using a graph of n vs. r, as in Figure

8(c).

5.2 An Example

Again, suppose n 0 10 customers and TACC uses 0' = .01 as the actual

parameter of MCE. It is anticipated, however, that MCE will choose a 8 in

the ihterval .007 < B < .015. For simplicity, TACC uses Bc  .01. Suppose

further that the maximum allowable tolerance in r is 3.6 < r < 3.9 (recall

that r* for these data is 3.75). Proceeding from the third step:

2 - (0 n r* + 1) e
( c n 0r* )

(3) k2 C (0c or

'2 c r*2 e (0cnr*)

- 2 - [(.01)(10)(3.75) + 1] (1.455)

(.01)(3.75)2 (1.455)

-0

(4) At rI - 3.6, 02 - .015. Since k2 = 0, using Equation (26):

k I - 7.1

At r2 - 3.9, 02 - .007. With k 2 = 0 and Equation (26):

k I - 7.5

Therefore, kI must be greater than 7.5.

IV

%* *** ¢ / ; .% %', . w 'V .' . . . . ...... -,. .



27

(5) Since k2  0, Equation (25) becomes:

n = 10 + kI(r -r*)

Evaluating at r 1 3.6:

n 1 10 + k1 (3.6 - 3.75)2 < 10.5

k < 22.2k1

Because k 2 - 0, Equation (23) is symmetric about r* and the same

result is obtained for r2 - 3.9. Therefore k1  = 22.2.
max

Thus, TACC must select k2 = 0 and k in the range [7.5, 22.21. Suppose he

chooses k- 10. The control that is announced by TACC to MCE is:

n - 10 + 10(r - 3.75)2 (28)

Finally, for this example, assume that MCE is actually using 8 - .008 in

its operation. After substitution of Equation (28) in the MCE objective

function, the MCE must maximize:

J' - r(2 - e.008 [10 + 10(r - 3.75)2 ]r (29)

Figure 8 is an illustration of this example. In Figure 8(a), the MCE

objective is depicted for 0 - .008 without control. Note that the maximum

occurs at r - 4.69. In Figure 8(b), the effect of the control is seen as

Equation (29) is displayed. MCE maximizes at r - 3.82, which is well

within tolerance. Figure 8(c) is a plot of n vs. r, about r* - 3.75, for

different values of kI (k2 - 0). The superimposed rectangle is the region

in which n is essentially no, because of the discrete nature of the

control. Figure 8(c) may serve as a "look-up table" for determining the
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maximum value of kI (step 5 in the procedure). The purpose of Figure 8(d)

Is to demonstrate the "centering" properties of k2. The data are the same

as for Figure 8(b), except the objective function is sketched for k2  5

and k2 - -5. If TACC knew that 8 - .008 in advance, the actual centering

J value of k2 could, of course, be calculated from Equation (27):

2 - [(.008)(10)(3.75) + 1] (1.35)
(.008)(3.75) 2(1.35)

J (r) J (r)
.4

2.5 2.5,

2.0 2. 0

1.5 1.5"

I.O i.

" f : . . I I : _

S0 0
1.0 2.0 3.0 4.0 5.0 r 2.0 3.0 4.0

(a) No control: 8 - .008 (b) With control: k1 - 10, k2  0

Figure 8. Objective function with quadratic control

! ,~~~._ .. ". ', .*p.*4 ,.... * ,*..,j . .'.?f.. ..... . -'.t_ °.' " . ... , . .
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.. 1K.20 2 2.5
0

01.0 , 2.0--

1(9=5.5
0 , ,

4~A10.0 1.05-

2 4.0 1.0 2.0 3.0 4.0 r

(c) n vs. r (d) "Centering" property of k2

Figure 8. Continued.
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6. CONCLUSION

In this thesis, we have developed the mathematical framework for

employing incentive control in the Tactical Air Control System. We modeled

MCE as being composed of a command subsystem, whose function is to maximize

its objective function, and an execution subsystem, which behaves like a

transfer function, whose characteristics are governed by an internal and an

external parameter.

The goal of the incentive control strategies, introduced in Chapters 4

and 5, is to ensure that MCE maximizes its objective function at or near a

desired operating point, r*, regardless of the value of the internal para-

meter MCE uses in its objective function. The piece-wise linear control

strategy makes r* insensitive to changes in 8 over a predetermined range

of 0, but is computationally more difficult to analyze. The quadratic

approach is somewhat easier to analyze and has the advantage that 0' does

not have to be in [81,021. It is not, however, totally insensitive to

changes in 8 but can be made minimally sensitive for given tolerances in

MCE response. Both controls have the distinct advantage that for any model

selected, if the objective function is a monotonically decreasing function

of the control variable n (reference Figure 6), the induced objective func-

tion will be maximized only at the bias value, n (which corresponds to

.4. r*).

Another important application of incentive mechanisms in the C3

setting is in Command, Control, and Communications Countermeasures (C3CM).

In this context, the participants are viewed as non-cooperative. The use

of incentive strategies by one superpower to induce "cooperation" by

another superpower in strategic arms control is discussed in [4]. These
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same ideas can be extended to the tactical theater to force an enemy

4.1 C3 system to behave in a certain manner. The steps Laken are excactly the

same as outlined in this thesis:

(I) Model the adversary's operation and determine his objective

function.

4 (2) Determine all unknown internal parameters of the objective func-

tion.

(3) Determine what parameter(s) in the objective function can be

affected by an incentive strategy.

(4) Design an appropriate strategy.

(5) Announce the strategy to the adversary.

.,4
"4.4

, .-.

* *
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APPENDIX I

SENSITIVITY FUNCTION ANALYSIS

Throughout this thesis, our discussion has been based on the fact that

MCE might choose-some value of 8 other than 8' in its objective function.

At the same time, our assumption has been that 8' (the value that TACC

thinks MCE should have) is actually the more appropriate value. We desire,

then, to have some measure of how close Jmax, the actual maximum value of

the MCE output, is to J' the ideal calculated by TACC.max '

In [41, sensitivity functions are introduced to provide such a

measure. Using the derivative terms of the Taylor series expansion of J

about 8', when r = r*, we denote the first order sensitivity function:

I = dJ(n,r,0)/d0

r= r*nmn

n0n (30)

= [(dJ/dn)(dn/dr) + dJ/dr] (dr/dB)

rr *r-r*

nwn
0

We first analyze each term of Equation (30) in view of the piece-wise

linear approach. dJ/dn will always be negative, due to the monotonic rela-

tionship between J and n in the original model. dn/dr is discontinuous at

r - r*, since it is equal to k, for r > r*, and -k, for r < r*. dr/d8 is

zero, however, because in the piece-wise approach, we have total insen-

sitivity of r to changes in 8 in [80,821, which contains 0'. Due to this

fact, the entire function is zero.

For the quadratic approch, we can never make dr/dO equal to zero but

can only minimize it. dJ/dr is still zero, of course, and dJ/dn is still

.. . . .... . .. . . .. ' " '- - 5'5- 5.* " .' .- **.5.-". .a ' '. :, S ~ '
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always negrative. The easiest way to make 1~ 0, then, is to ensure dn/dr

. 0. Recalling the discrete natire of n, we can -av that for a snaLL range

of r about r*, the change in n with respect to r is zero. Furthermore,

since our sele'tion of k was based on a range of a, if 3' is included in

11[B,82], then dn/dr = 0 over that range (in a "discrete" sense). If a' is

not included in [61,$21, we cannot use this function as a measure of sen-

sitivity about 8'.

If I I = 0, the dominant term of the expansion becomes the second order

sensitivity function, which we define as:

12 d2 J(n,r,O)/d8
2

r=r*
n-n

0
-- ( +nJa + nJ a Jr

r 2(nr2Jnn + r rn r rn

+ (Jnnr + J r)r = (31)

r= r*

n=n

. Again analyzing the piece-wise linear approach first, we find that since

dr/dO - 0 at 0 8', the entire first term is zero. Total insensitivity of

- r to 8 in [0i,82] also guarantees that r 00 thus 12 0 for the piece-

wise approach. In fact, all higher order derivatives of J will also vanish

in a neighborhood of 0', so for this approach the maximum value of the

objective function is totally insensitive to changes in 8 in [081,2].

For the quadratic approach, since dJ/dr = 0 and dn/dr = 0, Equation

(31) reduces to the following expression:

12 d (dr/d) 2 (d2 j/dr2 (32)

!3
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We know that dr/d8 cannot be zero but is minimized for k very large.

Therefore, the first product term can only be a small positive number.

Also, the objective function is convex in r for all 8 and n, so the second

product term is always a negative valued function. Therefore, to minimize

12, we should make k, as large as possible, but not larger than k,
max

calculated in Chapter 5 (Equation 27).
.
0

-

I'j

V'.
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APPENDIX 2

A TWO-PARAMETER MODEL

In Section 3.2, a model was developed for MCE, which included one

internal parameter, a. Now we investigate the effect of incorporating a

second parameter, a, into the objective function. Consider a transfer

.' function of the form:

G(r) = a - e(Onr) (33)

The difference between Equation (33) and the one-parameter case corresponds

roughly to changing the unity feedback gain of Figure 4 to a variable feed-

back. The effect of introducing a, for a < 2, is to vary the overall

-' amplitude of the transfer function. The resulting objective function for

MCE is:

J(r) - r( - e(8nr)) (34)

4, Examining Equation (34) for the piece-wise linear approach poses no

special problems. We again divide the r-axis into two regions and compute

dJ/dr for two cases.

Case I: r . r*

Rewriting Equation (18) for the more general case involving a:

a - (Onr + 1)e(Onr) - kir 2e(Onr) < 0 (35)

Now, in addition to the worst case values of S,r, and n, the largest value

of a also must be selected, to ensure Inequality (35). Thus, we use a - 2.

The result for this case, then, is the same as for the one-parameter case:
,V.

'V , , € -. . _ . . .- .,: , , ... ./ ... .. . . ... . . . ... . ... . . . - .. . . . . . . . .
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mn
2 (8n r*)

2 (8nr*+ 1 (36)
""" >","8 ir*2e(B I n~r*)

Case II: 0 r. r*

The same procedure is followed here as in Section 4.1.2, except that

the minimum anticipated value of a is used in calculation of k. Denoting

this value of a as a
m

k->aC1om - ( 2 n0 r* + 1)e ( 2n r * )
__.__"___ ____ ____ ___2no__(37)

82 r* 2 e (0 2 n0 r*)

The problem of inducing the extra oscillation, for large k on [O,r*], is

even more acute for smaller values of a. In fact, for a < 1.5, there may

not exist a k which satisfies Inequality (37) but which avoids the maximum-

" :, minimum phenomenom. Therefore, for this model, a should be restricted to

the interval [1.5,2.01.

Analysis of the two-parameter case is likewise straightforward for

the quadratic approach. The steps taken are identical to the procedure

outlined in Chapter 5, except that an anticipated a range, a1 
< ac < a2, is

identified as well as the 0 range. Then, the "centering" property of k2 at

ac, 0 is retained and k1 is selected for a predetermined r tolerance,
c 1

evaluated at the boundaries r, a, 82 and r2, 2 , 81"

I..2

a\,.. .. .. ,,C,. .. .. . ? ... '1.... .. . . .-.. . , . !
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