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Abstract

Algorithms designed for VLSI implementation are usually parallel and two-dimensional in the sense that

many processing elements laid out on a silicon surface can operate simultaneously. These algorithms have

been typically described by graphs or networks where nodes represent processing elements or registers and

edges represent wires. Although for many purposes these traditional representations are adequate for specify-

ing VLSI algorithms, they are not suited for manuipulating algorithm designs. In this paper an algebraic

representation, together with a semantics, is proposed for VLSI algorithm designs. By algebraic transfor-

mations analogous to some typically used in linear algebra, alternative but equivalent designs satisfying

desirable properties such as locality and regularity in data communication can be derived. This paper

describes this powerful algebra for manipulating designs, and provides a mathematical foundation for the

algebraic transformations. The algebraic framework is more suitable for supporting formal manipulation on

designs than the network or graph-theoretic models, especially for complex designs. As an application of the

proposed algebra, the paper demonstrates its use in the design and verification of systolic algorithms.
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1. Introduction
Over the past several years, many systolic algorithms have been proposed as solutions to computation-

bound problems (see, e.g., [6, 10, 12, 14]). By exploiting the regularity and parallelism inherent to given

problems and by employing high degrees of parallelism and pipelining, systolic algorithms implemented in

VLSI achieve high performance with regular communication structures and low I/O requirements (see [121

for detailed discussions of advantages of systolic structures). A number of prototype machines for implement-

ing systolic algorithms, ranging from single-purpose chips [5, 9, 15]. through application-oriented yet

programmable systems [2, 23], to very general systems with reconfigurable interconnections [3, 19, 201 have

been designed and built. More recently, building-block chips for systolic architectures have also been

proposed or designed [8, 1, 18, 221 including the CMU programmable systolic chip (PSC) [7, 81. The general

question of automatically deriving systolic arrays and verifying their correctness, however, remains open,
although several significant attempts have been made in this direction (see, e.g., [4, 16, 17, 21D. Instead of
suggesting methods for deriving or verifying systolic designs, we provide in this paper an algebra for

manipulating VLSI algorithm designs in general. With this algebra a designer is able to manipulate designs

by "pushing symbols," in order to conveniently meet desirable design criteria such as locality and regularity of

data communication.

Section 2 illustrates the notation and basic principles by considering the hardware implementation of a

finite impulse response (FIR) filter. Two representations are proposed to specify a design with the property

that from either representation we can derive the other. The z-graph representation is close to a hardware or

VLSI specification of a design, and the algebraic representafion is convenient for performing algebraic trans-

formations on a design. Starting with a design that corresponds directly to the mathematical definition of the

filtering problem (and thus its correctness is obvious), we perform a set of algebraic transformations on its

algebraic representation and obtain the algebraic representation of a systolic design, from which a systolic

filtering array can be derived automatically. Section 3, the heart of this paper, provides a mathematical

foundation for the algebraic transformations used in Section 2. These transformations are formally justified

with respect to a proposed semantics fbr design. Once justified, they become "legal" transformations that can

be applied freely to any desigr without impairing correctness. Section 4 presents another application of the

algebra, namely, the derivation of a systolic infinite impulse response (IR) filtering array. The last section

contains some concluding remarks



SECrION 2 BASIC PRINCIPLE AND NOTATION -2-

2. Basic Principles and Notation -Illustrated by a
FIR Filtering Example

To illustrate the basic idea and notation of this paper, this section considers a concrete example-the FIR

filtering problem. We will use many diagrams to make the presentation as clear as possible, although

algebraic transformations of this paper rely only on the algebraic representation. We will perform algebraic

transformations formally here and postpone their justification to Section 3.

2.1. FIR Filtering and z-Notation
Consider the following FIR filter with weights wj:

Y[= Wx+ w2xi+ I + w3X2 + w4x+ . (2.1)

Figure 2-1 depicts a straightforward design; called design S, for the hardware implementation of the filter. In

the diagram, each ® and G represent a multiplier and adder, respectively ane each a or m represents a

register capable of latching incoming data for one cycle time. Note that the cycle time must be long enough to

allow data flow from register to register, possibly performing some computations in between. One of the

objectives of systolic designs is to minimize the cycle time by avoiding long communications and large

numbers of computations done inside each cycle, and thus maximize the throughput of the resulting system.

. X3 , X2 . X1

0 Y 3 , )p 2 , y ,

Figure 2-1. Design S (straightforward design).

Figure 2-2 describes design S (ignoring the input and output registers ai ) with the usual i-notation, where a

delay of kc cycles is indicated by -k We see that in the z-notation the minimum cycle time is the time to
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perform all the operations connected by edges with label z-1. Thus for design S the cycle time is at least the

time to perform one multiplication (assuming that four hardware multipliers are available) and one 4-input

addition. In the next section we show a systolic design for which only one multiplication and one 2-input

addition will have to be done in each cycle.

x
z71 z 2 Z-3

w4  W3F WEI W,

.x x x x

Figure 2-2. Design S in the z-notation.

2.2. Systolic FIR Filtering and z-Graph Representation
Figure 2-3 depicts a typical systolic design for FIR filtering, called design W2 in [12]. In this design the w,

stay and xi and y1 both move systolically from left to right, but the xi move twice as slowly as the y.

(A) X7-- e - &

Xj. x Yout :a Yin + W. X1 ,

YIN41 wex = in

xout :0 x

Figure 2-3. Design W2: systolic FIR filtering array (a) and cell (b).

Note that each x value passes from cell to cell without changing. Figure 2-4 depicts the systolic array in the

z-notation.
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X

z-0 z-2 z-4 z-6

W4  W3W 2  W,

-0Z_0 _'0 Z_0

Figure 2-4. Design W2 in the z-notatior.xL z -0 z zi -

z zz

Figure 2-5. Design W2 in the z-graph representation.

By grouping every pair of multiplication and addition as one node to he executed by a separate processor,

we derive cte z-graph representation of the design (Figure 2-5). The z-graph representation of a systolic

design has the "systolic property" that the input (the x in Figure 2-5) is distributed to all the nodes (vl,v,v,14)

at different time instants and edges between nodes have labels z -k with k > 1. One of objectives of this paper

is to introduce an algebra for deriving designs whose z-graph representations will have the systolic property

(see Section 4 below for precise conditions for a systolic design). Given a design like Figure 2-5, whose

z-graph represent enjoys the systolic property, a corresponding systolic array design is readily obtained by

simply passing the input x through the nodes with appropriate delays as depicted in Figure 2-6. It is

instructive to examine the correspondence between Figure 2-3 and 2-6.

z-Z z72 Z74 - -

i-p
zt

x._..9...._. y

z- V -1 Z

Figure 2-6. Design W2 in the graph representation.

By~~~~~ gruigeeyp ir ... multilcto an ii o .. ........ one nod to be. exeute by........ proesor
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2.3. Algebraic Representation of Design
In this and next :ections we show that the systolic design W2 of the preceding section can be derived

systematically by algebraic transformation analogous to some typically used in linear algebra. Our starting

design is design C of Figure 2-7, which is a variant of the straightforward design, design S, of Figure 2-2. In

design C the summation is distributed over a cascade of four 2-input adders as shown in Figure 2-7. Figure

2-8 describes design C in the z-graph representation.

x -o -i z-2 -

z-O z-O z-O z-O

Figure 2-7. Design C- a variant of design S of Figure 2-2.

X

iz z Zi-

Figure 2-8. Design C in the z-graph representation.

Design C relies on the fact that in the filter computation (2.1) there are as many multiplications as additions.

Similar designs apply to many other inner-product-like computations of this kind. Note that in design C of

Figure 2-8 the edges linking nodes v1,v2,v3 and v, all have labels z" and therefore the cycle time must be long

enough to perform computations associated with all the nodes in sequence. Thus design C is not systolic.

Assuming that design C in the z-graph representation (Figure 2-8) is given, our task is to transform it to the

systolic design, design W2, of Figure 2-5 by linear algebra techniques. To this end, we formally associate the
z-graph representation of design C of Figure 2-8 with an algebraic representation shown in Figure 2-9. To see

the correspondence between the two representations, consider for exanple that

V2 '- z-°V3 + Z-2X, (2.2)

and
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(2.3)

y= Z-0 V.

F1 0 7 1 Z-

V2 0 0 Z_ 0 0 V2 Z_ 2

V3 0 0 0 Z- 0 v3 z- I

_v4J 0 0 0 0JLV4 z- L 0_

V2y = a° 0"] [yJ

Figure 2-9. Design C in the algebraic representation.

Consistently with Figure 2-8, (2.2) states that at any time t, the value of node v2. v2 (i), depends on the values

of node v3 at time i, v3(1), and the value of input x at time 1-2, x1-2), and (2.3) states that the value of

output y is the same as the value of node v, at any time. More precisely,

v2(O0=f 21v3 (), x(t-2)], (2.4)

wheref2 is a 2-variable function associated with v such that

fA[ab]J=a+ w2b.

This defines one-to-one correspondence between the z-graph representation of a design and its algebraic

representation, in the sense that from either representation one can derive the other. Note that the plus sign

in (2.2) represents some combination of information by (2.4) rather than the usual arithmetic addition. In

Section 3.2 below semantics for algebraic expressions involving the "4--" symbol such as (2.2) will be given.

It is readily seen from Figure 2-5 that the algebraic representation of design W2 is that shown in Figure

2-10.

.0
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V __ 0 0 z- 0 V2 + Z- 4

V30 0 0 Z- 1 3 z- 2

4-0 0 0 0 V4_ z- D
-1 -6

Y - 0- 0 0 0 V
V3

LV4

Figure 2-10. Design W2 in the algebraic representation.

2.4. Deriving Systolic Designs by Algebraic Transformations
In this section we demonstrate that the algebraic representation of the systolic design, design W2, can be

obtained from that of design C through formal algebraic transformations; in the next section we will pro, ide a

mathematical foundation for these transformations. To simplify notation, we denote the algebraic represen-

taton of design C by

v,--- Av+ bx, (2.5)

y=cJv, (2.6)

where matrix A and vectors b. c are defined according to Figure 2-9. Consider the diagonal matrix

[-30 0 01

0 z-  0 0

0 0 z- 0 I
0 0 0 z-

and its "formal" inverse
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[- 3 0 0

0 '0 z 0

0 0 0 z°J

Let

u = Dv. (2.7)

Then

v= -1 (2.8)

Multiplying (2.5) by D, we have

Dv4-- DAv+ Dbx. (2.9)

By (2.7) and (2.8), (2.9) and (2.6) become

u -- (DAD-I)u + (Db)x, (2.10)

and

y= (cTD-l)u, (2.11)

respectively. Through formal calculation, one can check that

0 el 0 0

DA =[ 0 0 00 0 0 z- 1l

L0 0 0 0

i-6]

r -4z6 .[31Ob z"z  and 0 0 0].

Thus (2.10) and (2.11) are the algebraic representation of the design 'whose z-graph representation is shown in

Figure 2-11.

We have transformed design C of Figure 2-8 to the design of Figure 2-11. After renaming the value of
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x

z0 z2 z- z7

z2 y

Figure 2-11. Design corresponding to (2.10) and (2.11) in the z-graph representation.

output y at time i to be that of output y at time t+ 3. the design becomes exactly the systolic design W2 of

Figure 2-5. In conclusion, we have derived a systolic design by applying a transformnation, D to the algebraic

representation of a non-systolic.design.
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3. Foundation for Algebraic Transformations
In Section 2.4 we illustrated that a systolic design could be derived by formal algebraic manipulations

similar to those used in linear algebra. This section provides a mathematical foundation for these formal

manipulations. To do so, we first need to give a semantics for VLSI algorithm design.

3.1. Semantics of Design
We define the semantics of a design to be a function of time that the design implements. More precisely,

the semantics of some basic design constructs given in either the z-graph representation or the algebraic

representation are summarized in the table of Figure 3-1 with the following comments:

SYNTAX SEMANTICS

z-graph representation algebraic representation

1. V, l vi is a function of time defined

in terms of some associated

function fA.

2. X 1 v- z'v2+ zJx+ z-kv 3  Function v, is defined by

Vt(' ) =ftV (I -i), x( -i), v3 ( t-k)].

3. > y y Z-kV, y i ), vlp- k)

Figure 3-1. Semantics of basic design constructs.

1. Each node vi in the z-graph representation or each variable vi in the algebraic representation is a
function of time defined in terms of some implicit function f associated with vi.

2. The value of node or variable v, at time ), isjl[v(i- i), Xt(-j), v(t- k), where v,(t- i) is the
value of v2 at time t- 4i x(t-j) is the value of input x at time t-j, and v3(t- k) is the value of v at
time t- k.

3. The value of outputyat time t is the same as the value of viat time t-k. (If k=O, symbol z- k can
be omitted from the z-graph representation as Figures 2-5 and 2-8.)
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Note that for designs of Figures 2-8 and 2-11, implicit function f, i= 1, 2.3. associated with node v, or u1

with weight wi, is defined by

fj[a,b=a+ wjb,

and implicit function f4 associated with node v, or u4 is defined by

f4 [b= W4 b,

where a and b are the left and top inputs to the node, respectively. Note that implicit functions f, are

functions independent of time. As far as the algebraic transformations of this paper are concerned, the

semantics of implicit functions need not be specified, as they are invariant under these transformations. This

is the reason why we call them implicit functions.

3.2. Canonical Algebraic Representation

As shown in Figures 2-5 and 2-8, a general design in the z-graph representation has input x, output y and

nodes v, .. . , v.. By grouping multiple expressions for defining individual functions vi, ... , v, into a single

matrix expression, the algebraic representation of a general VLSI algorithm design often has the form:

,-- Av+bX, (3.1)

y=civ, (3.2)

where A=(z-NO is an nxn matrix, b=(z-b,. .. .z-bn) T v=(vl. .. ., v,)T and c=(z'c1,.. . , z- n) with only

one nonzero entry. This canonical form of algebraic representation has been illustrated by Figures 2-9 and

2-10, and will be assumed in the rest of the paper except the concluding remarks section.

3.3. Well-Defined Design and Equivalent Designs

For i= 1,..., n, the i-th component of (3.1) is

v1g .-Z-a0' 1 + z-*, 2 + ... + z-ajnv, + rbx. (3.3)

That is, (3.1) is a collection of expressions (3.3) for i= 1, ... , n. For defining the semantics of design (3.1) and

(3.2), (3.3) means that function vi satisfies

Si(0 =fi (:- a0), v2(1- a0), ..• •, (- at), xQt- b~I (3.4)

for some implicit function f associated with node v, and (3.2) means that

A(1O = vj(t'- c).

where - cj is the exponent of the only nonzero entry in vector J. (Mechanically, we can think that in the

transformation from (3.3) to (3.4) "-" is replaced with "= f.") Here we use the convention that a zero entry

of A, b or cT is z- 00 and it is omitted from expressions (3.3) and (3.4).
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We say that a design is well-defined starting from some 16 if for i= 1, ... , n and t >" to. vi(t) is completely

determined by values in the sets {x(t): t:5 t} and {vit'): t'< t}, i= 1, ... , n, and this property holds for any

implicit functions. In view of(3.4) a sufficient condition for design (3.1) to be well-defined is that ay's are all

positive. This is, however, not a necessary condition. It is instructive to see that design C of Figure 2-9 is

well-defined in spite of the fact that for this design a. = = am -0. From Figure 2-9, we have
v, (t) =f, I v2 (i,. v(t - 3)1.

V2(t)=f2 Iv3 4)-2)].

v3 (1)=A (), At- I).

Therefore

v ( i) = f , V2 V3 4 [x f)], t - 1)]. t - 2)1 x(t - 3)1

v2(Q)=f2V3V4lx(fl,. x(t- 1)], jt- 2)1,

v3 (t)=AM1d4 ). At-1)1A

X4 (i)-f =A4V)A

We see that for i=1,1... ,4, vi(t) is completely determined by values in the set {x(t1): i'< t} for any implicit

functionsfi, and thus design C is well-defined. It is easy to prove that a sufficient and necessary condition for

a design to be well-defined is that in its z-graph representation there does not exist any cycle whose edges all

have label z- 0. Verifying this condition for a design can be done in linear time. Hereafter we are only

interested in designs that are well-defined.

Consider a well-defined design (3.1), -with some implicit function associated with each node. Given an

input function (of time) x and initial values vi(t) fbr t < to, by (3.4) design (3.1) defines a unique vector

function (of time) Y=(v,..., v) , and together with (3.2), defines a unique output function (of time) y. We

say two output functions A4 and B are essentially the same if A(t)= B(t+ a), where a is some constant, for all t

greater than certain time intant.

Definition 3.1: Two given designs are equivalent, if for any initial values given for one design,
there exist initial values for the other design such that with the same input function the two
designs produce essentially the same output function.

In the following section we will show that design defined by (2.5) and (2.6) and one defined by (2.10) and

(2.11) are equivalent.

In the semantis Hterature. function vich defined is ailed the xpoiat oluton'" of"fiupoint equation" (3.1).
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3.4. Fundamental Results

To express our results on algebraic transformations, we need the following definitions. Let D=(z-d( be an

nx n diagonal matrix.

L For v=(, - •., v,) define Dv to be u(u ,.u.., u)Tsuch that for i= 1,..., n,

u,(0= v1(1-d)

for all t for which v(t-d) is defined. Thus, D can be viewed as an operator that maps a vector

function v to another vector function Dv.

2. For b=(z-A,...,z-b,. define Db to be e=(z-e,... zen)Twhere

e1= d,+ bi

for i=1, ...n.

3. Let A=(z-*# be an nxn matrix. Define DA to be an nxn matrix B=(z-bQ) where

bV=d,+a/

fo j=I,...,n. Product AD is defined similarly. We can easily check that

(DA)D - 1 = D(AD-11

ad thus we can simply denote them by DAD - '.

Hev we use the convention tat

W =dl+ co

for.my di Thus zero entries of b or A remain to be zero entries in Db or DA, respectively.

Lemms 3.1: Suppose that v and u are defined by well-defined designs

v*- Av+ bx (3.5)

and

u -- (DAD-1)M + (Db)x, (3.6)

with thclr ir!itial values satisfyin

u(' + d)= Yg( (3.7)

for I< . T7en
M" Dy.

Prme Let vl and ui be the i-th components of v and u, respectively. Note that

DAD-'=(z d,+iri") and Db=(z-0'- ,z "02' h, . .,z-u'n) T  Thus. ik defined by
(3.6) saaft
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ui(t)--- [ ul(t- di + d- aA), u2(t- di4"d 2- all)...,

u,(I- d,+ d.- a'.), 4 t- bi- dA)].

Replacing i with + di in the above equation, we have

u,(t + dd = f, [u(I + d1- aa), u( + d4 -a), " , (3.8)
u,( t+ d,- aj),x( t-bl)|.

By (3.4),

vi(') = fi[yl(t- ag), v2(1- ah),. , v (t- ain, x(t- b)]. (3.9)

We prove by induction on i that for i= 1, ...,

uj(:+ d)= vj(i) (3.10)

for 1= t + 1, ; + 2,..-.. By (3.7), (3.10) holds for t < 1 . Thus,

uj( (4 + d- ag) = vj(4 -a f)

for any j for which ag > O. Since designs (3.5) and (3.6) are well-defined, (3.8) and (3.9) imply that

ul(to+ d)= v(),

that is, (3.10) holds fort= 1. By induction (3.10) holds for t=o+ 1, to+ 2,. ., and so on. 0

The following lemma can be proven by a similar method:

Lemma 3.2: If

y=cTv and u=D,

then

Immediately following from Lemmas 3.1 and 3.2, we have the following result

Theorem 3.1: Design

v.-- Av+ 6x

y= ,

is equivalent to design

U-- (DAD-)u + (Db)x,

assuming that both designs are well-defined.
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The above theorem is essentially the "retiming lemma" of Leiserson and Saxe [17). Not using the algebraic

notation and approach taken here, they had to rely on a very long (4 pages) and rather unclean proof.

In the following, we introduce another transformation whose function is to scale down the throughput of an

existing design. Consider a well-defined design M with input function x and output function y, and another

design M' with input function x' and output function y'. We say that design M' is a k-slowed design of M for

some positive integer k, if the following holds for some integer p:

for any initial values for M, there exist initial values for M'
such thatff

x'(ki+p)=x(#

for all t, then

y'(kf+ p) =y()

for all t where y(t) is defined.

Therefore as far as the outside world is concerned, the function of a k-slowed design is the same as that of the

original design, except that input and output are taken in and out, respectively, once every k time units. The

usefulness of k-slowed designs in the derivation of systolic designs was first pointed out in [171. and it will

become clear in the next two sections. The following lemma shows a simple way to implement a well-defined,

k-slowed design.

Lemma 3.3: If

v--- Av+ by, (3.11)

y= CT,

is a well-defined design, then the design

v',- A'v'+b'x', (3.12)

y = cTVI (3.13)

with A'=(z-k#), b'=(z-t', ... z-buiT, and cT=(z'-l,,... 2- c,) is a well-defined, k-sloweddedoL

Proof. Since in their z-graph representations the two designs have the same set of edges with
Uabe] z- e, well-defineness of one design implies that of the other. Let v, and v/ be the i-th

components of v and Y,', respectively. Without loss of generality, assume that the output functions
y and yl of the two design satisfy

and y,1 (l-cj).-kc

respectively. Suppose that the original design is well-defined starting from I,. It suffices to prove
doet if
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X'(ki)=xQt)

for aUt, and

for i= 1, -, n and I < . then

y' (kt)=yQt)

for all ifor which At) is defined. The proof is similar to that of Lemma 3.1 and is omitted.
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4. Determining Algebraic Transformations
Given a well-defined design, we want to determine a k-slowed design and D = (z- dt) such that design

u - (DA'D-1)u + (Db)i,

y =(cTD-l)u

will be well-defined and systolic. This imposes the following conditions on the entries of D,4'D -1 and Db':

C1. For i= 1, ..., n,

{This assures not only that the design is well-defined, but also that the cycle time only has to be
long enough to perform the computation of at most one node.}

C2. All nonzero entries of any column of DA 'D" and Db' must be distinct.
{This assures that the value of a node at any time never has to be sent to more than one node
simultaneously, and thus no broadcasting or fanout of data is needed.)

It is an easy exercise to show that if the original design is well-defined, that is, in its z-graph representation

there does not exist cycles whose edges all have label z".then there exist k and D for which conditions C1

and C2 are satisfied. To maximize throughput we are interested in a solution which has the smallest-possible

k. It turns out that for some designs to satisfy C1 and C2, k must be greater than one, as to be illustrated by

IIR filtering example in the next section. This is the reason why we perform transformations on a k-slowed

design, with k z 1, rather than the original design.

ii iL
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5. 11R Filtering- A Further Example
Consider the implementation of the following infinite impulse response (JIR) filter with weights w "

Yi= W.)i-I + W2Yi-2 + w3x,+ w4xI- . (5.1)

The above equation states that at any given time t, the value of output y depends on the values of y at times
i- 1and t-2, and input x at times tand i-i. Figure 5-1 depicts a straightforward design for the IR filter in

the z-notation.

x

z71 z-O - z71

W4 -3 o2 -1

Z
-0  

z-O Z- 0  
z-Ox xx x Y

Figure 5-1. Straightforward design for the IIR filter in the z-notation.

Similar to the FIR design of Figure 2-7, the 4-input adder of Figure 5-1 can be distributed over a cascade of
four 2-input adders. This forms a design with four identical nodes, whose z-graph representation is depicted

in Figure 5-2. Figure 5-3 describes the algebraic representation of the design.

x

e-I -o Z_2z_

-o z-0 Z-0o
V 4 V3  112 V1

Figure 5-2. IIR filter in the z-graph representation.

According to Lemma 3.3, a k-slowed design can be obtained by changing labels z- to Z-kh for any h. The
algebraic representation of the k-slowed IIR filter is described in Figure 5-4, and is denoted by

V#-- ,rV+ b,

y= cJT,.

.vfc'ra



SECTION 5 IlR FILTERING- A FURTHER EXAMPLE -19-

V1 z- I z- Y

YZ _ z. 2 0 Z-- 0 2
V3 0 0 0 Z- 0 V3 Z- 0

V4_ 0 0 0 0 z- V4

V1

Y V ~ o o o[2]-" 7 z- 0 0 0 1 v3

V4

Figure 5-3. 11R filter in the algebraic representation.

y = [ OO oail (o
Vi Z 2k0 - Z) 0 z

o  Vi +
vi' 0 0 0 z-0 vi z-O

L vJ L o o o 0o L v,*J z "k

L,J

Figure 5-4. K-slowed 11R filter in the algebraic representation.

We seek a diagonal mzt'ix D such that the design described by

u - (D.,'D)-')u + (D)x,

y=(c'TD-1)u,

will be well-defined and systolic. By condition C1 of Section 4,

k > 1,
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2k+d 2-d1:_1,

'4- 4 >_i,

and by condition C2,

k#2k+d4-d,

d33k+d .

One can check that a solution with the minimum-possible value for k is that k= 2 and

i-2 0 0 0

0 z", 0 0
D 0 a - * 0

0 0 0 z

Note that

z z- I 0 0;
Z-3 z-1

DA'D 1[ 00 0 0 z- 1 "

0 0 0 J

D6~ [ -]0 and C.Td1=[z2 0 0 0]

Thus the resulting systolic 11R filtering array in the z-graph representation is shown in Figure 5-5. This

systolic array was previously described in [111.
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x

z7 z7 -3Z

Figure 5-5. Systolic hJR filter in the z-graph representation.
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6. Concluding Remarks
We proposed two representations for specifying a design-the z-graph representation and the algebraic

representation. From either representation we can derive the other. The z-graph representation is readily

mappable to a hardware or VLSI implementation, whereas the algebraic representation is suitable for al-

gebraic transformations. For algebraic transformations, only algebraic representations of designs are needed.

By working within an algebraic framework, rather than a network or graph-theoreuc framework, one can use

powerful algebraic operators to manipulate designs and can deal with abstraction conveniently. For example,

using matrix notation, a simple algebraic expression such as (3.1) can represent design of arbitrary size.

A more general algebraic representation than the one described in (3.1) and (3.2) is:

Y4-- Av+ Bx, (6.1)

y=Crv, (6.2)

where input x and output y are vectors rather than scalars, and B and C are matrices rather than vectors b and

c. This general form of representation seems to cover all the interesting VLSI algorithm designs that we know

of and can anticipate. For example, for the design of Figure 6-1(a) for multiplying a bidiagonal upper

triangular matrix with a bidiagonal lower triangular matrix, we have

0 0 00 10 z0Z00

A 0 0 0 0 1 z-0 0 z- 1

0 0 0 [ 0 Z -0 0 i]
Lz"° 0 0 0 JLZ7° 0 0 i'

and 0 Z0 0 0
r
. 0 0 0 .

0a z-  0

Without loss of generality we can always assume that there is only one nonzero entry in each row of C that

is, at any time the value of each output y is equal to that of some node at that time or earlier. Results and

definitions of this paper can all be extended in a straightforward way to this general form of the algebraic

representation (6.1) and (6.2). For example we can show that starting with the non-systolic design of Figure

6-1(a). a systolic solution with the minimum-possible value for k is that k= I and



SECTION 6 CONCLUDING REMARKS -23-

zo 0 0 0 ]
0 z7 ° 0 0

0 0 0 z7 .

The resulting systolic array is illustrated in Figure 6-1(b), which is precisely the systolic design for band matrix

multiplication proposed in 121]. Detailed discussions of this and other results including the use of the

proposed algebra in the derivation of two-level pipelined systolic arrays 1131 and systolic arrays for priority

queues and LU-decomposition of matrices will appear in forthcoming papers.

x2  x1 x2  xl

Z70 zi zO i-I
-0

V1 z-0 iz 1 V o Yi-1l - U2  o

X4  X

3V4  ,3 - '-- ~ o zo z7 z I1

(a) (b)

Figure 6-1. Designs for band matrix multiplication in the z-graph
representation: (a) a non-systolic design, and (b) a systolic design.

We view that major contributions of this paper are at the proposed semantics for VLSI algorithm design.

algebraic representation and transformations, and the mathematical foundation for these transformations.

With these algebraic tools, we are able to manipulate designs by "pushing symbols" as we do in algebra, and

to prove theorems about design transformations (e.g., Theorem 3.1).without relying on any drawings. Deriv-

ing systolic design is just of one of many potential applications of the proposed algebra.
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