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ABSTRACT

This report describes an application of Augmented Lagrangian techniques

to the numerical solution of quasistatic flow problems in incompressible

viscoplasticity, focusing on cases where the internal viscoplastic dissipation

potential is not a differentiable function of the material deformation rate.

The stresses of elastic origin are neglected, and the variational formulation

of these problems is approximated via mixed finite elements of order 1.

Convergence results are proved or recalled, both for the finite element

approximation and for the augmented lagrangian algorithm. A detailed study of

the local minimization problems which occur in the augmented lagrangian

decomposition of the above problems is also presented, together with several

numerical results. These results were obtained using the MODULEF finite

element code on a VAX 780 at the Mathematics Research Center and cover

successively the case of Norton, of Bingham and of Tresca type materials.

AMS (MOS) Subject Classifications: 65K10, 65N30, 73F05, 76A05

Key Words: viscoplasticity, convexity, incompressibility, finite elements,
augmented lagrangians.

Work Unit Number 3 (Numerical Analysis and Scientific Computing)
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SIGNIFICANCE AND EXPLANATION

Augmented lagrangian methods, introduced around 1970 by M. R. Hestenes

and M. J. D. Powell, are now classical numerical tools in scientific

computation. They take into account the dual structure that most problems in

continuum mechanics do present, involving usually both stresses and

displacements (or velocities), to reformulate them as saddle-point problems,

which can then be solved numerically by Uzawa type algorithms. These methods

have already been used in situations like viscoplasticity by GLOWINSKI and

MAROCCO [19751 and are described in detail in FORTIN and GLOWINSKI [1982].

Compared to previous publications, this report:

(i) tries to present a clean and updated version of these techniques,

(ii) uses a low order, convergent finite element for the approximation

of incompressible velocity fields,

(iii) and studies in details each local minimization problem which

appears during the algorithm.

The main mathematical tool used herein will be convex analysis. The goal

of this report is to give a comprehensive presentation of all the theoretical

aspects which are behind the application of augmented lagrangian techniques to

viscoplasticity (existence theory, approximation, convergence of the

algorithm, ... ) so that the reader may be able to implement these techniques

in any finite element code, to obtain reasonable numerical results with a

minimal experimentation time, to assess the validity of his numerical results

and to judge the efficiency of his numerical technique.

The responsibility for the wording and views expressed in the descriptive
sumary lies with MRC, and not with the author of this report.
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NUMERICAL SOLUTION OF VISCOPLASTIC
FLOW PROBLEMS BY AUGMENTED LAGRANGIANS

Patrick I Tallec

1. INTRODUCTION AND FORMULATION OF THE CONTINUOUS PROBLEMS.

1. Introduction. We consider in this report the problem of computing the quasistatic

flows of incompressible viscoplaptic materials subjected to given distributions of

external loads. The constitutive law which modelizes the behavior of the considered

viscoplastic materials and the configuration of the body are supposed to be given. The

unknown is the velocity field inside the body resulting from the application of the

external loads.

The materials which are involved in such problems include freshly mixed concrete,

bitumen, frozen soils, different types of mud, polymers at high temperature or very hot

metals.. These materials, when subjected to external loads, fLow viscously in a

nonreversible pattern and develop stresses which are mainly of viscous origin. Most of

these materials flow in an incompressible or nearly incompressible way.

Herein, to compute the velocity field v, we use a variational formulation of the

mechanical problem (Sec. 1), which neglects the stresses of elastic origin, we discretize

the space of kinematically admissible incompressible velocity fields by mixed finite

elements of order I (Sec. 2), and finally we solve the resulting discrete problem by

augmented lagrangian techniques (Sec. 3). Convergence results are proved both for the

finite element approximation and for the augmented lagrangian algorithm, and the local

problem which appear in the augmented lagrangian decomposition are studied in details in

Sec. 4. Several numerical results are presented in Secs. 5 to 7, successively for Norton,

Bingham and Tresca type materials. The basic assumption in this work is that the internal

dissipation potential associated to the considered viscoplastic material is a convex,

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the
Laboratoire Central des Ponts et Chaussees, 58 boulevard LEFEVRE, 75015 PARIS, FRANCE.
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continuous but not necessarily differentiable function of the deformation rate tensor

inside the body.

1.2 The mechanical problem. Depending whether we consider a specific piece of

material with very little motion or a specific domain with incoming and outcoming

material, the configuration A given in the data of the problem will correspond either to

the reference configuration or to the present configuration of the body. In this report,

we will suppose that it corresponds to the reference configuration of the body, in other

words, we will consider solids in small strains. The other case, associated to

viscoplastic fluids flowing viscously, is identical within the replacement of the

lagrangian coordinates x by the eulerian coordinates X. p
I.

Within this convention, the unknown velocity field is determined by the two

mechanical equations below (PER2YNA [1966]):

constitutive law (viscoplastic incompressible solid in small strains)

(0(x) + p Ii) e D I (X, i(,)),

r (V)) 0, 3(v)

virtual work theorem (quasistatic case)

J o.(Vw+Vw)/2 g - v r

for any w such that v - 0 on r1

These equations involve the Cauchy stress tensor field 0(x) and a hydrostatic pressure

field p(x). Here, the notations Vw and 3 D represent the gradient of the vector

field w and the subgradient of the convex function D1 (x,*), respectively. In

addition, rI and r2 denote the parts of the boundary of n where imposed velocities
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a and imposed tractions g are applied, respectively. Moreover, for x fixed, the

internal dissipation potential V1( *) ia a known convex function of the time derivative

of the linearized strain tensor Z. This function, defined here over the space of

symmetric tensors of RNxN  with zero trace only depends on the properties of the

considered viscoplastic material at point x. For example, if we omit the argument x

for simplicity, Norton and Bingham materials are characterized respectively by

(1.1) PAD) - (kr2)P IDIP (Norton)
1 p

2 -(1.2) DI(D) - p mD 2 g IDI. (Bingham).

1.3 Variational formulation. If we restrict the virtual work theorem to divergence-

free test functions w and if we eliminate the Cauchy stress tensor 0 using the

constitutive law, then the mechanical equations above correspond, at least formally, to

the variational problem:

(1.3) Minimize the dissipated energy rate J(w) over the set K of incompressible

kinematically admissible velocity fields,

where J and K are respectively defined by

(1.4) JWv , e1 2 1( (Vv+VwT) dx f- Jfv dx 9- gv da,

(1.5) X - {w e W1' (f), div w- 0, v- u on r Io 1

This variational problem is well-posed and we have:

N

EXISTENCE THEOREM: Let P be open bounded connected in R (N=2 or 3) with

Lipschitz continuous boundary r. We suppose that the interior of r i is not empty,

that u is the trace of a function of *I'P(P), and satisfies- 0

-3-
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u *da 0r o

whenever r, " . We assume moreover that the external body forces f and surface

tractions g are respectively in LP(Q) and LP*( 2 ) (pp* - P + P*), and that the

convex internal dissipation potential D, satisfies:

(1.6) C1 ID(P D 1 (D) < C2 + C3 IDIp,

almost everywhere in $1 for any symmetric, N x N matrix D with zero trace,

< p < 4+.

Then, there exists a velocity field v which minimizes the dissipated enerqy rate

J(w) over the set K of kinematically admissible velocity fields. This solution is

unique if D1  is strictly convex. Moreover, for each minimizer v, there exists a

deviatoric stress tensor field 0D  in (LPC()))N, a hydrostatic pressure field

p in LP*(n) which satisfy the weak equilibrium equations and constitutive laws:

S(oD - pld).D(w) dx f.w avs + gow da , v w e v,
r~2

(1.7) O De 3D1 (3(v)) a.e. in n,

V {w e wl'P(S) ), w - 0 on r1 }I.

Proof: The proof of this result is very classical in convex analysis. The existence

of a solution v involves the Weierstrass theorem, its characterization by (1.7) uses

duality arguments and the closed range theorem.

First, from (1.6) and from the Korn's inequality on V (GEYMONAT, SUQUET[1983]),

J satisfies

C UIvP - (Ift *+IgI *)IiI 4 3(w) C C (mes()) + C 1VI 
p

I Ip p* p* lp 2 3 1,p

+ (Iftp* + Iqlp*)ivl , P
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for any w in K. Therefore, J is coercive, convex (strictly convex if Dl(.) is) and

continuous on K for the VI'p(Q) topology. It is thus weakly lower semicontinuous on

K. In addition, K, defined as the Kernel of the linear application

w + {div v, v - or}, is convex and closed in V1'P(Q). Since K is also not empty,

applying the Weierstrass theorem, there exists a minimizer v of J(.) over K, which is

unique if J is strictly convex.

To further characterize such a minimizer v, we now introduce

X = { w e gl"P(Q), w = 0 on r1 , div v = 01,

Y (D e (LP(a)) xNX, DT D, Tr (D) - 0 s.e. in 01,

*(w,D) - J (( -D) dx- f.(v+v) dx-J g. (,+v) da
9r 2

Above D(v4w) represents the tensor D(V+#) 17("1) + 7(,+.)
T
) and Y is in duality

with the space

Y- - {T e (LP*(Q))NxM, T _ T, Tr (T) - 01,

through the duality pairing
N

( T, 0 - r-,D dX -T ii d
0 0 i,J-i

Obviously, from (1.6), 4(-,.) takes on finite values and is real, convex and continuous

on XxY. Moreover, since v minimizes J over K, 0 is a solution of the primal

problem: Minimize O(w,O) on X. From a basic theorem of convex analysis (EKELAND-

TEMAN [1976, p 52-53]), this implies that the dual problem: Maximize - **(0,r) over

Y* has a solution (-0 D ) which satisfies

(1.8) {o, a.) e a(o,o)

that is < - OD, D > 4(v,D) - 4(0,0), V (v,D} e XXY.

Writing (t.8) successively for fw,D} - fw,D(W)1 and (w,D} - (0,-U}, we obtain

-5-
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(1.9) L(w) - aj'D(U) dx - f*v dx - J g'V da - 0, v w e x,

(1.10) A OD n dx < j a 1(D(v) + B) - D,(D(v))} dx, v n e Y.

But (1.10) can only hold if (EKELAND-TEMAM [1976 p 21, p 271])

(1.11) oD e 3I(D(w)), a.e. in n.

Now, to obtain (1.7) out of (1.9), (1.11), it is sufficient to observe that the

divergence operator is a continuous surjection from V onto

LP() (or onto LP(n)/R if r1 - r). Therefore, from the closed range theorem, its

transpose is a continuous homemorphism from LP*(A) onto the orthogonal of its Kernel

in V*, that is onto X*. Since, from (1.9) L(.) is an element of X*, there exists

then an element p in LP*(n) such that

L(v) = < p, div w >, V v in V,

and our proof is complete. 0

RE4ARK I.1: We are not supposing here any differentiability of the internal

dissipation potential VI( The numerical techniques to be used later will have to he

able to handle such a lack of differentiability.

RE4ARK 1.2: Even though the argument x has been omitted in the potential D1 for

simplicity, the whole theory developed in this report applies for potentials which are

measurable functions of x on Q. 13

RE4ARK 1.3: For Norton and for Bingham materials, the internal dissipation potential

is strictly convex and satisfies (1.7) with

C - 0, Ci . C . - (k1')p , (Norton)
2 1 3 p

C, -u , C2 - V2 g, C3 - ( 2 g ) , p 2 (Bingham).
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But (1.7) is still valid, and therefore the above existence theorem still applies for

materials associated to non-strictly convex and non-differentiable potentials such as

D (D) - I(kr2)p  sup (IDi-DI )P,I P i~i -

where Di are the eigenvalues of the deformation rate tensor D. This corresponds to

Tresca's type viscoplasticity.

2. THE DISCRETE PROBLDAS.

2.1 The discrete spaces. The approximation of the set K of kinematically

admissible velocity fields, which is needed for the numerical solution of the variational

problem (1.4), can not be achieved by the basic finite element spaces used in general.

For example, the space of divergence-free functions whose restriction to each triangle

(tetrahedron if N - 3) of a given regular triangulation of f) is a first degree

polynomial may only approximate a small part of the space of divergence-free elements of

WI'P(Q). Therefore, it is a very inappropriate finite dimensional approximation of the

set K of kinematically admissible incompressible velocity fields. To obtain a

satisfactory approximation of K, the set of approximate test functions must be enriched

and the incompressibility constraint must be weakened.

As pointed out in BREZZI [19741 and summarized in GIRAULT-RAVIART (1979] in their

study of the Stokes problem, a good approximation of K is obtained as follows:

(i) we first decompose the domain S) into a regular triangulation Th of Nh

polygons (N-2) or polyhedrons (N-3) which satisfy the classical assembly conditions

described in CIARLET [1978 p 511;

(ii) we then define the space Vh of approximate test functions by

(2.1) vh - fw oEw nrw n e P fl MI V X 1, N h,vh " e C , o7 on r,, -

-7-



wherp Px( ) is a given finite dimensional space of continuous interpolating functions

defined on $1

(iii) in addition, we introduce an appropriate finite element space Ph' included

in L(n) and which satisfies the so-called BREZZI (or inf-sup) ondition:

Inf Sup j9hdvh > 0 > 0,(2.2) q 'Vh 1%0p* l,.p

where B is independent of the diameter h of the triangulation Th, and where p is

the exponent which appears in the definition of K(pp*-p+p*);

(iv) we finally approximate K by:

(2.3) %~ W~(hu ~ div 'wn dx 0, v ePh

Briefly speaking, this construction of N amounts to impose the incompressibility

constraint in an averaging sense only. In that way, more elements of Vh can satisfy

this constraint and the set Kh is bigger. It can then better approximate K.

The choice of the polyhedrons a., of the interpolating space Px(9 ) and of the

space Ph of approximate pressures is free, provided that the OREZZI condition (2.2) is

satisfied. In this report, we will use triangles (respectively tetrahedrons if N = 3) as

polygons f2, and define Px(0 1 and Ph by

(2.4) P = f, e c( ), " e Pi(n V - 1,2N

(2.5) Ph = {q e C(ii), q10 e P1(f) v = , Nh),

[q 0



where P is the space of first order polynomials defined over n and where M~
I k k

a r e h e N t i a n l e sx 
p o s i t i o n o f t h e d e g r e e s o f

freedom for the pressures

o position of the degrees of

freedom for velocities

Figure 2. 1 Decomposition of a triangle f1

in four equal eubtriangles

Figure 2.2 Triangulation "h

(pressures)

-9-



Figuire 2.3 Trriangulation 2h

(velocities)



(respectively tetrahedrons) included in Q which are obtained by joining together the

midsides of every edge of 0 1. With that definition of Px (), the space Vh of

approximate test functions is now aimply the space of continuous vector functions with

zero trace on rI and whose restriction to each triangle (respectively tetrahedron) of

T2 in a first degree polynomial, Th being the triangulation obtained by dividing each

triangle (respectively tetrahedron) of Th into four equal subtriangles (respectively

eight subtetrahedrons). As for the space Ph of approximate pressures, it becomes the

space of continuous scalar functions whose restriction to each triangle (respecively

tetrahedron) of Th is a first degree polynomial (see GLOWINSKI (1984] for more details

on those discrete spaces).

The above choice of approximate spaces ((2.1), (2.3), (2.4), (2.5)) in far from being

the only possible one but it satisfies the BREZZI condition (2.2) and leads to a very

convenient approximate augmented laqrangian decomposition of our viscous flow problem

(1.3). moreover, it uses low order finite elements, which is adviseable in nonlinear

problems where little regularity is to be expected. Finally, the sets (Kh) constructed by

(2.1), (2.3), (2.4) and (2.5) form a converging sequence of finite dimensional

approximation of K and we have (BDRCOVIrR-PRONNEAU (1977]):

(2.6) V w e K, lim { Inf Iv - "1l,p = 0

h+O Vhexh

MARK 2. 1: When the maximal diameter h of the triangulation goes to zero, we also

have (CIARLET (1978]):

V h 
C V rW1,,q(), V 1 q < + -; dim Vh < 4 ;

(2.7)

e V, lim {Inf Iw - whIlp 1 01

h.0 

-heVh



(.)JPhC ~q(f), Y 1 q'C +-I dim P h< +-

Vq e Lp*(A), li l f ,q-%. o,po) 0.

But, since we are imposing the incompressibility constraint in an averaging sense only,

K. is not included in K. -

2.2 The discrete problems. The approximate incompressible viscous flow problem is

simply obtained by replainq K by Kh  in (1.3). But, since Kh  is not included in 1,

we first have to extend the internal dissipation potential DI(), initially defined as a

convex continuous coercive function on the space of symmetric N x N real matrices with

zero trace, to a convex continuous coercive function Pj(.) defined on the whole space of

symmetric N x N real matrices. This extension must be convex and satisfy

(D) - D (D), V D 6 ItXs with Tr D - 0,

NxxN

(2.9) Dio qld) ;P (D),e aet, V D e u with Tr D 0,
DDIo, V D e a.. in1.

sinceZ):() and 1
(

e coincideorsmticari es with D otrsace; tol

In other words, the extension V (. of D I. onie ih V()o h pc

of symmetric matrices with zero trace, penalizes the slightly compressible velocity fields

and extends to R3X the coercivity and the continuity of the function VD ') The

introduction of e5(.) does not affect the solutions of the viscous flow problems (1.3)

mince V()and D . coincide for symmetric matrices with zero tracep it only

provides a mathematical tool for calculating the dissipation potential for compressible

velocity fields and therefore enables us to compute reasonable nearly incompressible

finite dimensional approximations of the solutions v of (1.3). The introduction of such

extensions D(-) which satisfy (2.9) is easy. For example, for Norton and Bingham

-12-
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materials, the expressions of D,(0) given in (1.1) and (1.2) define such extensions. In

other cases, one can take

D*(D) - D1(D - Tr(D)Id) + C 1  WI p ,

being careful not to choose too big values for C1, in order to avoid "locking' phenomena.

Once this extension defined, the discrete variational formulation of our

incompressible viscous flow problems (1.3) is

(2.10) Minimize the dissipated enerqy rate J(wh ) over the set h of approximate!kinentatically admissible velocity fields,I

where Kh is the subset which is defined by (2.1), (2.3), (2.4), (2.5) and where the

dissipated energy rate J(°), given by (1.4), is extended to a function from Th into

U by replacing the internal dissipation potential D1 () by its extension V e

introduced in (2.9).

THEOREM 2.1: Under the assumptions of Theorem 1.1, for any fixed h, the discrete

incompressible viscous flow problem (2.10) has a solution vh . Moreover, any solution

Vh  of (2.10) is associated to an approximate stress tensor field ah  and to an

approximate pressure field Ph in Ph, such that

a (+Ph z) e aD'8(k I.*. on n, 1/2 (VT +V T) h h I hVa. nfl

(2.11)

j (V , )/2 -j f.,hd +J 9M do, v evh

In (2.11), the approximate deviatoric stress tensor (oh+ph Id) belongs to the space

Yh of piecewise constant symetric matrix fields:

-13-



(2.12) Yh D It ' ","" " Dh e ( (a, ))" "Vi- 1,2, V, L 1, Nh)

IoIi

hP'a) h IIh

Proof: this theorem is the discrete equivalent of the existence Theorem 1.1. Up to

(1.9), (1.10) its proof is identical, after replacement of 0I( by D 1(*), of X by

,bof Y by Yh and of X by

(2.13) Xh - (h e vh ,  % div h 0. e Phl .

Now, since Yh is made of piecewise constant matrix fields, (1.10) will also give

- (aD)h e 3 D1 ((vh)) a.e. in 0.

To finish the proof of (2.11), we introduce the operator 9 from Vh into P defined

by

(2.14) < B,, -J % %div W .b % e Ph' ' h  ,

whose Kernel is Xh, by definition. From the BREZZI inequality (2.2), (see for example

GIRAULT-RAVIART[1979, p 411), this operator is a continuous surjection from Vh onto

Pt. Using the closed range theorem, Its transpose is a one-to-one homeomorphism from

Ph onto the orthogonal of Xh  in Vh. But, from (1.9), the element Lh(.) of V:

defined by

(2.15) n(u)n J (OD)h " D(wh)dx r 9-. da ft' 2 *h a

belongs to this orthogonal subspace. Therefore, there exists a unique pressure field

Ph in Ph such that

I.h(wh) - <B Tp.w.h > - Jp div w, fx, v% e vh ,

which is exactly (2.11). D

2.3 Convergence result. In order to check that the discrete problem (2.10) is a

good approximation of the continuous viscous flow problem (1.3) when the maximal

diameter h of the triangulation Th goes to zero, one must study the behavior of the

sequence (vh ) of solutions of (2.10) when h goes to zero. We will prove in this

paragraph that (vh ) converges weakly towards solutions v of the continuous problem and

-14-



that the dissipated energy rate J(v h ) converges towards 3(w). Moreover, under

additional uniform convexity assumptions, such as those satisfied by Norton or by Bingham

materials, there is strong convergence of (Vh) towards v in l'P(f(). The next

theorem summarizes these convergence properties, denoting by q the maximum of p (p is

the exponent introduced in (1.6)) and 2 and by Yp the space

Y - {D 6 (LP(Q))NxN0 DT - DI.
P

THEORE( 2.2: Under the assumptions of Theorem 1.1, the sequence (vh ) of solutions

of the discrete problem (2.10) decomposes itself into subsequences, each of

them converging weakly in V1p(g) towards a solution v of the continuous

incompressible viscous flow problem (1.3), when h goes to zero. The dissipated energy

rate J(vh ) also converges towards 3(v). Moreover, if the extended internal

dissipation potential p is of the form

(2.16) D(I) -D I  (D) - Go(D) + G1 (D),

with G1 convex and bounded below, Go convex, differentiable and satisfying

(IDI + IGI )qp J (a% (G) - L (D)).(G-D)dx) C -
q  

r v{D,d e Y0,J) o'p n oD oD0 p p,

(2.17)

P(2G° 3G G-lO())..G q-P+I o + , q-' VI D,G.3) S y3
DDp 3 op o'p p

then the whole sequence (vh ) converges strongly in V 1'P() towards the unique

solution v of the continuous-problem (1.3).

Proof: The proof is an immediate generalization of the techniques used by

GLOWINSKI-LIONS-TRW4OLIZRZS 1981, p 3611 in their study of Bingham fluids. It requires

three steps. Step 1 (vh ) is bounded uniformly in h. Let v be a solution of the

continuous problem (1.3) and let sh  be the element of such that

-15-
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(2.18) Iv - sh 11 p - Inf Iv - Whll p
h%

From (2.6) (sh } strongly converges towards v in 91P(f() as h goes to zero. Since,

by extension, J(-) is continuous on 91P (0), this implies that, for h sufficiently

small, we have

(2.19) J(%) 4 J(v) + 1 

But since *h  is a solution of (2.10), we get

o(Vh ) < oV 4 J(v) + 1

From the convexity of J(•), this implies

(2.20) J((v -uo)/2) (J(-uo) + J(v) + 1)/2 - C6,

where, as usual, the notation Ci  represents strictly positive numbers independent of a

and h. From (2.9), De is coercive, thus (2.20) implies

lj 1 , , + V(vh-.u )")/21paz 4 llIUU i- l Y~hU ho 0 C6 + IIII)v~I,p
2p 1

which, from the Worn's inequality and since p is strictly greater than 1, can only hold

if

Ihl1 • C7 V h

Step 2 weak convergence of (vh). Since the sequence (v h ) is uniformly bounded in

IF1P (A), it decomposes itself into subsequences, each of them weakly converging in

U1,P (n). We still denote by (vh) such a subsequence and denote by V its weak

limit. Moreover, let v be a solution of (1.3) and let (s h ) be the sequence of

elements of Kh  defined by (2.18). Since vh minimizes J over Kh, we have

(2.21) J(vh ) 4 J(% ) , V h .

Going to the limit in (2.21) an h goes to zero, and using the weak lower semicontinuity

of J on the left-hand side, the strong continuity of 3 on the right-hand side, we

obtain
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(2.22) J(v) limr inf J(v h ) ( lir sup J(v h ) < lira J(8 h ) - J(v)oh O

On the other hand, let q be any element of LP*(n) and let (qh) be the sequence

of elements of Ph which strongly approximates q in LP*(0). Since wh belongs to

Kh, we have

(2.23) J %h div ; 4 - J % div(;"vh)dt , V h.

Going to the limit in (2.23) as h goes to zero and using the strong convergence of

(qh) and the weak convergence of (vh ) yields

J q div ;dx - 0, Vq e LP (0).

Moreover, from the weak continuity of the trace operator, v - u has zero trace on
0

r . So, finally, V belongs to K. But v minimizes 3 over K, therefore

J(v) 4 J(;).

Combined with (2.22), this implies that J(T) is equal to J(v) and that all

inequalities in (2.22) are equalities. Therefore V is also a solution of (1.3) and the

whole sequence 3(vh ) converges towards 3(v).

Step 3 Strong convergence of (Vh). From now on, we suppose that the extended

internal dissipation potential Do satisfies (2.16) and (2.17). From (2.17), Go is

strictly convex on SNx, therefore, by addition, DI is strictly convex. So is its

restriction D1 on the space of symmetric matrices with zero trace. From Theorem 1.1,

the solution v of (1.3) is then unique. Thus the only possible weak cluster point for

the sequence (v h ) is v and the whole sequence (v h ) of solutions of (2.10) converges

weakly towards v in w'P(n).

To prove its strong convergence, we first write the discrete weak equilibrium

equations (2.11) and the continuous weak equilibrium equations (1.7) for the test

function v v -
m
h - vh where sh in the element of Kh defined in (2.18). This

gives
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Oh l D(-Vh)dX - J f'(h-h)dz + r 9'(sh'h 3 da,

Ja D( Zh-V1 dx - f h d + r2 9 ("h 3  da,

(2.24)

(a+ P ) e a V(4), i- 1/2 (Vy+Vy 3,

(oh + NZd) e 0 D(' ,. h -/2(Vh+Vvh),

where the notation D(w) represents as usual the symmetric component

(Vw*VY )/2 of the matrix Vw in R *l
. 

By definition of the subgradient, the third

line of (2.24) is equivalent to

(2.25) lO+p d) • D I V
1
(3+N) - D1(), v a e R a with Tr(l) - 0.

Since (O+1) )has zero trace and since 0e is an extension of D1 which satisfies

(2.9), (2.24) yields

(o+p ld)*(+qId) - (*+p I) • V D (3I) - D(i)

,(3+qw -)- D7 <(), Vqe.

or, in other words

e
(2.26) (a+p Xi) e 3 (

Now settinq

3G 3G
t o+, P p(3,) thOh+P h .. -i a 1( ).

we obtain by substraction from (2.24) and (2.26)
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J(t-th) D(%-Vh) d~ (3 Do i (k)Q -jD 2 (N) Sh-sh) dxf

(2.27) + div I&~h dz

teaG1(N)h Xh t-S 8 l(h

But, since t and thare subdifferentials of G,, we have by definition

I )t D(W1h -V) dX 4 J G 1  -G)1 dz

(2.28) 
t ~ hw)d n~ (( )-jk )d

A suitable combination of (2.27) and (2.28) yields

(2.29) i 0j (tID(%)) - a3j (Bih))*D(zh-wh)dX I ( ~ h) - 0j(i)).D (a-h dx

+ I (Pph) div (%w dx + J(tD(Y-3h) + GDxh - G1(i)) du

Both vhand sh are elements of t~ o we can replace in (2.29)

(-h div (u-Wh ) dx by J(p-%~) div (s-h as

where qhis the element of Phwhich approximates p in Lp*(n). Once this

replacement done, we have from (2.29), (2.17) and the Xoin's inequality

(2.30) c h%~h p-q qv 1 p-q+1 + q-2
10 'h11p 1h1,p) sh w l,p 4 Cl# -hlp%"I ,p ('IN1,p+ V1p

+ I - op'%v'. + C11 tb-.uVff + GI(D(uh)) - GI(i)) ftJ
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Since by construction zh  and qh converge strongly respectively towards v and p in

W P) and L (9), since from Step 2 ('h) is uniformly bounded in V"(A) and

since, from (2.9), the integral of G, is continuous on Yp , the right-hand side of

(2.30) converge towards 0 when h goes to zero. Therefore 1% - vh|1, p  must also

converge to zero, and from the triangular inequality, the sequence Wh strongly converges

towards v in W 'p(R) when h goes to zero. a

REMARK 2.2: Three facts are crucial in our proof of convergence: the existence of an

approximate pressure ph, the existence of a sequence (zh ) of elements of N

approximating V and the existence of a sequence (qh) in Ph approximating any

element q of LP*(n). Although not necessary the BREZZI condition (2.2) is a basic

tool for proving the first two facts.

RE4ARK 2.3: Norton and Bingham materials satisfy the uniform convexity assumptions

(2.16) and (2.17) (SCHEURER (19771, GLOWINSKI-MAROCCO f19751) and therefore, strong

convergence can be proved in both cases. Moreover, the speed of convergence of (vh )

towards v can easily be estimated by (2.30) as a function of the quantity
~ifq

Inf fwl- / , using the Lipschitz continuity of G, and the identity
wheYh 1,p)

I *

ab -C_ b
q q*

In addition, since the dissipation potential is continuously differentiable for

Norton materials, the strong convergence of 
1'h) implies in this case the strong

convergence of the discrete stresses (oh) towards (a) in (LP (0)) .
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3 AUGMENTED LAGRANGIANS

3.1 Formulation of the discrete problems as saddle-point problems.

In view of the numerical solution of the approximate viscous flow problem (2.10) by

augmented lagrangian techniques, we must first reformulate (2.10) under a slightly

different form.

To do that, observe that, if we replace u by its H0 (Q) projection over the space
i

of continuous functions whose restriction to each subelement fl is a first degree

polynomial, we can rewrite (2.10) as

(3.1) Minimize F(D(wh)) + G(v h ) over Kh, with

(3.2) D(v ) +

F Yh +R,

(3.3) ( " Y "s

F(Qh) - 1V(9 ) dx,

(3.4)

G() -J A.h d- j g'"h da'

(D:i.Rx'T i NxN, N,
(3.5) YIDh, Dhfi e (po(ni)) , V i - 1, 2 , Vt - 1, Nh

If we follow the methodology of FORTIN-GLOWINRKI [1982], we can then replace (3.1) by

its augmented lagrangian formulation

Find a saddle-point {Vhh
1
, Xhl of the augmented lagrangian

(3.6) LR(-hGh,uh) - F(s) + G(.h) + 2.(wh) - 0,2 - < 'h' D() - >

over the set ()h x Yh) x Yhl
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where R is any positive number and where <.,* denotes the classical L2 (0) scalar

2 NxNl
product over (L (9))N . Observe that (3.6) imposes the incompressibility condition on

the continuous variable wh (wh must belong to the set Kh  of approximately

incompressible velocity fields) but minimizes the nonlinear functional F(.) with respect

to the piecewise constant variable Gh - In other words, there is a splitting of the

difficulties of our problem (nonlinearity and incompressibility) between these two

variables.

THEORE4 3.1: The augmented lagrangian problem (3.6) and the approximate

incompressible viscous flow problem (2.10) are equivalent: to any solution vh  of

(2.10), one can associate a solution {tvh,%) Xh } of (3.6) and conversely. Moreover,

is equal to D(Vh ) and there exists an approximate pressure field Ph n P such

that the approximate stress tensor field (-Ah - ph Id) satisfies the discrete equilibrium

equations and constitutive laws (2.11).

Proof* First, let vh be a solution of (2.10) and let ah  and ph be the

associated discrete stress and pressure fields. From (2.11), Theorem 2.1, we have

(a . Ph~d) (;h d. D e - D~k) e i V e

(3.7)

1 hD(vh)dx Q f-wh dx + J r wh da, v e v

fl I"2

In particular, taking wh as (zh-vh) where zh  is any element of Kb, and since, by

construction of Kh' div (sh-vh) is equal to zero in the dual of Ph' we have

j (h+ph Zd)D(xh-vh)dx ) '(x-h ) ' " + J g'() -,, V % e 6'
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Substracting this to the first inequality of (3.7) yields

LR Ih.A - oh-,-M) ( A% -- , - 2ID() - 0, 2

for any fxt5} in % x Yh" Since in addition

LR ( vh.E'h, -Ni d) - LR(wh.3huh) . J( Vh), V Uhe Yh

{(Vh, },-ah-Nrd) is indeed a saddle-point of the augmented lagrangian LR(.,.0)

over (Kh x Yh
) 
x Yh"

Conversely, let {(vh, hl, h) be a solution of the augmented lagrangian problem

(3.6). Then, we must have

LR(vh. %.hk) ) LR(Vh..h), V Uh e Y.

which can only hold if we have

(3.8) Uh - D(vh)

Taking (3.8) into account, the second saddlApoint inequality yields

(3.9) D(vh,(-h),Xh) 4 LCucjh%. ,v. "h% } e K, X h'

In particular, by taking Gh as D(Wh), (3.9) implies

Jvh ) 4 J(wh ) , V .h Yh' i

and vh is indeed a solution of the original minimization problem (2.10).

To further characterize any solution {{Vh'h, Xhl of the augmented lagrangian

problem (3.6), we again use (3.8) and (3.9). From (3.8), Oh  is necessarily equal to

D(vh). On the other hand, introducing the space Xh defined in (2.13), (3.9) can be

rewritten as

-23-
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LR'Vh D( h ).h) 4 L R -h +kn, h ) + GP Xh) , W , -,%I e xh x Yh'

Equivalently, if ws consider L (vh+',D(Vh)+', Ah) as a convex function of the pair

{wh,Gh} on the space Xh x Yh' we can write (3.9) as

{ool e a Llt(vh +D(wh)+0, in Y*

A direct calculation characterizes the elements of this subgradient as the pairs

of Kh x Yh 
such that

J D(%)'O(wh)dx - AD(.h)dx - f.hdxJ .v da, v h e x

h r h h

(3.10)

J - dx < (D e((vh) D + 9,) - De(D(h)) + Ah.% , V Gh e Yh.

Setting gh and ih to zero in (3.10), we simply obtain the variational system (1.9)-

(1.11) with (°D)h - -X h As seen in the proof of Theorem 2.1, this in turn implies

(2.11) with Uh = -Xh - Ph Id, and our proof is complete. L3

REMARK 3.-1: In order to accelerate the convergence of the algorithm to be used for

the solution of the augmented lagrangian problem (3.6), it is usually better to replace,

in the definition of the augmented lagrangian, the classical L ()) scalar product by an

equivalent weighted scalar product of the type

< C, D >= r(x) C • D dx.

Here r(x) is a strictly positive scalar function of L (0), bounded away from zero,

which can be arbitrarily chosen. Proper choices for this function will be discussed

later. With this new scalar product, LR, becomes

) dx -
- V  q -' 'h da

D n
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3.2 Numerical algorithm The fundamental interest of the equivalent augmented

lagrangian formulation (3.6) is the existence of a very cheap and simple algorithm for its

numerical solution. This algorithm combines an Uzawa algorithm for the solution of the

saddle-point problem and a block-relaxation technique for the solution of the minimization

problems associated to the primal variable {wh , %T. Dropping the subscript h from

all variables for simplicity, this algorithm is

(3.11) Let {NO, HI) be given in Yh x N,

Then, for n > 0, H 
n -  

and Xn  
being known, we compute {v n,H n  

in x Yh

by block-relation, i.e. by setting

le - 31
0

end by computing sequentially wk and 1, by solving

n n n ft n

(3.12) LR(, k , O.,n) LR(w,.1 ,  ), V V

tn n n(3.13) R n ) X R(VkG, ), V a e

Once {,n,,n is known, the lagrange multiplier A is updated by

(3.14) Xn+l . Xn - R(D(Vn
) 
- n).

Many variants exist for this algorithm and are described for example in FORTIN-GLOWINSKI

(1982]. Usually, the block-relaxation (i.e. the loop (3.12)-(3.13) on k) is only carried

out for one to five iterations.

Observe that the above algorithm only considers one variable at a time and therefore

takes full advantage of the splitting of the difficulties achieved by the saddle-point
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formulation (3.6). First, in (3.12), the matrix field Rn,.1 and the multiplier X n  are

supposed to be known, and the algorithm minimizes the augmented lagrangian LR with

respect to the velocity field v in Kh . As function of the velocity field, LR in

quadratic and corresponds to the energy dissipated by an incompressible Stokesian fluid,

flowing viscously under the action of the external loads {f,q). In other words, (3.12)

is a classical linear stationary Stokes problem, discretized by mixed finite element

methods. Many numerical techniques are available for its solution, and we refer to

TAYLOR-HOOD (19731, GIRAULT-RAVIART (19791 or GLOWINSKI-PZRONNEAU [1979] for the practical

description of such techniques. In our numerical experiments, we will choose a conjugate

gradient method operating on the hydrostatic pressure space Ph, which only requires the

inversion of sparse, fixed, positive definite, symmetric matrices and therefore only uses

little computer running time and memory core (FORTIN-GLOWINSKI (1982 p57]). In any case,

most finite element codes now propose efficient subroutines for the solution of the Stokes

problem, which can be blindly used for solving (3.12).

Then, the algorithm supposes the velocity field Vn and the multiplier An given,

and in (3.13) minimizes LR with respect to the matrix field G in Yh The

incompressibility condition and the spatial derivatives of G are not involved in (3.13):

this is an unconstrained local convex minimization problem whose numerical solution,

described in details in the next section, reduces to the solution in parallel of

independent convex minimization problems set on 3I(N-2 or 3).

Finally, after a few resolutions of (3.12) and (3.13), the algorithm updates the

multiplier In  by the explicit formula (3.14), so that the constraint D(vn) = EP can be

better satisfied by the solution of (3.12)-(3.13), and then returns to (3.12) and (3.13).

3.3 Convergence of the algorithm (3.11)-(3.14). We now study the convergence

properties of the above Uzawa algorithm, considering the basic particular case where only

one iteration of block-relaxation is done at each step of the Uzawa algorithm. In our
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study, it will be moat important to work on Yh with the precise weighted L2 (0) norm

which is used in the construction of the augmented laqrangian LR (see Remark 3.1).

Then, if we denote by {v,t,X1 the solution of the augmented lagrangian problem

(3.6), by X the multiplier calculated in (3.14), by On the matrix field W'

calculated in (3.13) and by vw
n  

the vector field V' calculated in (3.12), we can prove

CONIVERGEC THIOREM 3.2: Under the assumption of the existence Theorem 1.1 (V1

convex, continuous, coercive), the sequence {)n) is bounded in Yh' the difference

(D(vy
n

) - IF
) 

converges to zero in Yh' and the quantity F(O) G(v) converges towards

the dissipated energy rate J(v). If in addition (2.16) is satisfied together with the

first line of (2.17) (DI(-) uniformly convex on the bounded sets of Yh ) , then the

sequence {Vn,IF converges towards {v,) strongly in Kh x Yh" Finally, if the

internal dissipation potential D,(.) is continuously differentiable, and if its gradient

is invertible with a coercive and Lipschitz continuous inverse, that is if DI (.)

satisfies

1.r(x) Jr . 2 f2d C C23  (a a,93 (62,12 d.2

(3.15)

(3D (61 a-V (62)).(c I-. )a C14 J ar(x) 1DI(G 1 I 3DVI(G 2), 
2dx,

for any G 1 and G2 in Yh' then we can prove that the sequence (VnUnEn converges

linearly towards {v,,REA in Kh x x Yh with an asymptotic constant bounded by

C1 is= (1-2RC14 /(1+C13R)2)1/2.

Proof: Since {v,E,Xl is a solution of the saddle-point problem (3.6), the

following extremality relation is satisfied:
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(3.16) F(E) + G( V) + ( X, B
n 

- D(v
n
) > ) F(N) + G(W).

Moreover, by construction, the solutions v 
n  

and U'
n 

of (3.12) and (3.13) satisfy the

extremality relations

G(w) - G(v ) + < R(D(v) - 1) _). .D(_v n) > ) 0, v w e

F(G) - RHn) + < R (Hn-D(vn)) + 
n , 

H - H' > ) 0, V G e Yh'

respectively. By addition, setting w - v, and Q - 3, we get:

(3.17) F(s) + G(v) - RaID(vn) - n,2 - R < Hn-  - SP, D(-vn) >

+ < A , D(v ) - n > > F( H) + G(vn)

Adding (3.17) to (3.16), we then obtain

(3.18) - RID(n) - n,2 - R < a
n

H - , D( v-V ) > + < Xn-, D(v
n
) -

n 
> ) 0.

Combining (3.18) with the construction (3.14) of Xn+
l 

finally yields

(3.19) Ixn- Al
2 

_ i-n+I - N
2 

P R
2 

ID( Vn) - *n,2 + 2R2 < lp-1 _ Bn, D(-w n) >

On the other hand, using (3.13) and (3.14) at iteration (n-1), we can estimate the

right-hand side of (3.19) by standard algebraic manipulations. Exactly as in FORTIN-

GLOWINSKI [1982 p117, equations (5.17) to (5.24)], setting Fo  0, 0 - R and inverting

the sign of A, we have the following estimate

2R
2 

< D(vn-,v), *n - 3n-1 > ) R2 (Id,-fI
2-tn- 1_I2) + R

2 '
I l 112n-12

which, combined with (3.19), gives
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(3.20) (,,n - X 
2

+R
2

1e-I-11,2) - (I),n+l_,, 2
+R21In-II2)

21 D(vn) - 12 -p -1 1 2 .

The positive sequence IXn - *I2 + R2
1 n-l - !12 is therefore decreasing and thus

converges to a limit. This implies that the right-hand side of (3.20) must converge to

zero and we finally obtain

,,n - X1
2 + R2 1Sn-l - 2 is bounded,

lim ID n) _ pI
2 

. 0,n*4

li In -, _ -1, 0.
n*4

These convergence results, used back in (3.16) and (3.17) obviously imply the convergence

of F( ) + G(vn ) towards F(E) + G(v).

Now, if Pi) is uniformly convex on the bounded sets of Yh' the convergence of

the energy rate and the boundedness of In imply the convergence of the arguments IP

and vn respectively towards H and v.

Finally, since, from the Korn's inequality, STs is an isomorphis from N onto its

dual, we can prove the linear convergence of the sequence {vn, On , nI by applying a

result of LIONS-4ERIER (1979, Prop. 4, p 970] which will be applicable here as soon as

(3.15) is satisfied( see FORTIN-GLOWINSKI [1982, p 300] for more details). C3

REMARK 3.1: Condition (3.15) is satisfied at least locally for Norton materials. It

is not satisfied in the general case, but linear convergence of the sequence {vn, B
n}

can still be observed numerically in almost any case. El

REMARK 3.2: The asymptotic constant C1  appears numerically not to be optimal.

Nevertheless, its expression as a function of C1 3 and C 14  will indicate the right
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strategy to follow for the choice of the parameter R and of the weight r(x). Since

C 13 and C 1 4 highly depend on the weight r(x) used in the definition of the augmented

lagrangian LR, C 1 5 is a function of R and of r. The right stratege for the choice

of R and of r now consists in trying to keep C 1 5 as small as poses ble. By

choosing R close to I/C 1 3 , C 1 5 becomes approximately equal to C 1 6 ' (1-C 14 /2C 1 3 ) IZ

By taking the weight r(x) so that the products

(3.21) D (3 1 (E 1 ) -3V 1 ( 2 )) - (G 1-G 2 )db and (3.22) J r(x)(C 1 -G 2 )*(Ml-0 2 )dz

remain close to each other when H1 and B2 are in the neighborhood of H, the ratio

C 14 /C13 gets close to 1 and C 15  reaches the value 1/r . The final strategy for

choosing R and r is therefore:

(i) choose r(x) by matching (3.21) and (3.22);

(ii) take R close to 1/C 1 3, which will usually be close to 1 if r(-) is

properly chosen.

REMARK 3.3: If D1 is quadratic and if we have equality between (3.21) and (3.22),

then for R - 1, 4n converges in 2 iterations and 1P converges linearly with

asymptotic constant .5 (FORTIN-GLOWNSKI (1982, p 119l). In other cases, with proper

choices of R and of r, we usually observe linear convergence of {Vn, P with an

asymptotic constant around .7. 0

RE4APK 3.4: Linear convergence compares unfavorably to the quadratic convergence

expected for conjugate gradient or for Newton algorithms. But Newton method requires

D to be twice differentiable, the factorization of quite a few finite element matrices,

and its convergence rate can be very slow for weakly convex dissipation potentials. In

general, it is not a good method for solving (2.10). On the other hand, a conjugate

gradient method with preconditioning, of the type
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*take no in 

molve < D(9), (W) > -< J(), V > V w e K

set So go 1

* for n - 0, until satisfied do

P - Arg Min J(u -p ),n n

*n+ 1 - n n

solve < D(n+l), D(W) > - < J'(+1 ),W > , Vwe w ,

Y - ( 0(9 ), D( In-9 ) > / < (In 9n >

In+1 " gn+1 
+ 

Yn Zn

end loop on n ;

where <., .> is an adequate weighted L2 (0) scalar product on Yh, will only be

efficient if D (.) im differentiable, if the scalar product on Yh is correctly chosen

and if a very efficient Stokes solver is available for computing n+,. If this is the

case, the conjugate gradient method will be twice am fast as the Uzawa algorithm (3.11)-

(3.14). If this is not the case, Algorithm (3.11)-(3.14) appears to be one of the only

reasonable numerical method for solving (2.10).
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4. THE PROBLEMS IN DEFORMATION RATES.

4.1 The local problems. Problem (3.13) appears as one step of the algorithm

proposed herein for the numerical solution of the viscous flow problems in quasistatic

viscoplasticity, once these problems have been approximated by simplicial finite elements

of order one and decomposed under an augmented lagrangian form. Recall that here, this

problem consists in

(3.13) Minimizing LR (v,•,A) over Yh

with

L r (wGAX) -JVe,(G) dx - f-v dx - 3 g-V dan 0 r

+ 2 r(x)IG (Vv+tvT)/2I2dx rz)X'[ VV)/2 - ax,

NN i NxN N
Yh (D: D + R , D i e (Po(QI)) , vi = 1, 2, V - 1, Nh},

and that it is the only nonstandard step in this algorithm, the other steps consisting of

linear Stokes problems and explicit variables updating, respectively.
i

Since all the elements of Yh are matrix fields which are constant on each 1 . and

since the functional LR  does not involve any distributional derivative of G, Problem

(3.13) can equivalently be written as

(4.1) V i - 1, 2, V I - 1, Nh, Minimize JI(G) over RNx.,

with

r,(C .12 _ rel" t
(4.2) ) G) + (R(VVVv)/ 2 -

2I

Here, we are simply using the fact that the minimum value of the sum of independent terms

is equal to the sum of the minimum value of each term. Then, Problem (3.13) reduces to
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the solution in parallel of Nhx
2 N  

local independent convex minimization problem not

on W~x N 
(N - 2 or 3).

Using a general purpose minimization algorithm for the solution of each local problem

(4.1) is not adviseable here for two main reasons:

(i) such an algorithm is very difficult to implement because it must be able to

handle general nondifferentiable convex dissipation potentials D1,

(ii) such an algorithm is usually expensive in computer running time.

An easier and more efficient strategy consists in adapting each time the minimization

algorithm to the specific class of potentials D1 which is under consideration. Doing

that, we have most of the times been able to reduce each local problem (4.1) to a one-

dimensional convex minimization problem set on R,. The remainder of this report will

describe the derivation of such efficient numerical techniques in the came of Norton

materials, of Bingham materials, and of Tresca type materials in plane stresses,

respectively. But before, we will derive a very useful simplification of the local

problem (4.1).

4.2 Reduction of the local problems. We begin by recalling several well-known

results of matrix theory, which will enable us to reduce the local problems (4.1)

which are met on RM
x N 

to local convex minimization problems set on RN, (N - 2 or 3).

Lema 4.1 (VON NEIANN[1937)). Let A and a be two matrices in RNxN with

singular values a1 ) a2 "" ) oN ) 0 and > B2  ) B ) 0. Then

N
Tr(A D) C I a

i-I
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Lemma 4.2. Let A and B be two symmetric matrices in tN with eigenvalues

A ) ).. A N  and B1  B 2 ; - B Then

N

A. - -Tr (A n) c AB it=1

Proof: The result follows from the decomposition

Tr (A B) - Tr((A-% Id)S[-B N  d)l] + ANTr(n) + B Tr(A) - N ABN

and from the application of Lemma 4.1 to the first term of the right-hand side. C3

Lemma 4.3 Let Dd be a diagonal matrix with diagonal terms D1 ) D ) -.. ) DN

and A be a symmetric matrix with eigenvalues AI ) A2 > ... ) A N . Then

N

max [Tr (P P A]l - Tr Cd QTA] D i,,

PPT-Ld

where Q is an orthogonal matrix which diagonalizes A with

(Q T) =) i

Proof: For P given, let B be the matrix defined by

Td
3- PD P

and whose eigenvalues are Di. Then, from Lemma 4.2, we have:
N

Tr [pTDEP A] - T (AD) 4 A Di
i-1

On the other hand, we also have

N
d T T d TdT N

Tr(QV Q A] - Tr (Q QD Q AQ] - T'r [D Q A0) - 2 A D
i-I

and the result follows. 3

We are now ready to prove the main result of this section, which reduces the local

problems to convex minimization problems set on (N - 2 or 3).
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THEOREM 4.1: If the internal dissipation potential y (.) is convex and isotropic,

then the solution H of the local problems (4.1) is aiven by

d T

"I Qt'

(4.3)

At J r, (VV + VvT) -)j
2 i

t

where is an orthogonal matrix of RNXN whose columns are normed eigenvectors of the

i
matrix A (the first column corresponding to the biggest eigenvalup and so on) and

where 0 is the diagonal matrix of RNxN solution of

N
(4.4) Minimize ID (D

d ) r IDdI
2 

- Ai(Dd)ii} on DN
1 2 1 ii

Above D
N  

denotes the space of diagonal matrices of RNXN and (Aj) denotes the set of

i
eigenvalues of A (A ) A ) -'. ) A ).

f 7 2 N

Proof. First observe that any matrix G of R~
xN  

can be decomposed into
s

T d
(4.5) a = P D P,

where P and Dd are two independent matrices of R
N
xN, p being orthogonal (P PT

Id) and DO being the diagonal matrix whose diagonal elements are the eigenvalues of

G. Then, if we denote by ON (respectively DN) the space of orthogonal (respectively

diagonal) matrices of RNXN, the local problem (4.1) becomes

i d ON N

(4.6) V i, VX, Minimize J (P,D ) over 0 x D
N

I

with

i d = Ve T rT '
(PI D (a) D I P D DP)*Al
1 2

But since D (*) and .' are isotropic (V (PTDdP) = V (Dd)), we can rewrite J£ as

i d a d P d 2 T i
J (PD ) D 2 + D I-(D P) - Al.
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d
Now, let Hd be the solution of (4.4) (unique since the function to minimize is

strictly convex) and let Pl be the permutation matrix which reorders the diagonal

d A "" A ndsn e )() s
elements of H in the decreasing order. Since A > A > . A and since Ve is

t. 1 2 N

isotropic, we have

N Nve T d rR i d 2 T dR  e d) + .R d2 di
D iPAHPH) + 2 IPA Pi - i A.(P HhiP V(H ) 2 - d ()i

i= 1i=1 A( 2 )

d T d P d
But HU is the only solution of (4.4), thus P H H H has to be equal to H£ which

d

means that the diagonal elements of H are already placed in a decreasing order. From

Lemma 4.3, this implies

N

(4.7) Ai(Hd) i  = (Q I dk T A

i= 1

Moreover, since H is solution of (4.4), we also have

N N

Ve1(HX) + r1R - A (Ht), 4 D 1 - ADi, d e DN,
i=I i= 1

and in particular, if PD is the permutation matrix reordering Dd

eC(Hd -((e d + R dTde - (pTpd2)A ,_ Dd

. 2, ' 1 D(PDD dPDD ),A, D
d .

i= 1

Now, from (4.7), Lemma 4.3, and the isotropy of D1(*), this implies

e d Rr d 2 dT i e d Rr d2 TdV (,,) + - ni _ (QHQ) . (A) V(,,) + lD (P D P) . (A,) ,D12 2 2. 2.Q 2 2.1t2

for any Dd in DN and any P in O
N
. So, finally, we get

i d i d d N N
'2 (QV ,f) I (PD V(PD in 0 . r.
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d

In other words, fQ1 f d) Is a solution of (4.6). By construction, this implies
.

that H, given by (4.3), is a solution of the original local problems (4.1). Our proof is

therefore complete because, since J is strictly convex, such a solution is unique.fhrfr

RE14ARK 4.1. It is well known that the internal dissipation potential is isotropic

and convex for all standard isotropic viscoplastic solids and all standard viscoplastic

fluids. Theorem 4.1 can therefore be applied in most practical situations.

i
R4ARK 4.2: In Theorem 4.1, the relation (4.3) simply expresses that 9 and A

have the same eigenvectors. In essence, this is the discrete equivalent of the well known

result which states that principal stresses and principal strains are parallel in

isotropic elasticity or visoplasticity.

5. NORTON VISCOPLASTICITY

5.1 The local problems. Norton viscoplasticity corresponds to one of the easiest

possible case where the internal dissipation potential V is given by

1N 2)p/2
(5.1) V2 (G) - (kV2)~!I p JGJ (k/2)p G ; )/

1 p i'j=1

Each local minimization problem (4.1) now becomes

i mNxN wt
(5.2) Minimize J£(G) over a with

i +- 5o -"I

() - I(k2)pl-) +r 2 I i

A iG = VVT
i t 2
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whose solution is given by

THEOREM 5.1: The solution H2 of the local minimization problem (5.2) is of the

form

(5.3) Hf1 = A i X/Ijk fi1

where x is the solution of the one-dimensional convex minimization problem

(5.4) Minimize {- (ki2) p Y -Aiy} over R
p 2 £ e +

i. i iNxN
Proof: Suppose that the norm HI) of the minimizer Hf of J, over R is

i i NxN i
known. Then, H minimizing J, over R s will in particular minimize J(.) over

xf if

the set of matrices of with fixed norm IHnjI. But this last minimization problem

i NxN4
reduces to the maximization of the scalar product A . G over a sphere of R s and its

solution is given by

i i ,ii,
(5.3) n = E l A)/)A).

i i NxN
By plugging (5.3) into the expression of JZ, the minimization of JL over R 8

i ji i
finally reduces to finding the unknown norm II which has to mininimize J(3 Cy/ a)

over the set R+ of positive numbers. This last problem is precisely (5.4) and our proof

is complete. G

In practice, the numerical solution of each local problem (5.2) uses Theorem 5.1 and

is achieved by:

a) the computation of the solution IniI of the one dimensional convex minimization

problem (5.4)
i

b) the computation of H£ by the explicit formula (5.3).
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The numerical solution of (5.4) can be achieved for example by using the one dimensional

Newton algorithm below

data:x
0  

= solution of (4.4) at previous iteration;

initialisation: x + xo;

j + 1;

repeat + j +;

S (k/i)
p xp - 1 + r x - 1A + AlI/2,

test : if IgI below tolerance exit;

dg + (p-)(kV'2)
p xp - 2 + Rrn

-30 -1
x + max (10 ,x - (dg) g);

exit I 11 - X.

Putting together all the steps which permit the numerical solution of the decomposed

approximated viscous flow problem (3.6) by the algorithm (3.11)-(3.14), we finally obtain

the simple and easy to code computer flow chart of Figure 5.I.

-39-
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INPUTS:

TRIANGULATION OF 0,

External loads {f,q},

Boundary condition u ,
0

Dissipation potential Vl(x,G)

CHOICE OF R AND r(x).

Assembling and factorization of the finite

element matrices needed for solving (3.12)

INITIALIZATION OF H AND A

SOLUTION OF (3.12)

Call of a Stokes solver which computes v In Kh .

SOLUTION OF (3.13):
i

computation of A by (5.2),

solution of (5.4) by Newton,
i

computation of 9 by (5.3),

rUPDATING OF X BY ( 3.14)]

Fig. 5.1: Computer flow chart for solving Norton viscous flow problems
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5.2 Numerical results. The first numerical test considers a horizontal cylindrical

hose, with external radius I., which is glued on a rigid core on its internal face, and

which is subjected to its own weight. This situation may represent for example the

cooling process of the plastic coating of an electrical wire, for which manufacturers must

verify that the deformations undergone by the coating during cooling remain small. In a

first approximation, strains are assumed to remain plane, and the coating is supposed to

be made of an homogeneous Norton material with k - .47, p - 1.4, and volumic weight .1.

For symmetry reasons, only the right half of the section is considered, 225 nodes are

used to approximate the velocity, 65 nodes are used for the pressure. Only one block-

relaxation iteration is done at each Uzawa step and after 60 iterations of the Uzawa

algorithm, the error IEn - D(v n)I has decreased by a factor of 10-7 (in fact, 30

iterations were more than sufficient to obtain a very accurate velocity field). The total

CPU time was approximatively 3mn on the VAX 780. Figure 5.2 represents the computed

velocity field (magnified 7 times). The shape of the hose after one second of flow (the

deformations being multiplied by 40) is indicated on Figure 5.3, together with the mesh

used for the pressure.

In the entire computation, the parameter P was equal to 1. The weight r(x) was

equal to I during the first 20 iterations, then updated by the formula r(x) - IR20, P- 2

(see Remark 3.2 for justification), kept that way until iteration 40 where it was

finally updated by r(x) - Is401p-2 .

6. BINGHAM VISCOPLASTICITY.

6.1 The local problems. Bingham viscoplasticity corresponds to an Internal

dissipation potential DI (.) of the type

(6.1) DI (G) - U 0G1
2 + 9_ jcl.

Each local minimization problem (4.1) now becomes
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(6.2) minimize f ( + U)I1 2 + V GI - G1 over
2 1a

whose solution H1  is simply given by the explicit formula

(6.3) 8' - Max (0,1i-r2 g/111 A' /(rR+2u)it t

In practice, the whole program solving the flow problem (3.6) for Bingham fluids

still corresponds to the computer flow chart of Fig. 5.1, each local problem being now

solved by (6.3).

6.2 Numerical result. We consider herein a Bingham fluid flowing viscously through

a cavity. Fluid enters at the upper right of the cavity and exits at the upper left, with

an imposed velocity of 3.0. No slip boundary conditions are imposed elsewhere.

Dimensions of the cavity are 1. for the main square and .1 for the entrance and exit

tubes. The fluid viscosity p is assumed to be .01 and velocities are supposed to remain

plane.

The finite element mesh uses 419 nodes for velocities and 166 nodes for pressures.

One block-relaxation is done at each Uzawa step and we take R - .1 and r(x) - 1.0.

Figures 6.1 and 6.2 represent velocity obtained after 40 iterations, the plasticity

threshold grG being respectively of u and of 10u. As expected, the domain where the

fluid is at rest is bigger in the latter case. The computation time for each case was

approximatively 10 mn on the VAX 780.

7. TRESCA TYPE VISCOPLASTICITY IN PLANE STRESSES.

7.1 The local problems. In plane stresses, the body under consideration is supposed

to be very thin along x3 and Is loaded in its plane so that, in a first approximation,

all stresses along x3 are equal to zero. It is then possible to eliminate the x3

direction and to reduce our original problem to a two-dimensional one whose domain will be

the middle plane section of the body and whose unknowns will be the in-plane velocities.
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These inplane velocities need no longer be incompressible since any reduction of the plane

section can be compensated by a corresponding thickening of the body. Therefore, in

Sections 2 and 3, Kh is everywhere replaced by Vh + u°  and in particular (3.12)

becomes

Minimize LR,(,G,I) over Vh  + ;o

which is a classical linear elasticity problem with a zero first LAme coefficient. As for

(3.13), its formulation is unchanged and it still reduces to the local problem (4.1).

In plane stresses, a Tresca type viscoplastic material corresponds to the internal

dissipation potential

(7.1) DI(G) - - (kr2)p (Max(IG! IGG

where G1 and G2 are the egenvalues of the 2x2 symmetric matrix G. This potential

is a symmetric convex function of the eigenvalues of G, therefore is isotropic and convex

(HILL[19701). Moreover it satisfies the inequalities (1.6) for coerciveness and

continuity. On the other hand, this potential is not strictly convex and not

differentiable, which clearly appears in Fig. 7.1, where the level lines of D1 are

drawn.

The viscous flow problem associated to this potential (7.1) can still be solved by

the Uzawa algorithm (3.11)-(3.14); (3.12) is a linear elasticity problem and (3.13)

reduces to local problems whose solution R is given by (see Theorem 4.1).

2 2 T)

Ti d H 1 2

(7.2 ) '2

j (H1,H2) 4 j (D1,D2), V fo1,D e R
2 2' 2

(1D2 p ID2(kI1)P2Iax ID D I5 - A D -A D.

-47-
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Above, as before, A1  and A2  (A1 )A2 ) denote the eigenvalues of AI and is an
Sand orders the dao a lmnti

orthogonal transformation matrix which diagonalizes At and orders the diagonal elements

of the resulting matrix in a decreasing order.

Thus, for Tresca type viscoplastlcity in plane stresses, the numerical solution of

each local problem (4.1) reduces to

Al A 12

i K A T
Step 1 compute A~ LI AA2  I r(j (Vv+Vv )

A 12 A 22f

Step 2 compute the eigenvalues A1  and A2

A1  = 11(A1+A22 + V (A -A 2 , 4 A2  
1/2

11 22 12

A = f (A +A ) - A 2 + 4 A2 ]/2
2 11 22 (A -A 22 +4 1 2

22
Ste 3 omue an' H2 by

j(H1 ,H2) ( j(D1 ,D2 ), V {D1 ,D2 ) e R2;

i d T
Step 4: Compute H, = Qf t Qt Iip
(81) (HI-H2) (A -A2)/(A -A) 

+ H
1 11 1 2 11 2 1 2 2'

( 22 (H -H 2 )(A 2 2 -A )/(A -A2 ) + H1 ,

= (H-H ) A12 / (A1-A2).

Consequently, the computer flow chart associated to the Uzawa algorithm (3.11)-(3.14)

for the numerical solution of viscous flow problems in Tresca type viscoplasticity in

plane stresses is the one described in Figure 5.1, but with the solution of the local

problems being achieved by the four steps above. Among these steps, only one, Step 3, is P

not explicit and its solution is described in the next paragraph.
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7.2 Solution of Step 3. By definition of the subgradient, Step 3 is equivalent to

(7.3) {o,0} e aj(HI,H2 ).

Therefore, to solve Step 3, we first begin by computing the subgradient of J(,-) over

R
2 .  

Since we know from Theorem 4.1 that, at the solution of (7.3), HI is greater or

equal to H2, we restrict ourselves to the half plane DI ) D2. Then, a direct

calculation gives:

Case 1: if (DID 2  e K, - {{x,yl e R2, x > y, y > 0), then:

j(D0,D) -.- (k/1)P(DI+D2)P + rR (2+02
J(DID (r2)PD + ) p+-L (D)I D 2 ) - A DI - A2D2

12 p 1 2 2 1 2~ 1 A 1  2 A 22

aj(DID 2 ) {(ulu2), u - (k/ )P(DI+D2)P-
1 

+ rR Di - A 1.

Case 2: if {DI ,D2 1 e K - {{x,yl e 
2
2, x ) 0, y - 0), then:

J(D1,) - .(k2)P(D )P + SR 2 1 1D

aj(DID 2 ) - f(Uu 2), u I- kr(D1 ) P-+ rR D I All- A2 4 U2 C (kv)P(D I)P-I- A 2

Case 3: if (D I D2  e K3 - {{x,yI e x
2
, x i -y, y < 0, then

- (k-2 D)P + 1- (D +D 2  A D A D

2 p 1 2 ;R 2. - 1 1 - 22

aJ(DID 2 ) {(Ulu 2 ), ui - (kv'2)P(D )P-1 6ii + rR D - A 1.

2
Case 4: if {D1 ,D 2: e K4 - (fx,y} e R , x = -y, y < 01, then

j10) . I 2-/i P + 2)2

2 p 0 2) 2 1 - A

aj(D 1,D 2) - ((ul,u 2 ), rRD 1- A 1 4 u 1 ( (k/ 2)P(01)P-1 + rRD1 - A 1,

rRD - A - (k/2)P(-D 2)P-
1  u 4 rRD - A 2
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Figure 7.1: level lines of V (p=2)
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Case 5: if (D1,D2} e K5 = ffx,y} e R 2 , 
-y > x > 0}, then

aj(D0,D) {(ulu2), ui = -(k12)P(-D 2)P-I 62 + rR D i - A}.

2
Case 6: if (DID 2 e K6  {(x,y} e R , x = 0, y < 01, then

(0, -k -D )pp rR 2
J(DID 2 )  p(k-2))(-D 2 ) +p -I- D2 - A D2,

2 22 2 2 ;22aJ(DID 2 1  {(Ul, U 2I,-(kV2)P(-D 2
) p - I- 

AI1 u 1 -AIU 2 
f 

-(k i)P(-D 2)P-1+ rRD 2-A 2}.

Case 7: i 2fDID2 ) e K - ffx,y} e R
2
, 0 > x ) y), then

J(D1,D2 = I(kr2)P(-D -D )P + Rr (D2+D2)2 - A D 1 - A DJ 12 p 1 2 2 1 2 11 22

1J(D, 2 ) = {(U ,U2), ui = -(k'2)P(-D I-D2)P- + rR i - Ai }.

Observe that the sets K form a partition of the half plane DI l D2 . Then, by

definition of (7.3) and since its solution {H ,H 2 belongs to this halfplane (Theorem

4.1), we have:
7

(7.4) [H IH 2  = U [{xi,Y i } e ,,) e Yi)}.

Therefore the solution of (7.3) is simply the solution of one of the local subproblems

(the one which admits a solution for the given data of A1  and A2 )

(0,0} e aj(xiyi), {xiy i } e Ki .

Then, once that for each subproblem the conditions which guarantee the existence of

solutions are explicited and that the algebraic expressions of these solutions are

computed, fHIH 2 is simply obtained by:

(i) finding which subproblem has a solution for the given values of A1  and A2, by

checking successively the admissibility requirements (conditions for existence of

solutions) of each subproblem;
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(ii) setting (H 1,H 2 } equal to the corresponding solution.

Here, these computations are easy to carry out since we have just computed the algebraic

expressions of aj(.,.) on each subset Ki . For example, for i - 1, we have

local subproblem:

a1k2 (x+y) 
1 

+ rRx -A, = 0,

(k2)P (x+y)p - 1 
+ rRy - A2 - 0,

x)y > 0;

admissibility requirement (necessary and sufficient condition for existence of

solutions):

A2 > [(A - A2)/rR]P-1

solution

X," (z+(A -A 2)/rR)/2, y, -(z-(A -A )/rR)/2,

1 1 2 1 2+
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All computations done, the solution {HH 2 1 of Step 3 is finally given by:

HI - [z+(A -A2 )/rR]/2,

for A2 ) ((A -A 2)/rR)P-1 
H 2 z [Z-(AI -A 2)/rR)/2,

z minimizes --(ki )PtP+ R 2_-(AI+A2)t} over R+,

{-(v'2t 2 2

for ((A -A 2 )/rR)P- ) A2  0
H22 0

- -HI minimizes {I(kV)Pt p+ 4E2-A t) over it,

for A1I > (-A 2+(-A 2/Rr) p-i > ~ p0

R(2 - A2/Rr; p

H minimizes(l(k,2)ptP+ Rrt -(A -A )t} over R

for (-A 2+(-A 2/rR)P-
1
) A I > 0 

12 +

and (A 1/rR)P-
1 

+ A ) -A2

= A I/rR

for -A2 > A + (A /rR)P-1 > 0

(-H minimizes{
2
(k/2) pt+Rrt +A t} over R+i

2p 2+

for 0 ) A1  ) -((A I-A 2)/rR)- 1  
H

1  
itr

minimi,, {-I(k)ptp 2 +A20 over R+

"I , (z+(A -A 2)/rR)/2,

for -((A I-A2 )/rR)P-1 > H2 (z-(AIA2)/rR)/2"

_________.Zki~tpR2.( +A )t) over R

p 2 12 +
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In the Above formulas, the minimization over R+ is numerically achieved by using the one

dimensional Newton algorithm described in Section 5 of this report.

7.3 Numerical result. We now consider a perforated square thin plate (width - 1.),

subjected to an uniform traction of .52 per unit area on two of its opposite faces. This

plate is supposed to be made of a Tresca material with p - 1.5 and k - 1/12

For symmetry reasons, only one fourth of the plate is considered. On this fourth,

126 nodes are used for approximating the velocity field. One block-relaxation iteration

is done per Uzawa step, and the parameter R and the weight r(x) are respectively given

by R - I and r(x) . IgIp -2 , H being the deformation rate tensor corresponding to a

computation done on the same geometry but with DI(G) p (kV )PIGl p  (compressible Norton
lp
material in plane strains).

After 50 iterations, the error |D( n ) - UI is decreased by a factor of 10-4 , and

the total dissipated energy rate is equal to -2.737 for the whole plate. The

corresponding velocitites are indicated on Fig 7.2. It must be noticed that, due to the

little number of boundary conditions imposed on Y, this case is particularly unstable for

most numerical methods.

a POSSILE EXTENSIONS OF Tm! ME4THOD.

Many extensions can be considered for the numerical method described in this

report. For example,

(i) different finite elements can be considered in the approximation h of the set

of kinematically admissible incompressible velocity fields. Any finite element which is

used with some success in the approximation of the Stokes problem can be employed here.

Nevertheless, if the gradients of the elements of Rh are not piecewise constant, a

numerical integration rule will be necessary to compute the dissipation F(G), which

leads to an additional truncation error and which slightly complicates Problem (3.6).

Moreover, the space Yh' which is then the space of functions which are characterized by
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their values at the integration points, must be sufficiently large to contain, within an

isomorphism, the image of Kh by the operator 0(-);

(ii) an inertia term can be added in the formulation of the virtual work theorem.

Through an implicit time discretization, the resulting problem will then reduce to a

sequence of augmented lagrangian problems 13.6) (one per time step), the functional G

being now replaced by

G~v) -W f.v - g.v da + I I IV -V .
r2  _D S

Each problem (3.6) can still be solved by Algorithm (3.11) - (3.14). Problem (3.12) will

again correspond to a linear Stokes type problem, associated to fixed, symmetric, positive

definite finite element matrices. Problem (3.13) remains unchanged

(iii) a convection term p(v.V)v can also be added in the formulation of the virtual

work theorem. Since the operator in v will no longer be self-adjoint, no augmented

lagrangian LR can then be introduced. Nevertheless, Algorithm (3.11) - (3.14) is still

applicable there (FORTIN-GLOWINSKI [1982, p 71]. Problem (3.13) is unchanged, and (3.12)

becomes

J r(x)(R(D(v)-U)-X).D(v)dx + p p(v.V~v)w dx - J f.v dx + I r -v da, V w e Yn.
(2 l r2

For small convection terms, v can be replaced in the convection term by the solution n

at the previous iterate, and (3.12) then reduces to an ordinary Stokes problem. For large

convection terms, one can use optimal control techniques (IGLcWINSKI-LE TALLEC (19831).

All this is described in details by TANGUY (19831 which uses augmented lagrangian

techniques in a very similar situation,

(iv) finally, our problem can be coupled to an heat diffusion problem if we suppose,

for example, that the internal dissipation potential V1 (x, G) is a function of the

temperature T at x. If convection phenomenon are not dominant, temperatures and

velocities can be efficiently computed by block-relaxation: assuming the velocity to be

given, one computes the temperature by solving the energy equation, then, assuming the
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temperature to be given, the velocity is determined by solving (3.6), the process being

repeated until convergence. Observe that, despite a possible change of the temperature

field between two successive resolutions of (3.6), the finite element matrices do not have

to be changed because the temperature is only a parameter in the local problems (4.1).

This results in considerable economy in computer running time.
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