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ABSTRACT

i

‘ This report describes an application of Augmented lagrangian techniques
to the numerical solution of quasistatic flow problems in incompressible
viscoplasticity, focusing on cases where the internal viscoplastic dissipation
potential is not a differentiable function of the material deformation rate.
The stresses of elastic origin are neglected, and the variational formulation
of these problems is approximated via mixed finite elements of order 1.
Convergence results are proved or recalled, both for the finite element
approximation and for the augmented lagrangian algorithm. A detailed study of
the local minimization problems which occur in the augmented lagrangian
decomposition of the above problems is also presented, together with several
numerical results. These results were obtained using the MODULEF finite
element code on a VAX 780 at the Mathematics Research Center and cover

successively the case of Norton, of Bingham and of Tresca type materials.

AMS (MOS) Subject Classifications: 65K10, 65N30, 73F05, 76A0S

Key Words: viscoplasticity, convexity, incompressibility, finite elements,
augmented lagrangians.
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SIGNIFICANCE AND EXPLANATION

Augmented lagrangian methods, introduced around 1970 by M. R. Hestenes
and M. J. D. Powell, are now classical numerical tools in scientific
computation. They take into account the dual structure that most problems in
continuum mechanics do present, involving usuvally both stresses and
displacements (or velocities), to reformulate them as saddle-point problems,
which can then be solved numerically by Uzawa type algorithms. These methods
have already been used in situations like viscoplasticity by GLOWINSKI and
MAROCCO [1975] and are described in detail in FORTIN and GLOWINSKI [1982].
Compared to previous publications, this report:

(1) tries to present a clean and updated version of these techniques,

(i1) uses a low order, convergent finite element for the approximation

of incompressible velocity fields,

(1ii) and studies in details each local minimization problem which

appears during the algorithm.

The main mathematical tool used herein will be convex analysis. The goal
of this report is to give a comprehensive presentation of all the theoretical
aspects which are behind the application of augmented lagrangian techniques to
viscoplasticity (existence theory, approximation, convergence of the
algorithm, ...) so that the reader may be able to implement these techniques
in any finite element code, to obtain reasonable numerical results with a
minimal experimentation time, to assess the validity of his numerical resuits

and to judge the efficiency of his numerical technique.

The responsibility for the wording and views expressed in the descriptive
summary lies with MRC, and not with the author of this report.
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NUMERICAL SOLUTION OF VISCOPLASTIC
FLOW PROBLEMS BY AUGMENTED LAGRANGIANS

Patrick Le Tallec

1, INTRODUCTION AND FORMULATION OF THF CONTINUOUS PROBLEMS.

1. Introduction. We consider in this report the problem of computing the quasistatic
flows of incompressible viscoplastic materials subjected to given distributions of
external loads. The constitutive law which modelizes the behavior of the considered
viscoplastic materials and the configuration of the body are supposed to be given. The
unknown is the velocity field inside the body resulting from the application of the
external loads.

The materials which are involved in such problems include freshly mixed concrete,
bitumen, frozen soils, different types of mud, polymers at high temperature or very hot
metals. These materials, when subjected to external loads, flow viscously in a
nonreversible pattern and develop stresses which are mainly of viscous origin. Most of
these materials flow in an incompressible or nearly incompressible way.

Herein, to compute the velocity field v, we use a variational formulation of the
mechanical prohblem (Sec. 1), which neglects the stresses of elastic origin, we discretize
the space of kinematically admissible incompressible velocity fields by mixed finite
elements of order 1 (Sec. 2), and finally we solve the resulting discrete problem by
augmented lagrangian techniques (Sec. 3). Convergence results are proved both for the
finite element approximation and for the augmented lagrangian algorithm, and the local
problems which appear in the augmented lagrangian decomposition are studied in details in
Sec. 4. Several numerical results are presented in Secs. 5 to 7, succesaively for Norton,
Bingham and Tresca type materials. The basic assumption in this work is that the internal

dissipation potential associated to the considered viscoplastic material is a convex,

Spongored by the United States Army under Contract No. DAAG29-80-C-0041 and in part by the
Laboratoire Central des Ponts et Chaussees, 58 boulevard LEFEBVRE, 75015 PARIS, FRANCE.
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continuous but not necessarily differentiable function of the deformation rate tensor

inside the body.

1.2 The mechanical problem. Depending whether we consider a specific piece of

material with very little motion or a specific domain with incoming and outcoming
material, the configuration R given in the data of the problem will correspond either to
the reference configuration or to the present configuration of the body. 1In this report,
we will suppose that it corresponds to the reference configuration of the body; in other

words, we will consider solids in small strains. The other case, associated to

viscoplastic fluids flowing viscously, is identical within the replacement of the

lagrangian coordinates x by the eulerian coordinates X.
wWithin this convention, the unknown velocity field is determined by the two
mechanical equations below (PERZYNA [1966]):

constitutive law (viscoplastic incompressible solid in small strains)

(a{x) + p 1) €3 D,(x, BV,
Tr (B(v)) = 0, B(v) =V, (TweT¥T),

virtual work theorem (quasistatic case)

] o(TwWl)/28x = | fewax+ | gowaa,
Q Q r,

for any w such that w =0 on T1.

These equations involve the Cauchy stress tensor field o(x) and a hydrostatic pressure
field p(x). Here, the notations VYw and 3 D’ represent the gradient of the vector
field w and the subgradient of the convex function 01(x,-), respectively. 1In

addition, T1 and Yz denote the parts of the boundary of § where imposed velocities

-2~




Go and impoged tractions g are applied, respectively. Moreover, for x fixed, the
internal dissipation potential 01(') is a known convex function of the time derivative
of the linearized strain tensor E. This function, defined here over the space of

symmetric tensors of RNxN

with zero trace only depends on the properties of the
considered viscoplastic material at point x. For example, if we omit the argument =x
for simplicity, Norton and Bingham materials are characterized respectively by

(1.1) D, (D) -;:— (x/'2)? |p|?  (Norton)

(1.2) 0,(D) = u 0|2 « /2 g |p|. (Bingham).

1.3 Variational formulation. If we restrict the virtual work theorem to divergence-

free test functions w and if we eliminate the Cauchy stress tensor 0 using the
constitutive law, then the mechanical equations above correspond, at least formally, to

the variational problem:

(1.3)] Minimize the dissipated energy rate J(w) over the set K of incompressible

kinematically admissible velocity fields,

where J and X are respectively defined by

(1.4) I = | 01(1/2(VWVIT)) ax - | fwdx~-| gew da,
2 Y r
2
1 . o
(1.5) K={wew'PQ), aivw=0, weu on T} . J

This variational problem is well-posed and we have:

N
EXISTENCE THEORPM: Let R be open bounded connected in R (N=2 or 3) with

Iipschitz continuous boundary T. We suppose that the interior of r1 is _not empty,

that ;o is the trace of a function of !1'p(9), and satisfies
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J @ s vda=0
ro

whenever T 1 = T. We assume moreover that the external hody forces £ and surface

- $ ] »* *
tractions g are respectively in P o) and f (Y‘z) (pp =P + P ), and that the

convex internal dissipation potential 01 satisfies:

(1.6) ¢, Io|® < DM <, +c, ||®,

almost everywhere in § for any symmetric, N x N matrix D with zero trace,

1< p < +,

Then, there exists a velocity field v which minimizes the digsipated energy rate

J(w) over the set X of kinematically admissible velocity fields. This solution is

unique if p, is strictly convex. Moreover, for each minimizer v, there exists a
1

t ]
deviatoric stress tensor field % in (P (m)NxN' a hydrostatic pressure field

»
p in 1P (R) which satisfy the weak equilibrium equations and constitutive laws:

~

] to, - pla)D(w) ax = | frwdx+| gwda, vwev,
Q Q rz

(3.7) % e 31)1 (i(v)) a.e. in 0,

LV = {we '1'9(9), w=0 on I‘1 Y.

Proof: The proof of this result is very classical in convex analysis. The existence
of a solution v involves the Welerstrass theorem, its characterization by (1.7) uses
duality arguments and the closed range theorem.

First, from (1.6) and from the Korn's inequality on V (GEYMONAT, SUQUET(1983]),

J satisfies
c1|v|*;'p - (1 gl )il < 3(w) < C,(mes(R)) + Cylwl *"

3 1.p
+ (lflp' + Iqlp.)'vle
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-
for any w in X. Therefore, J I8 coercive, convex (strictly convex if 1)1(-) is) and

continuous on K for the H"p(ﬂ) topology. It 1s thus weakly lower semicontinuous on
K. In addition, K, defined as the Kernel of the linear application

w > {div v, W - ;xolr'}, ias convex and closed in I"p(ﬂ)- Since K is also not empty,
applying the Weierstrass theorem, there exists a minimizer v of J(¢) over X, which is
unique if J is strictly convex.

To further characterize such a minimizer v, we now introduce

X -{vew"p(m, w=0 on T, divw= o},

y={pe tPa))™, p' =p, ¢ (D) = 0 a.e. in 0},

$(w,D) = | D (D(ww) - D) dx - | fe(ww) dx - | g=* (vw) da.
] Q )
2

Above D(v+w) represents the tensor D(w+w) -1/2 (V(wiw) + V(M)T) and Y is in duality

with the space

y* = {t e (Lp’(m)NxN' T =1, Tr (1) = 0},

through the duality pairing
N
<T,D>= ]n T'Ddx-JQ 1%3-1 Tyy Pyy @x -
Obviously, from (1.6), &(-,*) takes on finite values and is real, convex and continuous
on XxY. Moreover, since v minimizes J over K, 0 is a solution of the primal
problem: Minimize ©&(w,0) on X. From a basic theorem of convex analysis (EKELAND-
TEMAM (1976, p 52-53)), this implies that the dual problem: Maximize - ¢%(0,1) over

4 has a solution (-0_.) which satisfies

D
(1.8) {0, - aD} e 3%(0,0)
that s ¢ - 0y, D> ¢ &(w,D) - $(0,0), ¥ {w,D} @ xxY.

Writing (1.8) successively for {w,D} = {w,D(w)} and {w,p} = {0,-B}, we obtain

-5-




(1.9) Liw) =~ | o Dlw) &x - ] frwdax- | gwda=0, Vwex,
] Q r,

(1.10) o cHax< [ {p(n(v) + ® - D (D(v)}} dx, VB E Y.
Q Q

But (1.10) can only hold if (EXKELARD-TEMAM {1976 p 21, p 271])
(1.11) o, © 301(n(v)), a.e. in Q.
Now, to obtain (1.7) out of (1.9}, (1.11), it is sufficient to observe that the

divergence operator is a continuous surjection from V onto
:.P(m (or onto Lp(ﬂ)/l if 1‘1 =T). Therefore, from the closed range theorem, its
transpose is a continuous homemorphism from LP'(m onto the orthogonal of its Kernel
in V*, that is onto X*. Since, from (1.9) L(*) is an element of X*, there exists
then an element p in Lp'(ﬂ) such that

Liw) = < p, divw>, ¥w in V,

and our proof is complete. 0

REMARK 1.1: We are not supposing here any differentiability of the internal
dissipation potential 01(°). The numerical technigques to be used later will have to he

able to handle such a lack of differentiability. 0

REMARK 1.2: Even though the argument x has been omitted in the potential D1 for
simplicity, the whole theory developed in this report applies for potentials which are

measurable functions of x on . a

REMARK 1.3: FPor Norton and for Bingham materials, the internal dissipation potential

is strictly convex and satisfies (1.7) with

1 j—
c, =0, C,=Cy=3 (vW2)P ,  (Norton)

C. =y, CZ-/E q, c3-(/39+u) , P =2 (Bingham).
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But (1.7) is still valid, and therefore the above existence theorem still applies for

materials associated to non-gtrictly convex and non-differentiable potentials such as

- 1 P _ P
7, (D) p(k/'z') :u§a (o, pj|) s

where Di are the eigenvalues of the deformation rate tensor D. T™his corresponds to

Tresca's type viscoplasticity.

2. THE DISCRETE PROBLEMS.

2.1 The discrete spaces. The approximation of the set K of kinematically

admissible velocity fields, which is needed for the numerical solution of the variational
problem (1.4), can not be achieved by the basic finite element spaces used in general.
For example, the space of divergence-free functions whose restriction to each triangle
(tetrahedron if N = 3) of a given regular triangulation of  1is a first degree
polynomial may only approximate a small part of the space of divergence-free elements of
l1'p(9)- Therefore, it is a very inappropriate finite dimensional approximation of the
set K of kinematically admissible incompressible velocity fields. To obtain a
satisfactory approximation of K, the set of approximate test functions must be enriched
and the incompressibility constraint must be weakened.

As pointed out in BREZZI [1974] and summarized in GIRAULT-RAVIART (1979] in their
study of the Stokes problem, a good approximation of K is obtained as follows:

(1) we first decompose the domain § into a regular triangulation Th of N,
polygons (N=2) or polyhedrons (N=3) which satisfy the classical assembly conditions
described in CIARLET [1978 p 511;

(1i) we then define the space Vh of approximate test functions by

o =
2.1y v = {vh ec (), % =0 on r,, 'h‘n e mez)' ve=1, Nh},
[




where ?x(ﬂl) is a given finite dimensional space of continuous interpolating functions

defined on Qz;

(1ii) in addition, we introduce an appropriate finite element space P,, included

o«
in L () and which satisfies the so-called BREZZI (or inf-sup) -ondition:

]nqhdiv v ax
Inf Sup TaT Tt 2 8 >0,
(2.2) qhePh vhevh qh o,p* 'h 1p
qh$0 Ih#o

where B8 1is independent of the diameter h of the triangulation Th' and where p 1{is
the exponent which appears in the definition of XK{(pp*=p+p*);

(iv) we finally approximate K by:

(2.3) | K = (v, (-h-io)evh,J q divwy dx=0, vq ep} .
0

Briefly speaking, this construction of K, amounts to impose the incompressibility
constraint in an averaging sense only. In that way, more elements of Vh can satisfy
this constraint and the set K, is bigger. It can then better approximate K.

The choice of the polyhedrons ﬂl, of the interpolating space P&(ﬂl) and of the
space Ph of approximate pressures is free, provided that the BREZZI condition (2.2) is
satisfied. In this report, we will use triangles (respectively tetrahedrons if N = 3) as
polygons Ql, and define P%(ﬂl) and Ph by

N
) = {wecon er @), vi=12",

(2.4) Px(ﬂ Yoo w0

L L lQi

L

o=
(2.5) p = {qec(n), 9ja, ePr(R), vi=1 N},

-8-




where P1(9k) is the space of first order polynomials defined over Qk and where (ﬂ:) {

are the 2V triangles
x position of the degrees of

freedom for the pressures

o position of the degrees of

freedom for velocities

Figure 2.1 Decomposition of a triangle 92

in four equal subtriangles

\.

TRUT
/)
\
.

1L\

Figure 2.2 Triangulation Th

(pressures)

-




@

Figure 2.3 Triangulation T;‘:
(velocities)
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(respectively tetrahedrons) included in ﬂl which are obtained by joining together the
midesides of every edge of ﬂl. With that definition of !;(Ql)' the space Vp of
approximate test functions is now simply the space of continuous vector functions with
zero trace on P‘ and whose restriction to each triangle (respectively tetrahedron) of
T: is a first degree polynomial, Tg being the triangulation obtained by dividing each
triangle (respectively tetrehedron) of Th into four equal subtriangles (respectively
eight subtetrahedrons). As for the space P, of approximate pressures, it becomes the
space of continuous scalar functions whose restriction to each triangle (respecively
tetrahedron) of 1h is a first degree polynomial (see GLOWINSKI (1984) for more details
on those discrete spaces).

The above choice of approximate spaces ((2.1), (2.3), (2.4), (2.5)) is far from being
the only possible one but it satisfies the BREZZI condition (2.2) and leads to a very
convenient approximate augmented lagrangian decomposition of our viscous flow problem
(1.3). Moreover, it uses low order finite elements, which is adviseable in nonlinear
problems where little regularity is to be expected. Finally, the sets (K,) constructed by
(2.1), (2.3), (2.4) and (2.5) form a converging sequence of finite dimensional

approximation of K and we have (BERCOVIER~-PIRONNEAU (1977]):

(2.6) Vwex, lim { Int Iv-|'hl1p}-0.
’

h+0 Ihelh

RFMARK 2.1: wWhen the maximal diameter h of the triangulation goes to zero, we also

have (CIARLET (1978]):

,
vhcvﬂw”q(m, V1<qg<+® aim V, < 4
(2.7)
Vw eV, lim {Inf fw - 'hl1 } = 0;
he0  w eV P

-ll~




PhCLq(Q),V1‘q‘+.] am P < ey

(2.8)

*
vger’ (), um {me 1q- %0, pel = O
h+0 qhePh

But, since we are imposing the incompressibility constraint in an averaging sense only,

K, is not included in K.

a

2.2 The discrete problems. The approximate incompressible viscous flow problem is

simply obtained by replaing K by X in (1.3). But, since K is not included in X,
we first have to extend the internal dissipation potential 01(.), initially defined as a
convex continuous coercive function on the space of symmetric N x N real matrices with

zero trace, to a convex continuous coercive function Dﬁ(.) defined on the whole space of

symmetric N x N real matrices. This extension must be convex and satisfy

vj (D) =D (D), ¥yDe n":" with Tr D = 0;

(2.9) ut(mqu) >0,(0), gem VD€ n:"" with Tr D = 0;

RN
c,Iol® < 05 m < c, + c, Iol®, voe R, ae. in 2.

In other words, the extension D‘;(-) of 0‘(-) coincides with D‘(') on the space
of symmetric matrices with zero trace, penalizes the slightly compresaible velocity fields
and extends to .:xﬂ the coercivity and the continuity of the function 01(-). The
introduction of U:(-) does not affect the solutions of the viscous flow problems (1.3)
since D:(-) and D'(o) coincide for symmetric matrices with zero trace; it only
provides a mathematical tool for calculating the dissipation potential for compressible
velocity fields and therefore enables us to compute reasonable nearly incompressible

finite dimensional approximations of the solutions v of (1.3). The introduction of such

extensions 0:(') which satisfy (2.9) is easy. For example, for Norton and Bingham

-12-




materials, the expresaions of D,(') given in (1.1) and (1.2) define such extensions. 1In

other casea, one can take
05(D) = 7,(d - (mzA) + | (M|P,

being careful not to choose too big values for Cy+ in order to avoid "locking” phenomena.

Once this extension defined, the discrete variational formulation of our

incompressible viascous flow problems (1.3) is

(2.10) Minimize the dissipated energy rate J(w,) over the set K, of approximate

kinematically admissible velocity fields,

vhere ‘h is the subget which is defined by (2.1), (2.3), (2.4), (2.5) and where the
dissipated energy rate J(°¢), given by (1.4}, is extended to a function from ¥, into
R by replacing the internal dissipation potential 01(~) by its extension D:(')

introduced in (2.9).

THEOREM 2.1: Under the assumptions of Theorem 1.1, for any fixed h, the discrete

incompressible viscous flow problem (2.10) has a solution wv,. Moreover, any solution

34y of (2.10) is associated to an approximate stress tensor field °h and to an

approximate pressure field p, in P,, such that

e o = ! T
(g, +® 14) e 3 01(‘,) a.e. on 0, B /2(Vvh+Vvh).

h
(2.11)

]9 cho(v-hw-:)/z & = Jnr--h ax + JQ gy da, Vu ev,.

In (2.11), the approximate deviatoric stress tensor (ohﬂ:h I4) belongs to the space

Y of plecewise constant symmetric matrix flelds:




i, NxN

NxN T N
(2.12) vh-(nhxsz*n D, =D, D 1eu"a(n,’)) , V= 1,2, v =1, uh). !
e}

L

Proof: this theorem is the discrete equivalent of the existence Theorem 1.1. Up to
(1.9), (1.10) its proof is identical, after replacement of 01(') by D:('), of K by
Kh' of Y by Yh and of X by
(2.13) X ={w ev, IQ%div'h-O. vq eP}. ’
Now, since Yh is made of piecewise constant matrix fields, (1.10) will also give '

- (o) €3 01 (B(v,)) a.e. in Q.

D'h
To finish the proof of (2.11), we introduce the operator B from V, into P} defined ;

by .
(2.14) ‘B"h'qh"anh‘”""hd"'v%ep'"'hevh' ],
vhose Kernel is X,, by definition. From the BREZZI inequality (2.2), (see for example
GIRAULT~RAVIART({1979, p 41]), this operator is a continuous surjection from Vh onto
Pﬁ. Using the closed range theorem, its transpose is a one-to-one homeomorphism from
Ph onto the orthogonal of X, in v;. But, from (1.9), the element Lh(') of V; !

defined by

(2.15) 1, (w) = Jn (o), * Diw )ax - Jr v, da - an--h ax
belongs to this orthogonal subspace. 'megefotc, there exiats a unique pressure field
B, in P, such that

L (w) = <n"ph.-h > = jﬂph div w dx, W €V,

which is exactly (2.11). O

2.3 Convergence result. In order to check that the discrete problem (2.10) is a

good approximation of the continuous viscous flow problem (1.3) when the maximal
diameter h of the triangulation Th goes to zero, one must study the behavior of the
sequence ('h) of solutions of (2.10) when h goes to zero. We will prove in this

paragraph that (vh) converges weakly towards solutions w of the continuous problem and L

-14~




that the dissipated energy rate J(v$) converges towards J(v). Moreover, under
additional uniform convexity assumptions, such as those satisfied by Norton or by Bingham
materials, there is strong convergence of ('h) towards v in l"p(ﬂ). The next
theorem summarizes these convergence properties, denoting by q the maximum of p (p is

the exponent introduced in (1.6)) and 2 and by Yp the space

v, -(e (P @™, o* = n}.

THEOREM 2.2: Under the agsumptions of Theorem 1.1, the sequence ('h) of solutions

of the discrete problem (2.10) decomposes itself into subsequences, each of

them converging weakly in I"p(ﬂ) towards a solution v of the continuous

incompressible viscous flow problem (1.3), when h goes to zero. The dissipated energy

rate J('h) also converges towards J(wv). Moreover, if the extended internal

dissipation potential @} is of the form

(2.16) p:(n) =0, (D)= G (D) + G (D),

with G, convex and bounded below, (G, convex, differentiable and satisfying

( | %, . ,

(u)lﬂ'p + lGIolp) Jn 35 (& - 35 (B))e(6-D)ax ? colc-uo'p, v{D,G} € vp,
(2.17)<

aGo aGo q-p+? q-2 3

LLJ!‘SB-(G) = 3p (D)) -Bax| < c‘lllolplc-plo’p lmo’puclolg , ¥{D,6,H e "p

then the whole sequence ('ﬁ) converges strongly in u"p(n) towards the unique

solution v of the continuous problem (1.3).

Proof : The proof is an immediate generalization of the techniques used by
GLOWINSKI-LIONS-TREMOLIERES (1981, p 361] in their study of Bingham fluids. It requires

three steps. Step 1 ('h) is bounded uniformly in h. Let v be a solution of the

continuous problem (1.3) and let &£, be the element of ¥, such that

-15-




(2.18) v - ahl1 P = Inf ly - |th1 p "
L) ’

*n ¥

1,p

From (2.6) (:h) strongly converges towards v in W () as h goes to zero. Since,

1
by extension, J(*) 1is continuous on W ‘P

(), this implies that, for h sufficiently
small, we have
(2.19) J(zh) € J(w) + 1.
But since w, is a solution of (2.10), we get
J(vh) < J"h) € J(w) + 1.
From the convexity of J(°), this implies
(2.20) J((vh—uo)/Z) < (J(-o) + J(w) +1)/2 = CS'
where, as usual, the notation Cy represents strictly positive numbers independent of x

and h. From (2.9), D? is coercive, thus (2.20) implies

2]

1

®

- L[] T p [ ]
v + v <
Jg It (v,-a ) (v, 1)/ 2|Pax < c, + LELRCEUN LA
which, from the Xorn's inequality and since p {s strictly greater than 1, can only hold
if

<c

l'hl1,p g ¢ Vh.

Step 2 weak convergence of ('h)' Since the sequence ('h) is uniformly bounded in

'119(9)' it decomposes itself into subsequences, each of them weakly converging in
'1'9(0). We still denote by (vh) such a subsequence and denote by ¥ its weak
limit. Moreover, let v be a solution of (1.3) and let (s,) be the sequence of
elements of K, defined by (2.18). Since A8 ainimizes J over ‘h' we have
(2.21) J(vh) < J(Ih) ' Vh.
Going to the limit in (2.21) as h goes to zero, and using the weak lower semicontinuity

of J on the left-hand side, the strong continuity of J on the right-hand side, we

obtain




(2.22) J(V) € 1im inf J(‘h) € 1lim sup J('h) € lim J(.h) - J(v).

h+0

-
On the other hand, let q be any element of P () and let (ﬁ\) be the sequence

&
of elements of ph which strongly approximates q in LP ). Since n belongs to

Kh, we have

(2.23) | g aivvax=| q div(v-w )ax , Vh.
b a

Going to the limit in (2.23) as h goes to zero and using the strong convergence of

(q,) and the weak convergence of (w,) yields

- .
] qalvveax=0 wgetP (.
a

Moreover, from the weak continuity of the trace operator, v- ;o has zero trace on

P1- So, finally, ¥ belongs to K. But v minimizes J over X, therefore

Jv) € 3.

Combined with (2.22), this implies that J(¥) is equal to J(v) and that all

inequalities in (2.22) are equalities. Therefore ¥ is also a solution of (1.3) and the

whole sequence J(vh) convergee towards J(v).

Step 3 Stronq convergence of ('h)‘ From now on, we suppose that the extended

internal dissipation potential D'{, satisfies (2.16) and (2.17). Prom (2.17), Go is

strictly convex on 'le.l' therefore, by addition, D: 1s strictly convex. So is its

restriction D.' on the space of symmetric matrices with zero trace. From Theorem 1.1,

the solution v of (1.3) is then unique. Thus the only possible weak cluster point for

the sequence (w,) is v and the whole sequence (w,) of solutions of (2.10) converges

1
weakly towards v in w 'P(n).

To prove its strong convergence, we first write the discrete weak equilibrium
equations (2.11) and the continuous weak equilibrium equations (1.7) for the test

function LR LR N where 5 1is the element of LY defined in (2.18). This

gives
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()

a %" D(x -v, Jox = ] f-(zh-'vh)dx + J g*(x v, ) da,
Q Pz
jn o+ D(x -v, )ax = Jn £ (mp~v, )ax ¢ Jr g (R -v) da,
2
(2.201 ¢

(c+pied DB, B=Y(Twivh,

e * 2 o1 T
L(ah + R4 ed D3k, B =V (v v,

where the notation D(w) represents as usual the gsymmetric component

T N:
(VwtVw )/2 of the matrix Yw in R xN‘ By definition of the subgradient, the third

line of (2.24) is equivalent to

(2.25)  (o+p ) « W< D (Bem) - D (B), vEHE n“:“ with Tr(m) = 0.

Since (o+p Id) has zero trace and since 0‘1‘ 18 an extension of 01 which satisfies

(2.9), (2.24) yields
(o+p T4)+(q 14) = (o4p 1) « B< D (Bvm) - D ()
< 0 (Bemeq 14) - D5 (M), Vaen

or, in other words

(2.26) (o+p 14) € 3 D m .
Now setting
BGO . aso .
t=0+pId-~ D (m), th - oh + P, 14 - D (l“) '

we obtain by substraction from (2.24) and (2.26)




r 36 36
-l (R} - =2 (E}) .
Jn (t-t,) © D(% -v, ) d&x = JQ Gp (B ~3p (B - O(%-w ) ax

(2.27)$
+ Jn (p—ph) div "\\-'h) ax ,

\t €3G ,(® , ¢ €3G(KR) .
But, since t and ¢t, are subdifferentials of G,. we have by definition

)n t s Div -v) ax < Jn {31(:‘1)-9'(3)} ax .
(2.28)

| & ¢ bim-w) ax < | {G,(D(x ))-G, (K )} ax .
] 1]

A suitable combination of (2.27) and (2.28) yields

3, 6, 3G 6, ,
(2.29) | (352 (D(=)) - 322 (R))+D(x ~v, Yax < | (FoHD(x,)) - Fp2(E))eD (5,v,) &
Q a

+ Jn (p-m) dv (x ~v, ) ax + Jn(t-n(v-:h) + G (= )) - G‘(l)} ax .
Both w, and =, are elements of K., so we can replace in (2.29)

Jn (p-p,) div (= -v ) dx by Jn(r%) av (= -v ) &x ,

*
where gq, is the element of P, vwhich approximates p 1in x..p ). Once this

replacement done, we have from (2,29), (2.17) and the Korn's inequality

P p—q+1 q-2

-q q
. | ] fwe [ ] 1 < - ] 1
(2.30) cw( ‘h'1,p* A3 1'p) L 1,p cn"‘h 'h'1,p ’h-'.‘l,p ( ’h't,p + Ivl,'p)

M R T )Q{vb(v-ﬁ‘) + G, (D% ) ~ G (B} ax| .

=19~




Since by construction %, and ¢, converge strongly respectively towards v and p in
1 »

w'P@) anda P (), since from Step 2 (v,) is uniformly bounded in '1'p(ﬁ) and

since, from (2.9), the integral of G1 is continuous on Yp, the right-hand side of

(2.30) converge towards O when h goes to zero. Therefore la'}l - vhl1 P must also
’

converge to zero, and from the triangular inequality, the sequence w, strongly converges

1
towards v in W 'P(Q) when h goes to zero. a

REMARK 2.2: Three facts are crucial in our proof of convergence: the existence of an
approximate pressure p,., the existence of a sequence (=) of elements of K,

approximating v and the existence of a sequence (qh) in Ph approximating any

L ]
element ¢ of Lp (). Although not necegsary the BREZZI condition (2.2) is a basic

tool for proving the first two facts. a

REMARK 2.3: Norton and Bingham materials satisfy the uniform convexity assumptions
(2.16) and (2.17) (SCHEURER (1977], GLOWINSKI-MAROCCO [1975)) and therefore, strong
convergence can be proved in both cases. Moreover, the speed of convergence of (w,)

towards v can easily be estimated by (2.30) as a function of the quantity

1/q
Inf "h-'.1 P + using the Lipschitz continuity of G, and the identity
’
-,
q q*
ab < ., _b;: .

In addition, since the dissipation potential is continuously differentiable for
Norton materials, the strong convergence of (vh) implies in this case the strong

* NxN
convergence of the discrete stresses (Oh) towards (o) 1in (Lp () x . o
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3 AUGMENTED LAGRANGIANS

3.1 Formulation of the discrete problems as saddle-point problems.

In view of the numerical solution of the approximate viscous flow problem (2.10) by
augmented lagrangian techniques, we must first reformulate (2.10) under a slightly
different form.

To do that, observe that, if we replace l.lo by its H;(ﬂ) projection over the space
of continuous functions whose restriction to each subelement Q: is a first degree

polynomial, we can rewrite (2.10) as
(3.1) Minimize F(D(w)) + G(w,) over K, with

T
(3.2) D) =Y4%w + Y,

F:
(3.3)
Flg) = | v:(q‘) ax,
Q
G: ﬁ‘ > R,

(3.4)

Giw ) -~ t"hd:-} gow da,

by r,

%, - o,

(3.5) 0+ XN, n'h’ -n, Dhl e (pomi))""“, vi=1, 2 vt -1, N}
Q
}

If we follow the methodology of FORTIN~GLOWINSKI [1982]), we can then replace (3.1) by

its augmented lagrangian formulation

Find a saddle-point th,l!h), Xh} of the augmented lagrangian

R 2
(3.6) LR('h'Gh'uh) - F(Gh) +G(Ih) + E'D('h) - Gh'o,z - < L D('h) - Gh >

over the set (K.h x Yh) x Yh,

-~




where R is any positive number and where <¢,+«> denotes the classical szﬂ) scalar
product over (Lz(ﬂ))NXN- Obgerve that (3.6) imposes the incompressibility condition on
the continuous variable -, ('h must belong to the set Xy of approximately
incompressible velocity fields) but minimizes the nonlinear functional F(+) with respect
to the piecewise constant variable Gh' In other words, there is a splitting of the
difficulties of our problem (nonlinearity and incompressibility) between these two

varijables.

THEOREM 3.1: The augmented lagrangian problem (3.6) and the approximate

incompressible viscous flow problem (2.10) are equivalent: to any solution vy of

(2.10), one can associate a solution {{vh,lh), Xh} of (3.6) and conversely. Moreover,

B, 1is equal to D(w,) and there exists an approximate pressure field P, in R, such

that the approximate stress tensor field (-Xh ol N 1d) satisfies the discrete equilibrium

equations and constitutive laws (2.11).

Proof: First, let w be a solution of (2.10) and let ch and Py be the

asgociated discrete stress and pressure fields. From (2.11), Theorem 2.1, we have

e * a *
}9 (0, + p,1d)G dax < Jn {01"}\*%’ - 01(!}‘)} ax, VG ey,

(3.7)
J o, *D(w )ax = I frw ax + | g'w, da, Vv ev.
Q Q r
2
In particular, taking %, as "h"h) where = is any element of K, , and since, by

construction of Kh, div (‘h"h) is equal to zero in the dual of Ppr we have

Jn (oh+ph Id)'D(zh-vh)dx = )Q f-(zh-vh)dx + Jr' g*lx -v,) da, V& €K.
2

-22-
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Substracting this to the first inequality of (3.7) yields l
. . R ) 2
-0 - < -y - -R -
Lpl(¥, B r = O "R I8) < L(x R +G,-0 - 1A) -5 ID(g) - R -Gl ,
for any {'*h ,q‘) in KX, x Y. Since in addition

LR(Vh"h"%'%m’ - LR('h"h’"h) = J(vh), v 2N e Yh,

({vh'ih}'-oh-l’hm} is indeed a saddle-point of the augmented lagrangian Lp(e,+,*)
over (K, x ¥} x Y.
Conversely, let {{vh,lh}, Xh) be a solution of the augmented lagrangian problem "
(3.6). Then, we must have
Ll By dy) 2 Ll Beny), Vo, @Yy
which can only hold if we have
(3.8) B, = Dlv,) . !

Taking (3.8) into account, the second saddla-point inequality yields

- (3-9) LR(vh,D(vh),\h) < LR(%I%IX”)I V('h'q:) e ﬁ_‘ x Yh- !

In particular, by taking G, as D(w.), (3.9) implies

S vy — -

J(vh) < J('h) , ¥ - e Kh.

and v, 1is indeed a solution of the original minimization problem (2.10).

To further characterize any solution {{vh,!h}. Xh} of the augmented lagrangian

problem (3.6), we again use (3.8) and (3.9). From (3.8), H, 18 necessarily equal to

s D(vh). On the other hand, introducing the space X, defined in (2.13), (3.9) can be

rewritten as

-23-




LRtwy, DIV YA ) < Ln"h*"h"’"h’ +Q. ), @ {vh,ch} ex xv.,

Equivalently, if we consider LRlvh+"D('h)+.' Ah) as a convex function of the pair
{‘h’Gh} on the space X, x Y., we can write (3.9) as
{0,0} e 3 Lp (v +0,D(v )+0,}, ) in )5: x v; .
A direct calculation characterizes the elements of this subgradient as the pairs
(gh,uh} of X x Y, such that

. § = . - . -
J D(g )*D(w )dx | A, *D(w )ax jfvhdx |

2 Q Q Fz

g‘I%dA, L 4 'h e xh,

(3.10)

e e
]Q W, G ax < JQ Wit ) + q) - D (D(w)) + 1 -qlax, ¥ G ev,.

Setting 9%, and uh to zero in (3.10), we simply obtain the variational system (1.9)-

(1.11) with (0 ) = <) . As seen in the proof of Theorem 2.1, this in turn implies

°s’n h
(2.11) with % = -Xh - P, Id, and our proof is complete. ]

REMARK 3.1: 1In order to accelerate the convergence of the algorithm to be used for
the solution of the augmented lagrangian problem (3.6), it is usually better to replace,
in the definition of the augmented lagrangian, the classical LZ(Q) scalar product by an
equivalent weighted scalar product of the type

(C,D>=Jﬂr(x)c'|)dx.
Here r{x) 1is a strictly positive scalar function of LQ(Q), bounded away from zero,

which can be arbitrarily chosen. Proper choices for this function will be discussed

later. With this new scalar product, LR(',-,') becomes

iy eGriyy) = J DG ax - [ g ax - g da

2

R 2
+3 Jn r(x)lGh-D(vh)l ax - JQ r(x)y, +(D(w ) - G ldx . a

=24~
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3.2 Numerical algorithm The fundamental interest of the eguivalent augmented

lagrangian formulation (3.6) is the existence of a very cheap and simple algorithm for its
numerical solution. This algorithm combines an Uzawa algorithm for the solution of the

saddle-point problem and a block~relaxation technique for the solution of the minimization

problems associated to the primal variable {Hh, qa}. Dropping the subscript h from

all variables for simplicity, this algorithm is

-1
(3.1 et (° B '} be given in ¥, x K,

-1
Then, for n > 0, H' ana A" being known, we compute {v ,H") in K xv

by block-relation, i.e. by setting

- T,

and by computing sequentially v and M by solving

n n

(3.12) [ (v,

n n n
(% Beoged ) S LwR_ A, Veex,

n

n n n n
(3.13) Lptw . B, A € LR(vk,c,x ), VG e Y

once {v 8"} is known, the lLagrange multiplier ) is updated by

(3180 2™ oo™ L rpv™y - A

Many variants exist for this algorithm and are described for example in FORTIN-GLOWINSKI
{1982]. Usually, the block-relaxation (i.e. the loop (3.12)~(3.13) on k) is only carried
out for one to five iterations.

Observe that the above algorithm only considers one variable at a time and therefore

takes full advantage of the splitting of the difficulties achieved by the saddle-point
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formulation (3.6). First, in (3.12), the matrix fiela !“k_1 and the multiplier 2" are
supposed to be known, and the algorithm minimizes the augmented lagrangian LR with
respect to the velocity field w in K . As function of the velocity field, LR is
quadratic and corresponds to the energy dissipated by an incompressible Stokesian fluiagd,
flowing viscously under the action of the external loads ({f,q}. In other words, (3.12)

is a classical linear stationary Stokes problem, discretized by mixed finite element

methods. Many numerical techniques are available for its solution, and we refer to
TAYLOR-HOOD ({1973], GIRAULT-RAVIART ([1979] or GLOWINSKI-PIRONNEAU [1979) for the practical
description of such techniques. In our numerical experiments, we will choose a conjugate
gradient method operating on the hydrostatic pressure space P, » which only requires the
inversion of sparse, fixed, positive definite, symmetric matrices and therefore only uses
little computer running time and memory core (PORTIN-GLOWINSKI [1982 p57]). In any case,
most finite element codes now propose efficient subroutines for the solution of the Stokes
problem, which can be blindly used for solving (3.12).

Then, the algorithm supposes the velocity field vﬁ and the multiplier A" given,
and in (3.13) minimizes L, with respect to the matrix field G in Y,. The
incompressibility condition and the spatial derivatives of G are not involved in (3.13):
this is an unconstrained local convex minimization problem whose numerical solution,
described in details in the next section, reduces to the solution in parallel of
independent convex minimization problems set on IF(N-Z or 3).

Finally, after a few resolutions of (3.12) and (3.13), the algorithm updates the
multiplier A" by the explicit formula (3.14), so that the constraint D(v") = B can be

better satisfied by the solution of (3.12)-(3.13), and then returns to (3.12) and (3.13).

3.3 Convergence of the algorithm (3.11)-(3.14). We now study the convergence

properties of the above Uzawa algorithm, considering the basic particular case where only

one iteration of block-relaxation is done at each step of the Uzawa algorithm. 1In our

-26~
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study, it will be most important to work on Yh with the precise weighted L’(m norm

which is used in the construction of the augmented lagrangian LR (see Remark 3.1).
Then, if we denote by {v,R,)} the solution of the augmented lagrangian problem
(3.6), by A" the multiplier calculated in (3.14), by #  the matrix field !l',‘

calculated in (3.13) and by v  the vector field v",' calculated in (3.12), we can prove

CONVERGENCE THEOREM 3.2: Under the assumption of the existence 'l‘hoor._n 1.1 (01

convex, continuous, coercive), the sequence (0"} s bounded in Y),. the difference

(D(¥") - B") converges to zero in Yy, and_the quantity F(o™) + G(v™) converges towards

the dissipated enerqgy rate J(v). If in addition (2.16) is satisfied together with the

first line of (2.17) (D,(‘) uniformly convex on the bounded sets of Y,), then the

sequence (+",®'} converges towards {v,®} atrongly in K, x Y,. Finally, {f the
internal dissipation potential D,(') is continuously differentiable, and if its gradient

is invertible with a coercive and Lipschitz continuous inverse, that is if 01(')

satisfies

2

2
Jq T ‘G1 - czf ax < cj,

2
fnr(x) f301(61) - 301(c2)l ax,
(3. 15)

2
r(x) [30,(6,) - 3D,(6,)| “ax,

Jn (30,(6,) - 3D,(6,))*(€,G,)ax > C In

for any G1 and G2 ﬂ Yh' then we can prove that the sequence {vn,lln,xn} converges

linearly towards {v,E,A} in K, x Y, x Y, with an asymptotic constant bounded by

C.. = (1=2RC_,/(14C 3)2)1/2
15 14 13 *

Proof: Since {v,H,\} is a solution of the saddle-point problem (3.6), the

following extremality relation is satisfied:

-27-
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(3.16)  F(EY) + Gv™) + <A, B - p(v') > > Fm + Glw).
Moreover, by construction, the solutions v? and H" of (3.12) and (3.13) satisfy the
extremality relations

1

Glw) = G(¥) + < RB(V) - B ) -2, Dlwv") > >0, vweK,

FIG) - HE') +<R(H=Dv' ) +)", a-H >>0,vGe Y.

respactively. By addition, setting w=v, and G = B, ve get:

(3.17)  F(m) + Glv) - RID(W") -~ 12 - R < 6" = &, Diw=v") >
+ A", v -8 > FaEM + GvY .

Aaing (3.17) to (3.16), we then obtain

-1
(3.18) - RiID(v") - 12 - R < B - A, Dlvw") > + < A", Dv") - B > > 0.

n+1

Combining (3.18) with the construction {3.14) of X finally yields

+ -
2 ™' a2 2w - M2 e 2% !

(3.19) n" - - &, Dvv) > .

On the other hand, using (3.13) and (3.14) at iteration (n-1), we can estimate the
right=hand side of (3.19) by standard algebraic manipulations. Exactly as in FORTIN~
GLOWINSKI [1982 p117, equations (5.17) to (5.24)], setting F, =0, o =R and inverting

the sign of ), we have the following estimate
282 < pivi=v), B - ' s Rl miar -m?) + jA” - W2,

which, combined with (3.19), gives
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(3.200 (" - 20 e ?) - (™ a2l -m?) >

v - 12+ A - N2,

~1
The positive sequence nt - “2 + Rzlln - ll2 is therefore decreasing and thus
converges to a limit. This implies that the right-hand side of (3.20) must converge to

zero and we finally obtain

D" - a2+ 22 - m? 14 boundea,
m V) - B2 - o,
ne4e

lim 1P -0 a0,

n+ 4o
These convergence results, used back in (3.16) and (3.17) obviously imply the convergence
of F(H') + Gv") towards F(E) + G(w).

Now, if 01(') is uniformly convex on the bounded sets of Y),,» the convergence of
the energy rate and the boundedness of H" imply the convergence of the arguments H"
and V" respectively towards H and wv.

Finally, since, from the Xorn's inequality, ITI is an isomorphism from K, onto its
dual, we can prove the linear convergence of the sequence (v", E", \"} by applying a
result of LIONS-MERCIER (1979, Prop. 4, p 970] which will be applicable here as scon as
(3.15) is satisfied( see FORTIN-GLOWINSKI [1982, p 300) for more details). a
RIMARK 3.1: Condition (3.15) is satisfied at least locally for Norton materials. It

is not satisfied in the general case, but linear convergence of the sequence (v", Iln}

can still be observed numerically in almost any case. a

REMARK 3.2: The asymptotic constant C‘IS appears numerically not to be optimal.

Nevertheless, its expression as a function of C13 and C“ will indicate the right
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strateqgy to follow for the choice of the parameter R and of the weight r(x). Since

Ci3 and Cia highly depend on the weight r(x) used in the definition of the augmented
lagrangian LR' C15 is a function of R and of r. The right strategy for the choice
of R and of r now consists in trying to keep Cyg as small as poss ble. By

choosing R close to 1/C‘3, Cis becomes approximately equal to Cye = (1-C1‘/2C‘3)v2
By taking the weight r(x) so that the products

(3.21) 19(301(11) - 3D,(m,)) * (6,-G,)ax and (3.22) | r(x)(€,~G,)* (W -B,)dx

Q
remain close to each other when H, and l2 are in the neighborhood of 8, the ratio

C,‘/C13 gets close to 1 and C15 reaches the value 1//- . The final strateqy for

choosing R and r is therefore:
(1) choose r(x) by matching (3.21) and (3.22);
(1i) take R close to 1/C13, which will usually be close to 1 if r(+) is

properly chosen.

REMARK 3.3: If [y is quadratic and if we have equality between (3.21) and (3.22),
then for R = 1, ¥ converges in 2 iterations and H" converges linearly with
asymptotic constant .5 (FORTIN-GLOWINSKI (1982, p 119}). 1In other cases, with proper
choices of R and of r, we usually observe linear convergence of (vn,d1} with an

asymptotic constant around .7. a

REMARK 3.4: Linear convergence compares unfavorably to the quadratic convergence
expected for conjugate gradient or for Newton algorithms. But Newton method requires i

01 to be twice differentiable, the factorization of quite a few finite element matrices,

and its convergence rate can be very slow for weakly convex dissipation potentials. In
general, it is not a good method for solving (2.10). On the other hand, a conjugate

gradient method with preconditioning, of the type
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* take ‘o in Khi

* solve <« D(qo), Diw) > = < J'(-o), w)> ,Vwe Kh, \
* set ﬁo -9 .
* for n = 0, until satisfied do

o“ = Arg Min J(un-pln),

%41 "% T Pn T

solve < D(qn”), Dw) > = J'(-n”),v > , Vwe 5‘,

Yo T < Dlg ). Bl ) >/ < Dig). g >,

Faer " Tner T Vn Ey

end loop on n ;

where <+, *> is an adequate weighted Lz(ﬂ) scalar product on Yh' will only be

efficient if 01(0) is differentiable, if the scalar product on Y, is correctly chosen

and if a very efficient Stokes solver is available for computing 9n+qc If this is the
case, the conjugate gradient method will be twice as fast as the Uzawa algorithm (3.11)-
(3.14). If this is not the case, Algorithm (3.11)-(3.14) appears to be one of the only

reasonable numerical method for solving (2.10).
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4. THE PROBLEMS IN DEFORMATION RATES.

4.1 The local problems. Problem (3.13) appears as one step of the algorithm

proposed herein for the numerical solution of the viscous flow problems in quasistatic
viscoplasticity, once these problems have been approximated by simplicial finite elements

of order one and decomposed under an augmented lagrangian form. Recall that here, this

problem consists in

(3.13) Minimizing LR(v,°,X) over ¥,

with
L(v,GA) =] DS(@) ax - | fevdx =~ | gev da
r 1
Q a r
2
+ 2 r(x) |6 (Vet¥vT) /2| 2ax - | rmre[(TwIvT)/2 - 6] ax,
a a

i, NxN

NxN
Y, =(>:as>r_ , n| e (P (), ¥ =1, N, ovr -1, N},

i
Q
L
and that it is the only nonstandard step in this algorithm, the other steps consisting of
linear Stokes problems and explicit variables updating, respectively.
Since all the elements of Y, are matrix fields which are constant on each 9:, and
since the functional LR does not involve any distributional derivative of G, Problem

(3.13) can equivalently be written as

(4.1) vi=1, 2, ve=1, N, Minimize J:(G) over ®WXN

a'
with
(4.2) Ji(c) - e+ 5 [6]2 - 16+ (R(VWIV)/2 - x)l .
Q
| X

Here, we are simply using the fact that the minimum value of the sum of independent terms

is equal to the sum of the minimum value of each term. Then, Problem (3.13) reduces to
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the solution in parallel of thZN local independent convex minimization problems set

on IN*: (N = 2 or 3).

Using a general purpose minimization algorithm for the solution of each local problem
(4.1) is not adviseable here for two main reasons:

(1) such an algorithm is very difficult to implement because it must be able to
handle general nondifferentiable convex dissipation potentials Dﬂ

(141) such an algorithm is usually expensive in computer running time.
An easier and more efficient strategy consists in adapting each time the minimization
algorithm to the specific class of potentials D1 which is under consideration. Doing
that, we have most of the times been able to reduce each local problem (4.1) to a one-
dimensional convex minimization problem set on R,. The remainder of this report will
describe the derivation of such efficient numerical techniques in the case of Norton
materials, of Bingham materials, and of Tresca type materials in plane stresses,
respectively. But before, we will derive a very useful simplification of the local

problem (4.1).

4.2 Reduction of the local problems. We begin by recalling several well-known

results of matrix theory, which will enable us to reduce the local problems (4.1)

which are set on nﬂ”ﬁ to local convex minimjigzgation problems set on l", (N = 2or ).

Lemma 4.1 (VON NEUMANN[1937]). lat A and B be two matrices in RN with

eee > 2 cer > > 0. i
singular values a, > a, > a >0 and 81 82 En Then |
s i

N {1

Tr(AB) < ] aB . !
oy 41 |

{

|
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Lemma 4.2. let A and B be two symmetric matrices in R”:" with eigenvalues

b 3 D ese D ? P o D B ,
A'l }\2 AN and B1 82 N Then

N
. a < .
A+ B=Tr (AB) 131 Ai 13i

Proof: The result follows from the decomposition

Tr (A B) = 'l‘r[(l-AN Id)[’-BN d)] + ANT:'(I) + BN'I‘r(l) - N ANBN

and from the application of lemma 4.1 to the first term of the right-hand side. a

Lemma 4.3 let DY be a diagonal matrix with diagonal terms D, > D, > =es > D

and A be a symmetric matrix with eigenvalues A1 > A2 P eee D AN. Then

N
d
max [Tr(P'p’ P Al = (90 O'Al = ) DA,
PPT=1d i=1
where Q is an orthogonal matrix which diagonalizes A with
T
(Q AQ)ii - Ai .
oof: For P given, let B be the matrix defined by
T 4
B=PD P
and whose eigenvalues are Dj. Then, from Lemma 4.2, we have:
T a N
] Tr[PDPA]-'h‘(lB)(lAD.
171
3 i=1
On the other hand, we also have
.
da T T 47T a T N
Tr(QD QA] =Tr (QODQAQ) = Tr [DQ AQ)} = ) AiDi "
=1
and the result follows. (= ]

We are now ready to prove the main result of this section, which reduces the local

problems to convex minimization problems set on RN(N = 2 or 3).




THEOREM 4.1: 1If the internal dissipation potential Q(-) is convex and isotropic,

then the solution H of the local problems (4.1) is given by

a & o
|Qi 9 Ry O
2
(4.3)
i R T
A, =r{ = (Vv + %) =2}, |
L 2 ‘ i
2 .

RNxN

where 91 is an orthogonal matrix of whose columns are normed eigenvectors of the

matrix A; (the first column corresponding to the biggest eigenvalur and so on) and

d
where ﬂt is the diagonal matrix of Y solution of

N
2 d N
1< - ) AP )u} on D .

(4.4) Minimize 191(nd) + §£ |Dd
i=1

Above D' denotes the space of diagonal matrices of F*N  ana (A{) denotes the set of

i
> 2 see D .
eigenvalues of Az (A, A2 AN)

N
Proof. Firgt obhgerve that any matrix G of RN: can be decomposed into

T
(4.5) G =P Dd P,

where P and nﬂ are two independent matrices of anN, P being orthogonal (P Pl o=
I4) and uﬁ being the diagonal matrix whose diagonal elements are the eigenvalues of

G. Then, if we denote by oN (respectively DN) the space of orthogonal (respectively

diagonal) matrices of RNXN, the local problem (4.1) becomes

(4.6) v i, v2, Mininize J,(P,0%) over O x oV, 3
1
with
T 4
et = e = 0%Tom + e ? - (270 - Al
L L 1 2 L ’
But since D?(') and |+| are isotropic (D:(PTDGP) = D:(Dd)), we Can rewrite Jz as ’

Lo ] T 4 i
J:(P,Dd) = of(nd) + %5 1% - (¢’ 0'p - A;.
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d
Now, let Hl be the solution of (4.4) (unique since the function to minimize is

strictly convex) and let Py be the permutation matrix which reorders the diagonal ;

d
elements of Hl in the decreasing order. Since A1 > A2 > ene AN and since Di(-) is

isotropic, we have

N
e T d rR (T d 2 T d e _d Rr dy2 d
P - < = -
R R R lag 1% - ) A,

i=1

d . T d d :
But Hz is the only solution of (4.4), thus PH H2 PH has to be equal to Hg’ which
d
means that the diagonal elements of Hl are already placed in a decreasing order. From

Lemma 4.3, this implies

d d T
(4.7) Ai(nl)i = (9, H, Ql) L

1

Il e~ 2

i

Moreover, since Bl is solution of (4.4), we also have

N N
e d rR_d d e 4 Rr , d/2 _ d N
py(E) + S[H ] - i‘zﬂ A (H), < DY) + 35 7] i£1 AD, VD eD,

and in particular, if PD is the permutation matrix reordering Dd

N
e d R .4 d e Td Rr | T d. |2 T 4 a
Dy (H) + o= B[ - .%1 A(H)), < DB DR + = [RD N (PDP ) A, VD

Now, from (4.7), Lemma 4.3, and the isotropy of D?(-), this implies

e d Rr d, 2 d T i e d
Dy + o= [H 7 - (00 ¢ (&) < DB + 3

Rr ] d|2 _
2

D (PTDdP) . (Ali) ’

for any Ud in o¥ and any P in oV. so, finally, we get
i N N

d 1 q d
Jg (Q,H)) € J,(P,D) vip,D} , in O x OO .
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D e T S OO o oot marm A0

d
In other words, {Ql' 59) is a solution of (4.6). By construction, this implies
that H, given by (4.3), is a solutinn of the original local problems (4.1). Our proof is
therefore complete because, since Ji is strictly convex, such a solution is unique. o
REMARK 4.1. It is well known that the internal dissipation potential is isotropic
and convex for all standard isotropic viscoplastic solids and all standard viscoplastic

fluids. Theorem 4.1 can therefore be applied in most practical situations. a

REMARK 4.2: In Theorem 4.1, the relation (4.3) simply expresses that H 5 and A;

——— Q 2
have the same eigenvectors. In esagence, this is the discrete equivalent of thelwell known
result which states that principal stresses and principal strains are parallel in

isotropic elasticity or visoplasticity. o

S. NORTON VISCOPLASTICITY

5.1 The local problems. Norton viscoplasticity corresponds to one of the easiest

possible case where the internal dissipation potential 01(') ie given by

N
[ L

1 - 1 -
5.1) == (/2)Pl6|P = 2 (2P
{ 0,(6) = = (x/2) l6l S (k/2) (M-1 19

Each local minimization problem (4.1) now becomes

(5.2) Minimize Ji(c) over n:’m with

i = /3 PlalP , R o112 _ At
I, (8 qulz) lelP + 2 |G) A ¢ G,
i R T
A = 3 3 (Twiv’) - J\}‘n1 .
2
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whose solution is given by

THEOREM 5.1: The solution n; of the local minimization problem (5.2) is of the
form

i i i
(5.3) & = A x/llll,

where x 1is the solution of the cne~dimensional convex minimization problem

{5.4) Minimize (£ (xv2)P Yp + §£ y2 - }Ai]y} over R_.

i i i NxN
Proof: Suppose that the norm |E£‘ of the minimizer Bi of Jl over R s is
i i NxN . i
known. Then, ut minimizing J2 over R4 will in particular minimize Jl(') over
i
the set of matrices of RN:N with fixed norm [Hzl. But this last minimization problem

i NxN
reduces to the maximization of the scalar product A,. G over a sphere of R : and its

2

solution is given by

i i1 i
(5.3) B, = A, lnz]/h\!].

By plugging (5.3) into the expression of Jt, the minimization of J: over RN:N

i
finally reduces to finding the unknown norm IH

1' which has to mininimize J:(A:y/lh;|)

over the set R, of positive numbers. This last problem is precisely (5.4) and our proof

is complete. Q

In practice, the numerical solution of each local problem (5.2) uses Theorem 5.1 and

is achieved by:

i
a) the computation of the solution In of the one dimensional convex minimization

o

problem (5.4)

i
b) the computation of H

e by the explicit formula (5.3).




The numerical solution of (5.4) can be achieved for example by using the one dimensional

Newton algorithm below

data:x® = solution of (4.4) at previous iteration;
initialisation: x <« x ;

repeat @ j o«3+ 1
g « wWDP P 4 R - IAl + Ail/zt
test : if |g| below tolerance exit;
ag + (p=-1) (WP xP"2 4 rr)y

-30 -1
x <+ max (10 . X - (4g9) q);

exit lﬂll = X.

Putting together all the steps which permit the numerical solution of the decomposed
approximated viscous flow problem (3.6) by the algorithm (3.11)-(3.14), we finally obtain

the simple and easy to code computer flow chart of Figure 5.1.
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INPUTS:
TRIANGULATION OF Q,
External loads {f,q},

Boundary condition &o'

Dissipation potential U,(x,G)

|

CHOICE OF R AND r(x).

Assembling and factorization of the finite

element matrices needed for solving (3.12)

INITIALIZATION OF H AND A J

SOLUTION OF (3.12):

Call of a Stokes solver which computes v in K-

SOLUTION OF (3.13):

computation of Ai

, by (5.2),

solution of (5.4) by Newton,

computation of ni

N by (5.3),

[ UPDATING OF )\ BY (3.14)

_d

I OUTPUTS

Fig. 5.1: Computer flow chart for solving Norton viscous flow problems




5.2 Numerical results. The first numerical test conaiders a horizontal cylindrical

hose, with external radius 1., which is glued on a rigid core on its internal face, and
which is subjected to its own weight. This situation may represent for example the
cooling process of the plastic coating of an electrical wire, for which manufacturers must
verify that the deformations undergone by the coating during cooling remain small. In &
first approximation, strains are assumed to remain plane, and the coating is supposed to
be made of an homogeneous Norton material with k = .47, p = 1.4, and volumic weight .l.
Por symmetry reasons, only the right half of the section is considered; 225 nodes are
used to approximate the velocity, 65 nodes are used for the pressure. Only one block~
relaxation iteration is done at each Uzawa step and after 60 iterations of the Uzawa

7 (in fact, 30

algorithm, the error " - D(vn)l has decreased by a factor of 10~
iterations were more than sufficient to obtain a very accurate velocity field). The total
CPU time was approximatively 3mn on the VAX 780. Figure 5.2 represents the computed
velocity field (magnified 7 times). The shape of the hose after one second of flow (the
deformations being multiplied by 40) is indicated on Figure 5.3, together with the mesh
used for the pressgure.

In the entire computation, the parameter PR was equal to 1. The weight r(x) was
equal to 1 Aduring the first 20 iterations, then updated by the formula r(x) = ln20lp-2
(see Remark 3.2 for justification), kept that way until iteration 40 where it was

finally updated by r(x) = ‘-4o|p-2.

6. BINGHAM VISCOPLASTICITY.

6.1 The local problems. Ringham viscoplaaticity corresponds to an internal

digsipation potential D,(-) of the type
(6.1) 0,6 = ulel? + /2 gl

fach local minimization problem (4.1) now becomes

~41-
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N

(6.2) Minimize {(;B + u)lc|2 + o2 ]Gl - At « 6l over RN:

whose solution Ht is simply given by the explicit formula ii

(6.3) ni = Max {0,172 g/|Ai|} A; /(xR+2u) .

In practice, the whole program solving the flow problem (3.6) for Bingham fluids
8till corresponds to the computer flow chart of Fig. 5.1, each local problem being now

solved by (6.3). !

6.2 Numerical result. We consider herein a Bingham fluid flowing viscously through

a cavity. Fluid enters at the upper right of the cavity and exits at the upper left, with
an imposed velocity of 3.0. No slip boundary conditions are imposed elsewhere.
Dimensions of the cavity are 1. for the main square and .1 for the entrance and exit

tubes. The fluid viscosity u is assumed to be .01 and velocities are supposed to remain

plane.

The finite element mesh uses 419 nodes for velocities and 166 nodes for pressures.
One block-relaxation is done at each Uzawa step and we take R = .1 and r(x) = 1,0.
Figures 6.1 and 6.2 represent velocity obtained after 40 iterations, the plasticity
threshold q/i being respectively of u and of 10u. As expected, the domain where the
fluid is at rest is bigger in the latter case. The computation time for each case was ’H

approximatively 10 mn on the VAX 780.

7. TRESCA TYPE VISCOPLASTICITY IN PLANE STRESSES.

7.1 The local problems. In plane stresses, the body under consideration is supposed

to be very thin along x5 and is loaded in its plane so that, in a first approximation,

all stresses along x5 are equal to zero. It is then possible to eliminate the Xq

direction and to reduce our original problem to a two-dimensional one whose domain will be

the middle plane section of the body and whose unknowns will be the in~plane velocities.




These inplane velocities need no longer be incompressible since any reduction of the plane

gection can be compensated by a corresponding thickening of the body. Therefore, in i
Sections 2 and 3, xh is everywhere replaced by v% + &o and in particular (3.12) ’

becomes

(+,G,X) over Vv + a B

Minimize h A

Lr
which is a classical linear elasticity problem with a zero first Lam; coefficient. As for
(3.13), its formulation is unchanged and it still reduces to the local problem (4.1).

In plane stresses, a Tresca type viscoplastic material corresponds to the internal
dissipation potential
(7.1) D,(6 -;} (/2)P (Max(|G1|,|G2|,|G’~erl))p
where G, and G2 are the eigenvalues of the 2x2 symmetric matrix G. This potential
is a gsymmetric convex function of the eigenvalues of G, therefore is isotropic and convex
(HILL{1970] }. Moreover it satisfies the inequalities (1.6) for coerciveness and
continuity. On the other hand, this potential is not strictly convex and not
differentiable, which clearly appears in Fig. 7.1, where the level lines of 01 are
drawn.

The viscous flow problem associated to this potential (7.1) can still be solved by
the Uzawa algorithm (3.11)-(3.14); (3.12) is a linear elasticity problem and (3.13)

reduces to local problems whose solution H 18 given by (see Theorem 4.1).

r - T
Blni 2,8, 2,
L |
H, o
i R T 4 1
“z""z“v"v')"”i'“z’[o g 1o
q, 2
(7.2)< '

2 )
3 (HH)) €3 (DD, ¥ “’1"’2} e R, |

IR 2 2
2 (D1 + DZ) - A1 D1 - Az 02.

1 /3P P
3 (D)D) = < (k/2) [max {|p,1,|p,|, D40, [}]7 +

\




Above, as before, A, and A, (A1>A2) denote the eigenvalues of A1

. and Ql is an

orthogonal transformation matrix which diagonalizes A: and orders the diagonal elements
of the resulting matrix in a decreasing order.

Thus, for Tresca type viscoplasticity in plane stresses, the numerical solution of

each local problem (4.1) reduces to

1 12

i i R T
Step 1 compute Al = by Al = r(-z- (YwsVv ) - X)llni ;
3

Step 2 compute the eigenvalues A, and A, by

R, = [ (a, )+ F] 2 172,
1 122 (A Ry, + 4 Ay,

A= [ (a4 =7 2 3 172
2 117022 (A 7Ry + 4Rl

Step 3 compute l-l1 anad l'l2 by

. 2
JH,,Hy) < 3D .0, ¥ {01,02) e R;

d
Step 4: Compute H, = Ql H!. QP. EX

()

LN
“‘:)22 = (H1-Hz)(A22-A1)/(A1-A2) + H

= (H1-H2) (A11-A2)/(A1-}\2) + Hz’
1'
(Ili) = (H,-H_ ) A / (A_-A))
2712~ T 2" Tz 1027
Consequently, the computer flow chart associated to the Uzawa algorithm (3.11)-(3.14)
for the numerical solution of viscous flow problems in Tresca type viscoplasticity in

plane stresses is the one described in Figure 5.1, but with the solution of the local

problems being achieved by the four steps above. Among these steps, only one, Step 3, is

not explicit and its solution is described in the next paragraph.




b 7.2 Solution of Step 3. By definition of the subgradient, Step 3 is equivalent to

{7.3) {0,0} e 3j(H1,H2)- .
Therefore, to solve Step 3, we first begin by computing the subgradient of 3j(+,*) over
lz. Since we know from Theorem 4.1 that, at the golution of (7.3), Hy 18 greater or
equal to H,, we restrict ourselves to the half plane D1 > Dz. Then, a direct

calculation givea:

Case 1: if {D1,Dz) ex, = {{x,y} e Rz, x>y, y >0}, then:

=1 p P, ER 2,2 | -
3(0,,D,) P(xﬁ) (D+D )P + 2= (DI#DY) = A,D, ~ A D,

-al}.

- - P p~1
33(p.Dy) = {(u,0,), u (kv2) (D +D,) + R D, .

Case 2: if {D,,Dz} ex, = {{x,y} e R2, x>0, y =0}, thent

- p-! =P P
33(D,,0,) = {(u,,u,), u, kfi(u,) + TR D, = Ay,= Ay € u, < (2P (D) Al

Cage 3: if {D,,Dz} ek, = {{x,y} e nz, x> -y, y < 0}, then

3

1 p , IR .2
30D, = = (xv2 D,)Y + 3- (DJ#D3) - A D, - AD,,

- Pp P! -
33(p,,0,) = {tu ,u,), v, /)P ) §,,+ D -l

- /T1Pp 1P & IR p2 _
{jw,.oz) P(k-’i) 0P+ o2 - ap,

D,}! ex -({x,y}enz,x--y,y<o), then

Case 4: if {(p,,D, "

. P, IR 52,2 -
{j(n1,nz) p(k-"inz) + 5 (Dy#D3) - AD, - AD,,

-1
33(D,,D,) = {(u ,u,), rRD - A, € u € (x/2)P(0 )P"" + rrO, - A

1 1 1 ’

- A - (k)P (-p P! -
rRD, ~ A, (kv'2) (-D,) < u, < rRD, A2) .




v

Figure 7.1: level lines of 01. (p=2)

~50~




2

Figure 7.2: Partition of the half plane D1 2 132 .
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Case 5: if (b ,b)} ex, = {{xy)e B, -y > x > 0}, then

A D_,

(s = (wHPrp 3P + B 52,02, -
3(01,02) b (k¥2)5( Dz) + 2 (D1+Dz) A1D1 20,

. - , = —(k/2YP(p P! - .
33(01,02) ((u, u), (k/2)7(-D ) 512 * TR D, Ai}

2
Case 6: if {o,,nz} e K = {{x,y} e R", x = 0, y < 0}, then

1 = rR 2
: = ~(k/2)P(-p )P + E -
J(Dt'Dz) p(k 2)5( 02) 2 02 Aznzl

34 - —tx/2)P(—p yP-_ < - e ~(x/321P(-p P! -
i(p,.D,) {(u1,u2), (xV/2)%¢( D,) A< u <A, (x/2)°( )" '+ rRD, Az}.

Case 7: if {p,,0,} e K, = {{x,y} e R, 0> x>y), then

= X/ Pep -p 1P + BB (p2,52y _ -
j(D1,Dz) p(k 2)%( D1 D2) > (D1+D2) A1D1 A2D2,

= = ~(k¢2)P(-p —p P! -
3j(D1,D2) ((u1,u2), u, (k¥ 2)°( D,-D,) + IR D, Ai}.

Cbserve that the sets K; form a partition of the half plane D1 > Dz- Then, by

definition of (7.3) and since its solution {H1,H2} belongs to this halfplane (Theorem

4.1), we have:
7

(7.4) {H ,H} = 12' {{x ,y;} e x., {0,0} e 3j(x,,y,)}.
Therefore the solution of (7.3) is simply the solution of one of the local subproblems
(the one which admits a solution for the given data of A1 and Az)

{o,0} e 3jtx ,y ), (x.y,} €K

T
Then, once that for each subproblem the conditions which guarantee the existence of
solutions are explicited and that the algebraic expressions of these solutions are
computed, {H,,Hz} is simply obtained by:

(i) finding which subproblem has a solution for the given values of A, and Ay, by

checking successively the admissibility requirements (conditions for existence of

solutions) of each subproblem;




(11) setting {Hl'Hz} equal to the corresponding solution.

Here, these computations are easy to carry out since we have just computed the algebraic

expressions of 3j(+,*) on each subset Ki. For example, for i = 1, we have

local subproblem:

P -
/2 x+y)P ' 4 rRx - A =0,

- -1
(/2P (x+y)P”7 4 rry - A, =0,

x>y > 0;

admissibility requirement (necessary and sufficient condition for existence of

solutions):

- p-1
A, > [(A1 Az)/rR]

solution

x, = (z+(A1-A2)/rR)/2, Y, = (z-(A1-A2)/rR)/2.

2 /5P P  XR 2 _
z minimizes {p (k/2)Fe" + >t (A1+A2)t) gver R .




{ All computations done, the solution {H1.H2} of Step 3 is finally given by:

H1 = [z*(h,~h2)/tkl/2,

for A, > ((A1-A2)/rn)p-1 Hy = [z=(A;=A)/rRI/2,

z minimizes (z(kv’E)ptp+ B'l'-t'.z-(lx +A_)t] over R,
2 P 2 172 === -
Rr, 2
H, minimizes (-(k/Z) ;—t - A't} over R,
for ((A -, yer)P 1> A, 20

H, minimizes {‘(k/Z)pt :Er-tz-A‘t} over R,

———— .

for A > (-A +(-A /Rr)

/Rr;

{ minimlzes{-(kv’z) Py Rre? —(A1-A2)t) over R_,

for (-A,+(-A, /eryP Y > A, >

and (A1/rR)p_1 + A, > -A

p-
for Az > A‘I + (A1/rR)

(=Hy) nimize!{ (k/Z)p Piret 2en t} over R ;

for 0> A_ > ~((A A )/rr)P!
1 17 )

(~H,) minimizes {—(k/2)p pvz—t +A t) over R_;

H‘ - (z#(A1~A2)/rR)/2,

-1 - -
for -((A1-A2)/rR)p > A By » fz=(A =h))/rRY/2,

(-z) minimizes (l%(kfi)ptp*igtz*(h,ﬂz)t} over R, .
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In the above formulas, the minimization over R, is numerically achieved by using the one

dimensional Newton algorithm described in Section 5 of this report.

7.3 Numerical result. e now consider a perforated square thin plate (width = 1.),

subjected to an uniform traction of .52 per unit area on two of its opposite faces. This
plate is suppoged to be made of a Tresca material with p = 1.5 and k = 1//5 .

For symmetry reasons, only one fourth of the plate is considered. On this fourth,
126 nodes are used for approximating the velocity field. One block-relaxation iteration
is done per Uzawa step, and the parameter R and the weight r(x) are reapectively given
by R=1 and r(x) = '!‘p-z' H being the deformation rate tensor corresponding to a
computation done on the same geometry but with D1(G) = ;<k/5)9}clp (compressible Norton
material in plane strains).

After 50 iterations, the error ID(VP) - J‘I is decreased by a factor of 10'4, and
the total dissipated energy rate is equal to +-2.737 for the whole plate. The
corresponding velocitites are indicated on Fig 7.2. It must be noticed that, due to the
little number of boundary conditions imposed on v, this case is particularly unstable for

most numerical methods.

B POSSIBLE EXTENSIONS OF THE METHOD.

Many extenaiong can be considered for the numerical method described in this
report. For example,

(1) different finite elements can be considered in the approximation K, of the set
of kinematically admissible incompressible velocity fields. Any finite element which is
used with some success in the approximation of the Stokes problem can be employed here.
Nevertheless, if the gradients of the elements of Kh are not piecewise constant, a
numerical integration rule will be necessary to compute the dimsipation F (€), which
leads to an additional truncation error and which slightly complicates Problem (3.6).

Moreover, the space Yh' which is then the space of functions which are characterized by

-5%=

-
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their values at the integration points, must be sufficiently large to contain, within an

isomorphism, the image of K, by the operator D(*};

(ii) an inertia term can be added in the formulation of the virtual work theorem.
Through an implicit time discretization, the resulting problem will then reduce to a
sequence of augmented lagrangian problems {3.6) {(one per time step), the functional G
being now replaced by

G(w) = ~f fewdx - | gewda + 2%; 6 |w - vnl2 ax.
Q Fz 2
Each problem (3.6) can still be solved by Algorithm (3.11) - (2.14). Problem (3.12) will
again correspond to a linear Stokes type problem, associated to fixed, symmetric, positive
definite finite element matrices. Problem (3.13) remains unchanged;

(111) a convection term p{(v*V)w can also be added in the formulation of the virtual
work theorem. Since the operator in v will no longer be self-adjoint, no augmented
lagrangian LR can then be introduced. Neverthelesas, Algorithm (3.11) - (3.14) is still
applicable there (FORTIN-GLOWINSKI (1982, p 71]. Problem (3.13) is unchanged, and (3.12)
becomes

] c(x)(R(I(v)-M)=2)eD(w)dx + | p(veV)vew dx = | fow dx + Jr gwda, Vwer.

Q Q Q 2

For small convection terms, v can be replaced in the convection term by the solution v:
at the previous iterate, and (3.12) then reduces to an ordinary Stokes problem. For large
convection terms, one can use optimal control techniques ([GLOWINSKI-LE TALLEC (1983]).
All this is described in details by TANGUY (1983] which uses augmented lagrangian
techniques in a very similar situation;

(iv) finally, our problem can be coupled to an heat diffusion problem if we suppose,
for example, that the internal dissipation potential D,(x, G) is a function of the
temperature T at x. If convection phenomenon are not dominant, temperatures and

velocities can be efficiently computed hy block-relaxation: assuming the velocity to be

given, one computes the temperature by solving the energy equation; then, assuming the
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temperature to be given, the velocity is determined by solving (3.6), the process being
repeated until convergence. Observe that, despite a possible change of the temperature
field between two successive resolutions of (3.6), the finite element matrices do not have

to be changed because the temperature is only a parameter in the local problems (4.1).

This results in considerable economy in computer running time.
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