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i ABSTRACT
E%j A linear stability analysis for a two-layer Bénard problem is considered.
o
zj The equations are not self-adjoint. The system can lose stability to time-
a8 periodic disturbances. For example, it is shown numerically that when the
.54
?}2 viscosities and coefficients of cubical expansion of the fluids are different,
8
54 a Hopf bifurcation can occur, resulting in a pair of travelling waves or a
N
i standing wave. This may have application in the modelling of convection in
;t' the Earth's mantle.
Y
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o,
”i‘ MS (MOS) Subject Classifications: 76E15, 76E20, 76T05, 76V0S
!
%o

Xey Words: Overstability, Bénard instability, Two-component flow,
Convective instability

) Work Unit Number 2 (Physical Mathematics)

- 'Dept. of Aerospace Engineering, 107 Akerman Hall, 110 Union St. S.E.,
University of Minnesota, MN 55455.

“' I 1Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

- 2Supported by the Fluid Mechanics Division of the National Science Foundation
- and by the United States Army under Contract No. DAAG29-82-K-~0051.

<, -
‘f.,((‘%{ -’-.ﬂ's -\ o~ ,«,\j ,s*-.x._\’: .',, N NN

At ‘ ul iw "* . ,$ $3 " $. ~.\*~".‘

AN




L I . - . . A . e - . T eY W T d LT SO Ak SAAE A

Sabl ELC A . .. . iy - -
‘-
o
.
> SIGNIFICANCE AND EXPLANATION
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* Flows involving two incompressible viscous fluids exhibit nonuniqueness

in the sense that many interface positions are allowed when their densities

T

;ﬁ} are equal. Two-fluid flows also have quite different dynamical features from
Sgi one-fluid flows. The one~fluid Bénard problem in which the fluid, lying

s between parallel horizontal plates, is heated from below has a static solution
:i for which a linear stability analysis yields no complex eigenvalues. In this
;E% paper we show that when two fluids are involved, the arrangement in horizontal
:\ layers can have complex eigenvalues at criticality and therefore can sustain
:;S disturbances which are oscillatory in time. This may have application to the
:ES theory of convection in the Earth's mantle, which is sometimes based on the
Ak

assumption that convection takes place in chemically uniform layers.
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= The responsibility for the wording and views expressed in this descriptive
X susmary lies with MRC, and not with the authors of this report.
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OSCILLATORY INSTABILITY IN A TWO-FLUID BENARD PROBLEM

Yuriko Ronardy‘ and Daniel D. JOIeph"z

1. Introduction
The flow of two immiscible fluids often exhibits phenomena which are without parallel
in the flow of one fluid. An example is the steady shear flow of two fluids with

different viscosities but similar densities. Such flows are described in Joseph, Nguyen

TR ARE. VPO R A

and mvor-‘. In this paper, we consider the Bénard problem with two fluids lying between

infinite parallel plates, heated from below, and we look for new phenomena.

In the Bénard problem for one fluid, the 'exchange of stabilities' holds and all the .

Pl

eigenvalues of the linearized problem are real. 1In the two-fluid problem, we have both a

-

real and a complex spectrum.

2e LA e e
i

!uuoz noted that convection in a two-fluid Bénard problem heated from below can

admit solutions wvhere the fluids lie in layers as well as solutions in which there are

convection cells of one fluid surrounded by streamlines of the second fluid. We examine

the linear stability of the arrangement where the fluids lie in two layers with a flat

v

horisontal interface. Zeren and Ihyno].d-3 considered this problem, including the effect

T
t

™y W Tt

of a linear temperature gradient on the surface tension (Marangoni effect). They state

ot

that they 4o not know if there are purely imaginary eigenvalues at criticality. They note

that Sterling and Scrivon‘ found purely imaginary eigenvalues in the problem where the

upper fluid is inviscid and the convection is induced by surface tension, which depends

linearly on the temperature of the free surface (Marsngoni problem). Zeren and Reynolds

*Dept. of Aerospace Engineering, 107 Akerman Hall, 110 Union St. S.E., University of
Minnesota, MN 55455.

'Spon.ond by the United States Army under Contract No. DAAG29-80-~C-0041.

2snpportod by the Fluid Mechanics Division of the National Science Foundation and by the
United States Army under Contract No. DAAG29-82-K-0051.
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N chose to compute neutral stability curves corresponding to zero eigenvalues. We
\ o concentrate on the Bénard problem without the Marangoni effect and show that the equations
'l
{‘:. are not self-adjoint. We give an example of a situation when the marginal eigenvalues are
o
?\" a purely imaginary conjugate pair of multiplicity 2 (the same eigenvalues appear for
~
-l
F negative wavenumbers). Marginal eigenvalues of this type are associated with Hopf
1 bifurcations from the motionless state to either a pair of travelling waves or a standing
»
R wave (Ruclles). According to Rnelles, both the travelling and standing waves are
X\
:é solutions to the nonlinear problem. If they are both supercritical, then only one of them

can be stable; otherwise, they are both unstable. The possibility of travelling waves on
the interface of immigcible fluids may have application to the modelling of mantle

convection ( Bu-sez) .
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LWL 2. Linear Stability Analysis

We consider the linear stability of a two-dimensional ( x'.z.) problem when the
L ]
bottom fluid (fluid 1) occupies a layer from z' =0 to z' - 21 and the top fluid

L} -
(fluid 2) lies between -t 1 and z' =t . Asterisks denote dimensional variables.

L ] L
The plate at 2 =0 is at temperature 'r; + AT , AT > 0, and the plate at e =t ia

-

\ :‘ at temperature 'l';. Fluid 4 (1 = 1,2) has a coefficient of cubical expansion «a,

]

:, thermal diffusivity Ki, thermal conductivity k.l' viscosity u G kinematic viscosity
S .

4.:: v N and density p N at temperature 'l'o. We define a Rayleigh number

»

- . ®
R= ga1A'1' L 3/(K'v1), a Prandtl number Pr = v'/:’ and a surface tension parameter
*
™ = S2 /(t'u1). where 8 1is the surface tension, all based on fluid 1. There are 6
dimensionless ratios:

-

- * L ]
ns= u1/u2, rs= °1/°z' Y= K'/Kz, g = k,/kz. g = u,/az and z' - I.,/t . Denote

Pl oyl
P gt £ Pt
ALLAMAA

12-1-1'.

We choose the following dimensionless variables (without asterisks):

B

* L] LR ] * L * &
R Y X R N WO R W Y Y

.’h‘
5

is the velocity (u'.v'), p' is the pressure and 'l" is the temperature. The

unperturbed temperature is

‘!‘°+1-A,z for 0<z<l.’
T= (1)

'1'°+Az(1-z) for l‘<:<1

where Aj = =i and A, = (A, and the unperturbed motion is static. A linear
. 1 2

‘::f perturbation proportional to exp(ot + iax) is superposed on the velocity, temperature
uy

'}:& and interface position.

5, The perturbation 0 to the temperature satisfies

= 90 - why = V%, for O<z<t,,

Ay

oy 1.2 (2)
2] 00 - wA, = = 778, for l1<:<1.

Y gg Y

: A We use the Boussinesq approximation in the Navier-Stokes equations. Hence, the density in
. ¥ the buoyancy term is approximated hy
e ar -1 1,2 3
N";: Pl =a (T ~ Ty 1 =1, (3)
s 4
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to yleld:
\ m_;--Vp+aPr6!‘+Prvzg for 0 <z <L,
4 (4)
el - - RPX 4 2
2 ou er+——s Osz#-PrV\_x for l‘<z<1

R

vhere e, is the unit vertical vector. Incompressibility yields
Viueo. (5)

The boundary conditions are: u = 0, O =0 at z = 0,1. The following linearized

3

interface conditions (see Zeren and Reynolds™ for complete derivation) hold at

ety St Sl

PR

z - l'. {.] denotes .; - .,. Continuity of velocity, shear stress, temperature and
heat flux are, respectively,
i vl = {Aw/3z] = 0
waw3z? + a2l = 0
{(6)
[8) = hia)
[(x38/32] = 0 .

The kinematic free-surface condition is

w = oh (7

where the perturbed free-surface position is z = l1 + hix,t) and

17
y h = h, expliax + ot) . (8)
ey
f:z The conservation of volume of the incompressible fluids implies that the h(x,t) has a
N

gero mean value as a function of x. This is automatic if a # 0. There is a difference
between G = 0 and a + 0, the former is disallowed. The balance of normal stress is

1.3 3_,3 3 2,,_2
-3\12/3: 3v1/3z + a1 I‘)3w‘/az

' (9)
L 1 2 g 1
2 r
=ha® (R{== LA - rs’) = a%n) = o= (T - v /is .
c,lA‘r

We will show that the above problem is not self-adjoint. Hence, the eigenvalues need

not be real. Iet O be a strip of width one wavelength 2%/a, covering 0< z € 1.

- L ]
Let O be the part of f in fluid 1and O, be in fluid 2. let \_:' and § be the
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complex conjugates of the adjoints of u and 0. The asterisks here denote the adjoint
v - and the overbars the complex conjugates. Integration by parts of
4 e
P Iu.(ou+Vp-Px-V2u-RPr9.)
e a - - - -z
‘ 1
5 ~* g 1 2 RPr
i +£g.(rg+7p nPth_x pr Bgz) (10)
- 2
"'.4' .
B +] 300 - wa -7%0) ¢+ g- (Ylo8 - wa] - v28)
ooy 2 f
s 20! 1 2
k) ‘J
™
) yielas
R - - -l * -t
2% [ u. o3~ pr(v?a + 97,30 - A8e) - [ V.8
4% Q ]
N % 1
)
i ] ] -t P 2=t -t AY 3*
g +£ g.(sn = (Tu + 9] -T2 8 (1
2
+ ] 0(a8" - rerw - V38") + [ o(XTF - BREGT _ 1ot Ly
N Q Q [4 8 [4
§ 1 2
i
o wvhere B consists of boundary integrals taken at z = L_  over one wavelength in x. We

1
give the expression for B later. The above integration is facilitated by expressing

-t -t
! Vz\_x +u as ! 4 . V. (%u+ (V‘_z)'r‘), wvhere superscript T denotes the transpose,

]
uhng advantage o!" VY.u = 0, to obtain, for example,

3
W - - -
[ Va.a =) w95 4. %)
A n1 n‘I
b 2 ) s ’ ’” - -
3 a r=* du v «* 3w w dw dw
S + [g(3z+bx)+2"31 “(Sz+3x) haz]dx'
S x=0
) (z=2.)
~ Chooeing u, 6, p and its derivatives to vanish in the neighbourhood of the interface, we
3 ‘ -®
?& find V . u = 0 and other adjoint equations. Since ¥ . u = 0, the coefficients of
2 —
N 8 in (11) do not vanish but are the gradients of a function we denote by p . Hence,
XS
)
'j ~5=-
¢
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3 in fluid 1 (12)
A - -
51 o8 - * v a0
‘\‘ -
- and
‘ 9_"_?_!_ 2_._’_&-' -t
s ol - ¥ z 8e =-9p ,
in fluid 2 (13)

l -t RPI ;' - -1. 2=*
14 rf 4
We examine B to find the adjoint interface conditions. The integration is over one

wavelength in x at =z = !.1.

bt ¢

oy -

Y u v u, du dw

k% e —e %94 1 2 %Y 2

LA 5'!'[”’*"[“‘—"'—)‘_(—*'_)

;' 1'%z Ix m '3z Ix

3

l.sv.i

» -t -t

- auz 3' 3u 3\11 _e 3w . sz

2
s gtegh - Wi t) M5

-t -l -* A *
TR AL L
N 1% " =m 2 oz 1 3z [4 2 r 3z 1 3¢
5N 3w 3w w, w_23w
% 4 el = - 4 = .2k 2 ~1_.2_2
J = tpy = 2P 5w+ tp, - S5 525 " AL Fala-al Pat
w;
(% u, v T 2. v,
- 1 1 9 2 2 1 1
% +"[l“ "_3.:—"7) *“1{; (3-:-#3)!) - (31 +3x ”]

1 ] »
5 (LB ¥ e, 20,
+ ( 1'5-- (013—‘—*‘—3‘)&:.

Conditions (6) and (7) yield
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5%
\‘f
7\ - 3 -t
N - (ul-téx-lu(—+a—"-))-o. (14)
.'!. -
':'::: We can add | u . % to (10) which introduces )i (p wldx into B in (11). Hence,
‘:ﬂ 9
- -t
! | . 3w1 e 2 awz e dw
B =] -mwypy = 2P 370) +vylp, = T 32 ) Y ValPy - P )
3%
2 3w, 38, o 28,
$§ _'(;'_2_1’:'__2)_"[ L i—zldx.
4 252 m 3z 1 3z 7 2z
By Condition (9) can be written as
.
3
() dw a'
’ Py ~ Py ¢+ 2::(“' -2 v =2) + iy + azn 1 =0 (15)
where
-3
M, = Rer[— +g- 1 ana my=rerm.
a AT r
1
2 _29 "
Using (6) and - a" = - = , the last term in (15) is
9x »
. 16
m [[olu 1o ""z] (16)

We use (6), (15) and (16) to obtain

4
P ¥4 -t -
e - 3v, - 2m ¥,
o« - - —) - - e —
z; B =] w il - 2r 520 = (B, - TF57°0)
s
dw " M
- 1 1 - M
-twilp -2 5 -0 57 ¢ 0y 7
. 8" 0, 36;
7y [w (6M -0“2)] B’az #c———‘—dx.
~7-

-\ o>

l"l




and use (7) to find

—e 3w
o{lp) 'ma—z-*—

Bquations (12)-(!4).lnd (17)-(19) are the adjoint equations.
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3. Numerical Scheme

ll

—
»-

We use (5) to eliminate u so that in each fluid, we have the heat equation and one

4
-

ek
-‘n,l" o

momentum equation, linear in o:

2
Pr(L?w - a’R8) = orw,
for 0 < 2z < 21 B
wA, + L8 = 08

> ~ and

SN

A

._I.\‘ 2

g

I
e Pr(ﬁ L - ——aBR 8) = oLw,
e 1 for 21 < z< 9
wh, + -Y- L8 = o8
where 1 = 32/3z2 - 02. We change the variable z to z; in fluid i defined by
zy = %— 2 -1 and z, = %— (z = 1) + 1 so that the z; range over (=1,1] 4in each
1 2

fluid. We then expand w(zi) and e(zi) in powers of Chebyschev polynomials Tp(2y)
(Orlugs) for m = 0,...,N giving a total of 4N + 4 unknown coefficients. Together
with the free-surface variable hO' there are 4N + 5 unknowns. There are 6 boundary
conditions and 7 interface conditions. The term of highest differential order in the
momentum equation is 3‘w/3z‘- Since we choose w to be an Nth degree polynomial, the
term 3‘\'/3:4 is of degree N - 4 and therefore the momentum equation is truncated at
the N - 4th degree, yielding N - 3 equations in each fluid. Similarly, since the term

2 2
of highest differential order in the heat equation is 3 w/3z , we truncate this equation

at the N - 2th degree, yielding N - 1 equations in each fluid. The eigenvalues of the
resulting 4N + 5 square matrix equation were computed in complex double precision on a
Y VAX11-780 using the IMSL routine EIGZC.

AR To check the accuracy and convergence of our computer code, we computed the

b eigenvalues for the Bénard problem in one fluid with Pr = 1, R = 2177.41 and 47005.6,

a = 2. The eigenvalues for this problem are real and are given by Reid and Harris7. The
eigenvalues at criticality (at which the real part of ¢ should vanish) are less than
10-5 when N = 15, A convergence test with N = 15 and 20 showed that several other

i eigenvalues had converged to at least 5 figures at N = 15,
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The computations for two fluids were checked against Zeren and Reynolds
extra term into the shear stress balance at the interface in order to take into account
the Marangoni :ftect. We define a Marangoni number based on fluid 1:

Ma = (- %%) e%:%? and our shear stress condition at 2z = l' is modified to:

az(n - 1)v' + n32v1/3z2 - 32w2/322 + Ha.m.uz(e1 - Agh) =0 .
We used their Table 2 for the values of the physical variables at 16°C for benzene lying
above water. We checked our eigenvalues against their Table 3 for 21 = 0.1 and 0.6
for heating from below. Note that our definition of the R and Ma are different from
theirs. At l1 = 0.1, converting their parameters to ours, they find criticality at
Ma = 1255.71, R = 178.3045, ;‘AT. = 0.00032537, Pr = 8.1, ¢ = 3.5 and Tn = 460320. We
computed (0/Pr) = 0,006186 using both N = 15 and 20. This yields 0.00175 for the
eigenvalue q of Zeren and Reynolds. At 11 = 0.6, their parameters in Table 3 become
Ma = 4016.7153, R = 570.3736, ;1AT. = 0.0010408 and @ = 2.5. We computed ~.00436 for

their eigenvalue q at N = 15 and 20. In both cases, we also found stable complex

conjugate pairs in the spectrum.
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LY N 4. Numerical Results
( ) To aid the reader in the interpretation of the numerical results, we recall some
o
SAN
ﬁ\g results from the Bénard problem with one fluid. In the simplest case, the layer is
¢
e
:::, hounded at z = 0 and z = 1 by stress-free conducting boundaries ands
k ]
ot 2 1/2
Lo a--—(‘l+h)(nt2+a) (-(Pr-”(nu 002)2+ °“’:2} . (20)
‘.\\‘: nw +a
Ly
3¢
'.§-. for n= 1,2,..0 &
\ Hence, for a = 0,
Iy
o) R FURS UL L N I T LR (21)
li-:" and as a + =,
. 2
'\§ a~-‘-;—((1+r:)t|p:-1|)<o. (22)
In the critical case o = 0, the least value of R occurs vhen a = -é and
A'.‘ /2
3 3 R = (w + az) 3/az. These formulas are for stress-free surfaces but they give an idea of
A
y -1' the variation of a(R,az) in the classical case of one fluid between rigid boundaries.
SAY
‘g
Now we consider the case vhen there are two fluids with equal properties. This would
\{1 ) at first thought appear to be a one-fluid problem. However, it is easy to see that there
4.‘§ is a solution with (9] = [A]) = O, hg # 0 and ¢ = 0. We shall use the nomenclature
ok}
A introduced by !:lh9 in a related problem and call this mode, which is important when the

properties of the two fluids are different, an ‘interfacial mode'. We track eigenvalues

as we vary parameters. Besides the interfacial eigenfunctions, we have other

-’

eigenfunctions which we shall call Bénard modes.

- Mﬁ :

In tracking the eigenvalues, we shall fix all the parameters so that there is a

TR

AR

critical a such that Re o(c,n,rr,'m.n,r,v.t;,s,l") = 0 with Re 0 < 0 for other a.
We shall exhibit parameters for which Im 0 ¥ 0 at criticality. Hence we obtain
oscillations in the linear problem at criticality ('’exchange of stabilities' does not

hold) and the nonlinear problem for Bénard convection in two fluids can have time-periodic

-

-

&

Ok

solutions near criticality.

-

-)i=

.

la
i,
i

L

AR AN Y
'-\.:' :t‘-':\_.\""-':‘h et
LRGN -
D S s N

O, S

‘ I‘l.!
-\\‘.\i\

- s'és s$ "4.“.“'-, ;..j-a < sjs:, ;\;s e :,\:.'.:,

a,. WAy, W

\4.‘-.\\




-
)

- Let the two fluids have equal densities at temperature ‘!‘; and the same thermal .,
( diffusivities and conductivities: r = y = = 1, We let R = 1695.7, Pr = 1, .

- »
» 01AT = 0,001, ™h =~ 0, Ma =0, m= 1.1 and B8 = 0.9. Thus, if fluid 1 occupies the .

:: entire flow, the Rayleigh number is lower than the critical one 1708 (see Reid and <

: mrria7). If fluid 2 occupies the entire flow, R is 2072.52 and the flow is linearly '
» .
n unstable for a range of a&. We choose l‘ = 0.4. Figure 1 is a graph of the growth !
E: rate Re 0 against a. -
_':\’ We are approximately at criticality when a = 3,1. In this case, we compute
- G = 0.000072 £ 15.9259 with N = 15, 20. N
.‘_ The five numbers next to the curves in Figure 1 denote branches which display s
‘3 different features. The interfacial mode is associated with branches 1, 3 and 5. Branch _-
" 1 can be obtained from the interfacial mode with a + 0 when the properties of the fluids .
are equal (B = m = 1) by moving B8 to 0.9 and m to f1.1. This branch is real-

': valued. Branch 2 is associated with the least stable of the Bénard modes for a single :-
:: fluid when a + 0. This branch is approximately -9.87 at a + 0 and would correspond :
:‘: to the largest value of (21). Branch 2 is real-valued. Branches 1 and 2 coalesce and ::
A split into conjugate pairs at a = 1.275. At a = 6.79, the conjugate pair again splits :
". into the two real-valued branches 4 and 5. Branch 4 is associated with a Bénard mode and
O]
S remains real, decreasing rapidly as a is increased, as in the single fluid problem (see 3
P\ (22)). :

Branch 5 is an interfacial mode. It is real-valued and negative. The stability for
laxge & which is associated with branches 4 and 5 is explained by our choice of 8 and

the Boussinesq approximation (3). We consider the densities o 1(1 - “1” = Tg)) at the

- AN

unperturbed interface z = !.1 vhen the temperature T - Ty 1is given by (1). Then with

., r=1 and 8 = 0.9, we find that 02(1 - 0.6;2) is the density of fluid 2 at 1, = 0.4 X
'S ana p,(1 ~ 0. 5«;2) is the density of fluid 1. Hence the heavy fluid is below and :
’ gravity may be expected to stabilize short (large a) waves. The interfacial eigenvalue
:."._ on branch S5 is discussed in §S.

-12-
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§s. Asymptotic Analysis of the Interfacial EBigenvalue for Short Waves

We now consider disturbances of rapid variation whose length scale of variaticn is of
the same order O(1/a) as the short perturbation wavelengthm
We rescale z to n = a(z - !1) and let N be O(1). The equations in fluid 1 are

2 2 2. %
9°/in" = 1 and (0 - PralL )Lw = -RPrf. In fluid 2,

H

2. * *
oO-wA,-oLO vhere L

1 2.+ 2 ¢ o RPI
00 ~ wA_ = Y a’L & anda (o E PrG L )Lw = = 5 6. The interface conditions are:

2
Wy = wy =0h, (23)
Pv,/in) = 0, (24)
01 =t , (25)
L R (26)
§a6 /an = 36 /3n , (27)

21,3 3 3 3 2 1 3
a (- ? wz/On -3 v1/3'\ ) + av1/3n.3a (@) --) + ha"Th

1
<=0 v

-hm[-.L——-ozAzu--—)]-h-n’-;n-l (28)
n‘A'r

Since the normal stress condition (28) contains both 0dd and even powers of a, all the
variables are formsally expanded in powers of 1/a. 7o the Oth and st orders, L'O =0
and L'w = 0 in each fluid. Using conditions (23), (24) and (26), we obtain

wy = Col1 - nle" + 0(1/a) and w, = Col1 +n)e” " + 0(1/a) as a + =, which yields to
this and the next order, dw/3n = 0 at the interface. Hence, the normal stress condition

is

-1
ad 33w, /on - P m®) <X p[E—— s 200 - %5)] -0
a AT
1

wvhere, for the moment, surface tension has been neglected. To avoid the trivial solution,

we choose ¢ = oola + 0(1/«2) for large G. The normal stress condition yields

0 =« —R (-;+ WL -—-))

O 2deny apr

-{f=
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In the computations for Figure 1, the asymptotic formula is accurate to 1% for
a > 20. Ve computed -1.494 for a = 20 using N = 15 whereas the asymptotic formula

yields ~1.48.

Turning now to a consideration of the effect of surface tension, we find that when

cz‘rn/ll = 0(1), then

1
==-1n 2
R T 1 - a Tn
% = (=% S0 - -5 ) . {29)

1
2(; + 1) G'A'r

We computed the eigenvalue for the parameters of Figure 1 at T =1 and a = 20 to be
-6.86 and the asymptotic formula yields <=6.72. Equation (29) shows that surface tension
is alwvays stabilizing for short wave disturbances. The stabilization of short-waves by
surface tension, even with adverse density ratios, has been found in other flows such as

steady shear flows with two immiscible fluids of different vucoutiu‘o'".
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