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1.  Introduction i 

Presented in this paper are the results obtained by using 

SENSUMT to solve "Model la," a resource allocation model described 

in [1] and [2].  Additional background can be obtained from [3] and 

[4], and a general classification scheme and model designation are 

given in [5].  Model la denotes the model that considers only maintenance 

allocation.  This work differs from that reported in [2], in that SENSUMT 

is used instead of LINDO, and the original objective function is used 

rather than a piecewise linear approximation.  The use of SENSUMT also 

allows sensitivity results to be obtained.  An extension of Model la, 

Incorporating manpower allocation, is reported in [6] but not pursued 

here. 
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2.  Statement of the Problem 

Using the notation and simplified equations from [1] and the def- 

inition of the objective function given in [2], the problem can be 
I 

formulated as a standard nonlinear program: 

maximize f(x,a,m,a„) = (1,2,1,1,2) 
(x,a,m) 

(a^ + ot^m^) (1 - m^/a^) 

(a^ + a^m^) (1 - m2/a2) 

(a^ + aQ-m^) (1 - "^2^3.^) 

(a^ + ot^m^) (1 - m^/a^) 

%     ^ 

dr- 

0.r 

a_ 

a^ 

subject to: 

(1) -a3a^_]_ + a^ + x^ = BQ(1 + a^)^   , 12     S 

(2)  -a^a^_^ - [a^  - a^a^] m^_^ + m^ + x^ = 0 ,  t = 1,2,...,5 

(3)  -a,a t-i " f^,~ °'4°'7] ™t-l + ^t = ° ' t = 1,2,...,5 

The variables x  ,  m  and  a  denote the maintenance supplied, 

the maintenance backlog, and the asset value at time  t , respectively. 

The model parameters are as follows: 

a^  = 0.03 (yearly proportional budget growth) 

0^2 = 2   (ratio of maintenance backlog on retiring ships to 

maintenance average) I 

ct^ = 29/30 (fraction of assets remaining each year) 

a, = 0.04  (fraction of assets requiring annual maintenance) 

a = 0.50  (fraction of backlog not requiring additional 

maintenance) 

CQ = 58    (Beta-function parameter used in the objective 

function) . 

- 2 - 
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The initial conditions are as follows: 

BQ = 8  (budget) 

a = 100 (asset value) 

m = 1   (maintenance) 

3.  Elimination of the Inequality Constraints 

Subtracting Equation (2) from Inequality (3) yields 

[a^       -  1] m^_^  - m^ £ 0 ,   t = 1,2,...,5 . 

From the definition of these parameters,  a„ £ 1  and a„ ^ 0 .  There- 
of J - 2 - 

fore,  [a   - 1] < 0 .  Since m ^ 0 and m^ ^ > 0 , Inequality (3) 
-' t t~x — 

is redundant and can be eliminated. 

^'     Attempt at an Analytic Calculation of Solution 
of RESDYN Model la 

For a time frame of 5 years, the problem has 15 variables 

(m^, a^,  and x^,  t = 1,2,...,5)  and 10 equality constraints (plus 

the nonnegativity constraints).  It is theoretically possible to use 

the equalities to eliminate 10 variables, and to formulate the problem 

in terms of 5 variables, subject to the 15 nonnegativity constraints. 

This procedure was attempted but proved analytically intractable, due 

to the complicated expressions that resulted.  Therefore, another ap- 

proach was attempted. 

From the results of [2], it is concluded that m = 0, 

t = 1,2,...,5  in the given solution.  Assuming this, we may solve for 

- 3 - 
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x^ and a^,  t=l,2,...,5, and check whether the Karush-Kuhn-Tucker 

optimallty conditions hold at the resulting point and hence whether 

this point is a candidate solution of the problem as formulated above. 

(These conditions are necessary at a solution point since the constraints 

are linear.)  If these conditions hold, then we may conclude that the 

problem may have been solved by the given point, for the given set of 

parameter values.  Solving Equations (1) and (2), under the assumption 

that m = 0,  t = 1,2,...5 , yields the following.  For notational 
a 

convenience, let  [a~  - a.a^]   = k . 

For  t = 1,...,5 , Equations (1) and (2) imply: 

x^ = k m^ + a^ag =  4,91444    \ 

a^ = BQ(1 + a^) + a^aQ - x^^  = 99.99223 

^2 " ^^4^1 °°  3.99969 
2 

a^ = BQ(1 + a-^) + a^a^ ~ ^2 " 101.14667 

x^ = a^a^ =  4.04587 

a^ = BQ( 1 + a-^)^ + a^a^ " x^ = 102.47106 

^4 " "^4^3 =  4.09884 

4 
a^ = BQ(1 + a^)  + a^a^ " x^ = 103.96059    , 

^5 " "4^4 =  4.15842 
5 

a^ = BQ(1 + a^)  + a^a^ ~ ^5 = 105.61101 

Substituting our calculated candidate solution, the value of the objective 

function is  f(x,a,m,aQ) = (1,2,1,1,2)(a^,82,a3,a^,a3)^ = 719.939.  " 

- 4 - 



T-485 

It is interesting to compare our calculated solution to the 

solution given in [2], both of which are sunmarized in the last two 

columns of Table 1.  With the exception of  a  and the value of the 

objective function, the results are very close.  The objective function 

value of [2] is higher.  We find that the discrepancy in the objective 

i 
function is due mainly to the different values obtained for  a  . 

Substituting  the variable values  of   [2]     (x    = 4.158567,   a,   = 103.964188, 

and    a^ = 109.772942)     into  Equation  (1)   for    t =  5  ,  we find  that 

the  solution of   [2]  violates  this   equality constraint.     Hence,     a 

as  given in   [2]   is  apparently  incorrect,   and  the solution point 

obtained  in   [2]   is  not  feasible. 

To check our calculated solution candidate, the Lagrangian of 

the problem is formulated.  A change in notation is introduced at this 

point, for simplicity:  a^ = x^,  a^ = x-,,...,a^ E X^Q,  m^ H x-|_-|_, 

m„.5 x^„,...,m^ = x^^ .  Also, since we are maximizing the objective 

function, the negative of the objective function is used in the 

Lagrangian and in SENSUMT, and the problem is treated as one of mini- 

mization.  Since, by assumption, only m = 0,  t = 1,2,...,5 , only 

the nonnegativity constraints associated with these variables are 

included. i 

- 5 - 
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X, 

a^ = X, 

a„ = Xf 

a, = Xp 

= X 

m. 

nir 

w. 

w. 

w„ 

w. 

w^ 

w^ 

w. 

10 

m^ = X 

= X 

m„ = X 

m, = X 

= X 

11 

12 

13 

14 

15 

'10 

Hand-Calculated Calculated 
Numerical Solu- §TM-69340/83 with Assump- 
tion SENSL'MT (Reference [2]) tion m = 0 

720.050 720.050 728.280 719.939 

4.88272 4.88115 4.914398 4.91444 

3.99920 3.99936 3.999825 3.99969 

4.04369 4.04303 4.046005 4.04587 

4.09731 4.09716 4.098984 4.09884 

4.15730 4.15695 4.158569 4.15842 

100.02395 100.025 99.996 99.992 

101.17781 101.179 101.150 101.147 

102.50335 102.505 102.475 102.471 

103.99334 103.995 103.964 103.961 

105.64379 105.646 109.773t 105.611 

.03172 .0332867 0 
1 

0 

.03076 .0320911 0 io 

.03155 .0334766 0 0 

.03168 .0336642 0 0 

.03140 .0336430 0 io 
5.98348 4.42901 

5.37768 7.53408 * 1 

3.64464 -3.56954 , 

2.85376 .044104 
1 

2.00030 5.92848 

-5.98348 -9.07268 

-5.37768 -6.39773 - 

-3.64464 -.802994 

-2.85376 8.71874 

-2.00030 -6.74342 

tSee Section 4 above concerning the value of  a^ . 

§Point obtained using a piecewise linear approximation of objective 
function. With a^ corrected (see Section 4), this point is probably 
optimal for this approximation.  It is not optimal for the original problem. 

- 6 - 
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The resulting Lagrangian is 

L (X,U,W,E)   =  (-1,-2,-1,-1,-2) 

(xg    + Vll^^l  - ^11/^6^ 
c 

(x^    + a^x^pci - x^^'^^y) 
c 

(xg    +aQX^3)Cl - x^3/xg) 

c 
(x_    + a„x^,)(l - x,,/xj 

0 14 14'"9' 

(x^Q + Vl5^^1 -^15/^10) 

- U3_x^^ - u^x^^ - ^3^13 - ^^14 - ^5^15 

+ w^     [x^ + Xg    - BQ(1 + a^)   - a^a^] 

7. 
+ w^ [X2 - a^xg + x^ - BQ(1 + a^)-] 

+W3 [X3 - a3x^ +X3 -BQ(l+a^)2] 

+ w^ [x^ - a3Xg + Xg - BQ(1 + a^)^] 

+ w [x. - a_x„ + x,^ - B-(l + aj^] 

+Wg      [x^ 

5 3  9 10 0 

+  X, 11 

+ ^7 [X2 - a^xg - kx^^ + x^^] 

+ Wg [X3 - a^x^ - kx^2 + ^13] 

+ Wq     [x,   - a,x„  - kx,„ + x,,]. ^4      ^4 

°'4^0  " ^""O^ 

13      ^W 

+ w^Q   [X3 - a^xg - kx^^ +x^3] I 

where    £ =  (a^,  a^,  a3,  a^,  a^, B^, m^,  a^,  a^)'^ ' 

Taking  the gradient of  the Lagrangian with respect to  the 15 variables  gives 

-  7  - 
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V L 
X 

L 

(-1) 

(-2) 
(-1) 
(-1) 

(-2) 

2 2 
1 + (aQ-1)   (x^^/xg)  + KQ   (X^^/X^) (1-(X^^/Xg)) 

a^-l 

1 + (aQ-1)   (x^3/x^o)  + a^  (^-^^U^Q)^ (1-(X^3/X^Q) 

aQ-1 

(+1)    aQ(aQ+l)   (x^-i^/xg)   (l-(x^^/xg) 

(+2) 
(+1) 
(+1) 

(+2)    ctQCaQ+l)   (X^3/X^Q)   (I-CX^^/X^Q) 

aQ-1 

aQ-1 

0 

• 

• 

• 

0 

0 

• 

• 
+ 

• 

0 

^1 

^2 

""3 

^4 

^5 

^1 + 
^6 

^2 
+ 

^7 

^3 + 
^8 

^ 
+ 

^9 

^5 
+ 

^10 

■^1 
- 

°'3^2 - V7 
^2 

— V3 - Vs 
"3 

— V4- ^-9 

^ 
— 

°'3^5- VlO 
^5 

^6 ■ k w 

^7 ■ ^^8 
Wo ■ k w„ 

w_ - k w 
10 

w 
10 

-  8 - 
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Let x-.^ = x,2 = x-jo  ~ ^14 ~ ^-15 ~ '^   '     Then 

1   6 
w + w 

W3 +Wg 

w + w„ 
4    3 

^5 + ^10 

0 0 
• • 

• • 

• • 

0 0 

-1 0 

-2 • 

-1 _ 
• 

+ 
-1 • 

-2 0 

0 
^1 

• 
"2 

• 
^3 

• 
^4 

0 
^5 

^1 - V2 -^^4^7 

^2 -^'3^3 -«4^8 

^3 -«3"4 - V9 
W4 - Vs - ^^10 

^5 

w,  - k w 
6 

w^  - k w^ 
/      c 

• k w^ 

7 

W 

- k w 
10 

10 

The gradient of the Lagrangian is set equal to zero to see if 

the Karush-Kuhn-Tucker first order necessary conditions hold.  From 

row 10, w^ = 2 .  From row 5, w^^ = -2 .  From row 15,  u = -2 . 

Since the multipliers associated with inequality constraints must be 

nonnegative for the point to be a minimizer (maximizer of the orig- 

inal problem), the calculated candidate solution point is not even a 

local minimum.  Hence, the variables m ,...,m  cannot be equal to 

0  at a solution of RESDYN Model la. 

It should be noted in passing that [2] was obtained by using 

a piecewise linear approximation of the objective function. If the 

gradient of the Lagrangian is reformulated using this approximation, 

- 9 - 
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it may be shown that the first order necessary conditions are satis- 

fied at our calculated solution point. 

Returning to our analysis of the original problem, since none 

of the nonnegativity constraints are binding, it follows that all the 

u. = 0 .  We now find that the gradient of the Lagrangian can be set 

equal to zero and that we can solve analytically for the multipliers 

For notational con- w.  and the ratios XT,/x,, XT„/X^, 
2 11 6  12 7 ^15^^10 

venience, define z, = x, ,/x,, z„ = x^„/x-,,..., z^ 
^15^^10 • 

From row 5: 

From row 10: 

From row 15: 

Therefore, 

"5 = -^10 

(-2) 
2 2 

1 + (aQ-l)z^ + a^z^ (1-z )    + w = 0 

a -1 
(+2) aQ(14<XQ)z^(l-z^) "^  + ^10 = ° 

1 + (a^-Dz^ + a^z^ 

2 2 

a^-l a^-l 
(1-z^)     = aQ(l-k)tQ)z^(l-z^) 

so  Z5 = 1 or 1 + (aQ-l)z^ + a^z^ - aQ(l-kXQ)z^ = 0 

0 0      o 
yielding 

Using the formula for the solution of a quadratic equation yields 

2 2    2 
a^z^ - (aQ+l)z^ +1=0 

(ag+l) ± (a^-l) 

2a: 

and hence z^. = 1 and Wj. w 
10 0 or Zj. = 1/ci^ •  It may be argued 

that the smaller value of  z.  will reduce f , hence  z^ = 1  is 

discarded.  Substituting back into either row 10 or 15 with 

z^ = I/OQ yield 

2 "n~l 
W5 = -w^Q = 2(l+l/aQ)(l-l/aQ) " 

Since w , = -WQ  from row 4, the values for w  and w   can be sub- 

stituted into rows 9 and 14 to solve for z, .  However, these equations 

- 10 - 
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cannot be solved in closed form, and in particular one cannot as before 
ag-1 

divide by  (l-z.)      to obtain a quadratic equation.  The equations 

were solved numerically, using Newton's method, substituting the nominal 

values for the parameters.  Substituting the calculated values of the 

multipliers into the other rows (8 and 13, then 7 and 12, etc.), all the 

ratios and multipliers were solved by this numerical method.  Using the 

numerical values for z  z^,..., z^ and fixing the parameters at thier 

nominal values, the recursive equations (1) and (2) of Section 2 were 
i 

solved to obtain a candidate solution point.  The optimal value, can- 

didate solution .point.  The optimal value, candidate solution point 

and multipliers resulting from this method are given in Table 1. 

5.  Solution using SENSUMT I 

The problem was solved using SENSUMT running on a DEC VAX 11/780. 

The method selected for minimizing the unconstrained penalty function 

was G. P. McCormick's modification of the Fletcher-Powell method (i.e., 

NEX0P2 = 4) .  The results are summarized in Table 1.  For comparison, 

and although they are not feasible, the results of [2] and the results 

that follow from the closed form solution of the equations with the 

assumption that m= 0, t = 1,2,,..,5 ,  are also presented, as noted 

earlier. , 

The solution point and estimates of the multipliers were compared 

to the results of the method described above in Section 4 (forming the 

gradient of the Lagrangian with respect to the 15 variables and set- 

ting this to zero). 

11 - 
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The SENSUMT estimates of the multipliers do not appear to be 

accurate.  These estimates are obtained from the ratio w = 2h /p , 

where p > 0  is the penalty function algorithm parameter set by the 

user.  Since both the constraint value h.  and  p  go to zero as the 
J 

program iterates, the resulting ratio of two small numbers may not be 

accurate.  The accuracy of the solution point is much better than that 

of the multipliers.  All the variables agree to the third place after 

the decimal point.  The optimal value (720.050) is in agreement to the 

accuracy kept in the numerical solution. 

6.  Sensitivity Analysis 

The use of SENSUMT allows sensitivity results to be obtained. 

The sensitivity of the optimal value, solution point and multipliers 

were obtained for nine parameters:  e = (a^, a^, a^, a   ,  a   ,  B , a , m , a )  , 

where a^  is the parameter in the objective function.  The gradients 

of the optimal value function  f  , the solution point, and Lagrange 

multipliers are given in Tables 2, 3 and 4, respectively.  Note that 

for the sake of the sensitivity analysis, the initial conditions 

(BQ, aQ and m^)  are treated as parameters. I 

The above gradients represent a rate of change in the variable 

with respect to each parameter.  These gradient values are valid only 

at the nominal parameter values, and can change significantly as a 

parameter is varied from its nominal value.  Also, some parameters can 

vary over a much wider range than others.  For example, a parameter 

such as a^  (initial asset value), with a nominal value of 100, can 

change over a larger range than a^  (proportional budget growth), which 

has a nominal value of  0.03 . 

- 12 - 
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SENSITIVITY OF f (e) 
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419.141 
^1 

-10.1688 
"2 

2052.00 
°'3 

T * 
-1836.59 

where e = 
% 

£ -12.8398 
«7 

21.3820 
^0 

5.54479 
^0 

-5.47166 
. 

'"o 
26.5243 

_"o_ 

- 13 - 
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TABLE 3 

SENSITIVITY OF  SOLUTION POINT 

2.,2E-5 .32QQ ,9558 1,904 
-235.. 5 197,3 350,8 -563,4 
5597. 120.5 -25145. 27484. 

£ 

3795. -3030. -5316. 8891. 
-297.3 249.1 443.0 -711.4 

3.0E-6 ■     4.1E-2 8.1E-2 .1184 
4.0E-2 3.7E-2 3.4E-2 3.2E-2 

.9144 -3.7E-2 -3.4E-2 -3.1E-2 
43.95 36.02 -30.78 2.044 

8.000 23.89 47.60 79.08 
235.5 30.37 -321.5 252.6 

-5497. -5334. 20090. -7962. 
-3795. -638.2 4699. -4349. 

<'- 
297.3 

1.030 
38.35 
2.015 

-405.9 
2.960 

319.0 
3.869 

.9267 .8587 .7957 .7374 
-.9144 -.8474 -.7852 -.7277 

-43.95 78.50 -45.10 -45.64 

-2.2E-5 -3.9E-5 -5.9E-5 -7.2E-5 
235.5 27.46 -324.5 253.8 

-5595. -5456. 19942. -8445. 
-3695. -400.8 5025. -4006. 

nT 297.3 34.67 -409.7 320.5 vV = -3.0E-6 -5.4E-6 -2.4E-6 -5.1E-6 
-7.1E-7 2.1E-7 2.2E-7 2.8E-7 

4.5E-5 -2.0E-7 -2.1E-7 -2.8E-7 
-43.95 -77.96 -43.65 -43.76 

Recall that    a-.   = X, 
'•••'^5 " ""lO m^ = x^^,.. 

• '^ = ^15 • 

1 

3 163 
242 2 

8041 
3733 

305 8 
1547 

2 9E-2 
-2 9E-2 
44 18 

118.3 
2.048 

448.0 
-471.2 

2.586 
4.744 
.6833 

-.6743 
-88.30 

2 .OE-4 
1 .6E-2 
- .5265 
- .2443 
2 .OE-2 
9 .7E-6 
1 .9E-6^ 

-1 8E-6 
-86 02 

- 14 - 
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TABLE 4 

SENSITIVITY OF LAGEANGE MULTIPLIERS 

-2.7E-8 -2.8E-8 -2.6E-8 -1.9E-8 -l.lE-8 

-5.4E-7 -6.0E-8 8.2E-7 -5.4E-7 -1.9E-9 

8.982 1.562 5.538 5.928 1.2E-7 

-5.021 1.486 2.470 -6.743 1.6E-7 

-7.0E-7 -8.2E-8 l.OE-6 -6.6E-7 3.4E-9 

Vg w    = -6.6E-9 -6.8E-9 -3.8E-9 -3.6E-9 -2.9E-10 

-5.8E-10 -4.4E-10 -2.9E-10 -1.7E-10 -5.8E-11 

5.8E-10 4.4E-10 2.9E-10 1.5E-10 2.9E-11 

3.5E-5 3.1E-5 2.1E-5 1.6E-5 l.lE-5 _ 

2.8E-8 9.4E-9 -3.0E-8 -8.7E-8 -1.7E-7 

l.OE-5 1.2E-5 -2.1E-5 3.2E-5 -1.3E-5 

-8.982 -1.562 -5.536 -5.930 4.4E-4 

5.021 -1.486 -2.470 6.743 2.1E-4 

„T     2 
V    w    = 

1.3E-5 

6.6E-9 

-1.5E-5 

4.4E-9 

-2.7E-5 

-7.0E-10 

4.1E-5 

-3.0E-9 

-1.7E-5 

-8.2E-9 

-9.9E-10 -1.7E-9 -l,7E-9 -1.6E-9 -1.6E-9 

-3.7E-8 1.7E-9 1.7E-9 1.6E-9 1.6E-9 

_ -3.7E-5 -3.3E-5 -1.9E-5 -1.7E-5 -1.4E-5 _ 

1       , 
1 

w^ = (Wg,...,W^Q)T 
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In order to identify those parameters that have the greatest 

impact on the solution of the problem, it is useful to calculate for 

each parameter the change in the optimal value resulting from a change 

of a fixed proportion of the range associated with the parameter.  An 

estimate of the range for each parameter was obtained from [7].  These 

ranges are given in Table 5.  For each parameter, an estimate of the 

change in the optimal value due to an increase in the parameter of 1% 

of the range (while all other parameters are held at their nominal 

values) is calculated.  This calculation is based on an extrapolation 

of the first order sensitivity estimates at the solution, i.e., 

V^f  .  Since this extrapolation is linear, the change in the optimal 

value function is proportional to the proportion of the range selected. 

Although the proportion chosen is 1%, the extrapolation could be per- 

formed for any proportion.  These changes in f  due to each parameter 

are given in Table 6. 

It is useful to rank the parameters in order of their impact on 

the optimal value, using the absolute value of the elements of the 

gradient and the changes of the optimal value due to a change of a 

fixed proportion of the range of each parameter.  For the gradient, the 

order of sensitivity to the parameters (from greatest to least sensi- 

tivity) is a^, a^, a^, a^, BQ, a^, a^,  a^,  and m^ .  Notice the 

dominance of a^ and a^ on the optimal value, and also on the solu- 

tion point and multipliers (from Tables 3 and 4).  To a lesser extent, 

- 16 - 



T-485 

TABLE 5 

RANGES ASSOCIATED WITH THE PARAMETERS 

Nominal Lower Upper 
Parameter Value Bound Bound    Range 

a^ 0.03 -0.05 0.15    0.20 

0-2 2.0 X.O 4.0     3.0 

a3 0.967 0.75 1.0     0.25 

a^ 0.04 0.01 0.10    0.09 

a^ 0.50 0 1.0     1.0 

BQ 8 . 5 20 15 

HQ 100 80 300 220 

m^ 1 .1 10       9   ■ 

°'0 58 5 60 55 
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TABLE 6 

CHANGES IN f (e)  FOR AN INCREASE OF 1% 

OF THE RANGE FOR EACH PARAMETER 

Parameter V^f (S) Af 
*    * 

f + Af 

^1 419,141 .8383 720.8883 

a2 -10.1688 -.3051 719.7449 

°'3 2052.00 5.1300 725.1800 

0^4 -1836.59 -1.6529 718.3971 

a^ -12.8398 -.1284 719.9216 

^0 21.3820 3.2073 723.2573 

^0 5.54479 12.1985 732.2485 

niQ -5.47166 -.4924 719.5576 

^n 26.5243 14.5884 734.6384 
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the optimal value is sensitive to a^ , while the solution point is 

sensitive to a^  and a., .  All other sensitivities are quite low. 

For the changes in the optimal value due to a range proportional change 

in each parameter, the order of sensitivity is a^, a^, a^,  B^, a^ a  , 

m„, a„,  and a- .  Notice how the ranking changes due to the variance 

in the ranges.  Now a  and a^ are the most critical parameters in 

the optimal value. « . 

In order to get an estimate of lower and upper bounds on the 

optimal value, the SENSUMT program was run with the parameters set to 

their extreme values.  The particular extreme value (upper or lower 

bound) depended on the sign of the corresponding element in the gradient. 

The estimate for a lower bound on  f (e)  is 248.844.  However at 

this solution point the sign of the gradient changes for a , a.,  and 

a  compared to the gradient at the nominal solution point.  Therefore 

it is possible to obtain an even lower optimal value at some inter- 

mediate values of these parameters.  The estimate of the upper bound 

is 2647.162.  All elements of the gradient have the same sign as the 

gradient at the nominal solution.  Therefore, it is plausible that 

this estimate of the upper bound is valid. 

Calculation of parametric optimal value bounds for this 

nonconvex program and analyses for extensions of this model will be 

a subject of future research. 
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