PROCEEDINGS PAPERS OF THE AFSC (AIR FORCE SYSTEMS l/,,
COMMAND) AVIONICS STAND..{U} AERONAUTICAL SYSTEMS DIV
WRIGHT-PATTERSON AFB OH DIRECTORATE O.

UNCLASSIFIED C A PORUBCANSKY NOV 82 F/G 9/2

AD-A142 783

1.0 ER k=
I.‘ E;l- NH§

I

2 it nie

I

=
[0 o]

|

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 19ei-a

G iri < <7

AIVNNLITY 1IY Ve vww i

VOLUME VI

2nd AFSC

AD-A142 783

N

l\' .

TUTORIAL |

MIL-STD-1815
ADA HIGH ORDER LANGUAGE

Approved for Pubtic Release Distribution Uniimited

)

STANDARDIZATION
CONFERENCE

COMBINED PARTICIPATION BY:
DOD-ARMY-NAVY-AIR FORCE-NATO

30 NOVEMBER - 2 DECEMBER 1982
TUTORIALS: 29 NOVEMBER 1982

DAYTON CONVENTION CENTER
DAYTON, OHIO

(&

HOSTED 8~

JITICE

¥ien “ov - rrment drawings, specificac.~ns, or othar daid e used for any Durp-:
otaes SFan in connection with a Jefinitely Tslated u..srnwe °r procusenent cper.tiosn,
tha [nited States Government cheredy incurs o cuspensi.il:ty ror any obligat.on
whaisoevar, and the fact that the ycverrmernt .y have formulatsd. furnished, or in
any way 3upplied the said drawings, specificai’si., w12 »trer diia. 15 not to be re-
garded by implication or otherwise as in any snrner :!:-2using the hol'der or any
cther person or corporation, or conveying any ri104v3 or rc:mission to manufacture
use, - 5ell any patented invention that may- in ant ~au [e related thereto.

This rexort has been reviewed by the Office of Public Affairs (a.c’FA) and :s
rel«asadb’e to the National Technical Information Service (NTIS). At NII5, :t wil!
be avaiiable o the general public, including foreign nations.

This tachnical report has been reviewed and Is approved for publica:z.o.

’LD»M"--') 7‘\ 6;‘2&/.«/\4 2—— C /)....——-é

e e - iy
J-o‘ER/ L. PESL.R ERWIN C. GANGL e
{lCc Che!lrman i) Chief, Avionics Systems Divi:ion
'nd AFSC S:andardization Conference Directorate of Avionics Engir2zring

TLTD LMMA

AL /

RGL.RT P. LAvQIE COL USAF
i ector of A~ion|cs Engineering
Deputy f=r Enj'aeering

shargod, if you wish to be removed from our mailinc list, cor

"I geur addres has
if che adcressee i; nc .cnce.. smployed by your organization please notify ASO/ENAS

W-PAFB, OH %433 to h:lc s maintain a current mailing list".

IR

Copies of this report should not be returned unless return s regquired by secu:r:t:
s £9

considerazinrs. contractual obligations, or notice on & specific docunent.

———

3
; S
il
- - i

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When D.uilmond)‘
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

[T, REPORT NUMBER 2. GOVT ACCESSION NOJ| 3. RECIPIENT'S CATALOG NUMBER

JASD (ENA>-TR-82-5031, VOLUME VIII LAY 0>

4. TITLE (and Subtitle) 8. TyYyPE OF REPORT & PERIOD COVERED

Final Report
Proceedings Papers of the Second AFSC Avionics 29 November -~ 2 December 1982

Standardization Conference 6. PERFORMING 013G, REFORT NUMBER

7. AUTHOR(e) 8. CONTRACTY OR GRANT NUMBER(s)

Editor: Cynthia A. Porubcansky

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA & WORK UNIT NUMBERS
HQ ASD/ENAS
Wright-Patterson AFB OH 45433

11. CONTROLLING OFF|CE NAME AND ADDRESS 12. REPORT DATE
HQ ASD/ENA November 1982
Wright-Patterson AFB OH 45433 3. NUMBER OF PAGES

4. MONITORING AGENCY NAME & ADDRESS(If dilletent from Controlling Otfice) 18. SECURITY CL ASS. fof this report)

Same as Above Unclassified

1Sa. DECL ASSIFICATION. DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

-

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

N/A

18. SUPPLEMENTARY NOTES

N/A

19. KEY WORDS (Continue on reverse side il necesaary and identify by block number)

Computer Instruction Set Architecture, Multiplexing, Compilers, Support Software.,
Data Bus, Rational Standardization, Digital Avionics, System Integration, Stores
Interface, Standardization, MIL-STD-1553, MIL-STD~1589 (JOVIAL), MIL-STD-1750,
MIL-STD-1760, MIL-STD-1815 (ADA), MIL-STD-1862 (NEBULA).

/’—‘-_\\‘_
L/

%. ABSTRACT (Continue on reverse 6ide Il necessary and \dentify by block number)

e e aakllke

TN

his is a collection of UNCLASSIFIED papers to be distributed to the attendees

{f the Second AFSC Avionics Standardization Conference at the Convention Center,
Dayton, Ohio. The scope of the Conference includes the complete range of DoD
approved embedded computer hardware/software and related interface standards as
well as standard subsystems used within the Tri-Serv:ge community and NATO. The
theme of the conference is’/“Rational Standardization™. Lessons learned as well
as the pros and cons of standardization are highlighted.

i\
Loomss W73 goimiown oF 1 wov e 1s ossoLETE UNCLASSIFIED

)

SECURITY CLASSIFICATION OF THIS PAGE (When Dete Entered)

——

This is Volume 8

Volums 1 Proosedings pp. 1~560
Volume 2 Procesdings pp. 561-1131
Volume 3 Govemming Documamts
Volum 4 MI1~STD~1553 Tutorial
volume 5 MI~STD-1589 Tutorial
volume 6 MO~STD-1679 Tutorial
Volume 7 MII~STD-1750 Tutorial
Volume 8 MI1~STD-1815 Tutorial
Voluse 9 Navy Case Study Tutorial

PROCEEDINGS OF THE

2nd AFSC
STANDARDIZATION CONFERENCE

30 NOVEMBER - 2 DECEMBER 1982

DAYTON CONVENTION CENTER

DAYTON, OHIO
Sponsored by: Hosted by:
Air Force Systems Command Aeronautical Systems Division

rAE o - e

FOREWORD

THE UNITED STATES AIR FORCE HAS COMMITTED ITSELF TO “STANDARDIZATION."
THE THEME OF THIS YEAR'S CONFERENCE IS "RATIONAL STANDARDIZATION,' AND WE
HAVE EXPANDED THE SCOPE TO INCLUDE US ARMY, US NAVY AND NATO PERSPECTIVES
ON ONGOING DOD INITIATIVES IN THIS IMPORTANT AREA.

WHY DOES THE AIR FORCE SYSTEMS COMMAND SPONSOR THESE CONFERENCES?
BECAUSE WE BELIEVE THAT THE COMMUNICATIONS GENERATED BY THESE GET-TOGETHERS
IMPROVE THE ACCEPTANCE OF QUR NEW STANDARDS AND FOSTERS EARLIER, SUCCESSFUL
IMPLEMENTATION IN NUMEROUS APPLICATIONS. WE WANT ALL PARTIES AFFECTED BY
THESE STANDARDS TO KNOW JUST WHAT IS AVAILABLE TO SUPPORT THEM: THE
HARDWARE; THE COMPLIANCE TESTING; THE TOOLS NECESSARY TO FACILITATE DESIGN,
ETC. WE ALSO BELIEVE THAT FEEDBACK FROM PEOPLE WHO HAVE USED THEM IS
ESSENTIAL TO OUR CONTINUED EFFORTS TO IMPROVE OUR STANDARDIZATION PROCESS.
WE HOPE TO LEARN FROM OUR SUCCESSES AND OUR FAILURES; BUT FIRST, WE MUST
KNOW WHAT THESE ARE AND WE COUNT ON YOU TO TELL US.

AS WE DID IN 1980, WE ARE FOCUSING OUR PRESENTATIONS ON GOVERNMENT
AND INDUSTRY EXECUTIVES, MANAGERS, AND ENGINEERS AND OUR GOAL IS TO
EDUCATE RATHER THAN PRESENT DETAILED TECHNICAL MATERIAL. WE ARE STRIVING
TO PRESENT, IN A SINGLE FORUM, THE TOTAL AFSC STANDARDIZATION PICTURE FROM
POLICY TO IMPLEMENTATION. WE HOPE THIS INSIGHT WILL ENABLE ALL OF YOU TO
BETTER UNDERSTAND THE "WHY'S AND WHEREFORE'S" OF OUR CURRENT EMPHASIS ON
THIS SUBJECT.

MANY THANKS TO A DEDICATED TEAM FROM THE DIRECTORATE OF AVIONICS
ENGINEERING FOR ORGANIZING THIS CONFERENCE; FROM THE OUTSTANDING TECHNICAL

PROGRAM TO THE UNGLAMOROUS DETAILS NEEDED TO MAKE YOUR VISIT TO DAYTON, OHIO

A PLEASANT ONE. THANKS ALSO TO ALL THE MODERATORS, SPEAKERS AND EXHIBITORS
WHO RESPONDED IN SUCH A TIMELY MANNER TO ALL OF OUR PLEAS FOR ASSISTANCE.

Accession For

A e s ovar P
ROBERT P. LAVOIE, COL, USAF DTIC T'® : v
DIRECTOR OF AVIONICS ENGINEERING Unoaen: - o048

DEPUTY FOR ENGINEERING Just .. ‘

Ter

oy
91

iii

CEPARTMENT CF THE AIR FORCE

MILSZUARTERS 4R FORTEI SYSTIWS SC4MAND
ANTRZIANS AIR SCRCEI 32S% SC 20234

28 AUG 1982

1 4

Second AFSC Standardization Conference

ASp/CC

1. Since the highly successful standardization conference hosted by ASD in
1980, significant technological advancements have occurred. Integration of
the standards into weapon systems has become a reality. As a result, we have
many "lessons learned® and cost/benefit analyses that should be shared within
the tri-service community. Also, this would be a good opportunity to update
current and potential "users." Therefore, I endorse the organization of the
Second AFSC Standardization Conference.

2. This conference should cover the current accepted standards, results of
recent congressional actions, and standards planned for the future. We should
provide the latest information on policy, system applications, and lessons
learned. The agenda should acconmodate both government and industry inputs
that criticize as well as support cur efforts. Experts fram the tri-service
arena should be invited to present papers on the various topics. Our AFSC
project officer, Maj David Hammond, BQ AFSC/ALR, AUTOVON 858-5731, is prepared
to assist.

AW L0

ROBERT M. BOND, Lt Gen, USAE
Vicz Ccmmander

MIL-STD~-1815
ADA HIGH ORDER LANGUAGE

Instructor: Maj. Richard E. Bolz
U.S. Air Force Academy

ABSTRACT

This tutorial will discuss the development history, design and
implementation of Mjil Std 1815 (the Ada programming language). The
syntax and semantics of the language will be covered in overview fashion
with emphasis on data typing and the use of Ada as an object-oriented

design language.

BIOGRAPHY

Major Richard E. Bolz has earned the BS and MS in Computer Science
from Penn State University and has been a member of the Computer Science
Department at the U.S. Air Force Academy since 1973. He is the

co-developer of 'Software Engineering with Ada', A 4-day course for

managers, analysts, designers and programmers.

4

perrooutdd onorsse comen |
Lo FETRTY B

Software Engineering with Ada

As long as there were no
machines, pProgramming was nNno
problem at all; when we had a
fFfew wealk computers, pﬁpgfamming
became & mild pFoblem and mnmnow
that we have giganmntic computer s,
progr-amming has become an
equally giganmntic problem. Inmn
this sense the electronic
irmdustry has Nmnot solved a singles
problem, it has omnly created
them — it has created the

problem of using its produact.

E. W. Dijkstra

Turing Amard Lecture, 1972

¢

PErnubutad on os sin comen
L P

Software Engineering with Ada

SYMFPTOMS OF THE SOFTWARE CRISIS

2 e ma@appear in the form of smsoft—

war-e that is MmMoNn—responsi ve

to user needs., urnrel i able,

excessively expensi ve, wurn—

timel v, imnflexible, diffFficult

to mainmntainm, and mnot reusable. *

David Fisher

Introduction

P —

¢

ru-nnim\fu'b’«"m DrSSecomeEn

Software Engineering with Ada

AS A& REACTION TO THE SOFTWARE

CRISIS, THE U.S. DEFPARTMENT OF

DEFENSE SFPFONSORED THE DEVELORP—
MENT OF THE ADA PROGRAMMING

LANGUAGE AND ITS ENVIRONMENT

Introduction

Software Engineering with Ada : -

THE ADA CULTURE

* A PROGRAMMING L ANGUAGE

]

* A PROGRANMMING ENVIRONMENT

Fernodutad on orsse comen |
¥ ey e

e, M

X A WAY OF THINKING

Introduction

- Lo

]

’r,v-nubu\f(b ON IR SSe comrn
- vy

Software Engineering with Ada

REFPRESENTS A ““major advance

inm p:r-cag;r-éan1ﬁ1i.r1q; techmologys

brinmnging
ideas on
coher-ent

the real

Progr ammer S .

together the best
the subject inm a

way designed to meet
rmreeds of practical

e I. €. Pyle

IS A LLANGUAGE THAT DIRECTLY

EMBODIES AND ENFORCES MODERN

SOFTWARE ENGINEERING

FPRINCIPFPLES

Introduction

\

>

PEPRODUEED b o0 350 comg R

LFT2Y

WA v

Software Engineering with Ada

ABSTRACTION

b

EXTRACT ESSENTIAL DETAILS

oMmMIT INESSENTIAL. DETAILS

EACH LEVEL OF DECOM—
POSITION REPRESENTS aN
ABSTRACT I ON

EACH LEVEL MUST BE COMPLETL.Y
UNDERSTOOD AS a UNIT

OUR VIEW OF THE WORLD FORMS

LADDERS OF ABSTRACTION

Software Development Methodol ogies

%

Software Engineering with Ada

R P TR A

INFORMATION HIDING

* MAKE DETAILS OF AN IMPLE—

MENTATION INACCESSIPBLE

x ENFORCE DEFINED INTERFACES

x FOCUS ON THE ABSTRACTION

f"'"“'o"}ibi"‘ D3SO COrT R

OF AN OBJECT BY SUPRESSING

THE DETAILS

x PREVENT HIGH LEVEL DECISIONS
FROM BEING BASED ON LOW

LEVEL CHARACTERISTICS

Software Development Methodologi .os

7

Software Engineering with Ada

FROBLEM SFACE
EC
DATA RESULTS

REAL WORLD OBJECTS
AND OPERATIONS

REAL WORLD ALGORITHM { REAL WORLD OBJECTS

THE FROGRAMMER’ S . ')
i *oRESENTATION HUMAN INTERPRETATION
¥ THE FROBLEM OF RESULTS

('m

|
l
|
l

dcenon ’QMAH(.‘Z::';‘»,’? L5

NCEPRODUILE 1) ON OF $33 COME 8
- - . -
-

COMPUTER ALGORITHM
ROGRAMMING LANGUQTX

OBJECTS AND OFERATION

. SOLUTION SPACE

From the Frogramming Languége Landscape by Henry Ledgard and Michaei Marce

(c) 1981 Science Research Rssociates, Inc. Reproduced by permission of
the publisher

tiy

Figure S5-1: Model for a Typical Proqramming.Task

8 Dbject~oriented Design

Software Engineering with Ada

ADA DESIGN GOALS

RECOGNITION OF THE IMPOR—

{

TANCE OF PROGRAM REL IABILITY

AND MAINTAINABIL ITY

CONCERN FOR FPROGRAMMING

PEPRODUYED M 0t 350 Cumen |

AS & HUMAN ACTINVITY

x EFFICIENCY

An Overview of the Language

K\

axK

)

*

M c o . o
. fﬁ"““buw ONDESSE comEn |
o REP YN

Software Engineering with Ada

LANGUAGE REQUIREMENTS

(STEEL. MAN)

X ST RUCTURED CONSTRUCTS

STRONG TYFPING

RELATIVE AND ABSOLUTE

PRECISION SPECIFICATION

INFORMATION HIDING AND

DATA ABSTRACTION
CONCURRENT PROCESS ING
EXCEPTION HANDL ING
GENERIC DEFINITION

MACHINE DEFPENDENT

FACILITIES

An Dverview of the Language

oo i

PLEHODUTED oM D s30 comp

Software Engineering with Ada

ADA FROM THE TOF DOWN

x ADA SYSTEMS ARE COMPOSED OF

—— SUBPROGRAMS
-~ PACKAGES

-~ TASKS

* ALL PROGRAM UNITS HAVE A
TWO FPART STRUCTURE

~— SPECIFICATION (VISIBLE PART)
~— BODY (HIDDEN PART)

An Overview of the Language

n

Software Engineering with Ada

(X}

oAt g At T
VI T8 S50 (Y

o A
r._ﬁm.é:: ‘u‘.

.

z.
-
Y
”~
-
2
<
-
=
-
=
=
=

Figure &6~1: Symbol for an Undefined Entity

An Overview of the Language
12

SUERFROGRAM SPECIFICATION

N

. rn‘nmtn‘lﬁbn s reen |

ngenomIes PTG IR SO AT) L1}

SURFROGRAM EBODY

Figure &-2: Symbol for an Ada Subprogram

HCPAODA [D ON DI 958 comen

r.‘,-u..m:\-.ib' PN W SSE comEn |
:

TASK SPECIFICATION

\‘

TASK BODY

Figure 6-3: Symbol for an Ada Task

SN
NEAENEN /
/// //

15

n
+
L
L]
Q.
[}
—4
n
rd
]
el
>
L
4+
4
3
[}
o
w
U
[
'R
T
\
0
1]
L
3
[]
Nl
W

2600 485 00 W Qi nidowa'sd

W A0 #1510 ND 01208 TN

PACKAGE SFECIFICATION ’

BIECTS AND TYPES

T e r—

)

FOPrupu¥ad bR Orssn compa

FACKAGE EODY

NEPROLITE 1 ON 1 358 CUME R

Figure &-3: Symbol for an Ada Faciage

Software Engineering with Ada . ‘

P ‘b
[I
; N
£ |
i \
.% 3
£ i
@ - |
“
s & !
i iy S— ;
f - i
|
Figure 6-¢é: Communicating Ada Tasks
|]
!
?
| 17 An Overview of the Language

HEPRODICED ON D) 5P COIML M

PEPPUDUYED 01 or S50 comrn

FACEAGE

SUBFROGRAM

Figure 6-7: Nestirng Ada Frogram Units

18

IEPROPTCE N ON OIS CoML Y

fi]

PLORODUYER Om 0f s3n e mpn

FACKAGE

SUBFROGRAM

SUEFROGRAM

(MAIN) SUEPROGRAM

Figure 6-8: An Ada Program from the Top Down

Software Engineering with Ada L

ADA FROM THE BOTTOM UP

X ALl CONSTRUCTS ARE BUILT
FROM A& STAaNDARD OR EXTENDED

CHARACTER SET (ASCII)>

: ¥ LEXICAL UNITS INCLUDE
:]
2 ~— IDENTIFIERS !
Z |
7 ~—— NUMERIC LITERALS ;
5 ,
H —— CHARACTER LITERALS
-~ ;
{
-- STRINGS ‘
—— DELIMITERS E
-~ CDMMENTS ’

An Dverview of the Language

20

Pt b onersine, oen

Software Engineering with Ada

ADA RESERVED

abort
abs
accept
access
all
and

array

- at

begin

body

case

constant

declare
del ay
delta
digits

do

else
elsif

end

entry
exception

exit

for

function

WORDS

generic

goto

if

in

is

limited

loop

mod

new

not

null

21

of

others

package
pragma
private

praocedure

raise
raége
record
rem
rénames

return

reverse

An Overview of the Language

select
separate

subtype

task
terminate
then

type
use
when
while

with

Xxor

Y

PEroupr B ONOF s comen '

Software Engineering with Ada

TYFPE DEFINITIONS

X A TYPE CHARACTERIZES

—— A SET OF VALUES
—— A SET OF OPERATIONS APPLICABLE TO THOSE VALUES

* ADA CLASSES OF TYPRPES

INCLUDE

—— SCALAR
- INTEGER
- REAL
— ENUMERATION

—— COMPOSITE
~ ARRAY
-~ RECORD

—- ACCESS

—— PRIVATE

-- SUBTYPE AND DERIVED TYPE

An Overview of the Language

parm DU UG N e g5 comen l‘
. e,

Software Engineering with Ada

DECLARATIONS

CREATE OBJECTS OF A GIVEN

TVYFE

DECLARATIONS FERMIT

—— VARIABLES
—— CONSTANTS

—— DYNAMIC CREATION

An Overview of the Language

23

Software Engineering with Ada

NAMES

¥ DENOTE DECLARED ENTITIES

x MAaY BE OVERLOADED

Peruoputud onoe sse comrn

X ARE STRONGL Y TYFPED

aAn Overview of the Language

"

PLenopubEd Gnis sse compn

Software Engineering with Ada

OFERATORS AND EXPRESSIONS

X PREDEFINED OFPERATORS INCLUDE

—— EXPONENTIATING

MULTIPLYING

UNARY

ADDING

RELATIONAL

LOGICAL

MEMBERSHIP

b 2

{=

and

and then

in

*x OFPERATOR SYMBOLS

OVERIL_.OADED

An Overview of the Language

25

or xor
or else

not in

MAaY BE

PEPBODUER b 0e S50 comen ,

Software Engineering with Ada

STATEMENTS
|

X PROVIDE CONTROL. AND ACTION \

* abDa S TATEMENTS INCL.UDE
— SEQUENTIAL
— ASSIGNMENT
- NULL
- SUBPROGRAM CALL
- RETURN
- BLOCK
~— CONDITIONAL
- IF
- CASE
— ITERATIVE
- LOOP
- EXIT
—— OTHER STATEMENTS

- ENTRY CALL - RAISE
- ACCEPT - CODE
= ABORT - 6070
-~ DELAY

- SELECT

An Overview of the Language
26

Software Engineering with Ada

SUBFPROGRAMS

x ARE

i

x ADA

PROCEDURES

Farnomured onoesse comrn

FUNCTIONS

27

THE BAasSIiIC EXECUTABLE UNIT

SUBFPFROGRAMS INCLUDE

An Overview of the Language

4

Peraut B DM e sse comrn |
e

Software Engineering with Ada

FPACKAGES

* PERMIT THE COLLECTION OF

GROUPS OF LOGICALLY RELATED

ENTITIES

* DI RECTLY SUPFPORT INFORMAT ION

HIDING AND ABSTRACTION

x PERMIT AN I NDUSTRY OF

SOF TWARE MODULES

An Overview of the Language

i

PErnoured onor ssocomrn

Software Engineering with Ada

TASKS

X PERMIT COMMUNICATING

SEQUENTIAL FPROCESSES

*x USE THE CONCEFPT OF A

RENDEZVOUS

*x S FECIAL STATEMENTS ARE

PROVIDED FOR TASK CONTROLWL

An Overview of the Language
29

‘

Prrnee .},“b oM se comen

Software Engineering with Ada y

EXCEFPTION HANDL ING

X FPERMITS ERRORS TO BE
CAFPTURED FOR GRACEFUL

DEGRADAT ION

x IS BLOCK STRUCTURED

X EXCEFTIONS MAY BE FPRE—
DEFINED OR USER DEF INED

An Overview of the Language

Software Engineering with Ada
!

GENERIC FPROGRAM UNITS

DEFINE HIGH LEVEL TEMPLATES

¢

* PERMIT FPARAMETERIZATION
OF SUBPROGRAMS AND FPACKAGES

ENCOURAGE GENERAL PFPURFOSE

perm DUYAD Gre o0 0 Comgn

SOFTWARE LIBRARIES

An Overview of the Language

31

fﬂ"""b"*l‘b“" ™SSP comn

Software Engineering with Ada

FREPRESENTATION SPECIFICATIONS

x FPERMIT MAPFPING THE LANGUAGE

TO THE UNDERLYING MACHINE

* INCLUDE SFPECIFICATION OF

—— LENGTH
~— ENUMERATION TYPE REPRESENTATION

~— RECORD TYPE REPRESENTATION

—~— ADDRESS SPECIFICATION

*x FPERMIT ACCESS TO

—- INTERRUPTS
IMPLEMENTATION DEPENDENT FEATURES

An Overview of the Language
32

Software Engineering with Ada

INFPUT /OUTPUT

ACHIEVED THROUGH THE PACKAGE

FACIL ITY

‘.

PREDEFINED I/70 FPACKAGES

—~ HIGH-LEVEL I0

— SERUENTIAL_ID

!u,r-num;h“\ M SSe Compn

- DIRECT_IO
- TEXT_IOD

~— LOW_LEVEL IO

An Overview of the Language

33

i

PLrnoputed o o ssecomgen

Software Engineering with Ada

SuUMMARY OF LANGUAGE

CHARACTERISTICS

GENERAL. FPURFOSE

EMPFPHASIS ON RELIABILITY

AND MAINTAINABILITY

DIRECTED TOWARD EFFICIENT
USE FOR LARGE. FREQUENTL.Y

MODIFIED SYSTEMS

INCORPORATES THE BEST OF

EXISTING SOFTWARE TECHNOL OGY

ENCOURAGES AND ENFORCES
SOFTWARE ENGINEERING

PRINCIFPLES

An Overview of the Language

Scftware Engineering with Ada

Imn the developmernt oFf our under—
stamnding of complex phemnomena,

the most powerful tool available

to the human inmntel lect is

abstraction. Abstraction arises

oo e,

from a recogmnitiomn of simil ar—

ities between certainmn objects.,

situationmns or processes in the

FEOronut) onore s

real wor-ld, anmnd the decisiomn to
conmncentrate omn these similar—
ities, arnd to igrnmnore the

differences..

C.A.R. Hoare

Notes aon Data Structuring

35

{

r;mmbu\’u’b'c'm 0F 3sr comen

Software Engineering with Ada

DEFINE THE FPROELEM

* GIVEN a BINARY TREE,

COUNT ITS LEAVES

The First Design Praoblem

Software Engineering with Ada

4

1 PETnrnY o s nFsenatmin

HEPNOVUICT 1) D8 OSSP COIE I

V-
)

Figure 7-1: A Rinary Tree

The First Design Problem
37 - '

-/ A

Software Engineering with Ada

ey, e

COUNTING LEAVES

* IF THE TREE IS A LEAF

i

NUMBER_OF _LEAVES (TREE) = 1

x IF THE TREE CONSISTS :

OF TWwWO SUBTREES

Fernuenutad onorsse comen |

NUMBER_OF _LEAVES (TREE) =
NUMBER_OF _LEAVES (R1GHT_SUBTREE) +

NUMBER_OF _LEAVES (LEFT_SUBTREE)

The First Design Problem

38

Software Engineering with Ada

\

ASSUMPT IONS ABOUT THE SOLUTION

X THE IMPLEMENTATION
LaNGUAGE CONTAINS BASIC

[

CONTROL STRUCTURES

-3 -— SEQUENTIAL
2

é; -~ CONDITIONAL
LN

& -~ ITERATIVE
£

x* THERE ARE NO FPREDEF INED
OBJECTS OR OFPERATIONS

x* THE IMPLEMENTATION
LANGUAGE HAS FACILITIES
FOR CREATING O0OBJECTS

AND OFERATIONS

-

The First Design Problea

Rerneouddi bnpe sse comen

Software Engineering with Ada

DEVELOF AN INFORMAL STRATEGY

KEEP A PILE OF THE PARTS OF THE TREE THAT HAVE NOT YET

BEEN COUNTED. INITIALLY, GET A TREE AND PUT IT ON THE

EMPTY PILE; THE COUNT OF THE LEAVES IS INITIALLY SET TO

ZERD. AS LONG AS THE PILE IS NOT EMPTY, REPEATEDLY TAKE

A TREE OFF THE PILE AND EXAMINE IT. IF THE TREE CONSISTS

OF A SINGLE LEAF, THEN INCREMENT THE LEAF COUNTER AND

THROW AWAY THAT TREE.

IF THE TREE 1S NOT A SINGLE LEAF

BUT INSTEAD CONSISTS OF TWO SUBTREES, SPLIT THE TREE

INTO ITS LEFT AND RIGHT SUBTREES AND PUT THEM BACK ON

THE PILE. ONCE THE PILE IS EMPTY, DISPLAY-THE COUNT OF

THE LEAVES.

The First Design Problem

HLFNOHULL D OR OF LyP Cepnt b

. PG o s e
o .

)

[y
[V
.

Software Engineering with Ada

Tale & tree off the pile
and examine it

Since 1t is a leaf, count it

and throw away the tree

17. Since the pile is empty,
we can display the count

1)

(2]

: 1)

Figure 7-32: Example of Counting the Leaves

4]

- The First Design Problem

1. Initially:

2. Take a tree off the pile
and examine it ’

. Since it i€ a tree. split it
- and return the subtrees

i

Take a tree off the pile
and examine it

Since it is a leaf. count it
and throw away the tree

{ l"'.m*’bo‘u‘.“”“‘"hincn :

neene (4% g ON DI SSPCOITE Y,

4. Take a tree off the nile
and examine it

7. Since it is a tree, split it
and return the subtrees

8. Take a tree cff the pile
and examine it

S. Cince it is a leaf. count
and throw away the tree

it

LEAF_COUNT

42

1

o

]

t)

)

TREE

o

”

¥

L)

4

-t

OOOO@E®OE !

o ——

Software Engineering with Ada

FORMAL. IZE THE STRATEGY
IDENTIFY OBJECTS AND THEIR

ATTRIRUTES

KEEP A PILE OF THE PARTS OF THE TREE THAT HAVE NOT YET

¢

BEEN COUNTED. INITIALLY, GET A TREE AND PUT 1T ON THE

EMPTY PILE ; THE COUNT OF THE LEAVES IS INITIALLY SET TO

L N LI S e S —— R R

ZERO. AS LONG AS THE PILE IS NOT EMPTY, REPEATEDLY TAKE

A TREE OFF THE PILE AND EXAMINE 1T. IF THE TREE CONSISTS

LErPOD A NE N e sse compn

OF A SINGLE LEAF , THEN INCREMENT THE LEAF COUNTER AND

THROW AWAY THAT TREE. IF THE TREE IS NOT A SINGLE LEAF

BUT INSTEAD CONSISTS OF TWO SUBTREES, SPLIT THE TREE ' 5

P N

INTO ITS LEFT AND RIGHT SUBTREES AND PUT THEM BACK ON

P24 RA} 3

THE PILE. ONCE THE PILE IS EMPTY, DISPLAY THE COUNT OF

THE LEAVES.

The First Design Problem

43

Software Engineering with Ada

THE OBJECTS OF INTEREST ARE

* LEAF_COUNT

*x FPILE

PATOUDOYUY oM OF 358 coomy g

* LEFT_SUBTREE
RIGHT _SUBTREE

TREE

’

l The First Design Problem

44

Software Engineeripng with Ada

FORMAL. IZE THE STRATEGY

IDENTIFY OFERATIONS ON

THE OBJECTS

KEEP A PILE OF THE PARTS OF THE TREE THAT HAVE NOT YET
BEEN COUNTED. INITIALLY, GET A TREE AND PUT IT ON THE

EMPTY PILE; THE COUNT OF THE LEAVES IS INITIALLY SET TO

ZERO. AS LONG AS THE PILE IS NOT EMPTY, REPEATEDLY TAKE ’

A TREE OFF THE PILE AND EXAMINE IT. IF THE TREE CODNSISTS

pren PUYU N e sse e pa
.

R~ 4B~ LT

THROW AWAY THAT TREE. IF THE TREE IS NOT A SINGLE LEAF
BUT INSTEAD CONSISTS OF TWQ SUBTREES, SPLIT THE TREE
INTO I1TS LEFT AND RIGHT SUBTREES AND PUT THEM BACK ON

THE PILE. ONCE THE PILE 1S EMPTY, DISPLAY THE COUNT OF

THE LEAVES.

The First Design Problem
45

Software Engineering with Ada

THE OFERATIONS OF

*x LEAF_COUNT

—— DISPLAY
—— INCREMENT.

-~ ZERO

X FPILE

IS_NOT_EMPTY

-- PUT

PrrrGOVrE N OFss comen
!
I

-~ PUT_INITIAL

— TAKE

* LEFT_SUBTREE
RIGHT _ _SUBTREE

TREE

-- GET_INITIAL
—— 1S_SINGLE_LEAF

~— THROW_AWAY

INTEREST ARE

The First Design Problem

Software Engineering with Ada

COUNT_LEAVES_ON_EINARY _TREE

|

. PeruAdS hrne sue comen |
e D

C FILE_T¥FE)

[[TS_mOT_ErFTY | '
COUNTER_FACHAGE

[FUT |

(COUNTER_TYFE)

[FUT_INITIAL |

[DISFLAY |

T
r TAKE N

[

|
[INCREMENT]
|

™ ZERQ |
L

Decicn of COUNT_LEAVES_ON_EINARY_TREE

T
s P

Figure
The First Design Problem

47

E \.

;1uh----n--—----------un--'“

Software Engineering with Ada

FORMAL.IZE THE STRATEGY

ESTABLISH THE INTERFACES

package COUNTER_PACKAGE is

type COUNTER_TYPE is limited private;

min
i

procedure DISPLAY (COUNTER : in COUNTER_TYPE) ;

nen

: procedure INCREMENT (COUNTER : in out COUNTER_TYPE);
v procedure ZERC (COUNTER : out COUNTER_TYPE) ;
g

{ private

&

end COUNTER_PACKAGE;

The First Design Problem

Software Engineeriag with Ada

FORMALIZE THE STRATEGY

ESTABLISH THE INTERFACES

with TREE_PACKAGE;

package PILE_PACKAGE is

g type PILE_TYPE is limited private;

g function IS_NOT_EMPTY(PILE : in

§ procedure PUT (TREE : in out
i ON : in out

procedure PUT_INITIAL (TREE in out

ON in out

procedure TAKE (TREE : out
OFF : in out
private

end PILE_PACKAGE;

PILE_TYPE) return BOOLEAN;
TREE_PACKAGE. TREE_TYPE;
PILE_TYPE);
TREE_PACKAGE . TREE_TYPE;
PILE_TYPE);
TREE_PACKAGE.TREE_TYPE;

PILE_TYPE);

The First Design Prablem

Software Engineering with Ada

FORMAL IZE THE STRATEGY
ESTABLISH THE INTERFACES

package TREE_PACKAGE is

type TREE_TYPE is limited private;

.

5 procedure GET_INITIAL (TREE : out fREE‘TYPE);
g function IS_SINGLE_LEAF (TREE : in TREE_TYPE)
§ return BOOLEAN;
g. procedure SPLIT (TREE : in out TREE_TYPE;
-
LEFT_INTO : out TREE_TYPE;
RIGHT_INTO : out TREE_TYPE) ;
procedure THROW_AWAY ({REE : in out TREE_TYPE);

private

end TREE_PACKAGE;

The First Design Problem

50

Software Engineering with Ada

FORMAL IZE THE STRATEGY

IMFPLEMENT THE OFERATIONS

with COUNTER_PACKAGE, PILE_PACKAGE, TREE_PACKAGE;

I

use

LEAF _COUNT
LEFT_SUBTREE

PILE

!f.nm:bu}'(b(}uD.g;n(,),.,(n *
o,

RIGHT_SUBTREE

TREE

COUNTER_PACKAGE,

procedure CDUN?_

PILE_PACKAGE,
LEAVES _ON_BINARY_TREE is

: COUNTER_TYPE;

: TREE_TYPE;

PILE_TYPE;

: TREE_TYPE;

TREE_TYPE;

51

TREE_PACKAGE;

The First Design Problem

rv——

.

PErnut 6 on e sse comen
v

Saftware Engineering with Ada

pegin
GET_INITIAL(TREE);
PUT_INITIAL (TREE, ON => PILE);
ZERQ(LEAF_COUNT) 5
~while IS_NOT_EMPTY(PILE)
loop
TAKE(TREE, OFF => PILE);
if IS_SINGLE_LEAF (TREE) then
INCREMENT (LEAF _COUNT) ;
THROW_AWAY (TREE) ;
else

SPLIT(TREE,

LEFT_INTO => LEFT_SUBTREE,

RIGHT_INTO => RIGHT_SUBTREE);

PUT (LEFT_SUBTREE, ON => PILE};

PUT (RIGHT_SUBTREE, ON => PILE);

end if;
end loop;
DISPLAY (LEAF_COUNT) ;

end COUNT_LEAVES_ON_BINARY_TREE;

52

The First Design Problem

Software Engineering with Ada i

DATA TYFPES ADDRESS

X MAINTAINABIL ITY

— THE NEED TO DESCRIBE OBJECTS WITH A FACTORIZATION

OF PROPERTIES

*x READABILITY

-~ THE NEED TO SAY SOMETHING ABOUT THE PROPERTIES

: OF DBJECTS

PErRODUYEE b oo 350 comen |
U ity

* RELLIABIL.ITY

-— THE NEED TO GUARANTEE THAT PROPERTIES OF

OBJECTS ARE NOT VIDLATED

* REDUCTION OF COMPLEXITY

~— THE NEED TO HIDE IMPLEMENTATION DETAILS

Data Abstraction and Ada’s Types
53

Software Engineering with Ada

A TYFPE CHARACTERIZES

* A SET OF VAL UES

i

X A SET OF OFPERATIONS
ARPFFPFLICABLE TO OBJECTS

OF THE NAMED TVYPE

I'L'"«'mh'b ON e s comen |

Data Abstraction and Ada’s Types

PErrinub S om e sse comr
w i

aDa

Software Engineering with Ada

CLASSES OF TYPES INCLUDE
!

*x SCALaAaR

— THE VALUES HAVE NO COMPONENTS

x COMFPOSITE

-— THE VALUES CONSIST OF COMPONENT OBJECTS

* ACCESS

— THE VALUES PROVIDE ACCESS TO OTHER OBJECTS

x PRIVATE

~— THE VALUES ARE NOT KNOWN TO A USER

SUBTYPFPE AND DERIVED TYFPFPE

x TASK TYFRPE

Data Abstraction and Ada’s Types
55

PEFNODVYEY oM OF o compr

INTEGER TVYFPES

Software Engineering with Ada

x INTRODUCE A SET OF
CONSECUTIVE EXACT INTEGERS

* USER—DEFINED TVYPES

type
type
type

type

LINE_COUNT is
INDEX is
FATHOM is

TOTAL_ELEMENTS is

range g .. b6;
range SS .. 77;
range -S@666 .. ©6;

range 1 .. (ROWSXCOLUMNS);

Data Abstraction and Ada’s Types

56

f REPRESENTING LOWER AND UPPER BOUNDS

é" * SET OF OPERATIONS j

E ——- ADDING + - %H

L ‘
— ASSIGNMENT t= '
—— EXPONENTIATING 13

Software Engineering with Ada - i
!

f—

SUMMARY OF INTEGER DATA TYFRPES
X SET OF VALUES
~— A SET OF CONSECUTIVE INTEGERS
X S TRUCTURE

—— range L .. U

WHERE L AND U ARE STATIC EXPRESSIONS

—— EXPLICIT CDNVERSION

—-—~ MEMBERSHIP in not in

—— MULTIPLYING ¢ / mod rem

-— QUALIFICATION

-~ RELATIONAL = /= < <=
> =

—= UNARY + - abs

Data Abstraction and Ada’s Types

57

R LT 2y R

Software Engineering with Ada

} \ } Yool lIHNﬂWiH\ \ | \ \ t
v T Rl T I K‘_‘/]_I i i i \
-6] -4 -2 =2 -1 é 4 - 3 é 7
vy he g @RIY AT IR J | Ll | |
T 1 ! \

o, .,

Figure 8-T:

’

/

S

Floating Foint Model Numbers

Data Abstraction and Ada’s Types
58

Software Engineering with Ada)

: C v NN ' m
T 1 lll]'q]',”ij' 'l;imjllll|_l‘l|)“' sy bty .
e LI S D S

T T
) I ~
(\ \) i i 1 T
-— - -— - > ’
& S 4 et =2 ~1 N \2 s .4 g & 7
.s-‘.
14
£
e
:
i? ""';'YL_I'LL!l| %UlIlelJl‘lAJJ-)lj-lliltll
3 T 1
3 .
& @, H.5 1.4
é
Fi £-9.] '
Figure ©-4: Fixed Foint Model Numbers l
¥
3
A] E‘
L) rJ‘
J

Data Abstraction and Ada’s Types
59

Software Engineering with Ada

SUMMARY OF REAL DATA TYFRPES
X SET OF VAl ueEs

-— APPROXIMATIONS TO THE REAL NUMBERS

X STRUCTURE

—~-~ digits N range L .. U
SPECIFIES RELATIVE ACCURACY
WHERE N IS A STATIC INTEGER REPRESENTING
THE NUMBER OF SIGNIFICANT DIGITS AND

WHERE L. AND U ARE STATIC EXPRESSIONS

J LG CT0 £ 7. S R TP

REPRESENTING LOWER AND UPPER BOUNDS
~— delta N range L .. U

SPECIFIES ABSOLUTE ACCURACY

WHERE N IS A STATIC REAL VALUE

REPRESENTING THE DELTA AND

WHERE L AND U ARE STATIC EXPRESSIONS

REPRESENTING LOWER AND UPPER BOUNDS

VI —

Data Abstraction and Ada’'s Types

! 60

B

e

Software Engineering with Ada

x SET OF OFPERAT IONS

—-— ADDING + -
~— ASSIGNMENT =
—— EXPONENTIATING X

~— EXPLICIT CONVERSION

-— MEMBERSHIP in not in
E ~— MULTIPLYING b 4 / mod rem
: ~— QUALIFICATION
9 ~— RELATIDNAL = /= < <=
> =
Z

~— UNARY + - abs

X AT TRIBUTES

~— FIXED POINT ATTRIBUTES

ADDRESS SIZE
BASE MACHINE _OVERFLOWS
FIRST SAFE_SMALL
LAST SAFE_LARGE

-

Data Abstraction and Ada’s Types
61

' mp.-i.‘.. e

Software Engineering with Ada

—— FLOATING POINT ATTRIBUTES

ADDRESS MACHINE_MANTISSA
BASE MACHINE_OVERFLOWS
DIGITS MACHINE _RADIX
EMAX MACHINE _ROUNDS
EPSILON MANTISSA

FIRST SAFE_EMAX

LARGE SAFE_LARGE

LAST SAFE_SMALL

MACHINE _EMAX SIZE

MACHINE _EMIN SMALL

*x PREDEFINED TVYFPRPES

DURATION
FLOAT
LONG_FLDAT

SHORT _FLOAT

Data Abstraction and Ada"s Types
62

Software Engineering with Ada

ENUMERATION TVYFRPES

x* INTRODUCE AN ORDERED SET

OF DISTINCT VALUES

X USER—DEFINED TYPFRPES

type CARD_SUIT is (CLUBS, DIAMDNDS,

rl"""o‘l)"‘é NN OIS e

HEARTS, SPADES);

type GEAR_POSITION is (DOWN, UP);

type MOTOR_STATE is (OFF, FORWARD, REVERSE);

type HEX_DIGIT is ('a4’, ’B’, ’C’, *D*, ’E°, ’F’);

- e

Data Abstraction and Ada’s Types
63

prrmcoted on orsse i omin
,

Software Engineering with Ada

SUMMARY OF ENUMERATION TVYPRPES

X SET OF VAL UES

—— ORDERED SET OF DISTINCT VALUES

X STRUCTURE
— (€E_B, E_1, ... E_n)
WHERE E_i IS AN ORDERED ENUMERATION

LITERAL
x SET O0OF OFPERATIONS \

—— ASSIGNMENT =

-— MEMBERSHIP in not in

—— QUALIFICATION

—— RELATIONAL = /= < <=
> >=

Data Ahstraction and Ada’s Types

r"“" 'D"""‘“ P Son ¢ Inf R !

Software Engineering with Ada

X ATTRIBUTES

ADDRESS
BASE
FIRST
IMAGE
LAST

POS

PRED
SIZE
Succ
VAL
VALUE

WIDTH

* PFPREDEFINED TYFPES

BOOLEAN

CHARACTER

Data Abstraction and Ada’s Types
65

Software Engineering with Ada

COMFQOESITE TYFE

PR LYLNE SV 7 N AP

e e et e an

-- VALUES HAVE COMPOMENTS
-- INCLUDES

-= ARRAY TYFES

-- RECORD TYFES

Figure &-%: Composite Data.Types

Data Abstraction and Ada’s Types
66

Software Engineering with Ada

ARRAY TYFRPES

X INTRODUCE AN I NDEXED
COLLECTION OF SIMILAR TVYFRPES ,

X CONSTRAINED TYFPES

type GAME_BOARD is array (1 .. 8, 1 .. 8) of CHESS_PIECES;

type LIST is array (INTEGER range -186 .. 106) of FLOAT;
i type VECTOR is array (INTEGER range 1 .. MAXIMUM_INDEX)
of FI.DAT;

type LONG_ARRAY 1is array (EXTENDED_INDEX) of FLDAT;

prom -m}uz; e gen g,

type SHORT_ARRAY is array (EXTENDED_INDEX range 10 .. 49) of FLDAT;

type RECORD_OF_WORK is array (DAY range MONDAY .. FRIDAY) of HOURS;
type OVERTIME is array (DAY range SATURDAY .. SUNDAY) of HOURS; .

type FULL_WEEK is array (DAY) of HOURS;

X UNCONSTRAINED TYPRPES

type BIT_VECTOR is array(INDEX range <>) of BOOLEAN;

type MATRIX is Erray(INDEX range <>, INDEX range <>) of FLOAT:

Data Abstraction and Ada’s Types
67

Pernooub i on o ssocomen
.

Software Engineering with Ada

SUrMMMARY OF ARRAY TVYPES
X SET OF vVAaLuUuUeEes

—— INDEXED COULLECTION OF SIMILAR TYPES

X S TRUCTURE

—— array (INDEX...) of COMPONENT
AN UNCONSTRAINED ARRAY TYPE
WHERE INDEX... IS A LIST OF ;
UNCONSTRAINED DISCRETE TYPES
-~ array INDEX_CONSTRAINT of COMPONENT
A CONSTRAINED ARRAY TYPE
WHERE INDEX_CONSTRAINT IS A LIST

OF DISCRETE TYPES

Data Abstraction and Ada’s Types
68

i

ru-m:bu\'u.'b' ONDESSt comrR

Software Engineering with Ada

x SET

OF OFPERATIONS
ADDING &
AGGREGATES
ASSIGNMENT 1=

EXPLICIT CONVERSION

INDEX ING

LOGICAL and or xor

MEMBERSHIP in not in

QUALIFICATION

RELATIONAL = /= <
(= > >=

UNARY not

x ATTRIBUTES

ADDRESS LAST (J)
BASE LENGTH
FIRST LENGTH(J)
FIRST (I) RANGE
LAST S1ZE

x PREDEFINED TYFPFPES

STRING

Data Abstraction and Ada’s Types
69

Ttertg

f‘.""“m'}“5 oy b 8

Software Engineering with Ada

RECORD TVYFPES

*x INTRODUCE A COLLECTION
O~ (POTENT IALLY) DIFFERENT

COMFPONENT TYFPES

¥ SIMFRPLE RECORD TYPRPES

type DAY_OF_YEAR is
record

DAY INTEGER range 1 .. 31;

£ 13

MONTH : MONTH_NAME;

YEAR : NATURAL;

end records;

type CPU_FLAGS is

record

CARRY : BOOLEAN;

INTERRUPT : BOOLEAN;

NEGATIVE : BOOLEAN;

ZEROQ : BDOLEAN;

end record;

Data Abstraction and Ada’s Types

Software Engineering with Ada

DT e S50 g

pLen
<+

type CPU_STATE is

record

PRIORITY : INTEGER range & .. 7;

FLAG : CPU_FLAGS;

end record;

¥ DISCRIMINATED RECORDS

type SQUARE(SIDE : INTEGER := 4) is

record

MATRIX : SIMPLE_ARRAY(1 .. SIDE, 1

end record;

type TWO_SQUARES (LENGTH : INTEGER) is

record

FIRST : SQUARE (LENGTH);

SECOND : SQUARE (LENGTH) ;

end records;

Data Abstraction and Ada’s Types

7

‘

PLennoorkd onps syn comrn

Software Engineering with Ada

x¥ VARIANT RECORDS

type AIRCRAFT_RECORD(KIND : AIRCRAFT_ID := UNKNOWN) is

record
AIRSPEED : SPEED;
HEADI\IG : DIRECTION;
LATITUDE : COORDINATE;
LONGITITUDE : COORDINATE;
case KIND is
when CIVILIAN =>
null;
when MILITARY =>
CLASSIFICATION : MILITARY_TYPE;
SOURCE : COUNTRY;

when FOE | UNKNOWN =>
THREAT : THREAT_LEVEL;
end case;

end record;

Data Abstraction and Ada’s Types
72

P

e gy it

O

Saoftware Engineering with Ada

SuUMMARY OF RECORD TVYPRPES

x SET OF VAaLuEsS

-— COLLECTION OF (POTENTIALLY) DIFFERENT COMPDNENTS

X S TRUCTURE

T — record

imEa

camponent_list

end record

WHERE COMPONENT_LIST NAMES THE ELEMENTS OF

Prenomud id on e gen

THE RECORD

x SET OF OFPERATIONS

-- AGGREGATES

"

-~ ASSIGNMENT

—= EXPLICIT CONVERSION

—— MEMBERSHIP in not in

-— QUALIFICATION _
—— RELATIONAL = /= !
-- SELECTION

Data Abstraction and Ada’s Types
73

Ty R

WoOYRE Or e gy

P

X AT TRIBUTES

ADDRESS LAST_BIT

BASE POSITION
CONSTRAINED SI1ZE

FIRST_BIT

Software Engineering with Ada

Data Abstraction and Ada’s Types

74

Software Engineering with Ada

ACCESS VRLUE

!

DO P aad g oy Pty g

70 OTHER CBJECTS

n

-- YALUES FEOVIDE &CCEZE

Figure S-5: Access Data Type

Data Abstraction and Ada’s Types
75

Saoftware Engineering with Ada

ACCESS T VYPRPES

x FPROVIDE DYNAMIC QACCESS

TO OTHER OBJECTS
*X SIMPRPLE 7TVYrPRPES

type BUFFER is

record
MESSAGE : STRING(1 .. 18);

PRIORITY : INTEGER range 1 .. 106;

G ON oo

end record;

fooen

type BUFFER_POINTER is access BUFFER;
* INCOMPPLETE TYFRPES

type NODE;
type LINK is access NODE;
type NODE is

record

LEFT LINK;

VALUE : STRING(1 .. 5);

RIGHT : LINK;

end record;

Data Abstraction and Ada’s Types
76

Software Engineering with Ada

ACCEES CRJIECT

DESIGNATED OBRJECT CF

MESSAGE =% "—m——m———ee
FRIORITY

3

) ‘f‘""'&ﬁbﬂb‘»«'w'-/wﬁ)'ﬂ(n)

n
U
3
m
s
m
@]
—

»

YOUR_FACKET

DESICGNATED QBJECT DF TYFE BUFFER

REE = Y"+a4trtrars—a
RIT

Y o= 1l

-+ Relationship of Access Ualueé and Objects

Data Abstraction and Ada’s Types
77

—c - ——
DESIGNOGTED

fu'-‘rnbw\&\"iwrm [T T NT I,

Figure

Software Engineering with Ada

TCF _1OCE

"linge 1"

LEFT

DESIGNATED MODE CRJIECT

null null

&-%: Designating the Relaticnship of Ohjyects

Data Abstraction and Ada’s Types
78

R b

PPN Dl T

PR

e

Software Engineering with Ada

SUMMARY OF acceEsSS TVYPES

*x SET OF VAL ueEs

~— ACCESS VALUES TD DESIGNATED OBJECTS

X STRUCTURE

—— access subtype_indication

WHERE SUBTYPE_INDICATION IS THE TYPE OF

t

THE DESIGNATED OBJECT

*x SET OF OFPERATIONS

~— ALLOCATION

—— ASSIGNMENT

rqnnum'?u"; ON PSSP ComEn

—— EXPLICIT CONVERSION

—= INDEXING

—=— MEMBERSHIP in not in
—— QUALIFICATION

—-— RELATIDNAL = /=

—— SELECTION

* ATTRIBUTES

.

ADDRESS SIZE

BASE STORAGE _SIZE

Data Abstraction and Ada’s Types
79

[
IJ
4
[}

e r

Purie D\J‘It‘ DN s,

Software Engineering with Ada ‘

PRIVATE DATA TYPFRPES ,

x DEFINE AaAaBSTRACT DATA
TYFPES WHOSE VALUES ARE

HIDDERN FROM THE USER

x LIMITED PRIVATE TYFRPES

package PASSWORD is

type VALUE is limited privates

tfunction IS_VALID(CODE : in VALUE)
return BOOLEAN;
procedure SET (CODE ¢ out VALUE;

AUTHORIZATION_LEVEL : in NATURAL):

private

type VALUE is new STRING(1 .. 48);

end PASSWORD;

Data Abstraction and Ada’s Types i

PLrnupY S ON Of g5t cmrn

* FPRIVATE TVYPES

package RANDOM is

type NUMBER is private;

procedure SET(SEED : in INTEBER; VALUE : in out

Software Engineering with Ada

NUMBER) 3

function UNIFORM_RANDOM return NUMBER;

private
type NUMBER is

record
SEED_VALUE
VALUE

end record;

end RANDOM;

INTEGER;

FLOAT;

Data Abstraction and Ada’s Types
81

Saftware Engineering with Ada

SuUMMAaRY OF FPRIVATE DATA TVYPES

x SET OF vVvalLueEs

—-— HIDDEN FROM THE USER

X S TRUCTURE

—— HIDDEN FROM THE USER

X SET OF OFPERATIONS

i — EXPLICIT CONVERSION
z

5 —~ MEMBERSHIP

& ~— QUALIFICATION

:

-— FOR LIMITED PRIVATE TYPES
ONLY THOSE OPERATIONS DEFINED IN THE
CORRESPONDING PRUCKAGE SPECIFICATION ARE
AVAILABLE

-— FOR PRIVATE TYPES
OPERATIONS OF ASSIGNMENT AND TEST FOR
EQUALITY OR INEQUALITY ARE AVAILABLE
IN ADDITION TO THOSE DEFINED IN THE

PACKAGE SPECIFICATION

X ATTRIBUTES

ADDRESS BASE S1ZE

Data Abstraction and Ada’s Types
82

Fernepurdd oM or ssn comen
e

Software Engineerihg with Ada

SUBTVYPFPES AND DERIVED TYFRPES

x FPROVIDE FURTHER FACTORIZATION

OF TVYFPE CHARACTERISTICS

x SUBTYFRFES

—— RANGE CONSTRAINT
subtype INDEX is NON_NEGATIVE range 8 .. 108;

—= ACCURACY CONSTRAINT

subtype COARSE is WEIGHT delta 16.0;
—= INDEX CONSTRAINT

subtype VECTOR_3D is VECTOR(1 .. 3);

DISCRIMINANT CONSTRAINT

subtype HEAT_SENSOR is SENSOR(KIND => TEMPERATURE);

x DERIVED TYFRPES

type MASS is new FLOAT;
type WEIGHT is new FLOAT;

type BUDGET is new FLOAT range 2.8 .. 12_066.0;

X TYPE CONSTRAINTS ARE STATIC:
SUBTYPFPE CONSTRAINTS NEED

NOT BE STATIC

Data Abstraction and Ada’s Types

83

Software Engineering with Ada

DECLARAT IONS

* S IMPLE DECLARATIONS

DISTANCE : FLOAT;

RESPONSE : CHARACTERj

NUMBER : INTEGER;

GRADES : array(1l .. 169) 64AFLDAT;

X DECLARATIONS WITH CONSTRAINTS

NAME : STRING(1 .. 49);

PEPAUDLEES ON Of 350 compn l
1]

BOTTOM : INTEGER range ~16 .. -1j;

¥ DECLARATIONS WITH INITIAL

VAL UES
RANGE : DISTANCE := 4.0;
x CONSTANT DECLARATIONS

FIRST_MONTH constant MONTH_NAME := JANUARY;

constant 3.141_592_45;

PI

DIAMETER constant 1= 4;

Data Abstraction and Ada’s Types
84

Software Engineering with Ada

VAL UES

* SIMPLE VAL UES ARE DENOTED

BY LLITERALS

—— INTEGER NUMERIC LITERAL 1_0£24

—— REAL NUMERIC LITERAL 8.398_829_138

f'-"""b‘""b ON O SIr caomen ‘
- FI

—— ENUMERATION LITERAL BLOCKED

—— CHARACTER STRING “"WAREHOQUSE "
== NUL! ACCESS VALUE null

—— CHARACTER LITERAL ’b’

—-— BASED NUMERIC LITERAL 1641FFE#

X COMPOSITE VaAalLUES ARE DENOTED

BY AGGREGATES

Expressions and Statements

Software Engineering with Ada

EXPRESSIONS

¥ CREATE NEW VAL UES FROM

PRIMARIES AND OFERAQTORS

* PRIMARIES INCLUDE

§ —— STRING LITERAL “prompt"

§ —— NUMERIC LITERAL 16.125

g; —— NAME MATRIX_1

i —— ALLOCATOR new COUNT’ (8,0,0,0)
—— FUNCTION CALL C0S(37.5)
—— TYPE CONVERSION INTEGER (123.9)
;* QUAL IFIED EXPRESSION COEFFICIENT® (8.53)

—-— PARENTHESIZED EXPRESSION (3 xx 4)

~—— NULL VALUE null

Expressions and Statements

86

al
3

Software Engineering with Ada

* BASIC OFPERATORS

InN

ORDER OF FPRECEDENCE ARE

{
i
} —— EXPONENTIATING *x%

—= MULTIPLYING X
o mod
? — UNARY +
; not
%- —-— ADDING +
: éA -— RELATIONAL =
<=
-— LOGICAL and
) and then
é —~— MEMBERSHIP in

87

rem

abs

v
N4
it

Qr xor
or else

not in

Expressions and Statements

Saftware Engineering with Ada

SEQUENTIAL STATEMENTS

X ONMNE STATEMENT IS EXECUTED

AF TER ANOTHER IN a LINEAR

FAasSHION

X K INDS OF SEGUENTIAL

Comg

INCLUDE

—-— ASSIGNMENT

OVYND Ord 1 (an

~— NULL

e

~-— PROCEDURE CALL
—-— RETURN

—-— BLOCK

X WE WILLl A4ALSO CONSIDER THE

CGOTO IN THIS SECTION

Expressions and Statements

88

]

Peroapubkd onpe sse comen

Software Engineering with Ada

ASSIGNMENT S TATEMENTS

¥ REFPLACE THE CURRENT VALUuUE
OF A VvVarIABL E FROM AN

EXFRESSION VAL UE

X TYPFPE OF BOTH SIDES OF THE
ASSIGSGNMENT MUST BE

CcCOoOMFPAT IBLE

X ASSIOCNMENT STATEMENT EXAaMFPLES

VALVE_RECORD(1 .. 19) := VALVE_RECORD(6 .. 15);

VOLTAGE_1 := VOLTAGE_2 + 24.0;

i

MATRIX 1 MATRIX_2;

LOCAL _SCHEDULE. all COUNT’ (2,8,0,0) ;

SCHEDLLER_TABLE (READY) + 13

SCHEDULER_TABLE (READY)

VALVE_RECORD (COUNT_1) .0PEN) := TRUE;
VALVE_RECORD(1 .. 18) := VALVES (1 .. 18 =
(NAME => "“SPARE "y

POSITION => "WAREHOUSE ",
QPEN => FALSE,

FLOW_RATE => 6.8));

Expressions and Statements

AD-A142 783 PROCEEDINGS PAPERS OF THE AFSC (AIR FORCE SYSTEMS
COMMAND} AVIONICS STAND..{U) AERONAUTICAL SYSTEMS D1V
WRIGHT-PATTERSON AFB OH DIRECTORATE O..

UNCLASSIFIED € A PORUBCANSKY NOV 82 F/G 9/2 NL

END
ot
el
8-84
omc

i W28 25
10 8 f2s
= L= g
1L
P FL 20
= I8
==
ILzs [lis pie
“ ——— = —
MICROCOPY RESOLUTION TEST CHART
NATIONAL BURLAU OF STANDARDS-1963-A
{
1
4
. i
!
,)
.’ . 1
X) : {
.
R
{
-~ S
. b

Software Engineering with Ada

. g - - o -
et e P O TSP

NULL STATEMENT

* EXPLICITLY STATES INACTION

*¥ NULL EXAaMPLE

nulls;

PEPRGOUY Y OM o 350 comy a ,

Expressions and Statements

Software Engineering with Ada

RETURN STATEMENT

X RETURN CONTROL FROM A

SUBFROGRAaM
— PROCEDURE return;
—— FUNCTION return <expression>;

* A SUBPROGRAM -MAY
HAVE MULTIPLE RETURNS

|

¥ PROCEDURE EXAMPLE

: procedure INSTALL(BUFFER : in LINE;

PECPOOULEE BN 0F S50 comen
N -

LIST s in out TABLE;

TOP in out POSITIVE) is

begin
LIST(TOP + 1) := BUFFER;
for INDEX in 1 .. TOP

loop

if LIST(INDEX) = BUFFER then
return;
end if; -
end loop;
TOP := TOP + 13

end INSTALL;

Expressions and Statements

 —p e

Software Engineering with Ada

BLOCK
* TEXTUALLY ENCAPSULATES A
SEQUENCE OF STATEMENTS
* MAY BE NaAMED AND HAVE &

LOCAL EXCEFTION HANDLER

x BLOCK EXaMPLES . -

begin
A := B/C;
exception

when NUMERIC_ERROR =>

PErnODULEY om0 350 comen |

A= 0.0;

SWAP:
declare
TEMP : FLOAT;
begin
TEMP = VOLTAGE_1;

L

o

VOLTAGE_1 := VOLTABE_2;

VOLTAGE_2 := TEMP;

end SWAP;

g

Expressions and Statesents

92

Software Engineering with Ada l

GOTO STATEMENT

x* LJFQC:CJPQI)Z[’TI[CJPQ‘RL_L_\(<CAND

UNGRACEFULL.Y) TRANSFER

CONTROL

PEPRODURGE BN 08 350 come n I

*x SOTO EXAMPLE

<<{SHUT_DOWN>> START_POWER_DOWN_SEQUENCE;

goto SHUT_DOWN;

cmmbiimid

Expressions and Statesents

93

Software Engineering with Ada

CONDITIONAL S TATEMENTS

® SELECTION OF ONE OF a
NUMBER OF ALTERNATIVE
SEQUENCE OF STATEMENTS

1 7 e A S AT . A TR - e P e 3 M A BAC YTVt PV e v e bt et e £

-~

X CONDITIONAL STATEMENTS

PEPnODUbED BN or ssh come i

INCLUDE

- IF q

—--= CASE

; Expressions and Statements

Software Engineering with Ada

IF STATEMENT

*x SELECTS ONE OR NONE OF ;
A SEQUENCE OF STATEMENTS

DEFPENDING ON THE TRUTH

VAL.UE OF ONE OF SEVERAL

EXFPFRESSIONS

X IF EXAMPLES

if COUNT_1 < & then

repw

COUNT_1 := &3

PR

PRPRODUYEY n or sse comen

end if;

if VALVE_RECORD (1) .0PEN then
VALVE_RECORD(2) .0PEN := TRUE;
VALVE_RECORD (3J).0PEN := FALSE;
el se
VALVE_RECORD (2).0PEN := FALSE; 1
VALVE_RECORD (3).0OPEN := TRUE; _ ?
E

end ifs

Expressions and Statesents

95

:rgmu'putnz'bh DFESSP Comen }

Software Engineering with Ada

if VOLTARGE_1 > VOLTAGE_2 then
VOLTAGE_1 := VOLTAGE 23

elsif VOLTAGE_1 < VOLTAGE_2 then
VOLTABE_2 := VOLTAGE_1;

else
nulls;

end if;

Expressions and Statements

96

oy

- PEPRODUY D i 00 530 comen "

Software Engineering with Ada

CASE STATEMENT

X SELECTS ONE SEQUENCE OF
STATEMENTS BASED ON THE
VAL UE OF A DISCRETE

EXPRESSION
X CASE EXAMPLES

case PROCESS_STATE is

"
0

[
-

when RUNNING => SCHEDULER_TABLE (RUNNING)

IS_ACTIVE := TRUE;

when READY => SCHEDULER_TABLE (READY)
SCHEDULER_TABLE (READY) + 13
IS_ACTIVE := FALSE;

when BLOCKED => SCHEDULER_TABLE (BLOCKED)

SCHEDULER_TABLE (BLOCKED) + 1;
IS_ACTIVE := FALSE;
when DEAD => SCHEDULER_TABLE (DEAD) =
SCHEDULER_TABLE (DEAD) + 1;

end case;

Expressions and Statements
97

Perroputed onoesse comen |

Software Engineering with Ada

case COUNT_! is

when 1 => VALVE_RECORD(COUNT_1).0PEN := TRUE;

when 2 | 3 => VALVE_RECORD (COUNT_1).0PEN := FALSE;

when S5 .. 16 => VALVE_RECORD (COUNT_1).0PEN := FALSE;

when others => VALVE_RECORD(COUNT_1).0PEN := TRUE;

VALVE_RECORD (COUNT_1) .FLOW_RATE := 1.8;

end case;

98

Expressions and Statements

TR S

|

PErRODUYD o S350 comen

Software Engineering with Ada

ITERATIVE STATEMENTS

*x PERMITS A SEQUENCE OF
STATEMENTS TO BE EXECUTED

ZERO OR MORE TIMES

X FORMS OF ITERATION INCLUDE

—— BASIC LOOP
—— FOR LOOP

—— WHILE LDOP

X ALSO ASSOCIATED WITH THE
LOOF STATEMENT IS THE
EXIT STATEMENT

Expressions and Statements

99

Software Engineering with Ada

LOOF EXAMPLES

loop
GET_SAMPLE;

PROCESS_SAMPLE;

end loop;

loop
.E— GET_SAMPLE;
.g exit when TEMP > MAX_TEMP;
é, PROCESS_SAMPLE ;
§§ end loop;
2;
OUTER_L.OOP: ’
loop

INNER_LOOP:
loop
end INNER_LOOP;

. aae
L

end ODUTER_LOOP; _ :

Expressions and Statements

Peraoout@ on ossie comrn 1
o e e

Software Engineering with Ada

for INDEX in RUNNING .. DEAD

loop
SCHEDULER_TABLE (INDEX) := &;

end loop;

far INDEX in reverse TOTAL_VALVES

loop

VALVE_RECORD (INDEX) .OPEN := FALSE;

end loop;

for INDEX in 1 .. COUNT_1

loop

end laoap;

for I in VALVES’RANGE

l1oo0p

end loop;

while (SCHEDULER_TABLE(1).FLOW_RATE > 18.0) and (not IS_EMPTY)

-

loop

end loops;

Expressions and Statements

£\

Saoftware Engineering with Ada

SUBFPROGRAMS

* ARE THE BASIC EXECUTABLE UNIT
[4
: * PROVIDE ALGORITHMIC
2
3 ABSTRACT ION
* ADA SUBPROGRAMS INCLUDE
-~ PROCEDURES
~— FUNCTIONS
Subprograms

102

Software Engineering with Ada

SUSFROGRAM SFECIFICATION

{

L

deen 'rv,i“&!b?w'ﬂém‘s‘:': Comen |

v

SUBFROGRAM BODY

Figure 1¢-1: Symbol for an Ada Subprogram

Subprograms
103

e s 1<t

i
i

Software Engineering with Ada

SUBFROGRAM

CALLINS ENVIRONMENT

:ﬁ LDCAL OBJECTS
¥
B
-3
R
- .
) | Model of an Ada Subprogram

Figure 18-2:

Subprograms
104

Software Engineering with Ada

PARAMETER MODES

—— ONLY THE ACTUAL VALUE 1S USED; THE SUBPROGRAM
CANNOT MODIFY THE VALUE

x OUT

—— THE SUBPROGRAM CREATES A VALUE BUT DOES NOT USE

THE VALUE OF THE ACTUAL PARAMETER

..__ _.
AEPROOUCELD ON DI 3SR COML N

o x IN OuUT

-— THE SUBPROGRAM USES THE VALUE FROM THE ACTUAL

PARAMETER AND MAY ASSIGN A NEW VALUE TO IT

Subprogranas
105

- .

Software Engineering with Ada

NAMING SFPECIFICATIONS l

¥ S IMPLE SPECIFICATIONS

procedure COUNT_LEAVES_ON_BINARY_TREE;

- t

procedure PUSH (ELEMENT

2y

in INTEGER; !
ON

in out BUFFER);
procedure ROTATE (POINT : in out COORDINATE; 7

ANGLE : in RADIANS) ;

function COS(ANGLE : RADIANS) return FLDAT;
function "$"(X, Y : in MATRIX) return MATRIX;

H

!

|

|

function RANDOM return FLOAT; :

ALPROOUCED ON DF $50 COPHE R

¥ S PECIFICATIONS WITH DEFAUL TS J
procedure PRINT (BANNER : in STRING;]

CENTERED : in BOOLEAN := TRUE;

SKIP_PABGE : in BOOLEAN := TRUE);

*x OVERLOADED SFECIFICATIONS

procedure SET(LISTING : in BOOLEAN);

procedure SET(PIXEL

in COLOR;

FRAME in out BUFFER);

procedure SET(PRIORITY

in NATURAL); i

procedure SET(ADDRESS : in NATURAL);

Subprograms

Software Engineering with Ada

SUBFPROGRAM BODIES

xX COMPLETE THE ALGORITHM i
INTRODUCED IN THE SPEC—
IFICATION

% x MAY BE SEFPARATELY COMPILED
; i
. 1
g :
§ x TAKE THE FORM
R

specification

begin

sequence_of_statements
{exception part)

end;

Subprograas
107

Software Engineering with Ada

SUBFPROGRAM CALLS

* GIVEN THE FOLLOWING

PROCEDURES
procedure SEARCH_FILE (KEY t in NAME ;
INDEX : out FILE_INDEX);

procedure SLEEP (TIME : in DURATION := IQ.C);

procedure SORT (DATA : in out NAMES;
_g ORDER : in DIRECTION := ASCENDING);
K procedure SORT (DATA : in out NUMBERS;
}g ORDER : in DIRECTION := ASCENDING);
lg procedure TURN_ON (LIGHT : in LOCATION);

* POSITIONAL FPARAMETER CALLS

SEARCH_FILE(“SMITH, J", RECORD_ENTRY);
SLEEP(120.0);

SORT (PERSONNEL._NAMES, DESCENDING);
SORT (GRADES, ASCENDING);

TURN_ON (OFF ICE_LIGHTS) ;

Subprogranss

Software Engineering with Ada

X NAMED PARAMETER ASSOCIATION

é

i SEARCH_FILE(KEY => "SMITH, J", '
INDEX => RECORD_ENTRY);

SLEEP(TIME => 128.8); 1

SORT(DATA => PERSONNEL_DATA; i

ORDER => DESCENDING);

¥ CALLS WITH DEFAULTS

SORT (PERSONNEL _DATA) 3

:
3 SLEEP;
3
g * GIVEN THE FOLLOWING FUNCTIONS ﬁ
i function COS (ANGLE : in RADIANS) return FLOAT;
' N

function HEAT(SENSOR : in SENSOR_NAME) return FLOAT;

function “+" (X, Y : in MATRIX) return MATRIX;
x*x S IMILAR OFTIONS AFPPLY

DISTANCE := LENGTH 3 COS(36.9);

VALUE 1= HEAT (SENSOR => WING_TIP);

SUM 1= "+"(FIRST_MATRIX, SECOND_MATRIX)
sSuM t= FIRST_MATRIX + SECOND_MATRIXS
Subprograms
109

- - L . .
SEPRODUCED ON DF 539 LOME R

Software Engineering with Ada

PACKAGES

* FPERMIT THE COLLECTION OF

CSROUPS OF LOGICALLY RELATED
ENTITIES

¥ DIRECTLY SUPPORT INFORMATION

HIDING AND ABSTRACT ION

x PERMIT AN INDUSTRY OF

SOFTWARE MODULES

Packages

Software Engineering with Ada

YW
W

~ACKAGE SFECIFICATICN

Y wuom’oféza‘g;j AT

OFERATIONS

FACKAGE HODY

Figure 13~1: Symbol for an Ada Fackage

Packages
m

T ———— T

k
]
\
'

‘.__.. ..
REFARODUCED OM OF 339 COME &

Software Engineering with Ada

PACKAGE SFPECIFICATIONS

x FORM A CONTRACT BETWEEN
THE IMFPLEMENTER OF THE

PACKAGE AND THE USER

* MAY BE SEPARATELY COMFPILED

*x TAKE THE FORM

package SOME_NAME is

end SOME_NAME;
x MAY BE FURTHER DIVIDED

-~ VISIBLE PART

-- PRIVATE PART

Packages

112

Software Engineering with Ada

PACKAaGE VISIBILITY

* GIVEN THE FOLLOWING

pPackage COMPLEX is
type NUMBER is record
REAL _PART : 2 FLOAT;

IMAGINARY_PART : FLDAT;

end record;

function "+"(A, B : in NUMBER) return NUMBER;

- Toe Te ..
$EPRODUCED ON OF 33P COMEH

- function "-"(a, B : in NUMBER) return NUMBER;

function "x"(a, B

in NUMBER) return NUMBER;
end COMPLEX;

Packages

13

- - et . .
LEFPRODUCED ON DFSSP COPILH

Software Engineering with Ada

PACKAGES AS DECLARAT IVE

ITEMS

praocedure MAIN_PROGRAM is

procedure FIRST is ... end FIRST;

package COMPLEX is ... end COMPLEX;

package bady COMPLEX is ... end COMPLEX;

procedure SECOND is ...

procedure THIRD is ... end THIRD;

end SECOND;
begin
-—- sequence of statements

end MAIN_PROGRAM;

FPFACKAGES AS L IBRARY

with COMPLEX;

package MAIN_PROGRAM is ...

UNITS

Packages

i
B
|
?

ALPRODUCED ON DF SSH COML A

Software Engineering with Ada

NAaMING VISIBLE COMPONENTS

X SIMFLE VISIBILITY

with COMPLEX;
procedure SOME_PROGRAM is

NUMBER_1, NUMBER_2 : COMPLEX.NUMBER;
begin

NUMBER__1. IMAGINARY_PART := 37.961;

NUMBER_1 := COMPLEX."+" (MUMBER_1, NUMBER_2);

end SOME_PROGRAM;

* DIRECT VISIBIL ITY

with COMPLEX;
procedure ANOTHER_PROGRAM is
use COMPLEX;
NUMBER_3, NUMBER_4 : NUMBER;
begin
NUMBER_3 := NUMBER_3 + NUMBER_4;

end ANOTHER_PROGRAM;

115

Packages

Saoftware Engineering with Ada

PACKAGE BODIES

*x COMPLETE THE DECLARATION
OF ENTITIES INTRODUCED

IN THE SFPECIFICATION

x* MAY BE SEPARATELY COMFPILED

X TaxkE THE FORM

- M . .
4EPRODUCED ON DI 359 LOPIT R

package body SOME_NAME is

end SOME_NAME;

Packages
116

- o -
#LPRODUCED ON DI SSP LUPIER

Saftware Engineering with Ada

FPFPACKAGES AND PRIVATE TYFPES

DEFINE ABSTRACTIONS WHOSE
STRUCTURAL. DETAILS AaRE
HIDDEN

TWO CLASSES OF TVYPES

—= PRIVATE

-— LIMITED PRIVATE

FRIVATE TYFPE EXAMFPLE

package MANAGER is
type PASSWORD is private;
NULL_PASSWORD : constant PASSWORD;
function GET return PASSWORD;
function IS_VALID(P : in PASSWORD) return BOOLEAN;
private

type PASSWORD is range @ .. 7_000;

NULL_PASSWORD : constant PASSWORD := @;

end MANAGER;

Packages

N

Software Engineering with Ada

EXCEPFRPTIONS

* NaAarMeE AN EVENT THAT CAUSES
SUSFENSION OF NORMAL

PROGRAM EXECUTION

X DRAWING ATTENTION TO THE

PO

AELPROOUCED ON DI $3P COPIER

EVENT IS CALLED RAISING

THE EXCEFPTION

¥ THE RESFONSE TO THE EVENT
IS CALLED HANDL ING THE

EXCEFTION

X PERMIT GRACEFUL DEGRADAT ION

Exception Handling and Low-level Features
118

- -) c e . N
AePRODUCED ON DF SSP COPIL R

Software Engineering with Ada

DECLARING AND RAISING EXCEFTIONS

X EXCEPTIONS MAY BE USER—
DEF INED

ABOVE_LIMITS, BELOW_LIMITS : exception;
PARITY_ERROR : exceptiong

FATAL_DISK_ERROR

exception;

x SOME EXCEFRPTIONS ARE FPRE—

DEF INED

~— CONSTRAINT_ERROR
—= NUMERIC_ERROR
-- PROGRAM_ERROR
~— STORAGE_ERROR

~— TASKING_ERROR

X RAISING AN EXCEFPTION MAY

BE DONE EXPLICITLY

raise FATAL_DISK_ERROR;
raise ABOVE_LIMITS;
raise;

raise NUMERIC_ERROR;

Exception Handling and Low-level Features
119

£\

Saftware Engineering with Ada

RAISING FPFREDEF INED EXCEFPTIONS

x C:CJFJEB‘TFR‘%Z[rﬂ“r__EEF?FQCDFQ

—— RAISED WHEN A RANGE, INDEX, OR DISCRIMINANT

CONSTRAINT 1S VIOLATED

b 3 rdLJrﬂEEF%I[C:__EEFQF%C)FQ

—- RAISED WHEN A NUMERIC OPERATION YIELDS A

RESULT THAT CANNOT BE REPRESENTED

x F’F%C)EBF%F\P1__EEF?F?C)F?

-~ RAISED WHEN ALL ALTERNATIVES OF A SELECT

STATEMENT HAVING NO ELSE PART ARE ALL CLOSED,

ACPROOUCED ON QFSSF CAMLY

! OR 1F AN ERRONEOUS CONDITION 1S DETECTED

* STORAGE _ERROR

~— RAISED WHEN THE DYNAMIC STORAGE ASSOCIATED

ALLOCATED TO AN ENTITY 1S EXCEEDED

x 1'F§£3F<ZIPQCB__EZFQFQCDFQ

—— RAISED WHEN EXCEPTION ARISE DURING INTER-~

TAaSK COMMUNICATION

Exception Handling and Low—-level Features
120

e ——— T gttt

P
e gt

e e '_
ALPAODUCED ON DF 33 COPEN

Software Engineering with Ada

HANDL. ING EXCEFPTIONS

* WHEN AN EXCEFPTION IS RAISED,
PROCESSING IS ABANDONED AND
CONTROL FPASSES TO AN

EXCEFTION HANDLER

x A HANDLER MAY AFPFPEAR AT THE
END OF A PLOCK OR THE BODY

OF A SUBFPROGRAaM, PACKAGE,
OR TASK

* EXCEFPTION HANDLERS TAKE THE

FORM OF A CASE STATEMENT

Exception ??rdling and Low-level Features

Saoftware Engineering with Ada

A TASK

* IS ainN ENTITY THAT OFERATES

IN PARALILEL WITH OTHER

PROGRAM UNITS

* PHYSICALLY MAY EXECUTE ON

- .

T JEPROOUCED DN DF3SP LOMLR

MULTICOMPUTER SYSTEMS,
MULTIFPROCESSOR SYSTEMS,
OR WITH INTERLEAVED
EXECUTION ON a SINGLE

PROCESSOR

x RERQAUUIRES A MEANS FOR INTER-—

TASK COMMUNICHAT ION

Tasks

- . . .
AEPRODUCKD ON DF $3F COMLA

Software Engineering with Ada

TASKS

* FPERMIT COMMUNICATING

SEQUENTIAL. PROCESSES

x USE THE CONCEFPT OF A

RENDEZVOUS

x SFPFECIAL. STATEMENTS ARE

PROVIDED FOR TASK CONTROL

123

Tasks

\

kn;ocﬂélb‘éw‘wﬁsw{w o

Figure 16~1: Task Communication with Semaphores

e mm——— -

Software Enqineerinb with Ada

Tasks

Software Engineering with Ada

icrmodldl NP Coram .

Figure 146-2: Taske as Communicating Sequential Frocescses .i

125 Tasks

Software Engineering with Ada

TASK SFECIFICATIDCN

derrodledl dwthescornn ¢
~N

TASK HODY

Figure 1&6-7: Symbcl for an Ada Task

- P .«
ALPRODUCED ON DF SSP COMLRA

Software Engineering with Ada

THE FORM OF AaDA TASKS

x TASKS ARE ACTIVATED

IMPL.ICITLY

¥ A FPARENT TASK WILL NOT

TERMINATE UNTIL aLlL OTHER
DEFENDENT TASKS HAVE

TERMINATED

~=~ A TASK DEPENDS ON AT LEAST ONE MASTER

-~ A MASTER IS A TASK, A CURRENTLY EXECUTING BLOCK
OR SUBPROGRAM, OR A LIBRARY UNIT

-— A TASK THAT IS A DESIGNATED ACCESS OBJECT OR
COMPONENT THEREOF, DEPENDS ON THE MASTER THAT

ELABORATED THE ACCESS TYPE

~-— ANY OTHER TASK DEPENDS ON THE MASTER WHOSE

EXECUTION CREATED THE TASK OBJECT

T
127 asks

Software Engineering with Ada

TASK SFECIFICATIONS

x INTRODUCE THE NAME OF THE
TASK. OBJECT OR TASK TYPE,

ALONG WITH VISIPLE ENTRIES

¥ MAY NOT BE SEFPFARATELY
COMFPILED

- = . . .
$EPRODUCLD ON DF 3P COPILH

* TakE THE FORM

task SOME_NAME is

~- TASK ENTRIES

end SOME_NAME;

- -)
$LPROOUCLD ON DF 35P COPIER

Software Engineering with Ada

TASK ENTRIES

¥ DEFINE THE PATH OF COMMUN-—

ICATION WITH A GIVEN TASK

*x HAVE A FORM SIMILAR TO

i
SUBFPROGRAM DECLARATIONS

X SEMANTICS ARE DIFFERENT

THAN FOR SUBFPROGRAM CaAalL LS

129 Tasks

.~

- S e e ..
dEPROCUCED ON DF $3P COPIE W

Software Engineering with Ada

NAMING VISIBLE COMPONENTS

X GIVEN THE FOLLOWING

task PROTECTED_3TACK is

pragma PRIORITY(7);

entry POP (ELEMENT :

entry PUSH(ELEMENT :

end PROTECTED_STACK;

out INTEGER);

in INTEBER);

* NAMING AN ENTRY

PROTECTED_STACK.POP (MY_VALUE) ;

PROTECTED_STACK.PUSH(36) 3

* RENAMING anN ENTRY

procedure PROTECTED_POP (ELEMENT : out INTEGER)

renames PROTECTED_STACK.POP;

Tasks

N L .o -
4E£PRODUCED ON DF 38 COPIER

Software Engineering with Ada

ENTRY SEMANTICS

x EACH ENTRY DEFINES aN

IMPLICIT QUEUE

¥ ONL Y ONE Task MayY RENDEZVOuUS
WITH AN ENTERED TASK AT
A TIMES ALL. OTHERS WAIT
IN ORDER OF AaRRIVAL IN

THE QUEUE

Ay y———— s -

* A TASK MAY BE IN ONE OF

FOUR STaAaTES

—= RUNNING (CURRENTLY ASSIGNED TO A PROCESSOR)
-~ READY (UNBLOCKED AND WAITING FOR PROCESSING)
- —— BLOCKED (DELAYED OR WAITING FOR A RENDEZVQUS)

—— TERMINATED (NEVER OR NO LONGER ACTIVE)

Software Engineering with Ada

PRIORITY

x A STATIC VALUE ASSOCIATED
WITH EVERY TASK CAND THE
MAIN PROGRAM) THAT
INDICATES A DEGREE OF

URGENCY

*x MAY BE EXPLICITLY SET WITH

A PRAGMA

- LI «
$E£PRODUCED ON OF 35# LOMER

*x DOES NOT AFFECT THE ORDER
IN WHICH A QUEUED TASK

WILL BE SERVED

x IF TWO OR MORE TASKS ARE
IN THE READY STATE, THE
ONE WITH THE HIGHEST PRI —
ORITY WILL B}E SELECTED

TO RUN

]'32 Tasks

Software Engineering with Ada

ASYMMETRY OF TASKS

¥ THE CALLER MUST KNOW THE

NAaME OF THE SERVER

x THE SERVER DOES NOT KNOW

THE NAME OF THE CALLER

. .

X TASKS MAY STILL CaALL ONE

ANOTHER MUTUALLY

AEPRODUCEO ON DFASP COMER

task FIRST_TASK is

entry SERVICE;

end FIRST_TASK;
task SECOND_TASK is
entry SERVICE;

_end SECOND_TASK;

task body FIRST_TASK is ...

task body SECOND_TASK is ...

133 Tasks

Software Engineering with Ada

FAMILIES OF ENTRIES

X DEFINE A SET OF PEER Eﬁrﬂ'rF?I[EEEB
INDEXED EB*! A DISCRETE
Val uUE

* GIVEN THE FOLLOWING

.

‘I'NOWCID ON DFS3P COMER

type IMPORTANCE is (LOW, MEDIUM, HIGH);

task MESSAGE is

entry GET(IMPORTANCE) (M : out MESSAGE_TYPE);

entry PUT(IMPORTANCE) (M : in MESSAGE_TYPE);
end MESSAGE;

x* NAMING A FAMILY MEMBER

MESSAGE. GET (HIGH) (YOUR_MESSAGE) ;

MESSAGE. PUT (IMPORTANCE => HIGH) (MY_MESSAGE) ;

.-

Software Engineering with Ada

TASK BODIES

AEPRODUCED ON DF 8P COML R

DEFINE THE ACTION OF A

TASK

MAY BE SEFPARATELY COMFILED

CONLY AS A SUBUNIT)

TAKE THE FORM

task body SOME_NAME is

end SOME_NAME;

= L T T T -

Software Engineering with Ada

SAMPLE TASK BODIES
x SIMFRPLE BODY
task WATER_MONITOR;

task body WATER_MONITOR is

begin
loop

if WATER_LEVEL > MAXIMUM_LEVEL then

SOUND_ALARM;

- e
AEPROOUCED ON OF 338 COPILR

' end if;
end loap;

end WATER_MONITOR;

Software Engineering with Ada

BODY WITH AN ACCEFT CLAUSE

task CONSUMER is

entry TRANSMIT_MESSAGE(M : in STRING);

end CONSUMER;

with LOW_LEVEL_IO;

: use LOW_LEVEL_I0;
-4

3 task body CONSUMER is
3

i _

Lg begin

'§ log

. g e

| accept TRANSMIT_MESSAGE(M : in STRING) da
SEND_CONTROL (MODEM, M);
end TRANSMIT_MESSAGE;
end loops

end CONSUMER;

137 Tasks

. P ..
ALPRODUCED ON OF SSP COMEH

Software Engineering with Ada

STATEMENTS

x PROVIDE PRIMITIVE FLOW

OF CONTROL.

X CLASSES OF STATEMENTS

-— SEQUENTIAL
—— CONDITIONAL

-— ITERATIVE

Expressions and Statements

138

Saftware Engineering with Ada

CONDITIONS FOR RENDEZVOUS

*¥ AN ENTRY CALL FROM OUTSIDE

THE TAaSsSK

¥ A CORRESPONDING QCCEFPT IN

THE TaskKkK BODY

&EPRODUCED ON DF 358 COPIL R

x FOR SIMFPLE RENDEZVOUS, ~

TASK WILL FPUT ITSELF TO

SLEEF IF IT AaRRIVES AT A
SYNCHRONIZATION FPOINT :

BEFORE ANOTHER

x WHEN THE RENDEZVOUS IS
COMPLETE., THE TWO TAasKSsS

| ' ARE RELEASED TO CONTINUE

IN FPARALLEL.

Tasks

Saoftware Engineering with A

|

ACCEFPT STATEMENTS
 CORRESFPOND TO TASK ENTRIES

* MUST aPFEAR DIRECTLY IN

THE TASK BODY

*x OFPTIONALLY DEFINE a SET

OF STATEMENTS FOR THE

RENDEZVOUS ACT ION

x* A GIVEN ENTRY MAY HAQVE ONE

OR MORE CORRESFONDING

ACCEFPT CLAUSES

e s e T == - s

140 Tasl

R R . .
dErPRODUCED ON DF 3P COPILR

Software Engineering with Ada

x SAMPLLE ACCEFT STATEMENTS

task SEQUENCER is
entry PHASE_1;
entry PHASE_2;
entry PHASE_3;

end SEQUENCER;

task body SERUENCER is
begin
accept PHASE _1;
accept PHASE_2j
accept PHASE_3 do
INITIATE_LAUNCH;
end PHASE_3;

end SEQUENCER;

141

Tasks

—— e

e e e o = ———

I
-
F
s
W
-8
3
'
-
-]
i 4
<]
o
‘W
3
¢
a
a
-
-

Software Engineering

TASK STATEMENTS

X DELAY STATEMENTS

* STATEMENTS FOR TASK

SYNCHRONIZATION

with Ada

. e e ..
ALPRODUCED ON DF 3P COPIL R

Software Engineering with Ada

DELLAY STATEMENT

Xk SUSFENDS FPROCESSING FOR AT
LEAST THE GIVEN TIME

INTERVAL C(IN SECONDS)

* S IMPLE DELAY STATEMENTS

delay 18.0;

delay DURATION(NEXT_TIME - CALENDAR.CLOCK) ;

x ADDING NAMED NUMBERS FOR

READABIL ITY

SECONDS : constant DURATION := 1.8;

MINUTES : constant DURATION := &0.0;

HOURS . : constant DURATION := 34006.9;

delay 2.0xHOURS + 7.@3MINUTES + 36.0%SECONDS;

Tasks

. N

LI -
‘ll’ﬂODU(EO ON OFSSP COMLN

Software Engineering with Ada

CLASSIFICATION OF TASKS

X ACTOR TASKS

—— HAS NO VISIBLE COMMUNICATION PATHS
~— MAY CALL OTHER TASK ENTRIES

—— SAMPLE APPLICATION
task PRODUCER;
X T RANSDUCER TASKS

-— HAS VISIBLE ENTRIES

~— MAY CALL OTHER TASK ENTRIES

—-— SAMPLE APPLICATION

task MESSAGE_PASSER is

entry RECEIVE_MESSAGE(M : in MESSAGE);

end MESSAGE_PASSER;

* SERVER TASKS

-— HAS VISIBLE ENTRIES

~~ DOES NOT CALL OTHER TASK ENTRIES

-~ SAMPLE APPLICATION

task CONSUMER is

entry TRANSMIT_MESSAGE(M : in STRING);

end CONSUMER;:

Tasks

dLPROOUCED ON OF 359 COPILH

Software Engineering with Ada

CLASSES 0OF TASK COMMUNICAT ION

* SIMPLE COMMUNICATION

X SELECTIVE RENDEZVOUS BY

THE SERVER

SELECTIVE WAIT

—-— SELECTIVE WAIT WITH AN ELSE PART
—~ SELECT WITH BGUARDS

-~ SELECT WITH A DELAY ALTERNATIVE

—— SELECT WITH A TERMINATE ALTERNATIVE

* SELECTIVE RENDEZVOUS BY

THE CALLER

—-— TIMED ENTRY CALL

—~ CONDITIONAL ENTRY CALL

145

Tasks

-~

4LPRODUCED ON DF 338 COMLK

Software Engineering with Ada

SIMFPLE COMMUNICATION

* AN ACTOR TASK

~— CUSTOMER TASK
MAKE _DEPOSIT(ID => 1273,

AMOUNT

> 1.9);

X A SERVER TASK

—— TELLER TASK

accept MAKE_DEPOSIT(ID

in INTEGER;:

AMOUNT : in FLDAT) dao

BALANCE (ID) := BALANCE(ID) + AMOUNT;

end MAKE_DEPDSIT;

Tasks

Software Engineering with Ada

SELECTIVE WAIT

*x SELECT ONE OF SEVERAL

FPOSSIPLE ENTRIES

¥ THE SELECTION IS NON-—

DETERMINISTIC

X A SERVER TASK

—— TELLER TASK

- Te e .
ALPRODUCED ON OF $5P LOPILR

11o0p

select

accept MAKE_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT) do

end MAKE_DEPOSIT;

or

accept MAKE_DRIVE_UP_DEPDSIT(ID : in INTEGER;

AMOUNT : in FLODAT)
do ...

end MAKE_DRIVE_UP_DEPOSIT;
end select;

end loop;

Task
147 anks

E ..

Software Engineering with Ada

SELECTIVE WAIT WITH AN ELSE FPART

* SELECT ONE O0OF SEVERAL
POSSIBLE ENTRIES OR AN
ELSE FPART IF NO TASKS ARE

WAITING FOR SERVICE

x A SERVER TASK

-— TELLER TASK
loop

select

e oo . .
ALPRODUCED ON DF SS9 COMLY

Ve accept MAKE_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT) do

end MAKE_DEPOSIT;

or
accept MAKE_DRIVE_UP_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT)

do ...

end MAKE_DRIVE_UP_DEPOSIT;

else
DO_FILING;

end select;

end loop;

- h T .o
AEPRODUCED ON DF $3p COPIE It

o

Software Engineering with Ada

SELECT WITH GUARDS

* SELECT ONE OF SEVERAL
POSSIBLE ENTRIES THAT aRE
OFEN BASED ON EvAaLUATION ‘

OF A GUARD CLAUSE
x A SERVER TaAaSK

-— TELLER TASK
loop
select ;
when BANKING_HOURS => L
accept MAKE_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT) do
end MAKE_DEPOSIT;
or
when DRIVE_UP_HOURS =>
accept MAKE_DRIVE_UP_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT)
do ;..

end MAKE_DRIVE_UP_DEPOSIT;

else
DO_FILING;
end select;

end loop; !

b e To® o
AEPRODUCED ON DF $59 COPIL @

Software Engineering with Ada

SELECT WITH GUARDS

*x SELECT ONE OF SEVERAL
F’tJESSBI[lBL_EE ENTRIES THAT ARE
OFEN BASED ON EVALUAT ION

OF Aa GUARD CLAUSE
X A SERVER TASK

-~ TELLER TASK
loop
select

when BANKING_HOURS =>

accept MAKE_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT) do

' - s ®

end MAKE_DEPOSIT;
ar

when DRIVE_UP_HOURS =>

accept MAKE_DRIVE_UP_DEPOSIT(ID : in INTEGER; AMOUNT :
do ...
end MAKE_DRIVE_UP_DEPOSIT;
el se
DO_FILING;
end select;

end loop;

149

in FLOAT)

Tasks

Software Engineering with Ada

SELECT WITH A DELAY ALTERNATIVE

*

SELECT ONE OF SEVERAL]
POSSIBLE ENTRIES OR A
DELAY PART IF NO TASKS aAaRE i

WAITING FOR SERVICE

X A SERVER TASK

..

AEPRODUCED ON DF S8 COMLR

—— TELLER TASK

(-1
o)
0

0

select

accept MAKE_DEPOSIT(ID : in INTEGER; AMOUNT : in FLOAT) do E

end MAKE_DEPOSIT; (
or
delay 30fXMINUTES;
TAKE_A_BREAK;
end select;

end loops

150 Tasks

-4 e

- * .
AELPRODUCED ON DFSSP COPILH

Software Engineering with Ada

SELLECT WITH A TERMINATE

AL TERNAT IVE

X SELECT ONE OF SEVERAL
FPOSSIBLE ENTRIES OR A

TERMINATE PFPART

x CONDITION FOR TERMINATION

—— TASK PARENT IS READY TO TERMINATE

—— DEPENDENT TASKS ARE TERMINATED OR READY TO TERMINATE

—— NO CALLING TASKS NEED SERVICE
X A SERVER TASK

y—— TELLER TASK

loop

select

accept MAKE_DEFPQSIT(ID : in INTEGER; AMOUNT : in FLOAT) da

end MAKE_DEPOSIT;

or
terminate;
end select;

end loop;

Task
151 asks

;
i

. . . .
ALPRODUCED ON OF $$p COMLR

Software Engineering with Ada l

AL TERNATE FORMS OF TAaSK

TERMINAT ION

* S IMPLE AaBORT
abort TELLER;

¥ GCGIVING A TASK ITS LAsST
!
WISHES i

SHUT _DOWN;
delay 3@3SECONDS;

abort TELLER;

152 Tasks

Software Engineering with Ada

TIMED ENTRY CaAal_ L.

¥ ATTEMFRPT RENDEZVOUS WITH &
SERVER TASK FOR A STATED

MINIMUM TIME

¥ A CALLING TASK

-- CUSTOMER TASK
select

MAKE_DEPOSIT(ID => 1273, AMOUNT => 1_000.0);
or

delay 18.8XMINUTES;

TAKE_A_HIKE;

end select;

163

Tasks

- - . .
AELPROQUCED ON DF 351 LOPIER

Software Engineering with Ada

CONDITIONAL ENTRY CAL_ L

* ATTEMFT IMMEDIATE REN-—

DEZVOUS WITH A SERVER
TASK

* A CALLING TAask

~— CUSTOMER TASK
select

MAKE_DEPOSIT(ID => 1273, AMOUNT => 1_0©06.06);"°
else

RUN_AWAY;

end select;

154 Tasks

— e~

Software Engineering with Ada

FPROEBLEMS WITH CURRKRENT FROGRAMNMMING

ENVIRONMENTS

* LACK OF CcCcorMMON INTERFACES

b 3 INCONSISTANCY AMONG TOOLS

LACK OF MEANINGFUL, TOOLS

. . .
AEPRODUCED ON DF 3 COPIER

* INABILITY TO PROCURE FPROPER
TOOL S

The Ada Programming Support Environment

155

Saftware Engineering with Ada

EXFECTATIONS O0OF STONEMARN

REDUCED COMFPILER DEVEL OFMENT
CcCosTS

i *x REDUCED TOOL DEVELOFRPMENT

CoOoOsSTS

IMPROVED SOFTWARE FPORTAEBIL ITY

SEPROOUCED ON DF $58 COPIEL R

b 3 IMRPFROVED FPFROGRAMMER

FORTARIL ITY

The Ada Programming Support Environment

156

e

dePauOUCRD ONDPISY (0

Saoftware Engineering with Ada

ARCHITECTURE OF THE ADA FROGRAMING
SUFRPFPORT ENVIRONMENT
x KAFPSE

—~=~ KERNAL ADA PROGRAMMING SUPPORT ENVIRONMENT

x MAPRPSE

-~ MINIMAL ADA PROGRAMMING SUPPORT ENVIRONMENT

x*x AFSE

—-— ADA PROGRAMMING SUPPORT ENVIRONMENT

The Ada Programming Support Environment

157

Software Engineering with Ada

v e m———_y T e - T .-

USERINTERFACE

USER-SUPPLIED
T00LS

LMD S
INTERFRETER

OPERATING
SYSTEW

hhno&j{:&'gu"u'ﬁqm‘m-h‘-ﬂ o

DATA
MANAGER

T00L
INTERFACE

ADA
COMPILER

— -

Figure ZZI-1: The Ata Frogramming Support Snvircnment (APSE)

The Ada Programming Support Environment

R .o
4EPRODUCED ON DF$SP COML A

Software Engineering with Ada

AFRPSE DATA BASE

FPROVIDES A REFPOSITORY FOR alL L

PROJECT INFORMATION

FROVIDES A CENTRAL POINT

OF MANAGEMENT

FACIL ITATES CONFIGURATION
MANAGEMENT

The Ada Programming Support Environament

159

- P R .
JEPROOUCED ON DF 3P COPILR

Software Engineering with Ada

KAPSE '

b

IS THE M™MOST PRIMITIVE LEVELL
OF THE AFPSE

PROVIDES THE LOGICAL. TO

FPHYSICAL AFPSE INTERFACE

PROVIDES FPRIMITIVE AQACCESS

TO PROGRAM LIBRARIES

—— e ——— — =

The Ada Programming Support Environment

160 j

..
46PRODUCED ON DFS3P L URIE R

Software Engineering with Ada

MAFPFSE

K

b 4

PROVIDES A ROBUST TOOL SET

-—- TEXT EDITOR

-—~ PRETTY PRINTER

-— COMPILER

-~ LINKER

—~ SET-USE STATIC ANALYZER

~— CONTROL-FLOW STATIC ANALYZER
~— DYNAMIC ANALYSIS TOOLS

~— TERMINAL INTERFACE ROUTINES
~= FILE ADMINISTRATOR

~— COMMAND INTERPRETER

—— CONFIGURATION MANAGER

DIANA CAN FROVIDE A COMMON

INTERFACE AaMONG TOoOoOoLS

~— DESCRIPTIVE INTERMEDIATE ATTRIBUTED

NOTATION FOR ADA

The Ada Programming Support Environment

161

— o

. St et

SEPRODUCED ON DF S5 COMLR

N—

Software Engineering with Ada

APRPSE

X FPROVIDES TOOLS FOR

*x TWO

CREATION OF DATA BASE OBJECTS
MODIFICATION

ANALYSIS

TRANSFORMATION

DISPLAY

EXECUTION

MAINTENANCE

CLASSES OF T0O0OLS EXIST

GENERIC TOOLS THAT APPLY TO ALL PROGRAMMING
TASKS WITHOUT REGARD FOR SPECIFIC DISCIPLINES

METHODOLOGY-SPECIFIC TOOLS THAT SUPPORT A

PARTICULAR PROGRAMMING OR MANAGEMENT DISCIPLINE

The Ada Programming Suppart Environment

162

45PRO0UCED ON OF ISP COMER

Software Engineering with Ada

THE SUCCESS OF AaDa

SUCCESS == DESIGN
- IMPLEMENTATION
-+ CL.OuUT

- NEED

Trends and Conclusion

163

Software Engineering with Ada

ANncd the Lord said, Behold, the
peaeople is one, and they hhave
all one].aar1q;t4ang;ea;‘ and thi=s=s they
beeginmn to dos anmnd mow mothing
will be restrainmned from them,

which they have imagined to do.

.

$6PROOUCED ON DF ISP COPL R

Genesis 11:6

King James VUersion !

