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releasable to the National Technical Information Service (NTIS). At NTIS, it will
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FOREWORD

THE UNITED STATES AIR FORCE HAS COMMITTED ITSELF TO "STANDARDIZATION."
THE THEME OF THIS YEAR'S CONFERENCE IS "RATIONAL STANDARDIZATION," AND WE
HA-_VE_.ZXPANDED -THE - S.1C..OP .E -TO INCLUDE US ARMY, US NAVY AND NATO PERSPECTIVES
ON ONGOING DOD INITIATIVES IN THIS IMPORTANT AREA.

WHY DOES THE AIR FORCE SYSTEMS COMMAND SPONSOR THESE CONFERENCES?
BECAUSE WE BELIEVE THAT THE COMMUNICATIONS GENERATED BY THESE GET-TOGETHERS
IMPROVE THE ACCEPTANCE OF OUR NEW STANDARDS AND FOSTERS EARLIER, SUCCESSFUL
IMPLEMENTATION IN NUMEROUS APPLICATIONS. WE WANT ALL PARTIES AFFECTED BY
THESE STANDARDS TO KNOW JUST WHAT IS AVAILABLE TO SUPPORT THEM: THE
HARDWARE; THE COMPLIANCE TESTING; THE TOOLS NECESSARY TO FACILITATE DESIGN,
ETC. WE ALSO BELIEVE THAT FEEDBACK FROM PEOPLE WHO HAVE USED THEM IS
ESSENTIAL TO OUR CONTINUED EFFORTS TO IMPROVE OUR STANDARDIZATION PROCESS.
WE HOPE TO LEARN FROM OUR SUCCESSES AND OUR FAILURES; BUT FIRST, WE MUST
KNOW WHAT THESE ARE AND WE COUNT ON YOU TO TELL US.

0

AS WE DID IN 1980, WE ARE FOCUSING OUR PRESENTATIONS ON GOVERNMENT
AND INDUSTRY EXECUTIVES, MANAGERS, AND ENGINEERS AND OUR GOAL IS TO
EDUCATE RATHER THAN PRESENT DETAILED TECHNICAL MATERIAL. WE ARE STRIVING
TO PRESENT, IN A SINGLE FORUM, THE TOTAL AFSC STANDARDIZATION PICTURE FROM
POLICY TO IMPLEMENTATION. WE HOPE THIS INSIGHT WILL ENABLE ALL OF YOU TO
BETTER UNDERSTAND THE "WHY'S AND WHEREFORE'S" OF OUR CURRENT EMPHASIS ON0
THIS SUBJECT.

MANY THANKS TO A DEDICATED TEAM FROM THE DIRECTORATE OF AVIONICS
ENGINEERING FOR ORGANIZING THIS CONFERENCE; FROM THE OUTSTANDING TECHNICAL
PROGRAM~ TO THE UNGLAMOROUS DETAILS NEEDED TO MAKE YOUR VISIT TO DAYTON, OHIO
A PLEASANT ONE. THANKS ALSO TO ALL THE MODERATORS, SPEAKERS AND EXHIBITORS
WHO RESPONDED IN SUCH A TIMELY MANNER TO ALL OF OUR PLEAS FOR ASSISTANCE.

Aceso For__
N C T r-'.k

ROBERT P. LAVOIE, COL, USAF Dfl
DIRECTOR OF AVIONICS ENGINEERING

DEPUTY FOR ENGINEERING g ms~o"

or
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-,- :- Second WSC Standardization Conference

ASD/CC

1. Since the highly successful standardization conference hosted by ASD in1980, significant technological advancements have occurred. Integration of
the standards into weapon systems has become a reality. As a result, we have
many "lessons learned" and cost/benefit analyses that should be shared within
the tri-servioe community. Also, this would be a good opportunity to update
current and potential "users." Therefore, I endorse the organization of the
Second AWSC Standardization Conference.

2. This conference should cover the current accepted standards, results of
recent congressional actions, and standards planned for the future. We should
provide the latest information on policy, system applications, and lessons
learned. The agenda should acummodate both government and industry inputs
that criticize as well as support our efforts. Experts from the tri-service
arena should be invited to present papers on the various topics. Our AFSC
project officer, Maj David Hammond, HQ AFSC/AtR, ATOVA 858-5731, is prepared
to assist.r

ROBERT M. BOND, Lt Gen, USkA
V!cZ Commander

iv
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Tuesday Luncheon

Keynote Speaker

Major General Marc C. Reynolds

Major General Marc C. Reynolds is Ccomander of the Air Force Acquisition
Logistics Division, and Deputy Chief of Staff for Acquisition Logistics,
Air Force Logistics Command, Wright-Patterson Air Force Base, Ohio.

General Reynolds was born in Chamberlain, S.D., on June 2, 1928, and
graduated from Chamberlain High School in 1946. He subsequently attended
Dakota Wesleyan University and the University of Denver until the outbreak
of the Korean War. He holds a Bachelor's Degree in Political Science
from the University of Rhode Island and is a graduate of the Air Command
and Staff College and the Naval War College.

General Reynolds entered the Air Force as an aviation cadet in January
1951 at Perrin Air Force Base, Texas, and was commissioned upon graduation
from pilot training at Vance Air Force Base, Okalahcma, in February 1952.
He then attended jet interceptor training at Moody Air Force Base, Georgia,
and Tyndall Air Force Base, Florida. 0

In July 1952, General Reynolds was assigned pilot duty with the 83rd
Fighter-Interceptor Squadron at Hamilton Air Force Base, California, and in
September he moved with the squadron to Paine Air Force Base, Washington.
In March 1953, he was transferred to the 4th Fighter-Interceptor Squadron
at Naha Air Base, Okinawa, where he continued to serve as a fighter-interceptor 0
pilot, flying the F-94B.

His next assignment, in September 1954, was Otis Air Force Base, Mass.,
where he served with the 437th and 60th Fighter-Interceptor Squadrons as a
tactical and training flight commander, flying the F-94C and F-101B, and
with the 602d Consolidated Maintenance Squadron as a maintenance officer.

General Reynolds was transferred to Europe in November 1961, assigned
to the 10th Tactical Reconnaissance Wing, with duty at RAF Station Brunting-
thorpe, England, as a Flight Commuander, and later at Toul-Rosieres Air Base,
France, as Chief of the Wing Standardization Evaluation Branch.

After Command and Staff College at Maxwell Air Force Base, Alabama,
General Reynolds was assigned to the 22d Tactical Reconnaissance Squadron,
Mountain Home Air Force Base, Idaho. In November 1966, he moved to the
460th Tactical Reconnaissance Wing at Tan Son Nhut Air Base, Republic of
Vietnam, and flew 230 combat missions over North and South Vietnam in RF-4C.

(over) 0

vii
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Following his Southeast Asia tour, he served in Japan as Deputy Chief
of the Reconnaissance Division, Headquarters Fifth Air Force, Fuchu Air
Station. In April 1970, he moved to Misawa Air Base as Commander of the
16th Tactical Reconnaissance Squadron.

General Reynolds returned to the United States in February 1971, assigned
to Shaw Air Force Base, S.C., where he served as Assistant Deputy Cmmander
for Operations in the 363d Tactical Reconnaissance Wing. He attended the
Naval War College at Newport, R.I., in 1972-73 and was subsequently assigned
to Ogden Air Logistics Center, Hill Air Force Base, Utah, initially as the
Director of Distribution and later as Director of Maintenance. In July 1976,
he was transferred to McClellan Air Force Base, California, as the Director
of Materiel Management, Sacramento Air Logistics Center. In March 1978, he
became the Center Vice Commander. He transferred to the Air Force Acquisition
Logistics Division in May 1980, where he served as Vice Commander until
October 1981, when he assumed his present duties.

General Reynolds is a command pilot with more than 5,200 hours flying
time, including 475 conbat hours. His military decorations and awards
include the Distinguished Service Medal, Legion of Merit, Distinguished 0
Flying Cross, Meritorious Service Medal with one oak leaf cluster, Air Medal
with 15 oak leaf clusters, and Air Force Commendation Medal with two oak
leaf clusters.

He was promoted to Major General Sept 8, 1980, with date of rank July 1, 1977.

General Reynolds was married to the former Judy Ccppage of Falmouth,
Mass., who died in February 1982. Their children are Barbara and Scott.

viii



Wednesday Luncheon
Keynote Speaker

Dr. Alan M. Lovelace

Effective 1 Sep 82, Dr. Lovelace was named VP, Productivity and Quality
Assurance.

Dr. Lovelace joined General Dynamics Corporation as Vice President,
Science and Engineering in July 1981. He had served as Acting Administrator
of the National Aeronautics and Space Administration since January of 1981.

Dr. Lovelace joined NASA in 1974 as Associate Administrator for the
Office of Aeronautics and Space Technology. He was named Deputy Adminis-
trator in June 1976 by President Ford.

Since entering federal service with the U.S. Air Force in 1954, he has
held many research management positions. He served at the Air Force
Materials Laboratory, Wright-Patterson Air Force Base, Ohiio, from 1954
through 1972, having been named Director in 1967.

Fran 1972 to 1973, he served as Director of Science and Technology
with the Air Force Systm Command, Andrews AFB, Washington, D.C. From
1973 to 1974, Dr. Lovelace was Principal Deputy Assistant Secretary of the
Air Force for Research and Developmnent.

Dr. Lovelace retired as Deputy Administrator of NASA in December 1980,
but stayed with the Administration through the first flight of the Space
Shuttle Colutia and the appointment of a new Administrator.

Born in St. Petersburg, Florida, in 1929, Dr. Lovelace received Bachelor's,
Master's and Doctoral Degrees in Chemistry from the University of Florida.
Awards he has received include the Presidential Citizens Medal, the Depart-
rent of Defense Exceptional Service Medal, the Air Force Decoration for
Exceptional Service, the National Civil Service League Career Service Award,
and the Office of Aerospace Research Award for outstanding Contriubitons
to Research.

He is a Fellow of the American Institute of Aeronautics and Astronautics
and the American Astronautical Society, and is a nner of the National
Academy of Engineering, Air Force Association, Sigm XI and Phi Beta Kappa.

ix



Thursday Luncheon
Keynote Speaker

Charles P. Lecht

Mr. Lecht is President of Lecht Sciences, Inc., a research and think-
tank recently established in New York City.

Mr. Ieht is founder and former President/Chairman of the Board of
Advanced Computer Techniques Corporation (ACT), a canputer softwaree
consulting firm.

He holds a B.S. Degree in Mathematics from Seattle University and
a M.S. Degree, also in Mathematics, from Purdue. His involvement in the
computer field stretches back to 1951, making him an "old-tiier" in a
very young industry.

Among his earliest professional activities were programming for IBM's
Service Bureau and for the MIT community's Lincoln Laboratory/MITRE
organizations on a variety of scientific and military simulation projects.

5
From 1960 to 1962, Mr. Lecht served in the U.S. Army Ordnance Corps,

first as Chief of its Programming Division and subsequently of its
Mobilization Application Division; Ordnance Industrial Data Agency.

Mr. Lecht came to New York City in 1962, where he founded ACT. In
the 17 intervening years, the Ccnpany has grown from a one-man show to
an international ccplex employing over 450 persons and deriving more
than 50% of its revenues from operations in Europe, Canada and the Middle
East as well as the U.S.

In addition to building and presiding over ACT, Mr. Lecht has found
time to hold a number of technical posts, author five books and innumerable
articles and maintain a heavy schedule of speaking engagements in the
U.S. and abroad. In addition to THE WAVES OF CHANGE, his books include
three on computer languages and one on project management.

He is a menber of the Young Presidents Organization, The Hudson
Institute, the Data Processing Management Association, the Association 4

* for Computing Machinery and the New York Academy of Sciences.

In 1976, Mr. Lecht was designated by "The Gallagher Presidents' Report"
as one of the "10 Best Businessmen in the USA" representing campanies with
income below $1 billion. Profiles of Mr. Lecht have appeared in the New
Yorker and Datamation, among other publications.

x
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M THE EVOLUTION OF THE JOVIAL/J73

Q LANGUAGE FROM DEFINITION TO USE

)James T. Pepe*

SofTech, Inc.
460 Totten Pond Road
Waltham, MA 02154

ABSTRACT

-'The development of a standard programming language is a multi-year 0
effort involving many phases of activity starting with language
requirements analysis, leading to language definition, production of
compilers and programming utilities, and then configuration management of
the support software and documentation. After a study of the
requirements for a standard Air Force high order language, the JOVIAL/J73
language was defined by MIL-STD-1589A (later superceded by S
MIL-STD-1589B). Several years of compiler development has resulted in
JOVIAL/J73 compilers hosted on three mainframe computers and targeted to
several embedded architectures. Because of an embedded computer's
limited resources considerable effort has been devoted to compiled object
code optimization. The Air Force has also sponsored the development of
the JOVIAL Compiler Validation System for validating JOVIAL compilers and 0
JOVIAL programming utilities to assist programmers in writing and
debugging JOVIAL code. The Language Control Facility has been
established to control the definition of JOVIAL/J73, validate compilers,
and provide support for JOVIAL programmers.

SECTION 1- INTRODUCTION

The development of JOVIAL/J73 has been supported by several
aovernment and industrial agencies. Many people have contributed
valuable ideas to the language design, compiler implementation, and
standardization efforts. In the course of developing JOVIAL some lessons 5
were learned that are applicable in other language development efforts.

This paper will attempt to present the major events in the
development of JOVIAL/J73 as well as the lessons learned. It will focus
on the areas in which the author has been personally involved and will
not dwell on areas covered by other presentations at this conference.

*Current Address: Prime Computer, Inc.
500 Old Connecticut Path
Framingham, MA 01701
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SECTION 2 - LANGUAGE DEFINITION AND BACKGROUND

The JOVIAL programming language is one of our oldest high order
languages. To be accurate, JOVIAL is a generic name encompassing several
language dialects. The original JOVIA specification was defined in 1959
and was followed by several years of language refinement until the first
major dialect JOVIAL/J3 (MIL-STD-1588) was developed.

Several compilers for JOVIAL/J3 were implemented and used for major
defense programs including SAGE and NORAD. Millions of lines of code
have been written in J3 that are still in use and are being maintained.

In the mid-1970s in response to the needs of the avionics community
(specifically the B-1 and F-16 programs), the J3 dialect of JOVIAL was
revised in accordance with some new ideas of reliable programming that
had emerged. Error prone constructs, such as automatic data type
conversion, were removed and replaced with those whose use is less likely
to result in programming errors. This new dialect of JOVIAL was named
J3B and was used by the above two programs as well as the B-52 offensive
avionics system.

During this same time period another group in the Air Force attempted
to define a dialect of JOVIAL for a wide variety of Air Force
applications. The resulting language definition was called JOVIAL/J73.
Because of the complexity of this language design, the full language was
never implemented. Only a simple subset 373 (Level 1) was implemented.
The definition of JOVIAL/J73 (Level 1) is MIL-STD-1589. This language
was used by the DAIS program and also as the initial implementation
language for the current JOVIAL compilers that will be discussed below.

In the late-1970s the Air Force wanted to standardize on one dialect
of JOVIAL that would be used for a wide variety of application areas.
The two leading candidates were the 33B and J73 (Level 1) dialects. Each
had its supporting agencies but no agreement could be reached on which
should be chosen because each dialect had its strong points that no one
wanted to sacrifice. To resolve the problem, a language study committee
was formed to take the desirable features of J3B and J73 (Level 1) as
well as other languages such as Pascal and define a single dialect of
JOVIAL for standardization. The result was that in 1978, MIL-STD-1589A
was published. This standard defined the JOVIAL/J73 (not to be confused
with the previous attempt) programming language. *

Two years later MIL-STD-1589A was superceded by MIL-STD-1589B. This
later standard resolved some ambiguities in the earlier standard and
added a few new language features. It is the later standard that is
currently on the DoD list of approved high order languages. It is
required to be used on all Air Force avionics applications. The list of
proarams using JOVIAL/J73 is extensive and includes F-16, F-111, MX, DIS,
MCG, MRASM, CX, LANTIRN, MATE, AMRAAM, and Pershing II.

It is interesting to note that although JOVIAL is considered an Air
Force language, the Army has also been a user. The J3 dialect was used
for PATRIOT, J73 (Level 1) for MLRS, and J73 for Pershing II.
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SECTION 3 - COMPILER DEVELOPMENT

A substantial effort has been devoted to implementing JOVIAL/J73

compilers over the last four years. Several software companies have been
placed under contract to perform the work. The result is compilers
hosted on three mainframes and targeted to about twelve computer
architectures including both mainframes and embedded computers. A list
of the available compilers Is given in Table 3-1.

TABLE 3-1
AVAILABLE JOVIAL/J73 COMPILERS

HOST TARGET

IBM 370 IBM 370
BENDIX 930
MECA
Z8002
MIL-STD-1750A
TI-990/9900
INTEL 8086
CP-2EX

DEC-10 DEC-10
MIL-STD-1750A
AN/AYK-15
MAGIC 362F 0
Z8002
INTEL 8086

VAX-1I/780* VAX-11/780
MIL-STD-1750A

The compilers were designed for economic retargeting and rehosting.
They are organized into two main parts, a front end and a back end. See
Figure 3-1. The front end is target machine independent. It performs
373 syntax and semantic analysis, global optimization, and production of

a target machine independent intermediate language. The front end
comprises 70-75% of the compiler's source code. The back end contains
the target machine specific code generator and must be rewritten for each
new target machine. The code generator contains the local optimizations
for the target machine. The compilers are cross-compilers in that one
front end can drive multiple code generators targeted to machines other
than the compiler host machine. See Figure 3-2.

*VAX is a trademark of the Digital Equipment Corporation.
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The majority of the compilers are implemented using JOVIAL/J73 as the 0
implementation language. Rehosting these compilers requires first
retargeting the compiler to the new host machine and then having this new
cross-compiler compile itself. After linking the object code on the new
host, this compiler is then in executable form on the new machine.

A recent effort for the F-16 avionics upgrade is sponsoring the
development of a MIL-STD-1750A targeted compiler in FORTRAN. This choice
for an implementation language will considerably simplify the rehosting
process for this compiler. More will be said about this effort in other
presentations at this conference.

Many of the JOVIAL/J73 compilers have been completed and are now

being maintained for production use. Among the projects that have
successfully used JOVIAL for parts of their application coding are MX,
Pershing II, DIS, MCG, and MRASM.

Section 4 - OBJECT COOE OPTIMIZATION

The majority of the projects using JOVIAL/J73 are embedded computer
applications. Because of the very stringent memory size and CPU speed
constraints of embedded computers, the quality of the object code emitted
by the JOVIAL compilers is of great concern. Each of the compilers has a
set of local and global optimizations included but for certain
applications these were not sufficient.

The MX project sponsored the enhancement of the local and global
optimizations of the MECA targeted J73 compiler. An extensive set of
optimizations has been provided which includes those listed in Table S
4-1. The result is a compiler which emits object code with a 12% memory
expansion factor and an 11% CPU speed overhead factor as compared to
assembly language coding. The factors were measured by a government
supplied benchmark having the same operational algorithms coded in both
JOVIAL/J73 and assembler. The compiler's performance on the JOVIAL
portion as compared with the size and speed of the assembler portion
provides the above measurements.

This project demonstrated that JOVIAL/J73 compilers can produce very
high quality object code. However, the cost of putting these
optimizations in already existing compilers is high. It is best if they
are included in a compiler from its design phase.

The optimizations given in Table 4-1 are applicable to almost all
embedded applications. They should be especially useful in MIL-STD-1750A
targeted compilers. These compilers will be used by a variety of
projects and will have to produce efficient object code.

7



TABLE 4-1

DESIRABLE OPTIMIZATIONS FOR EMBEDDED TARGET

- Commnon Suhexpression Elimination

- Algebraic Simplification

- Dead Code Elimination

- Expression Evaluation at Compile Time

- Value Folding

- Extraction of Invariant Expressions from Loops

- Strenqth Reduction

- Next Use Information for Register Manager
- Register History Merging

- Peephole Optimizations

SECTION 5 -PROGRAMMING UTILITIES

The current government efforts in developing Ada* compilers includes
the development of programming environments as well. Entire systems are
being designed and implemented in which the compiler is a utility among
other utilities such as text editors, assemblers, linkers, code timing
and freauency analyzers, etc. This concurrent design of all the
utilities should result in cohesive, well engineered Ada programming
systems.

JOVIAL/J73 development did not follow that course. The compilers
were developed before the other utilities that now exist. There wasj never a design for a JOVIAL language system. Despite this fact each of
the JOVIAL utilities developed has been well engineered and is a useful
product for JOVIAL users.

There are four major utilities apart from the compilers. These are:

a. Interactive Debugger - DEC-10 hosted symbolic debug package,

b. Code Auditor - IBM 370 hosted utility to check conformance of
JOVIAL/J73 source code to coding standards,

c. Program Support Library - IBM370 hosted configuration
management utility,

*Ada is a trademark of the Department of Defense (Ada Joint Program
Office).
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d. JOVIAL Automatic Validation System - IBM 370 hosted utility to
assist in automatic testing of JOVIAL object code.

Each of these utilities has been described elsewhere [1-4], and this
paper will not oo into detail.

SECTION 6 - LANG!AGE CONTROL FACILITY

The increasing importance of standardization in the DoD has led to
the development of standard computer architectures and standard high
order languages. It is generally accepted that the development and use
of the standards will help decrease the high cost of software in tactical
systems. The success of standardization depends upon the control of the
definition of the standards. The JOVIAL/J73 language definition is
controlled by the JOVIAL Language Control Facility (LCF).

The LCF is a branch of the Avionics Systems Division at Wright-
Patterson AFB. The major job of the LCF is to control the JOVIAL/J73
language. The LCF has identified four elements of language control which
it provides [5]:

a. a policy for controlling language changes,

b. a mechanism for making language changes,

c. a database of information on the language definition, compilers,
and other programming utilities,

d. a mechanism to check conformance of a JOVIAL application with
the language definition.

The need for this last element has led to the development of the
JOVIAL Compiler Validation System (JCVS). The JCVS consists of about
1300 test cases organized into 6 categories of tests, given in Table
6-1. To ensure conformance with the MIL-STD-1589B specification, the Air
Force requires all JOVIAL/J73 compilers to be validated.

TABLE 6-1

3CVS TEST CATEGORIES AND CHARACTERISTICS

TEST CATEGORY TEST CHARACTERISTICS

A clean compile

B known errors to be recognized by compiler

C implementation dependent tests

D compiler capacity tests

E clean compile and execute

F clean compile and link

9



The compiler validation is performed by the LCF. Upon completion of
testing, the LCF analyzes the results and prepares a report. This report
then serves as the basis for judging the compiler's satisfactory
compliance with the language definition.

The LCF maintains the JCVS test library. The JCVS is a dynamic set
of test cases. As new tests are developed they can be incorporated into
the library.

SECTION 7 - CONCLUSIONS

JOVIAL/373 is in a useable state today. This was made possible by
the hard work of several agencies. The language has been used
successfully to program several important DoD embedded computer projects
and more are in progress.

There are many facets to the development of a standard prograrmming
lanouaoe. Those who have been involved with the evolution of JOVIAL/J73
have discovered the complexity of standardization. Many important
lessons were learned in bringing JOVIAL to a useable state. These
lessons are applicable to development of other languages, such as, Ada.

The four most important lessons are the following:

a. Optimizing compilers for embedded targets are complex pieces of
software. The same standards that are used for application
coding should also be applied to compiler implementation. A
sufficient design, coding, and test period should be allowed for
a compilers development rather than have it driven by the
schedule of the operational programs.

b. A changing language specification during compiler development
opens the door to an implementation disaster. If a major
language change is necessary, be prepared to go back to the
design phase of the compiler's implementation.

C. A compiler for an embedded target must generate very efficient
object code. Plan for this fact in the compiler's design phase
rather than try to retrofit optimizations in later.

d. A commonly available implementation language on mainframes, such
as, FORTRAN (and perhaps later Ada) significantly decreases the
cost of compiler rehostinq.
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optimizing J73 and J3B compilers for MX, Pershing II,
HGD, MRASM, B-1, F-16, and B-52 programs.

b. Presently Manager of Advanced Development Department,
investigating Ada application areas.
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MANGEENT OVERVIEW' OF THE BENEFITSIf) OF EFFICIENT JOVIAL J73/1750A SOFT1WARE 2TOOLS

M Joel Fleisso So) Proprietary Software Systems, Inc.
M 9911 West Pico Boulevard, Penthouse K

Los Angeles, California 90035
(23553-2997

( ~ Biographical Sketch

Mr. Fleiss is president of Proprietary Software Systems, Inc. He was the
original founder of the company in 1969 and has been a project leader in
numerous support software projects. He received his undergraduate and
graduate degrees in economics at UCLA.

Abstract

* - The Air Force has invested a significant amount of funds in providing a
set of standards for avionics applications. Support software tools for MIL-
STfl 1750A and MIL-STD 1589B are of critical importance to numerous avionics
applications. This article discusses the tools being provided by PSS in
support of MIL-STlD 1750A and MIL-SII) 1589B.-

The developme~nt of sophisticated comiputer systems to meet the
requirements of Dol) applications has proven both costly and time consuming.
Of critical importance in developing application software is the methodology
utilized by management for controlling the implementation and the availability
of efficient, flexible and user friendly software tools.

Software tools provide programmners a mechanism for implementing
applications on a computer. A variety of products can be classified as
software tools, including:

* o" Operating System
" Language Processors (compilers, assem'blers, link editors)
o Source Editors
" Debug Systems
o Data Base Systems
o Utilities
o oEtc.

This talk addresses itself to the current set of tools provided JOVIAL
iJ73 1750A application programmners by PSS. These tools are:

o An optimizing JOVIAL J73 Compiler
* o A Macro Cross Assembler (DUAL)

o A Link Editor (DUAL)
o A 1750A Simulator
o A Code Auditor
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Prior to discussing the 1750A tools, it is best to prioritize what
characteristics are the most desirable:

(1) Availability

The compiler and support tools must be operational on a
convenient host computer.

(2) Reliability

All support tools must be as error free as possible. This
implies that the tools and their interfaces have been
thoroughly validated prior to release.

(3) Ease of Use

The tools should be user friendly. They must be compati-
ble.

(4) Object Code Efficiency

The tools should be as efficient as possible. In parti-
cular, the compiler should minimize the memory require-
ments/execution time of the translated program.

(5) Minimal User Restrictions

No part of the tools set should restrict any other tool.

(6) Excellent User Documentation

The documentation should be thorough, concise, and compre-
hensive.

It is critical that the support software be available on a host that is
readily accessible. The PSS J73 1750A conpiler and support software is
currently operational on the following host computers:

S OPBTI SYSTEMS

IBM-370 (or equivalent) OS, MVS, CMS
DEC-10 TOPS
DEC-20 'lOPS
VAX-780 VMS

PSS in its latest rehosting effort (VAX-780) has made extensive
modifications to the compiler's configuration (in particular the back end) in
order to simplify future rehosting efforts.

Next to being available, the next most important characteristic is that
the compiler be reliable. The Air Force has developed a set of test cases
which are used as an integral part of verifying the reliability of a conpiler. 0

* These test cases are grouped into six classes (A-F).
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PSS is making significant improvements in providing its customers
reliable, well documented support tools. In addition to the JCVS test suite,
PSS also includes self-compiling, utilization of unclassified application
procedures provided by customers, numerous special test cases, and test cases
representing existing and old software problem reports (SPR's) as part of its 0
validation process.

In addition, PSS has established a separate Q/A department from its
ccupiler staff. The QA department's major function is to act as a buffer
between PSS's development staff and the eventual users. All PSS products are
delivered with exhaustive validation by the Q/A department. 9

In order to improve the ease of usage of the MIL-STD 1750A support tools,
PSS has implemented a number of enhancements. Included in these enhancements
are:

o Symbolic Debug 0

The JOVIAL compiler and the PSS provided support tools
allow the user to access JOVIAL user symbols and their
attributes. These symbols are output as part of the DUAL
load module.

o User Controlled Allocation 0

The compiler separates each compilation unit into four
distinct sections. The user can at link time concatenate
these foir sections from multiple compilation/assembly
units or specify specific locations for any particular 0
section. In addition, the assembler allows the user to
specify up to 32 distinct sections per assembly. This
simplifies placing constants and code into read only
memories and placing all variables into a contiguous or
specific set of memory locations.

o Simpler Assembly Syntax

Utilization of symbolic register assignments, consistent
argument format, more meaningful mnemonics, and simpler
argument delimiters.

o Improved Compiler Expanded Listing

More meaningful user names, reduction in listing of data
variables with duplicate preset values, etc.

Nearly all conmand and control applications are concerned with
efficiency. Both speed and nmory utilization are of critical importance to
users. The only important disadvantage of a JOVIAL implementation versus an
assembly language implementation is efficiency. Therefore, it is critical
that the JOVIAL compiler be as efficient as possible.
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PSS has recently completed two major contracts which have vastly improved
the efficiency of the existing JOVIAL 373 1750A com'rpiler. In conjunction with
our two customers, Boeing and General Dynamics, PSS has implemented the
following optimization enhancements to the MIL-STl 1750A J73 code generator.

o Subroutine Linkage

Usage of registers to pass arguments.

o Automatic Allocation

Allocation of automatic data on stacks.

" Base Register Bqrphasis

Better utilization of Base Registers causing a significant
numrber of short instructions being generated.

" Literal Pools

All literals across compilation units are pooled assuring
only a single instance of each literal.

" Machine Specific Procedures

Efficient utilization of MIL-S1'D 1750A instruction.
repetoire.

PSS initial test cases show an improvement of approximately 39% in memo~ry
utilization. That is, where the older version of the 1750A compiler generated
a 1000 instructions, the new PSS version will generate approximately 610.

The JOVIAL language is a general purpose higher order language. It is
important that the tool set provide an environment which simplifies the
development arnd maintenance of conand and control applications. For example,
JOVIAL allows user name of 1 to 31 characters. It would be disastrous to use
a tool set that supported names of 6 to 8 characters, thus forcing the JOVIAL
programmner to utilize short names and eliminating a major feature of the
language.

* The PSS provided support tools permit symbolic names from 1 to 16,383 for
either the assembler or link editor. In addition the PSS provided support
tools allow a greater separation of assemb~ly/compilation units, thus providing
the user the mechanism for controlling the program' s allocation.

In addition to developing support software PSS is also formalizing a new
* system for managing the development of large scale application software.

while the software industry has emphasized recently better support tools, and
programmiing methods (e.g., structured programrming), very little has been done
in the area of providing management a means of properly planning large scale
software development.
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Abstract

-This paper discusses the generation of efficient object code. It covers
ongoing work on JOVIAL compilers for various target machines. The cost and
maintenance advantages of an optimizer which serves multiple targets are
examined. Performance trade-of fs with respect to single-target optimizers are
considered.

The effects of JOVIAL, a military-standard language, and its application on
optimizer characteristics are explored. Contrasts are made to optimizers for
other languages, such as Pascal and Ada.* S

The difficulties inherent in comnparing the quality of compiled code to
assembly language are discussed. These difficulties include finding a
suitable basis for comparison, determining what is a "typical" application,
and avoiding bias in measurement.

Introduction

The generation of efficient object code has long been of concern to
* compiler implem~entors. The developers of the original FORTRAN compiler felt

that their compiler had to generate good code, or the compiler would be in
danger of niot being used [1].

*Ada is a registered trademark of the U.S. Goverriment
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In the intervening time numerous papers have been written on the subject
of generating more efficient code. Optimization bibliographies can be found
in [2,3].

Although hardware speeds have increased, and costs have decreased since
that first FORTRlAN compiler was built, there is still a need for efficient
code generation for certain applications, particularly real-time systems.

* It should be noted that the term "optimization" is a misnomer, because
optimizing compilers do not generate optimal code, but rather code which is
more efficient than that generated by non-optimizing ones. Nonetheless,
because the term is used universally, it will be used here also.

"Standard" as used in the title of this paper has several meanings. F'irst,
the compiler under discussion compiles the (JOVIAL) J73 language which is

hi specified by MIL-STDl-1589B. Second, manry compiler modules are standardized,
in that the same module is used for a variety of hosts (machines on which the
compiler runs) and targets (machines on which the compiled programs are run).
In addition, the bulk of the compiler code is written in J73.

* Background

In order to provide a framework for the optimization discussion, a brief
history of the compiler and a short description of its operation are provided
here. More detailed descriptions of the algorithmis used are contained in [4].

The original J73/I compiler for the DEC-10 host and target was developed
in 1974-1975 by Computer Sciences Corporation. As part of the J73 JOCIT
contract, Software Engineering Associates rehosted the compiler onto the IBM
370. This was done first by retargeting the compiler to the 370, recoding
those parts of the com~piler which were written in assenbly language, and then
transporting the compiler to the 370. one important fact to note is that,
with the exception of the control card processor, the J73/I source was the
same for the two hosts (although a number of modules differed for the two
targets). The conditional compilation facilities of J73 were used to allow
f or differences in word size and other host dependencies, where this could not
be done using machine parameters.

*Later, the compiler was upgraded to handle the J73 language
(MIL-S'ID-1589B). More recently the compiler itself was translated to J73
using the J73/I to J73 Translator. The translated compiler has also been
rehosted to the VAX.

There is still a single set of source code for modules which are commnon
* to the various targets. A master copy of the source is maintained on one

system, although other systems may be used for development work. When changes
to commnon modules are made at other sites, they are integrated back into the
master.

The general structure of the compiler is as follows:
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I CCI > CIP 1>1 ANZl 1>1 ANZ2 1>1 Or I >I EDIT I>I JID I>I COP I
I __ I I I I_ I I_G I I__ 1 I _ I I

Front End I Back End

The front end consists of phases which are largely target-independent.
The back end phases are largely target dependent. The Control Card
Interpreter processes the comiler options. CIP performs Compool InPut. ANZ1
and ANZ2 are the analysis phases. They perform syntactic and semantic 0
analysis of the source program to insure that it conforms to the standard, and
produce an internal form of the program. The optimizer modifies this internal
form to make the generated object code more efficient. The code generator
selects instruction sequences to implement the source program. The editor
produces a number of outputs including relocatable object (linker input),
assembly language source and cross reference/attribute listings. JID produces 0
tables for use by the JCIIAL Interactive Debugger. COP performs Compool
outPut.

Except for the phases which handle ccqmpools, which are peculiar to
JOVIAL, the compiler structure is typical of multi-pass compilers.

Although CCI is part of the front-end it is host-dependent. COP is
target-independent, even though it is part of the back end.

At a more global level the compiler structure can be thought of as:

Target Information. -I I
vv

I Front End I _ Back End I
__I I (Target A) II I _ _ _ _ __ _ _ _ _

1 Back End I
I (Target B) I

This depicts a compiler with several targets on a single host computer.
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At a still more global level we have:

Compiler Executables

Target Information------
II I

V .
I Front End I i Back End I
__I I (Target A) I

SI I On Host A

1I Back End I
I (Target B) I

Target Information----
II I
_VV

I Front End 11 I_ Back End 1
i _ i (Target A) I

I I On Host B

1 Back End I
I (Target B) I

where the compilers for the different hosts are created by:

Target-
Dependent

Information
I
V

I Compiler i I Compiler 1 1 Relocatable for I
I Source I I I I I HostA ISI_ __I I i I

I I Relocatable for I
I-I HostB I

A common compiler source module is used to create relocatable object modules
by selecting the appropriate target option and by supplying the appropriate
!SKIP directives.

The present J73 compiler contains a regional optimizer phase, which
performs various optimizations over a region of the program. A region is a
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series of source statements terminated by a backward branch, or limited by the
size of the optimizer's internal tables. optimizations such as commwon
subexpression elimination, and constant arith-metic are performed on the
statements in the region. In the course of conmmon subexpression elimination,
reference counts are comrputed for use in register allocation. The optimizer
also performs some local optimizations such as algebraic simplifications.

Register allocation, except for certain dedicated registers, is performed
by the code generator. Values in registers are remembered across forward
flow, within a region.

There is no peephole optimizer, per se, but some commnon peephole
optimizations are performed by other phases, such as the code generator.

For those targets for which it is applicable the editor phase performs
certain branch optimizations. In particular, if shorter branch sequences than
the worst case sequences can be used for a particular branch, then the short
sequences are used.

Advantages of Optimization

The primary advantage of optimization is that optimized programs use fewer
resources at execution time. They normally will execute faster and require
less space than unoptimized programs. An additional benefit which may be
derived from an optimizer is enhanced diagnosing capability for the compiler.
An optimizer which performs flow analysis may be able to determine that a
given variable is set before it is used, that code can never be executed, or
that a loop is nonr-terminating. By detecting and diagnosing such conditions,
the compiler can aid the programmer in producing a correct program.

Optimization and Compiler Testing

The higher the degree of optimization present in a comiler, the more
difficult it is to devise a comprehensive series of test cases. A compiler
which does no optimization could be tested relatively well w~ th a standard
suite of tests, such as the JOVAL Compiler Validation System (JCVS) tests,
which test language features, usually in isolation. Because optimization
takes into account the interaction of various statements and language
features, there are a greater number of possiblilties for testing.

This problem can be mitigated somewhat by having a standard compiler,
because this broadens the user base and provides the compiler with greater
exposure to test programs and production programs.

Training a Compiler

One danger of using benchmarks to test compiler performance is that it is
possible to train the comipiler to do well on the benchmarks without improving
its performance for real programs. This can happen if the benchmarks do not
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accurately reflect the composition of application programs.

As an extreme example consider a test case which performed no input. It
would then be possible for the compiler to interpret the program at
compile-time and produce generated code only for those statements which
performed some sort of output. The compiler' s performance would be impressive
for this particular test case, but it is highly unlikely that a real program
of any significant size, which performed no input, would be written.

It should be noted also that the same it true with respect to validation
tests. Validation suites typically test individual language features, rather
than the interactions between features. Thus, a compiler may be trained to
pass the tests, but may not be suitable for production use.

Effect of Optimization on Debugging

The presence of a global optimizer complicates debugging, whether it is
being done at the source or machine level. Currently, there is no
source-level interface in the J73 compiler for the 370 target. (Such
interf aces exist in the DEC-10 targeted comp~iler, though.) There are a numnber
of problems which arise from the optimization of code. At present, the
problems have not been well-explored. There is a paper which deals with this
subject [51; some additional ideas are contained in (6,7].

The primary difficulties arise in relating what is happening at the
machine level to what the programmer originally wrote. The loop
optimizations, and those which delete code, such as dead store elimination,
serve to obscure what is happening to the program. Optimizations are made
assuming that there must be a match between the results of optimized and
unoptimized programs, but do not necessarily preserve intermediate states. An
operation such as loop fusion, for example, changes the order in which
statements are executed. In an unoptimized program it would be possible to
stop after the execution of the first loop to verify that it worked as
intended. If loop fusion had been applied, there would be no point after
which the first loop had finished, but before the second had started. Code
motion is another optimization which could cause confusion. A programmer
might like to set breakpoints before and after a statement is executed if he
thinks that that particular statement is suspect. If part of the statement
has been moved, what is the effect of setting a breakpoint before and after
that statement? Where should the program actually be interrupted?

Lower-level debugging is more complicated, also. Patching is risky for
unoptimized code, but virtually suicidal in the presence of global register
allocation, code motion and strength reduction. In addition it would be
extremely difficult to produce a reasonable interspersed source and assembly
listing in the presence of code motion. Common subexpression elimination,
folding, variable overlaying and dead store deletion complicate finding what
the values of variables are at a given time.

At present there are many unanswered questions with respect to providing
effective source-level debugging in the presence of optimized object code.
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Additional research is required to determine what the best solutions are, and
if reasonable results are possible.

Determining the Effectiveness of Optimizations

There are any number of optimizations which can reduce a program's
resource requirements when they are applied to that program. However, not all
optimizations are applicable to all programs. Ideally, it would be possible
to predict the expected effect of various optimizations, alone and in
combination, on real programs. This would require a knowledge of how muich
time or space a given optimization would save, as well as some indication of
the probability of the optimization being applicable. It is possible to
obtain a reasonable approximation of the former by explaining the cases to
which the optimization is applicable. However, there are no good statistics
available. Of the published work [8] caxnes closest, although his statistics
deal primarily with improvements for some specific examples. One oft-quoted
statistic fran his work is that 4% of the program usually accounts for over
50% of the total execution time. An incomplete study at CMU indicates that
there are a number of optimizations which provide a small, but appreciable,
improvement [9].

An additional problem is that most of the currently available statistics
for program characteristics are static ones. Even static statistics are not
available for the applicability of optimizations. Furthermore, if they were,
they would not necessarily be applicable to the problem at hand. For example,
even if all possible statistics were available for commnercial application,
they probably would not accurately reflect the composition of military
application programs.

There have been a number of studies of the characteristics of computer
programs. A list of such studies can be found in (10]. The most famous is
that of Knuth (8] which dealt with FORTRlAN programs and possibilities for
optimization. The studies which are most relevant to this report are
[10,11,12]. [10] contains statistics for a number of characteristics for
JOV1IAL applications programs. (11] and (12] contain statistics for
comipilers. The latter contains figures for the J73 compiler for both the
DEC-10 and IBM hosts. Although the figures are for the J73/I coded version of
the compiler, they reflect the coding style used in the compiler.

Unfortunately, not much information is available regarding the expected
payoff for various optimizations for real programs. Knuth does some work in
this area and (13] provides some data on the occurrence of common
subexpressions, but there are no good figures on how often strength reduction
is applicable, for example.

The statistics in these various studies do point out some valuable facts,
though. One is that statements are usually simple. Thus, a register
allocation algorithm which was concerned with minimizing the height of the
trees, would be nice in theory but would not produce a big savings in
practice. Effort would be better invested in handling common subexpressions.
Unfortunately, even with simplifying assumptions, the problem of register
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allocation in the presence of commron subexpressions is NP-com-plete. Thus, it
is impossible to devise an algorithm which is both efficient and optimal.

A Since there is insufficient information to be able to determine the
frequency of applicability for a given optimization in real programs, it is
not meaningful to make generalization that "this compiler produces code which
is within 10% of the size (speed) for assembl1y coded programs". It may be
possible to make such a claim for a specific set of test cases, however.

Even for a fixed set of test it may be difficult to derive a reliable
figure. It is known that different programmers write programs which differ in
efficiency. Suppose two programmers implemented the same algorithm in
assembly language and that one program was 20% smaller than the other. Would
this imply that one assembiler was not within 10% of the other?

An additional problem in making an accurate assessment of the compiler's
generated code is that programmers tend to deliberately avoid language
features which are implemented inefficiently by the compiler which they happen
to be using. This may cause a skewing of the data, particularly if an attempt
is made to compare two compilers. One would expect that the compiler with
which the programs were originally developed would have an advantage in this
regard. The ideal test cases for such a comparison would be real programs
developed in a vacuum, with the programmers knowing only the semantics of the
language and not how efficiently a particular compiler implemented language
features. This is impractical, however, if the system is being developed for
a real application and not as an exercise in studying use of the language. If
the system is to be usable, it must meet its efficiency constraints when it is
compiled through an actual compiler. Thus, a particular implementation will
influence the most effective way to achieve a given result. In addition,
programmiers often experiment to find out how a feature works if the
specification is unclear.

Another factor to consider is the allocation of data. The J73 language
specification does not specify whether local data is to be allocated
statically or dynamically in the case of procedures which are neither
recursive nor reentrant. Allocating the data on a runtime stack can save
space, but costs time. In addition, more code is required to access
dynamically allocated data in certain situations.

Judgements of effectiveness of the optimizations are somewhat subjective,
therefore. Even if there was sufficient data available to form a judgement
based on past programs, there is no guarantee that it would hold in the
future. One example can be found in the statistics in [10]. Of all the
procedures surveyed, none had more than six parameters. However, there are
several routines in the DSM software that have between 15 and 20 parameters.

Thoroughness of Optimization

It should be noted that if two compilers are said to perform a given
optimization it does not imply that the two perform the optimization to an
equal degree. There are various scopes in which optimizations may be applied:
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local, regional, global, inter-procedural and inter-meodular. Local
optimization is performed within a statement; regional optimization applies to
a group of statements; global optimization refers to the optimization of a
procedure as a whole and inter-procedural refers to optimization which takes
into account the effects of other procedures, in addition to the one for which
code is being generated. We introduce the term inter-modular optimization to
distinguish between optimization which use information obtained from a single
source module (compilation unit in Ada parlance) and those which make use of

jinf ormation f ran a number of dif ferent modules.

It would be possible, in principle, to perform inter-modular
optimizations in a JOVIAL compiler, but to do so would require much more
environmental information than is currently maintained. In addition,
configuration management would become more complicated because there would be
a requirement to recompile other modules as the result of internal changes to
a given module. At present, only modification of compools or def procedures
or data require other modules to be recompiled. Thus, we feel that the cost
of inter-modular optimnizations would be prohibitive.

A certain degree of inter-procedural analysis is desirable, however. In
* particular, it is useful to know what data may be affected by a call to a

given procedure. This information can then be found to avoid having to make
worst case assumptions whenever a procedure is called.

Even if the scope over which an optimization is applied is the same,
there may be differences in the number of cases which are actually handled.
It is possible to perform optimizations for special cases and to ignore the
more general case. For example, it would be possible to perform redundant
computation elimination only for subscripts. Thus, it is not sufficient just
to say that a compiler performs an optimization; additional information is
required before any intelligent comparisons can be made.

Effects of the J73 Language on Optimization

J73 is a relatively large language, so it presents more difficulties to
an optimizer than would simpler languages such as FORTRAN or Pascal. It is
not as large, however, as Ada, so J73 optimization is simpler than Ada
optimization.

J73 has more data types (notably pointers and fixed-point) and operators
than does FORTRAN. En addition, JOVIAL compilers must deal with nested
procedures, recursiveness and reentrancy. The fact that there is no
input/output in 373 (except for !TRACE) simplifies the compiler's job.

Pascal is a far simpler language than is J73. It does not provide
fixed-point arithmetic, presets, and inline or external procedures (although
some implementations do provide external procedures). The most significant
features of Pascal not found in J73 are input/output and range checking.
Variant records are not present in 373, but may be simulated with specified
and LIKE tables. Because Pascal pointers may point only to data in the heap,
a Pascal compiler does not have to worry about local data being altered
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through the use of a pointer.

Ada, on the other hand, has a number of features which affect an
optimizer, but which are not found in J73. Tasking, packages and exceptions
all require the optimizer to do additional work. Generics could be ignored by
a naive optimizer, but they do present additional opportunities for
optimization. The only features of J73 which require additional work by an
optimizer are label and proc parameters. Abort is analogous to the exception
mechanism in Ada, but all aborts are explicit.

For the most part, optimizations which are applied to algebraic languages
apply to J73, also. They will not be discussed here. The following
paragraphs deal only with differences between optimizing JOVIAL as opposed to
other languages.

JOVJIAL has a number of features which affect the optimization of object
code. Some, like inline procedures and defines, provide additional
opportunities for optimization. Others, like procedure parameters and
overlays, make optimization more difficult.

The existence of inline procedures and defines means that the compiler is
6 likely to see code which may be more susceptible to optimization than that

which is written directly by a programmer. These language features make it
easier to parameterize code so that a single coy of a source program may be
used to generate code for various versions of a system, or which is to be run
on various target machines. This parameterization often results in
opportunities for the compiler to perform constant arithmetic or dead code
elimination. These factors must be taken into account in making a decision as
to which optimizations are cost-effective.

There are a variety of kinds of aliasing which are possible in J73.
These include:

1. Overlay statements.
2. Aliasing by means of pointers.
3. Aliasing by means of formal parameters.
4. Overlaying by means of specified tables.

The fact that procedures and functions may be passed as parameters means that
it may be impossible at compile time to determine precisely which procedures
may be invoked as the result of a given call.

The existence in the language of a means for users to specify data
allocation means that the compiler cannot, in general, make convenient
assumptions about the allocation of data (for instance, that an item is
allocated to a storage unit for which the machine provides easy access).
These can produce a large number of special cases, if high-quality code is to
be generated.

They also provide an opportunity for optimizations which would not arise
in other languages, such as FORTIRAN or Pascal, in which the storage mapping is
more machine-oriented. One such optimization, discussed in more detail below,
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is finding storage units common.

The awkward syntax used for referencing data in type tables provides an
opportunity to do a special kind of folding.

The !BASE and !ISBASE directives allow users to specify that certain
registers are to be used for base registers. The register allocation
algorithm must allow for this outside interference.

The compiler must honor other directives when it is attempting
optimizations. !LE'I'RIGHT affects any optimizations which would attempt to
change evaluation order for expressions. !ORDER affects variable overlaying.

There are several directives which are designed to facilitate
optimization. !REDUCIBLE allows the compiler to eliminate redundant function
calls. !INTERFERENCE tells the compiler that it must assume that setting one
variable may change another. In the absence of this directive the compiler is
free to assume that different names refer to distinct storage locations,
except where there are explicit overlay or specified table declarations.

* J73 requires that boolean expressions be evaluated in short circuit form
whenever possible. Thus, the compiler has no choice as to whether to
implement these expressions using tests and branches or logical operations, if
there may be any side-effects.

In addition to these factors which arise directly from the language
* definition, the intended use of the language has an effect on its compilers.

Because JOVIAL is intended for embedded systems, there are more stringent
requirements on the size and speed of generated code than there would be in a
data processing environment, for instance.

Constraints

There are a number of constraints which must be observed in considering a
standard optimization strategy including:

1. Adherence to the language specification.
*2. Compatibility with J73 front-end.

3. Compatibility with present code generators.
4. Compatibility with runtime library and old generated code.
5. Compatibility with system calling conventions.
6. Compatibility with other optimizer development.
7. Expandability to accanodate architecture extensions.

One of the most important constraints on an optimizer is that it may not
produce results which deviate f ran the language standard.

It would, of course, be possible to design a compiler f ran scratch in
order to facilitate code optimization. This would, however, not be
cost-effective when compared to adding additional capability to the present

* compiler. That being the case, compatibility issues become important.
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Compatibility provides a number of advantages. First, it is possible to
use existing compiler phases. These have already been developed and tested,
so the effort to add an optimizer is considerably less than it would be to

j build an entire compiler. Second, work which is done for one target (e.g., an
added optimization) can benefit other targets, provided that a comon
optimizer is used. Similarly, optimizer bugs which are fixed for a given
target will be fixed for all targets if there is one commnon source for
optimizer modules. Having separate source files for optimizers for different
targets would necessitate a mechanism for distributing changes to all
appropriate optimizers.

There are some disadvantages to maintaining compatibility, also. A
cotmmon optimizer will be more complex than a single-target one if it is to
achieve comparable results. Second, scheduling conflicts can arise with
respect to changes. One project or target may require changes just before

6 another project or target is due for a compiler release. A change to the
optimizer at an inopportune time would require testing to be rerun to insure
that no regression has occurred. Third, an optimizer tailored to a given
machine may be able to emp~loy strategies which would be inappropriate for
another target. A common optimizer would be confined to the same basic
algorithm, although portions may be table-driven or target-dependent.

Maintaining compatibility with other code generators allows the benefits
of optimization to be obtained for those targets at a reduced cost. This is a
significant constraint, however, since the code generator-optimizer interface
is complex and is not ideally suited to a new design. The alternative to
maintaining compatibility, however, is a major modification to approximately

4 ten code generators.

It is important to maintain execution time compatibility, at least at the
module level with code generated by the present version of the compiler. This
minimizes the risks of using newly compiled modules. This is particularly
important for a self-compiled compiler, but also allows a fall-back position

do for users. They can add newly-compiled modules a few at a time until
confidence is gained in the new optimizer.

Failure to observe the system calling conventions can cause problems if other
tools are to be used with JOVIAL programs. For instance, misleading dumps
would be produced on an IBM system if the compiler deviated too far from the

* standard calling sequence. It would also make it impossible to call routines
written in other languages, unless standard calling sequences could also be
generated. The present IBM compiler generates calls which use non-standard
calls for JOVIAL-JOVIAL calls, but allows the user to specify standard calling
sequences by means of the !LINKAG~E directive.

a The new optimizer should allow for future target architectural changes.
(One such example is IBM's forthcoming extended address architecture.) This
appears to be primarily an implementation issue, rather than a design
consideraLion. Note that this implies avoiding the addition of future
impediments rather than removing ones presently in the compiler.
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Conflicting Standards

Since J73 is the standard Air Force programing language (at least until the
developmient of the first successful Ada compiler), J73 compilers exist for a
variety of host and target machines. It is desirable that these compilers
exhibit similar behavior to minimize the learning required for a programer to
move from one compiler to another. It is also desirable that the interface to
the J73 compiler be like those for other compilers on the same host, so that
programers familiar with the host system may more easily adapt to using J73.

Unfortunately, this produces conflicts, because the conventions for different
host systems tend to be dissimilar. The ways compilers are invoked under MVS
and TIOPS-20 bear no resem'blance to each other. Thus, a choice must be made as
to which convention to follow: that of the host machine or that of existing
JOV~IAL compilers. In the case of the SEA J73 compiler, the choice has been to
follow the host system conventions. Thus, the JCL for invoking the J730
compiler on an IBM system is more similar to that used for a FORTRAN
compilation on that system, than for JOVIAL compilations on a DEC-20.

Problems also arise in the interface between user programs and the operating
system. A classic example is character allocation on the VAX. The natural
way for characters to be allocated within a word on the VAX is right-to-left,
but the J73 specification requires that characters be allocated
left-to-right. Thus, when designing a JOVIAL compiler for the VAX, one is
faced with a choice of creating a compiler which may produce different results
than would be obtained on another machine, or of failing to take full
advantage of the host hardware and creating incomrpatibilities with sysem
conventions and with programs written in other languages.

Methods for Determining Potential Optimizations

There are a number of approaches which can be used to determine those
areas in which generated code should be improved, including examining the
current generated code for inefficiencies, comparison with generated code for
other compilers for the same target, and inspection of the target instruction
set for instructions which are unused or under-used in generated code. All of
these approaches have been applied to the SEA compiler. In addition, standard
optimization techniques not implemented in the compiler have been examined for

* applicability.

Examination of current code

The compiler supports at least two classes of programs: the compiler
* itself and application programs. Because these are likely to have different

characteristics, samples of the generated code for both types were examined.

The compiler was originally coded in 373/I and then translated
automatically to J73. This has had several effects on the code found in the
compiler. First, the compiler is, in effect, coded in the 373/I subset of

* 373. Some enhancements have been added since the translation took place, but

31



-0- - - - -

their magnitude is small relative to the size of the entire compiler. Second,
the database is a J73/I database, so that even new code will take on a J73/I
flavor. For example, defines were used rather than types to declare data,

j because J73/I had no user-defined types. Thus, new code which declares items
which are of the same (logical) type as data already in the compiler's
database would use define calls rather than types to declare the new data.

On the other hand, the Satellite Control Facility (SCF) code is
effectively Ada translated to J73. Thus, types are used more often, and
operations on aggregates (real or simulated) are more commnon.

Another major difference is that applications software is reentrant. The
only routines in the compiler which are reentrant are those from the runtimne
library. Several compiler routines are recursive, although the vast majority
are not.

Comparison with other compilers

Some test cases were run using the present J73 compiler, the J73/I
compiler, and compilers for various other languages, such as FORTRAN and

* PL/I. These tests were run using various levels of optimization.0

Several interesting observations can be made. The first is that
reduction of space requirements and execution time are conflicting.
Interestingly enough, the generated code produced by J73 was more compact than
that produced by either version of FORTRAN' H, FORTRAN G or the FL/I optimizing

* compiler. The code produced by FORTRAN H was more compact at optimization
level 1 than at optimization level 2, but the amount of code in the inner loop
was 4 times greater for level 1.

Second, it is possible to make great improvements in the generated code
for tight loops. J73 had 50 (hex) bytes of code in the inner loop, but
FORTRAN H with full optimization had only 10. For comparison FORTRAN HW
without optimization generated 60 bytes for the inner loop and PLI with
optimization off generated 74.

Examination of the target instruction set

Comparing the set of instructions generated by a compiler against those
in the target machine instruction set can be a means of improving the use of
the target's instructions, particularly if the original code generator was
restricted to a least common denominator approach for compatibility reasons,
or to minimize developmient time. Clearly, not all machine instructions are

* suitable for use by JOVIAL compilers. COOL-oriented edit instructions, for
example, are unlikely to enhance JOVIAL code. However, if binary arithmetic
or logical1 instructions were unused, it would be worth investigating to
deterniinp if they could be used to produce better code.

* Considerat ion of known optimization techniques0
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There are a number of catalogs [14,15,16] of optimization techniques which can
provide ideas for consideration. Since JOIAL contains arithmetic operations
which are conventional, techniques developed for other languages, such as
FOR7MN can be applied.

Optimizer Data Base for the MX Optimizer

Certain information is needed in order for the optimizer to be able to
determine whether optimizations are applicable and profitable. In particular,
set/use information is needed for variables and dcominator information for the
program graph is required. The way this database is derived is a major issue
in the design of an optimizing compiler.

There are a number of algorithms for data flow analysis. Some are
described in widely-available literature [17,18,19,20,21]. Others, such as
the algorithm used in the current J73 compiler (4], are not as widely known.

Perhaps the best-known of these methods is interval analysis [17]. A
program is divided up into a series of intervals, each of which contains, at
most, one strongly connected region. Interval analysis is then applied on a

*graph in which each interval is condensed to a single node. This process
repeats until the whole program has shrunk to one node or the graph is found
to be irreducible. The principle disadvantage of this method is that it is
applicable only to reducible programs. Because J73 allows goto statements, it
is possible to write irreducible programs in this language.

Other methods also are restricted to reducible programs [20]. The method
chosen for the NX J73 optimizer is P-graphing [22]. This method is comipletely
general and can be applied to arbitrary program graphs. In addition SEA staff
members are familiar with this method, having implemented two optimizers which
use it. Further, a version of the algorithm, written in SYMPL is available.
Thus, the cost of implementing the algorithms is one of translation, rather

I dithan developmnent.

The P-graph of a variable contains information about the set and use
information for that variable. All occurrences of a variable which represent
the same value are assigned to the same "generation class". Each use is
associated with a given operation. For those uses which can result fromn two

* or more actual generations (due to the merging of control flow), a pseudo-
generation is created at the merge point.

The P-graph for each variable is constructed from the program graph.
Initially, each node which contains a generation of the variable is tagged
with its own node number. The tag is propagated fran a node to each of its

* successors. If the successor is tagged with its own number, it is left0
unchanged. If the successor is tagged with a value which is neither its own
number, nor that being propagated, there are several generations which can
reach that node, so a pseudo-generation is created at that node. The
algorithm terminates when all generations and pseudo-generations have been
propagated. At this point each node is labeled with the number of the node

* which contains the generation which can reach that node.
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The actual algorithm contains optimizations for special cases and must
handle generations and uses which occur within basic blocks, but the general
idea is the same. A very high level language description for the P-graph
algorithm is contained in [22].

In addition to the generations and uses of variables, dominator
information must also be known in order to perform such optimizations as code
motion. A node n back-dominates node n' if n<>n' and every path from the
entry node to n' passes through n. An analogous definition exists for forward
dominators. This dominator information is necessary to insure that if a
computation is moved from one block to another, that it will be performed
under the same conditions as it would have prior to the code motion.

The algorithm for computing dominators is given in [23,24]. It computes
dominators by doing a depth-first search of the program graph, constructing a
spanning tree and partitioning the remaining nodes into forward, cycle and
cross arcs.

Implementation Approach

A global optimizer is being implemented for the MX project. The compiler
for PIX is based on the same root as the J73 compiler used by SCF. Thus, the
most reasonable approach for the SCF optimizer is to use the optimizations
which become available as a result -T the MX project and to add those
optimizations which are particulai I, applicable to the 370 architecture and
SCF needs. In addition, as optimizations are being designed for lPJX, issues of
rehosting and retargeting to the 370 are to be addressed.

The rehosting issues are relatively easy to handle. Because the
optimizer will be coded in J73, it will be rehostable if host-dependent coding
is avoided. Fortunately, this does not require great effort, only foresight.

Retargeting issues have been mentioned in the preceding discussion on
optimizations. The most important ones are base register handling and
register allocation in general.

The following optimizations will be implemented in the MX compiler:
a. Constant arithmetic
b. Constant folding
c. Cormmon subexpression elimination 0
d. Reordering of arithmetic expressions (including unary - optimizations)
e. Elimination of jumps to jumps
f. Unreachable code deletion
g. Invariant code motion
h. Strength reduction and test replacement

Development for the MX optimizer is already under way on a DEC-20. At
the present time the dominators algorithm and the optimizer data base have
been translated to J73 from SYMPL and have been compiled. Development will
continue on the DEC-20. The most reasonable approach to take for the SCF
optimizer is to do the development on the DEC-20, including the necessary
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modifications to the IBM code generator. After the optimizer has been checked
out by examining code produced, it can be rehosted to a 370, to facilitate the
running of test cases.

Summi~ary

Although optimization is not necessary for all applications, it is still
important for those which have critical space and/or speed requirements.
Costs associated with optimization include increased compiler development time
and cost, requirements for additional compiler testing, lowered compilation
speed and increased difficulty of creating a source-level debugging
interface.

The fact that there is a standard Air Force language makes it possible to
reuse large portions of the compiler. This allows compilers to be produced
for a far lower cost than would be possible if it were necessary to develop
compilers for different languages.
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ABSTRACT

-~The development of J73AVS reflects the commitment of the Air Force
to tacilitate JOVIAL 373 standardization. This paper describes software
verification as it is automated by the J73AVS tool. The concept of
software verification is discussed, as well as the capabilities and
operation of J73AVS. J73AVS provides much of its payoff by detecting
certain software errors and measuring the thoroughness of testing far
more accurately and efficiently than could be achieved manually. While
J73AVS operates as a standalone program on several host computers, it
augments the JOVIAL J73 support environment whe "sed with otbar Air
Force-sponsored tools such s the code auditor' Idbger[Jan
Program Support Libraryrl3J.

INTRODUCTION

What is "software verification"? According to the IEEE committee
on standardizing software terminology, it is

the iterative evaluation of evolving software to ensure
compliance with requirements"

Thus, verification differs from validation or certification in that it
is an activity that is performed continuously throughout a software
development cycle. It incorporates a variety of automated and manual
techniques to determine consistency between the requirements, design,
coding, testing, and documenting stages of software projects.

Our focus in designing and building Automated Verification Systems
(AVS) for JOVIAL [41, FORTRAN [51, and COBOL [61 has been on static and
dynamic code analysis. That is, each AVS reads source code as input for
static analysis and uses the program's regular input data during dynamic
analysis. Therefore, requirements and design are not verified directly
by the AVS. However, because the AVS analyzes the actual code, the tool
reports true program characteristics. This approach interferes very
little with normal program development, since the AVS does not require
additional information other than the source code and initial set of
test data.
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One very important, but often neglected, area of software veri-
fication is that of ensuring that the program documentation reflects the
real code. The most time-consuming aspect of conforming to Mil-Std-483
or other documentation standards is generating program symbol, struc-
ture, and interface information. Because it maintains a database of
intra- and inter-module characteristics, the AVS can generate some of
this information automatically. As code is modified due to error
correction or enhancements, the reports can be easily regenerated to
reflect the changed code. in contrast, manually generated documentation
is rarely up to date.

J73AVS CAPABILITIES

J73AVS should play a role in JOVIAL J73 software development as
soon as some of the modules are compilable. The source code is gener-
ated based upon a design, which in turn is based on a set of require-
ments. It is recoimmended that the expected program output (acceptance
criteria) and at least an initial set of input test data be generated
concurrently with the program's design. The requirements, design, and
acceptance criteria play an indirect role in J73AVS's analysis of the
software.

The types of J73AVS analysis capabilities are:

j Static and data-flow analysis (symbul usage anomalies and
dangerous coding)

* Reporting of program structure and characteristics

* Measuring execution coverage of statements, branches, and

j program units

0 Execution tracing of variables, branches, and program units

* Execution timing

* Structural (branch) retesting assistance0

* Test history reporting

Figure I shows how the requirements, design specification,
0 acceptance criteria, and test data interact with J73AVS-supported

testing. The acceptance criteria are used to judge the proper perform-
ance of the program. J73AVS provides detailed source analysis reporting
which aids the analyst in determining that certain acceptance criteria
are being met. The bold path marked number one in Figure 1 indicates
the cycle of static code checking.
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Figure 1. Using an AVS

Once the static errors are removed, the program can be analyzed
dynamically by driving it with the initial set of test data. Dynamic
analysis is indicated by bold path number two in Figure 1. J73AVS S
outputs execution coverage, timing, and tracing information, along with
the normal program output, which aids the analyst in determining
acceptable performance. Unexercised statements and branches are
indicated by J73AVS so that additional test data can be generated to
ensure that all parts of the code are tested. Dynamic analysis,
therefore, is usually an iterative activity that continues until the 5
desired level of exercise is achieved. J73AVS maintains the coverage
levels for each test in its database.

As shown in Figure 1, compilable source code generally is first
analyzed by J73AVS to detect semantic errors that are outside the scope
of the compiler's static analysis capabilities. As each module is S
analyzed by J73AVS, a database is built that contains single and
multi-module detailed characteristics. This database is used and
augmented each time additional analysis (static or dynamic) is requested
by the user. Thus, J73AVS is a partner in the development, testing, and
documentation phases.
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it should be pointed out that, because of the database feature,
J73AVS supports top-down code development in the following way.
High-level modules can be coded early with stubs (module skeletons) for
lower-level modules. Both fully coded modules and stubs can be input to
J73AVS for analysis and documentation. J73AVS includes the stubs in its
database. Module interaction and interfaces (GOMPOOL usage and para-
meter passing) will be analyzed and reported to the extent that they
occur in the code. Then, as lower-level stubs are replaced with full
source code, J73AVS replaces the modules on the database.

A typical sequence of J73AVS-supported verification of fully coded
source modules is:

1. JOVIAL J73 source text, perhaps with assertions (Boolean
expreesions, recognized by J73AVS, that specify expected
behavior), is read by J73AVS as one or more compilable
modules.

2. J73AVS produces program analysis reports showing control
* structure, symbol usage, calling hierarchy, etc., as well as

a static analysis report showing errors and dangerous
programming practices.

3. Using the reports as a guide, the source modules are changed
or new modules are added to the program.

4. J73AVS reports the interaction of the new or changed modules
with the rest of the program. This information, in turn,
may show the need to modify other modules.

5. For debugging, the program is instrumented by J73AVS and
executed with an initial test case supplied by the user.

6. Assertion messages, variable, branch, and module tracing,
and execution timing reports can be used for debugging.

7. Using the J73AVS reports, the user chooses to create more
* test data or instrument other modules.

8. For testing, the same cycle of instrumentation and execution
is repeated, but for a different goal: rather than detecting
and locating errors, testing aims to demonstrate that the
entire program has been exercised to some degree. The

* J73AVS execution analysis reports show the thoroughness of*
execution coverage.

9. The user evaluates execution coverage reports, the program's
own execution results, and the program specification to
determine if testing is complete.
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10. J73AVS provides branch sequence information to retest
targets chosen by the user. A test history of execution
coverage assists the user in choosing targets for retesting.

As just noted, J73AVS can be used to assist with several phases of
software development. These phases can be grouped as:

0 Program development and maintenance

a Debugging

0 Testing

* Retesting assistance

Program Development and Maintenance

* Executable assertions provide a means for a programmer to specify
expected behavior. Assertions can be used for reporting execution-time
exceptions, stress testing, and manual or automated test data genera-
tion. When assertions are left as comments in the source code they can
be used as inline documentation of the program's specifications. An
example of an executable assertions is:

"ASSERT (STAGK'POINTER >= 0)"

To assist with reliable system development and maintenance, J73AVS
provides substantial program analysis reporting on structural hierarchy,
symbol usage, invocations, certain J73 constructs, and system character-
istics. The user has control over obtaining high- or low-level infor-

4 mation through the tool's command language.

Debugging

Normal compilation using JOVIAL J73 compilers can detect many
5 syntax and semantic errors. Other errors, such as uninitialized

variables, possible infinite loops, unreachable code, certain improper
constructs, and dangerous coding practices (like transferring into CASE
or IF statements) will be reported by J73AVS. The user can specify the
degree of analysis to the error, warning, or message level.

0 Debugging is supported by assertion exceptions, variable and
module execution tracing, and execution timing reports. When the
program's execution behavior deviates from the acceptable logical
behavior as specified by the assertions, it is immediately reported in
the program's output. The user-embedded assertions have no effect on
program control flow until they are violated; at that tine the violation
is reported with the source statement number of the assertions.
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Testing

The primary purpose of program coverage analysis is to provide a
measure of the level of testing. One measuring technique uses the
program's control structure as a guide. Structure-based testing means
that the program's control structures are analyzed for execution
behavior; that is, whether the structures are exercised and in what
order. Structure-based testing can uncover errors due to untested
branches or improper sequences of branches. J73AVS provides program
unit or branch tracing and analyzes execution coverage of program units,
branches, and statements. Further, J73AVS assembles the timing infor-
mation from program unit tracing and user-directed timing probes into an
execution timing report.

Retesting Assistance

Software is retested when analysis shows that prior testing is
inadequate (insufficient branch coverage, not all functions demon-
strated, etc.) or when program changes have taken place. The proper
approach to take in retesting is highly dependent upon the character-
istics of the program being tested as well as the measures being used to
evaluate testing completeness.

To determine the sequence of branches which lead to an untested
.6 branch or statement, the user can request that the "reaching set" be

computed between LWJO specified statements (orfo rcdr' nr)
After the flow of control is identified by J73AVS, the user can back-
track through the program to the actual test data. New test data can be
created by using J73AVS module interaction, invocation, and execution
coverage reports. Unfortunately, automatic test data generators which
use symbolic execution are not yet general enough, easy to use, or
reliable. Therefore, J73AVS has no test data generation capability at
this time.

The testing history maintained by J73AVS is useful in attaining
testing coverage goals and for determining targets for retesting.

S Procedure invocation and coverage information is saved in a concise way
for each test case. The results of subsequent execution runs can be
added, providing a cumulative report of all tests.

J73AVS OPERATION

J73AVS operates in either batch or interactive mode on a host
computer. If the JOVIAL J73 code being analyzed is destined for
execution on a target computer, the J73AVS dynamic analysis operation is
modified slightly, as shown in Figure 2.
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Figure 2. Using J73AVS in a Host-Target Environment

The user directs J73AVS analysis through a simple command lan-
guage. The basic commands are verbs that select the type of analysis,
followed by command parameters that specify the scope of the analysis or
level of error reporting. As much as a whole program or as little as a
single symbol can be analyzed.

J73AVS displays or prints reports during static analysis. For
dynamic analysis, the instrumented source (augmented by expanded
assertions and by probes for execution coverage, tracing, or timing) is
passed to the JOVIAL J73 compiler. In a host execution environment,
input data is read by the program and normal program output is accom-
panied by an execution data collection file required for the J73AVS
post-execution analysis reports. J73AVS uses that file, along with its
database, to provide readable, user-selected reports that describe
execution behavior.

In a host-target environment, the target computer must have a
sequential output device such as a disk or tape to transfer the data
collected during execution back to the host. In the absence of any
sequential output device, the J73AVS data collection routines can be
modified to output test coverage information on the target in an
abbreviated manner.
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J73AVS was developed for operation on IBM 370 and DEC 20 compu-
ters. It is currently being rehosted to the VAX 11/780. J73AVS is
written in JOVIAL J73, except for a few small input/output routines
written in FORTRAN. The VAX version of J73AVS is written in a struc-
tured dialect of FORTRAN.
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ABSTRACT

- JOVIAL is the interim standard language for Air Force avionics embedded
computers until Ada becomes available. The JOVIAL Language Control

* Facility (LCF) has developed and fine-tuned the procedures of language
control and defined them using a formal modeling technique. The resulting

models promote tight administration of the control function by exposing the
details of all tasks and forcing attention to their interrelationships.
They also provide a basis for reconfiguring proven Air Force language
control functions for Ada, and the LCF has identified some important
considerations in accomplishing this. The Air Force's transition to Ada
has a high probability of success because of their experience with JOVIAL,

their systematic evolution and fine-tuning of langauge control procedures,
and the extensibility of these procedures to encompass Ada.

A PRAGMATIC DEFINITION OF LANGUAGE CONTROL

High order language standardization is being successfully achieved in
the Air Force. The Air Force currently requires JOVIAL (J73) to be used on
all avionics embedded computers until the DoD-wide language, Ada, becomes
available. To support this standardization effort, language control is

* essential. This paper is about the JOVIAL Language Control Facility
(LCF) ... what it does, how it operates, and the considerations it feels are
most important as we extend language control to encompass Ada.

*Ada is a trademark of the United States Department of Defense (DoD)

This paper was published in the proceedings of the IEEE 1982 National
Aerospace and Electronics Conference (NAECON), 18-20 May 1982, Institute of

*0 Electrical and Electronics Engineers, New York.

Copyright 1982 by the Institute of Electrical and Electronics Engineers,
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After initial development and trial operation by the Rome Air
Development Center (RADC), the LCF was moved to its present location in the

j ASD Computer Center's Computer Operations Division in March 1981. Our
first year of running the LCF has provided us an opportunity to fine-tune
the excellent procedures developed by RADC and determine the areas of user
support in which to concentrate our resources. Through this experience, we
have also developed a pragmatic definition of language control that not
only describes our function but provides it a firm conceptual foundation:

Language control is the assurance of the
integrity, stability, consistency, and
usability of the language.

Assuring the integrity of the language means assuring its accuracy and
completeness. While doing this, however, we must also allow changes to be
made to the language to remove deficiencies and adapt it to new
applications. This allowance for change is somewhat in conflict with the
attending requirement for assuring language stability. Stability requires
a resistance to change. We resolve this apparent conflict operationally
through careful compromise and control of the language change criteria.

* Assuring the consistency of the language requires assuring that every
implementation is in accordance with the standard language specification
and, thus, that standardization itself is achieved. Finally, assuring
usability of the language requires us to educate people about it and to
promote its use by making data, documentation, and support tools readily
available.

A. MAJOR ELEMENTS OF LANGUAGE CONTROL

Based on the above definition, the act of language control has some
very specific requirements. To understand these requirements, it is
necessary to consider both the elements or ingredients of the control
process and the procedures for using them. We have identified four major
elements necessary to make language control possible:

(1) A well-defined and consistent policy
for controlling changes to the language;

(2) A mechanism for fielding, analyzing,
* and implementing language changes;

(3) A mechanism for checking conformance
of applications of the language to the
official specification; and

(4) A centralized, knowledgeable source
of information about the language and

* associated compilers and tools.

The provision of a well-defined change policy and a mechanism for
making changes allows us to assure language integrity and stability. The
mechanism for conformance-checking supports the assurance of language
consistency. Finally, the centralized knowledge source allows us to assure

* language usability. Thus, the elements of language control all relate to
its definition. All that remains is to define the procedures for
accomplishing control using these basic elements.
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B. SYSTEMS ANALYSIS AND DESIGN TECHNIQUES (SADT* ) MODELS

We have defined these language control procedures using an SADT
modeling technique developed by SofTech, Inc. (Ref. 1). These definitions
are documented in Reference 2, which we update annually to incorporate
revisions and additions. The SADT models promote tight administration of
language control because they force attention to details and identification
of every important parameter of the control process. They also provide an
organized means of reconfiguring the language control function to new
languages or extending it to include new policies. This is facilitated by
the models' provision for complete definition of all interrelationships
among the various control activities.

The SADT modeling technique consists of drawing a series of diagrams to
describe the control process in successive layers of increasing detail. In
the sample diagram in Figure 1, boxes represent activities. Arrows
entering a box on the left represent input data and those leaving on the
right, output data. Arrows entering the top represent controlling
functions or data. Those entering the bottom indicate the mechanism for
implementing the activity. Thus, box 2 in Figure I shows that the
Configuration Manager (in the LCF), the Language Control Agent (LCA), and
the JOVIAL/Ada Users Group (JUG) all participate in maintaining the

6 language standard under the guidance of the LCA and a configuration
management plan. Language Issue Reports (LIRs) are the inputs and the
revised language standard is the output of this activity. Diagram and node
numbers are used to identify related diagrams that show additional details
and to number the charts for easy reference. We took all the SADT charts
in this paper from Reference 2.

JOVIAL LANGUAGE CONTROL PROCEDURES

In this Section, we present a detailed description of the procedures
used to control the JOVIAL language. Figure I is an SADT chart for the
total task of operating the LCF. First, we must establish and maintain
policies that guide how we handle new requirements and respond to changing 0
user needs. We must also maintain the language standard, currently

SFIGURE 1. PROCEDURE TO OPERTE ICF

SADT is a trademark of Soffec[,, Inc.
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MIL-STD-1589B, by analyzing and incorporating changes necessary to enhance
the utility of JOVIAL for Air Force programs. We must maintain the JOVIAL
Compiler Validation System (JCVS) by designing and incorporating new tests
when necessary and updating it to match new versions of the governing
language standard. We must use the JCVS to perform validations of JOVIAL
compilers as requested by the LCA. Finally, we must provide a variety of
support services to assist users in learning and applying JOVIAL and
related tools. In the following subsections, we expand on each of these
tasks.

A. ESTABLISH LCF POLICY

The government LCF Manager establishes policy with guidance from the
LCA and various military standards. This policy guides all operations of
the LCF and, thus, control of the language. As existing policies are
changed and new ones added, the LCF so informs the JOVIAL user community to

hikeep it apprised of new services and activities.

All LCF policy and the policy-making process must be flexible to
accommodate unique user requests, new language applications, and changing
emphasis as we move toward Ada. One example of a recently formulated
policy is that we now automatically inform holders of the JCVS about the

0 existence of a new version, which they may order by dealing directly with
the LCF. This assures users of access to the most recent version for use
during compiler development activities.

An example of a policy extension we are in the process of formulating
under the guidance of the LCA is to perform informal validations of
industry-developed JOVIAL compilers. This is in addition to the formal
validations we perform at the request of Air Force Program Offices. We
believe this will promote JOVIAL by providing an additional measure of
confidence on evolving compilers before they are applied to specific
programs.

B. MAINTAIN LANGUAGE STANDARD

The military standard for JOVIAL describes the syntax, semantics, and
constraints of the language. It is by assuring adherence to this standard
at the compiler level that the Air Force enforces standardization

*requirements. While standardization inherently assumes language stability, 0
a mechanism must exist for making controlled changes to the language when
they are necessary to enhance or enable applications to Air Force programs.
The LCF maintains the language specification by implementing this change
mechanism and controlling the criteria for accepting changes.

* Actually, the maintenance operation involves direct participation of
the JUG, its associated Language Issues Committee, the LCA, and the
Language Control Board (LCB). This is depicted in Figure 2, which shows
the major steps involved in the operation. Any JOVIAL user may suggest a
change by preparing a Language Issue Request (LIR) and submitting it to the
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JUG or the LCF. This LIR describes the perceived problem and may also
suggest a solution. To formally document it, the LCF or JUG prepares a

corresponding Language Change Request (LCR) that describes precisely what
changes are to be made to specific paragraphs or phrases of the language 0

specification.

FIGURE 2: PROCEDURE TO MAINTAIN LANGUAGE STANDARD

Both the JUG Language Issues Committee and the LCF review and analyze
each LCR. For those LCRs approved by the Committee, the LCF prepares a
formal analysis according to a rigid set of criteria. These criteria
include the following:

(1) The proposed change must be upward compatible. This means that
existing, sound JOVIAL code must continue to be compilable by compilers

that implement the change;
(2) The proposed change must correct a real deficiency (be necessary)

and be complete (be sufficient);
(3) The proposed change must not significantly increase the need to

resort to assembly level coding; and
(4) The proposed change must not have significant negative impact on

the difficulty of compiler development.

It is by manipulating and tightening these criteria that the LCF can
control change proliferation and nurture the stability of the language.

When both the JUG and LCF have completed their reviews and analyses,
the LCR, suitably signed and approved, becomes a Language Change Proposal

(LCP). A JUG Language Issues Committee spokesperson and the LCF language
expert formally present this proposal to the LCB. The LCB votes on the
proposal and, if it is passed, it becomes a Language Configuration Item
(LCI) for entry by the LCF into the working version of a new specification.

Upon direction from AFSC through the LCA, the LCF produces a new
version of the language specification or official changes thereto. Current
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plans are to produce a Change Notice to MIL-STD-1589B in mid-1982 covering
only benign changes such as typographical errors. In Mid-1983, the Air
Force is considering a full update of the specification to MIL-STD-1589C.

C. MAINTAIN VALIDATOR

The JOVIAL Compiler Validation System (JCVS) (Ref. 3) is the official
set of test programs used to check conformance of JOVIAL compilers to the
language specification. The LCF maintains and enhances it under the
guidance of a rigid configuration management plan. Figure 3 illustrates
the steps in the JCVS maintenance process. We will describe related
configuration management procedures in conjunction with the steps they
affect in the following discussion.

I L ,., !... .. . ... .

FIGURE 3 PROCEOURE TO MAINTAIN VALIOATOR

Any user of the JCVS may submit a problem report documenting a
perceived inadequacy of the test-set. In practice, the LCF identifies most
of the problems during either (a) the performance of a compiler validation
or (b) a planned review of the JCVS to look for ways of improving it. The
submitter documents the problem on a Validator Change Request (VCR) form.

The LCF verifies the validity of the problem and designs a proposed
solution consisting of a new or revised program in the JCVS. The LCF
implements and tests the solution by compiling the new program using one or
more compilers in the LCF repository, which is purposely stocked to support
testing JCVS changes. If the compiler used in the test appears to have
failed the test, the LCF rechecks the test logic using code walk-throughs
and similar procedures; and it reruns the test using an alternative
compiler.

Upon successful completion of testing, the LCF prepares formal
documentation of the proposed change to the JCVS by completing Part I of
the VCR form. This form contains a description of the problem, proposed
solution, and specific code used or affected and is appended by the output
of test compilations. The LCF staff presents the VCR to a review team
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appointed by the LCF Manager. This team analyzes the purpose of the
change, symptoms of its necessity, and evidence of its soundness, more-or-
less playing a devil's advocate role. The team indicates its decided
disposition of the VCR by completing Part II, which includes evaluation
comments and reasons for the enacted decision.

Upon direction by the LCF Manager, the LCF staff prepares a new version
of the JCVS and a new Version Description Document. They archive all old
versions for possible reuse in situations involving contention of earlier
validation test results. The LCF notifies people currently holding the
JCVS that a new version is available.

One important feature of the JCVS maintenance process is that the LCF
very carefully reviews and screens any test revisions before implementing
them. Test construction requires an In-depth knowledge of the language and
careful attention to maintaining the purity of each test. Even with such
care, we have learned that a good test set, like a compiler, should never
be considered completely finished or guaranteed free of error. Therefore,
we are continuously pursuing various avenues to reanalyze the JCVS, look
for ways to improve it, and develop new compiler testing concepts.

S One avenue is to carefully review the "Rigorous JCVS", an alternative
test-set developed for RADC by TRW (Ref. 4). We want to determine whether
any of the tests it contains can usefully be added to the JCVS. Another
current activity is to carefully compare the JCVS with the language
specification to assure that every paragraph has a corresponding test.
Finally, at the request of the LCA, we are investigating the development of
some avionics benchmarks with probes to extract compiler performance data.
While not envisioned as a part of the JCVS, these benchmarks may be useful
as adjuncts to provide an additional confidence factor for the compiler.

D. PERFORM VALIDATIONS

A very critical function of the LCF is to validate JOVIAL J73
compilers. It is important to note, and apparently easy to forget, that
validation does not constitute compiler acceptance testing. Its major
purpose is to assure that the compiler interprets and translates source
code in accordance with the language specification. Acceptance testing and
software verification are separate activities that have nothing to do with

0 compiler validation.

Any JOVIAL J73 compiler to be used for a new Air Force application must
be validated. To accomplish this, the Program Office requests validation
services from the LCA, who initiates action to establish a Memorandum of
Agreement (MOA). The MOA defines the mutual responsibilities of its three

5 participants: (1) the Program Office, which must arrange with its
appropriate contractor to assist with the Test Plan preparation by
supplying the values of certain parameters unique to the Implementation;
and perform a trial execution of the JCVS to demonstrate the compiler's
readiness for formal validation; (2) the LCF, which must accomplish the
validation, analyze and interpret results, and prepare a report; and (3)
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the LCA, which must review the report and submit it to the Program Office,
with recommendations regarding the compiler's satisfaction of validation
requirements. The LCA then tasks the LCF with conduct of the validation in
accordance with the terms of the MOA.

Figure 4 describes the essential steps of validation. The LCF first
accomplishes careful planning by working with the customer to obtain host
and target specific information and, if required, designing special tests
to supplement the JCVS. This act[vity culminates in development of a
formal Test Plan containing all required data, the schedule, and proposed
analysis methods. When approved by the LCF Manager, this plan guides the
validation procedure.

vi'
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-- --------

FIGURE 4 PROCEDURE TO PERFORM A J73 VALIDATION

The LCF then assures readiness of the compiler for validation by
reviewing the printouts from informal runs of the JCVS accomplished by the 0
customer. For these runs, it is permissible to use an earlier version of
the JCVS because the major purpose is to assure that all classes of tests
are executable on the host/target facilities. This is normally a
straightforward task for the customer, who usually has already acquired and
used the JCVS throughout program development to help debug the compiler.
The LCF then accomplishes formal testing on-site using the most recent
version of the JCVS.

The final step is to analyze results and prepare a formal Test Analysis
Report (TAR). The LCF accomplishes the analysis by a careful, manual
review of all printouts. For some of the tests, this analysis requires
examination of the location and content of each compiler-produced error
message to be sure the correct error has been flagged. For other tests,
the analysis requires checking to see that all the code compiled without
error and, if an error did occur, determining its probable cause. It is
during this analysis that the LCF sometimes detects inadequacies in the
JCVS that were not revealed by any previously validated compilers. In this
case, the LCF develops a VCR and processes a recommended fix as described •
earlier.
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The TAR contains an overview of the testing accomplished and identifies
all areas of compiler nonconformance. It also contains the LCF's
recommendation about the severity of any discrepancies; identification of
those discrepancies that would not have occurred if LCB-approved LCRs were

incorporated into the official specification; and identification of any
JCVS tests which were discovered to be faulty and for which results are
indeterminable. The LCF forwards this report to the LCA, who makes a final
recommendation to the Program Office.

One highlight of the validation process is that it involves close 0

coordination with the customer to be sure the JCVS is properly tailored.
Each compiler implementation is unique, and this tailoring is always
necessary. Also, no changes are ever made to the JCVS during a validation
despite all temptations to correct a "small error". This assures good
configuration control and allows us to recreate the exact conditions of
testing if necessary. Finally, no part of the analysis is trusted totally 0

to automation. Every result is manually analyzed to be sure compiler
idiosyncracies are distinguished from real problems.

E. PROVIDE USER AND PROGRAM OFFICE SUPPORT

The final task performed by the LCF is to support the user community 0

and, as requested through the LCA, provide consultation and assistance to
Program Offices. Figure 5 identifies the various functions performed in
carrying out this task. First, the LCF maintains a data base of user
information, including a complete mailing list of JOVIAL users. We also
keep information about active compiler and tool development efforts. This
allows us to put users with common interests in contact with each other and
notify users of important JOVIAL news.

LZ

FIGURE 5i
PROCEDURE TO PROVIDE USER AND PROGRAM OFFICE SUPPORT
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The LCF provides both compiler and language expertise by staffing
itself with experts in these areas and collecting all available JOVIAL

tA documentation for ready reference and referral. The LCF uses this
expertise to answer any users' questions and prepare special documentation
to discuss frequently raised issues. We also attend all JUG meetings and
serve as language consultant there; and we publicize each meeting and edit
and distribute minutes using our computer-implemented mailing list. We
serve as office-of-record for the JUG, maintaining copies of all minutes,

Ahandouts, and briefing material. Finally, we provide training in JOVIAL
J73 programming by teaching 4-6 two-week classes a year.

The LCF assists with JOVIAL compiler procurements in two ways. We have
developed and periodically update a sample compiler specification and an
accompanying guide that explains how to tailor it to unique requirements

Q (Refs. 5 and 6). We also consult with Program Offices as JOVIAL experts
and can assist with writing specifications and participate in design
reviews as requested.

The LCF is responsible for maintaining JOVIAL tools. Currently in the
LCF repository are the JOVIAL Ccde Auditor, Programming Support Library,
and J73 Automated Verification System, all recently developed by RADC. To
assist 4ith the transition of these tools to users, we are providing user
assistance and hands-on experience in our facility. After assuring each
tool performs as described and is implementable on other systems, we begin
distributing it. At that time, we establish a Software Problem Reporting
(SPR) system or collecting user-reported problems and disseminating known
fixes or work-arounds. We are planning full maintenance services for the 0
tools as requirements dictate.

Finally, the LCF provides a variety of user services to promote the use
of JOVIAL. On request, we present briefings on any JOVIAL-related topic.
We either distribute JOVIAL documents directly or provide information on
how to obtain them, and we maintain an extensive reference library and list 0
of available documents. Through an MOA among ourselves, the LCA, and the
Federal Software Exchange (FSE), we art -as i clearinghouse for all JOVIAL
compilers and major support tools enroute to FSE for distribution. This
provides us the opportunity to assure these products are complete and ready
for distribution and to establish a tracking system for use in keeping
holders apprised of updates. We directly distribute selected tools and 0
compilers on an interim basis as necessary. Finally, we keep the JOVIAL
community informed about all on-going JOVIAL activities, available
services, new products, important events and available software by
publishing and distributing a newsletter every two months.

58

. . . .. . II I I 0I.... .



CONSIDERATIONS FOR Ada LANGUAGE CONTROL

Many of the foregoing procedures developed by the Air Force for
controlling JOVIAL can be applied directly to Ada. Others will require
tailoring, but that will be facilitated by the existing SADT models. T
type of tailoring needed for some of these procedures is the topic of t
Section, in which we point out some of the more obvious considerations
be made in preparing an LCF for Ada.

A. IMPACT OF DOD-WIDE LANGUAGE. Since Ada is a DoD-wide language,
maintenance of the Ada language standard will require coordination amon
the Air Force, Army, and Navy through the Ada Joint Program Office (AJP
This will result in a lengthy process unless efforts are made to establ
an efficient screening procedure for proposed changes. One approach wo
be for each Service as well as DoD to have its own LCR analysis and
screening procedures. LCRs that are approved at the Service level coul
then be forwarded to the DoD level ror final review and analysis. In
effect, the Services would propose changes based principally on criteri
language utility; and the DoD would dispose of or approve those changes
based principally on criteria of language and compiler impact and the
coordinated satisfaction of the needs of all the Services. The current
JOVIAL language control mechanism could serve for the Air Force with
adjustment of the criteria for analysis and acceptance.

B. GRADUAL TRANSITION TO Ada. One point that nearly everyone in the
standardization community agrees with is, "We want to profit from our
lessons learned in JOVIAL and not make the same mistakes in the Ada

*effort." With that point in mind, the trend we observe in the Air Forc
toward making the Ada transition a gradual one is readily understood.
transition could occur in four carefully planned phases that we might
descriptively title JOVIAL (in effect now), JOVIAL/Ada, Ada/JOVIAL, and
Ada. With the benefit of proven language control procedures on which t
base the transition and a flexible number of computer resources from wh
to draw in implementing each phase, the Air Force would enjoy a high
probability of success with such an approach.

C. Ada VALIDATION POLICY. The AJPO, staffed with Air Force, Navy, and
Army personnel, has the responsibility for ensuring the appropriate
validation of Ada compilers throughout the DoD. AJPO policy requires t

* before a compiler can use the name Ada, it must be fully validated, i.e
there must be a current certificate of validation issued for the compil
from the AJPO. They may also require renewal of the validation every t
years. AJPO presently allows use of the trademark Ada in conjunction w
partial implementations if a caveat is included in all associated
advertisements. These policies mean that frequent retesting of full an
partial implementations of Ada may be required, and therefore configura
management of the Ada Compiler Validation Capability (ACVC) test suite
5e very important.

-xisting configuration management procedures used for the JOVIAL te
(JCVS% could be directly adapted to the ACVC. As in the case of

-Ing, VCRs approved at the Service level would need to be conside
-vely at the DoD level to screen for redundancies and implement

c,, ,ontrol.
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A final consideration is that with the explosion of Ada implement
on microprocessors, there is an attending requirement for the ACVC tc
adapted to the microprocessor environment. It is unlikely that these
processors will host an Ada Programming Support Environment. This er
area presents additional new challenges for establishing validation
configuration management procedures and tools.

D. SIZE OF Ada USER COMMUNITY. Thp DoD standardization policy for I
will obviously result in an Ada users community that exceeds the size
the JOVIAL users community by several orders of magnitude. User ser%
as performed by the LCF for the JOVIAL/Ada Users Group, is already a
job, and that job will increase significantly for the Ada users comm
We recommend a direct extension of current JOVIAL user services, witl
addition of a liaison function to interact with other user groups thZ
exist. There is already talk about the JOVIAL/Ada Users Group
transitioning to an Ada/JOVIAL Users Group, and by popular demand we
established an "Ada Corner" in the JOVIAL LCF Newsletter. Thus, the
has already begun.

E. RAPID GROWTH OF Ada EXPERIENCE BASE. With Ada, we anticipate an
emphasis on user support and coordination among the Services to assiE
and dispense a common knowledge base. Then, as the users emerge, we
rapid growth of the Ada experience base and a high demand for compil(
validation services. This means early preparation is essential to bE
familiar with the ACVC and to refine JOVIAL procedures for administel
effectively. We cannot afford to wait too long to get started.

F. Ada AS AN ANSI STANDARD. DoD recognizes that to accomplish its
term purpose, it must expose Ada to public review and obtain a natiot
consensus. Therefore, DoD approached the American National Standardi
Institute (ANSI) about making Ada an ANSI standard. Of three possib]
avenues for accomplishing this, DoD chose the canvass approach. The
canvass has been completed, and DoD expects Ada to become an ANSI sti
by the summer of 1982.

As sponsor of Ada as an ANSI standard, DoD will be totally respol
for maintenance of the standard. Later, DoD intends to make Ada an
international standard through the International Standards Organizat
(ISO). The degree to which the DoD, ANSI, and ISO standards are the

* will be affected by the review process of the respective organizatio

Once Ada is an ANSI standard, it must comply with ANSI rules, wh
require that the standard must either be revised, reaffirmed, or dro
within a five year time period. This means that any changes to be m
MIL-STD-1815 will be reviewed by the ANSI technical committee before

* approval is given to implement those changes in the ANSI standard.
Furthermore, if Ada becomes an ISO standard, another level of review
required by an international committee to approve changes to the ISO
standard. Notice of plans to revise the ISO standard must be given
international community at least a year ahead of the target date for
revision of the standard. The impact of national and international

standardization on language control functions, particularly at the D
level, could be enormous and needs to be considered as we evolve the
Force LCF to service Ada.
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SUMMARY AND CONCLUSIONS

A. SUMMARY

JOVIAL is the interim standard language for Air Force avionics embedded
computers until Ada becomes available. The LCF is responsible for
controlling JOVIAL, and we have developed and fine-tuned the procedures of
language control. We have described those procedures in this paper using
SADT models and presented some important considerations for their revision
as we move toward Ada.

Language control is the assurance of the Integrity, stability,
consistency, and usability of the language. The four major elements of
language control are a well defined and consistent policy for controlling
language changes, a mechanism for making these changes, a mechanism for
checking for conformance to the language specification, and a centralized
knowledge source. The principal control tasks are establishing and
maintaining LCF policy, maintaining the language specification, maintaining
the validator, performing validations, and providing user and Program
Office support. The LCF has developed rigorous descriptions of procedures
for these tasks using SADT models. These models promote tight

6 administration of the control function and provide an organized basis for
reconfiguring the language control function to new languages, such as Ada.

There are several readily recognized characteristics of Ada that need
to be considered in establishing language control for it. First, since Ada
is DoD-wide, maintenance of the specification will require inter-Service
and AJPO coordination and will be a lengthy process. One approach to
streamlining this task may be to establish both a component level and a DoD
level of LCR analysis, and, in effect, set up a well-coordinated double-
screening process. Second, thk Air Force trend toward transitioning to Ada
very gradually suggests we should build the Ada control function to operate
in parallel with that for JOVIAL, then gradually phase-out the latter.
Third, we anticipate a need for frequent testing and retesting of Ada
compilers and a possible need for validating partial implementations,
including those on microprocessors. This will make configuration
management of the ACVC a very important factor in successful test
administration, and it will pose many new challenges for language control.
Fourth, the large size of the Ada user community will make user support a

S big job, and liaison among user groups will be necessary. Fifth, we
envision a rapid growth of the Ada experience base and an equally rapid
transition to a high demand for validation services. It is important to
begin preparing as soon as possible. Finally, with Ada as a military
(DoD), ANSI, and (potentially) ISO standard, coordination on changes to the
language will be especially important and will affect control activities at

6 all levels.
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B. CONCLUSIONS

JOVIAL language control is highly structured, well defined, and tightly
administered. This is facilitated by the maintainance of SADT models that S
define LCF operations in considerable detail. These models provide a
basis for extending proven Air Force language control functions to Ada.
This approach to the Ada transition has a high probability of success
because of the Air Force experience with JOVIAL and their systematic
evolution and fine-tuning of language control procedures.
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ABSTRACT

The Ada program is part of a DOD policy change towards incrementally
reducing the number of languages in use by the DOD from many to only a few
and then eventually to just one; Ada. Currently, MIL-STD-1589B (JOVIAL - S
J73) is the Air Force standard language for use in the embedded application
domain. One approach towards an earlier transition of all software written
in Ada would be the development of an automatic J73 to Ada translation
system. With the translation of all J73 software into Ada, J73 software
development systems could be phased out of use, the cost of maintaining the

*J73 system could be recovered, and programmers would be freed earlier for 0
their eventual transition to Ada. This paper will examine the feasibility
and cost effectiveness of developing a J73 to Ada translation system.

1. Introduction

An initial impetus for standardization on a single High Order Language
(HOL) for Department of Defense software applications was to reduce the
overabundance of languages requiring support by the DOD. Each language
requires a pool of people knowledgeable in the details of that particular
language, a compiler, and a set of related support tools in order to write
and maintain software in that language. Often, people and resources are
not easily interchangeable between different language systems. This
redundancy illuminated the need to consolidate to a smaller set of
languages that could still satisfy DOD requirements in all application
areas.

*Currently, MIL-STD-1589B (JOVIAL - J73) is the Air Force standard
language for use in the Embedded Computer System (ECS) domain. Software
written today in J73 will probably last throughout the lifetime of the
weapon system in which it is used. History shows that this life span is
normally between 5 and 10 years, and often is more than 15. A J73 language
system (compiler and support tools) and the necessary complement of trained

0 personnel will also be required throughout this life cycle.

The Ada program is part of a DOD policy change towards incrementally
reducing the number of languages in use from many to only a few, and then
e~erntually to just one; Ada. One approach towards an earlier transition
from all software written in J73 to software writte-. in Ada would be the 4

development of an automatic J73 to Ada translation system. With the
trantslation of all J73 software into Ada, the J73 language system could be
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phased out of use, the cost of maintaining the J73 system could be
recovered, and programmers would he freed earlier for their eventual
transition to Ada. The question is whether this is a rational step towards
standardizat ion on a single HlOL.

Three issues must be addressed before this approach should be adopted
by the Air Force. First, the feasability of an automatic translation
system must be demonstrated. It must be proven that a sufficient
percentage of the J73 language can be correctly translated into Ada.
Second, the impact of translation upon the quality of the resulting

software must be measured. A translation system must not only produce a
correct translation but also maintain the quality of the resulting software
including its maintainability, reliability, and robustness. Within the
highly constrained environment of real-time embedded software, it is

critical that efficiency be preserved as well. Finally, the cost
effectiveness of this approach must shown. The cost of performing the
translation must be weighed against the expected savings from an early

transition to Ada.

2. Requirements

Section 2.1 will define a set of general requirements for performing

source-to-source translation at the HOL level. Section 2.2 will refine

these requirements to reflect the specific characteristics of J73, Ada, the

embedded applications environment, and the state or the art in translation

technology.

2.1 Source-to-Source Translation

Any translation system must preserve the characteristics of the
original program in two major ways: 1) execution equivalency including

functionality and efficiency and 2) source code quality. 4

2.1.1 Execution Equivalence

The original program and the resulting translation must be equivalent
to the largest extent possible. Exact equivalence might he defined as two
source code modules which, when compiled, produce the exact same load
inlodiile for a given target. Even if this were possible to attain, exact
eqr ivalence is certainly not necessary. The critical measure is that the
two )ieces of software are funct ional ly equivalent; that they perform the
sa lre task.

Thus, at a minimum, any functional requirements placed upon the
or ig41 al code must be preserved during translation. The resulting
trans I ati on mu st produce the Same "effect" on the outside world as the
original. Other more specific restrictions might include:

. External inputs shot id he interpreted and stored in the sane 
ma in (, r.
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2. For a given set of inputs, outputs should emanate with the sane
values and in the same order.

3. Critical Timing dependencies within the original program must beI met by the resulting translation.

2.1.1.1 Efficiency

The discussion of efficiency often reduces to a question of tradeoffs
between available resources and tine. In programming terms, one major 0
resource is storage space and time is measured in execution cycles. Space
can be optimized by packing data into the smallest representation possible.
Unfortunately, additional effort must then be exerted (and time expended)
to extract the data when it is required, and replace it after it has been
modified. Through the use of data redundancy, processing tine can, in most
cases, be reduced. All applications must strike an appropriate balance
between space and time to fit their underlying hardware resources and meet
any timing requirements.

Programs must not only be translated correctly, but also preserve the
*efficiency characteristics of the original program. Again, exact

equivalence between two programs written in different HOLs would require
that the sane number of machine instructions be used to implement all
functional aspects, and that the same amount of storage be used for any
accompanying data. This goal is just as unattainable as exact functional
equivalence and even more unnecessary. A more reasonable requirement might
be to restrict the translation to be, on average, no less efficient than
the original. The overall size of the code and execution speed of the
translation should not exceed that of the original in any considerable way.
Minor local aberrations may in some cases be tolerable, but approximate
global parity must be preserved and local deviations must not be too large.

2.1.2 Source Code Quality

If the software is expected to have a reasonably long life cycle, it
must be of high quality. Software systems are constantly being modified
and updated to fix newly detected errors and reflect changing requirements.
Quality software can make this process easier and more cost effective.
Execution characteristics are not the only measure by which the quality of
software is judged. Maintainability and reliability are critical metrics
of quality. It should be as readable, easily understandable, and embrace
the style and intent of the language in which it is coded. Translations
should also result in robust implementations, using to the fullest extent
possible the power of the target HOL. An equivalent or greater level of
these qualities should be present in the software resulting from
translation.
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2.1.2.1 Maintainability and Reliability

"Maintenance" is a deceptive term when applied to software. It does
not imply that one must apply constant tinkering to maintain a constant
level of functioning as one might a piece of machinery. Except for the
possibility of hardware error, programs should by definition execute in the
sane manner each time they are invoked with the same inputs. This term
actually refers to the fixing of bugs in software that deviate from the
original set of functional requirements or the modification of a program to
reflect a new set. Several qualities make the maintenance of software

easier to perform. Software should be well structured with separate
modules for separate functions. It should exhibit clear data flow between
modules and clear flow of control within. It should be well documented and
commented in a manner that promotes the understanding of its intent. The
specification or functional interface of a subprogram and data should ber separate from its implementation.

"Reliability" is a related term that is probably misapplied as well.
The definition used here is the quality of a program to isolate the effects
of inevitable programming bugs. The following aspects of an HOL and its
programming environment can improve the reliability of software. The first
is the automatic detection of bugs. Through exact specification (typing)
and redundant information about intent (declarations) many bugs can be
found at compile time, and corrected immediately. A second aspect is a
program's ability to localize the effect of modifications to a program.
Subtle dependencies between two sections of software within one program can
allow errors to occur in one section when changes are made to the other.
(Global flags are a good example of such dependencies.) Dependencies other
than those explicitly placed in the software in a clear manner should be
avoided whenever possible. Third, access to the internal definition of
data and functions should be restricted only to parts of the program that
require it. This is often called Information Hiding. Finally,
modularization and the grouping of similar functions together contribute to
reliable code.

A translation system should preserve or improve the level of these
qualities in the resulting program. This is often very difficult to do.
The quality of software is frequently inherent in the design of the
software and the features of the language used in the implementation. The

* original software may even violate some of the quality standards givenS
above. We can reasonably attempt, therefore, to preserve only those
qualities that are present in the original software.

2.1.2.2 Robustness

Robustness is a measure of how well a program utilizes the features of
the language in which it is written. Software written in a particular HOL
should take advantage of its powerful features whenever possible. This not
only improves efficiency but also provides a clearer representation of what
the program is intended to do. Features are placed in a language for a
reason and should be used whenever the intent of thE feature is applicable

* to the requirement at hand. A translation system should attempt to provide
the highest possible utilization of the target HOL.
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2.2 A J73 to Ada Translation System

This section will now consider translation system requirements when
the source HOL is JOVIAL / J73, Ada is the tarf,,t 11OL, and tte type of
software to be translated is real-time embedded software. 0

2.2.1 Scope

A compiler is an example of a system that translates programs written
in a high order language into equivalent programs "written" in machine
language. A source-to-source translation system would have to perform many
of the same "front end" analysis functions as a compiler for the same
source HOL; the difference lying in the level of the target language. The
capabilities of today's compiler technology can therefore be used as a
baseline for analyzing the limits of a source-to-source translation system.

From the outset, we must remind ourselves of the limited capacity to

which machines (or the programs that run on them) can understand programs
written in one language and translate them Into another. An ideal system
would accept any legal J73 program and return the Ada equivalent. In
practice, however, translation of J73 to Ada will require a mixture of both
automatic translation and human augmentation. Two things can be stated
with certainty: 0

1) All J73 programs have a functionally equivalent Ada Implementation.
J73 and Ada are alike in many ways. Although difficult to prove, neither
can implement a function that the other cannot duplicate. Turing
Equivalence should guarantee that a skilled programmer can design and code
an algorithm in both languages that is functionally equivalent. •

2) The translation from J73 to Ada cannot be a 100% automated process.
J73 and Ada are also dissimilar in many ways. Several J73 features have no
corresponding feature in Ada. When a particular feature cannot be
translated directly, some alternative must be found. A translation system
may not be able to understand the meaning of a whole program well enough to
find an alternative combination of Ada features that provide the same
effect. A human will have to step in and redesign sections in Ada, then
integrate them with the rest of the program. The extent to which this must
be done is the critical measure of a translation system's viability.

2.2.2 Semantic Equivalence

Section 2.1.1 stated the requirement that the original program and
resulting translation be "functionally equivalnt". Unfortunately, today's
compilers can not "understand" at this high a level. They can recognize
and understand most const ritc ts at the statement level only. Thus,
"functional equivalence" must also be applied at this level . (Both
languages contain definitions of more than just "statements". Here,
reference to a "statement" is Intended to mean any separately defined
construct of the language, including those constructs not formally de f I ned
as statements.)

In order to make a comparison between two similar statements from two
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different languages, and arrive at a judgement of their equivalence or lack
thereof, a precise definition must be available for both the "source" and
.target" statements. Unfortunately, MIL-STD--1589B contains many constructs

for which the definition is incomplete or ambiguous. This allows the
compiler writer the freedom to interpret the definition to mean either what
is most logical to him or easiest to implement. J73 also defines several
parts of the language to be "implementation dependent", again allowing the
compiler writer the freedom of choice. The same is true for the definition
of Ada, but to a much more limited extent. Every attempt was made during
the language definition to provide the most complete definition possible,
to remove any abiguities, and to isolate machine dependencies.

Incomplete, ambiguous, and implementation dependent definitions have
dire consequences for general purpose J73 to Ada translation systems. In
order to have the widest possible application, such a translation system
would have to be flexible enough to adapt to the various interpretations
that particular J73 and Ada implementations have adopted. Another option
might be to have several translation systems, each tailored to a particular
compiler pair, although the economics of such a solution would probably be
prohibitive.

*2.2.3 Efficiency 0

Real-time software systems are bound by very stringent efficiency
requirements. Memory is usually limited and the computing power is seldom
adequate to execute every desirable function. Software often has to be
..shoehorned" into memory with little if any space to spare. A translating
system must therefore minimize its impact on both time and space. There
are several pitfalls awaiting our attempts to translate J73 to Ada.
Numeric accuracy and data representation are defined differently in J73 and
Ada. Differences between implementation dependent parameters and options
are especially troublesome. And each compiler, both the original J73
compiler and the Ada compiler for the translated program, will make
space/time tradeoff decisions in a different manner.

2.3 Requirements Summary

1. The semantic equivalence between J73 statements or blocks of
* statements and Ada must be guaranteed.

2. Data store'ge requirements must remain approximately equivalent.
Induced processing overhead must be minimized. The exact
toleration thresholds are application dependent.

6 3. The translation must produce readable code. It should be well
structured in the style and intent of Ada.

4. The resulting code should be f ree of subrIc underlying
dependencies.

S. The traislatton system should utilize the features of Ada to the
largest extent possible.
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3. Analysis

3.1 Automatic J73 to Ada Translation

This section will mirror the structure of the MIL-STD-1589B definition
of the J73 language. Chapter titles in the Standard match subsection
titles here. All comments relating to the translation of J73 constructs
will appear in the appropriate section. Due to the space restrictions of
this publication, only comment relating to major incompatibilities shall be
included in this discussion. (A non-abbreviated copy of this paper may be
obtained from the author.) Any violations of the requirements given in 2.3

will be so noted. All references to the Ada Language Reference Manual
(LRM) refer to the July 1982 version of that document.

3.1.0.1 Compool Modules (1.2.1)

Compools can be translated into Ada packages with some minor caveats.
The Ada package is actually much more powerful than the J73 Compool.
Packages can contain variables. Compools can declare variables, but only
with the external DEF construct. Compools have nothing corresponding to
private or limited private types. Package bodies may contain internal

4 declarations not visible outside the package for use in the internal S
implementation of the package specification. Package bodies may also
contain an executable part similar to the BEGIN ... END of a subprogram
definition. Compools support none of these capabilities.

3.1.0.2 Implementation Parameters (1.4)

The J73 LRM contains the following statement: "The machine on which a
J73 program runs contains an array of memory cells." Ada does not make
this specific a statement about the hardware on which it will run.

This difference contains several implications. The most obvious one
appears in this section; namely the existence of implementation parameters S
relating to linear memory. Programs which refer to these parameters will
require the same value when translated into Ada. Other implementation
parameters are J73 dependent; i.e., HAXTABLESIZE. Tables are obviously not
in Ada. The name "MAXTABLESIZE" would make no sense in an Ada program.
Parameters such as this will probably have to be hand translated.

3.1.1 Declarations

3.1.1.1 Integer Type Descriptions (2.1.1.1)

J73 and Ada differ in the manner in which they define the range of
integers. Ada allows the range to be arbitrary (within the bounds of the 0
SYSTEM INTEGER'RANGE) and he expressed in decimal or as a based number.
J73 r.2quires that "... the minimum number of bits required to hold the
maximum value of the integer (excluding the sign, if any)..." be given in
the ITEM declaration of an i nIeger. 1hi Ie this does allow for the
implication of a range constraint, it offers them only with limits of
powers of two. For example, the declaration: S

71



ITEM X U 4

declares the unsigned integer X with 4 bits to hold its values. This
implies a range of 0 to 15.

There are several problems with the J73 definition provided. It does
not define what happens when an attempt is made to assign to an integer
ITEM with a value larger than it is allowed to hold. Does rounding or
truncation occur? Are the high order bits masked, performing something
like modulo arithmetic? Is the size constraint ignored resulting in no
effect. Does the execution of the program halt? MIL-STD-1589B simply does
not say.

Ada contains the concept of a range constraint. An exception,
CONSTRAINT ERROR, will be raised if an attempt is made to assign a value 0
outside the declared range. J73 has no concept of exceptions, exception
handlers, or even of error conditions. One approach towards avoiding
CONSTRAINT ERROR exceptions would involve translating all integer
definitions into the SYSTEM defined integer type ignoring any
<integer-size> attributes. There are two problems with this. One, an

* exception cannot be avoideed entirely if an attempt is made to assign a 0
value outside INTEGER'RANGE. And two, it is hard to justify ignoring this
attribute when the original programmer took the time to specify it, and
must have done so for a reason.

The J73 <round-or-truncate> attribute is also troublesome. Either
rounding or truncation invoked during type conversion in J73 (specified by
the ITEM declaration of the target variable). The exact algorithms for
truncation and rounding are not specified and so must be assumed to be
implementation dependent. The J73 manual statement: "If the
[<round-or-truncate>] attribute is omitted, truncation in an
implementation-dependent manner will occur." further muddies the water.

3.1.1.2 Floating Type Descriptions (2.1.1.2)

The definition of J73 floating point numerics have many of the sane
problems as that of integers. The <precision> field again refers to the
number of bits needed to represent the mantissa. It offers no ,abilitv to

* specify a range constraint. Ada requires precision to be defined as the 0
number of decimal digits for the mantissa and al lows for a range
constraint. Anomalies between the reprcsentation of the mant i ssa as
decimal digits and binary bits may cause problems. The definLition of
rounding and truncation is missing. If the attribute is omitted,
truncation in an implementation dependent manner will again occur.
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3.1.1.3 Fixed Type Descriptions (2.1.1.3)

Precision and range are again specified in numbers of bits. J73 fixed

type declarations contain two attribute fields. The <scale-specifier>
indicates the number of bits to the left of the decimal point including the
sign bit. It is unclear whether this implies a range constraint similar to
that for integers. The <fraction-specifier> indicates the number of bits
to the right of the decimal point. Again, Ada differs in its specification
semantics for this data type. Ada allows specification of a delta and a
range constraint. It is unclear whether these two definitions are
compatible in all cases. A definition for rounding and truncation is
implementation dependent and not provided in the manual.

3.1.1.4 Status Type Descriptions (2.1.1.6)

In Ada, enumeration types must be named types. Objects can not be
directly declared as enumeration types as with arrays, etc. Thus, a type
ueclaration and type name must be gen rated when a status declaration is
translated into an Ada enumeration type. The problems associated with
generating an appropriate name will be discussed in section 3.1.7.1.

*O 3.1.1.5 Pointer Type Descriptions (2.1.1.7)

J73 pointers appear to be equivalent to Ada access types. In fact,

they are not.

Access types are include( in Ada for two reasons. Their primary
purpose is as the mechanism for naming dynamically created objects. Static
objects are given a name reference at declaration time. Dynamically
created objects are given an internal name by which to reference them.
Access types hold these name values. Access values are typed in that they
can only hold references to objects of one type. Access types also provide
a convenient way to implement directed graph structures.

J73 pointers differ in the following respects. A minor difference is
that pointers can be untyped in J73. Untyped pointers will not translate
into Ada. The major difference is that pointers are actually detined to be
the address of the object pointed to. The functions LOC and NEXT mo've

0 pointers around the address space allowing access to the internal struicture
of all data objects. Pointers can also be converted into integers and bit
strings. This allows manipulation with integer and bit striag operators.
The values can then be converted back into a pointer. In this way, all
data (and possibly even instructions) is exposed to meddling from anywhere
in the program. Ada was designed specifically to prevent programmers from

• accessing data in this manner. Pointers, therefore, can not be translated
into access types. All code involving pointer types will have to be hand
translated. This is a very serious violation of requirement 1.
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3.1.1.6 Table Declarations (2.1.2)

F There is nu directly parallel structure for J73 TABLES in Ada.
Table-like structures can be composed with an array of records. This works
fairly well with several small problems. Most of the incompatibilities
occur with the several special case rules connected with TABLES.

Ada requires record types to have a name in a similar manner to
enumeration types. Objects cannot be directly declared as a record. They
can be declared only as a record type declared elsewhere. This requires a
name to be generated for the record type to match the internal structure of
the table. Name generation is discussed further in section 3.1.7.1.

The following pointer related restriction in the J73 manual precludes
the use table types. "Items in tables declared with a <table-type-name>
can only be accessed using pointers to the tables." Since pointers cannot
be translated, tables declared with a type name cannot either.

3.1.1.7 Table Structure (2.1.2.2)

In J73, the programmer can specify the layout of tables in memory.
6 Ada allows the programmer no control over the manner in which arrays of

records are laid out.

3.1.1.8 Ordinary Table Entries (2.1.2.3)

There are a couple problems here. An equivalent to the J73
<order-directive> is not available in Ada. Secondly, J73 provides for 3
levels of packing; some in an implementation dependent fashion. Ada allows
for one level through the PRAGMA(PACK). It is unclear whether the mapping
of both (Medium and (D)ense packing will have any effect on translated
programs or not.

3.1.1.9 Block Declarations (2.1.4)

"A <block-declaration> declares a group of items, tables, and other
blocks that are to be allocated in a contiguous area of storage."
Presumably blocks are used to improve the access efficiency to data
contained within the block. Ada does not define an equivalent construct.
Perhaps this can be ignored during translation, but programmers who
specifically used a BLOCK construct probably did so for a reason. It is
likely that some translations will be effected if block designations are
ignored.

3.1.1.10 Allocation of Data Objects (2.1.5)

Ada does not explicitly provide a static allocation specifier.
Variables contained in packages do remain allocated for the life of the
package in which they are contained. Thus, data objects declared in
packages are essentially static. One approach towards the translation of
STATIC data might be to encapsulate all modules that define STATIC data
inside a new package. The proliferation of packages each containing just
one module for the sole purpose achieving STATIC data would have a
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tremendous impact on the readability of programs. This is not the intended

purpose of packages.

3.1.1.11 Define Declarations (2.4)

Ada has nothing equivalent to J73 DEFINE declarations. The concept of
generics in Ada is close but does not have the same semantics. DEFINES can
be expanded before they are run through the translator resulting in a
correct program, but the modularity and structure of the DEFINES will have
been destroyed. This will impact readability to the extent that DEFINES
are used in the original program.

3.1.1.12 External Declarations (2.5)

The Ada mechanism for exporting and importing name references is the
package construct coupled with the WITH clause. Several compatibility
problems exist between the 373 DEF - REF mechanism and the Ada package/
WITH.

Single names can be pulled out of compools through use of the DEF-
REF mechanism. Ada has no such mechanism. The WITH clause imports all
names declared within the referenced package. If REF specs are simply
translated into WITH clauses with the compool/package name, some name
conflicts may arise. Since Ada allows name overloading in some cases, the
error may not be immediately apparent. In fact, REFerence to single names
were likely made to avoid conflict with other names in the compool. For
DEF specs that are not contained in compools, there is no corresponding Ada
mechanism. The variable could be encapsulated within a package and then
WITHed into the declaring module and all modules with a REF Spec, but this
is terribly cumbersome and results in poorly structured code. This further
proliferation of packages should be avoided.

3.1.1.13 Overlay Declarations (2.6)

373 allows entire objects or portions of objects (i.e. tables) to
occupy the same storage space. The 373 manual states: "2) that certain
objects are to occupy the same memory locations as other data objects."
Ada strictly forbids the overlays. Section 13.5 of the Ada LRM states:

0 "Address clauses should not be used to achieve overlays of objects or
overlays of program units. Nor should a given interrupt be linked to more
than one entry. Any program using address clauses to that effect is
erroneous."

3.1.2 Procedures and Functions

0 3.1.2.1 Parameters of Procedures and Functions (3.3)

373 allows the programmers to designate the actual binding mechanism
to be used during parameter passing. Ada provides no such capability;
allowing the compiler to make the appropriate choice. In fact, the Ada LRM
States: "A program is erroneous if its effect depends on which mechanism
is selected by the implementation." 373 programmers who do specify the
type of binding mechanism will have done so for a reason and will likely

75



rely on the mechanism for the correct functioning of their program. This
conflict in definitions cannot be resolved. Therefore, any subprograms
that specify the parameter binding mechanism cannot be automatically
translated. This is a serious violation of requirement 1.

J73 and Ada differ significantly in their methods of defining of
formal parameters. J73 allows the type definitions of formal parameters to
be given within the subroutine body. Type definitions may also be any type
definition. Ada requires that formal parameters be given an immediate
subtype indication. This means that the formal parameter must be declared
as a subtype of some previously declared and visible type name. (Formal
parameters cannot be directly declared as arrays or records or as
enumeration types.) In order to be translated from J73 to Ada, the type
definitions must be elevated to a level where both the subprogram
definition and the module containing the subprogram call can see them.
This elevation not only complicates the structure of the program but can
also cause name conflicts.

3.1.3 Statements

3.1.3.1 Loop Statements (4.2)

J73 and Ada differ in the definition of loop statements.

Ada allows incrementation through a scalar range only by 1. Thus, J73
BY and THEN statements will have to be fabricated. An expression to
calculate the correct value at each iteration must be formed as dictated by
the original BY or THEN formula. A temporary variable to hold this value
will also be required and all references to the original loop variable will
have to be changed to reference the temporary variable. A (while-phrase>
attached to a BY or THEN phrase will have to appear as an explicit test and
EXIT. All this may require extra storage and additional computations
though the impact should be minimal.

A major problem occurs when the (control-item> in a J73 loop is a
<control-variable> (is declared as a variable in the local scope). J73
allows modifications to such variables within the loop and use of their
value after the loop statements is terminated. Ada does not allow this.
Temporary variables will not work in this case. One might try to assign
the value of the loop parameter to the variable declared in the outer scope
just before exit from the loop. But the generalized GOTO will prevent a
guarantee that the assignment will happen in all cases. Loop statements
that have (control-variables> cannot be translated.

3.1.3.2 GOTO Statements (4.7)

Ada does not allow labels as parameters or allow GOTOs to reference
labels outside the scope of the GOTO statement itself. This type of GOTO
cannot be translated. This J73 feature might be comparable to the Ada
exception facility. Labels passed as parameters could designate "handlers"
for errors within the subroutine. GOTOs to these labels could act as the
Ada RAISE statement. Although a GOTO to a label passed by calling
procedure may be used in this way, it can also be used in other ways that
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do not map into the Ada exception facility. It is safe to say that GOTOs
to labels cannot be translated and that the Ada exception facility will not
be used by a translation system.

J73 does not allow GOTOs into statements within a loop refered to in 0
the manual as a <controlled-statement>. The manual does not prohibit GOTOs
into a <conditional-statement> or into IF statements. Ada does not allow
tils. Such "out of scope" analysis will have to be performed prior to the
t rans! iton--ofa_ GOTO.

3.1.3.3 STOP Statements (4.9) . . .

Stop statements have no parallel in Ada.

3.1.3.4 ABORT Statements (4.10)

Abort statements, similar to GOTOs to statement names passed as 0
parameters, cannot be translated into Ada. They are in no way equivalent
to the Ada abort statement that relates to the Ada tasking facility.

3.1.4 Formulas

3.1.4.1 Numeric Formulas (5.1) 6

The definitions for all numeric formulas are incomplete in that they
do not specify what happens for error conditions. For example, the J73
manual specifies that: "The right operand of "/" and MOD must be non-zero."
But it does not say what happens when it is zero. Range constraints are
also specified but nothing is defined when thev are violated. This is a
serious semantic difference between J73 and Ada. An Ada exception is
defined for all possible violations of language restrictions.

3.1.4.2 Integer Formulas (5.1.1)

The modulus operator is defined differently in J73 and Ada. Section
4.5.5 of the Ada LRM defines the modulus operator as:
A mod B - (A + K*B) mod B; J73 gives: A mod B - A - (A/B) * B.
These definitions do not give the same answer when A is negative and B is
positive. Therefore, the MOD operator cannot be directly translated.

3.1.5 Data References

3.1.6 Type Matching and Conversions

In general, the rules governing type conversions are much less
restrictive than they are in Ada. Ada allows (explicit) type conversions
in three cases. The following is a summary of the rules for allowed
conversions. Complete definitions appear in section 4.6 of the Ada LRM.

1. Numeric types can be converted to other numerics types.

Conversions from a real value into an integer type involves
rounding.
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2. Conversion is allowed when the type of the operand is directly
derived from the type mark of the conversion.

3. Array types can be converted when both the operand type and the
type mark of the conversion have the same index and conponent
types.

J73 allows many other legal conversions. The following is a list of
incompatibilities:

- Numeric conversion seems to be ok. Questions of accuracy,
rounding, and truncation are still unclear.

- By allowing any data object to be converted into a bit string and
any bit string to be converted back to any other type, J73
completely destroys the concept of information hiding and data
consistency. This capability allows anyone to access the "guts"
of any data objects. Thus everything is available to anyone who
can see it. This conflicts with one of the basic design tenets

*of Ada. 0

- The allowance for converting pointer types to integers and bit
strings is a primary reason why pointers cannot be translated
into access types.

- BITSTRINGs are implemented as an array of BOOLEANs in Ada, and 0
as such are governed by the rules for array conversion in Ada.
J73 implicit conversions between bit strings of different sizes
can therefore not be translated.

3.1.7 Basic Elements 0

3.1.7.1 Names (8.2.1)

As discussed in previous sections, there are instances when the
translator will have to generate a name. To prevent conflict with other

*names declared within the same scope, the name must be unique. Identifier 0
names should also be readable and imply something about the object which
they denote. The combined requirements of uniqueness and readability are
incompatible. In order to guarantee uniqueness, readable names cannot be
used; they are likely to already exist. One possibility is to use a
character allowed in Ada but not in J73 such as the underscore character.

* Names with an underscore anywhere would always be unique as long as the 0
translator did not generate the same name twice. The key problems with
this is making the generated name make sense in the local context. This
requires a handle name already declared in the local scope and the
attachment of and underscore and a suffix or prefix. Even this does not
guarantee a suitable name. The best solution is to generate a definitely
unique name and do the best possible with its actual content.0
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Ada allows the use of the underscore character in identifiers to make
them more useful. Jovial does not allow this. Thus, since identifier
names are translated verbatim, they will not appear in the same style as
Ada identifiers. This conflicts with requirement 3.

3.1.7.2 Reserved Words (8.2.2)

Any name that is not in the J73 reserved word list can be used as an
identifier in a J73 program. There are, however, some Ada reserved words
that do not appear in the J73 reserved list. This poses the potential for
name conflict.

3.1.7.3 Comments (8.4)

Although seemingly innocuous, comments pose a very serious problem.
The syntax translation from the J73 "comment" or %comment% to the Ada
--comment is obviously trivial. But the translation of the actual wording
of the comments themselves is not.

Comments often refer to language constructs. Comments in a J73
program night read: "This table is used to store aircraft attitude
vectors". Or: "Value-result binding is used here to .. If these
comments were to be translated verbatim, they would be confusing and self
defeating. Comments may also refer to names which have disappeared during
translation. The names of DEFINE constructs which have been expanded
during translation is an example. J73 numeric type designators are
another.

A complicating factor is our ability to recognize when comments are
relevant and helpful and when they are not. Unless a translating system is
prepared to solve the problem of deciphering the English language, it can
safely be said that all comments must be suspect and therefore discarded.
This is extremely damaging to the quality of the resulting code. Of
course, a human could run through the code and fill in comments by looking
at the original code, but this would substantially increase the percentage
of work required after translation.

3.1.8 Directives

S The J73 manual states: "<Directives> are used to provide supplemental
information to a compiler about the <complete-program>, and to provide
compiler control." This makes them comparable to Ada pragmas. Some of the
predefined J73 directives match well with Ada predefined pragmas. These
are primarily text and listing control directives such as COPY, SKIP,
BEGIN, and END.

Some J73 directives violate the Ada language definition such as
expression evaluation directives, initialization directives, and allocation
order directives. The use of the !LEFTRIGHT directive in a J73 program has
very serious consequences. This directive forces left to right evaluation
of operators at the same precedence level. This is incompatible with the

0- Ada LRM statement that "A program that relies on a specific order (for
example because of mutual side effects) is therefore erroneous." The
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reason that this is so serious is that Ada programs that contain
dependencies in the evaluation order of operands will compile without
error, but may not execute as intended. One solution to this problem might
be to impose a left to right evaluation order through the use of explicit
parentheses. Although possible, the resulting code will become less
readable and subtlely embed dependencies. Future modification can expect
problems unless the exact format is preserved. Unless these side effect
can be tolerated, all code under the directive !LEFTRIGHT must be suspect
and can not be guaranteed to be semantically equivalent.

3.2 Summary of Untranslatable Features

J73 and Ada have a variety of incompatibilities. There are several
basic design tenets of each language that do not match well. This results
both in constructs that have no equivalent in Ada and ones for which a
correct translation has a major impact on the quality of the resulting
software. Still other J73 features are considered to have high risk for
translation. These features have definitions that are very similar to Ada,
but anomalies in their implementations may result in some incompatibilities
in some translations. These classifications are summarized in figure 1.

3.3 Percentage Translatable

The percentage of J73 constructs that can be automatically translated
into Ada can be measured in two ways. The first method is a straight ratio
between those constructs that can be translated and those that cannot.
This measure has limited utility, however, since our goal is to translate
real J73 programs, and not just the reference manual. A more useful metric
is the average percentage of real J73 programs that can be translated.
This measure takes into consideration the relative frequency of constructs
appearing in real programs. It also considers the amount of local
translatable code that is "poisoned" by constructs that cannot be
translated.

j It is very difficult to estimate how much code will be poisoned by
other local untranslatable statements. This can happen in several ways.
11 The construct may be an integral part of the local algorithm. Even
though most of the algorithm can be translated, the lack of the
untranslatable construct will likely prohibit the module from performing
its assigned task. It is also unlikely that there is a quick, local patch.
If there were, the translator would be able to substitute it as an
equivalent construct. 2) Illegal declarations can invalidate references to
those objects. 3) The LEFTRIGHT directive is very pervasive. Any code
within the area affected by this directive must be suspect. 4) DEFINEs are
heavily used in J73 programs. If their negative impact on program
modularity cannot be tolerated, large chunks of code will not be

0 translated. 5) GOTOs into IF statements or to parameters. It is safe to
say that most J73 constructs that violate the rules of Ada will poison much
of the surrounding code.

What then is the average percentage translatable? With the above
discussions in mind, 30% to 40% of all J73 programs should be achievable

S with a good system.
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Figure 1: J73 - Ada Definition Conflicts

Conflicting Design Concepts:
Information Hiding
Type Composition
Type Conversion
Data Representation and Access
Name Importation / Exportation
Error Handling

Specific Untranslatable Constructs:

Declarations:
Pointers
Table Structure Specifiers 0
Statement Name Declarations

Procedures and Functions:
Formal Parameter Declarations
Machine Specific Procedures

Statements:
LOOPs with Control Variables
GOTOs to Statement Names
STOP and ABORT Statements

Type conversions: 0
Primarily Conversions to and from INTEGER and BIT Types

Directives:
Some COMPOOL Directives

Translations Impacting Quality: 0
Static Allocation
Define Declarations
External Declarations
LOOP temporary variables
CASE FALLTHRU option
Name Generation 0
Comments
LEFTRIGHT Directive

High Risk Constructs:
Numeric precision
Numeric truncation and rounding 0
Blocks
Bit string operators
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3.4 Summary of Unused Ada Constructs

Several Ada features have no equivalent J73 constructs and will
therefore be absent entirely from automatically translated programs. They
include: tasking facilities, exceptions, generics, Ada 1/O, access type
and dynamic data allocation, and overloading. Still others, such as
packages and the Ada typing system, are not utilized to their fullest
extent. Programs translated into Ada will use a subset which does not
include these features. (If translation is augmented by human redesign,

some of these features may be used.)

3.5 Cost Effectiveness

The stated objective was to remove the need for maintaining a J73
programming environment by switching all code into Ada; thereby removing
the cost of maintaining it. These cost savings must be weighed against the
cost of developing a translation system, the cost of translating large
amounts of complex software, and the differential cost, if any between
maintaining the program in the J73 and Ada environments. This section will
not attempt to attach actual figures to each cost but will outline the
types of costs that can be expected. Estimates will be given when known.

3.5.1 Translation System Development Costs

As stated in section 2.2.1, the complexity and thus the cost of a
translation system would be similar to the cost of a compiler. It is

-unclear, however, whether just one translator can handla all J73
translations. The analysis in section 3.1 provides several examples where
MIL-STD-1589B is ambiguous and contains many implementation dependent
features. Several interpretations of MIL-STD-1589B exist and are embodied
in J73 compilers used today. Programs that work correctly when compiled on
these systems will require the same interpretation set in the translator in
order to be translated correctly. Each point of interpretation must be
reflected in a translator option in order to provide a correct
interpretation and translation.

A translation system would be a short-lived system. Once all J73 was
translated into Ada, the system would have not further use. Thus, it would
not require the normal maintenance to fix bugs. This is a blessing in
disguise, however. It means that all (or an extremely high percentage)
bugs must be removed before it can be successfully used at all.

3.5.2 Code Translation Costs

Once a translator is built and functioning correctly, the primary cost
will be the labor of programmers skilled in both J73 and Ada. They would
be required to clean up the translation to provide a full translation.
These cost are directly proportional to the amount of human translation
required.

Of course, the resulting translated code must be entirely retested to
certify that the new program satisfies all of the functional requirements.
This is very often non-trivial, expensive operation. At this stage the
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program could be considered an Ada program and all modifications made in
Ada.

3.5.3 J73 versus Ada

Ada was designed to reduce the cost of maintaining software through
the use of new concepts in the structuring of programs and data. These
concepts were not placed in J73. As we have seen in section 3.1, the
features in Ada that were designed for this purpose could not be correctly
utilized by a translator. We, therefore, cannot expect to realize the
advantages of Ada. We can expect the resulting programs to require the

same effort to maintain as the originals.

4. Conclusions and Recommendations 0

Several conclusions can be drawn from the discussion above:

- A high percentage of real J73 programs cannot be automatically
translated. S

- The translation of numerics is risky. Some precision errors miust
be anticipated in some translations.

A large amount of human supplement is required to fully translate
J73 programs into Ada. 0

- The resulting code may be poorly structured. Several of the
program structuring facilities in J73 and Ada have
incompatibilities. Several Ada structuring facilities will not
be utilized by a translator. 0

- The resulting code may be hard to read and understand. The lack
of translatable comments constitutes the largest impact. Name
translation and name generation also effect readability.

- The style of the rusulting program will still be J73 style. A
translator will only rewrap J73 style prgrans in Ada syntax.

- The resulting programs will not be as robust as they should he.
Se',eral Ada features are not uied by the translator.

Due to the overwhelming number of n gative conc' -*" ,ns, the 0
develop-,ent of a J73 to Ada translation system 's not rec(::,2!Thd at Ihis

time. The best solution to the problems is to leave the J73 pr, rli's .as

t hey are until their life cycle is tirminatpd. If progr;ins m ist he
translated into Ada, it is recommended that they he r,,desfgned in Ada and
entirely lhand translatd into Ada.
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One possible use for our capability to translate some J73 constructs
might be the development of a "local" translator. A human could bracket
off portions of code that can be translated effectively. If some portion
of the bracketed code could not be translated, then no part would be
translated. These segments of translation could be used in conjuction with
an editor to hand translate programs. Such a "local" translator could
remove the tedium of translating these portions of code.
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ABSTRACT

A generic software testing facility is presently under develop-
ment at Warner-Robins Air Logistics Command. The Multiple-System OFP
Support "MSOS) System will allow independent verification and valida-
tion of avionic software for a variety of systems to be conducted early
in the development cycle, reducing costs to the Air Force.

Intermetrics, Inc. is linking via hardware and associated
software the Nanodata QM-1 microprogrammable computer and the VAX-
11/780. The QM-1 hosts emulations of tactical embedded computers and
the VAX hosts simulations of real environments. Overlaying the
emulation/simulation system is a UNIX-based monitor tailored to provide
absolute control and complete visibility into the executing target
machine software.

A variety of static test tools for analyzing JOVIAL and, eventual-
ly, Ada code is being hosted on the VAX. A primary function of these
tools will be to verify the conformance of the code to the specific
standards. .

INTRODUCTION

The Air Force is faced with an increasing proliferation of unique
M avionics and weapons systems, causing associated increased costs of S

acquisition, operation, maintenance and continuing modification. Stan-
dardization is a strategy being developed by the Air Force to reduce
the uniqueness of major system components, such as computer architec-
tures, languages, multiplex bus, controls and displays. An additional
step is to standardize the tools used to develop and maintain these
systems.

The Warner-Robins Air Logistics Center (WR-ALC) at Robins Air
Force Base, Georgia, is responsible for the support of digital avionics
and weapons systems containing embedded computer systems.

* This support normally involves maintaining and updating opera- S
tional systems after Program Management Responsibility Transfer (PMRT)
from the developing agency to the maintaining agency. However, pre-
PMRT support is also required for the software verification and valida-
tion during the acquisition phase.

0 In order to support the pre-PMRT activity, WR-ALC must provide a S
technical base of test engineering expertise and facilities. To this
end, a generic capability for software verification and validation is
being developed. This capability, called the Multiple System OFP Sup-
port (MSOS) System, will provide a generic testing capability by the
creation of a software test bench upon which software for a variety of

0 systems can be rigorously and thoroughly tested. S
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WR-ALC's goal is to prevent the loss of readiness capability due
to software errors in fielded weapons systems by removing the errors
before the systems reach the field. The primary objective of MSOS is
to provide the means for finding those errors during the development -
phase.

MSOS

MSOS consists of both hardware and software, configured to give
test engineers the ability to perform end-to-end testing on software
under development. It will contain a battery of tools from which the
test engineer may select a set appropriate to the testing requirements
at hand. They range from relatively simple tools, such as code audit-
ors, t? complex tools, such as an emulation/simulation system.

The proposed capabilities include the following: compilation/
assembly, software code analysis, automatic software testing, software
testing history, data reduction analysis, analysis report generation,
verification and validation testing, on-line simulation, emulation sys-
tem modeling, automatic data base generation, and system familiariza-
tion.

The key element normally used to support an operational system is
an Avionics Integration Support Facility (AISF). The AISF enables the
support organization to develop and evaluate changes/modifications to
OFP's and perform IV&V. The AISF consists of the actual computers and/
or digital processors embedded in the avionics, interacting through a
Computer Monitor and Control (CMAC) unit. A dynamic system simulation 0
of the aircraft in a tactical environment and the drives for the sys-
tem's interfaces, controls, and associated displays are generated by a
simulation host processor. However, during the early acquisition
phase, the embedded computer is usually not available. MSOS provides

the solution by creating a synthetic environment, using a software emu-
lation of the embedded computer to execute the OFP which is driven by
data generated by an environment simulation. This emulation/simulation

system is controlled by a monitor that provides absolute control and
visibility into the executing software.

By using virtual embedded computers instead of real ones, a common
set of support hardware and software can be used to test many systems. 0

Hardware Configuration

The hardware consists of a Nanodata QM-1 microprogrammable compu-
ter1 , a Digital Equipment Corporation VAX-11/780, and an electronic in- 9
terface linking the two machines. Each computer can operate in either
stand-alone or communicating mode. Each computer is supported by a
full set of peripherals, including tape and disk drives, CRT's and line
printers. The QM-1 is a microprogrammable computer designed specific-
ally to host emulations of digital devices. It has three levels of
memory, an 18-bit 750 ns mainstore (core), an 18-bit 80 ns control 0
store, and a 360-bit 80 ns nanostore (both semi-conductor). The WR-ALC
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configuration consists of 256K words of maini-store, 20K words of con-
trolstore, and 512 words of nanostore. It has 32 18-bit registers for
local store, 32 18-bit registers for external control, and 32 6-bit F-
store registers which control the independent bus connections between
the local store registers and the CPU, ALU and shifters. The QM-1 fea-
tures both 36 and 32-bit shifters and operators in either a 16 or 18-
bit mode. The rotate, mask and index (RMI) unit is a programmable de-
vice which extracts and justifies up to three fields of a word (usually

a target software instruction) as it is fetched from mainstore, an in-
valuable timesaving aid in instruction cracking for the emulator.

The high speed data transfer hardware consists of two links be-
tween the QM-1 and the VAX. one link is a programmable I/O device
which transfers data between the control store in the QM-1 and VAX mem-
ory. It effects a pseudo-DMA transer via a special microinstructioq
executing in nanostore that reads or writes a block of data into or out 0

of a QM-1 control store buffer one word at a time until the transfer is
complete. The other link is a DMA device which transfers a block of
data between QM-1 mainstore and VAX memory in true DMA fashion. A low-
speed link (9600 baud) link allows the QM-1 to appear as a terminal to

the VAX. The links are built and installed by Hale Associates Research
O Corp. (HARC)2 . 0

Support Software Configuration

The support software for MSOS is based on the VAX operating sys-
tem, VMS, and its utilities, and a QM-1 operating system, UNIX, Version

73, coupled with Nanodata's micro-operating system, TCP24 . Inter-
metrics, Inc. has modified and enhanced UNIX to specifically interact
with emulaticn systems on the QM-1; has developed a microcoded emulator

control system for efficient management of emulator activities; and has
developed a generic environmental simulation interface which manages

the data transfers between emulators on the QM-1 and simulators on the 0

VAX, making the transfer mechanics transparent to the emulator and sim-

ulator writer.

This software complex is the foundation for the basic MSOS capa-
bility. To it are added all of the actual tools that are used by the
test engineer, and any tools used to generate those test tools. 0

Emulation/Simulation Software Configuration

The software necessary for executing target processor code is:

1. An emulation of the target processor.

2. An emulation interface which is application dependent.

3. A simulation of the environment in which the target software
operates in real configurations.
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Emulators can be coded in SMIT95, a high-level machine description
language, in MULTI6 , a vertical microcode instruction set which resides
in control store or coded directly in nano assembly language, a highly
horizontal microcode instruction set (which also implements MULTI).
Emulators can be SMITE or MULTI first, followed by a migration into
nanocode of heavily used and/or time-consuming functions. The emulator
is a faithful reproduction in software of the instruction set, inter-
rupt system, memory accessing and management system, registers, stacks,
and other architecture features of the target processor. The target 0
memory is emulated in the QM-1 main memory. Each target instruction is
fetched from mainstore and executed by the emulator in the fast memory
of control store or in nanostore.

The emulator interface provides communication between the emula-
tion and the simulation, and between the emulation and the humar user. 0
Its primary tasks are to:

I. Manage the simulation data, moving data into or out of I/O
locations to simulate bus or port I/O.

2. Manage the debugging and monitoring processes specified by the 0
user as he tests the target software.

Environment simulators are hosted on the VAX 11/780, and generate
environment data as required by the OFP.

A generic environmental simulation interface (ESI) resides on 0
either side of the drivers, part on the VAX and part on the QM-1.

Most I/O operations involve the simulator and are handled by the
emulator interface. It is necessary for the simulator to know the ex-
act data requirements of the software. If the code is cyclic in
nature, the I/O transfers can usually be pre-defined with both the sim- 0
ulator and emulator knowing the data requirements for each transfer a
priori. However, if data requirements are asynchronous, then the re-
quest must identify the data needed, and the simulator must be able to
decode the request and generate the required data. The programmable
I/O link is used for transferring requests for simulation data to the
VAX and for transferring data back to an emulator-controlled buffer in 0
the QM-1 control store for distribution to the target memory as appro-
priate. If the simulation data is destined for contiguous locations in
target memory, the transfer from the VAX may be made using the DMA link
to the target memory locations in QM-1 mainstore.

An emulation system, once built, is stored on the QM-1 disk. Any 0
number of scenarios can be generated off-line on the GPC and stored on
the GPC disk for later input to the on-line simulation.

As stand-alone systems, the two computers are independently con-
trolled. However, when an integrated emulation/simulation system is to
be run, control is delegated to the QM-1. The user loads both compu- 0
ters with the desired software configuration via a command through the
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QM-1 console. Control remains there until the run is terminated and
the GPC detached (logically). The user has complete control of the em-
ulation process via an extensive command set that can start, stop, con-
tinue, single step and terminate execution of the target software. He
may request any of the debugging aids which include sequential traces,
boundary traces, snap dumps and breakpoints. He may examine, modify,
dump to the printer, or display on the CRT the contents of any target
memory locations registers or stacks.

Of particular value is the checkpoint and restore capability which
allows the user to save on disk the entire state of the emulation/ sim-
ulation system at any point he chooses, then restore it at any later
time and continue as if it had not been interrupted. This allows a
"hegment of code to be checked out and a checkpoint taken. Downstream
code segments can then be tested without rerunning the checked out seg- 0
ments by starting with a restore of the checkpointed state. It is also
helpful in checking multiple paths through the code from a single
branch point.

Data captured by the emulation system during a test can be output
to tape for later reduction, or can be sent across the lik to a post
processor on the VAX to be reduced on-line, with the results saved and/
or displayed on a CRT, printer, or plotter while the test is still in
progress.

When a test has been completed, the emulation/simulation system is
terminated by command from the QM-1 console, and all termination pro- 0
cesses for both machines are performed.

At this time, a new test case involving the same emulator but dif-
ferent simulation scenario, or involving both a different emulator and
simulator may be loaded, a process taking only a few seconds.

Tools

Software test tools are often divided into two categories: static
and dynamic. Static test tools analyze the source code of a program;
thus the program is never executed. Such tools as code auditors, data 0
flow and interface analyzers fall into this category. Dynamic test
tools actually execute the code to be tested, usually after adding
software probes to "instrument" the program being tested. Path-flow
tracers, assertion checkers, etc., are tools belonging to this cate-
gory.

Software Research Associates is investigating what tools are al-
ready available and what will have to be developed for testing software
for embedded computer systems. Early indications are that there are
relatively few tools applicable to Air Force systems. A major reason
for this is the move to standardize to JOVIAL, and eventually Ada.
These languages have not received as much test tool development effort 0
as more widely-used, established languages, such as FORTRAN.
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Among the tools available are a JOVIAL code auditor and J73AVS
(JOVIAL J73 Automated Verification System). The code auditor is a
static test tool that checks f or compliance with established program-
ming practices ("precepts") and warns of possibly dangerous code.
J73AVS is a tool for both static and dynamic testing of JOVIAL 373. It
not only provides static analysis but also allows for such functions as
assertion checking, variable tracing, and execution coverage.

Although test tools for languages used by the Air Force are limit-
ed at present, it is expected that as JOVIAL J73 becomes more widely
used and with the carefully planned transition to Ada, sufficient tools
will be developed. When completed the SRA report will provide direc-
t ion for rehosting and developing tools on the VAX.

Another type of tool is the SMITE compiler which generates emula-
tors for the QM-1. The time and effort required to develop the micro-
code (and possibly nanocode, as well) to emulate a given processor
threatens to be prohibitive. To try to reduce this time and effort and
to improve the maintainability of emulations once they are written, TRW
is under contract to rehost to the VAX a compiler for SMITE, a high-
order Pascal-like, hardware description language. SMITE compiles to
microcode for the QM-1 and has a number of features which facilitate
emulation development. Eventually, a library of emulations for various
processors will exist, raising the possibility that standard processors
could be "off-the-shelf" packages and Used for several systems. SMITE
routines to emulate typical processor functions would be available to
further reduce the need to write each emulation from scratch.

To go with this, tools are needed for the developmnent of simula-
tions of the target processor's environment. The choices in this area
are less clear. A wide variety of languages is available for complex
modeling. These range from such general purpose languages as FORTRAN
and Pascal to specialized simulation languages such as GPSS. Each of 0

these has certain advantages and at this point it is too early to say
if any one language is clearly better suited to the need. The most
likely candidate for a standard simulation language may be Ada. Not
only is it a state-of-the-art language with several features useful for

0 simulation purposes, but standardization within the DoD community will
yield obvious benefits.

As relevant- tools of all kinds become available, they will be
added to the 11505 repertoire.

The Software Test Management System (STMS)

STMS is a system, whose requiremnents are presently being defined,
that will provide the user with a simple means to install the software
to be tested, choose and execute various test tools, generate meaning-
ful reports of the results, and maintain test configuration control
over various versions of the software. The intent is that the user
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will be able to test his software in a user-friendly environment with-
out having to learn all the details of each tool or method.

SUMMARY

To assure the maintaining agency has a thorough knowledge of the
delivered system and associated support system equipment, experienced
embedded computer engineering and technical support is required prior
to Program Management Responsibility Transfer to the ALC. Since even a
minimum complement of software support equipment is normally not avail-
able before PMRT, an alternative approach was required. To meet this
requirement, WR-ALC has undertaken to establish the MSOS capability for
diagnostic emulation and generic software testing of Embedded Computer S

Systems.

MSOS will provide the capability to perform testing that will sup-
port not only independent assessment of contractor developed software

by Independent Verification and Validation (IV&V) techniques, but engi-
O neering and logistics trade-off studies, evaluation of support concepts 0

and technical evaluation of software techniques.
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ABSTRACT

SThis paper presents a brief outline of the history of
the General Dynamics/Fort Worth Division Production Digital
Flight Controls Program. Two flight demonstration programs
will be discussed: the single channel digital F-16 and the
four channel digital F-16. These were the first flights
ever of a microprocessor-based digital fly-by-wire system in
a relaxed static stability aircraft. Both demo programs use
a pseudo Higher Order Language (HOL) tailored for flight

0 control system applications. This paper describes the tech-
S niques used in applying the JOVIAL J-73 HOL to Digital

Flight Control System Operational Flight Program (OFP)
mechanization. Results are presented from testing the OFP
on flight hardware. Included in this paper are JOVIAL J-73
language issues such as subroutine implementation and their
associated efficiencies, the test set, and testing methods.

Copyright C1982 by General Dynamics Corporation
All rights reserved
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TEXT

U With the advancement of computers in this technological
era, General Dynamics realizes that the advantages of digi-
tal flight control systems over conventional analog systems
are manyfold. These advantages include: increased flexi-
bility; improved lifecycle costs; higher accuracy; ease of
maintenance; and reduced size, weight, and power
consumption. Before the first flight of an F-16 aircraft
using a digital flight control system could be made, one
critical question had to be answered. Could a digital com-
puter control an unstable aircraft such as the F-16 over the
entire flight/store envelope? The F-16 achieves its ranking
as the world's most maneuverable fighter by incorporating
the principles of relaxed static stability. Being a relaxed
stability aircraft, the F-16 could not tolerate a single
sustained failure in its flight control system without
causing the aircraft to radically depart from a stable
flight path. The approach taken, therefore, has been one of
low risk, that is, the most conservative approach in getting
digital flight controls on the F-16.

In conjunction with Lear Siegler Incorporated, a digital
emulation of the production F-16 analog flight control sys-
tem was developed based on a 4MHZ Z8002 microprocessor. The
OFP for this digital channel was developed by General Dynam-
ics and Lear Siegler Incorporated. This baseline OFP was
funded by both companies for a demonstration of digital
flight control systems on the F-16 aircraft. The baseline
OFP was coded using a pseudo Higher Order Language,
developed by Lear Siegler Incorporated, for flight control
applications and was tested, during and after development,
on the Digital Development System (DDS) also developed by
Lear Siegler Incorporated. The DDS is comprised of an in-
teractive program hosted on a PDP-11/34 which is linked to
the Z8002 Fligflt Control Computer (FLCC). The DDS provided
a means of testing the Operational Flight Program (OFP) in
execution on actual flight hardware, allowing the Z8002 to
execute the OFP and halt it at any point to monitor data
flow and insure program validity. The DDS has an extensive
menu of commands available that make it a very powerful
tool. Up to four separate digital channels can be moni-
tored, breakpoints set, and memory contents examined and
changed. Dynamic command files can be created, and a pro-
gramming language is provided that allows additional feat-
ures to be added to the DDS test software. A manual test
set, previously used with F-16 analog production systems,
was used to insure that the digital system gave the same
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commands to the aircraft control surfaces as that of the
production analog system. After development, the single
channel Z8002 completed an extensive testing phase which
consisted of verification and validation (V & V), Safety Of
Flight (SOF) , and qualification and flight certification by
automatic testing. A modified production analog flight con-
trol computer, with one of four of the analog channels
replaced by the digital Z8002 channel, was flown at Edwards
Air Force Base on an F-16, the first flight was October 20,
1981. The single channel had 99 flights with no software
errors. Satisfied with the performance of the single chan-
nel, four digital channels identical to the previous sin~gle
channel, were configured to provide a Quad digital -flight
control system. The Quad system was configured with an au-
tomatic engaging, manual override Independent Back-up Unit
(IBU) for additional safety, although it has never been
needed. The first flight of the Quad system was May 11,
1982. The Quad system at the writing of this paper has had
69 flights, as of October 14, 1982, with absolutely no sof-
tware problems. These two successful programs mark the
first digital flight control system on a fly-by-wire,
relaxed static stability aircraft with no mechanical back-
up, and the first application of a microprocessor technology
to flight controls. The handling qualities of the F-16 air-
craft with the digital flight control system has been found
to be identical to the production analog system.

The advantages of a HOL became obvious during the
development of the previously mentioned digital system. The
ease of developing the OFP, the lower maintenance costs,
high portability and other factors generated a great deal of
interest in using a powerful HOL for flight controls. In
compliance with MIL-STD's 1750A and l589A it was decided to
investigate the use of a J-73 targeted to a 1750A instruc-
tion set. Working in concert with other programs using J-73
at General Dynamics, most notably the F-16 MSIP (Multi-
national Staged Improvement Plan) avionics program, a 3-73
OFP has been developed for F-16 digital flight controls, the
Production Digital Flight Control System (PDFCS) J-73 OFP.

The PDFCS J-73 OFP consists of 113 well structured-
modules which are designed in such a way that any change in
the OFP would minimize the needed coding change. To in-
crease portability, the OFP almost entirely uses J-71. Of
interest is that the executive is completely coded in J-73,
without loss of throughput. This is the first application
of an executive, using only HOL, in an F-14 OFP. This exe-
cutive is as efficient as an executive employing assembly
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language and obviously more portable. Also of interest is
that all mathemetical operations in the PDFCS OFP utilize a
floating point representation. On analysis of the control
laws, it was felt that floating point representation would
have several advantages over a fixed point representation,
namely:

Mi Faster and easier development,

(ii) Greater flexibility,

(iii) More meaningful test data, and

(v) Improved maintainability

Scaling problems, inherent in control laws, are mini-
mized using a floating point representation, making develop-
ment much easier. If additional flight control modes should
be added, a fixed point implementation would require exten-
sive scaling to incorporate these new modes; additional
scaling would be minimal with a floating point system. Test
data using floating point representation would be expressed
in meaningful values, whereas test data using a fixed point
representation usually requires a number of scaling factors
to make the data comprehendible. Code written in floating
point is more understandable than that written in fixed
point and is therefore easier to maintain. The governing
factor in using floating point, however, is throughput.
Findings indicate that with a 1750A architecture and the in-
struction mix the OFP uses, a floating point representation
would only decrease throughput by some 8 to 10 percent.
Considering the previously mentioned advantages, a floating
point representation is well worth this minor decrease in
throughput.

The J-73 OFP is currently targeted to two processors,
the Z8002, an interim processor, and a 1750A architecture
processor. The OFP is developed using the Harris H800 based
Software Engineering System (SES) (see figure 1). The SES
is an on-site computer system for developing high quality
embedded software products. Once each module is coded, it
is sent via a data link to the IBM 370 and compiled using
either the DIS (Digital Integrated Subsystems - Z8002 4
target) or the SEA (Software Engineering Associates - 1750A
target) compilers. If the module is DIS compiled, the
source listing and an assembly listing are then sent via the
same data link back to the SES where it is assembled and
linked. This load module can be sent to a PDP-11/34 by

96



either generating a tape and loading it or via a data link.
From the PDP-11/34 it is down-loaded to the Z8002 flight
hardware and tested using the latest version of the DDS in-
teractive program. For a SEA compiled module, the source
listing is sent from the IBM 370 via a data link back to the
SES. The relocatable object code resides in a file on the
IBM 370. This object code file is then sent via another
data link to the VAX 11/780 where it is linked and tested
using the McDonnell Douglas'1750A load module or a Delco
1750A bit slice processor. Finally, resident on the VAX,
there is a DDS emulator for the Z8002 processor, and in the
near future an emulator for a 1750A architecture.

There are two basic philosophies in testing software: a
top-down approach, and a bottom-up approach. The top-down
approach first tests the modules that are the top of the
hierarchical scheme and works downward until the lowest are
tested. The bottom-up approach first tests the lowest
modules in the hierarchical scheme and works upward until
the highest are tested. The PDFCS testing approach taken is
generally a top-down approach. This tends to keep changes
from restructuring the OFP as a bottom-up approach tends to
do. However, many of the modules that are lower on the
hierarchical scheme are tested in parallel with the top-down
testing. This allows for full utilization of personnel and

j aids the top-down testing effort. These modules are tested
in isolation using every possible combination of the input
parameters. If the module's size is small, the output is
simply checked by hand; otherwise, it is compared with a
valid model for accuracy. The person who codes a module is
responsible for testing that same module. This tends to ex-
pedite the testing phase as well as boost morale.

As tool sets for both the Z8002 and the 1750A are becom-
ing more powerful, a method to incorporate them in some dy-
namic testing setup is being devised. For the short term,
data sets will be created to simulate actual flights to al-
low testing of the OFP. Long term plans are to get data0
from test flights and incorporate this in a dynamic test
set-up. With the advancements being made on the tool sets
we now use, this process should not be very difficult and
could even lead to a development system for future programs.

The following issues are those of the J-73 language that
affect the PDFCS OFP and that have been resolved by testing
or some other manner. The first issue concerns procedure
declaration. There are three ways to declare a procedure in
J-7 3:
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(i) Define declaration (the same as a macro),

(ii) A procedure declared inline, or a

(iii) Normally declared procedure

The define declaration is of either global or local
scope and the generated assembly code is inserted inline.
This results in savings since the procedure setup is not
needed, which in some cases takes longer than the actual
executable code. However, more assembly code is introduced
since it is generated inline. The define is very awkward in
appearance and does not seem to resemble a HOL feature. A
procedure declared inline is locally defined and the gener-
ated assembly code is inserted inline. Again, the overhead S
of procedure setup is eliminated, although code expansion
occurs. The inline procedure is identical in appearance to
a regular procedure, the only difference being the INLINE
instructive. Lastly, the normally declared procedure can be
defined either globally or locally, but requires the neces-
sary overhead for set-up. A normally declared procedure is 0
easier to test and validate due to its modularity. Define
or inline declared procedures require testing every time
they are invoked and therefore require quite a bit more
testing. The setup, or invocation time, for each normally
declared procedure takes 25 usecs for the 1750A. Consider-
ing that the PDFCS OFP invokes many procedures, a large S
amount of time is spent doing procedure setup. As a general
heuristic, an inline procedure is used when the time
required to set up a procelure is greater than the executa-
ble code it contains, although code expansion must be
considered.

Another J-73 issue affecting the PDFCS OFP is bit
manipulation. For processors that have single bit manipula-
tion instructions, for example, a set bit instruction, the
most efficient way of manipulating bits, appears to be
through the use of the POS declaration, which assigns a name
to a particular bit or bits in a word, and subsequently ref- 0
erencing the bit by its assigned name. For single bit
manipulation, this method generates one assembly
instruction. For bit strings, more assembly instructions
are generated but they seem to be less than any other
method. Since both the Z8002 and 1750A architecture proces-
sors have single bit manipulation instructions, this method S
is used.
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The last issue concerns case statements. When making
multiple decisions on a variable, either a nested 'if' or a
case statement can be employed. The nested 'if' is gen-
erally employed when the probability of a single condition
is much greater than the rest. This condition is then
tested first. Since the probability of this first condition
is much greater than the rest, this method should be more
efficient, on the average, than a case statement due to the
case statement's additional instructions to perform the com-
putation for the jump table. If the probabilities are not
known or are fairly similar, then a case statement is gen-
erally employed; a case statement makes its decision based
on a jump table and, on the average, should be the most ef-
ficient under these circumstances. S

The PDFCS J-73 OFP is under analysis and testing to
provide the most efficient OFP possible. Depending upon the
semiconductor family the 1750A chip set utilizes, the OFP
should have a throughput between 40 and 60 percent. The
memory requirements should be about 12K, depending upon how 0
many procedures are coded using the INLINE declaration.
There is substantial room for growth for additional modes or
systems to be added to the OFP. Two demonstration programs
are planned for the PDFCS OFP. The first demonstration pro-
gram, in June of 1983, will be flight testing of a single
channel of the OFP with three channels of the baseline OFP. 0
Once this flight testing is completed, a Quad system using
the PDFCS OFP will begin flight testing in the first quarter
of 1984.

CONCLUSIONS 0

Digital flight controls have a perfect record on the F-
16 aircraft in a production environment with no software
problems. JOVIAL J-73 can be applied to digital flight con-
trols in a production environment with substantial room for

0 growth. 0
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ABSTRACT

)The joint Air Force/Navy program to develop MIL-STD-1760, Aircraft and

Store Electrical Interconnection System, is described. The rationale for the
program and the program approach and status is presented. Each of the three
interface elements of MIL-STD-1760 are discussed with emphasis on how the
elements enhance aircraft/store interoperability and reduce future aircraft S
modification cost. Implementation of MIL-STD-1760 is advocated for all future
US and NATO aircraft and stores.
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THE MIL-STD-1760 DEVELOPMENT PROGRAM

Mr. Claude M. Connell and Mr. Bryce M. Sundstrom

Air Force Armament Laboratory
Mun/Acft Interface Branch

Eglin AFB, Florida
(904) 882-2201

INTRODUCTION.

MIL-STD-1760, Aircraft/Store Electrical Interconnection System, is being
developed under the joint Air Force/Navy Aircraft Armament Interoperable
Interface (A2 ,2 ) program. Primary program objectives are to promote
interoperability between future aircraft and stores and to significantly

* reduce the modification cost of adding a new weapon to existing aircraft. 6
This is being approached through interface standardization.

STATEMENT OF PROBLEM.

Interoperability between aircraft and stores is presently precluded by a

set of obstructions. Within this set, a primary obstruction is the
nonstandard aircraft-to-store and store-to-aircraft electrical interface.
Interfaces between aircraft and stores are becoming increasingly sophisticated
and complex. At the same time, there is an increasing desire on the part of
the Department of Defense to increase service and allied nation 0
interoperability between aircraft and stores.

The number of different types of stores is large (more than 100) and
continues to grow as a result of development and acquisition programs. Stores
include conventional general purpose bombs, guided bomb dispensers, missiles

* (air-to-air and air-to-ground), nuclear weapons, sensor pods, dropped sensors,
camera pods, countermeasure pods, fuel tanks, dispensers, guns, rockets, etc.
Interfaces between aircraft and stores are only partially guided by standards
and, therefore, have tended to evolve into system peculiar mechanical
adapters/connectors, electronic signals, power connections, and other armament
assemblies which make interoperability impossible without major modifications

* to aircraft and/or stores on a case-by-case basis. The trend toward more •
complex store functions which require increasing amounts of avionics data from
aircraft systems is causing the problem to become increasingly acute.
Examples of this situation are AMRAAM, HARPOON, PHOENIX, HELLFIRE, ATLAS POD,
ALCM, etc.

* On the aircraft side of the interface, stores management systems are 6
unique to each aircraft type and sometimes each model. Old aircraft Stores
Management Systems (SMS) are generally hardwired, not integrated, not
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automated, and reflect outmoded, obsolescent electronics and electronic
design. Although new aircraft SMS designs reflect current technologies in
electronics and communications, they are still tailored to a specific store
list and are not designed for growth. Invariably, the changing stores list
requires modifications almost as soon as the aircraft begins its operational
life. The adoption of acquisition methods which result in aircraft systems
which are tailored to handle specified lists of stores has limited weapon
system capability, growth, and flexibility. These methods yield weapon
systems which are well defined within themselves, but are inflexible and
costly to modify.

Concept of a Solution.

The intent behind developing MIL-STD-1760 is to support achievement of
interoperability between independently designed stores and aircraft by
imposing specific interface design requirements applicable to each. To
accomplish this, the interface characteristics of the aircraft and of the
stores must be controlled so that each unit of a given kind, e.g., a carriage
store, is functionally interchangeable with any other unit of the same kind.

The overall goal of the standard is to remove the non-standard electrical
interface as an obstruction to interoperability. Application of the standard
will result in a wide range of stores being interoperable with a wide range of
aircraft. Modification of aircraft and store hardware to allow individual
combinations to operate together will be minimized. The use of adapter
modules will be discouraged. In this way, the effort and cost necessary to
integrate aircraft and stores will also be minimized.

MIL-STD-1760 is designed to be flexible enough to accommodate individual
system peculiarities. In particular, implementation may change with
technology advances as long as the interface characteristics are maintained.
The MIL-STD addresses only the electrical interface between aircraft and
stores. Compatibility parameters such as size, weight, aerodynamics, avionics
capabilities, etc., must be satisfied in addition to the electrical interface
in order to realize interoperability. The electrical, or MIL-STD-1760,
portion of the aircraft/store integration effort will ultimately be limited to
developing software modifications necessary to accommodate new stores.

The Major Elements of MIL-STD-1760.

To achieve the program objectives, it was decided that the Aircraft/Store
Electrical Interconnection System (MIL-STD-1760) would consist of three
hierarchical elements: electrical, physical, and logical. Each element is
described below:

a. Electrical: The electrical element quantitatively specifies the
signal set the aircraft must provide and that the store must utilize. The
signal set for the Aircraft Station Interface was published in July of 1981
and is described in detail in the following paper entitled "Signal Set
Standardization for the Aircraft/ Store Electrical Interconnection System" by
D. E. Lautner and J. R. Perkins.
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b. Physical: The physical element of the standard defines the
intermateability characteristics of a set of armament connectors. It is
envisioned that the characteristics of the following three classes of
connectors will be specified:

An umbilical connector for gravity release stores employing
the MIL-STD-1760 signal set.

• A low cost connector for simple stores employing a limited
subset of the 1760 signal set.

• A blind mating connector for rail launched stores employing
the 1760 signal set.

To achieve the goal of interoperability, it is not necessary to
completely describe the interconnection component as one would, for example,
by calling out a particular part number. The physical element of the standard
must define only those characteristics essential to intermateability.
Essentially this means that a particular set of physical dimensions has to be
defined. The method of achieving this definition for gravity release and most
eject launch stores was to select a set from an existing state of the art
connector. Several manufacturers are currently designing similar connectors S
for MIL-STD-1760 employment under the constraint that each must employ the
selected set of intermateability dimensions. The problem of intermateability
also includes defining the connector insert physical and functional layouts,
particular contacts, crimping tools, and etc. In all, some ten or twelve
piece-part specifications are required to completely define a connector as a
functionally intermateable system. Most of these have been developed, S
coordinated, and published for the lanyard release or so called umbilical
connector for gravity release weapons.

The umbilical connector described above is intended for relatively
sophisticated weapons and as such is complex. There is an effort under the
SAE AE-9 Aerospace Avionics Equipment and Integration committee to define a
signal set for simple low cost stores (SLCS). To date, a strawman
configuration employing only a single channel MIL-STD-1553 data link, 28 volt
de power, addressing lines, and associated ground returns, has been proposed
for review. The development of the SLCS connector definition will follow
closely the process employed for the complex umbilical connector. The major
difference will probably be in the method of selecting the intermateability S
aspects. For the complex connector, a decision was made to limit competition
to a small number of existing devices. It is anticipated that for the SLC
connector that manufacturers will respond to a request for proposal with
innovative approaches; such as employment of composite materials, to hold
costs down. As such, there will be no attempt to limit competition.

Rail-launched weapons pose particular interconnection problems such as
the necessity for blind mating. There is also the problem of rocket or jet
blast burning of connector contacts. Because of these considerations and
others, the definition of the physical interface for rail-launched stores was
deferred to following that for gravity release weapons. In the interim, a
fortuitous development was taking place.
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Initiation of the A212 and Advanced Medium Range Air-to-Air Missile
programs and their respective progress were sufficiently concurrent to
hypothesize that the connector selected for AMRAAM could become a defacto
standard for MIL-STD-1760. It was recognized that the interface requirements 0
specified for the AMRAAM program were going to impose very difficult and
complex interconnection problems. Since the AMRAAM launcher must meet certain
interface requirements unique to each of the F-14, -15, -16, and -18 aircraft,
internal space allocation for the connector and its release mechanism was
critical. To the credit of the designers, it appears that multiple
interfacing will be achieved. The method of coupling the missile receptacle 0
to the launcher connector appears to be readily adaptable to other rail-
launched weapons. That possibility in itself drives the AMRAAM connector
towards a standard device.

It would have been desirable to undergo a long-term systematic
development program for these three classes of connectors. However, the 0
requirement is for interoperability now. The approach MIL-STD-1760 has taken
is to select and standardize on the best which is available or can be made
available in the near term.

c. Logical: The Logical element of MIL-STD-1760 is primarily
concerned with the utilization of the MIL-STD-1553 multiplex data bus.
Although this multiplex standard defines word types and protocols for general
types of data transfers, further definition would be helpful to optimally
apply MIL-STD-1553 in the aircraft/store environment.

It is envisioned that the MIL-STD-1760 logical element will be comprised
of two primary areas; Standard Data Words and Aircraft/Store Protocols. 0
Standard Data Words are MIL-STD-1553 data words which have been assigned
specific bit patterns to represent particular functions, commands, or values.
As such, they provide the same information to all users. If data words are
not standardized, implementers will by necessity derive their own. Unique
words, in turn, complicate aircraft or store interpretive hardware and

software. The A2I2 program is being closely coordinated with the SAE-AE9
Data Word Standardization Task Group effort towards solving this problem. The
Aircraft/ Store Protocol area provides a definition of rules to transfer data
between aircraft and stores. Additional protocols are necessary in such areas
as user application data, store addressing, message routing, block data
transfer, message encoding, encryption, and fault handling. A draft of the
Logical element will be distributed in early 1983 with the final version
published in 1984.

SUMMARY

MIL-STD-1760 implements a new philosophy in aircraft/store electrical
integration. No longer will aircraft be restricted to designs for unique sets
of store requirements and, conversely, stores will not be constrained to
interfacing with aircraft peculiar electrical configurations. Through MIL-STD-
1760, aircraft will offer a standard electrical capability and stores will
electrically integrate in a prescribed and orderly manner. Through MIL-STD-
1760, interoperability can be enhanced and aircraft modification costs
reduced.
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ABSTRACT

Air Force and Navy are upgrading and improving all aspects of aircraft
weapon systems. The armament system, which includes stores, carriage
equipment and stores management elements, has been a major target for this
upgrading. As a result, substantial improvements and new capabilities have
been developed and placed into service. These improvements include
development of highly sophisticated "smart" stores that employ or interface S
with complex sensors and guidance systems for target acquisition, lock-on and
neutralization. However, these weapons and sensors were developed without
consistent interfacing constraints and standardization requirements.
Consequently, a very severe compatibility problem exists in adapting these new
stores to all aircraft and in achieving interoperability between aircraft and
stores in general. The-T-auses of these problems are the lack of flexibility 5
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and standardization of the armament system, subsystems and equipment. Air
Force and Navy Laboratories are addressing these shortcomings through the
joint A212 (Aircraft Armament Interoperable Interface) Program.

The electrical interface is a major contributor to the non-standardized
and non-interoperable problems. Immediate corrective action is needed by the
military to circumvent continuing escalation of the problem. Thus,
development of MIL-STD-1760 was set into motion. In the process of evolving
MIL-STU-1760, it became apparent that issues driving this interface were very
complex, broad in scope and consequently difficult to defend in terms of
establishing a single interface standard. It was more specifically determined
that definitive documented requirements were an essential ingredient for
providing direction and substantiation during MIL-STD-1760 development.

-This paper provides a summary of the work perormed under an AiI2
contract sponsored by the Naval Weapon Center'(0WC)'and Air Force Armament
Laboratory'(AFATL)'for developing the aircraft-store electrical functional
requirements which will be principally implemented by tIL-STD-1760. The paper
provides an overview of the overall requirement drivers and then focuses on
three principal electrical areAs~of the AEIS:V- (1)"The power interface, 42)
high bandwidth signaling, and (3) digital data transfer. The paper provides
insight on derivation of these requirements and supporting rationale in terms
of drivers from existing store requirements, developmental store and
technology trends, and , traditional" engineering approaches.

INTRODUCTION

The Problem

Variations in the interfaces (electrical, mechanical and operational)
between stores and aircraft have complicated the inter- and intra-service
exchange of stores among different aircraft. These variations have also
complicated the introduction of new stores into service. This complication is
due primarily to the cost and schedule associated with modifying existing
aircraft for compatibility with the new stores or specifically with the new
store interfaces. The variations in aircraft/store interfaces are caused by a
number of factors, including: The lack of physical, electrical, and
information compatibility, old technological performance characteristics,
excessive logistical demands, and variable maintenance requirements. Many of
these problems are due to a proliferation of aircraft/stores equipment -
racks, umbilical cables, store management mechanizations, and functional needs
of the stores. This proliferation has occurred because of such factors as
rapid technological advances, trends toward higher store sophistication,
acquisition processes dominated by cost and schedule concerns, and downward
compatibility requirements of new equipment to existing stores and/or aircraft.

These current problems, coupled with trends in aircraft, in stores, and in
operational and procurement environments, make it increasingly important to
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achieve the maximum degree possible of aircraft-store interoperability.
Interoperability will minimize development and implementation costs for new
weapon systems, maximize combat capabilities of the force structure, allow
quicker response tr changing threats, and minimize logistic support problems,
among many other advantages. This interoperability must be achieved, however,
in a technological environment of rapidly increasing complexity and
sophistication of both aircraft and stores. The approach used for achieving
the desired interoperability must support technological advances over a
significant span of time. 0

Interface standardization is a viable approach for increasing
interoperability and for providing future solutions to these current
problems. This approach to achieve interoperability must be accomplished
through an optimum balance between standardized and customized features.

Since the electrical interface between aircraft and stores is a major
contributor to compatibility obstacles, timely corrective action is needed.
This timely action is particularly warranted based on the accelerating trends
of more complex store system designs and the resultant variety of new
interface implementations which evolve with these designs. 0

The Solution

These accelerating trends and the resultant impact on aircraft Stores
Management Systems (SMS), set into motion the development of MIL-STD-1760.
This standard development is the first inter-service coordinated effort to
evolve a standardized Aircraft-Store Electrical Interconnection System (AEIS). 0

In the process of evolving MIL-STD-1760, it became apparent that the
functional requirements and issues driving this interface were very complex,
and consequently, should be well defined prior to finalizing the
aircraft-store electrical interface standard.

This paper summarizes a portion of the AEIS functional requirements
evolved during an Aircraft Armament Interoperable Interface activity sponsored
by the Naval Weapons Center, China Lake and the Air Force Armament Laboratory,
Eglin AFB. This effort primarily involved stepping back from the present
issue of MIL-STD-1760 (July 1981) and re-evaluating the overall AEIS
functional requirements. This effort was deemed advisable prior to starting a
completion (revision) cycle on the MIL-STU-1760. As a reminder, the present
MIL-STD-1760 only defines the signal set at the aircraft station interface.
As stated in the standard, the electrical elements will be refined, logical
and physical elements added, and interface definitions added for other points
in the AEIS - such as electrical interfaces at mission stores and at carriage
stores.

But First, Some Terminology

Prior to delving into the details of this paper, definitions are presented
for extensively used terminology. This terminology is consistent with
MIL-STD-1760 and is repeated here as a refresher. S
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To begin, two general types of stores are defined. While both types are
"stores" in the general armament sense, the two have significantly different
functions and significantly different interface functional requirements. The
first type is referred to as a "Carriage Store". As the name infers, this
store is, in reality, Suspension and Release Equipment used for the carriage
of one or more other stores. Examples include existing Multiple Ejector Racks
(e.g., MER-1O), Triple Ejector Racks (e.g., TER-7), Missile Launchers (e.g.,
LAU-117), etc.

As might be expected, the second type of store is the actual store that
directly supports the mission function. This type is defined as a "Mission
Store" and includes such items as bombs, missiles, electronic pods, gun pods,
etc.

To further refine AEIS terminology, the electrical interfaces at these two
store types plus at the aircraft store stations are also assigned specific
identifiers. These interfaces are illustrated in Figure 1 and are defined as:

(1) Aircraft Station Interface (ASI) - The electrical interface (e.g., at
connector) located at the "lowest" point of aircraft dedicated store
interfacing equipment. The ASI is the "aircraft side" of the AEIS.

(2) Carriage Store Interface (CSI) - The electrical interface (e.g., at
connector) on the carriage store through which the carriage store
interfaces with the aircraft (i.e., with the ASI).

(3) Carriage Store Station Interface (CSSI) - The electrical interface
(e.g., at connector) on the carriage store through which the carriage
store interfaces with a mission store. A multiple station carriage
store will have associated multiple CSSIs.

(4) Mission Store Interface (MSI) - The electrical interface (e.g., at
connector) through which a mission store interfaces a carriage store
(CSSI) or an aircraft (ASI). Mission stores may connect directly to
an ASI (no intervening carriage store) or to a CSSI.

With this terminology outlined, the primary discussions will begin.

AEIS FUNCTIONAL REQUIREMENTS

Overview of AEIS Requirement Drivers

For most stores to be operated by aircraft, two very basic electrical
functions must be performed. First, the aircraft must deliver to the store
sufficient electrical energy (or power) to allow the store to operate.
Various stores require various levels of the power. Second, information must
be transferred between the aircraft and store and in some cases, between
stores. Again, various stores and aircraft require various levels of
information exchange. To enhance store interoperability among a large number
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of aircraft types, standardization of these information and power transfers is
suggested.

Many weapon system issues influence the AEIS (MIL-STD-1760) requirements.
Table 1 lists eight of these general issues. Each of these eight issues are
discussed below as a sampling of AEIS functional requirement drivers. Other
issues (in addition to functional requirements) will also impact the AEIS
Standard. An example is the temptation for traditional aircraft or store
design implementations to influence the AEIS Standard even though these
traditional approaches are no longer technically necessary.

TABLE I

GENERAL ISSUES WHICH IMPACT AEIS REQUIREMENTS

o Types of Information Transfer
o Types of Power
o Store Loadouts on Aircraft
o Level of AEIS Standardization
o Trends in Aircraft and Store Systems

* o Nuclear Weapon Compatibility
0 Multiple Carriage Compatibility
0 "Efficient" Interfaces for Low Cost Simple Stores

The information exchange between aircraft and stores can be categorized in
several ways. One meaningful grouping is oriented toward information transfer
implementation methods. A survey of current and projected aircraft/store
information transfers identified three basic information transfer groupings.
The first group consisted of relatively low transfer rate information which
could easily be transmitted over conventional multiplexed serial digital data
bus networks. This information group is referred to as "Digital Transfers".
A second group contained data with information bandwidths sufficiently high
that a time-shared, limited bandwidth multiplex bus network is not
particularly practical. This second information group is categorized as "High
Bandwidth Transfers". The final grouping applies to information transfers of
extremely low data transfer rates. This third group, however, is also noted
for peculiar information transfer requirements concerning: (1) The need to
transfer the information under extreme co-ditions such as emergencies, loss of

* primary information channels, etc; (2) the need to transfer the information
independent of other transfer channels; or (3) the need for safety critical
functions to be implemented reliably. To achieve these three requirements
essentially requires dedicated signals. This third information transfer group
is referred to as "Discrete Transfers".

* All information transfers between aircraft and stores can be divided into
one of these three information types. The vast majority of information
transfers uncovered during the aircraft/store survey could be practically
implemented as "Digital Transfers". In contrast, a very limited number of
high bandwidth and discretes were found. A large percentage of existing
stores contain discrete based interfaces. However, these existing discretes

* should not be categorized as "Discrete Transfers" as described above, but
converted to "Digital Transfer" implementations.
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The aircraft/store survey also produced data revealing the types, cy more
meaningfully, the quantity of power required for store operation. The survey S
indicated that standardizing several characteristics of electrical power would
yield significant payoffs in interoperability. These standards will be
discussed in more detail later. At this time, it will be simply stated that
store designers should be aware of realistic power limits and characteristics
to which stores should be designed. Similarly, aircraft designers )uld be
required to provide certain power levels and characteristics at the ASIs for
store use. These levels and characteristics should, however, be realistic
with respect to other aircraft design issues - such as weight and cost
minimization. For example, simply because a store which required 15 kilowatts
of electrical power could be identified, does not imply that the AEIS should
require a 15 kilowatt capability at any or all aircraft store stations.

Another critical issue which impacts the AEIS requirements - i.e., impacts
the information and power transfer - concerns realistic store loadouts. The
number and mix of stores which can practically be installed on any specific
aircraft determine a set of composite or concurrent information/power transfer
requirements for that aircraft. Potential store loadouts for various Air
Force/Navy missions were identified in an earlier A212 sponsored study. *
From these existing and projected loadouts, a set of information and power
transfer stressing cases were selected. These stressing cases formed one set
of drivers of the AEIS functional requirements.

An additional issue which affects the AEIS requirements deals with the
level or degree that interface characteristics and performance are to be S
standardized. Once this standardization level crosses some gray boundary, two
conflicting AEIS requirements clash. The first or prime directive of the AEIS
is to define an aircraft/store interface which promotes "interoperability"
among a broad class of stores and aircraft. This interoperability is achieved
by standardizing all (or most) interface characteristics between aircraft and
stores. The conflict arises, however, as more details are specified in a S
standard. The conflict occurs because operating, performance, and design
flexibility are degraded as standardization is increased. As an
oversimplified example, if all power interfaces were standardized as a single
28 VDC, 10 ampere line, interoperability would be high (with respect to the
power interface). However, the type of store performance or operations which
could be implemented with 280 watts would be restricted significantly. For *
this reason, a median must be reached between interoperability enhancements
and operation flexibility restrictions. Those areas where meaningful
aircraft/store flexibility can ':- maintained while interface standardization
is pursued, should be prime targets for the AEIS Standard.

As the interface standard is evolved, maintaining compatibility with the S
perceived trends in aircaft and store designs is extremely important. An AEIS
Standard, which becomes technically obsolete after a few years, has no value.
Examples of these perceived trends which could impact the AEIS requirements
are:

(1) Expanded use of serial digital (multiplex bus based) data transfers. *
The promulgation of MIL-STD-1553 multiplex techniques through
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avionics is certainly indicative of this trend. The serial digital
multiplex information transfer technique is representative of a
standardization step which not only enhances interoperability but in
a practical sense simultaneously enhances system flexibility.

(2) Reduction of the number of different electrical characteristics by
which power is supplied to stores. This reduction, as an initial
step, should eliminate all voltages other than those identified in
MIL-STD-704. Standardizing to a smaller subset of MIL-STD-704 should
also be considered.

(3) Increased autonononmous store operation. This trend should reduce the
amount of information transferred between aircraft and stores. This
tends to increase store interoperability but will also likely
increase store procurement cost. Specific areas in which information
reductions are anticipated are in the "High Bandwidth Transfer"
category.

(4) Increased use of sophisticated electronic pods such as target
acquisition systems could occur at some aircraft stations. While the

* external pod application could conflict with attempts to minimize
radar cross-section, the functional interface needs of these pods
must also be considered.

Another area to consider when establishing requirements for the AEIS
concerns the drivers imposed by nuclear weapons. A specification (System 2)

* for the next generation electrical interface for nuclear weapons is being
developed. This specification imposes particular requirements on the Digital
Transfer, Discrete Transfer and Power Transfer interfaces. Miost of these
System 2 requirements are not significant drivers on the AEIS. The primary
area of significance concerns the level of quality and electrical isolation
imposed on the Power Transfer function.

An additional complication on the AEIS results from insertion of carriage
stores between the aircraft and mission stores. This addition has two
effects. First, the insertion of a carriage store modifies the
characteristics of the electrical signals from the aircraft (ASI) prior to
reaching the mission store (MSI). Second, a multiple station carriage store

* conceptually changes the ASI from a single store interface point to a multiple
store interface point. To complicate the issue even further, the number of
stores that might be simultaneously loaded on carriage stores changes with
different types of carriage stores.

One final AEIS requirement driver area is briefly mentioned. This issue
* deals with how an efficient and cost effective interface should be implemented

to service the large *number of low cost (and relatively simple) stores. The
addition of store hardware to support a redundant MIL-STD-1553 serial digital
line could have a significant cost impact on low cost stores such as freefall
bombs.

*
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The eight issues just discussed are representative of aspects which
influence the interface requirements imposed on the AEIS. These eight issues
do not, however, encompass the total set of AEIS drivers. S

The next several sections highlight representative AEIS issues for power,
high bandwidth and digital transfers. These issues are presented at a higher
level of technical detail than the general discussion presented above.

Power Transfer Requirements 0

The present MIL-STD-1760 divides the power interface (at the ASI) into two
parts (implemented as two connectors). This division is by power
quantity. The primary connector has approximately 6.7 kilowatts of "power
capacity" identified. This power is partitioned among three voltage
characteristics and ten connector contacts. Each contact is rated for ten 0
amperes. Similarly, the auxiliary MIL-STD-1760 connector contains the same
three voltage characteristics distributed among eight contacts with a
composite rating of nearly 20 kilowatts. One important point should be
emphasized, however. Simply because the primary or auxiliary connector
contains sets of power functions, each rated for a particular power capacity,
it should not be interpreted that rated power can be simultaneously extracted 0
through all of these contacts simultaneously. Likewise, it should not be
interpreted that aircraft will contain sufficient power capacity to
simultaneously energize all aircraft Ftation interfaces at their maximum power
ratings.

These restrictions should be identified in 1f.L-STD-1760. As an example, 0
at the time of designing the store's interface to the aircraft, a design
decision is required on which voltage characteristic (or group of voltage
characteristics) to select. Any limitations imposed by the aircraft or
carriage stores on power implementations should be highlighted to the store
designer to maximize the specific store's interoperability.

A second power requirement issue concerns the quality or characteristic
tolerances of delivered power. The present MIL-STD-1760 specifies that
MIL-STD-704 voltage characteristics will be delivered to the ASI. The level
of characteristic quality degradation from ASI to MSI (directly or through a
carriage store) is not defined. More subtly, however, in-service aircraft are
designed to various issues of MIL-STD-704. In fact, there are actually several 0
versions of MIL-STD-704 which are presently active. Since the power quality
must be defined at all AEIS interface levels and reference to MIL-STD-704 does
not sufficiently identify the ASI power characteristics, the AEIS Standard
must specify the power characteristics which a store should expect to be
supplied and which an aircraft should be required to provide.

High Bandwidth Transfer Requirements

The electrical interfaces to a number of existing and projected stores
include a variety of analog or high bandwidth signals. These signals include
video, audio, time correlation pulses, variable voltages used for scaling or
"synchro" control, plus modulated Radio Frequency (RF). Analysis indicated 0
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that the response/timing and information content of some of these analog
signals is sufficiently low to permit conversion to a digital format and
transfer on a MIL-STD-1553 one megabit/second data bus. In contrast,
some of these present analog formatted information transfer functions are
grossly inappropriate for transfer over the MIL-STD-1553 data bus network.
Three analog signal types definitely fall into this latter category. These
signal types are real-time video, time correlation pulses and RF.

A number of existing stores transfer video information to the aircraft
(i.e., to cockpit displays). Since this video transfer is expected to
continue, a high bandwidth capability for routing video across the AEIS
interfaces must be provided.

Likewise, Time Correlation Pulse (TCP) information transfer is presently
used for accurate and efficient "blanking" of on-board RF receivers from
on-board RF transmitters. These receivers or transmitters could be installed
in stores. In addition, TCP applications include transferring precision
clocking or synchronization signals between aircraft and stores.

The driver on the AEIS to include an RF transfer capability in
MIL-STD-1760 is based primarily on projected Global Positioning System (GPS) 6

applications for missiles. The missile receiver may require access to the RF
signal (e.g., from GPS satellite transmitter) while the missile is installed
on the aircraft. Since the aircraft may obstruct the missile antenna's
line-of-sight access to the RF transmitter, an alternate access path to an
airborne antenna through the AEIS interface is required. 0

Digital Transfer Issues

Prior to concluding this paper, a few comments are presented on several
digital information transfer issues.

The vast majority of information transfers between aircraft and stores can 0

be implemented with conventional serial digital multiplex methods. Since
14IL-STD-1553 is the DoD designated serial digital bus communication method for
military avionics, since MIL-STD-1553 hardware is off-the-shelf, and since
tIIL-STD-1553 can provide the performance levels identified for the AEIS
digital transfers, selection of a MIL-STD-1553 serial digital link is 0
justifiable. Although selection of MIL-STD-1553 provides an immediate level
of maturity for AEIS digital communication, several additional communication
aspects should be defined in MIL-STD-1760.

The intent of the MIL-STD-1553 standard was to supply a common or standard
hardware communication interface which is to be supplemented by additional 9
protocol, data word, and message specifications for a specific system
implementation - such as the avionic suite of a particular aircraft. In a
similar manner, the AEIS is a specific implementation with one subtle
difference. While a specific aircraft system implementation and the
associated communication protocol for applying MIL-STD-1553 may be limited to
one aircraft type (e.g., F-16A, F-15C), the AEIS implementation must be common 0
to all interoperable aircraft and stores. To enhance this interoperability, a
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higher level of communication standardization is recommended for the AEIS
above that defined in MIL-STD-1553. This higher level should approach that
level defined for the specific system implementations discussed above. 0
Although total definition (by the AEIS Standard) of the digital communication
will contribute to interoperability, it will certainly not assure
interoperability. Realistically, some communication aspects such as message
timelines will not likely be appropriate for specification in the AEIS
Standard. This, in turn, implies some level of software modification to an
aircraft Stores Management System (SMS) must be performed whenever new AEIS 0
compatible stores enter the services. What is definitely desired, however, is
to eliminate any aircraft hardware modifications for adding compatibility with
these new stores and to minimize any required SMS software modifications.

At the minimum level, the digital communication protocol aspects should be
defined by MIL-STD-1760. These aspects include the message formats for S
identifying the position of specific communication control data and of
end-user information in a MIL-STD-1553 contiguous message (i.e., a "command
word" and up to 32 "data words"). Communication control data includes items
such as (1) error correction/detection codes, (2) routing instructions across
hierarchial data buses (such as SMS bus to internal carriage store bus), (3)
data encryption tags, (4) provisions for linking large blocks of data which 0
cannot be transferred as a single contiguous MIL-STD-1553 message, and (5)
methods for transferring the message and/or data word identification(s).

In addition to standardizing the basic communication protocol - or as an
analogy, the sentence structure and rules of grammar - a set of standard data
words is highly recommended for the AEIS. The AEIS data words are envisioned 0
as adopting the avionic system standard data words being developed for
MIL-STD-1553. Additions to this avionic data word set are anticipated to
cover aircraft/store peculiar data requirements.

A number of other digital transfer issues must be considered during
development of the logical elements for MIL-STD-1760. Two of these issues 5
are: (1) the impact on digital transfer requirements when a carriage store is
inserted between an ASI and one or more MSIs; and (2) the cost implications of
a dual redundant MIL-STD-1553 interface on low cost stores and potential
methods for cost reduction.

CONCLUSION

This paper provided an overview of some functional requirements imposed on
a standard Aircraft-Store Electrical Interconnection System (AEIS). The
primary goal of this AEIS standard is to curtail the proliferation of 0

different interfaces between various aircraft and various stores. This will
be accomplished by standardizing as many important electrical interface
aspects as is practical without significantly restricting aircraft/store
performance or impeding incorporation of technology advances. This
standardization is being accomplished via MIL-STD-1760.
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This paper also discussed several technical issues which influence the
j AEMIS functional requirements. These issues must be considered as M'IL-STD-1760

evolves to incl ude the logical and physical elements of the AEIS in addition
to expanding the electrical characteristics presently defined by the standard.

With the completion of MIL-STD-176O, a giant step will have been taken
toward minimizing aircraft modifications required to achieve electrical
compatibility with new stores. In addition, the interface development effort
required for new stores and new aircraft will be significantly simplified over
that required with today's methods and procedures. These improvements lead to
both reducing development and service incorporation costs and enhancing the
.bility to share stores among the U.S. services and allied nations for an
improved military response.
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ABSTRACT

The Air Force and Navy are conducting a joint program (Aircraft Armament
Interoperable Interface [A212]) to standardize interfaces between aircraft
and stores. One product of this joint A2 12 program is a military standard
for the Aircraft-Store Electrical Interconnection System (AEIS). This
standard, released in July 1981 as ?IL-STD-1760, defines the electrical
interface between aircraft and stores. As mentioned in the MIL-STD-1760
foreword, the complete AEIS is comprised of electrical, logical, and physical
elements. The present MIL- TD-1760 issue addresses only the electrical signal
set element. This paper provides an overview on the background for the
selected MIL-STD-1760 electrical signal set. Following this overview, 0
application restrictions, application guidelines and various technical issues
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are discussed for each of the power, digital, high bandwidth and discrete
signals of MIL-STD-1760. The discussion covers the electrical signal set
characteristics presently defined in MIL-STD-1760 plus clarifications and more
rigorous definitions of the electrical signal characteristics expected in a
future revision to MIL-STD-1760.

INTRODUCTION

Other papers in this session present a broad range of views on
MIL-STD-1760 - from Air Force and Navy perspectives to actual (or planned)
system implementations. This paper introduces the signal set which comprises
the Aircraft-Store Electrical Interconnection System (AEIS) standard. This
signal set forms the basis of the AEIS standard (i.e., tHIL-STD-1760). Logical
and physical interface elements will be merged with the defined signal set in
a later revision to the AEIS standard.

Although the logical elements (primarily software) and the physical
elements (primarily connectors) have not been formally defined, identification
of the signal set across the aircraft-station interface is a giant step toward S
implementing an interface standard. To this end, a signal set for the
Aircraft Station Interface (ASI) was formally defined with the July 1981
release of MIL-STD-1760. The intent is to refine this same signal set (in
MIL-STD-7760A) for application to the remaining AEIS interfaces, i.e., the
Mission Store Interface (MSI), the Carriage Store Interface (CSI) and the 0
Carriage Store Station Interface (CSSI). These various interface points are
illustrated in Figure 1.

This paper provides an overview of the defined AEIS signal set and
presents perceived restrictions and guidelines for signal set application to
next generation stores and to new and modified aircraft. 0

OVERVIEW OF SIGNAL SET

The AEIS signal set was selected after several years of requirements 0
analysis, comprehensive military and industry reviews and open forum
discussions. These signals were selected to support next generation
equivalents to current stores, present stores in the development cycle and
stores in the concept stage. The number of signals in the selected set (see
Figure 2) are limited in number and type but sufficient to support the

9 projected interface requirements. Some people have even argued that too many 0
signals are included in the AEIS interface and that the vast majority of
stores could be operated from a smaller signal complement. While this is
generally true, the signal set must also include (1) a level of growth
capability to deter technical obsolescence, and (2) sufficient signals to
allow a degree of flexibility in store interface designs and operational
capability. A brief overview of the selected AEIS signals follows. 0
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The AEIS interface evolved around a dual redundant MIL-STD-1553 serial
digital data link. This redundant link is illustrated in Figure 2 by Bus A
and Bus B. Through this serial digital interface, a flexible communication
link exists between aircraft and stores. This military/industry accepted
multiplexed data bus standard provides sufficient data capacity and speed for
most aircraft-to-store and store-to-store information transfer requirements.

To support the MIL-STD-1553 communication link and to provide energy for
accomplishing the store functions, several types of electrical power are
supplied at the AEIS interfaces. Basically, power is supplied at the AEIS
interfaces with characteristics defined by MIL-STD-704. The power types
provided include three phase, 115 volt ac and 28 volt dc. In addition, growth
provisions are reserved in the signal set for 270 volt dc power sources. To
minimize the size of the interface connectors, the power quantity was divided
among two connectors. The primary connector was sized with sufficient power
capacity to service most stores. An auxiliary power connector was also
defined for powering those stores which require larger quantities of energy
such as ECM pods.

Since the MIL-STD-1553 communication link is bus oriented, a method is
required for assigning data bus addresses to the multiplex terminal in each
store. Since several stores of the same type could be simultaneously loaded
on a given aircraft, the address can not be assigned to the store at
manufacture. For maximum flexibility, the store's multiplex terminal address
should be automatically assigned during store installation onto the aircraft.
Several methods could be used to accomplish this assignment. The selected
method relies on five binary encoded discrete lines plus a parity discrete and
return lines.
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A simple continuity check (interlock) through each AEIS interface was also
defined. This allows the aircraft to sense that the electrical interface with
the store is properly mated without energizing the store and then
interrogating the store over the MIL-STD-1553 bus. This interlock function
has historically been labeled "store present" or "ground interlock". Not only
does this interlock signal permit a quick check of the interface mate
condition without store power-up, but also allows continuous monitoring of the
interface without repeated interrogations on the MIL-STD-1553 bus. In
addition, the same interlock signal set can be used by the store as an
indication that the store has not separated from the aircraft.

To enhance safety during store operation, and to allow the aircraft (i.e.,
pilot) to maintain ultimate control of store safety related functions (firing,
ejection, arming, etc.), a release consent discrete signal is included in the
AEIS interface. This discrete is basically a low power, 23 volt dc signal
which is activated during the time window that an armed released is desired.
The signal was originally intended for (1) multiple carriage bomb racks which
could erroneously release mission stores connected below the multiple rack and
for (2) rail launched missiles which could ignite their own rocket motors as a
result of commands on the tIL-STD-1553 data bus. The discrete could, however,
be used by a broader class of weapons as a general "intent to launch"
command. It should be noted that the discrete is not a launch command or a
release signal. The signal is instead a release enaM e which is required
before an armed release of the store is permitted. Secondly, it is intended
that application of release consent not cause activation of an irreversable
process within the store - such as firing an electroexplosive device,
activating a thermal battery, etc.

Finally, the AEIS interface includes several "high" bandwidth analog
signal transmission links for transferring information with bandwidths beyond
MIL-STD-1553 data rates. A review of present and projected stores revealed
that all interoperable stores could be serviced with five or fewer high
bandwidth lines - two video lines, two Time Correlation Pulse (TCP) or RF
lines, and one audio line.

Video information is the most predominate example of the high bandwidth
signal type in existing stores. The intent of MIL-STD-1760 is to zero-in on
STANAG 3350 for these video signal characteristics. The latest STANAG draft
includes a video class with signal characteristics comparable to present U.S.
video based stores, such as Maverick, Hobo, Lantirn, etc. Since the worst
case video application projected required two simultaneous video transfers
across an AEIS interface, MIL-STD-1760 included a dual video transfer
capability. In addition, the video transmission link was specified to include
growth capability for high resolution video. 9

A second high bandwidth signal class found in and projected for several
store types was a time correlation or clocking pulse. Time correlation pulses
are typically used for "blanking" RF receivers or for synchronizing time
critical systems. While these signals are primarily DC pulses, the rise time
and propagation delay requirements on the pulse mandate a high quality 0
transmission line. In contrast with the video standardization efforts, no
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attempts have previously been made to standardize Time Correlation Pulse (TCP)
signal characteristics.

The third high bandwidth class is for transferring signals in the Radio
Frequency (RF) bands. The primary application identified was for future
stores using the Global Positioning System (GPS) as a mid-course guidance
aid. The missile's antenna would likely have its view of one or more GPS
satellites obstructed by the carrying aircraft. Therefore, access to an

5 aircraft installed antenna via the AEIS interface is projected. This
application generated an interface requirement for an RF transmission line
with an approximate two Gigahertz capability.

The final "high" bandwidth signal class was based on a perceived need for
an audio transfer capability. The information quantity in most store "audio"
signals is sufficiently low that transfer on a MIL-STD-1553 bus is generally
feasible. However, since real-time transfer of audio on the MIL-STD-1553 data
bus is marginal for some applications, a twisted, shielded wire pair was
included in MIL-STD-1760 for audio.

APPLICATION ISSUES

With the completion of a general overview of the AEIS interface signal
set, several application issues are presented. These issues are grouped by
interface signal type, i.e., power, digital, discrete and high bandwidth

j transfers.

Power Transfer

The power demand imposed by most existing and in development stores
typically varies with time, i.e., the load is not at a constant "steady-state"

* level. These time varying load limits should be defined with one of two
methods. The first method is to define a steady state or continuous power
load limit and not permit a store to exceed that limit even for short time
intervals. The second method takes advantage of short-tern. power delivery
capacity of conductors, switching components, and power sources by allowing a
store load demand to exceed the continuous rating for short time intervals.
Limits on acceptable short-term or transient load conditions should,
therefore, be defined in IIIL-STD-1760 in addition to the steady-state load
limits. The steady-state and transient load considerations are more fully
discussed in subsequent paragraphs.

Figure 3 illustrates representative total steady-state power demands for a
number of production and development mission stores. The figure segregates
the power demands by four types of mission stores: Unguided freefall, air-air
guided, air-surface guided and miscellaneous pods (typically electronic
pods). The figure also identifies those mission stores which either are
presently installed on multiple carriage stores or are potential candidates
for multiple carriage. This figure defines the summation or composite
steady-state load demand of all voltage levels supplied to the stores. No
division by voltage type, i.e., 28 VUC, 115 VAC, etc., is shown.
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One point to note in Figure 3 is that if the electronic (or special) pod
category is excluded, the remaining stores could be operated with
approximately two kilowatts or less of power. Since conductor, contact and
switching hardware size increases as power (or more precisely current)
capacity increases, a cost and weight pay-off was envisioned by identifying
two levels of interface power capacities - one at approximately two kilowatts
and one at approximately ten kilowatts. The ten kilowatt capacity interface
could then be restricted to a smaller number of interface locations for more
"efficient" aircraft and carriage store designs.

The transient or short-term mission store load limit is depicted in Figure
4. The load profile for several production stores is shown in the figure. In
addition, the figure identifies a typical power capacity profile available
from the aircraft. This profile, normalized to the continuous rating (100
percent), illustrates the higher power levels available on power lines for
short time intervals. The shaded area in the figure identifies the band
within which aircraft circuit protection hardware will likely sense an
overload condition and remove power. Any store whose load penetrates this
current-time boundary will likely have its power removed, e.g., the sourcing
circuit breaker will trip. To adequately identify the operational load limits

5 for the mission store and the short-term sourcing capacity of the aircraft,
the AEIS standard (i.e., MIL-STD-1760) should define the transient as well as
continuous load limits.

Another power requirement issue concerns the quality or characteristic
tolerances of delivered power. The present IIL-STD-1760 specifies that
MIL-STD-704 voltage characteristics will be delivered to the ASI. The level
of characteristic quality degradation from ASI to MSI (directly or through a
carriage store) is not defined. More subtly, however, in-service aircraft are
designed to various issues of MIL-STD-704. In fact, there are actually
several versions of MIL-STD-704 which are presently active. Since the power

Aquality must be defined at all AEIS interface levels and reference toMIL-STD-704 does not sufficiently identify the ASI power characteristics, the
AEIS standard must specify the power characteristics which a store should
expect to be supplied and which an aircraft should be required to provide.

The final power issue discussed in this paper deals with the specific
MIL-STD-704 voltages selected for implementing the AEIS power transfer. One
goal of AETS standardization was to minimize the number of voltage levels at
which power is supplied to stores. Present stores receive power at
MIL-STD-704 voltage levels, i.e., 28 VOC and 115 VJAC, 400 Hertz. In addition,
however, several of these existing stores also receive power at non-standard
voltage levels such as 30 volts, 95 volts, +15 volts, etc. These non-standard

I. levels shou'ld not be promulgated at the intirface. The basic requirement for
power transfer is transparent to the selected voltage level(s). All that is
required is to transfer power at a defined voltage level(s) and specify the
associated characteristics. Reducing the number of power types at which this
power is transferred contributes to interface simplification. Due to the
relatively high quantity of power transfer required (2-10 kilowatts), a power
source with a relatively high voltage level is desirable as the primary power

* medium. Use of a high voltage lowers the conducted current level which, in
turn, reduces the size of conductor and switching hardware.
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The power transfer requirements in MIL-STD-1760 specifies three-phase, 115
volts ac as the primary power medium. Two sources of 28 volts dc are also 0
included for implementing simple power supply functions in low power stores.
Finally, growth provisions for 270 volt dc power transfer medium are reserved
for compatibility with future aircraft power system trends. It should be
noted, however, that inclusion of all three of these voltage characteristics
in MIL-STD-1760 was based in part on historical precedence and not on AEIS
functional requirements. 0

Digital Transfer

Since the AEIS digital interface incorporates MIL-STD-1553 redundant buses
- or more specifically - bus stubs, the electrical characteristics and
application issues are fairly well defined. The primary subtlety in the AELS
digital transfer evolves around two issues: (1) Stub lengths vary as
different stores are installed on different aircraft or different aircraft
stations; and (2) accommodation of carriage stores results in unique
architectural requirements on the Stores Management System and its associated
data bus.

S The first issue (i.e., stub length variations) occurs because of the
segmentation of the data bus stub between aircraft, umbilical cable and
store. The main data buses and the associated bus couplers are installed on
the aircraft side of the AEIS interfaces. Similarly, the ,MIL-STD-1553 remote
terminals are installed in the store side of the AEIS interfaces. The data

*bus stub connecting bus coupler to remote terminal is therefore divided into
the three segments mentioned above - i.e., aircraft, umbilical cable and store.
Since different manufacturers build these segments, fine tuning of data bus
performance is more complex than that required for "fixed" bus structures
totally contained within the aircraft. In addition, as stores are released,
the stores' remote terminals and a portion of the bus stubs disappear one at a
time. Thus, the physizal and electrical characteristics of the data bus are 0
time varying.

The second digital transfer issue concerns the change in data bus
architecture when carriage stores are installed at the Aircraft Station
Interface (ASI). This application is illustrated in Figure 5. Conceptually,

*the addition of a carriage store converts a single port ASI into a connection 0
point for multiple MIL-STD-1553 remote terminals. Since multiple Remote
Terminals (RTs) can not be connected to a single MIL-STD-1553 stub,
electronics must be added in a carriage store to implement a fan-out
capability.

*Figure 5 depicts one likely approach for achieving this fan-out. In S

essence, a second tier or hierarchical bus is installed in the carriage
store. The carriage store contains an RT which properly terminates the data
bus stub from the aircraft and extracts data for transfer to an associated Bus
Controller (BC). The BC then passes this data down onto the carriage store's
data bus and through a new set of data bus stubs into the mission stores. In

*a similar but more complex manner, data can also be transferred from mission 0
stores up through a carriage store to the aircraft data bus.
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Discrete Transfers

The signal set overview included background on the three discrete signal
types - data link address, aircraft/store interlock and release consent. The
discussion which follows clarifies misconceptions on two of these discrete
signals - the data link address and the interlock function. 0

Although careful reading of the address line requirements in MIL-STD-1760
should not result in any misunderstandings, the intent and application of
these address lines are frequently misinterpreted. The intent of the address
lines was discussed earlier in the signal set overview. To summarize, the
MIL-STD-1553 Remote Terminal (RT) in the store must be informed of the address 0
to which it is to respond. Since this address is expected to vary among store
stations on an aircraft and among aircraft, the RT's address can not be fixed
during store manufacture. Instead, the store contains a set of discrete
interface lines which, when mated to the aircraft, result in transferring the
address associated with that aircraft station. To minimize interface
incompatibilities, these discrete lines are defined as electrically isolated 0
from other aircraft circuits including ground. As illustrated in Figure 6,
the aircraft provides "open circuits" or "continuity" between each address
line and the associated address return. The aircraft side of the address
discretes is totally isolated from all other aircraft circuits. This allows a
large degree of flexibility in the store circuit design.

Additionally, a degree of flexibility for address assignments should also
be available to the aircraft. The aircraft should be permitted to use active
components (such as the optical couplers shown in Figure 6) to implement the
"open/short" address encoding. The use of active components permits
assignment of store address by the SMS as a function of the aircraft's store
load-out. This active address assignment is not presently identified in 0

MIL-STD-1760.
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The second discrete transfer issue discussed in this paper concerns the
aircraft/store interlock discrete. As mentioned in the signal set overview,
this interlock discrete is comparable to the "ground interlock" discrete
provided by many existing stores. The primary differences in the AEIS
interlock signal are twofold. First, a dedicated interlock return is included
in the interface for the interlock signal. This reduces signal errors due to
noise pickup if a power return is shared for the interlock function.
Secondly, the dedicated interlock return also allows the store to sense that
its interface is mated with the aircraft.

Figure 7 illustrates two implementations of the interlock function on both 0
aircraft and store sides of the interface. The diodes associated with the
interlock lines are recommended to isolate the aircraft and store internal
electronic power supplies - particularly if the interlock return line opens
(e.g., return wire breaks). The interlock discrete is specified by the AEIS
standard in a manner that gives the aircraft and store designers the option of

*monitoring or not monitoring the interlock. All stores must, however, provide S

continuity between interlock and interlock return. Likewise, all aircraft
must provide continuity between interlock return and power (or structure)
return.

One final comment on the interlock discrete is presented. The interlock
*discrete monitors the mating status of the AEIS connectors. Historically, 0

however, the ground interlock signal has been used to imply the physical
presence or absence of the store. The interlock signal should not be used as
a "store gone" indication for safety related functions. This application
restriction is strongly recommended because too many failure modes exist for
the interlock signal which yield an erroneous "store gone" indication.

*Likewise, use of the interlock as a "store present" indication would also need S

to be evaluated with respect to the impact of signal failures.
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High Bandwidth Transfer

As described in the signal set overview, three types of true high
bandwidth signals are included in the AEIS standard - video, Time Correlation
Pulses (TCPs), and RF. S

While the technology is readily available to convert analog composite
video signals to a digital format, real-time digital transfer of this
information requires a multi-megabit per second digital communication
channel. Real-time store video transfer cannot be implemented by a
MIL-STD-1553 type serial digital bus. This transfer function must be S

performed over a high bandwidth media in either an analog format or a higher
speed digital format. The present MIL-STD-1760 defines the video signal
characteristics for compatibility with a modified EIA RS-170 standard (similar
to Maverick, Hobo, and GBU-15 video), with EIA RS-343 and with STANAG 3350
Class A and B. However, the STANAG is presently being revised to include a

* Class C video comparable to existing U.S. video based stores. As a result, 0
the next MIL-STD-1760 revision will likely define the video signal
characteristics by reference only to the STANAG. The extended bandwidth of
the transmission media to 20 Megahertz is expected to be maintained for a high
resolution video growth capability.

0 Figure 8 illustrates the video signal flow expected through the AEIS. 0
This flow is representative of present applications with one variation.
Routing of video information between two stores is projected. The application
of Lantirn type electronic pods which receive and process video information
from other mission stores is representative of future store-to-store video
transfers.

0 0
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Time Correlation Pulse (TCP) transfer includes two general information
types. The first TCP signal type provides a look-through or "blanking"
capability in RF receivers from RF emissions by transmitters on-board the
aircraft. The approach is to inform the receiver(s) of the precise
time-of-arrival of the RF emission. The RF transmitter is the source for the 0
TCP signal and the RF receiver is the ultimate signal sink. The primary
"peculiar" requirement drivers for this critical timing signal are the fast
pulse rise-time and low propagation delays required through the transfer
network.

The second type of TCP is derived from a clocking or synchronization 0
signal between two systems. For many of these applications, the
synchronization tolerance requirement is tighter than that achievable with
MIL-STD-1553 based synchronization.

There are no existing standards for TCP signal characteristics. The
characteristics vary with each TCP signal application. Standardization of 0
several pertinent characteristics is, however, realistic for the AEIS.
Characteristics which can be standardized include Logic I and Logic 0 voltage
thresholds, rise/fall time limits, propagation delay limits on the network,
load impedance, etc.

0 The signal flow for TCP is comparable to the video signal flow. The TCP 0
flow could be from aircraft-to-store, store-to-aircraft, and store-to-store.
For blanking type TCP, the signals typically flow into or out of a centralized
aircraft interference blanking unit. This unit coordinates the simultaneous
transfer of blanking signals among the various aircraft subsystems and stores.

The functional requirement for RF signals across the AEIS is based on 0
several potential applications. The first RF application is the perceived
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need for RF transfers from aircraft antennas/preamplifier to store receivers.
These RF transfers include a class of navigation aids from systems such as
Global Positioning System (GPS) and Joint Tactical Information Distribution
System (JTIDS). For various reasons, access to the RF signal may be required
while the store is attached to or installed within the aircraft. Due to RF
obstructions from the aircraft, a store installed antenna may not have direct
line-of-sight access to the RF transmitter (which is on the GPS satellite, for
example). An alternate access path through the AEIS interface to an aircraft 0
installed antenna could, therefore, be required.

The dominate requirement for transferring this signal type is for a cable
that is capable of transferring up to two Gigahertz at a reasonable VSWR (less
than 1.5).

A second RF application is derived from supplying a growth capability 
for 0

future high bandwidth information transfers. Conceptual examples include very
high data rate digital networks and multi-channel or multiplexed video buses.
However, no stores presently exist which implement these high bandwidth
digital concepts. It should also be noted that the AEIS includes a growth
capability for fiber optic based information transfer. The fiber optic link 0
could, for example, accommodate future high speed digital data buses, high
resolution video, etc.

Figure 9 illustrates the signal flow projected for .F applications. Only
store-to-aircraft and aircraft-to-store RF signal flows are anticipated.
While store-to-store transfer of RF signals is possible, no applications could 0
be projected - particularly since a fiber optic growth capability is available
in the AEIS for future high speed digital transfers.

AIRCRAFT 
0

ANTENNAIRCVR

AIRBORNE
PROCESSORS

(ERTR ) (O GTERM)
r -

J / SWITCHING MATRIX

AIRRAF yGPS VER f HIGH

*L 1 BAND SPEED
IDI(GITAL

DATA ELECTRONIC
STORE JEW. PO

FIGURE 9 RF SIGNAL FLOW *

136



One of the significant requirement drivers for the high bandwidth
transfers concerns the composite network topology or total signal routing
requirements. For a MIL-STD-1553 data bus network, access to the data bus by
various aircraft subsystems can be implemented relatively easily by tapping
the data bus. Similar access to the high bandwidth transfer network is more
technically complicated due to the higher operating frequencies and the
associated sensitivity to impedance mismatch, signal distortion, etc. Also,
the end-user equipments in the aircraft for the high bandwidth signals are
expected to vary considerably in terms of signal characteristics. The
quantity of aircraft equipment which requires access to the high bandwidth
network will vary among aircraft resulting in different levels of network
switching complexity. The location of end-user equipment will also vary,
affecting the potential signal losses and distortion caused by the aircraft.
Figures 10 and 11 illustrate two levels of aircraft-store high bandwidth
networking variations. These two variations certainly are not all inclusive.

Due to these issues plus others, the scope of high bandwidth network
specification for eventual incorporation into the AEIS standard is projected
to include:

(1) Defining topology through the carriage store, i.e., CSSIs to CSI.

(2) Defining topology in the aircraft from ASIs to an aircraft high
bandwidth "switching matrix" including transfer paths between ASIs
through the "switching matrix". (The switching matrix function in
the aircraft can be implemented in several ways including coaxial
switches, aircraft high bandwidth multiplex systems such as a video
bus network, electronic repeater network, etc.).

CONCLUSION

This paper presented an overview of the signal set selected for the
standard Aircraft-Store Electrical Interconnection System (AEIS) interface.
This overview included background on signal derivation, application guidelines
and restrictions, and several comments on areas in MIL-STD-1760 which are

* frequently misunderstood. 0

The signal set defined by MIL-STD-1760 is one of the most critical
elements for developing a standard AEIS. Definition of a common set of
signals for the interface between all future stores and aircraft will result
in significantly lower modification costs associated with introducing new

*stores into the services. With the addition of a standard physical interface 0
(e.g., connectors and cables) and standard logical interface (e.g., multiplex
bus protocol and messages) to the AEIS in the near future, most remaining
hardware modification costs and many software modification costs will also be
eliminated.

* 0
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10 Consideration of MIL-STD-1760, Aircraft/Store Electrical

M Interface Standard on Stores Management System Architectures

0oJohn E. Sill

Fairchild Space & Electronics Company 0

Abstract

Stores Management Systems (SMS) have usually been
developed to satisfy point design needs of a particular store
suite on a particular military aircraft. Typically during air-
craft service life the carriage of additional store types, either
newly developed or existing, becomes desirable. This frequently
requires major surgery to make the aircraft compatible. MIL-STD-
1760 is under development to ease that problem at the aircraft/
store connection point. Several implications exist for the
Stores Management System (which controls that connection point
on the aircraft side) if the interoperability objectives of MIL-
STD-1760 are to be fully exploited. The analysis presented takes
a four step approach to defining an advanced SMS that can provide
the interoperability and flexibility desired.

First a top-down look into how an SMS fits into
an advanced avionics system is presented. The second step is a
bottoms-up look into what a multiplicity standard store inter-
faces imply for the SMS. Third is an analysis of other SMS re-
quirements which must be considered. Finally, an SMS system is

projected which can fulfill many of the derived requirements.
The flexibility and interoperability objectives of DOD in the
armament system area can be achieved but they require an inte-
grated analysis which must address mechanical, electrical, and
functional compatibility issues for both stores and aircraft.
This paper addresses an important part of that analysis, the
Stores Management System.

THE AVIONICS SYSTEM

Integrated Avionics is a most popular term used to
define trends in avionics systems. Stripped to its barest essen-
tials, the term recognizes the need for subsystems to be highly
interactive on future aircraft. Many of these subsystems have in
the past been significantly independent in function. Now we rec-
ognize that significantly improved performance can be obtained by
correlating the information developed and the control processes
applied by these subsystems. Three areas are particularly important.
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(1) Sensor information should be correlated from
multiple devices, thereby improving the overall
understanding achieved by observing the resultsj from any one subsystem. For example, radar,
infrared, and stored map information when cor-
related can produce a much clearer picture of
what is "out there"

(2) Control processes must also be correlated to im-
prove performance. For example, survivability
of an attack aircraft can only be maximized by
integrating the flight and fire control processes.
In fact, the operation of one seriously affects
the capabilities and operations of the other.

h(3) Crew monitoring/control of the system has become
increasingly difficult due to the amount of in-
formation presented and options possible for
each of the subs-stems. Unless the information
is presented in an integrated, simplified form
and unless the options are prioritized and kept
at a high level, the flight crew is easily over-
loaded. Consequently, controls and displays sys-
tems are appearing which sort and correlate in-
formation before presentation to the crew and
conversely assist the crew in making decisions,
while minimizing presentation of options that
are contradictory or undesirable.

To the SMS (as to other subsystems) Integrated Avi-
onics implies a subsystem that is subservient to the overall avi-
onics system rather than independently controllable by the crew.
It also implies a greater capability to communicate with other sub-0
systems and a greater capability to process information, correlating
SMS performance with other subsystems, and automatically simplify-
ing the control decisions required of the crew. It further implies
that the SMS/crew interface will be less and less direct and will
occur only after integration/prioritization with other data.

The primary vehicle for providing top level avionics
integration is the mission computer(s), with its communication med-
ium being the avionics data bus. Currently the bus is being imple-
mented with a MIL-STD-1553 shielded-twisted pair technique. How-
ever, regardless of technology involved, this is a limited resource
and in any top-down design a priority must be established for the
information handled at this high level. The natural priority for
the mission computer/avionics bus should be:

(1) System level command and control coordinating
system level shared resources (multi-purpose
subsystems) and high level control of special
purpose subsystems.
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(2) Exchanging data commonly required by several
sub syst~ems.

(3) Exchanging data required uniquely by a few sub-
systems.

For the SMS this implies that any avionics bus con-
nection must as a first priority serve a management and control
function. Exchange of data must be relegated to a lower priority
and, if required, be moved to another medium. If we are to achieve 4
an Integrated Avionics system that has growth flexibility, top-
level data bus resources cannot be totally consumed by data exchanges;
a reserve must first be set-aside for additional management and
control functions.

Examining current SMS systems, we can find several in-
stances where the required signal interfaces do not lend themselves
to data bus usage (e.g., weapon videos, radar/missile synchroni-
zation) due to bandwidth and latency considerations. Projecting
requirements to future digitized stores we can foresee instances
where very large blocks of data (e.g., digitized target images)
must be transferred. In either of these cases we are looking at
requirements generally on the third level of avionics bus priority:
unique subsystem-to-subsystem information transfers. It is unlikely
that the avionics bus of the future, regardless of technology, could
satisfy these requirements.

Figure 1, SMS/Avionics System Scenario, illustrates
the concepts put forward thus far:

0 There are (will be) multipurpose subsystems pro-
viding top-level avionics management and control,
both automated and via the crew.

0 There are (will be) special subsystems for par-
ticular functions; however, their operation must
be highly integrated.

0 The avionics bus provides the first level medium
for system integration and consequently its first
priority must be management and control.

0 The nature and size of certain SMS information
interfaces with other subsystems suggest that
use of the avionics bus is impractical and these
requirements must be satisfied elsewhere.

In addition, the figure introduces the next topic for
consideration: the impact of a multiplicity of AEIS interfaces.
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THE STATION INTERFACES

The AEIS defines an interface(s), a multiplicity of
which defines the bottom-up requirements for future Stores Manage-
ment Systems. The objective of AEIS is to standardize this inter-
face, providing aircraft/store interoperability and thereby ease
of reconfigurability. The objective will only be partially achieved
unless the system behind AEIS, the SMS, supports the standardization,
flexibility, and reconfigurability of the interface. Implications for
the SMS exist in both the types of stores carried and in the nature
of the AEIS signals themselves.

Stores

For purposes of this discussion utilizing AEIS stores
has been subdivided into three generic categories: Single weapons,
multiple weapons (usually mounted via carriage equipment), and pods.
Although not precise categories, these are sufficient to address
most SMS requirements accurately.

Single weapons, connected via AEIS, require manage-
ment and control, operating power, and varying amounts of infor-
mation (data) on which to operate or to be monitored. Although not
always the case in current aircraft, management and control should 5
be established by the SMS; a further detailing and coordination of
the management and control functions assigned to the SMS over the
avionics bus. The data bus capability within AEIS is a natural
vehicle for this, again extending the top-level system concepts.
The information (data) exchange presents a situation similiar to
that discussed above for the SMS/Avionics system interface. Some
of this information can be assigned to the data bus, since it is
a natural outgrowth of information supplied to the SMS over the
avionics bus or generated within the SMS management and control
function. Other information is directly exchangeable with an assoc-
iated subsystem (radar missile/radar subsystem) with no "value
added" by the SMS. Information which is signal characteristic com-
patible (low bandwidth) and which does not threaten the higher
level management and control requirements can be placed on the data
bus. However, this suggests that a direct connection of the data
bus to the associated subsystem is desirable. Finally, certain
information is of such a high bandwidth that only a direct subsys-
tem to weapon connection is possible with forseeable technology.
AEIS has provided for these with coaxial and audio (and probably
fiber optic) capabilities.

Implications for the SMS from the single weapon cat-
egory are:

(1) The SMS exercises its management and control
function over the AEIS data bus.

(2) Certain information (data) is exchanged between
the SMS and weapon over the data bus.
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(3) Other information is exchanged between the wea-
pon and other aircraft subsystems via the data
bus (participation by the SMS in other than a
possible bus management role is not required).

(4) High bandwidth connections between the weapon
and other aircraft subsystems must be directly
established (again participation by the SMS in
other than a control of function is not required).

(5) Since the AEIS is an interoperable/reconfigur-
able interface, the aircraft subsystem connected
to may change as the type of weapon changes.

(The discussion above concentrates on the data bus
and high bandwidth elements of AETS; other aspects will be addressed

fri later.)

The category of multiple weapons/carriage stores has
many aspects similar to those discussed for single weapons. With
multiple weapons (each AETS compatible) interfaced to the aircraft
via a single AETS, at least two approaches seem feasible:

(1) An intermediate control/distribution point is
established (most likely in the carriage equip-
ment).

(2) ABIS signals are distributed in parallel to all
weapon interfaces.

The first approach has advantages in a more straight
forward AEIS interface implementation, particularly in the weapons
and in the data bus addressing capability. However, it requires
additional electronics in the carriage equipment, and for the data
bus situations, introduces additional bus control/latency problems.

The second approach overcomes these disadvantages
but requires that interface electronics ir the weapons be at least
on/off programmable - much like a tni-state devices on micropro-
cessor peripherals. It also introduces complexity in the data
bus addressing scheme.

Problems in either of the approaches seem surmount-
able and this is an area requiring further investigation. Consid-
eration must at least be given to the fact that one station (AEIS)

* may in fact respond to several bus addresses.

The third category of stores, pods, introduces fur-
ther complexity. These devices are typically singly mounted
(one per AEIS) , however, they are frequently an extension of another
aircraft subsystem, a complete stand-alone subsystem, or extensions
of several subsystems. Variations range from the Navy's Tactical
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Air Reconnaissance Pod System (TARPS), to the Air Force's Low-
Altitude Navigation Targeting Infrared for Night (LANTIRN). TARPS
can be considered a self-contained subsystem requiring only high-
level management, control and data, while LANTIRN has elements of
sensors, flight controls, fire control, and stores management.

Implications for the SMS exist in the fact that the
device on the other side of the AEIS may not be SMS related at all
(excepting the consideration that overall management and control
of all store tations should be an SMS function). Hierarchically
the pod subsystem may need to be linked directly to the avionics
bus for top-level management and control. Just as likely it may
need to be linked to another aircraft subsystem of which it is a
part. There may be no "added value" by passing this information
through the SMS. An additional requirement is imposed (LANTIRN is
one example) when two pods work together to perform a function or
when pods contain control systems for particular weapons mounted
on other aircraft stations. Consequently, an additional implication
for the SMS is the ability to directly connect two or more AEIS in-
terfaces.

Throughout the preceeding and following discussions
are references to the need for information transfer between stores
and aircraft subsystems. The SMS is only one of these subsystems.
Contrary to current approaches, one avionics bus linking all major
substations to the SMS will not be a sufficient solution to tomor-
rows problers. The flexibility/interoperability inherent in an
AEIS approach strongly suggests that the interconnect system behind
AEIS also be flexible.

The interconnection of stores-to-stores-to-other sub-
systems and the control of that interconnection is an SMS responsi-
bility. Any other approach will result in a break-down of the hier-
archical distribution of avionics requirements to subsystems and
will endanger the interoperability objectives of the program. To
achieve this interconnection flexibility the SMS needs a capability.

Figure 2 illustrates the Matrix Switch concept. In
theory it is a generic capability to interconnect any of several
AEIS interfaces with any of several subsystem interfaces. The cap-
ability of this device is bounded by AEIS signal definition, one
of the knowns of the problem. Subsystem interfaces can be con-
sidered an unknown at this point, partly because a prime objective
is to be able to adapt to new subsystems. However, a subsystem
interface must be "in-scope" relative to AEIS; if not we are deal-

s ing with a non-standard store. 0

The complexity of the Matrix is further reduced by
many "null set" interconnections. For example, electrical power
is only a connect/disconnect situation, not switchable to other
subsystems. Further simplification is likely and is addressed in
paragraphs below. 0
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It is noteworthy that SMS Management and Control is
one of the subsystems interfaced through the Matrix. There may
in fact be more than one SMS subsystem interface (multiple armament
buses ). The approach provides the capability to link-up one or
more stores and one or more other subsystems under SMS management/
control. This will allow configurations such as LANTIRN (where
two pods and two Maverick launchers occupy four stations) to be
linked-up into a mini-subsystem for that mission while other sta-
tions and subsystems can be simultaneously linked up for other
functions such as self-defense. The computer data busing and
matrix switch capability installed in any aircraft can be varied
in accordance with mission(s) complexity.

Before proceeding to investigate SMS implications in-
herent in the nature of AEIS signals themselves (some considerations
have already been suggested), a summary of requirements disclosed
thus far is in order. Figure 3, Primary SMS Requirements, il-
lustrates and integrates the following items:

*(1) The avionics bus provides the top-level linkage
of aircraft subsystems - management and control
must have priority over data exchange.

(2) The SMS is one of the subsystems controlled via
the Avionics Bus and also exchanging limited

* data thereby.

(3) Primary SMS requirements fall into two categor-
ies: Subsystem Management/Control and Matrix
Switching.

(4) Due to signal characteristics or information
volume non-avionics bus linkages must be set-
up for/by the SMS.

(5) Elements interfacing to the SMS Matrix Switch
include the Store Stations, as represented by

* an AEIS, and various aircraft subsystems.

(6) The reconfigurability desired by AEIS suggests
that these linkages be reprogrammed as store
loading suites are changed.
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(7) AEIS to AEIS linkages must also be possible
through the matrix.

(8) The need for Avionics Bus and SMS Management/
Control (Armament) Bus connections through the 0
matrix is suggested.

AEIS Signal Analysis

Having reviewed the devices (stores) on the "other
side" of AEIS for implications on the SMS, the nature of the elec-
trical interface itself is worth consideration. This is especially
worthwhile relative to the Matrix Switch aspect of SMS. Some of
the AEIS signals lend themselves very easily to a Matrix Switch
concept, for others it is more difficult, and for still others it
seems unnecessary or inappropriate. Figure 4, summarizes AEIS
Signal Classes versus Matrix Switch considerations, while the
discussion following provides more detail discussion and rationale.

Power and Returns

Power distribution imposes only limited requirements
on the Matrix Switch. Power "flows" in only one direction and has
basically only the Aircraft Electrical Subsystem as a source. (Albeit
the Electrical Subsystem may be redundant, have back-up systems,
or have emergency only systems.) One of the key decisions in this
area is the control point. If the application of power is controlled
at each station (AEIS), then a power bus(es) can be run through the
aircraft with taps at each AEIS. This will reduce aircraft harness
requirements but increase the probability of single point failures
causing major loss of function. On the other hand, a central switch-
ing point requires individual runs to each AEIS and, unless it is
redundant, still provides single point failure possibilities, but
with reduced probability. As a baseline approach let us follow
inferences from MIL-STD-1760, with each of the four AEIS power types
(28VDC-I, 28VDC-2, 3OAC, 270VDC) independently switched at the
station. Power can then be bused to the stations, providing the
most harness-efficient configuration. A portion of the Matrix
Switch is thus implemented at each store station.

2.1.2.2.2 Bus Address 0

In consideration of MIL-STD-1553 practices and air-
craft safety, the bus address is determined by the aircraft harness
at the station and is therefore not a matrix consideration. This
decision limits possibilities in on-board bus reconfiguration.
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MATRIX SWITCH IMPLICATIONS AEIS SIGNAL CLASS

AUXILIARY
S 4

SWITCHED TO THE AIRCRAFT ELECTRICAL WR & GRDS
PWR SUBSYSTEM

PART OF SMS MANAGEMENT AND CONTROL, INTERLOCKS
NOT SWITCHABLE TO OTHER SUBSYSTEMS IT

PRIME

REDUNDANCY/FLEXIBILITY POSSIBILITIES
RANGE FROM SINGLE TRUNK CONCEPT TO RF COAY LINES (2)
MULTIPLE POINT-TO-POINT CONNECTIONS 0

SWITCHED TO THE AI RCRAFT ELECTRICAL PWR & GRD
PWR SUBSYSTEM

REDUNDANCY/FLEXIBILITY POSSIBILITIES *
RANGE FROM SINGLE TRUNK CONCEPT TO VIDEO COAX LINES (2)
MULTI PLE POINT-TO-POINT CONNECTIONS

MOST LI KELY CONNECTED TO CONTROLS!
DISPLAYS SUBSYSTEM, SIGNAL MONITOR- AUDIO 
ING BY OTHER SYBSYSTEMS OCCURS

MOST LIKELY A BUS AND THEREFORE A
FUNCTIONAL MATRIX SWITCH, COULD FIBER OPTIC (2)
ALSO BE POINT-TO-POINT 0

WITHIN OPERATIONAL LIMITS, A BUS IS
FUNCTIONAL IMPLEMENTATION OF A TWI STED PAIR (1553) (2)
MATRIX SWITCH

PART OF SMS ,MANAGEMENT & CONTROL, RELEASE CONSENT
NOT SWITCHABLE TO OTHER SUBSYSTEMS

----- --------------------------------
PART OF SMS MANAGEMENT & CONTROL, INTERLOCKS
NOT SWITCHABLE TO OTHER SUBSYSTEMS

PART OF SMS MANAGEMENT & CONTROL ?
ASSOCIATED WITH DATA BUSES, BUS ADDRESS
PROBABLY AIRCRAFT HARNESS FIXED

Figure 4. AEIS Sinal Classes versus
Matrix Switch Considerationi
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Twisted Pair and Fiber Optic Buses

A data bus system along the lines of MIL-STD-1553 is
functionally a matrix switch. That is, information can be passed
to/from any device or combination of devices on the bus. However,
the bus is operationally limited and the desired information flow
capability must be considered. A true matrix switch installation
would allow only those stations and subsystems operating together
to be connected together into a bus. The full information trans-
fer capabilities of that bus are then available for that require-
ment. Although a matrix switched bus(es) seems an avant-garde
approach, it should not be arbitrarily discarded. The interoper-
ability objectives of AEIS require that for one flight a station
(AEIS) may be carrying a radar missile and need an efficient con-
nection to the radar subsystem. on the next flight the station
may be carrying a LANTIRN pod and need an efficient connection to
other stations and to the Inertial Navigation subsystem. The most
straight forward approach is one bus that interconnects all antici-
pated points (terminals). However, this may not be the most flexi-
ble (due to information flow rate limitations) or effective tech-
nique. Additionally, the number of terminals on the bus is limited
and if we want to keep open the possibility of extending the bus
directly to multiple weapons at one station, the number of terminals
becomes a limiting factor. For the moment let us reserve the op-
tion of putting the data bus through the SMS Matrix Switch and
therefore the capability of reconfiguring armament buses to best
fit store loading configurations. other factors may help decide

L this issue.

It should be noted that conceptually the AEIS data
bus carries SMS Management and Control information, limited data
as a flow-down from the Avionics Bus, and quite probably large data
transfers between a store and other stores or aircraft subsystems.

Discrete s

The Interlocks and Release Consent are considered a
part of the.SMS Management and Control aspect of the interface and
therefore not switchable to other subsystems. Therefore they are

* not put through the Matrix Switch per se. However, the information
that controls them may in fact be passing Chrough the matrix.

Coax Lines

The video and RF coax lines can place the maximum
burden on the Matrix Switch concept. The optimum flexibile/inter-
operable approach suggests routing each of these signals directly
to a central switching point where any station signal can be con-
nected to any other station or to other aircraft subsystems. The

* opposite extreme suggests that one trunk line be established for
each of these four signals and that each station or subsystem be
switchable on or off this trunk. Thus, only four different
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point-to-point connections can be set-up at any one time. The
latter is the most aircraft harness efficient approach but is
quite capability limiting. The best solution probably lies some-
where between these two extremes.

Audio

The single trunk conc _pt is probably acceptable for
the audio line with connect/disconnect to the trunk performed at the
station. This limits the crew to "tlistening" to only one store at
a time, yet allows sampling of each of the AETS audios sequentially.
Since the audio line is frequently monitored automatically, the
trunk should be routed through the SMS at a central point.

ADD ITIONAL REQUIREMENTS
610

In the preceeding paragraphs, SMS requirements
have been viewed from the Avionics System downward and from the AEIS
upward. It is now appropriate to consider other additional re-
quirements. Most significant of these are two additional inter-
face/control requirements at the stations. These are: management

6 and control of the parent rack and provisions for non-standard
(current) stores. These items are different in concept in that a
parent rack interface is a recognized and accepted adjunct to an
AEIS while a non-standard store interface is an unfortunate and
hopefully temporary requirement. At least on a theoretical basis,
two distinct requirements exist.

(1) Standard Interface Equipment (SIE). This item
addresses the long term needs of the system -
providing the parent rack interface, local cir-
cuits for interfacing AEIS signals on to and
off of the data bus, and implementing those ele-
ments of the Matrix Switch which are best located
at the station. The intent of this device is
to fully provide for station associated AEIS
requirements.

(2) Interim Store Adapter (ISA). This item pro-
vides for non-standard store interface, probably
through adaptation of AEIS.

Figure 5 helps to clarify the concepts involved.
The SIE, parent rack, and ISA are illustrated as discussed above,

0 however, other concepts are also involved. The Matrix Switch has
been added to the figure to illustrate its relationship and to
highlight that some aspects of it may be located in the SIE.

The Interim Store Adapter is located below the ASI
for conceptual purposes. In practice there are several possibil-

0 ities for implementation as illustrated on Figure 6. Selection
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of an approach probably requires evaluation of the particular air-
craft and stores involved due to size, weight, power and cost con-
siderations.

Adaptation for a non-standard store follows a three S
step priority.

(1) Use any ASI signals which are compatible (e.g.,
power, coax, audio).

(2) Adapt, via an ISA, for those signals which can S
be converted to ASI compatibility (e.g., dis-
cretes, low bandwidth analogs, power).

(3) Provide special aircraft harness connections
for those signals which are totally incompati-
ble with ASI. S

Many non-standard stores can be adapted to the data
bus of ASI, however, a store-by-store interface analysis is nec-
essary to accurately scope the problem.

THE PROJECTED SYSTEM

Having analyzed major functional requirements for
SMS implications we can now postulate a likely system approach.
Figure 3, Primary SMS Requirements, was discussed previously and
illustrated two major SMS elements: Management and Control, and

d Matrix Switching. Subsequent discussions have pointed out that
some of the Matrix Switching may be best accomplished in the Stan-
dard Interface Equipment (SIE) while other Switching is best
accomplished in a central unit. We have seen that certain aspects
of the Management and Control element need interface circuitry
located in the SIE. We have also seen that the Management and
Control element is a flow down of responsibility from the Avionics
System, suggesting some (single) interface/control point at the
highest SMS level.

Figure 7, the Projected System brings the concepts
together into a single, high-level, block diagram. A multiplicity
of SMS Management and Control Elements are programmably intercon-
nected with a multiplicity of Aircraft Store Interfaces and with
a multiplicity of subsystem interfaces. The Matrix Switch pro-
vides the programmable interconnection. An additional feature is
apparent in the redundancy/fail-soft nature of the configuration.
This starts with a redundant linkage to the higher level system,
and requires that Management and Control Elements have some cap-
ability to perform each other's functions. A trade-off of reli-
ability vs redundancy vs cost is beyond the level of this paper
as it quickly leads into implementation issues. It must be suffi-
cient at this point to simply say that the concept adapts reason-
ably well to those considerations if we accept the premise that
loss of a single store station or single subsystem interface is
acceptable, providing that other capabilities of the SMS are still
available.
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As an aid to further understanding the system con-
cepts put forward let us look at Figure 8, A Mission Configured
Projected System. Here one of the Management and Control Elements
has been assigned dual responsibilities of overall SMS Subsystem 0
Management and direct control of one store (psuedo type "B") and
its associated control pod. Two other Management and Control Ele-
ments provide control of store types "A" and "C" respectively.
Each of these stores require a direct interconnection to one or
more external subsystems (e.g., Radar, Mass Memory, Electronic
Counter-Measures). 0

Nowhere does the Matrix Switch concept appear on
the figure. That is because it is no longer a functional element
of the SMS. It has performed its task in configuring the general
capability inherent in Figure 7 into the specific mission archi-
tecture of Figure 8. The Matrix Switch will not come into play 0
again until the system is reconfigured for a different mission
(i.e., store suite).

CONCLUSIONS

Achieving the interoperability and flexibility ob- 0
jectives of MIL-STD-1760 will have a double impact on the Armament
System designer. First, a standard electrical, mechanical and
functional store interface will ease the designer's burden and
provide a major step forward in interoperability. Second, it will
challenge the designer to provide a system behind that interface
that fully supports and exploits the adaptability desired in over- 0
all aircraft capability.

This paper has explored several problem areas and
presented a system concept supportive of the standard. Even if
the SMS system designer adopts this, many challenges remain. The
biggest of these is balancing a flexible SMS implementation (with 0
its inherent cost/size/weight penalties) against an efficient
point design system which will quickly restrict the interoperability
and flexibility goals of MIL-STD-1760.
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The introduction of more capable and more complex vehicle avionics systems and the
emphasis on the aircraft as a holistic system has led to a trend toward distribution of
subsystem functions and a greater need to provide effective control over total system
operation.
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The subsystems impose severe loads which affect the control function. The stores
subsystem, in particular, requires command, data and signal loads that are capable of
overwhelmning the system information flow:

o Power, data, command and signal1 protocols as specified by MIL-STD-1760 impose
significant speed and control logic loads on vehicle information traffic0

o The availability of massive amounts of data and the requirement to allow complex
store and carriage store operations cause a risk of crew overload

9 The protocols of MIL-STD-1553B allow high speed message transmission primarily
in one direction Those store subsystem components which require dialogue,
impose special loads on message handling procedures

* The very existence of other subsystems, all competing for attention and
direction; and some of which having data, messages or commands in common (as,r ~ for instance, the fire control and stores management systems) demands
subsystem interface control that allows smooth communication flow and yet does
not hinder the proper operation of any subsystem.

SYSTEM-WIDE CONSIDERATIONS

SThe designer of future systems, regardless of the architectural and functional
levels of structure and organization, is faced with the need to incorporate system
effectiveness into the system. The following examples are but a few of the overall
system-wide considerations that must be factored into the proposed system at the initial
definition stage of the program:

oMulti-function capability as, for example, the ability to change from bDus
controller to remote terminal and back again

* Useful redundancy, providing both backup and the ability to modify outputs,

* Component availability to the system in each of the operating modes

* Flexibility to change the operating mode as required.

With the proper incorporation of these features, the classic military systems
problem of "capability versus numbers" will be resolved, or as a minimum, greatly
reduced. With this approach, a minimally acceptable, adaptable systems capability can
continue to exist throughout the mission, regardless of the degree of sophistication and
dynamically changing characteristics of the threats. However, even with this increase
in systems effectiveness, numbers of systems will still be important, as will system
life-cycle costs. As a result, designers will be attempting to make the best use of
available resources by providing compatibility with new components and subsystems as
they are developed, while, at the same time, keeping maximum compatibility with
existing operational resources already deployed. This approach will require even
greater complexity in each new system, subsystem, or component if "satisfactory
operational capability" is to be obtained.

0
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A case in point is the current requirement for a vehicle-store interface that can
handle new stores incorporated onto new vehicles. At the same time, the interfaces
must also be backward compatibility so as to be able to handle "older" stores that are on
existing aircraft. The requirement for forward fit and backward compatibility initiated
the definition of military standard MIL-STD-1760. This standard has been under
requirements definition/development for several years. While the interface logic is not
complete at this time, the physical and electrical characteristics (Fig. 1), which are
completed, illustrate the complex problem of matching current systems with future
interconnection requirements.
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SUPL I ER
PWR ,,INlTERFACE

... STOR SEI GISTORE
TANAR SR ISTATION

1ELECTRONICS

PO N-O..I F OC N., 2
I ) & MeW. a.,, MEM. ,'" I

FIBER [ - FIR A XPW"
SI FT .,1 MI-T-.0 OPTI--C
CONO .... INTER- 40Bu DIST" DIST
.... I C I I I I Il' r

I~~ LINESI

* 0
Deu--o e oiAUXHIGH 8ANOWIO1 H A/C; PWR A/C PWfR

& STORE SERIAL DIGITAL
DEDICATED OISCRETES ADDRESS DATA $US

0L -- STANDARD STORE INTERFACE 0

Fig. 1 MIL-STD-1760 Interface
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INTERFACE THROUGH A CARRIAGE STORE

The MIL-STD-1760 interface appears possible, if EMC problems, made more poignant
by the limited size of the physical connectors, can be eliminated. Figure 2 shows a
schematic of a primary and auxiliary MIL-STD-1760 connection between vehicle and
carriage store, and a primary connection from carriage store to one of several mission
stores carried on the carriage store. It illustrates high and low voltage direct current
and ac lines running along with multiplex bus lines, discrete and high bandwidth and
audio signal lines. The complexity of these interconnections is called for by the
standard itself, and is the price demanded to allow for using new, intelligent and highly
capable stores.

Loc. ~ l 00" -amp SKA AQLG

*110

$'roi" .omCA"4 1 1 [2 .

Ig7l-oo-T)

Fig. 2 Interface Throuh a Carriage Store

The complexity illustrated in this figure is multiplied manyfold when the overall
aircraft system architecture is taken intu consideration. The need for improved
performance of future weapon systems has forced designers to look to more expensive
avionic eomponent:i with much more richly interconnected signal, data, and message
infra-structures. The curPent design approaches have resulted in decreased 4

* operational availatility and greatly increased costs, which, in turn, contribute a major
impact to the "numbers affordable" situation that we are faced with today.
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DRIVERS OF SYSTEM STRUCTURE

The reduced number of systems causes a demand for greater performance which
serves as a forcing function to drive the cycle to iterate one more time. Eventually, we
end up with the weapon systems equivalent of the Dirac delta function - infinite capabil-
ity, but zero systems. Figure 3 illustrates this spiral. We have already cycled around
the vortex several times.

If we are to break thii negativistic management-technical cycle, we have to
substantially reduce, not only stores management systems costs, but also the cost of
interfacing the stores management system with the remainder of the total vehicle/avionic
system - that is, the overall system architecture.

The major solutions proposed to reduce costs and increase availability and compati-
bility of stores management systems use standard interfaces as the basic integration
elements. Standards are being used wherever possible to provide for lower cost
system-wide components, limiting, though they may be, of "innovation" and
"creativity". To use the old saying, "it goes without saying" that proliferation of
equipments and systems have gone "hand and glove" with most programs defined,
designed, and developed over the past twenty years. On the other hand, one recent
innovation - the digital multiplex bus - has added value by permitting a standard
interface to be defined, and at the same time, allowing a limited measure of system
reconfigurability and improved system message traffic control.

NEED FOR
IMPROVED

PERFORMANCE

MORE
INTERCONNECTIONS

MORE

EXPENSIVE

CSS
IAVIONIC n <

DECREASED

CAVAILABILITY

COSTS -

DECREASED
NUMBER
AVAILABLE

NEED FOR
IMPROVED
PERFORMANCE

1971-003 MT)

Fig. 3 Driven of System Structure
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SSI COMPATIBLE STORE

The combination of these new design approaches has, regardless of their inherent
worth, caused new areas of concern to be uncovered. Figure 4, which shows one
configuration of a top-level stores management flow, illustrates that at each control
point in the system, the three following processors may be needed to be embedded into
the system: one for the remote terminal to the superior MUX bus; one for the system
control processing; and one for the bus controller. This multiple processor use is
required because of the distributed, hierarchical structure which was selected for the
illustrated system architecture. The system shown uses MIL-STD-1553B, the protocols
of which require a considerable amount of processing with each interface. The least
expensive implementations would appear to call for microcomputers to be incorporated
into the terminals.

The system design approach is good; however, when we look at the need in the
armament area, as well as all other vehicle subsystems, we see that:

e Only messages and data are being sent over MUX buses, and so signals of both
low and high bandwidth, which are proliferating, are still uncontrolled
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Fig. 4 ifunctiorai Hardware Blocks For SSI Compatible Store
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e Redundancy is used to provide required minimum power, signal, message and
command interconnections, not for increased availability or sub-functional
reconfigurability

e Many parallel paths are needed in the system with the attendant increases in
cost, performance risks, and protocol-caused time delays.

LAUNCHER CONFIGURATION S

Figure 5 illustrates a possible launcher configuration for new "smart" store; the
figure depicts MIL-STD-1760 interfaces, and shows that only a fraction of the power and
information crossing the interface constitutes MIL-STD-1553 type data from the control
processor. The figure also illustrates that the control processor is gating and
controlling all of the non-MUX elements.

FROM STORE STATION

_=_.__ .,, L-STD1760
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_ /

POWERUNONEBUSED
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TO STORE
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Fig. 5 One Launch Configuration, For Multiple "Smart" Stores
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When MUX standards drive the overall system architecture, they have a major
impact on system design; thus, we have systems that are more costly, more complex,
less reliable and/or available, and perhaps have higher risks than currently deployed
systems, with the only assured gain being that of inter-operability.

Successful multiplexing schemes follow from the definition of a sound system •
architecture. Successful architectures relate (tightly coupled) basic functions to be
performed with the need to improve system characteristics in areas such as availability,
flexibility, safety and cost, while concurrently maximizing capability and
inter-operability.

0

VEHICLE SYSTEM FUNCTIONAL GROUPING

We find, over and over, as shown in Fig. 6, that certain functional groupings, as
follows, are natural sub-divisions of aircraft systems:

e The Vehicle Group - contains kinesthetic systems, such as engines and flight
control units (including fly-by-wire equipment)

* 0

TRANSMITTERS/ DISPLAYS LOCAL NAV/
RECEIVERS SYSTEM MODE

MISSIO CONTONTROLSR

PREPROCESSORS/ 1CN T COMMUNICATION/

PROCESSORS DATA FUSION GROUP

DATA FUSION/ NAND PROCESSING

TRACKS

* TRGROUP VEHICE GROUP POWERG GROUP

STORES ENGINE SENSORS PWRGNRTO

L STOIRDAARENOR POWER DSRBTO
*MANAGEMENT

M EFLIGHT CONTROL UNITS POWER CONDITIONING

1971-0O6(T) VEHICLE ACTUATORS

Fig. 6 Vehicle System Functional Grouping
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* The Mission Sensors Group - consists of radars; IR or laser sensors; acoustic
sensors (often partially deployed as sonobuoys), or perhaps on-board EW
sensors

e The Core Avionics Group - contains communication and navigation equipment and
general data processing, as well as other computational resources

* The Controls and Displays Group - where tactical, maneuver and maintenance
decisions are made. More and more of the functions in this group are being
automated to relieve the crew of very heavy data inputs and decision burdens,
that is, more man-machine interfacing

* The Stores Management Group - the "effector" group of every aircraft system,
the "muscle" so to speak. It normally consists of a number of stores such as the
following: guns, jamming rods, sonobuoys launchers, and carriage stores of all
types. It also includes the Stores Management System to supervise and control
the use of these stores

* The System Power Group - including generators, power distribution units and
controls for electrical power conditioning.

At the next lower level we see that each of these groups consists of similar, if not
identical, functional flows. They each contain input ports; some from sensors, some
from external control devices, and some from self-contained sensors. These inputs are
processed to provide data, or in the case of the system power group, properly condi-
tioned electrical power in a form useful for comparison with other inputs, and for
utilization by other aircraft system groups.

As Fig. 7 illustrates, each of these groups produces its own functions to some
extent and feeds necessary signals, data or power to other groups. The group that
requires the most necessary signals, data or power, to other greatest number of
self-contained functions, is the stores group. Yet, the basic structure of the stores
group is the same as the other groups.

INPUT- PROCESS: OUTPUT
" SENSORS ... J PROVIDE DATA AS NEEDED
" SIGNALS Is COMPARE BY OTHER
* DATA * FUSE AIRCRAFT
* COMMANDS e UPDATE SYSTEM

" POWER 0 CONDITION GROUPS

CHANGE:
* SYSTEM MODE
* COMPONENT FUNCTION
& CONFIGURATION
* STORE STATE

1972-007(T)

Fig. 7 Group Functions
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Within the stores group the current "special problem" is the number and different

variations within the group. However, these now appear to be able to be standardized

into a small number of discrete signal types to handle all inter-group interfaces. This

functional breakdown, from the top level down to the actual group functional elements,

is the first requirement in the development of technically sound architecture and data
multiplexing techniques.

AVAILABLE TECHNOLOGY

If we are to successfully implement the new systems, we must also understand the

technology available in the time period considered. Systems operational at the turn of 0
the millenium can expect to take advantage of the following:

9 Previous software functions subsumed into firmware. As the cost of memory and
processors decreases. almost all standard or even semi-stable, (that is, only

infrequently modified software) will be represented by firmware modules. Even
the most inexpensive firmware systems, however, will be expensive o change. 0

implying greater emphasis on standardized software and on quality control

" In the long run, those functions which have been validated and which are

universally useful, will have been subsumed into VHSIC elements, being no
longer even considered functions at the level of today, but more as elementary 5

system operations

" The hardware elements developed will become more standardized, becoming

building blocks of elementary system functions

" Heavy emphasis on signal processing and the long awaited general recognition of 0

the necessity for modular software are certainly no surprise, but they will

impact the architecture of each avionics group, as well as the overall vehicle

system

* The important areas of fault tolerance, reconfigurabiity and data extraction 0
are also included in what we are aiming for in both architecture and data

multiplexing.

We are not here concerned with the economic and political impact thest technological

changes will have in the avionics industry, but only on how we can exploit them in

providing better systems.

SYSTEM ARCHITECTURE

Another area of concern is that of system architecture itself. Our functional
breakdown (vehicle system functional grouping) of Fig. 6, coupled with the modularity 0
demands of new technology, forces us to look at architectures which allow for reconfig-
urations under the control of programmable microprocessors which are sensitive to the
operating conditions of the basic architectural configurations. We need to look more
closely at the implications of built-in-test (BIT) and its possible conflict with subsy-tem

commands in situations heajily time constrained. This need is especially important for
stores management systems, as the "mushrooming" of the number of logical and physical 0
"sneak paths" forces a far more rigorous analysis of SMS system safety. For us, more

DeRuggieroiZempolich 170
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than for those involved in any other functional grouping of systems, even one short
signal failure interval can be, in fact, a total sys em level failure. The specter of
accidentally jettisoned, or even worse, launched stores, forces us to reduce the number
of separate data channels in order to exercise greater control. This implies multiplexing
as an inherent part of SMS architecture. Within the recent past, as noted in the public
media, accidental "firing" or launching of missiles do indeed take place with their
landing sites being unconventional.

Timing constraints, more critical than in any other group, drive the architecture to
as small a number of hierarchical levels as is possible, and impose requirements on bus
protocols which make command response protocols less desirable if even feasible in large
systems.

In Fig. 8, a two (2) level hierarchy is shown, where the timing is indicated for a
message to be passed from one terminal to another within command-response constraints.
We see that to pass one message, a minimum of six must be sent along these buses, and
two acknowledgements returned.

If the depth of the system is reduced to but one level, as illustrated in Fig. 9, the
system overhead is considerably reduced. In the figure, illustrating a single-level bus
with the same terminals as shown in Fig. 8, and assuming the same message timing as in
that figure, we can see that to pass the same message under command-response protocol,

STEPS:
1. LOCAL MASTER (LMU (1) INTERROGATES STU
2. STU RESPONDS AND SENDS MESSAGE
3. GMP INTERROGATES LMU (1)

SGROUP 4. LUM (1) RESPONDS AND FORWARDS MESSAGE
MASTERI 5. GMP SENDS MESSAGE TO ALM (11) 0
PROCESSORS (GMP) 6. ALM (U) ACKNOWLEDGES RECEIPT
P S MALM (U) SENDS MESSAGE TO RTU

7. RTU ACKNOWLEDGES RECEIPT
MASTER BUS
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Fig. 8 2.Leve Bus Hierarchy (MIL-STO-156313)
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Fig. 9 Single Level Bw Structure (MIL-ST-15638)

two messages must be sent and one acknowledgement elicited. This may take approx-
imately the same time as the previous structure, depending on the terminal polling
priorities, but still is an improvement because it does not clutter the buses with as much
administrative data.

Both of these architectures contain inherent delays due to the multiplexing
approach; both are serial MIL-STD-1553B and both operate in command-response
protocol structure. These limitations appear necessary in the short term, as indicated
in the MIL-STD-1760 interface, where the number of lines in one connector is already
sufficient to cause worries about sneak paths and reliabiity.

On the other hand, the standard itself contains elements that are dependent on the
anticipated multiplexing procedures. Seven lines are used to provide hardware
addressing of the store remote terminal. Two shielded twisted pairs are provided for
wire multiplexing with provision for two fiber buses. A sep-rate, shielded, twisted
pair is provided for audio signals to and from the store, and four high bandwidth lines
are also included. The primary connector carries 8 lines for power with provision for
two additional high voltage lines. The auxiliary connector also contains the power lines
of the primary connector along with interlock and ground. kl these lines need be
switched within any interface control unit under switching logic dependent on both the
logic o" the interface and the mutual requirements of store and vehicle.

!7;
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One of the high bandwidths lines, the 2 GHz line, is capable of carrying, alone, all
signal, message and control information passing through the interface, in a serial
ion. Because of the available line bandwidth, parallel message channels can be
ted by using frequency separation of word bits. Frequency separation of messages
of message word structure can greatly speed up cor:imunication through these lines.
of these lines would provide for simultaneous two-way communications with each

e, at a saving of many possible failure sources. If EMC is not a problem, the entire
iection can be made with an augmented auxiliary connector with two 2-GHz lines
d, as suggested in fig. 10. Fixed purpose, low cost processors at each end of the

iection, can reduce the interface to a more simple, cost effective scheme before the
7 2000.

SIMPLIFYING THE SYSTEM

The approach shown in Fig. 10 can include the following desirable elements:

" Systems grouping - to define all the required interfaces

" Analysis of the interface requirements - to reduce he physical component size,

complexity, and the pctentially hazardous logical complexity of the interface

" Standardization of the interfaces - such that all desi6,iers know the character-
istics of all their inputs and outputs, and so can concentrate on improving
component function (A212). A212 was an initial attempt to accomplish this, and, 0
in so doing, helped to generate MIL-STD-1760

" Definition of parallel bus paths - for different elements, and investigations of
value of combining into one bus

" Investigation of the distribution of bus control - making full use of both time and
frequency spreads for maximizing the utilization of the bus bandwidth.
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Fig. 10 Some Parailel Paths On Buses
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0

This approach will have the effect of simplifying the system while maintaining full
capability, flexibility for reconfigurability and safety. It also has the advantage of
providing for adding new and, as yet, undefined system elements, with greater
bandwidth, as yet undetermined in magnitude, without increasing the system-level
complexity.

0
CONCLUSION

Figure 11 shows a conceptual configuration that embodies these considerations for a
future (as yet undefined) high performance aircraft. The figure is intended to suggest
that all of the above desirable elements can be attained, and that, with the use of the
very high bandwidth line suggested for buses, not only is distributed control possible, 0
but multiple simultaneous control on even single buses can be expected to be the normal
operating mode.
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(THE NEBULA AND MCF STANDARDIZATION PROGRAMS
0
O EDWARD LIEBLEIN

/DIRECTOR, MILITARY COMPUTER FAMILY PROJECT
US ARMY COMMUNICATIONS-ELECTRONICS COMMAND

FORT MONMOUTH, NJ

Military computers are currently employed in defense systems to perform a
.ide range of functions in the areas of weapon control, command and control,
communications, intelligence analysis, navigation, surveillance, target
acquisition, sensors, electronic warfare, and combat support services. Over
the years, the number of types of computers used in such systems has increased.
This proliferation has become a serious problem in that it increases the cost
of software development and support, maintenance, training, and the supply
pipeline. Further, it impedes competition for technology upqrades and reduces
overall battlefield survivability.

Recognition by the Department of Defense and the military services of the
need to curtail proliferation as resulted in efforts to standardize at various
levels: high-order lanquage<(HOL} and its software environment, instruction-
set architecture (ISA), and hardware. With regard to the first level, the
services are working together to standardize the Ada language. At the second
level, the Navy has standardized on the ISA's of the AN/UYK-43 and AN/UYK-44.
The Air Force has standardized on the MIL-STD-1750 ISA and both the Army and
the Air Force have standardized on the MIL-STD-1862 (Nebula) ISA. Computer
hardware standardization, due to different needs, has not extended across
service lines.

THE ORIGIN OF NEBULA

The Nebula effort began in 1979 as part of the Army's Military Computer Family
(MCF) Program following a decision to use a single instruction set for the
entire family; all members were to be software-compatible. Following this
decision, the Army established requirements for the standard ISA: It would have
to be (1) government owned, (2) a state-of-the-art instruction set that would
be efficient for military real-time systems, (3) HOL oriented and optimized
for Ada, (4) a 32-bit instruction set with a 32-bit virtual address space,
(5) suitable for multi-level security, and (6) compatible with future advances
in technology. Many existing ISA's, commercial and military, were evaluated
against these requirements with the conclusion that none of these satisfied
the requirements well enough to become a long term standard.

The requirement for government-ownership has been driven by the desire for S

neutrality in the ISA in order to insure real competition for all computer
acquisitiQns while at the same time facilitating software transportability
across hardware. If there were no standard ISA then the services would be
unable to move battlefield software from computer to computer without expensive
redevelopment of a large percentage of such software. This would hold in spite
of the use of Ada due to ISA depencencies in the language and due to the use 0
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of embedded code where necessary (e.g., I/O).

The design of Nebula was begun in 1979 by William Dietz and Leland Szewerenko
at Carnegie Mellon University (CMU) under Army sponsorship. Comparative analyses
were conducted to provide a basis for the design. Algorithms were established
that represented the military com~puting environment, and then programs were
developed in various candidate ISA's for these algorithms in order to obtain
relative measures of efficiency in terms of ultimate hardware complexity.

There was extensive community involvement in the design effort. In December
1979 and January 1980, reviews of the preliminary design were conducted with
all three services represented. An industry seminar held in March 1980 was
attended by 190 industry, government and university representatives. Comments
were solicited. A large number were received and many of the ideas were in-
corporated into the design. Ada experts made major contributions. A second
industry review was solicited in the Spring of 1980 based on a draft specifi-
cation prepared by CMU. This resulted in the publication of Nebula as
MIL-STD-1862 in May 1980.

During the Summer of 1980, discussions were held between the Army and the
Air Force on Nebula. While the Air Force was using MIL-STD-1750 in avionics
systems it had a need for a 32-bit ISA for both ground-based and aerospace
systems. Nebula became a joint Air Force and Army 32-bit standard under an
agreement signed by the Deputy Commnanders of HQ AFSC and HQ DARCOM in
September 1980. The agreement established a Nebula Control Board (NCB) with
equal Air Force and Army membership to manage the standard. Seven organizations
from each service were placed on the board as voting members. Nebula continued
to evolve through both public and government reviews.

The NCB formed a Tiger Team in November 1980 to solicit and consolidate
recommendations for change. Many recommendations came from an in-depth review
by the Electronic Industries Association that was completed in the Spring
of 1981. Others came from ongoing reviews by Ada experts, in-house Air Force
and Army personnel, MCF hardware and hardware-support contractors, and from
several software contractors. These activities culminated in MIL-STD-1862B,
the standard that will be employed in all Army and Air Force implementations.
At the present time, both services are acquiring computers that will employ
Nebula.

THE MILITARY COMPUTER FAMILY

The rapid growth in Army use of "go-to-war" computers over the last six years
has resulted in an extensive proliferation of different and incompatible types.
In 1979 there were 35 different types of computers employed in a total of 49
Army battlefield automated systems. By the end of 1981 these numbers increased
to 50 and 65 respectively. Army management became seriously concerned about
this situation for two reasons. First, the proliferation of types adversely
affects system survivability. Second, it increases significantly the cost
and complexity of hardware logistics support, maintenance, training and
acquisition, as well as that for software development and support. It has been
estimated that the cost to the Army of continued computer proliferation will
reach $360M per year by 1990 and go up to $880M per year by the year 2000.
The estimated cumulative cost to the Army of proliferation over the thirty
year period from 1981 through 2010 is $9B.

178



In oderto akebattefild utoatio afordble suportble an

survivable, the Army, in 1980, established the policy that future systems
mutuse a standard software-compatible computer family. (The details of the-

policy, which are reviewed annually, are contained in AR 1000-1.) Develop- 0
metof this family commenced in 1981. Members of the family will include

asuper-minicomputer (AN/UYK-41), a microcomputer (AN/UYK-49), and a 6" by 9"
single-board computer that is a component of the microcomputer. Smaller single-
board computers for use in missiles, armaments, tanks, and helicopters may be
added to the family prior to the start of full-scale engineering development-
(FSED). An Army Military Computer Family (MCF) Working Group, formed in the
Summier of 1982, has been addressing these and other needs. Comprised of
representatives of DCSRDA, DCS0PS, DCSLOG, DARCOM, TRADOC, CACDA, CSC, and
each of the major DARCOM coimmands, including several PM's, the group was formed
to make sure that the attributes of the family dovetail with the broad spectrum
of Army needs and that that approach is cost effective. The group also has been 0identifying specific systems for which the use of MCF is planned in order to
coordinate schedules and assure the early availability of models. In addition
to the MCF family members described above, a set of very large scale integrated
(VLSI) circuit chips, commonly called a "chip-set", will also become available
as a byproduct of the basic development, for smaller computing requirements.
All members of the family will employ standard interfaces and will be soft-
ware-identical via MIL-STD-1862 (Nebula) and fully plug-compatible in order 0
to facilitate replacement of faulty units, and to support mobility of soft-
ware, distributed processing, and graceful degradation.

The Army recognizes that in standardizing it must prevent future lock-in
to obsolescent technology and must also provide for competition on a long-
term basis. These are particularly difficult to achieve with respect to the
computer field where technology is advancing so rapidly and where the legal
protection of software invariably leads to lock-in to individual vendors.
To avoid technological obsolescence, multiple relatively short productions
are planned (Fig 1). Advanced technology products will be introduced in suc-
cessive generations while maintaining software and interface compatibility.
Technology approaches will be competed for the production of each generation.0
Products resulting from successive generations are expected to have improved
reliability, maintainability, power, size, weight, cost, speed and memory
capacity. Future units will maintain instruction set (software) and interface
compatibility with units produced in previous generations in order to provide
the potential for upgrade/replacement of older units in the field. (Support
for fielded units, however, is expected to continue for as long as it is
practical to do so.)

The MCF Program will not, in itself, develop new technology but will attempt
to extract the best technology available from the commercial/industrial base.
Direct use of commercial technology and components will be encouraqed. Com-
mercial off-the-shelf computers will be employed for software development and
post-deployment support in that they offer lower purchase costs, readily
available and low cost maintenance, and available software. Also, extensive
use is planned of commercial software for development and support.
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The first phase of the program is underway. It will take five years to go
from inception (1981) to production (1986). The MCF approach differs from the
usual where the initial technology ends up as the final technology used in
production units. During the first phase of MCF, two technology efforts are
being pursued, one oriented toward the use of 1981 technology for the prototypes,
and the other toward selection of technoloqy for production. The latter requires
analysis and assessment of potentially suitable technologies for use in late
1983 to early 1984. Thus, production units will embody the latest advanced

*computer technology. Contractors are free to choose their own approach to 0
technology as well as to hardware system architecture.

Competition has been a hallmark of the MCF Program. The approach, which is
aimed at reducing risk and achieving the best solutions, will provide for
extensive competitive industry participation throughout the program. Each
generation will start with an open solicitation for advanced development (AD) 0
for which multiple competitive contracts will be awarded. To keep the com-
petition focused, the most important evaluation factors and their relative
priorities will be specified "up front". Evaluation factors and their priority
order for the current generation are as follows: (1) reliability and maintain-
ability, (2) life-cycle cost and power, (3) size and weight, and (4) speed andmemory capacity. After the prototypes and approaches to production (technology,
life cycle cost, etc.) have been evaluated, two contractors will be selected to
continue into FSED. Competition will continue up to, and possibly through
production. At the same time that production starts, new contracts will be
awarded for advanced development for the next phase. The planned phasing and
extensive competition are expected to prevent lock-in and, make available
the best possible military computers at the lowest possible life-cycle costs.

When each new production commnences, one of several alternative choices could
be made with respect to MCF computers already in a fielded system: (1) continue
to support such computers; (2) replace all such computers with those from the
new production. (This will require re-testing of the system to qualify the
use of the new product); or (3) qualify the use of the new computers as inter-
changeably equivalent to those currently in the system and use both types in
the system.

The first phase of the program started in 1981 with awards made for advanced
development to four of 12 bidders, GE/TRW, IBM, Raytheon, and RCA. In March 1982,

P_ IBM was eliminated from the competition. Another company will be eliminated in
August 1983. Major goals for production units, established as the basis for
this competition, are shown in Fig. 2. Significant deliverables during the
AD phase include reliability and maintainability projections, life-cycle cost
analyses, technology insertion (projection) plans, prototype models, prime item
specifications, and producibility plans. Prototypes will be delivered at the
end of January 1983.0

There has been a stronq emphasis on computer and system survivability in
the MCF Program due to the degree of future dependence of our fighting forces
on automation. The need for survivability has provided the impetus for fielding
a family of standard, software-compatible computers. Should a high-priority
system malfunction during a battle because of a computer failure, if parts or
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replacement computers are not available due to a shortage or due to cut lines
of supply, then it would be possible to restore operation quickly by taking
parts or entire computers from lower priority systems. Further, standardization
will facilitate the completion of repairs quickly due to the use of common
parts and the availability of maintenance personnel. To minimize the probability
of computer failure after the shooting starts, very high levels of reliability,
maintainability, and ruggedness are being sought. Mean time between failures
(MTBF) for the AN/UYK-41 is 10,000 hours (14 months). For the AN/UYK-49 and
the single-board micro, MTBF goals are 33,000 hours (3.3 years) and 100,000
hours (11.6 years) respectively. To simplify maintenance it is required that
98% of all faults that would degrade performance be detected automatically
by built-in-test (BIT) circuits. Of these, it is required that BIT automatically
isolate the fault to the removable unit in 95% of the cases and to one of
two units 98% of the time. The MIL-SPEC requirements, shown in Table 1, will
insure that the MCF computers will operate over the full range of anticipated
tactical environments. High survivability over the system life-cycle will be
enhanced further through the ability to substitute superior (i.e., more reliable,
more maintainable, etc) plug-compatible equivalents that result from successive
generations.

In the event of damage or failure, provision has been made for graceful
degradation (to keep systems functioning), for interchangeable hardware (to
restore functionality without repairing) and to facilitate normal maintenance.
The computer 1/0 interfaces (specifically MIL-STD-1553B and the high-speed
parallel interface) as well as the instruction set provide explicit support
for the design and operation of distributed processing configurations of
the various members of the computer family. The AN/UYK-41, the AN/UYK-49, 0
and the single board micro can be interconnected, combining types if desired,
in either local or geographically dispersed processing networks. Since each
computer will employ the same instruction set, it will be possible for the
system to be designed to accommodate the transfer of software function
(load-shifting) from faulty to operational computer units in the network.
(This same capability will facilitate load-leveling during critical periods).

The Army's MCF Program, supported by the joint Air Force and Army Nebula
effort, addresses the challenge to field the most cost-effective, survivable
family of standard mil-spec computers. The unique acquisition strategy provides
for time-phased introduction of advanced technology units through an intense
amount of competition. The standardization approach is simple (one language,
Ada, one instruction set, MIL-STD-1862, one software support environment,
a common ILS system, and standard hardware units on the battlefield), yet the
capabilities to be provided will be, at the same time, powerful, efficient,
reliable, maintainable, affordable, and state-of-the-art.
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Abstract

/Nebula is a standard instruction set architecture designed for embedded military applications.
Several new ideas were incorporated in the standard that allow a family of implementations to
effectively use advancing technology.

In addition to following design principles that allow Nebula to be a good target for high level
languages, the designers also adopted a visibility approach in architecture design that provides more
freedom for the hardware implementor while still maintaining software portability.

* 1 Introduction

There are two important properties that a standard instruction set architecture should have. The
first property is generality. Computers built to an instruction architecture standard must be able to
provide processing power to meet the needs of a wide variety of applications. The second property is
implementability. Not only should it be possible to build computers that conform to the standard, it
should also be possible to exploit advances in technology to provide new implementations with
improved cost/performance characteristics.

The Nebula Architecture was designed to embody these properties [3]. Some important

characteristics of the architecture include:

187



* 32-Bit general register architecture.
* Variable length instructions with variable number of operands.
. Explicit addressing of instruction operands.
e Multiple addressing modes for register, literal, memory and parameter access.
o Procedure based control structure with a local register set for each procedure.
. Support for several data types and representation lengths.
* Memory mapped I/0 control.
*Vectored Interrupts and Exceptions.

The remaining material is divided into two main parts. The first part provides information about the

Nebula architecture. The second part describes some of the considerations that contributed to the

design of the Nebula architecture.

2 Nebula Architecture Overview

Nebula is a 32-bit general purpose architecture with byte-addressable memory. Instructions are

* represented as a sequence of bytes, with the first byte specifying the operation to be performed and

succeeding bytes specifying the operands. All instruction operands are explicitly specified using the

same addressing modes. The uniform generality of operand specifiers avoids the data positioning
problems of more restricted formats.

Figure 1: Nebula Instruction Format

2.1 Operand Accessing

Operand specifiers ai e sequences of one or more bytes that specify the location and size of an

operand. Some of the seven addressing mode classes are available in multiple forms of varying

compactness. The modes provided are:

" .Literal: an instruction stream constant
" Register: a local register
" Absolute: an absolute memory address
* Register Indexed: a register or program counter relative address
" Indexed by Value: an address indexed by another value
" Scaled Indexed: an address indexed by avalue scaled for the data size

" Parameter: the parameter of a procedure
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Additionally, each operand specifies a data size. Primitive data types, such as integer and real, are

available in representations of various sizes. Integers are fully supported in 8, 16, or 32-bit sizes, and

partly supported in a 64-bit size. Reals can be 32 or 64 bits. Operands of a given instruction can be of 0

mixed sizes; no explicit size conversions are necessary.

2.2 Procedure Interface

At a higher level, the control structure of Nebula is based on the concept of procedures. An

executing procedure has a local register set, an exception handler, and a list of parameters. The

characteristics of a procedure are described by a 16-bit procedure descriptor located at the

procedure's entry point. The descriptor indicates the number of parameters for the procedure (may

be fixed or variable), the number of registers used by the procedure (up to 15), and the method used

to handle errors.

0 123 4 78 15

10 1 1Maxreg I Number of I

Maximum Register

Exception on Arithmetic Error

Up/Down Exception Propagation

Reserved

- Variable/Fixed Number of Parameters

Figure 2: Procedure Descriptor

Procedures are invoked by various forms of calls. The call specifies an entry address and a

parameter list, which is a sequence of operand specifiers identical to those used for instruction

operands. The procedure invocation establishes a correspondence between the parameter list in the

call and the parameter addressing modes of the called procedure; within the called procedure, a

parameter is accessed by an index corresponding to its position in the parameter list.

The manner in which an entry address to a procedure is specified depends upon the type of call.

The call instructions specify the address as an operand, supervisor calls and unimplemented

instructions obtain the address by indexing into protected vector tables, and interrupts and traps are

assigned fixed vectors. Once the entry address has been determined, all these forms of procedure
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call are treated uniformly. The difference between an instruction implemented in the microcode and

an unimplemented instruction code that invokes a software procedure performing the same operation

is not detectable in the object code of the machine. This allows the implementor to determine the

right mix of software-emulated instructions and microcoded instructions based on the implementation

constraints. It also permits the instruction set to be extended and earlier models to be retrofitted in

software.

The nesting of procedure calls produces a sequence of procedure contexts, each of which

contains the registers, parameter list, program counter, and exception handler state for the

associated procedure invocation. Storage for these contexts is allocated on a context stack

associated with each task; the memory management facilities protect this area from instructions

seeking access.

Context Pointer PSW
Program Counter

General
Registers Current 0

Context

Parameter
Descriptors

Exception Handler
Previous PSW

Decreasing Previous PC
Addresses General PreviousContext

Registers

Figure 3: Stacked Procedure Contexts
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2.3 Exception Handling

The NEBULA architecture handles program errors with an Ada -like exception facility. An

exception handler is a piece of code to which control is to be transferred in the event of an exception.

Such a handler may be defined for each procedure by use of the procedure entry or the EXCEPT

instruction:

EXCEPT handler-address

The address of the exception handler for the current procedure may be altered by use of this

instruction.

An exception may be raised by a hardware detected error or by execution of the RAISE instruction:

RAISE #{(exception code)

The exception code is a 16-bit integer that is made available to the exception handler.

The action taken when an exception is raised may be selected from two options for each

procedure. The options are:

* Branch to the exception handler specified by the procedure. If none is specified, the
exception is propagated to the caller.

* Invoke the Supervisor Exception Handler.

If the supervisor exception handler is invoked, it may, after analyzing the situation, force the

exception back to the procedure's handler by executing:0

ERP #{exception code)

Transfer to user specified exception handlers is accomplished by a hardware forced jump. The

exception handler may then determine the nature of the exception by executing:

ECODE Destination

that stores the exception code in Destination and resets the exception mechanism. The exception

* handler may deal with the exception and continue execution of the procedure in some altered

manner, or it may pass the exception to the caller by:

ERET #{exception code)

that returns to the calling procedure and raises the specified exception.

1Ada is a registered trademark of the US Department of Defense.
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It an exception propagates completely up the execution stack, the entire execution Context is

removed. A new context is established by a call to the supervisor exception handler, and the

exception TaskFailure is reported.

2.4 Modes of Operation

The Nebula architecture provides for independent selection of the following facilities:

* Kernel/Task Context. The kernel context is used for functions related to the overall
system while a separate task context is dedicated to each task.

* Supervisor/User State. Programs executing in.the supervisor state have access to the
full address space as defined by the current maps. Programs in user state are restricted
to the user map.

" Privilege. A privileged program may execute privileged instructions and access areas of
memory designated as privileged by the memory maps.

This independent selection allows the processor to run in one of eight modes of operation. The

architecture provides a controlled means of making transitions between procedures with various of

these capabilities through vectoring and special instructions.

2.5 Task Control

A task is defined by its memory map (defines accessible code and data) and its context stack

(defines its current state of execution). Nebula provides privileged instructions to manipulate tasks.

The currently active task is changed by the:0

LTASK -load a new task
STASK - save the current task

instructions and is specified by a two word block containing the Context Pointer and the Memory

Map Pointer for that task.

Execution control is accomplished with three instructions:

TINIT (PINIT) - create an executing procedure
TSTART (PSTART) - restart an existing procedure
TRAISE (PRAISE) - force an exception into an

existing procedure

These instructions allow tasks to be created and manipulated in an effective manner.
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2.6 Timers

A trusted operating system must have the assurance that it will regain control of the processor at

some time after it gives control to an untrusted task. This is usually accomplished through the use of

a timed interrupt mechanism.

The Nebula architecture provides four timers. These are 32-bit down counters with

" Independent Control
" Software- assigned interrupt priority

Counting can occur in two modes:

* One microsecond time base

" Task instruction count

In task instruction count mode, each instruction execution in the currently active task causes a

decrement. Kernel and interrupt functions do not affect the count. When a timer in decremented to

zero, an interrupt is generated and counting continues. The timer mechanisms are protected from

the effects of instructions with potentially long execution times by making such instructions

interruptible.

2.7 Interrupts

NEBULA provides a 32-level priority interrupt structure. Hardware interrupts are assigned a priority

by the requesting device. Software interrupts may be generated by setting the appropriate bit of the

Software Interrupt Request Register. In the event of equivalent priority requests, the implicit

hierarchy is:

" Processor
" Hardware Interrupts
" Software Interrupts

Interrupt handling is controlled by an interrupt vector selected by the interrupting device (fixed for

software interrupts).

2.8 Memory Management System

NEBULA provides a conceptually simple memory mapping and protection facility utilizing variable

size segments. Two processor registers contain pointers to the Supervisor and User maps in physical

memory. The map used for a particular virtual address is determined by the most significant bit of the

virtual address.
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0 1 293031

Entry Address 10

Supervisor/User Reserved
Privilege

Figure 4: Interrupt vector format

Map Size

0 Segment
Descriptors

Map Pointer
Registers

User

Supervisor Map Size

Segment

Descriptors

Figure 5: Two active memory maps

The map pointer registers contain a pointer to the first map entry of the respective map in memory.

* Bits 30:31 of this register allow relocation and protection to be enabled or disabled.

The map- entries are double word descriptors containing the virtual address limit, relocation

amount, and protection information for each segment.

The position and length of segments is truly variable. Each segment is specified by its upper

address limit and that of the previous segment.
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0 282930 31

Reserved '-_

Relocate if set 0
Protect if set

Figure 6: Layout of the map pointer register

0 1 2829 31

t Privilege 
Protection Key "

32 60 61 63

Relocation Amount 1000o 0

Reserved -

Figure 7: Memory map entry

Figure 9 shows the mechanism used to translate virtual addresses to physical addresses. 0

Each map entry specifies whether access to the corresponding segment is a privileged or

unprivileged operation. Additionally, the type of access may be restricted to one of the following:

" No Access 0

" Instruction Access Only
" Data Read Only
" Instruction or Data Read Access
" Data Read/Write
* Context Access Only 0

Note in particular that pages allocated for context stack use can be accessed EXCLUSIVELY by

that means.
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Virtual Address

Space

S
Segment 0

Memory Map S

EntrySegment 1

Entry I

0Ent ry 2

Segment 2

Segment 3

Figure 8: Map entries establish segment boundaries

2.9 I/0 Control 0

The basic architecture allows control of I/0 operations by access to I/0 control registers. These

device dependent registers are addressed as memory locations in the low 220 bytes of physical

address space. The generality of this scheme is highly desirable in dedicated interactive control

operations. 0

Additionally, MIL.STD. 1862A specifies a standard I/0 controller structure for use in higher volume

but less interactive situations. The IOC appears as a separate programmable processor with a limited

instruction set. The IOC provides: •
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Virtual Address
0 1 28 29 31

t-Supervisor/User

Semn ------ Relocation
Association Select Amount

0 Physical Address 28213

Figure 9: Address translation

*DMA transfers to connected devices
*Sequencing of complex 1/0 operations

* Queueing of I/0 requests
* Programmable processor interruption
o Virtual Addressing (Secure User I/0)

A significant problem with programmable I/0 controllers is that the lOG programs tend to diffuse

into the system software. While self-modifying code is considered an atrocity when used in CPU

programs, it is more or less the standard in lOC software. In fact, the situation is usually worse in that

one program is dynamically re-writing another program that is potentially executing in parallel.
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7

The Nebula 10C design attempts to avoid this situation by:

j .*Allowing transfer specific information to be separated from the channel program
instructions.

" Prohibiting the modification of channel programs (memory protection).

" Allowing transfer parameters to be independently specified.

The 10C design attempts to build a 'wall" between the CPU and 10C programs so that neither can

see the other. Communication between the CPU and 10C is in the form of "signals" (initiations and

interrupts) and messages.
W0

PROCESSOR InerutO0C

Applications IRequest I OC Channel0
Program Mesage<---- Program

1 -initiate Transaction I
Figure 10: Processor - 10C communication

The 10C program functions as a "procedure" or "subroutine" executing in parallel with the caller.

The "parameters" for a particular 1/0 request are contained in a message block.

A message block can contain:

9 Commands
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" Buffer Addresses (Virtual)
" Data Counts
" Status Masks or Return Areas
" Data

IOC operation is controlled by access to control registers within the 1/0 space. Each IOC has a set

of "privileged" control registers that permit the specification or:

" Interface operational modes and timeouts
" Allowable interrupt priorities
" Accessible segments in memory (specified using the privileged SETSEG instruction).

Additionally, each IOC has an unprivileged control register set that contains:0

" The Channel Program Counter (Virtual)
" The Message Address (Virtual)
" Device Control and Status Registers

Access to these registers may be granted to untrusted user.

The independent specification of segments accessible to the I0C allows lOC transfers to be

initiated by a variety of means:

9 Executive initiates transfers to exec or user buffers.
* User requests transfers but executive specifies channel program.
* User specifies both program and transfers.

Over this entire range of 1/O protocols, the overhead of initiating an 1/O operation is on the order of

a procedure call.

3 Nebula Design Considerations

3.1 General Purpose Architecture

When the standardization of Computers for the military was first being considered by the Computer

Family Architecture (CFA) committee in 1975, a question arose about the nature of a military

computer architecture versus a commercial computer architecture. The implementation differences

are obvious. The military computer must generally operate in a much harsher environment than its

commercial counterpart. However, after careful comparison of the features of general purpose

military and commercial architectures, it was determined that the data processing operations

performed by military computers do not differ significantly from those typically performed by

commercial computers [1 ]. This conclusion allowed us to draw upon knowledge gained about all
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Figure 11: I00 Virtual Addressing

general purpose computers and apply it to the design of an instruction set architecture intended as a

military standard.

A computer may be fully general in function but if it lacks the speed required to perform the

functions demanded by most typical applications, that computer cannot be considered as general

purpose. Even though the absolute speed of a computer system falls within the domain of the

implementation rather than the architecture, the relative efficiency of the architecture can impact

both the performance and cost of implementations. In developing the Nebula Standard,

200



consideration was given to the knowledge gained from four years of research in architecture

efficiency that was conducted at Carnegie -Mellon University [21. Some of that knowledge can be

condensed into the following set of heuristics:

" Short literal operands should be provided.
" Variable-length instructions are efficient.
" A sufficient number of general registers should be provided.
" Maskable hardware priority vectored interrupts are important.
" General registers should have general function.
" Address computations should be efficient.

3.2 Compiled Code Efficiency

Since the use of high level languages is expected to increase in military systems, especially as

AdaT becomes more widely available, a standard computer architecture must be a good target for

compiled languages in order to be efficient. In a recent article [51, Wulf described some of the
0 principles that should be considered in computer architecture design for efficient compiled code-.

These principles include:

" flegularity. If something ik. done one way in one place, it ought to be done the same way
everywhere. This principle has also been called the "law of least astonishment" in the
language of the design community.0

" Orthogonality. It should be possible to divide the architecture definition into a set of
separate concerns and define each in isolation from the others. For example, it ought to
be possible to discuss data types, addressing, and instruction sets independently.

" Composability. If the principles of regularity and orthogonality have been followed, then it
should also be possible to compose the orthogonal, regular notions in arbitrary ways. It
ought to be possible, for example, to use every addressing mode with every operator and
every data type.

* These principles, in addition to others, were followed in the Nebula standard resulting in an

architecture that allows optimizing compilers to make full use of the technology available without the

complicated and extensive analysis required in optimizing compilers targeted to many existing

architectures,

The Nebula architecture is regular.

* The same procedure call mechanism is invoked by Call instructions, Supervisor calls, the
opcode exception mechanism, traps, interrupts, and the supervisor exception handler.

* Operands to procedures look like instruction operands.

* Independent source and destination forms of instruction operands are provided
(sometimes optimizations are also provided).
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e The order of instruction operands is regular.

9 All simple branch instructions have to displacement forms.

The Nebula architecture provides orthogonality. Data types, operand addressing and instruction

sets can each be dealt with independently.

There is composibility in the Nebula architecture. In general, any addressing mode can be used to

define any instruction operand. Any addressing mode can be used to access any data type.

3.3 Implementability4

In order to insure the successful implementation of the standard, Nebula had to be a low risk

design. New ideas were carefully considered and "experimental" features were avoided. This led to

what is considered a safe, yet innovative design. Part of this innovation has to do with the approach

* taken to allow the effective use of new and advancing technologies while still maintaining 4

compatibility for a full family of proposed processors.

In order to increase the range of implementability of the Nebula architecture, we adopted the

following visibility goals [41:

e First, the architecture should increase the visibility of program operations to the
hardware. This allows hardware enhancement and optimization of these functions.

* Second, the architecture should reduce the visibility of the hardware to the software in
order to provide greater freedom of implementation for the hardware designer. This
allows more freedom for the implementor in the use of different technologies and
strategies of implementation while still maintaining software compatibility.

The computer architecture is the interface between the hardware and the software. As with any

0 interface, the architecture allows the software to communicate with the hardware.

Older computers. and even some that are being built and used today, allowed complete software

visibility by simply using the hardware itself to specify the architecture. This results in software that

probes and explores the hardware to take advantage of every little "feature' that can be found and

possibly used to some perceived advantage. The problem with this approach is not discovered until a

new implementation is required, but the software base must be captured. Then either the existing

implementation must be duplicated exactly (usually to the great disadvantage of the new technology)

of the software base must be updated (at great expense) to accommodate any changes.
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.0 The other extreme is to make the software, or high level language definition, completely visible to

the hardware. This approach results in a "direct execution" architecture. This architecture would

only be able to use a single language effectively. In addition, any changes to the language definition

will require changes to the hardware of the computer. This approach requires a enormous hardware

* development investment because all of the complexity normally associated with the compiler is
pushed into the hardware.

Our approach with Nebula falls in between these two extremes. Increased hardware visibility of

0 ~ selected functions allows advancing hardware developments to absorb some of the burden that is
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Figure 14: Complete visibility by the hardware

often relegated to software in older systems. These functions were selected based on their

usefulness to a variety of high level language environments. The software's visibility of the exact

implementation of these functions is restricted. Part of this restriction is enforced by the hardware

*and part is based on specification alone.

The best example of these visibility goals exhibited in the Nebula architecture is the procedure

interface.

The term procedure interface refers to the state visible to a called routine, the manner in which the

caller specifies this state, and the means by which parameters are passed. In a conventional register

architecture, the caller and called routine see a common register set. This property of the hardware is

* then managed by various software conventions for preserving the caller's data, making registers0

available to the called routine, and passing back values. Thus, the procedure interface is largely

software defined to make use of the hardware.

0 Nebula considers registers to be local to the procedure using them. Registers are allocated on the

call, and deallocated by the return. Storage for the local registers is allocated in the context stack.

This stack is protected and inaccessible to the software. The effect is that register usage of each

procedure is visible to the hardware while the mechanism of allocating these local registers is

* invisible to the software.0
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A bst ract
-We- discuss -Avarious aspects of the Nebula architecture definition that are purposely

implementation -dependent. These might seem at first glance to present obstacles to software

portability.

These implementation dependencies are intentionally included in the architecture definition to

allow implementors the freedom to evolve new implementation strategies and to exploit advancing

technology. Portability problems are alleviated by a combination of specification conventions, explicit

protection mechanisms in the hardware, and special software modules that can be conventionally

0 used to hide implementation details.

The result is an architecture definition that allows Nebula software to be compatible across a range

of hardware implementations, while enabling more cost-effective hardware realizations by allowing

S implementors the freedom to explore a variety of implementation techniques.
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1 Introduction

The Nebula architecture was designed to allow software to be compatible across a broad family of

imptementations. Other architecture designs, notably that of the IBM System/360 and System/370

series 12], have had this goal also. Normally such compatibility is achieved by carefully specifying

every aspect of the hardware that could conceivably be visible to the programmer. However, such an

approach usually overspecifies the hardware, in that restrictions that are not useful to software are

pfaced on the hardware for the sake of having a complete specification.

These problems arise because the architecture specification interface (the description of what the

implementation must provide and what the programmer may assume) is assumed to lie precisely at

the boundary between hardware and software. Hardware is the domain of the implementor; the racks

and circuits and registers and microcode must implement all the details of the architecture. Software

is the domain of the programmer; any bit pattern that the programmer can construct is fair game, and

may be given to the hardware purporting to be a program. The programmer expects to be told (by the

architecture specification) the meaning of every bit in every register.1

Nebula takes a different approach. While the architecture specification lies approximately at the

hardware/software boundary, there are deviations designed to give the implementor maximal

freedom to exploit new technology. In return for this freedom, implementation -specific software

modules must be provided for each implementation; these modules support an implementation-

independent functional interface to implementation-dependent aspects of the hardware. Similarly,

the specification explicitly tells the programmer that certain information is none of his business; but in

exchange for this lack of information the programmer is rewarded with more efficient program

execution.

As an example, concerning the procedure call mechanism, the programmer is simply told: "In order

to perform procedure calls, you must first reserve a region of virtual memory for use by the hardware.

(There is a rule of thumb for calculating the necessary size of this region.) You must specify a certain

mode of protection for the region to the memory management system. You must initialize a register to

* point to this memory region; and thereafter you must keep your hands off that memory." Only a little0

bit is said about what is put in that memory, and very little is said about the format in which that

information is stored. The implementor is left free to choose data formats and implementation

1Throughout this paper we will use "implementor" to mean a person or organization that constructs hardware instantiations
of the Nebula architecture, and "programmer" to mean a person or organization that writes programs to be executed by the
Nebula architecture.
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strategies that will maximize the efficiency of the procedure call mechanism. This will be discussed in

more detail below.

In some cases the programmer is prevented from meddling with data reserved to the implementor

by means of explicit protection mechanisms similar to those used to prevent applications

programmers from meddling with privileged instructions that are reserved to the operating system. In

other cases the programmer is prevented from meddling merely by convention: the specification

simply states that the results of certain actions by programs are undefined or unpredictable (but the

unpredictable results of such meddling are of course always limited by the privileges of the meddling

program).

In the remainder of this paper we will discuss four aspects of the hardware that are implemF-ntation-

dependent but are carefully specified, protected, and software-supplemented so that they will be used 0

in a completely portable fashion:

* Processor status word (PSW) bits reserved to the implementor.

*.Implementation virtual address size.

* Procedure call context area.

* Memory map size.

2 Reserved PSW Bits

Nebula has a processor status word (PSW) that is used in the usual fashion to contain frequently-

used information associated with the currently running task: condition codes, interrupt priority level,

exception enable flags, whether the task is privileged, and so on. Two bits are explicitly reserved to

the implementor. Now, in fact, these bits were provided for the purpose of indicating whether an

instruction had been interrupted and not yet completed. For example, there is an instruction that will

copy an arbitrarily long string from one region of memory to another. If Nebula is to provide adequate

interrupt response (not to mention responding to memory traps), it must of course be possible to stop

in the middle of the instruction, service the interrupt, and then resume the interrupted instruction.

When the PSW is stored in response to the interrupt, the reserved bits may be used to indicate that

the interrupt occurred during an instruction rather than between instructions.

To use a PSW bit for this purpose is not unusual. For example, DEC PDP-10 [11 had such a bit, to

indicate for example that the "increment and load byte" instruction had performed the "increment"

h but not the "load byte" when an interrupt or trap occurred.
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What is unusual is that the Nebula architecture specification nowhere says formally how these

reserved bits are to be used or what non-zero values of these bits mean. Neither is any

implementation required to make any actual use of them. The programmer is simply advised that the
bits may be safely initialized to zero; that interrupts and traps may produce non-zero values in those

bits when the PSW is stored; that if the field is loaded back into the PSW exactly as it was stored, then

any interrupted instruction will be properly resumed; and that the effects of altering the field (other

than to load a previously stored value) are unpredictable. This very abstract specification allows the
implementor to experiment with various ways of using these bits. By contrast, the PDP-10

architecture specification explained in concrete detail all possible results of altering the bit, thereby

allowing the programmer potentially to take advantage of this "feature" in unexpected ways, and

thereby requiring all future PDP-10 implementations to support the precise same semantics for that

bit.

It should be noted that general access to the PSW is restricted to privileged proigrams such as the

operating system; applications programs normally cannot even examine the two reserved bits. This is
a good example of a general rule of thumb used to decide in any instance whether simple

specification is adequate prevention or whether an explicit protection mechanism is necessary.
Privileged programs can be trusted to some extent, and are likely to be written by somewhat more

jexpert Nebula programmers. Such programs can therefore be assumed to abide by simple 0

specifications (such as to properly restore a PSW). Application (user mode) programs, however, are

generally not trusted, and are as a rule walled offI by explicit hardware mechanisms.

3 Implementation virtual address space

The Nebula architecture specifies a 32-bit word size. Addresses (that refer to 8-bit bytes) are also,

at least potentially, 32 bits wide. This specification for addresses was made to allow for future growth:

in the near term, 28 bits of address should be plenty, but in ten years 32-bit addresses may be
necessary for certain applications.

However, there are many places in an implementation where an address plus a few associated bits

must be stored together (for example, the address of an operand plus two bits encoding its size as 0

byte, halfword, word, or doubleword). It would be very convenient and significantly more efficient if
the address plus the extra bits could be fit together into 32 bits. This would be easy if addresses were

only 28 bits long, but of course is impossible if addresses are a full 32 bits wide. It would be a pity to

Sforce implementations to be significantly less efficient for the next five years, even for the sake of 0

future flexibility.
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Nebula solves this tradeoff with a compromise. The architecture address space is defined to

accommodate 32-bit addresses. This is the set of addresses that can be generated by instruction

operand address calculations. However, there is also an implementation virtual address space that is

permitted to accommodate only addresses of a somewhat smaller width. This is the set of addresses

that can be accommodated by the virtual memory mapping hardware.

Certain loose constraints are placed on the implementation address width (it must be at least 24

bits, and must be at least 3 bits wider than the width of a physical memory address), so the

programmer is assured that the virtual address space is no smaller than a certain minimum size. It is

assumed that the operating system will know the implementation virtual address size and limit tasks to

the corresponding amount of virtual memory. While execution of certain devious operations will

reveal the precise implementation virtual address size to an application program, the limitation is

extremely unlikely to have any effect on a normal program.

The implementor is therefore free to construct an implementation that provides only 28-bit or 24-bit

virtual addresses but that, in exchange for the limitation, possibly has significantly higher

performance (for a given level of technology) than an implementation that supports the full 32-bit

virtual address space.

4 Procedure Call Context Area

The notion of a procedure call pervades the Nebula architecture. Procedure call instructions look

j like ordinary instructions, and arguments to procedures are specified in exactly the same way as

instruction operands. Executing a procedure call suspends the current "context" and begins

execution of the called procedure in a fresh context.

Conversely, unimplemented instructions simply perform procedure calls to specially vectored

handlers; the handler receives the instruction operands as its arguments. (This allows the instruction

set to be expanded in the future and retrofitted to earlier hardware merely by providing ordinary

procedures, possibly written in a high-order language, to simulate the missing instructions.) Other

traps simply abort the current instruction and instead perform a procedure call to a trap handler.

Interrupts suspend the current context and forcibly execute a procedure call to the interrupt handler,

which executes in a fresh context.

Whether a new context was generated by an explicit procedure call, a trap, or an interrupt, if the

currently running procedure executes a return instruction, the context is discarded and the previous

context is resumed transparently.
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What is a context? It is the set of information and resources necessary to execute a single

procedure invocation within a task. This includes a PSW, information about the procedure's

parameters, the address of the exception handier (if any), and a set of registers. Every procedure call

establishes a fresh set of registers, thereby eliminating the problem of register allocation in the

presence of procedure calls.

This is about all the programmer needs to know about procedure calls, except for the details of

which instructions to use and how to access parameters. Calling a procedure saves the current

context, establishes a new context, and starts executing the new procedure; returning discards the

current context and resumes the previous context. There are also special instructions that are used

to switch tasks. These guarantee to preserve the current task context and to properly start up the

new task context. The only problem is that procedure calls may be nested indefinitely, which means

that no a priori limit can be placed on the amount of context information that must be saved. It is

therefore impractical to expect context information to be held entirely in the CPU; at least some of it

must, under some circumstances, be kept in main memory.

This is the purpose of the context area that was referred to above. The context area is the region of

memory that the programmer must initialize and then keep away from. The region of memory must be

reserved for the purpose; this is the joint responsibility of the application programmer and the

operating system. The address of the region must be loaded into a special context pointer register in

a manner prescribed by the architecture specification.

The most important point is that the context area must be protected by the memory map in a certain

manner. The memory map, as is usual, not only describes how to translate virtual addresses into

physical addresses, but also describes what kinds of access are permitted for various regions of

memory. Typical access modes are read-only, read/write, execute-only (that is, instruction -fetch-

only), and no-access. Nebula provides yet another access mode: context-only. The hardware will

refuse to treat a region of memory as a context area unless its access mode is context-only; and if a

region of memory is context-only then it may not be read or written in any manner other than in

connection with hardware- supported context-area operations such as procedure call and return.

This specification provides memory to the hardware needed to support procedure calls. It prevents

the application programmer from meddling with it, or even examining it, by means of explicit

protection mechanisms. Nevertheless, the nature of the information stored in the context area is only

loosely prescribed, and the format of the information, or even precisely when it is stored, is nowhere

defined. Once again this vagueness in the architecture specification is intentional. An
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implementation is free to keep all context information (even the current set of registers and the PSW!)

in main memory: this may be appropriate for implementations where small size and low cost are more

important than performance. On the other hand, an implementation may provide an elaborate cache

for the context area, such that the context area is never stored into or loaded from except for cache

overflow or task switching; this may be appropriate for an implementation with extremely high

performance. An implementation with a 28-bit or 24-bit implementation virtual address space may be

able to use a much more compact format for the context area than one that provides 32-bit virtual

addresses, thereby reducing the number of memory cycles necessary for procedure calls and

parameter access.

Now, it is of course impractical not ever to examine a context area. The operating system must at

least be able to force the hardware to sweep any caches and store all context information back into

main memory, if only so that tasks may be swapped out or checkpointed. Special instructions are

provided for this purpose: the "store task" instruction guarantees to place all information related to

the task in main memory in such a way that "load task" can resume the task properly. These

instructions merely provide safe ways to load and store the context information; they do not provide

for examining the information.

While it is best for a process not to meddle with its context area in the ordinary course of things, it is

desirable for a debugging routine to be able to examine the context area in order to print a traceback

of outstanding procedure calls, examine the register sets of various procedure contexts, and so on.

The solution here is to divide the work between the implementor and the operating system. The

implementor is responsible for delivering with the hardware the implementation -specific information

necessary to construct a set of software modules that provide an abstract interface to the context

area. The software is implementation-specific, in that it must contain details of the context area

formats used by the particular hardware; but it performs services that are defined in an

implementation -independent manner.

This implementation -specific software must be given privileged access to context areas, and so it

must be trusted. It must therefore be incorporated into the operating system, the rest of which can be

written in an implementation -independent manner (as far as context areas are concerned), because

all implementation-specific operations are performed by the implementor- provided software modules.

The operating system in turn provides debugging services to the application program, without ever

actually letting the program directly access its own context area.S

Notice again the general rule of thumb. The operating system can be trusted to abide by
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convention, and access a context area only through a special software interface. An application

program cannot be trusted, and is forcibly prevented by the memory management system from

improperly accessing the context area.

it was suggested several times, by this author and others, in the course of development of the

_rchilectture specification, that perhaps special instructions should be defined for accessing the

context area. The implementor could then insure that the access provided by these instructions was

consistent with the context area format used throughout the implementation. This would increase the

* hardware costs, however, if only in the form of extra microcode. But the function can be provided in

software at least as easily, and performance is not at all critical for debugging applications. Ideally,
Il consistency could be insured simply by giving the responsibility for writing the software modules to0

the implementor rather than to the author of the operating system. Overall, the use of well-defined

software modules to provide implementation -independent interfaces to implementation -dependent

aspects of the hardware appears to be the most cost-effective solution.2

5 Memory Map Size

Nebula uses a rather unusual format for its memory map. Rather than dividing the virtual address

space up into pages of fixed size and using a page table (which can be very large for such a huge

address space!), Nebula divides the virtual address space into variable-length "segments". Each

segment may be arbitrarily large, but must reside in a contiguous region of physical memory. This

contiguity requirement imposes a constraint on the operating system. To make memory allocation

more flexible, it is desirable for a task to be divided up into as many segrn~nts as possible. On the

other hand, it is also desirable, for reasons of speed, to be able to store the entire memory map in an

associative cache, because the map must be consulted on nearly every memory access! For a given

level of technology, associative caches are impractical above a certain size, placing an upper limit of

the number of segments supported by the memory map.

Nebula has attempted to resolve this with a compromise: an implementation must support at least

16 segments, but may support more for increased performance. This is possible because a memory

2 111 should be mentioned that Letand Szewerenko has written a fairly short (300-lme) program that. when executed with
suitable privileges on Nebula hardware, probes the context area and uses a number of heuristics to attempt to decipher the
context area format used by the hardware The heuristics may not succeed in every case, but they are amazingly effective for

p "typical" hardware iplementations. If the heuristics succeed, then the program automatically generates a table of constants
and oitseis from which the software interface modules can be generated automatically. Because of this, we expect that very
little programmer lime need be expended in the future to generate these software modules The use of modules is therefore
not merely a cheap solution, henceforth it is very nearly a free solutiont
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map, like most data structures kept in memory by the hardware, has a variable-length format; the first

word of the map contains the length of the rest of the map. (This allows any map cache to be loaded

much more quickly if the map has only a few segments defined in it; it is not necessary to load a full 16

entries.)

This compromise was justly criticized as being useless. Programs (it was argued) will tend to use

specific segments for specific purposes, such as instruction areas, data areas, and context areas. If a

program uses more than 16 segments, then it will not be portable, because some implementations will

support only the minimum number of segments; while if no program uses more than 16 segments,

then it is fruitless for any implementation to support for than 16 segments.

It was suggested that if the memory map were large enough, one could get most of the benefit of a

page-oriented map simply by making all segments the same size and calling that size a page. With

this different pattern of usage it would make more sense to provide a variable-size map. It was

therefore proposed that there be no limit on the size of a memory map: a map kept in main memory

could specify any number of segments. Granted, it would not then be practical to keep the entire map

in a cache, but perhaps some implementations would cache the first 16 entries, or the 16 most

recently used entries, and access main memory to get a map entry if the entry was not in the cache.

* In this manner one would get the same performance for programs that used fewer than 16 entries,

and yet make it possible for programs to use any number of segments, and even use a paged virtual-

memory strategy, making it possible for Nebula to be used for time-sharing as well as the originally

envisioned military applications.
0

The counter-argument is that caching part of a map is much more complicated than caching all of a

map. It probably requires more hardware to first try the cache and then go to memory on a cache

miss if the same level of performance must be maintained. It takes some clever algorithms to maintain

*cache entries with a least- recently- used replacement discipline, particularly if it is optimized for 0

special cases such as never deleting the cache entry for the current context area or the current

instruction.

*The key phrase here is "clever algorithms". Such algorithms are almost always better put in 0

software than hardware. It was observed that operating system software could take the place of

hardware in maintaining a cache. If the operating system is organized properly, it can provide an

application program with the illusion of having many segments even though the hardware only

*directly supports some small number such as 16. This combined hardware/software apporach 0

currently appears to be the most cost-effective solution to Nebula memory management.
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This appreach therefore suggests that the Nebula architecture specification should remain

unchanged. Memory maps should be of variable size, and a given hardware implementation must

j support maps of up to 16 segments, but is permitted to support more than 16. There also must a way

for the operating system to know exactly how many segments are supported.

Let the map directly supported by the hardware b-- called the "actual map". The operating system

must also maintain for each task a "logical map" that may contain arbitrarily many segments. When a

task is to be run, some subset of the segments in its logical map must be selected (a "working set")

and placed together to form an actual map. This actual map is then specified to the hardware when

the task is resumed. As long as the application task stays within its working set, it may run at full

speed with the (possibly cached) actual map. If the task tries to touch a logical segment outside its

working set, a trap occurs, and the operating system must displace some segment in the working set

with the new segment needed by the task.

* This solution is more flexible and cost-effective than trying to support maps of arbitrary size in

hardware. The cache replacement algorithm is entirely in software, and so can be much more clever

and elaborate than any algorithm that could be practically embedded in hardware or microcode.

More important, the cache replacement algorithm can be tuned for particular applications. Memory
* accesses can actually be a bit faster in the typical case because the virtual address mapping process

is simpler. Most important of all, whether to use a hardware map cache, and if so, exactly how large it

should be, are questions left to the implementor to decide. The operating system can be written to

take full advantage of such a cache no matter what its size. As technology improves, allowing larger

map caches, new Nebula implementations may take advantage of it for improved performance, in a

manner completely transoarent to application programs and compatible with appropriately written

operating systems.

6 Conclusions

Software portability is achieved for the Nebula architecture, not by tying down the meaning of every

last hardware register and bit in the architecture definition, but by defining an abstract interface

* visible to the programmer that is implemented by a combination of hardware and software. Parts of

the architecture, such as the context area, are like "abstract data types"; the programmer is told

specific ways in which they may be used, but is not told all the details of their implementation.

The Nebula architecture specification intentionally does not tie down details that the programmer

need not know. This gives implementors of Nebula hardware the necessary freedom to provide more
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cost-effective implementations over a wide performance spectrum. Certain aspects of the

architecture are purposely left undefined or are reserved to the implementor so that new

implementation technologies and strategies may be exploited in the future. 0

Coordinated, machine-specific software can provide a compatible, implementation.independent

interface to the programmer, by mediating between an abstract, implementation.independent

interface specification and the machine-specific hardware details. This combined hardware/software 4
solution to certain portability problems is much more cost-effective than a solution expressed purely

in hardware.
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ABSTRACT

* The 1862A Instruction Set architecture dISA) is resulting in a Nebula - Military
Computer Family Data Processing System. This combination will provide a significant
improvement in software performances for both unit and distributed-processor real-time
systems. The performance gain will be obtained from the short, compact code sequences
resulting from the inherent power of the instruction set architecture ,dSA), and from the

* inherent machine speed of the Military Computer Family. This gain obviates the need
for any assembly-language programming for real-time applications. Productivity, relia-
bility, and maintainability requirements demand that all future real-time applications
be written in a higher order language. Experiments to date show that the Ada-Nebula
combination results in the best source code to object code expansion values, hence best
performance. Of the higher order languages most suited to real-time performance (For-
tran, Jovial, CMS-2, and Ada), Ada with an Ada-based program design language pro-
vides the capability for the highest productivity. Traceability between design and code,
using Ada and Ada PDL, and a machine processable documentation methodology will
provide the reliability and maintainability desired by the software community.

DISCUSSION

In 1973-1974, a Department of Defense cost study' revealed that approximately
56% of the DoD software costs were for embedded systems. Furthermore, the same study
showed, and our experience at RCA validates, that more than 50% of the cost for soft-
ware is spent on life-cycle maintenance. That study further stated that because the an-
nual DoD software bill would approximate 4.5 billion dollars per year, significant sav-
ings could be realized in software cost by reducing development costs while improving

* the reliability & maintainability of the product.
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An instruction set architecture, Nebula, has been implemented in the latest-technol.
ogy computers, such as the Military Computer Family (MCF), a group of embedded corn-

*A puter systems. The Nebula-MCF combination, used with the higher order language
Ada*, results in the fusion of three current technologies to achieve improved reliability
and maintainability for embedded computer systems.

Embedded computer systems primarily are used to control such larger systems as
those involving radars, weapons, or satellite communications. The run-time efficiency of
the computer programs, therefore, is of paramount importance because these systems
must be able to function continually and accurately. Embedded system programs can be
quite large, typically 300,000 to 1,000,000 lines of code. Also, the life cycle of embedded
systems is long-typically 10 to 15 years. The Ballistic Missile Early Warning System,

Id for instance, has already survived for 23 years.

Programs that have such long lives, however, are often maintained in later years
by personnel who have no knowledge of the rationale and design factors that influenced
the original design and implementation. Furthermore, embedded systems as a whole are

* subject to frequent modifications throughout their lives. From the Program Manager's
perspective, the software for embedded systems represents a significant development cost
and, typically, a Fignificant schedule risk because software is a labor-intensive product.
Additionally, the Program Manager wants the software to have 'robustness,' that is, the
software must b!~ capable of accepting changes and modifications without 'breakage'

a (having the software fail in such a manner that reprogramming of software segments is
required). Historically, tightly written assembly-language programs have a large break-
age factor.

The program manager must field reliable software. This reliability can only be
achieved by building software without 'sneak paths of faulty logic' that result in errors
that occur when a unique set of circumstances occur, or memory proceeds to become con-
taminated because of insufficient or inadequate garbage collection. Finally, the program
manager also must build software for a machine that fits the system's requirements for
space, power, reliability, and the environment. In the past, small space meant a limited

* capability machine. To cope with the machine capability and still have an efficient run-
time software capability, the software had to be written in tightly coupled assembly-lan-
guage, and was often the product of "creative super stars," with resultant poor or absent
documentation.

* The 32-bit SuperMini computers and the 32-bit micro-machines can provide comput-.
ing power in sufficiently small physical packages to be useful to embedded computer sys-
tems. The Military Computer Family, which includes SuperMinis and micro-machines,
will provide the computer power both in memory-addressing capability and in speed,

* *Registered trademark of the US Government (AJPO)
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permitting structured higher order language for the whole range of current military ap-
plications. This advantage can be exclusive of the instruction set implementation or the
targeted higher order language. 0

The MCF, however, is being implemented using the Nebula Instruction Set Archi-
tecture (ISA), which provides additional benefits to the construction of embedded sys-
tems software. Nebula instructions are capable of many different contexts within each
instruction, so optimum code generation can result for each higher order language state-
ment. That is, the compiler often can build code that is as efficient as that produced by
an assembly language programmer. A study' in December 1981 compared the amount of
object code that would be generated by different architectures, including Nebula, for a
selected group of Ada programs; the result of that study is shown in Fig. 1. Currently, a
real-time programmer can expect to achieve at least a 2:1 efficiency using the NEBULA
architecture, and a ratio of Ada source code to Nebula code that is approximately 1.4.
The feature of a variety of contexts within each Nebula instruction enhances the use of
pipelining and cache memory applications within the MCF, which results in additional
processing speed.

Program Nebula IBM/370 PDP-11 1750A UYK-43 VAX

VIP 20 64 52 56 60

DIFF 20 52 56 44 44 18

COS 44 128 66 86 104 63

BIN SH 49 118 92 80 112 63

INSRT 45 70
HPSRT 72 92

TR SH 65

INORD 25

FFT 137 334 264

XPO 55 126 82 108 136

Subr. 8+2n 36+4n 26+2n 26-4n 28 -12n

Figure 1. Comparison of Nebula Object Code with Other
Selected Instruction Set Architectures (in Bytes).
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Finally, Nebula has great capability to support higher order languages, especially
Ada. For instance, Nebula directly supports the FOR statement without the dedicated
use of registers. The three-address arithmetic capability of Nebula incorporates, in a sin-
gle instruction, the most common arithmetic forms of higher level language programs.
As an illustration, the Ada construct "C: = AB" will result in the Nebula instruction
"ADD A, B, C."

Besides being compatible with Nebula, Ada has several features that enable it to
enhance efficiency and lower cost of realtime embedded systems software. For example,
Ada will permit separate compilations as shown in Figure 2. Because specifications and
bodies of procedures can be compiled separately, this capability supports top-down de-
sign. It also supports configuration management of Ada programs.

1. package A is Compilation Unit A is
X: INTEGER:0O compiled & stored in "Program

end A; Library" This creates "X"

* 2. with A; Compile into Library.
procedure P is Q~ depends on P

begin A.X:=A.X+l; end; Pdepends on A

3. with P;I
procedure Q is begin P; end;

4. LINK Q FROM LIBRARY results in
A, P, Q linked into executable
object module such that the
execution order is:
Elaborate A (initializes X)
Elaborate P (no Effect)
Elaborate Q (no Effect)
Call main procedure Q (calls P)

Figure 2. Compiling, Linking, and Running an Ada Program

Ada is a strongly typed language, that is, the type of data determines the type of
operations permitted. A type is characterized by a set of values and a set of operations,

* resulting in more readable, hence more maintainable, programs and increased data secu-
rity. For instance, if APPLES are defined as a type, i.e.:

type APPLES is range 0..10;
and ORANGES is also defined as type, then:
APPLES + ORANGES cannot be converted.

Instead, the programmer must make a deliberate type definition (such as: FRUIT
(Apples) +FRUIT(Oranges) in order to achieve a conversion.
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The Ada Package feature allows the programmer to logically group related items to-
gether, permitting the definition of new types and their operations without the details of
implementation (data abstraction) being a concern of the programmer. This feature also
permits variables, constants, and types needed by other program units (Name-Space
Management) to be collected, resulting in programs that are easier to read and main-
tain.

The Ada also has low-level facilities support features, one of which is a predefined
library package, called SYSTEM, that contains implementation-dependent specifications.
Another feature, possibly the most important low-level facility, involves record represen-
tation, permitting the programmer to define data fields down to the bit level, if neces-
sary. In control systems the requirement is often to have multiple control fields in a rec-
ord. This usually ended up requiring some embedded assembly code simply for the pack-
ing, unpacking, etc. of those fields. With Ada directly supporting those functions, pro-
grams can be written completely in a higher order language.

SUMMARY

The Military Computer Family will provide computer power, in terms of speed and
memory addressing, in packages satisfying almost all, if not all, embedded applications
requirements. Further, the Nebula ISA will provide the real-time programmer with ad-
vantages in terms of execution speed and space. Finally, Ada, which has a high degree
of compatibility with the Nebula ISA, permits top-down construction of modular pro-
grams that are highly readable and maintainable.

The result will be a new generation of computer programs for embedded real-time
operations that will have greater capability and improved reliability and maintainabil-
ity.
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ABSTRACT

5 The ability to generate structured High Order Language (HOL) code for
modern computers is an almost universally accepted requirement. Raytheon,
one of the three Army Military Computer Family (MCF) contractors, has responded
to this requirement by developing tools allowing the generation of code for 0
MCF in PASCAL. The major features of PASCAL are available to the user includ-
ing the intermixing of PASCAL and NEBULA modules.

This paper describes the general structure of the PASCAL tool and provides
examples of how PASCAL has been effectively employed on the Computer Control
Panel of the Raytheon MCF Advanced Development Model. Measures of MCF instruc-
tion set code generation are presented. Experience to date indicates that
PAS/NEB provides an effective HOL tool for programmers while awaiting the
availability of MCF ADA.

INTRODUCTION S

One of the major objectives for the MCF is to provide a standard pro-
cessor family that will improve major system survivability in the field.
With standardized processor hardware, failed or battle damaged units in high

priority systems can be replaced, if necessary, with operable units removed
from lower priority systems. Such trading of components may extend to the
circuit card assembly level.

The Computer Control Panel (CCP) is the component of the MCF providing
field maintenance personnel with the tool set needed for rapid processor
maintenance and validation. Because speed in repair is critical, a high
probability of fault isolation to a single module is required. And because
maintenance activity under battlefield conditions will invite errors in
fault diagnosis, an intelligent, operator friendly interface is required.
As a result, the MCF program includes a significant diagnostic and operator
interface requirement for the CCP. Although ADA was not yet available, code
generation in an HOL was desired.
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Along with the obvious advantages a HOL offers, such as ease of coding and
debugging and well-structured output, the addition of such features as recur-
sion, records, and types would speed the software development effort. The use
of a more efficient implementation tool would provide the opportunity to add
some features such as an English-like command language for the user interface
and produce a more sophisticated diagnostic executive.

In parallel with the design effort, evaluation of the Army-supplied simu-
j lator led us to decide to enhance this simulator's user interface in order to

make it user friendly. Using the same software for both user interfaces (CCP
and simulator) would allow us to spend more time developing a single sophisti-
cated package instead of splitting the available resources over two similar
efforts.

This led to a search for a HOL which could be interfaced with the exist-
ing simulator code and could also be easily compiled into NEBULA. As part of
a continuing effort to improve our software and microcode development tools,
techniques were being evaluated to transport software developed on one of
Raytheon's Software Development Facilities (SDF) to Raytheon developed hard-
ware. The SDF host processor in this case is the Digital Equipment
Corporation's VAX* 11/780. Two important facts were uncovered:

1) The DEC* PASCAL compiler for the VAX will, as an option, output 3n
assembly level listing.

2) Raytheon has a significant base of skilled PASCAL programmers.

We decided to design a "cross-assembler" which would translate the output
of the PASCAL compiler into NEBULA. This would, within a reasonable time
frame, provide a software tool giving a high payback on the actual MCF program.

Figure 1 depicts the general software development flow available as a
j result of utilizing PASCAL and a common user interface for assembly level

software development. The programmer codes and checks out his program at the
high order language level utilizing the host's (VAX) software development
tools. The debugged PASCAL is then translated to assembly--rror-free NEBULA
code which is assembled and linked with the GFE tools. The Army-supplied
simulator, enhanced by Raytheon to provide a similar interface to the user as
would be encountered on the CCP, is then used to check out the translated
program. After simulator checkout is completed, the translated program is
transported to the MCF equipment and verified on the real hardware. This last
step is facilitated by the fact that the CCP user interface is a subset of the
Raytheon simulator user interface.

DESIGNING PAS/NEB

If requested at compilation, the VAX PASCAL compiler will give the user
an assembly listing of the machine code it generated. This list file is used
as input by PAS/NEB to accomplish the translation. Translation is a one pass
operation, each line being read and immediately translated. Figure 2 is a
high level flow chart showing the basic structure of PAS/NEB. A line is

*DEC and VAX are trademarks of Digital Equipment Corporation
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Figure 2 High Level Flow Chart of PAS/NEB

228

I 0.. .. . . . . .. . ii i i m



examine3 to determine if it contains VAX machine language. Page headings,

summary lines, comments and blank lines are discarded. PASCAL source lines
are saved in a temporary file to be retrieved if the user requests that PAS/NEB

output contain PASCAL source lines interleaved with NEBULA as comments explain-

inq the machine code.

PAS/NEB is table-driven. Opcodes are located in an internally-stored
table which gives either the equivalent NEBULA opcode or a pointer. A series

of unique subroutines in PAS/NEB handle those opcodes which do not translate

in a 1-to-I fashion. Approximately 70% of all opcodes in the table can be
directly translated without any special handling. This assumes that every
opcode in the table is encountered with equal frequency. Actually, a small
set of opcodes, such as MOV and CMP, account for the majority of the code

generated by the PASCAL compiler. Some of the opcodes, such as XOR or ACB

(add, compare and branch), which PAS/NEB is capable of translating are never
used by the PASCAL compiler. Others may be generated, but only if the pro-
grammer needs an infrequently-used feature of PASCAL, such as double-precision

arithmetic.

A module from the MCF diagnostic software, about 1000 PASCAL lines, was
run through PAS/NEB, resulting in 1782 VAX assembly language instructions.
This translated to 2111 NEBULA instructions, or 84% of all opcodes being trans-
lated 1-to-I. It should be noted here that the 1782 to 2111 ratio does not

indicate that NEBULA is a less efficient language. Each computer has some
instructions which do not have an equivalent in the other and must be trans-
lated by generating a series of instructions. Analyses conducted by IBM 1 and
EG&G 2 , among others, have shown that the NEBULA instruction set provides 0
highly efficient code, both in terms of static program size and memory

accesses.

Writing PAS/NEB was rather like trying to translate from French to
English by looking each word up in a dictionary. You can translate each word
correctly, but the overall product will not necessarily make sense. Each 0

language has idioms which cannot be translated literally and experience here
shows that computers are the same. The problems encountered when designing

PAS/NEB range from very simple and easy to solve to reasonable direct solutions
requiring precise bookkeeping and determination. Finally, there is the class

of problem that requires experience and technical judgement for a viable solu-

tion. Some problems in the former category include: 0

1) The program counter and stack pointer on the VAX are registers 15 and

14. They are registers 0 (zero) and 1 in NEBULA.

2) The VAX numbers its bits with 0 (zero) being the least significant

bit in a word. 0 is the most significant bit in a NEBULA word. This S
causes complications when translating bit field instructions. The VAX
compiler, for example, uses bit field instructions to move a byte from

the middle of a word.

3) The VAX CMP instruction does both a signed and an unsigned compare,
setting different condition codes for each. It has signed and 0

unsigned branch instructions which look at the appropriate condition

codes. NEBULA has separate signed and unsigned compare instructions,
and only one set of branch instructions.
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4) The VAX CALLS instruction automatically signals to the computer to
save the values stored in all registers on the stack. The registers
retain their values so that the procedure being called may make use S
of them, which the PASCAL compiler does. The NEBULA CALL instruction
also saves the value of all registers, but does not necessarily retain
the original contents of the registers while the called subroutine is
being executed.

There were also a number of more complex problems caused by the fact that •
the machine language source generated by the PASCAL compiler is not exactly
correct. One of the most difficult problems to be handled in the original
design of PAS/NEB was that of variable names. The VAX PASCAL compiler handles
all variables as offsets from registers. Each variable name is equivalenced
to a constant representing that variable's offset from the proper register.
All global variables are defined as offsets from register 11, all call-by-name •
parameters as offsets from iegister 3, etc. The problem occurs when a program
contains a local and a global variable with the same name. Figure 3 shows a
sample PASCAL program. The function returns the factorial of the number

PROGRAM EXAMPLE; 0
VAR

OPERND: INTEGER;
FUNCTION FACTORIAL ( OPERND: INTEGER): INTEGER;
BEGIN

IF OPERND > 1 THEN
FACTORIAL OPERND * FACTORIAL(OPERND-1) 0

ELSE
FACTORIAL 1

END;
BEGIN
OPERND := FACTORIAL(10)

END. 0

Figure 3 Sample PASCAL Program

passed. It computes the factorial recursively*. The variable OPERND is 0
declared as a global variatle in the main block, but is also the name of the
parameter in the function FACTORIAL. The assembler listing output from the
compiler is shown in Figure 4. The symbol OPERND is defined twice; once for
the global variable and then for the parameter. The function will assemble
correctly since the OPERND accessed is the parameter OPERND, which was defined
in the last equivalence statement. However, the main block references the 0
global variable OPERND. When assembled, the offset for the parameter OPERND
will be used. To correct this problem, PAS/NEB builds and uses a symbol table,
keeping track of all the symbols defined in each block currently in effect,
along with the block name associated with each symbol. Every time a symbol is

*It should be noted that recursion is not the most efficient way of solving 0

this problem. In fact, for large numbers, this function would overflow the
stack. The recursive approach was used to demonstrate how the PASCAL
compiler and, consequently, PAS/NEB handle a problem of this sort.
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SYMBOLS FOR EXAMPLE
OPERAND = 8

;SYMBOLS FOR FACTORIAL

OPERND =-24

FACTORIAL = -20

.PSECT $CODE,PIC,R.EL,SHR,EXE,RD,NOWRT,2

.entry FACTORIAL, M<R9,RlO,R11,IV>

MOVAB $GLBL, Rll

MOVL, $20, R10

PUSHL Ri

PUSHL AP

SUBL2 R10, SP

MOVL @4(AP), OPERND(FP)
MOVL, SP, -12(FP)

CMPL OPERND(FP), $1

BLEQ 1$

SUBL3 $1, OPERND(FP), R10

MOVAB -28(FP), R9

*MOVL R10, (R9)

PUSHL R9

CALLS $1, FACTORIAL

MOVL RO, R10

MULL2 OPERND(FP), RiO

MOVL RiO, FACTORIAL(FP)

a BRB 2$
1$:

MOVL, $1, RiO

MOVL RiO, FACTORIAL(FP)

2$:

MOVL FACTORIAL(FP), RO

RET

.PSECT $CODE, PIC,REL,SHR,EXE,RD,NOWRT,2

.ENTRY EXAMPLE, tM<RiO,Rii,IV>

MOVAB $GLBL, Rll
MOVL, SP, -12(FP)

MOVZBL #10, i2(Ril)

* PUSHAB 12(Rll)S

CALLS #1, FACTORIAL

MOVL, RO, R10

MOVL RiO, OPERND(Rli)

RET

Rul-BASED PROGRAM LEVEL STATIC STORAGE

* * END

Figure 4 PASCAL ASSEMBLY LISTING
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SYMBOLS FOR EXAUMPLE

PROGRAM EXAMPLE;
VAR

OPERND: INTEGER;

OPERND 8

SYMBOLS FOR FACTORIAL
FUNCTION FACTORIAL ( OPERND: INTEGER): INTEGER;

FACTORIAL OPERNO = -24

FACTORIALFACTORIAL = -20

.SECT $CODE,COOE

.GLOBAL FACTORIAL

FACTORIAL:

JSR SAVEP.EGS

NOVA $GLBLtB,R1 5tW

NOV #20tW,R14t~W

PUSH R5tw
PUSH APtW

SUB Rl4tW,SPtW

6 NOV @(0)(4(AP))tW,FACTORIAL_ OPERNDCFP)tW
NOV SPtW,-12(FP)tW

BEGIN

IF OPERND > 1 THEN

CMP FACTORIAL OPERND(FP)tW,#ltW

BLEQ FACTORIAL -i1tB

FACTORIAL := OPERND * FACTORIAL(OPER;O-1)

*SUB #11W,FACTORIALOPERND(FP)tWR14tW

MOVA -28(FP)tB,R13tW

NOV Rl4tW,8OR13tW

PUSH FR13tW
PUSH #1

p ELSE

JSR FACTORIAL

m OV P4tW,RZ14tW
MUL FACTORIALOPERND(FP)tW,R14tW

NOV R14tWFACTORIALFACTORIAL(FP)tW

BR FACTORIAL_2S$13

FACTORIAL 1$:

FACTORIAL:1

END;
NOV #ltW,R14tW0

NOV R14tW,FACTORIALFACTORIAL(FP) tW

FACTORIAL_2$:
MOV FACTORIALFACTORIAL(FP)tW,R4tW

JUMP RESTORE REGS

.SECT SCODE,CODE

.GLOBAL EXAMPLE

* EXAMPLE:

NOVA $GLBLtB,R15tW

MOV SPtW,-12(FP)tW

BEGIN

OPERND := FACTORIAL( 10)

MOVL, #lOtB,12(R15)tW

NOVA 12(R15)tB,R4tW

*PUSH R4tW

EN.PUSH 
#1

JSR FACTORIAL

NOV R4tW,R14tW

NOV R14tW,OPERND(R1S)tW

R

* . END

Figure 5 Results After Running PAS/NEB
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encountered, the symbol table is searched, and the associated block name is
prefixed to the symbol name. Figure 5 shows the example program after being
run through PAS/NEB. Here the parameter OPERND has been changed to be 0
FACTORIAL OPERND, eliminating the ambiguity.

USING PAS/NEB

As previously noted in Figure 1, PAS/NEB is used in much the same way as
the standard PASCAL compiler would be used. Programs and modules are written 0
in PASCAL and tested. Depending on the nature of the software, a program can
be tested fully on the VAX, making use of the VAX's debugger and any other
programming aids desired, before it is translated to NEBULA. After all logical
and PASCAL coding errors have been cleared, a final pass through the compiler
is accomplished with the /MACHINE option invoked. The assembly level code
output is then used as input to the PAS/NEB translator. 0

In the course of designing PAS/NEB, a number of features of PASCAL were
discovered to be untranslateable. By untranslateable, it is meant that the use
of these features generates assembler sequences that are either impractical or
impossible to translate to NEBULA. For example, the use of the VALUE statement
in PASCAL, which is used to assign an initial value to variables, does not have 0
any effect on the assembly listing. If programmers were to use this statement,
the variables involved would not be initialized in NEBULA. Other restrictions
which had to be imposed include:

1) The WITH statement cannot be used. Fortunately, WITH is an infre
* quently used statement as demonstrated in Reference 3. 0

2) NEBULA instruction names cannot be used as global variable names. For
example, TEST is a NEBULA mnemonic and so could not be used as a global
variable name. It could, however, be used as a local name in a proce-
dure.

3) Labels can be used, but all labels declared within one compileable
module must be unique.

4) The /CHECK option on the compiler, which instructs the compiler to
generate run-time checks on all array accesses to be sure that the
subscript is within bounds, cannot be used during the /MACHINE option
pass.

Perhaps one of the most amusing problem encountered so far with PAS/NEB is one
we have dubbed "the two smart alecks." The PASCAL line reading

0 I := 255 0

is translated by the PASCAL compiler to the following sequence:

MOVZBL #-1, R10
MOVL RI0, I(R11)

233



The MOVZBL instruction means move zero-extended byte to longword. The PASCAL
compiler designer has decided to be very tricky and has figured that,
for a single byte, a negative 1 looks the same as integer 255. After being
processed by PAS/NEB, the generated sequence is as follows:

MOVL #-1 B,R14 W

MOV R14 W,I(R15) W

For those familiar with NEBULA, this sequence would appear to be the same.
However, the NEBULA assembler sees the first instruction and decides that, even
though the user specified that the first operand was to be a byte, if the user
wants a negative one, it'll give him a negative one. It therefore overrides
the byte specification and moves an entire word into R14, changing I :=255 to
I :=-1. Various maneuvers were attempted to "trick" either the PASCAL com-
piler or the NEBULA assembler into doing what they were told to do. The only

solution found was to require that users declare all constants and use the
symbolic name instead of inserting constants directly into the code.

PAS/NEB is only as efficient as the PASCAL compiler itself. On the
* average, a long PASCAL program will translate to NEBULA with about a 1-to-2

ratio of PASCAL lines to NEBULA instructions. If program size or speed become
a critical issue, there are some very simple optimizations on the NEBULA output
from PAS/NEB that would significantly reduce the size of the generated code.
Similar actions could be applied to VAX code generated by the PASCAL compiler.
The PASCAL compiler is a one-pass compiler, which makes optimization rather
difficult. in an effort to optimize the use of memory accesses as opposed to
register accesses, it translates an assignment statement into a MOV to a
register and then from the register into the desired memory location. If the

* memory location is accessed again before it is modified, the register may be
used in place of another memory access. However, in many cases, the value in
the register is never accessed again. A very simple optimization of the code
generated would be for the programmer to scan the compiler generated code and
remove the extra MOV statement in places, such as initialization routines,
where the value in the register is not accessed again.

EXPERIENCE WITH PAS/NEE

*PAS/NEB has been used very effectively on the Raytheon MCF program. It
has been used both to reduced the time and the cost to develop NEBULA programs
and to capture large amounts of existing software. over 8000 lines of PASCAL
are used in the various software packages that comprise the Raytheon Computer
Control Panel. Figure 6 depicts the major functional elements of the CCP
software package. The modules written in PASCAL are indicated by the bold

*outlining, of these, 4000 lines were developed specifically for the CCP. The
other 4000 were captured from the simulator enhancement effort, and other
internal projects. The CCP specific software consists of three types:

1) A menu-driven user interface

*2) Resource management functions such as display support routines, dynamic
buffer handler, and file manager

3) Unique functions such as machine state logging.
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The package that was captured from the simulator enhancement effort consisted
of the entire software development mode user interface. This included the
syntax parser, extensive format conversion routines, and all command executors;
i.e., MODIFY, SET BREAKPOINT, IPL, LOAD, etc. The remaining captured software
was the majority of a generalized diagnostic executive which is resident in
the Computer Under Test.

Time was saved in developing these packages since they were designed,
coded and verified on the VAX using all the resources of the VAX. Test pro-
grams were also written in PASCAL. Cost savings were realized from many
aspects. Obviously, the shorter the development time the less the cost. But
this was not the only savings. Additional savings resulted from the reduced
use of the NEBULA assembler, since PAS/NEB generates assembly-error-free NEBULA
source, and reduced simulation time since the bulk of the software was
thoroughly checked in PASCAL.

As a specific example, the External Computer Maintenance Supervisor is a
menu-driven program that allows the user to set up and run the MCF diagnostics.
It generates menu displays, prompts the user for input, highlights selected
fields in reverse video, and eventually, after setting up the diagnostic data-
base, passes control to the computer under test. This program, totaling
approximately 2900 PASCAL lines (not including menu text), was designed, coded
and checked out on the VAX before I/O capability had been added to the simula-
tor. This effort involved extensive review of menu format and content and
operator ease-of-use, and took approximately 10 weeks. It was then run through
PAS/NEB and, without any modifications except the addition of a NEBULA-specific
module which handles input, ran successfully on the NEBULA simulator. Since
neither the hardware nor the simulator could support I/O at the time the task
was started, not only would the coding and checkout have taken longer (approxi-
mately 50 man-weeks for roughly 6500 lines of NEBULA, assuming an average
throughput of 34 lines of NEBULA per day to design, code, test and document)
but it would have been impossible to exercise the menu-handler in an inter-
active way until the hardware was available.

SUMMARY

PAS/NEB was developed to be an interim software tool for the Advanced,
and eventually, the Full Scale Development phases of the MCF program. Our
experience to date with code written for the CCP and other elements of the
MCF indicates that the effort expended in producing PAS/NEB has been repaid S
many times in the ease of coding, checkout, and documentation. The few
restrictions imposed on the PASCAL source have not had a noticeable effect
on coding technique.

In certain functions such as real time interfaces, some manual optimiza-
tion or linking to NEBULA code modules will be necessary. All functional S
elements necessary to accomplish are available as previously described.

The PASCAL debugging tools available on the commercial processor have
been extremely valuable in developing the error-free code input to PAS/NEB.
These tools also provide for easy modification of existing PASCAL code for
MCF application.
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It is anticipated that PAS/NEB will continue to be used for the develop- 0
ment of MCF demonstration, test and evaluation programs.
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~I ABSTRACT

Many aspects of MIL-STD-1553B design have becrr routin&, standard trans-
ceivers, encoder-decoders and nearly coplete interfaces can be purchased.
Bus controller and smart4 RT performance, however, is still evolving as
capability beyond mere protocol handling is possible in an I/O module. The
Air Force Programmable Interface for Multiplex Systens project created a
1553 embeddable processor on a 6"x9" module with sufficient power to TY --
support multiple dialects of MIL-STD-1553--i2 operate as an independent pro-
cessor executing an extensive general purpose instruction set. The conven-
tions established for host-to-channel interface allow the channel to both
efficiently execute bus lists and off load exception processing from the
host.

I. INTRODUCTION

In the MIL-STD-1553 world recent emphasis has been on Remote Ter-
minals (RT' s), their size and cost reduction, and standard chip sets.
In fact, MIL-STD-1553B is an RT standard, leaving a few fairly straight-
forward issues to be resolved by the designer.

Processors hosting 1553 channels can be built to an established
standard, MIL-STD-1750A. However, the External I/O instructions in
MIL-STD-1750A are not defined, leaving a major function of an avionics
bus system without a standard for design (see Figure 1). This is the
bus control function, whose design determines bus efficiency.

One reason for this is that bus controllers are still evolving from
virtually hard-wired controllers, through simple microcoded designs, to
potentially highly capable I/O processors on a module. A contribution
to this evolution is PIMS.

The Programmable Interface for Multiplex Systems (PIMS) is an Air
Force program with Sperry Univac and TRW which originally investigated
the hardware requirements for a multi-dialect RT (ccmpatible with various
versions of MIL-STD-1553). It soon developed into a general channel def-
inition task in which it was found that in about 50 square inches and 20
watts a respectable processor plus a 1553 front end, plus a host inter-
fae could be fit. Because of the processing potential, the channel
could behave quite differently than older types. PIMS then explored
what such a channel could do, and this paper gives a high level view of
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the results. First, here is a look at how controllers differ and how they
have evolved.

HOW OONTROLLERS CAN DIFFER

All MIL-STD-1553 systems have one bus controller which directs all •
traffic and up to 32 remote terminals. Since all bus controllers must
transmit and receive words on the bus according to the protocol in the
standard, they are in that sense identical. Channels differ in where the
processing intelligence resides and in related overhead on the bus.

Figure 2 shows bus transactions in which the bus overhead associated 0
with the controller, the internessage gap, is identified. The "exception"
referred to is either an error (parity, no response) or a flag set in the
RT's Status Word. Note that with an exception-free transmission, inter-
message gap is shown as less than one word time. For a message with an
exception, however, the time is indeterminant because some intelligence
must process the exception. This time is obviously a function of the
handling algorithm, but it is also a function of the speed of the pro-
cessing and of the efficiency of the initiation of the exception processing
and the restart of the normal bus activity. Here controllers differ
greatly. This is discussed below along with conment on the intrinsic
processing power that controllers have always had.

CONTROLERS OF THE PAST

Early bus controllers (e.g in an AYK-14) were multiple module units
(a module arbitrarily defined as 50 square inches and 20 watts) and faced
problems enough in packing encoding/decoding logic and required protocol
control in the allowed space. Error handling and decision-making functions 0
resided in the CP or I/O processor, leaving the 1553 channel with the
"simple" task of mapping supplied command words into a series of trans-
missions and receptions. A simplified flow chart of non-mode bus control
operation is shown in Figure 3. Thinking of the channel as a processor,
it executed only one (but very complex) type of instruction, the bus in-
struction. The bus instruction encompasses the transmission of the command
word, the transmission and reception of all words in the 1553 message
called for in the instruction, receives and decodes the Status Word,
initiates and completes any memory transactions required for the message,
and tests error conditions. I.e., it may take 700 microseconds and over
50 non-trivial steps to execute a bus instruction. The demands of the
protocol required that, for even the simplest bus controller, a complex 0
algorithm in microcode or sequential logic had to be implemented on the
channel. The task even today is beyond the capability of most micropro-
cessors, such as a Z80.

Again thinking in terms of the bus controller channel as a processor,
the logical advance was to add to the bus controller's capabilities.
Controllers like that in the AP 101C fetched their own bus instructions
out of main memory, and executed other simple instructions such as junps,
halts, and read/write of control memory. The ability to execute out of a
second code stream ("priority chain") was included in some controllers.
These channels still, on any exceptional condition such as a no response
or Service Request fram an RT, passed control back to the CP or I/O pro-
cessor. The decision making and general purpose processing was still
missing on the channel.
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CONTROLLERS OF THE PRESENT

A designer today can comfortably (?) put on 50 square inches and
20 watts the following:

- 256 x 16 Random Access Memory
- 16 Bit ALU
- 4K x n of Microcode and Vector PROM
- Microsequencer
- Host Interface (Processor and NMemory)
- 1553 Interface

Notice the emphasis on processor capability and de-emphasis of the
1553 interface. A 1553 module today can be thought of as a processor
with a port to the host computer and main memory, and a port to the 1553
bus.

Alternately it can be thought of, in light of past controllers, as
a merger of the I/O processor function of, for example, an AYK-14 with
the specific 1553 bus controller function, implemented on one micro-
machine. Actual bus control operations become just another instruction
in the repertory.

The important questions now arise: What should the channel do?
What is its code flow like? What is its instruction set? How does it
interact with the host? How is its power used to decrease interrressage
gap? The answers the PINS program produced are discussed in the upcoming
sections.

II. HOW THE PINS CHANNEL WORKS

The PIMS program developed a processor oriented design and it was
implemented on one 6x9 inch PC card. This "processor plus host port plus
1553 port" was then microcoded with an instruction set and code structure
tailored to its bus control function. This function can be broadly sum-
marized as:

1. Provide most efficient bus use
2. Provide greatest ease of prograrmmng

PINS worked toward these often contradictory goals in three basic
ways:

1. It simplified the host computer's role in the 1553 operation *
2. It set up the channel to execute autonomusly out three

specialized code streams
3. It implemented an instruction set with features which explicitly

reduced interressage gap.

* HOST/CHANNL igrERAcTiot S

The general philosophy was to use the processor on the channel to do
the 1553 processing that had been previously done by the CP or I/O Pro-
cessor. Host Interrupts can be limited to synchronization and non-routine
operations and to those calculations where the CP's faster speed is an ad-
vantage. S

Except for the "Priority Chain" instruction stream discussed below,

the channel allows the CP to avoiC 1553 processing to whatever extent
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the system designer desires.

Specifically, the two processors interact as follows:
- The host can read and write 16 channel control memory

locations, plus two status words. The control memory
includes configuration control, instruction counters, etc. 0

- The host can set and clear various channel flip flops, used
to start/stop the channel operation, start Priority Chains
(see below) and a few other functions.

- The channel can access the host (main) memory.

- The channel can interrupt the host either as a result of
executing a macro-instruction calling for an interrupt or
as the result of a channel detected transmission exception.

The minimum the host has to do is load one control memory location
(an address pointer) and set a "start" flip flop on the channel. The
channel begins executing its macro instructions using the provided ad-
dress pointer and can ccmplete setting itself up and proceeding with its
task.

CHANNEL INSTRUCTION STREAMS (CHAINS)

Figure 4 shows the blocks of code associated with the channel, incl-
uding the limited host setup code mentioned above and host interrupt
handlers if any are required. The other three blocks are executed by the
channel out of main memory and have three distinct roles, as described 0
below.

NORMAL CHAIN

The pointer the host must provide the channel is the Normal Chain
pointer, so that the first and primary stream of code is the Normal Chain. 0
It tends then to have the structure shown in Figure 5, with a setup al-
gorithn and the "bus list" or those instructions which generate the bus
traffic. The subloops establish the "minor cycle" or periodicity of
bus traffic.

Controllers in the past have had this bus list structure in which all 0
the information needed to generate one message is packed in a two or three
word instruction, and bus instructions are strung one after another with
perhaps a jump instruction at the end to form a loop. Exceptions such as
no response or Service Request caused the chain to stop and the host to be
interrupted. This structure, if no exceptions occurred, had very little

* overhead and intermessage gap (between the reception of a Status Word and
the transmissioii of the next Crmand Word) waL minimal. Even in early
controllers bus utilization could be quite high, as long as no exceptions
occurred. It is desirable to retain this characteristic of older con-

trollers, high efficiency with no exceptions, but add efficient exception
handling to the channel's capability.

EXCEVTION CHAINS

The Exception Chain structure is somewhat analogous to the host's
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interrupt structure. An exception such as a Service Request resulting
from a bus instruction causes the channel to suspend the Normael Chain
and start the Exception Chain associated with Service Request. PINE
in microcode maps exceptions into one of 18 vectors, fetches a starting
address provided by the programtmer and begins execution at that address.
A special "Return" instruction will cause the Normal Chain to continue.

An Exception Chain can include any general instructions and any bus
instructions required to handle the exception. In the handling of a
Service Request the chain may fetch the RT's Vector Register via a bus
instruction, index branch on the number in the vector to a specific ser-
vice request handler, execute the task required and return. Or the Ex-
ception Chain my interrupt the CP to handle the Service Request.

The explicit vectoring and avoidance of interrupts allows the channel
to handle exceptions efficiently and minimizes the long intern-ssage gaps
associated with exception processing.

PRIORITY CHiAINS

The Priority Chain gets the host back in the picture. If the host
needs a transaction over the 1553 bus asynchronously (i.e. it is not

* part of the bus list loop) it can load channel control memory with a
Priority Chain pointer and set a channel flip flop. The channel will
comrplete the (Normal) Chain instruction being executed, then start ex-
ecuting the Priority Chain. Via a simple semaphore or an interrupt the
host can tell if the Priority Chain has comp~leted (executed a Return
instruction). The Normal Chain then resumes. The Priority Chain can

*include any channel instruction and Exception Chains will be called as
needed out of the Priority Chain.

PINE Priority Chains are like priority chains in previous control-
lers in that they eliminate a tedious process of the host halting the
channel, changing Normal Chain pointer, starting the channel, etc.

The broad goals of high bus utilization and ease of programming
should be recalled: The Normal Chain allows a stream of exclusively bus
instructions to be executed, effectively keeping intermiessage overhead in
the microcode domain. It also facilitates prefetch of instructions to
further reduce intern-ssage gap. The Exception Chains are designed to

* simplify exception processing and as long as the exception algorithm is
within som~e bound they are more efficient than an interrupted CP. I.e.
intermessage gap on the bus due to exception handling is less. Priority
Chains as suggested above are a very timre efficient and code efficient
way for a CP to initiate an asynchronous bus message.

* ~ CHANNEL INSTRUCTION SET0

PIMS code structures have been devised for ease of programmring and
efficient bus usage. What of the instructions themiselves? we have as-
sumed a contemporary controller has a general purpose set plus bus in-
str-uctions, at least. How many, what are they, and how fast do they run?

As an example of what can be done, PIN4S implemented a full complement
of fixed point arithmetic and jump instructions with several addressing
mo~des (see Table 1).
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Operations: Load
Store
Add
Subtract
XOR S
AND
OR
Increment
Decrement
Test Bit
Test and Set Bit
Reset Bit
Compare
Shift Right Circular

Addressing Modes:
Imiediate
Direct (Main) Memory Access
Indexed (Main) Memory Access
Channel Register

Table 1 Instruction Repertory
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In addition to this general processing set, the channel executes
bus instructions of two or three words for CT-RT, RT-CT, RT-RT mode
and data transfers.

Other features of the instruction set explicitly simplify or speed
up channel operation (see Table 2).

CRANNEL PROCESSOR PERFORMANCE

The channel processor will tend to be slower than the host for a
number of reasons, including slower path to memory and less room per
module for performance improving hardware. PIMS itself executes a reg-
ister-to-register add in about 8 microseconds. A new design building on
PINS experience and using higher density integrated circuits could real-
istically achieve 5 microseconds or less for register-to-register types.

This relatively slow speed must be contrasted to the alternative:
interruption of the CP. Generally, the more bus instructions embedded
in exception processing the better the channel processor performs relative
to an interrupted CP.

OTHER PIMS FUNCTIONS: RT MODE, MONITOR

Both a multi-dialect Remote Terminal function and a Bus Monitor
feature were programmed on the PIS module, making it a full function
channel. The bus controller and instruction set microcode actually
occupies only half the microcode PROM. The RT and Monitor functions are
not discussed in detail here but it should be pointed out that the memory
capacity and power of the channel micro-machine make their implerentation
straightforward.

It was also found that PLMS could execute chain instructions and
support the Remote mode in a "busy" state simultaneously. I.e. a mode
code such as Synchronize (Mode 1 in MIL-STD-1553B) typically caused the
channel to respond busy to subsequent commands and created an interrupt
to the host. PIMS will similarily begin to respond busy but instead of
interrupting the host it will start an Exception chain. The channel can
scan the 1553 bus for traffic addressed to it while it executes the Ex-
ception Chain. Should a command come in it suspends the chain, processes
the message, and returns to the chain, which will eventually complete,
causing the channel to return non-busy. This feature is a less important S
but revealing feature of the power of a channel processor.

III. WHY BOIHER?

It is not a foregone conclusion that because a channel processor
like PIMS can be built it should be built. Why not keep the CP in con- 0
trol and the channel "simpler"? A few reasons follow.

MULTIPLE CHANNELS

Complexity of avionics systems is increasing and multiple channel
processors will be required. To handle exception processing for multiple 0
channels will take more CP time and require more complicated interrupt
handlers. Many "exceptions" are actually routinely occurring events, such
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Special Instruction Features

Feature Use

-Implicit RT Address Allows a mressage to be sent to the last
in Bus Instruction referenced RT without wasting code to

determine which it was. Facilitates
exception processing.

- Configuration Control Allows all instructions to a given RT
Table to be NO-OP'ed by clearing one bit in a

channel control register.

- Jump On Exception Allows programmrer to conveniently check
for exceptions on bus instructions within

14 an Exception Chain.

- "Skip" bit in Bus Allows NO-OPing of a bus instruction by
Instruction setting a single bit within it.

- Exception Masking Allows certain exception conditions to
be ignored via a bit mask. Simplifies

* exception handling.

- Exception Chain Override Suppresses Exception Chaining on a per
bus instruction basis.

Table 2 Special Channel Features
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as Service Requests frcm RT's, so the CP tine taken can be non-trivial.

If the channels are PIMS - like channel processors, only the load on
main memory for instruction fetches and data buffer transfers increases
with the number of channels.

FLEXIBILITY

While PIS has the ability to act as a nearly autonomous processor,
the system designer can use it any way he chooses. I.e. he can make the
CP take as much of its traditional role as he wishes using the interrupt
options in the channels instruction set. However, the more autonomy 0
allowed the channel, the better the system throughput tends to be.

POTENTIAL FOR STANDARDIZATION

Full channel processing capability represents a plateau in that while
processor speed, module power, instruction set power might change, the
fundamental nature of the channel will not. Thus the channel is functionally
mature enough to make a standard MIL-STD-1750A to MIL-STD-1553 channel pro-
tocol feasible.

SUMMARY

PIMS reflects ideas and realities which have existed since the first
bus controller. There has always been a need for intelligent processing
to support any non-trivial bus control function, and even the simplest
bus controller requires processing power just to handle the protocol. PIMS
has created a channel with power to support the protocol and the processing,
all on a single module, and has further implemented code structures and
instructions to exploit this power. PIMS can serve as a basis for further
enhancements and the development of host to channel conventions.

BIOGRAPHY: Bob Salter has worked for Sperry Univac since S
graduating with an M.S.E.E. from the University of Minnesota
in 1975. He has worked in I/O from discrete transceiver
design to I/O processor design, primarily for serial interfaces.
He is currently a member of the SAE A2K High Speed Bus Sub-
committee.

254

254 ,



K

SINGLE CHIP MIL-STD 1553B BUS INTERFACE UNIT
M KEEPS PACE WITH CHIP SETSID

Scott Schaire 0

0Grumman Aerospace Corporation
OBethpage, N.Y. 11714
0LR5-9418

ABSTRACT

JThe introduction of chip sets for multiplex terminal designs that 0
provide savings in hardware and software may leave the designer confused
as to which chip set to use for a particular application. The Grumman/-
Standard Microsystem Corp (SMC) Bus Interface Unit (BIU) is compared to
other BIUs in terms of capabilities and amount of peripheral chips
required. It is shown that the single-chip Grumman/SMC BIU performs
similar functions of the other chip set BIUs at a lower cost. 0

INTRODUCTION

The MIL STD 1553B Large Scale Integration (LSI) chip sets replace a
considerable amount of "older technology" circuitry reducing chip count,
circuit complexity, power dissipation, and cost. What, in particular, is
replaced; which functions are included in the LSI chip sets and what must be
performed externally? What are the distinctive features of the new BIUs and
for what applications are they best suited? These are some of the questions
addressed by this paper. S

First, the Grumman/SMC single-chip LSI is presented. Functional elements
of the Grumman/SMC BIU are shown and their operation is discussed. The
tradeoffs associated with placing MIL STD 1553B multiplex terminal functions
on or off the chip are also discussed. Included on the chip is direct memory
access (DMA) handshaking for the 16-bit parallel interface to the subsystem. 0

All parallel transfers use this DMA handshaking; the latter is described in
detail.

The Grumman/SMC BIU also includes unique capabilities, such as extensive
error detection and diagnostics, which make it ideal for many multiplex termi-
nal applications. Its universal DMA port enables the use of a minicomputer, 0
16- or 8-bit microprocessor, first-in/first-out (FIFO), or no processor as the
terminal host processor. The BIU detects noncontiguous words and RT-RT
transfers as a Remote Terminal (RT) or Bus Controller (BC) which avoids
confusion for all types of RT-RT transfer errors. Switching from Remote
Terminal to Bus Controller mode or vice versa simply involves a toggle of the
RT/BC input. This feature is particularly desired for dynamic bus or back-up 5
bus controller applications.
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Besides the Grumman/SMC BIU, four other MIL STD 1553B LSI chip sets have

been introduced. The Harris RT chip, Marconi chip set, Smith chip set, and
Rockwell Collins chip are compared to the Grumman/SMC BIU. Major differences

are highlighted and suggested applications presented. A comparison chart is S

included which covers areas such as cost, error-detection capability, and
amount of peripheral circuitry required for specific applications.

Each chip set offers advantages for various multiplex terminal designs.

For most applications, the Grumman/SMC BIU offers the MIL STD 1553B features
desired at the lowest system cost.

WHAT IS REPLACED?

Figure 1 shows the functional elements required by a single bus MIL STD S

1553B Remote Terminal, Monitor, or Bus Controller. The Analog Transceiver (A)

includes signal limiting, threshold detection, bus driving, and 800 Usec

timeout circuitry. This element is not replaced by any of the BIUs because of
the difficulty of combining analog and digital functions in a single mono-

lithic device. The Encoder/Decoder (B) translates between Manchester and

Non-Return-to-Zero (NRZ) serial formats, detects syncs and word errors, and S

encodes sync and parity. The UART (C) is a serial-to-parallel converter for
words received by the BIU and parallel-to-serial converter for transmitted
words. Command word decoding, wordcount recognition, mode code and broadcast
detection, and status word and last command word manipulation are functions of

the Protocol Sequencer (D).

RIU 
]

A B C D

ANALOG MANCHESTER 16-IBITI
DATA TRANSMIT/ ENCODER/ UART PROTOCOL

B R I 

SUBSYSTEM OR

HOST INTERFACE
PROCESSOR

1806-OO1P

Figure 1. Single Bus Terminal Functional Elements
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The Grumman/SMC BIU includes elements B, C, D, and part of the Subsystem
Interface (E). The latter is responsible for transferring 16-bit words
between the BIU and the subsystem or host processor (F). This interface is
partially replaced by the BIU. Flexibility for a variety of subsystems is 0
provided by a smaller external interface (E) which tailors the BIU general-
purpose handshake signals to specific subsystem host processors.

GRUMMAN/SMC BIU OPERATION

The Grumman/SMC MIL-STD 1553B BIU, shown in Figure 2, consists of a 0
Manchester encoder decoder (see B, Figure 1), double-buffered transmit and
receive registers (see C, Figure 1), five registers, response timer, word-
counter, protocol sequencing and error logic (see D, Figure 1). Also included
on the chip is the sequencing logic necessary to initiate and control DMA
transfers to the subsystem (see E, Figure 1).
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LOGIC REGSTE INVALID MSG

MANIN SEO 0 VALID CMD 0
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MIL-STD-155313 LSI CHIP

1806-002P
Figure 2. MIL STD 1553B LSI Chip

257



When operating as a Remote Terminal (RT), the RT/BC input is held high by
the subsystem. The chip remains idle until the status word and remote termi-
nal address are loaded. Message reception is then initiated when the chip
receives a valid command word through the Manchester decoder, receive shift 0
register, and receive buffer. The Last Command register is loaded with the
contents of the Command Word register, and the receive buffer is transferred
to the Command Word register.

Eleven bits of the Command Word register are decoded for mode codes
(five-bit subaddress equals all ones or zeros), transmit or receive (T/R bit), 0
and a word count. For non-mode code commands, the wordcounter is loaded with
the five-bit wordcount field of the command word (00000 equals 32 words). For
mode code commands, the wordcounter is loaded with the MSB of the wordcount
field (<10000 loads zero, 10000 loads one).

For transmit commands, the status word is converted from parallel to 0
serial through the transmit buffer and transmit shift registers and
Manchester-encoded and transmitted. Then the command word and status word are
consecutively written into memory by DMA transfers. The BIU reads subsequent
data words from memory and transmits them over the MIL STD 1553B bus until the
wordcount is zero.

For receive commands, the BIU performs the Manchester decoding and
serial-to-parallel conversion, and writes the command word followed by the
data words into memory. When the wordcount is zero, the status word is
transmitted unless the command was a Broadcast or there was a Message Error.

The transmitted status word is a logic combination of a double-buffered
status word register loaded by the host processor and those bits enabled and
set by internal decode and error logic. After a status transmission, all bits
are cleared except the dynamic bus accept bit until they are again set by the
load RT address BIU command. However, transmit last command and transmit
status word mode commands do not clear these bits.

Inclusion of the status word, last command word, and mode code logic on
chip relieves the subsystem host processor of any high-speed command word
decoding requirement. Transmit Last Status, Dynamic Bus Control Offer,
Inhibit Terminal-Flag, Override Inhibit Terminal Flag, and Transmit Last
Command mode codes are automatically handled by the BIU. Other optional mode
codes (such as Transmit Bit Word) may be properly serviced by relatively slow
microprocessor host software.

When operating as a Bus Controller (BC), the BIU first reads a 3-bit word
through DMA which specifies the operation (e.g., normal bus controller trans-
fer, RT-RT, write register, etc). The next word it reads is placed in the
command word register and the transmit buffer, encoded with a command sync, 0
and transmitted. The BIU performs transmit, receive, decoding, and DMA
functions in a manner identical to RT operation.

Universal DMA Sequencing

In order to achieve the complex timing and sequences required while 0
minimizing chip area, a state sequencer architecture was chosen. The state
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sequencer controls all registers, counters, logic blocks, and the DMA hand-
shaking. It runs at 2MHz and is the equivalent of 15,000 bits of read-only-
memory (ROM).

All data transfers required for operating the Grumman/SMC BIU are handled
using DMA techniques. Although the mention of DMA may bring to mind critical
timing requirements, the method incorporated in this design uses asynchronous
handshaking to eliminate bus contention problems.

The DMA control is performed in a straightforward, simple manner. There S
are four types of DMA transfers (command write, data write, data read, and
control read), and these are the only means of communication between the BIU
and the subsystem. Therefore, the only external circuitry required for the
subsystem is an interface for the four DMA transfers.

The format for writing a command word into memory by DMA is as follows:

0 Grumman/SMC BIU activates Data Transfer Request (DTR) to inform the
subsystem interface that it wants use of the 16-bit data bus. The
Command/Data (C/D) line is asserted high and Read/Write (R/W) is
asserted low to indicate a writing of a command word.

* When Bus Grant Acknowledge (BGACK) is recognized by the BIU, the
command word is placed on the bidirectional data bus (DI5-DO) and
DTR is negated. Write Enable (WE) is activated when the data is
valid. The subsystem interface may optionally decode the command
word subaddress field, set up an external address counter, and write
the command word 0

* The BIU continues outputting the command word until Data Transfer
Acknowledge (DTACK) is received. When the data bus is no longer in
use by the BIU, WE and R/W are negated. This informs the subsystem
interface that it may return use of the 16-bit bidirectional bus to
the subsystem. •

DMA handshaking for a data write is identical, except that C/D is negated
for the transfer.

Processor-initiated DMA transfers are used for all BC operations, and
loading and monitring of internal registers as an RT. After three control 0
bits and oither required information (e.g., bus controller command files) are
set up in memory, tht subsvctem interface may assert Command Strobe (CSTR).
When the BII' ri,,(c gni 7-05 C-'] (within 500 nsec, if not in the middle of a
message), it will pulse (+,mmand Strobe Acknowledge (CSTRA) low for 500 nsec.
This signal i- utilizcd h\ the subsystem interface to negate CSTR and load an
exturnal iddrc.,- ountvr with the address of the three control bits. 0

The (;rummai/SM(U BI!' will ilso concurrentlv initiate a DMA read cycle by
providing the following hind,;hake signals:

0 BII! asserts DTR, K/W high, and C/I) low for data

* When the subsystem interface asserts BGACK, indicating that the
16-bit bus is free, the BI negates DTR
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* The subsystem interface may then perform the read of the three
control bits and assert DTACK when the data is valid

j The BIU will latch the data internally and assert C/D high,
indicating completion of the DMA read 0

* The subsystem interface may then return control of the data bus to
the subsystem.

Note that a data read is identical to the sequence described above,
except that CSTRA is not pulsed. The same handshaking applies to reading 0
command words, RT address and status word, and data words as either an RT or
a BC.

Since the subsystem interface requirement is for universal DMA hand-
shaking, the BIU can be used in numerous applications with various subsystem
host processors. Grumman is now ready to specify a semi-custom monolithic 0
chip which will contain a 16-bit address counter and other registers to
replace the multi-chip subsystem interface. Figure 3 shows the external
circuitry required for applications using the Grumman/SMC BIU.

It should be obvious that the more sophisticated the terminal, the more
intelligence is required in the subsystem DMA interface.

WITHOUT SEMICUSTOM CHIP

a.x

ZO
0

z0
WIT SEI-CSTOM CHIP

NONE 16-BIT 8-BIT FIFO MINI-

MICRO PROCESSOR MICROPROCESSOR COMPUTER /
MAINFRAME

1806-003P SYSTEM HOST PROCESSOR COMPUTER

Figure 3. External Circuitry Required for a Subsystem Interface
for the Grumman/SMC BIU
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Error Detection

Another unique feature of the Grumman/SMC BIU is its error detection

capability. The Grumman/SMC BIU recognizes the following errors:

0 Improper sync

* Invalid Manchester II code

* Information field > 16 bits

* Not odd parity

* Improper word count - includes too few, too many, and noncontiguous

words

" Response time - as a BC, the amount of time between the end of

transmission of a message and the status word reply by a remote

terminal is grea.ter than 14 1 sec. For RT-RT transfers, the status

words of both the transmitting and receiving remote replies are
checked. As an RT instructed to receive an RT-RT transfer, the

status word of the replying terminal does not occur within 14 Psec
from the receipt of the transmit command

" Address mismatch - as a BC, the address of the status word reply
from a remote terminal does not match the remote terminal address
field of the command. For RT-RT transfers, both status words are

checked. 0

On-Line Diagnostics

The Error Register is written into memory automatically, along with the
Last Command and Data Registers at the end of all RT messages. Any of these
registers may be written into memory at the request of the subsystem host

processor by issuance of a CSTR with the proper three control bit 1 i.e.,

001 = error and remote terminal address, 000 = last command, 11X = data

register). Writing of error and remote terminal address registers allows a

remote terminal to update a Build-In-Test (BIT) word and check its own ad-
dress. The Last Command Word register provides an automatic reverse-linked
list of the commands received by the RT for additional software diagnostics.

The Data Register can be viewed by the host processor to diagnose transmitter,

receiver, or bus problems.

Transmission Continuity

There are areas of the 1553B standard that, when implemented on a BIU,
require interpretation by the BIU designer. One such section is transmission

continuity, which states that a tcrminal must verify that a received message
is contiguous. However, the standard does not specify a tolerance on contigu-
ity. That is, what interword gap is to be considered a message error?

X indicates don't care.
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Clearly, if the gap exceeds 4.0 psec, the minimum intermessage

wrd may be considered part of a new message. Using 4.0 isec as a t
al ow up to that gap without detecting a message error. But do

% your R'I to respond when there's a 3.95 psec interword gap?

The Grumman/SMC BIU is designed with fail-safe features and ass
the received message is in error when the interword gap exceeds 0.5
Sht:E rhe wordcount is not zero, the BIU will wait 0.5 lisec for a new
the word is not received, the Message Error (ME) bit is set and stat
tr, :ismission is suppressed.

P:T-RT

With a response timer and extensive error detection built into
the frumman/SMC device will never become confused by RT-RT transfer
Plact, the BIU in RT mode as the receiving terminal and delay the tra

tcrminal's response by more than 14 isec. The BIU will not hang up
will timeout, setting the response time error bit in the error regis

the ME bit in the status word. RT-RT smarts included in the Grumman
make it ideal for these applications as a RT or BC.

RT-BC with the Flip of a Bit

The Grumman/SMC BIU is also best-suited for Dynamic Bus Allocat

Backup Bus Controller applications because of both the subsystem int
Bus Controller operation. The subsystem interface requires the serv
four general purpose DMA transfers whether the BIU is in the RT or B

aMode switching is accomplished by simply flipping the RT/BC input.

no need to beef-up the subsystem interface to handle different paral
transfers or timing with the Grumman/SMC BlA.

Not only is the external hardware simple for BC mode operation,
the software. The host microprocessor must prepare a memory file wi

control word, specifying normal or RT-RT transfer followed by the me
There is no requirement for specification of transmit or receive, mo
broadcast, or wordcount. The Grumman/SMC BIU automatically decodes
fields from the command word that it reads from memory.

OTHER BIUs

The other chip set MIL-STD 1553B BIUs being introduced are very
to the Grumman/SMC BIU in terms of functional capability. Major dif
are in the implementation of bus controller operation, error detecti
diagnostic features, the subsystem interface, cost, and chip count.
Harris BIU No. I chip, Marconi chip set, Smith chip set, and Rockwel
Thip are compared to the Grumman/SMC BIU. The outstanding advantag(
'isadvantages are discussed below. An overall comparison chart is p
:ahle 1) which provides a brief overview of chip set capabilities.

-;!Tre(d were chosen with many terminal designs in mind; however, ea

tion is unique. It is recommended that reade-s perform theit
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Harris BIU No. 1

Figure 4 shows a basic block diagram and functional pinout of the Harris
BIU No. I. Its major advantages are the ability to operate at up to 5 MHz
data rate for non-MIL STD 1553B applications and its simplicity of use in MIL

STD 1553B RT designs. However, designs of bus controller terminals using the
HS-3273 (Harris BIU No. I) require a larger number of components and host
assistance unlike the Grumman/SMC BIU. This is due to the lack of protocol
sequencing and subsystem interface logic. A second LSI chip, HS-3274, which

iDO BUS

MANCHESTER PARALLEL

ENCODER INTERFACE

SLOGIC 4

SDETECTION Z
~~~LOGIC COTO

TIMING & CONTROL CONTROL

J MANCHESTERL

DECODER

(BASIC BLOCK DIAGRAM)

16
+5 1/o BUS

GND

DMA REQUEST

DMA GRANT

MANCHESTER IN N 1 DMA READ

DMA WRITE

MANCHESTER OUT D DMA ACKNOWLEDGE

BIU NO.1

CLOCK 2 - 0 CMD/STATUS WORD PRESENT

MESSAGE COMPLETE

* CLOCK 1 1110ERROR PRESENT, ME BIT OR-ED

CODE-EXECUTE STROBE

BUSY- DISABLE

CMD WD LOAD (C) /SEND STATUS

S5

WORD COUNT

(FUNCTIONAL PINOUT)

1806-004P

Figure 4. Harris BIU No. I
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will significantly reduce component and host assistance requirements is
presently only in the conceptual design stage at Harris.

Smith BIU Chip Set 0

The Smith BIU chip set shown in Figure 5 consists of three devices, an
encoder/decoder - UART (MT 32006); a protocol sequencer (MT 32004); and a
16-bit wide by 32-bit long first-in/first-out (FIFO) memory (MT 32003- not
shown). Its unique features include extensive mode-code decoding and a FIFO
for burst mode DMA applications. One major disadvantage of the Smith BIU chip
set is its size and cost. Three chips cost more than $1,000 as opposed to the
single-chip Grumman/SMC BIU at approximately $250.

Marconi BIU Chip Set

The Marconi BIU chip set consists of four devices: a receiver, trans-
mitter, interface unit and internal highway control logic unit. Because of a
separate receiver device, the Marconi BIU chip set is best-suited for triple
and quad redundant applications. Each level of redundancy requires only an
extra receiver to properly handle superceding valid commands. Similar to the
Smith BIU, the Marconi BIU includes extensive mode-code decoding. It also
falls short of the Grumman/SMC BIU in terms of size and economics. Four chips
costing more than $1,000 comprise the Marconi BIU chip set. When component
handling, board density, board handling, and wiring complexity are considered,
the cost of the Marconi BIU chip set becomes even greater compared to the
Grumman/SMC BIU.

Rockwell/Collins BIU

The newest of the BIUs, the Rockwell/Collins, is shown in Figure 6. It
represents the largest deviation from the other BIUs since two Manchester
decoders are included on a single chip. It is obviously best-suited for
dual-redundant terminal applications. It is capable of meeting the MIL STD
1553B, but only with quite extensive additional circuitry for protocol se-
quencing and a subsystem interface. Since the capabilities of this BIU depend
largely on its external electronics, it is not fair to include the
Rockwell/Collins in a comparison chart of "full function" BIUs.

CONCLUSION

Table I shows an overall comparison of four of the BIUs. The simple RT
application listed is for an RT that transmits a bank of 16-switches in
response to a transmit command. This simple RT also provides for the five
mode codes handled by the Grumman/SMC BIU. The reason the chip set BIUs
require less supporting circuitry is because their status word and remote
terminal address are hardwired rather than soft loaded.

Tle BIUs discussed in this paper are all fully capable of implementing
all MIL STD 1553B options. Some have less capabilities on chip thar others
while claiming increased flexibility for various subsystems and future appli-
cations. The Grumman/SMC single-chip BIU certainly keeps pace with the other
BIUs in terms of capabilities on chip. Its subsystem interface provides the
flexibility for future mode commands and status bits and a variety of host
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Table 1 Overall Comparison

GRUMMAN/SMC BIU CHIP HARRIS BIU # 1 CHIP SMITH BIU CHIP SET MARCONI BIU CHIP SET

PROVIDES 16-BIT PARALLEL 8-BIT/16-BIT 16-BIT 8-BIT
INTERFACE TO THE SUB-
SYSTEM

ALLOWS FOR SETTING OF NO NO NO
qESERVED STATUS BITS

CONTAINS DOUBLE-BUFFERED SAME AS GRUMMAN/SMC FIFO-BUFFERED 1/0 4 DOUBLE-BUFFERED I/0, 4
1/0, 4 DOUBLE-BUFFERED DOUBLE-BUFFERED DOUBLE-BUFFERED STATUSSTATUS BITS STATUS BITS BITS
PROVIDES DMA HANDSHAKE SAME AS GRUMMAN/SMC SYNCHRONOUS TRANS- DMA HANDSHAKE CONTROL
CONTROL ASYNCHRONOUS FER CONTROL SYNCHRONOUS DATA TRANSFER
DATA TRANSFER

HANDLES RT-RT COMMANDS YES YES YES 0
HANDLES BROADCAST YES YES YES
NO PROVISIONS FOR OP- NO NO

ERATING AT DIFFERENT
BIT RATES

CAPABLE OF READING LAST CAN ONLY READ ERR6R - CAN ONLY READ ERROR CAN ONLY READ ERRORCOMMAND, ERROR, OR DATA AUTOMATICALLY CHECKS* REGISTERS OWN TRANSMISSION

ABOVE REGISTERS AUTO- NO NO NO
MATICALLY DMAED INTO
MEMORY AT END OF RT
MESSAGES

40-PIN SINGLE CHIP 40-PIN SINGLE CHIP 48-PIN ENCODER/DE- 40-PIN RECEIVER
CODER - UART 40-PIN TRANSMITTER
40-PIN FIFO 48-PIN INTERFACE UNIT
53-PIN PROTOCOL 40-PIN INTERNAL HIGHWAY
SEQUENCER CONTROL LOGIC

FOUR REGISTER CHIPS SIMILAR TO GRUMMAN/ SLIGHTLY LESS THAN SLIGHTLY LESS THANTHREE LOGIC CHIPS SMC GRUMMAN/SMC GRUMMAN/SMC
TRANSCEIVER/TRANS.
FORMER AND OSCILLATOR
IS SUPPORTING CIRCUITRY 5
FOR SIMPLE RT APPLICATION

ADDITIONAL BIU NEEDED SAME AS GRUMMAN/SMC ADDITION ENCODER/ ADDITIONAL RECEIVER
FOR REDUNDANCY DECODER-UART
HANDLES: SAME AS GRUMMAN/SMC HANDLES ALL MODE HANDLES ALL MODE CODES

DYNAMIC BUS CONTROL CODES AUTOMATICALLY AUTOMATICALLY
TRANSMIT STATUS WORD* INHIBIT T/F BIT 5
OVERRIDE INHIBIT T/F

BIT
TRANSMIT LAST COM-

MAND CODE
CODES AUTOMATICALLY

PROVIDES FOR READING OF NO HARDWIRED WITH PARITY HARDWIRED WITH PARITY BIT
SOFTWARE LOADED BIT
RT - ADDRESS

NMOS JUNCTION - ISOLATED CMOS METAL GATE CMOS
CMOS

APPROX $250 APPROX $500 >$1,000 > $ 1,000

1806-007P
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Figure 6. Rockwell/Collins BIU Chip Functional Block Diagram

processors. Considering the supporting hardware and software required, the
Grumman/SMC BIU provides the MIL STD 1553B features required for most applica-
tions at the lowest system cost.
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IN A

0REMOTE TERMINAL APPLICATION

1m Albert DiMarino

I~ ~Circuit Technology Inc.

o 160 Smith Streeto) Farmingdale, New York 117350Tel. k516) 293-8686

I Mr. DiMarino has a BSEE from the University of Buffalo and is the
National Marketing Manager, Standard Products at Circuit Technology Inc.,

Sa wholly-owned division of Marconi Electronic Devices Ltd., U.K. Prior to
joining Circuit Technology Inc., he was employed by ILC Data Device Corp.,
Bohemia, N.Y. and Andersen Laboratories, Inc., Bloomfield, Conn. in mar-
keting positions.

Marconi Avionics is utilizing the MIL-STD-1553B LSI Chip Set in the SCADC
Air Data Computer application to perform all of the required remote terminal
MIL-STD-1553B protocol functions. Basic components of the R U are the dual •
redundant chip set, CT3231 Transceivers, 256 x 16 RAM and a Z8002 micro-
processor.

Basic transfers are to/from the RAM on conmand of the bus controller or
Z8002 processor. During transfers from the processor to the RAM, the chip set
busy bit is set for a period not exceeding 250 microseconds. When the trans-
fer is complete, the busy bit is released and transfers to the data bus occur
on command.

The LSI Chip Set word count lines are used to locate each data word in
the local memory and 4 mode codes are used in the application: reset remote
terminal, transmit status word, transmitter shut-down, and override trans- •
mitter shutdown.

THE INTRODUCTION

Circuit Technology Inc. is marketing in the U.S. the MIL-STD-1553B LSI
Chip Set developed in the U.K. by Marconi Electronic Devices Ltd. The LSI
Chip Set is presently being evaluated in the U.S. by many companies for remote
terminal and bus control applications. The basic chip set performs both func-
tions and is converted from RT to bus controller on command. Marconi Avionics,
Rochester, U.K. is using the MIL-STD-1553B LSI Chip Set to perform the remote
terminal requirenent for the SCADC Air Data Computer. A Z8002 microprocessor
is used to control transfers to/from the LSI Chip Set.

REMOTE TERMINAL UNIT BASIC CONFIGURATION

The dual redundant remote terminal ccnsists of isolation transformers, S
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suitable for direct and stub coupling, Cr3231 transformers, the 5 chip MIL-STD-
1553B set in leadless chip carriers, buffered and mounted on a 1.6" x 3.2"
ceramic substrate, 256 x 16 RAM and additional logic to perform the necessary
chip set/Z8002 transition hardware. See Fig. 1.

TRANSCEIVER DESCRIPTION

The CT3231 design transceiver used on the SCADC Program was developed by
Circuit Technology Inc. and is used in substantial quantity on B-52, A-10, F-16,
and other programs. The CT3231 features low offset, 4 ohm typical transmitter
drive impedance, AC interstage coupling, and is compatible with MIL-STD-1553 A
and B. The CT3231, CT3232, Cr1487, and CT1589 transceivers all couple directly
to the ISI Chip Set.

MIL-STD-1553B LSI CHIP SET

The Marconi LSI Chip Set meets all of the protocol requirenents of MIL-
STD-1553B for operation as a remote terminal, passive monitor, and bus con-
troller. Four chips comprise the basic set for a single channel requirement.
Up to triple redundancy can be accomplished with the addition of a single de-
coder chip for each redundant channel. See Fig. 2. The four chips and the
functions performed of each are detailed below.

Decoder:

Waveform reception from a suitable bus receiver element.
Manchester encoding error check.
Bit count check.
Parity error check. S
Sync waveform check.
Continuity check.
RT address comparison.
Mode command detection.
Broadcast conTmand detection.
Terminal reply timeout check. S
End of transmission detection.

Encoder:

Waveform encoding and transmission to a suitable bus driver.
Command execution state sequencing.
Transmitter timeout control.
Bus shutdown control.
Mode command execution.
Self-test execution.

Subsystem Interface Unit: 5

Command decoding.
Current and last cormand recording.
Illegal command detection.
Word count comparison.

bde command execution. S
Status recording.
BIT recording.
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Internal Highway Control Logic:

Bus selection.
Strobe generation.
RT control line generation.
BC operation decoding and control line generation.
Terminal - subsystem handshaking.

All protocol requirements of MIL-STD-1553B are performed by the LSI Chip
Set including command word decoding, message validation, word count, status
word return, etc. The chip set handles the ccplete message sequence and all
nde codes are implemented as is broadcast capability. The chip set is avail-
able in leadless chip carriers, dual-in-line packages, as a hermetic sealed
hybrid assembly, and as a leadless chip carrier assembly on a ceramic sub-
strate. For detailed information on timing, performance parameters and pack-
aging the reader is referred to in Circuit Technology Inc. Data Sheet CT1561.
Standard units are screened to MIL-STD-883B quality level.

REMOTE TERMINAL MODULE DESCRIPTION

Marconi Avionics, Rochester, U.K. has designed and built one of the first
operating remote terminal units using the MIL-STD-1553B LSI Chip Set. The
remote terminal is now operating in an engineering model of the jCADC Air
Data Computer. See photograph and the block diagram of Fig. 1.

The Remote Terminal Module tRl4) contains a 1553B chip set hybrid tRT
hybrid) combined with two hybrid transceivers and two isolation transformers
giving a dual redundant, transformer coupled, Remote Terminal kRT) configur-
ation. A ram store, accessible by the Air Data Processor tADP) or the RT, is
provided for the temporary storage of data for transmission via the 1553B bus.
This store of 256 words by 16 bits provides the RT with a choice of eight sub-
addresses, or blocks, of 32 words.

After reception of a valid command word from the bus controller, data
transfers with the ram will be controlled by 8 bits from the RT hybrid. The
starting address in the ram is defined by a three bit subaddress which is
latched with each new crmmand word received. The other five ram address
lines are the current word count lines (CWC) from the RT hybrid, which are
incremented for each new data word, from 0 to 32. Reading or writing is de-
fined by the Tx/R line from the RT hybrid. During the receive operation,
an 8 bit addressable latch is provided for the RT hybrid to flag up a pos-
sible data message error tVBR). As the addresses are defined, data is trans-
ferred between the RT hybrid and the ram in parallel 8 bit bytes. This
operation is controlled by the RT hybrid which transfers the most significant
byte followed by the least significant byte to or from the ram. The ram
address remains the same until both bytes iave been loaded.

Microprocessor Request tUP REQ) and Microprocessor Accept tUP ACC) hand-
shake signals are used for the Air Data Processor (ADP) to gain control of the 0
ram. Once control of the ram has been received by the ADP, a busy signal is
flagged to the RT hybrid for a period not exceeding 250 usec during which
period data transfers from the ADP to the ram occur. When the data trarufer
is complete, the busy signal is released and transfers from the ram to the
1553 Data Bus are controlled by the LSI Chip Set.
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In addition to the basic mssage transfers, four of the mode codes imple-
mented in the LSI Chip Set are utilized: reset remote terminal, transmit
status word, transmitter shut-down, and override transmitter shut-down.

27?I S

. . .. I . .. . . . . .. . . . II | l i . . . . . .. . . . I R



.4 0

MARCONI

AVIONICS

B 4 I SI

MMULTIPLEXER BI

BIT BBI

ADDRESSS

REMOT TERMNAL ODULEMRTE

25AIGTRMNA

UNI (RT

I ISU

27

BI MI T 53



coJ

1 )

CY-

cc, I

M w SL

CC

ISOM

00

00

0
0 L

zz

27S2
* 5L



4

0

.-2 4,
~ -4 0

WA, ~ ~-t~4, U4r
-At. - Ar'

-2 4 17'tZ
) c~ z

CD 2>- A
C' >12 " -~~2'~ '~( 0

At 2' #'-'~ -

'-U ~
- '4-

Th

LU LU

qt~)pf.. ,~ A r

- *->-,',.A-~ *~9 r~ I

*
2-

* I rrtt?~ d' 1:(xi
'~4A7~t'~4.

* 'A V'S * - * 0

A'

* 0

* 0

* 0

* 0



42 77S PROCEEDINGS PAPRS OF THE AFSC (AIR FORCE SYSTEMS 44
COMMAND) AVIONICS STAND. (U) AERONAUTICAL SYSTEMS DIV
NRIGHT-PATTERSON AFI ON DIRECTORATE 0..

NCASIFIED C A PORUBCANSKY NOV 62 F.0G 9/3 MULSmhhIucs=Eh@il
EhmmhhhhhEEEEI
EhhhmohmhEEEIinunnnnuuuuu
moI'll'.'.

IIIom



- ~ ~ ~ I Q I I. jii iiii

2.0.

I

11111 1,=o 4 Jil .8

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-I963-A

. ... ... .... . ..... .. .. .. . . . . . . .. i~ Ill I . . . . . ... ...



"MIL-STD-1553 INTERFACEIn APPLICATION NOTES"

By Steve Friedman

O ILC Data Device Corporation
(DDC)

105 Wilbur Place
Bohemia, New York 11716

516/567-5600

ABSTRACT

)This paper describes Monolithic and Hybrid circuits used
for interfacing to a MIL-STD-1553 Multiplex Data Bus. The
focus is on how to implement smart and dumb remote terminals

* with existing devices. A menu table depicting product selection
has also been provided.

The implementation of BUS CONTROLLER (BC), MONITOR and
REMOTE TERMINAL UNIT (RTU) interfaces, will be fully described
using standard off the shelf products. Custom microprocessor
Interface Hybrids with DMA or Double Buffered Memory Interface,
will complete the picture for the implementation of MIL-STD-
1553 A or B.

The MCE (Smith) LSI Chip Set for MIL-STD-1553B RTU and BC
configurations will be described. Additional application topics
covered will be the implementation of high speed data transfer
circuitry, single, dual and quad redundant channel operation as
well as implementing External status word controls.

A summary of product sizes and power requirements associated
with BUS Controller, RTU and Monitor applications will be
provided.

INTRODUCTION

The System designer no longer has the headache of tackling
the detail design of a MIL-STD-1553 Interface. Whether the
design engineer is considering Remote Terminal (RTU), BUS Con-
troller or a Monitor MUX BUS Interface, implementation can be
simplified with standard off the shelf products. These products
are comprised of Monolithic LSI Chip Sets, hybrid packaged
products or in some cases a combination of both.

One must be responsive to MIL-STD-1553A or programs such as
F-16, B-520AS and YAH-64 that require a different Mode Code

277



0

response then that of MIL-STD-1553B. The McDonnell Douglas
(McAir) (A-5690, A-3818, A-4905 and A-5232) sinusoidal waveform
specifications must also be considered. To implement these
variations, a full menu of off the shelf products are available
(please refer to Table 1) to assist the Design Engineer.

The Menu of products offered consists of transformers,
transceivers, Manchester II Converters, Protocol Logic Hybrids,
I/O Hybrids and the MCE (Smith Industries) MIL-STD-1553B LSI
Chip Set. The products can be characterized as follows in
Table 1:

TABLE 1 - PRODUCT MENU

TRANSFORMERS

PART NUMBER DESCRIPTION

BUS-25679 Isolation - 1.4:1 & 2:1 Ratio's Plus Center Taps
BUS-27765 Isolation - 1:1 & 1.4:1 Ratio's Plus Center Taps
BUS-29192 Isolation - 2.3:1 & 3.2:1 Ratio's Plus Center Taps
BUS-29854 Isolation - 1.2:1 & 1.66:1 Ratio's Plus Center Taps 0

TRANSCEIVERS

PART NUMBER DESCRIPTION

BUS-63105 Monolithic 1553A/B Transceiver - Single and Dual 0

L Redundant 24 Pin DDIP and 36 Pin DDIP.

OPTIONS:

5 = Standard t15 VDC PWZ. (Uses BUS-25679)
6 = Thermal Shutdown. (Uses BUS-25679)
7 = ±12 VDC PWR. (Uses BUS-29854 XFMR) •
8 = ±12 VDC PWR Plus Thermal Shutdown.

(Uses BUS-29854 XFMR)

OPTIONS:

0 = Single Channel - Interfaces with BUS-8937 and 0
Harris HD-15530.

1 = Single Channel - Interfaces with MCE (Smith's)
LSI Chip Set.

2 = Dual Redundant - 36 PIN DDIP - Interfaces with
BUS-8937 and Harris HD-15530.

3 = Dual Redundant - 36 PIN DDIP - Interfaces with
MCE (Smith's) LSI Chip Set.

BUS-63102 Universal McAir & 1553A/B Transceiver. Plug In.
24 PIN on 1.1" Centers. (Uses BUS-29192 XFMR)

BUS-8559 Variable Output (Driver) Transceiver.
24 PIN DDIP For ATE.
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MANCHESTER II CONVERTERS

PART NUMBER DESCRIPTION

BUS-8937 HD-15530 + 19 MSI Chips With 16 BIT Parallel I/O
48 Pin Plug In

MT-32008 MCE (Smith's) Encoder/Decoder LSI Chip With 16 BIT
Parallel I/O. 48 PIN DDIP

BUS-64100 HD-15530 & LSI Chip With 8/16 BIT Parallel or
Serial I/O Terminal BIT Processor. 56 PIN Plug In.

BUS-1555 Decoder Module Which Flags Error Type. 52 PIN Plug
In Module. For ATE.

BUS-1556* Encoder Module Which Can Introduce Errors. 52 PIN
Plug In Module. For ATE.

RTU INTERFACE (W/O PROTOCOL)

PART NUMBER DESCRIPTION

BUS-1553 Interface Module. 51 PIN Plug In

BUS-9253 2A Format B SEM Module. Key Coded "MAN". 100 PIN
Edge Connector.

BUS-65101* Single Channel 1553A/B Hybrid

BUS-65201 Single Channel McAir & 1553 A/B Hybrid. 78 PIN

PROTOCOL

PART NUMBER DESCRIPTION

MT32004 MCE (Smith's) LSI Protocol Sequencer. 64 PIN TDIP.

BUS-66101 Protocol 1 Hybrid. 36 PIN DDIP. S

BUS-66102 Protocol 2 Hybrid. 68 PIN Plug In.

SMART RTU'S (W/PROTOCOL)

PART NUMBER DESCRIPTION

BUS-65400 Complete 1553B Dual Redundant Evaluation Board for
MCE (Smith's) LSI Chip Set

BUS-65122 1553B Dual Redundant Super Hybrid (Uses BUS-63115

XCVR & MCE (Smith) LSI Chips). 78 PIN Plug In.

BUS-65112* 1553 A/B** Dual Redundant Hybrid. 78 PIN Plug In. 0

BUS-65212* Universal Dual Redundant Hybrid. 78 PIN Plug In.
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BUS CONTROLLER

PART NUMBER DESCRIPTION ...........

BUS-65500 Double EURO Card Assembly. Dual Redundant BUS -

Controller with VME BUS Interface.

MEMORY OPTIONS

PART NUMBER DESCRIPTION

MT 32003 MCE (Smith's) 16 BIT X 32 Deep FIFO. 40 PIN DDIP.

BUS-66103 DMA with Double Buffered Memory Interface for the
68000 Microprocessor. 51 PIN Plug In.

BUS-66105 Dual Port Double Buffered Memory RAM Interface for
the 8086 Microprocessor. 51 PIN Plug In.

MANUAL BUS EXERCISER

PART NUMBER DESCRIPTION

BUS-68000* MIL-STD-1553A/B Tester, IEEE Optional.

* Products Soon To Be Available
** 5us Status Word Response

TRANSFORMERS

The isolation transformers listed in Table 1, "Product
Menu", are manufactured by a subsidiary of DDC called BETA
Transformer Corporation. They manufacture custom transformers
plus the versatile pulse transformers that meet all of the
electrical requirements of Manchester II, serial Bi-phase, data
transmission. They are built in accordance with MIL-T-21038.

These transformers offer a high common mode rejection ratio
(CMRR), good selection of turns ratios, frequency response and
isolation necessary for accommodating all DDC MIL-STD-1553A/B
and McAir Transceivers as well as competitive transceivers.

TRANSCEIVERS

The BUS-63105 Monobrid Tis the first production single chip
custom LSI (BI-Polar) transceiver. It features high reliability
and low cost in a small 24 PIN DDIP (Please refer to Figure 1,
BUS-63105) or dual channel transceiver in a 36 PIN DDIP (Please
refer to Figure 2, BUS-63125) hybrid package. It can be used in
any MIL-STD-1553A/B interface application.

MONOBRIDTM is a trademark of ILC Data Device Corporation.
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FIGURE 1: BUS-63105 LSI TRANSCEIVER

FIGURE 2: BUS-63125 DUAL REDUNDANT TRANSCEIVER

The BUS-63105 Series Transceiver features low power dissipa-
tion, improved receiver filtering, current limited driver output
plus driver input time out protection. It is available in single
and dual redundant configurations.

An optional +175 degree centigrade shutdown circuit with pin
programmable override is available. S

The BUS-63102 Universal Transceiver was designed to meet the
McDonnell Douglas (McAir) A-5690, A-3818, A-4905, A-5232 sin-
usoidal waveforms and conform to MIL-STD-1553A/B trapezoidal wave-
forms. Please refer to Table 1 "Product Menu" and Figure 3, BUS-
63102. 0
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FIGURE 3: BUS-63102 UNIVERSAL BUS TRANSCEIVER

This transceiver is able to meet the waveforms and transmission
group delays because of the special linear phase equiripple
filter incorporated.

FIGURE 4: BUS-8559 & BUS-25679 Transceiver & Transformer

The BUS-8559 is a specially designed MIL-STD-1553A/B 0
transceiver with a variable driver output. Please refer to
Figure 4, BUS-8559 and BUS-25679 Isolation Transformer. This
special feature is intended to be used in MUX BUS Simulators and
test sets for the purpose of checking RTU receiver threshold
operation.
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MANCHESTER II CONVERTERS

Present Manchester II Converter products available are
typically one of three types; they are based around the popular
Harris HD-15530 Encoder/Decoder Chip, MCE (Smith's) LSI Encoder/
Decoder Chip, and for special applications a separate module
decoder and encoder with very special features.

FIGURE 5: BUS-8937 MANCHESTER II CONVERTER 6

The BUS-8937 Manchester II Converter (See Figure 5) and the
BUS-64100 Terminal Bit Processor both use the HD-15530 CMOS
Encoder/Decoder. They both feature three state, 16 Bit parallel
interface, address recognition, encoder/decoder status and control
lines. The BUS-64100 bit processor has additional features such 0
as 16 or 8 bit Byte or serial I/O, self contained oscillator and
clock driver, Broadcast Flag, Mode Code Flag, 800 microsecond time
out, on/off line self-test plus low power due to its inherant LSI
design.

The MT32008 MCE (Smith's) Encoder/Decoder LSI Chip can be S
used as a stand alone product. (Please refer to Figure 6, MT32008
Block Diagram). Its ISO-CMOS process gives it better radiation
resistance than the HD-15530, lower power dissipation and with one
more feature than the BUS-8937, namely Broadcast Recognition.
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FIGURE 6: MT32008 BLOCK DIAGRAM

The BUS-1555 Decoder Module was designed for test equipment
applications since it will flag sync errors, Manchester II errors,
hi & lo bit counts and parity error. Its counter part is the
BUS-1556 Encoder Module which will generate the various errors.
These two products, plus the BUS-8559 Variable Output Transceiver,
can be used in a dedicated simulator or heart of a MIL-STD-1553A/B
tester such as the BUS-68000.
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FIGURE 7: BUS-1553 INTERFACE MODULE

RTU INTERFACE (W/O PROTOCOL)

The BUS-1553 Interface Module (See Figure 7) is comprised
of the isolation resistors, BUS-25679 Transformer, BUS-8553
Transceiver, HD-15530 Ceramic DIP, Hybrid 12MHZ Clock, control
logic lines and shift registers necessary ror one 16 bit
parallel data input port and one 16 bit parallel data output
port. It is ideal for breadboarding or applications with
reduced temperature extremes.
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, . 0

FIGURE 7: BUS-953 SMERMC MODULE

RTU ITERFAE (WO PROOCOL

- The......553 Interface Modulei(SeeFigure 7) is comprised



The BUS-9253 Standard Electronic Module (SEM) is composed
of standard hybrids, thereby making it suitable for full MIL
environmental applications. This SEM Module (See Figure 8)
is key coded "MAN", and is presently being used on the Rolling
Air Missile Program for the Navy. This Module is composed of
isolation resistors, BUS-25679 Transformer, BUS-8553 Trans-
ceiver, hybrid clock and BUS-8937 Manchester II Converter.
Please refer to Figure 9, BUS-9253 Block Diagram.
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FIGURE 9: BUS-9253 BLOCK DIAGRAM

The BUS-9253 represents the basic building block of compon-
ents useful for a single MIL-STD-1553A/B RTU Interface. When
addressing a redundant interface, a duplication of these compon-
ents would be necessary.

Should the application involve interface to the McAir spec-
ifications the BUS-63105 Transceiver would be changed to that of

B the Universal BUS-63102 Transceiver and BUS-29192 Transformer.

If space is limited, DDC has a single channel McAir and
1553A/B interface hybrid (BUS-65201) in a 1 X 2 inch 78 Pin
Plug In package. This hybrid is based on the BUS-63102
transceiver and BUS-64100 LSI Terminal Bit Processor.

SMART RTU'S (W/PROTOCOL)

The system designer need not concern himself with the
problems of McAir or MIL-STD-1553 implementation, as a full

*array of products are now available. These interfaces, unlike
those w/o protocol previously discussed, are available with full
response to Mode Codes, Broadcast Commands, RTU Address/Sub-
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address, required status word response and specific micro-
processor interface.

FIGURE 10: MIL-STD-1553B DUAL REDUNDANT MCE (SMITH'S)

The MCE (Smith's) MIL-STD-1553B LSI Chip Set is a fully
functional Smart RTU. It consists of a MT32008 Manchester II
Converter, MT32004 Protocol Sequencer and MT32003 FIFO Memory
Chip. The three chips, plus the BUS-63115 Transceiver and BUS-
25679 Transformer make up a complete single channel RTU. A dual
redundant configuration is shown in Figure 10. Notice it uses
two transformers, two transceivers, two MT32008's then one MT-
32004 sequencer and one MT32003 FIFO. The MCE (Smith's) LSI Chip
Set can be used to implement up to quad redundant interfaces. 4

DDC offers an MCE (Smith's) Dual Redundant 1553B Evaluation
Board. It consists of the complete LSI Chip Set Transceivers,
16MHZ clock and two independant 800 microsecond time out circuits.
All mounted on a 7 X 5 inch Printed Circuit Board.

The MCE (Smith's) LSI Chip Set features very low power diss-
ipation for a MIL-STD-1553B application. The Chip Set is
designed to implement all fifteen defined mode codes and can gen-
erate and respond with a status word in just under 11 micro-
seconds. It makes use of a 16 Bit, 32 Word first-in-first-out
(FIFO) Memory Chip which facilitates the transfer of decoded S
data to the Subsystem Interface Unit (SSIU) or for loading data
in preparation for transmission on the MUX BUS. In the case of
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transferring decoded 16 Bit data to the SSIU, a high speed
transfer circuit (See Figure 11) must be implemented in order
to fully comply with 1553B. This circuit can be omitted if one
wishes to substitute the MT32003 with external memory capacity
or simply by paralleling the FIFO with external memory.

DATA $~::B ssfU

TO- TI5 _ HIGHWAY

DO0 DO

S1

RES FIFO
EN FIFO

II

FIGURE 11: HIGH SPEED TRANSFER CIRCUIT

The LSI Chip Set offers a three state 16 Bit Parallel
highway interface plus necessary control lines for subsystem
interface. Additional circuitry would be required to implement
DMA data transfers in either 8 or 16 Bit Bytes.

* External status word control is possible with a minimum
of external hardware. Any of the status word bits or an entire
status word can be introduced externally simply by enabling bi-
directional three state buffered latches with the Send Data-BAR
signal. The latches will open the specific 16 bit parallel high-
way bit(s) from that of the MT32004 Sequencer, so that the sub-

* system can introduce the required logic state(s).

In an effort to reduce the price and size of a MIL-STD-1553B
Dual Redundant RTU's, DDC has introduced the Superhybrid. The
Superhybrid (BUS-65122) is a 78 PIN Plug In 2 X 2 inch hybrid
package that has two transceivers plus 800 microsecond time
outs, two MT32008 die, one MT32004 die, one MT32003 die, high
speed transfer circuitry plus logic for "on" and "off" line
wrap around testing. This can be considered the ultimate in
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small size and low power dissipation for a dual redundant RTU.

The Superhybrid as well as the MCE (Smith) LSI Chips, can
be used in BUS Monitor applications with a minimum of circuitry.
It can be used in BUS Controller applications because of the
MT32008 Manchester II Converter Chips accessible control lines.
(Please refer back to Figure 6, MT32008 Block Diagram).

There are many existing programs and applications that
differ from MIL-STD-1553B. These differences can be electrical S
such as McAir (waveforms) or Mode Code protocol implementation
differences. It is for this reason BUS-66101 (Protocol 1) and
BUS-66102 (Protocol 2) were developed. These two hybrids, plus
the BUS-64101 (Modified BUS-8937), BUS-63105 or BUS-63102 Trans-
ceiver and Isolation Transformer form a fully operational MIL-
STD-1553B or McAir (except A-3818) RTU. 4

Protocol 1 and Protocol 2 hybrids can be programmed by
external ROM to implement the specific Mode Codes required for
the application. This permits the system designer the flexibil-
ity for using the same hardware in different applications.

The Protocol Hybrids perform functions such as internal time
outs, word counting, sequencing of data transfers-Mode Codes-
Status response for a dual redundant RTU. The Status Word
Response of this hybrid set is nominally 7 microseconds, which
just falls outside of the MIL-STD-1553A specification. Please
refer to Figure 12, Hybrid RTU Functional Block Diagram. 0

_0 0

ATATUS-

PAA.L ON

I in 14

0ut4 0 AD TT

FIGURE 12: RTU BLOCK DIAGRAM
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Two completely new dual redundant MIL-STD-1553A/B and res-
pectively McAir Hybrids each in a 2 X 2 inch, 78 Pin, Plug In
package, will be available soon.

The BUS-65112, is a dual redundant MIL-STD-1553A or B res-
ponsive hybrid RTU which features fully programmable mode code
implementation and a status word response time of 5 microseconds.

The BUS-65212, is a duplicate of the aforementioned with the
exception being that the front end consists of the Universal
Transceiver. This facilitates meeting all of the McAir spec-
ifications, due to the 5 microsecond status word response.

These complete RTU/Monitor Functioning Hybrids will inter-

face with the Memory Options presently available.

BUS-CONTROLLER

The BUS-65500, is a Double Eurocard (6.3 X 9.2 inches)
assembly which meets the requirements for Bus Controller Inter-
face Unit (BCIU) or Remote Terminal Unit (RTU) to a dual redun-
dant MIL-STD-1553B Multiplex BUS and the 68000 VME BUS. This
interface unit is designed to interface to a 68000 Microprocessor
with a VME BUS using DMA transfers and programmed I/O transfers.
Please refer to Figure 13, Hybrid BCIU Block Diagram.

MOT ---

CWIAC4

FIGURE 13: BCIU BLOCK DIAGRAM, BUS-65500
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The BUS-65500 (BCIU) is composed of (2) BUS-25679 Trans-
formers, (2) BUS-63105 Transceivers (2) BUS-64101 (Modified
BUS-8937), BUS-66100 Series Special Protocol Hybrids, (1) BUS-
66103 DMA with double buffered memory hybrid interface and a
special 68000 Motorola VME Bus Interface Hybrid.

The Bus Controller function can be applied to McAir and to
other standard interfaces by selecting the proper transceiver and
presently available memory options. The special Protocol Hybrids
can be programmued through external ROM's for specification
differences.

MEMORY OPTIONS

The BCIU and RTU Product Menus described so far would only
permit a 16 Bit or 8 Bit parallel Byte or serial data transfer to
take place on demand. The exception being the MCE (Smith's) LSI
Chip Set, which is supported by an integral FIFO Memory Chip as
previously discussed.

* The system designer may now select off-the-shelf hybrids for0
supporting an interface with the Motorola 68000 and Intel 8086
Microprocessors. These two products represent the most popular
of 1/O support hybrids available. (Consult factory for other
interfaces.)

A Motorola 68000 DMA with Double Buffered Memory Interface
is provided with the BUS-66103 hybrid. This Memory Option
directly supports the BUS-66101 and BUS-66102 Protocol Hybrids
and adds the following features:

1) High speed transfer using a DMA transfer for each data
word. (Using 16 Bit Bytes or optional 8 Bit Bytes.)

2) Data blocks are organized on a subaddress basis.

3) Double buffering for each data block, and switching
between the two buffers on an individual block basis.

4) Circular message area provides stacking up to 32
messages.

5) Buffer size for each system determined by the software.

6) Up to 64 different data blocks can be accommodated.S

The BUS-66105 provides a Dual Port Double Buffered Memory
RAM Interface for the 8086 Microprocessor. It too supports BUS-
66101 and BUS-66102 Protocol Hybrids with features such as:

1) An internal 1K X 8 RAM for data buffering. (8 BitS
Bytes used)
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2) Provides six double buffered data blocks plus one
wrap-around data block buffer, with switching between
the two buffers on an individual block basis.

3) Message area reserved for stacking up to 6 different
messages.

These off-the-shelf Memory Interf ace Hybrids support 8 and
16 Bit Microprocessor Systems. The Microprocessors need not be
burdened with -interrupts for storing and transferring data.
Therefore, overall system speed is achieved.

MANUAL BUS EXERCISER

The BUS-68000 exerciser is intended to be ancillary to more
powerful MUX BUS Analyzers, as an example Conic's SBA-lOO, and
not their replacement. The BUS-68000 Exerciser can be used for
testing and troubleshooting MIL-STD-1553B and McAir Systems
manually, thereby off loading less critical tasks from the SBA-
100. Its versatility makes it very attractive and its low cost
makes it possible to have several available to off load the SEA.

The BUS-1555 Decoder, BUS-1556 Encoder and BUS 8559 Trans-
ceiver incorporated will allow the design engineer to test and
troubleshoot both hardware and software. It has the ability to
identify high or low bit counts, parity errors and Manchester II
errors in the receive mode and to generate Manchester, parity,
bit count, word count and sync errors.

The instrument will have keyboard entry and microprocessor
control through a 8 bit (2 byte) three state I/0 with all nec-
essary hand shakes. IEEE 488 BUS I/0 is optional while RS232
will be standard.

CONCLUS ION

The design engineer who must interface his system to MIL-
STD-1553 or McAir, can turn to a standard Monolithic or Hybrid
product Menu. The RTU, Monitor and BUS Controller functions
can easily be handled with combinations of a variety of diff-
erent products. These products vary in power requirements,
size and functional flexibility.

In order to highlight product implementation differences,
Table 2, Dual Redundant BCIU/RTU MENU, was prepared with the
most popular examples.
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TABLE 2

"DUAL REDUNDANT BCIU/RTU MENU"

MCE (SMITH'S) SELECTIONS

TRANSCEIVERS ENC/DEC PROTOCOL I/O SQ.IN. WATTS

A) (2)BUS-63115 (2)MT32008 (1)MT32004 (1)MT32003 6.6 2.1

B) (1)eUS-63135 (2)MT32008 (1)MT32004 (1)MT32003 5.8 2.1

C) (1)BUS-63135 (2)MT32008 -(l)MT32007- 4.6 2.1

D) BUS-65122 SUPER HYBRID 4.0 2.2

HYBRID RTU SETS

TRANSCEIVERS ENC/DEC PROTOCOL I/O SQ.IN. WATTS

A) (2)BUS-63105 (2)BUS64101 (1)BtJS66101 (1)BUS66103 14.5 8.0

(I)BUS66102

B) (1)BUS-63125 (2)BUS64101 (1)BUS66101 (1)BUS66103 13.7 8.0

(1)BUS66102

C) (2)BUS-63102 (2)BUS64101 (1)BUS66101 (1)BUS66103 15.3 8.2
(McAir)

(1) BUS66102

D) (1)BUS-63125 (2)BUS64101 (1)BUS66101 (1)BUS66105 16.2 8.0

(1) BUS66 102

BCIU/RTU SET

TRANSCEIVERS ENC/DEC PROTOCOL 1/O SQ.IN. WATTS

A) BUS-65500 HYBRID SET COMPRISED OF:

(1)BUS-63125 (2)BUS64101 (2)BUS66101 (1)BUS66103 20.0 10.0

SERIES
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ABSTRACT '~

M RASMpis the first missile to incorporate a MIL-STD-1553B data bus as
the primary means of data transfer among the elements of the missile. The
Standard, built around applications which could dedicate major computing
power to manage the affairs of the data bus, posed a challenge to MRASM
because this bus management function needed to be performed on the input!
output card which fit in an existing computer design, while not utilizing

0 its host computer on a continuing basis.

This paper reviews the process by which the data bus operation was
defined, describes the protocol adopted for timely transfer of data, and
argues the case for the system design decisions.

INTRODUCTION

The Medium Range Air to Surface Missile (IIRASM) is an adaptation of
Tomahawk for air carry and launch. For use by both the Air Force and the
Navy, the MRASM must accommodate various configurations of payloads and
avionics. A MIL-STD-1553B data bus was selected for data transfer among
the many computers in the system, to aid in easy integration through use
of a standard, widely used and understood technique.

Applying MIL-STD-1553B to this missile was a "first", so there was little
history to guide the system designer as he groped for the proper definition to
best serve the MRASM program. Severe space, weight and power restrictions
made the luxury of committing large amounts of computing capability to support
the operation of the data bus an unlikely solution; and some of the terminals
were required to interface with existing computer designs which had been
selected for use on MRASM.

Latency of some data could be critical, as MRASM is basically an unstable
vehicle during some portions of flight, and requires a tight autopilot loop.
And, as always early in the definition of a data bus, bus loading, or duty
cycle was of concern.

The processes and decisions which resulted in defining the requirements
for the MRASM internal MIL-STD-1553B data bus follows.

295



1.0 MRASM Hardware Configuration

The basic MRASM has five boxes (Figure 1) which communicate with each

other over the data bus. These are:

e MCM - Mission Control Module

e GNC - Guidance and Navigation Computer

e ISA - Inertial Sensor Assembly

* DPU - DSMAC Processor Unit

* SMC - Stores Management Controller

In addition, on test flights there is a

* TIC - Test Instrumentation Controller

5 "SMISSIONC

5
3i GUIDANCE AND NAVIGATION COMPUTER (GNC)
Bv

,,ERTAL SENSOR AS7 .MBLY (ISA) - ....
DA 0 [DSMAC PROCESSOR UNII (DPU) .. _

T-
A < STORES MANAGEMENT CONTROLL[:R (SMC)

____ ____ __ __

B

S

Figure 1. MRASM Data Bus Configuration

The MCM performs the sequencing and autopilot functions, and is a Digital
Integrating Subsystem (DIS) computer. It receives guidance and throttle com-
mands from the GNC and inertial data from the ISA, and provides air data to
the GNC, DSMAC scene data to the DPU, and payload dispensing data to the SMC.
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The GNC performs guidance and navigation computations, and is also a
DIS computer. It receives inertial data from the ISA, air data from the
MCM, and update data from the DPU; and provides guidance and throttle com-
mands to the MCM. -

The ISA contains gyros and accelerometers, and measures its inertial
environment and makes some calculations to perform the "gimbal" functions.
It sends autopilot data to the MCM, navigation data to the GNC, and attitude
data to the DPU.

The DPU processes camera data and compares it with stored scenes to
determine where it is. It receives the stored scenes from the MCM and sends
its position match data to the GNC.

The SMC controls the dispensing of airfield attack payload submunitions.
(For other payloads, it may not be aboard.) It receives payload dispensing
commands from the MCM. It does not transmit any messages.

All of this interchange of data is carried out on a MIL-STD-1553B data
bus. (Some other data moves on other mediums, but none of it is "computer
to computer".) So the first question to be answered was, "By what specific
protocol was this data to be made to move?". Constraints on the answer in-
cluded the fact that software for the various computers was being developed
by several independent entities and, while there is some rough synchronization
among the compu-ing activities, the precise time a computer would have a
message ready for transmission was not known to any other computer. Also,
the press of other activities made it unlikely that any of these computers
could take on the additional task of truly managing the affairs of the bus
in a real-time sense: the bus interfacing hardware must also perform this
function.

On test flights, the TIC, also a DIS computer, collects and formats data
for telemetry. Most of this is extracted from traffic on the data bus, the

TIC acting as a monitor terminal. This aspect was not a factor in considering
the bus protocol, but did contribute its share of requirements for the hardware
implementation of the bus.

2.0 Protocol Options Evaluated

Within MIL-STD-1553B, three protocol options were identified as candi-
dates for implementation in MRASM. These were called (1) Command/Response,
(2) Passing Protocol, and (3) Poll for Transmission, and were considered to
be the only technically viable possibilities within the Military Standard.

2.1 Command/Response •

This protocol might be viewed as basic MIL-STD-1553B. The Bus Controller
must know the schedule by which each message is prepared to be sent and
appropriately command the transmission and reception of that message. (The
word "message", as used in this paper, means a group of data words carrying
functional information among the computers, and not a gro, p of Command, Data •
and Status words, as defined in the Standard.)
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2.2 Passing Protocol

Using this protocol, each terminal which may have a message to transmitI is placed in the sequence of Bus Controllers, and control is passed in this
sequence using the Dynamic Bus Control mode code command. Upon being desig-
nated "Bus Controller", a terminal transmits a message if one is ready, then
passes control to the next terminal in the sequence. If no message is ready,
control is passed immediately.

I 2.3 Poll for Transmission

This protocol requires a sequence of terminals to be known to the Bus
Controller. (Any terminal may appear more than once in the sequence if
higher frequency access is required.) The Bus Controller "polls" the
terminals in this sequence for messages ready for transmission. If a terminal
notifies the Bus Controller of a ready message, the Bus Controller provides
the necessary command words to cause that message to be both transmitted and
received, Of course, the Bus Controller must also be in this sequence and
its messages are output during its turn.

2.4 Evaluation Arguments and Selection

MRASM being a tactical weapon which will be built by the thousands,
total vehicle cost was a major consideration. Ease of integration among
several contractors' equipments, and flexibility to add and delete equipment
with minimum impact were also significant selection factors. While technical
adequacy was mandatory, this did not appear as a serious threat to any of
these candidates and was not a discriminator in the selection.

2.4.1 Evaluation of Command/Response

The advantage offered by the Command/Response protocol is that it is the
most applied, and therefore the most familiar use of MIL-STD-1553B. The Bus
Controller must know what is happening in all the computers on the bus in
enough detail to know when a new message has been constructed and placed in
an output buffer, how to address the output buffer, which terminal or terminals
should receive this message, and how to direct the message to the proper
input buffer or buffers. A significant, dedicated computational capability
is required to support the Bus Controller in managing the data transfer on 0
the bus, and tight synchronization among computers is required to avoid large
latencies.

Because of this intimate, all-knowing involvement with every message on
the bus, the Bus Controller must be altered in some way whenever there is an

paddition, deletion or change of any message.

KRASM is a system built from components from many contractors, and the
integration problem for Command/Response protocol would be formidable, indeed.
Not only would each message need to be agreed to by the sender and receiver,
but much accurate information would also need to be incorporated into the
operation of the Bus Controller. 0
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2.4.2 Evaluation of Passing Protocol

The integration process becomes easier with Passing Protocol than with
Command/Response. This is achieved because the messages and the protocol
are decoupled to a great extent. No synchronization requirements are imposed
simply to make the protocol work. Each computer determines when it has a
message for transmission, then sends it when it is ready to send it. No
other terminal needs to know when this will be. Additions, deletions and
changes of messages are negotiated between the sender and receiver with no
impact on the bus management function.

The bus management function at each terminal does need to know the next
terminal in the sequence so that control can be passed properly. This imposes
some attention to detail when terminals are either added to, or removed from
the sequence, but this represents a major change in the vehicle configuration
compared to changing or restructuring the messages on the bus, anyway.

A disadvantage of this protocol is that every terminal must be capable
of becoming the Bus Controller, with its attendant added complexity.

2.4.3 Evaluation of Poll for Transmission0

The Poll for Transmission protocol combines all of the benefits of
Passing Protocol with the added benefit of allowing all but one terminal
to be a Remote Terminal. The only bus-management-peculiar data required
by the Bus Controller is the polling sequence.

The disadvantage of this protocol is that there is added protocol which
increases bus loading. The significance of this, or lack of significance,
is determined by the application. For MRASM, this was not considered to be
very important.

2.4.4 Protocol Selection

For MRASM, the Poll for Transmission protocol was selected because it
minimizes total program cost, integration complexity and attendant problems,
and the impact of message additions, deletions and changes.

The specific protocol calls for the Bus Controller to "poll" each
Remote Terminal in the selected sequence by addressing a Transmit Vector
Word mode code command to that Remote Terminal. The Remote Terminal responds
with a Status Word and a Vector Word, in accordance with MIL-STD--1553B. If
that terminal has a message to be transmitted, the Service Request bit in
the Status Word is set, with the data in the Vector Word supplying the infor-
mation needed by the Bus Controller to cause the transmission and reception
of the Remote Terminal's message. If the Service Request bit is not set, the
Vector Word is ignored.

Figure 2 shows this process for an RT-to-RT message transfer. For
RT-to-BC and RT-to-Broadcast transfer, the protocol following the Vector
Word is adjusted in accordance with the Standard.
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Figure 2. Poll for Transmission Sequence

When the Bus Controller has a message to send, it waits for its turn 0
in the polling sequence, then issues a receive command followed by the
message, also in accordance with the Standard.

3.0 Bus Implementation Detailed Requirements

Since two of the MRASM computers are from the DIS family (and a third 0
computer on test flights), there was a requirement to supply one computer
with a MIL-STD-1553B input/output channel which would act as a Bus Controller,
and one computer with a Remote Terminal, each to fit into the standard DIS
I/O slot. The third, flight test computer needed a Monitor Terminal. The
detailed requirements included these facts, and the challenge for the I/0
card designer was further elevated by the requirement that a single hardware/ 9
firmware design would act as all three, the specific type of terminal being
selected by software in the host computer.

Several options are provided in the Standard, and from these options
were selected the requirements for the specific design, as viewed from the
bus. The other sets of requirements were dictated by the need for compati- 0
bility with the existing I/O card slots in the DIS computers, and by MRASM
system considerations.

3.1 Bus Oriented Requirements

The requirements of MIL-STD-1553B were imposed on the card design. 0
Options and alternative selections permitted by the Standard are described
here.

300



- ~ ~ ~ ~ ~ - -; -- -l - --

3.1.1 Subaddress/Mode Field of Command Words

The Subaddress/Mode field is used in the subaddress application with
the first bit (MSB) of the field set to one and the second bit set to zero.
The third bit is used to indicate a "priority" message when it is set to one.
In DIS computers, priority messages are handled entirely by the operating
system. The fourth and fifth bits are set to zero for directed messages,
and used to indicate the "broadcast group" to which a broadcast message
belongs. Each DIS computer will receive one or more broadcast groups if it
receives any broadcast messages. 0

For mode codes, only "11111" is used. Thus the first bit in this field
will always be set to one, and may be used to distinguish command words from
status words, which have a zero in this location (the "Instrumentation Bit").

3.1.2 Mode Codes

The only mode code required to be implemented is the Transmit Vector
Word mode code. In response to this mode code command, a Remote Terminal
will indicate the availability of a message by setting the Service Request
bit in its Status Word to one, and providing a vector word which indicates,

6in Command Word format, which terminal or terminals the message is for, 0
whether it is a priority message, and how many data words the message con-
tains. Except for messages directed to the Bus Controller, the Bus Controller
places the vector word on the bus with command word sync (it will be a
11receive"~ command), followed by a "transmit" command directed to the "polled"

r terminal, with the last ten bits identical to the corresponding bits in the
Vector Word. 0

All other mode codes are not used in the MRASM protocol and their
implementation is optional.

3.1.3 Cable Stub Requirement

The requirements for direct coupled stubs, as described in 4.5.1.5.2 of
the Standard, apply to the card design.

3.2 DIS Host Computer Oriented Requirements

En addition to interfacing with the data bus, the card must interface
with the host computer. These are the major requirements imposed on the
card by this interface.

3.2.1 Dimensions and Form Factor

To fit into a DIS computer, the card must be designed on one side of a
DIS standard printed circuit board with a compatible, 70-pin connector. The
major implication of this is that there are only about twenty square inches
on which to fit the components.

3.2.2 Power

For the survival of the card and the DIS computer, the average power is
limited to 10.5 watts, with peaks of no more than 13 watts.
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3.3 MRASM System Oriented Requirements

MRASM system requirements were leveled on the card in great numbers.
These requirements were those which would be necessary to make the system
work. The major ones which drove the design are described here.

3.3.1 Card Reconfiguration

As the card is to perform as a Bus Controller, a Remote Terminal, or a
Monitor Terminal, selectable at will by the host computer, a method for pro-
viding this information was developed and defined. Upon a signal from the
host computer, the card extracts this information from the host computer
memory, using its direct memory access channel. This information provides
everything necessary for the card to know how to properly perform. Called
the "reconfiguration message", it is composed of twenty 16-bit words.

3.3.2 Input Procedures

A problem sometimes encountered in a data bus implementation is over-
writing data before it has been completely processed by the receiving computer.
A similar problem occurs when two or more messages arrive before the first
interrupt announcing their arrival can be honored by the host computer, and
all but the last of the messages are lost.

For MR.ASM, messages are stored in sequentially-identified buffers in
memory. This allows the host computer to handle all incoming messages at

* its own pace.

3.3.3 Message Retries

The requiremert to assure the correct transmission and reception of
every message falls to the Bus Controller. If the Bus Controller determines
this has not occurred, it will initiate a "retry", and will continue to do
so until it determines the message has been successfully transferred or it
has initiated the number of retries called for in the reconfiguration message.

Remote Terminals must be prepared to support these retries, both as
senders and receivers. A retry is commanded by issuing a repeat of the

* previous Transmit Vector Word mode code command within 90 microseconds after
the final data word of a message has been placed on the bus (Figure 3).

3.3.4 Reliability

The lIRASM requirement for card reliability at 750C is 45000 hours MTBF.
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A "Transmit Vector Word" mode code
command received less than 90 u-sec

after last data word is transmitted
initiates a "Retry" of same message

Figure 3. Hardware Retries

4.0 Bus Performance

Concern for bus loading and data latency has resulted in close monitoring

of estimates of these quantities as the bus traffic is being defined. An

analysis program was developed to calculate loading and latency, with bus
traffic the input. As these estimates have become more firm, the concern
appears to be more weakly founded.

Present bus loading estimates for operational flights (without the TIC)

are under 16% during the busiest phase of flight, and less than 21% with the
TIC on test flights. Bus latency averages about one millisecond, with worst-
case latency conservatively estimated at three milliseconds.

REFERENCES

1) MIL-STD-1553B, dated 12 February 1980.

2) General Dynamics Convair MRASM document No. 109-DRB-4005, Revision C,

dated 19 August 1982.
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o MIL-STD-1553B IN MRASM -- THE DESIGNER'S CHALLENGE

aVicki L. Elmore

General Dynamics Convair Division
P.O. Box 80847

San Diego, California 92138
(714) 277-8900, x6108

ABSTRACT

Unique design challenges are created when incorporating MIL-STD-1553B
into a low cost tactical missile system. The designer is challenged by the
requirement to minimize host computer interaction with bus events, while
utilizing "off-the-shelfo'-omponents on a single 5.8 inch x 4.8 inch printed
circuit card. Further demands are imposed by the requirement to integrate
the triple functions of bus controller, remote terminal, and monitor terminal
into a single design.

This paper addresses one set of solutions to these and related problems.

The paper will also review the process by which the card was designed, and
the solutions to the general challenges faced in any 1553B implementation. r-<-

INTRODUCTION

The Medium Range Air to Surface Missile (MRASM) is currently under
development at General Dynamics/Convair Division. An adaptation of the
Tomahawk, MRASM was designed for use by both the Air Force and the Navy.
One of the major departures from the Tomahawk design is the replacement of

the single computer Tomahawk guidance set with a system of computers connected
via MIL-STD-1553B. This computer system is highly flexible and will allow the
MRASM vehicle to meet a wide variety of mission requirements.

Design of a MIL-STD-1553B interface for use in the MRASM system creates
several unique challenges to the electronic designer. This paper outlines
the major problems encountered while developing a MRASM interface and the
decisions made to solve these problems. The specific hardware described is
from the interface designed for Convair's Digital Integrating Subsystem (DIS)
computers.

1.0 MRASM Requirements on 1553B

MRASM system engineers devised a set of requirements for the 1553B
* interface with goals to optimize the use of this standard in a tactical

missile application. Their efforts resulted in the following main points
broken down here into general requirements for any terminal on the bus and

specific requirements for the DIS computers.

General

* Each terminal on the bus must meet all of the basic requirements of

MIL-STD-1553B.
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* Data transfer will be based upon a "Poll for Transmission" protocol.

* An automatic RETRY is initiated by the Bus Controller (BC) following
transmissions detected as unsuccessful.

DIS Specific

" The design must be packagable on a 5.8 inch x 4.8 inch multilayer printed
circuit card.

" The 1553B terminal may only interrupt the host processor at the completion
of a successful data transfer.

* One card design must be capable of performing as Bus Controller (BC), Remote
Terminal (RT) or Monitor Terminal (MT) following software configuration.

" Each terminal must then be capable of being reconfigured by software resi-
dent in the host processor at command.

" Built-in-Test (BIT) capability will be incorporated on card which verifies
card operability.

The "Poll for Transmission" protocol is based on the BC polling each
terminal on the bus with a "Transmit Vector Word" mode command. (The sequence
in which the BC shall poll the terminals is downloaded at reconfiguration.)
The RT or MT responds with a status word in accordance to MIL-STD-1553B. The
BC then examines the status word to see if the terminal has a message to send S
(SERVICE REQUEST BIT = 1). If not, the vector word is ignored and the BC
resumes participation in the polling sequence.

Reconfiguration of the card is accomplished through a 20 word message
(see Figure 1). The card determines its functional type (BC, RT or MT) and
all other information that it requires to perform as that specified type from 0

the contents of this message.

The BC is required to insure a transaction is successfully completed or
initiate RETRY. A RETRY begins with the retransmission by the BC of the
"Transmit Vector Word" mode command which initiated the polling of the terminal.
The number of retries that will be attempted is determined by the value down- 0
loaded during reconfiguration.

2.0 Architecture

The protocol and limited card space available required the development

* of a finely tailored architecture. Logistics concerns drove the requirement
of a single card performing multifunctions. Cost concerns and schedule
requirements drove the desire that any devices selected be available "off-the-
shelf". The resulting architecture (see Figure 2) which will be covered in
four sections, is a product of the protocol balanced against these concerns.
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NUMBER OF RETRIES TERMINAL ID

WORD #6 11 1 1 1

TERMINAL ID TERMINAL ID

WORDS #7 - #20, AS WORD #6 ABOVE

FIGURE 1. RECONFIGURATION MESSAGE

2.1 1553B Data Bus Interface

The 1553B Data Bus interface section is responsible for the receipt and

transmission of data, and the Manchester encoding and decoding of that data..
"Surface" level decoding of word type (command/status or data) was needed,

with further decoding of message type (mode or broadcast command) being pre-
ferred.

The data bus was required through MRASM system requirements to be direct
coupled stub. The bus transceiver circuit and transformer, were selected to
be the 8553 from ILC Data Device Corporation and the X-1269-1 from Technitrol.
They were selected mainly for power supply compatibility and size considerations.
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FIGURE 2. BLUCK DIAGRAM OF MRASM MIL-STD-1553B DATA BUS CARD

A large portion of responsibility of the data bus interface fell to a
Manchester encoding/decoding device. We chose the 1555 from Circuit Technology
Incorporated (CTI) primarily because of the degree of word and message decoding
done by the device and the limited number of devices in production at the time
of design. The CTI 1555 is a 56 pin hybrid which performs Manchester encoding/
decoding. While encoding it performs a parallel to serial conversion and a
conversion of this serial data to Manchester coding. It also places the Sappropriate synchronizing wave form (command or data) in front of each word andadds a parity bit to the end of each word. While decoding it detects the word
type from the sync, converts the word from Manchester serial to parallel andchecks parity. The 1555 signals whether a message is addressed to a particular
terminal or whether it is a broadcast or a mode code command. This device alsooffers a "wrap-around" mode helpful for implementing Built-in-Test (BIT). •

2.2 Microprocessor

The "heart and soul" of the design lies within the microprocessor. Imple-menting the requirement of a multifunction card, which is reconfigurable atcommand, was the factor which drove the decision to incorporate a microprocessor S
into the design.

The choice of microprocessor was determined from the amount of memory,both ROM and RAM, required and the I/O capability needed. The 8051 from INTEL
was the final choice. This 8 bit microprocessor contains 4K bytes of ROM,128 bytes of RAM, and four I/0 ports, one of which is dedicated as the data S
and address bus for accessing external ports.
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Card initial configuration, reconfiguration, built-in-test, BC, RT, and
MT functions are all accomplished primarily by the 8051.

9 RECONFIGURATION -- Reconfiguration is performed when commanded by software 0

resident in the host processor. At initial configuration (after power-up)
the 8051 will wait for the command to reconfigure. When receiving the
command, the message will then be retrieved from a specific address in
the host computer's memory. The card shall then perform as a BC, RT, or
MT as directed. If the card is a BC, it will initiate the polling sequence.

0 BUILT-IN-TEST (BIT) -- During BIT the microprocessor exercises approxi-
mately 80% of the card's circuitry which includes the following tests:

- Various "wrap-around" tests in the CTI including card ID, broalcast

and mode code recognition.

- Host computer interface testing

- 8051 ROM checksum test

After completion of BIT the microprocessor will transfer a word containing
* BIT results to the host computer and signal the completion with an inter- 0

rupt.

The requirement for the design to have the ability to reconfigure and to
perform Built-in-Test (BIT) at command came under the microprocessor's

functional category. The main problem of implementing BIT or reconfigu-
ration was deciding when to check commands from the host processor to
perform the specific task. This was accomplished by sampling the signal

to perform either task only after completing any 1553B transaction. This
decision assures that any terminal, regardless of function, will complete
a bus transaction without interruption by the host processor.

BUS CONTROLLER -- As a BC the microprocessor functions include the
following:

- Polling of terminals

- Generation of appropriate command sequence

- Knowledge of the type of transaction

- RETRY, if needed.

At all times, as a BC, the 8051 is aware of what actions are or should
be occurring on card as well as on the 1553B Data Bus. Therefore as Bus
Controller, the 8051 is always cognizant of which type of 1553B trans-
action is taking place. The microprocessor's primary responsibility as
BC, is the polling sequence and assuring the transactions initiated by
a polling are completed. The 8051 accomplishes this by monitoring the
bus. Monitoring of the bus is accomplished by checking single input lines

from the CTI, decoding for command/status, or data words. Therefore, by
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checking the bus in this fashion and being aware of which transaction is
taking place the microprocessor determines whether a RETRY should be
attempted or not.

" REMOTE TERMINAL -- A RT will take action only when it receives a message
directed* to it specifically or if it is configured to accept broadcast
messages. The 8051, when acting in accordance with the Remote Terminal
function, is aware only of commands, directed or broadcast, and the
action it should take in response to those commands. The protocol re-
quired both Remote and Monitor terminals to support the Bus Controller's
RETRY ability. This is accomplished through time-outs within the micro-
processor after response to a transmit command is made. The Remote and
Monitor terminals will wait 90 microseconds after transmission of the
final data word. This is the time the BC requires to discover a RETRY
must be attempted and then to actually transmit the command. Also within

i the 90 microseconds the RT or MT is required to decode the command.

* MONITOR TERMINAL -- The MT will operate in a manner similar to the RT by
taking action when receiving a message directed to it specifically or a
broadcast message while configured to receive them. However, the MT is
also responsible for inputting any two or more contiguous valid data
words which appear on the 1553B bus. Since the microprocessor has the
capability to monitor the bus, it is aware of contiguous data words and
inputs these words into host processor memory as they appear.

2.3 State Machine

As originally conceived the microprocessor was to have total control of
data flow on card. However due to the complexity of commands to be decoded
and the limited amount of response time available (see Table 1 and Figure 3),
an independent State Machine was designed to perform on-card data flow control.

SIT TIME BIT TIME

19 2 2 3
PARITY BIT cOMMAND/STATUS SYNC

-VOLTS

0 0

T 12 pSECONDS

FIGURE 3. MICROPROCESSOR'S LIMITING FACTOR: 1553B RESPONSE TIME

*Directed here refers to a non-broadcast message in which the command word
received contains the terminals 5-bit CARD ID.
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Table 1. Commands per MRASM 1553B Protocol

ACCEPTABLE

Transmit Command

Rece ive Command

Tranmit ecto Wod Moe Coman

Transmit Vetoru Word Mode Command

"Selected"* Broadcast Commands (Protocol Specific)

High Priority Receive Commands (Protocol Specific)

High Priority "Selected"* Broadcast Commands
(Protocol Specific)

NONACCEPTABLE

Unimplemented Mode Commands

Commands Not Directed to Specific Terminal

Broadcast Commands Not "Selected"*

*Selection process is one of examining two bits in the Broadcast
Receive Command, comparing them with acceptable, or "selected"
patterns which are downloaded during reconfiguration.

The State Machine designed accepts commands from the 8051 for data move-
ment. This technique still allows the 8051 control of card functions, with
little processing time or memory in the microprocessor required to control
specific data flow.

A 6-bit command from the 8051 is decoded by the State Machine's microcode.
The command tells the State Machine to send data from a source (on card) to a
destination (on card). The State Machine prepares the signals which will
accept the data (destination), then enables the signals which output the data
(source). The following is a list of commands the State Machine is able to 0
decode to commence data movement on card:
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SOURCE DESTINATION

Status Word Register to 1553B Data Bus Interface

Status Word Register to Microprocessor

Microprocessor to I/O Interf ace

1/O Interface to Microprocessor

Microprocessor to 1553B Data Bus Interface

1553B Data Bus Interface to Microprocessor

I/O Interface to 1553B Data Bus Interface

1553B Data Bus Interface to I/O Interface

Although the State Machine was added to allow more time for the 8051 to
decode commands and prepare responses, the microprocessor is still responsible
for the following functions on card: 0

" Address of input/output messages at host computer interface

" Performance of Built-in-Test and reconfiguration

* Command control of State Machine S

* RETRY

- attempt (BC)

- support (RT, MT)

Due to the processing time required for the functions listed above, the
microprocessor was unable to fully decode commands as a RT or MT. Therefore,
to relieve the 8051 from total command decode, conditional microcode was imple-
mented in the State Machine. This allowed the State Machine to pre-decode the
command and send the status word to the CTI if required (transmit command or 0
implemented mode command).

2.4 Host Computer

The host is a Z8000 based, 500 KOPs, 96K RAM, low power avionics computer
developed specifically by Convair for use in tactical cruise missile systems. S
The basis of communication at the I/O interface is Direct Memory Access (DMA)
protocol to the host processor. The location in host memory where data buffers
reside is determined from a 6-bit field known as the BLOCK ID supplied by the
1553B card. Within the host computer's DMA controller this BLOCK ID is mapped
into a 16-bit physical memory address which is the first word address of a DMA
buffer. S
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BLOCK IDs are loaded into memory resident in the microprocessor on the
1553B card during reconfiguration. A single output buffer is used for message

transmissions, while two sequential input buffer lists determire the location

of the data words input from a receive message. The sequential input buffer

lists allow the host processor to receive closely spaced messages without

missing any.

Interrupts, both input and output to the host, are initiated by the 1553B

card. A BC will interrupt its host processor following a transmission only

after receiving a valid status word from the receiving terminal or immediately

following a broadcast message. Generation of an output interrupt as a RT or •

MT begins if no "Transmit Vector Word" Mode command is received by the terminal

in 90 microseconds. All card types (BC, RT or MT) receiving messages initiate

input interrupts after determining the message is valid. When the MT monitoring

the bus receives data words which are not part of an MT directed or broadcast

message, an input interrupt will be initiated when a gap in data word reception

is encountered.

The I/0 interface also supplies four discrete input lines. These are

impleme.nted as signals from the host processor as follows:

* Built-in-Test Command

& Reconfiguration Command

0 On-card Software Reset Command

e Service Request Status
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1. INTRODUCTION

Marconi Avionics Limited's experience with Mil Std 1553 commenced with
the implementation of an 'A standard' remote terminal in the Head Up Display
for the General Dynamics F16 by our Airborne Displays Division. The Flight
Automation Research Laboratory (FARL) have subsequently completed a circuit
design for the digital section of a Mil Std 1553B terminal with the LSI
implementation carried out by Marconi Electronic Devices Ltd. These LSI
devices are currently available through Circuit Technology Inc of New York.

This paper will review the current LSI terminal activity undertaken by
FARL. This activity has used experience gained during the previous five-
element 1553B LSI development as the foundation for a third generation two-
element 1553 LSI terminal design.

The subsequent semiconductor implementation is a collaborative exercise0
between the GEC Hirst Research Centre and FARL.

2. PRE DESIGN DEFINITION

This development originated from the requirements of a number of future
fl military projects within the United Kingdom. These requirements can be

summarised as follows:

o Nuclear Hardness
o Improved Architecture
" Better Bus Control Facilities
o Long Market Life.

The main features which required definition before the detailed logic
design could commence were:

" Modes of Operation
P 0o Chip Set Architecture

o Subsystem Interface Philosophy.
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2.1 Modes of Operation

The chip set can operate in three modes; as a remote terminal, aI controller terminal and as a passive monitor terminal. As a remote terminal
it is fully compatible with Mil Std 1553B. All options and mode commands
specified by the Mil Std are implemented. Full and meaningful use is made of
status word bits and a comprehensive BIT word is provided. A unique mechanism
has been incorporated that permits the subsystem to declare an illegal command
legal and vice versa before the chip set services the command. Use of this

* mechanism is optional, normal operation will ensue if this option is not
taken.

The previous Marconi chip set, in bus controller mode, could initiate
messages on a word by word basis under subsystem control. This mechanism has
been greatly improved and this chip set can initiate complete transfers and
error recovery under its own control.

As a passive monitor the two-element chip set will decode all messages
on the bus, carry out error checking and pass all valid words to the
subsystem.

2.2 Architecture0

The basic parameters which governed the chip set architecture are the
system requirements equated against the semiconductor technology. This chip
set is to be implemented in Silicon on Sapphire (SOS) CMOS which is being
developed at the GEC Hirst Research Centre for the UK MOD specifically as a
nuclear hard military process. The existance of a five-element terminal chip
set (dual, standby redundant configuration) meant that four architecture
options existed. A five-to-four conversion offered insignificant
architectural benefits. A five-to-three conversion introduced some
undesirable aspects. The five-to-two and five-to-one options both gave sound
architectures but the five to one conversion exceed the integration capability
of the semiconductor technology available.

The details of the chosen two-element architecture is shown in Figure 1.
The first element is a Tx/Rx function which can support up to a triple standby
redundant bus system with no additional logic or LSI elements. The second
element is the terminal control function. Both elements will be compatible
with a 48 pin DIL package, the interconnections and system interface will0
consist of a sixteen bit highway and discrete control lines.

2.3 Subsystem Interface Philosophy

The subsystem interface philosophy adopted by Marconi Avionics for the
five-element chip set has been maintained in the two-element, and so 15530
terminal logic defined by the subsystem rather than by the Nil Std, has not
been included in either chip set. Again, effort has been concentrated on
producing a set of interface signals that allow a user to integrate the chip
set Into a system efficiently.

Experience gained by users of the previous LSI chip set has allowed the0
selection of a more efficient set of subsystem lines. A full definition of
all the RT subsystem signals is given later in the paper.
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The Tx/Rx element carries out the following functions:

o Waveform reception
o Message validation checks
" Broadcast command detection
" Reply timeout and end of transmission detection
" Bus selection and shutdown control
o Terminal loop test and self test
o Partial BIT word recording
o Partial mode command execution
" Waveform transmission.

The terminal controller carries out the following functions:

o Command word recording
o Command legality checks
o Command execution state sequencing
o Partial status recording
o Partial BIT word recording
o Parital mode command execution
o Data word count
" RT/BC subsystem interface control
" RT subsystem handshake failure check
o Instruction decoding
o Message execution state sequencing
o Report word generation and control
o Subsystem interrupt control
o Automatic retry control

3. FUNCTIONAL DEFINITION

This section reviews the main design features of the chip set. The chip
set is fully compliant with Mil Std 1553B and the design has been arranged
such that this compliance does not require a rigorous knowledge of the Mil Std
by the user, neither will it permit an invalid bus response by incorrect use
of the subsystem interfac:. lines. The only functional aspects requiring
subsystem intervention are those defined by 1553B as being subsystem
dependent, such as the contents of the Vector word.

63.1 Basic Characteristics

The chip set is designe(' to operate over the temperature range of +1250C
to -550C and has a storage range of +150 0 Cto -650 C. A power supply of 5
volts is required. Internal power up initialisation allows the first command
to be fully serviced. The active user I/O lines to the chip set will be TTL

0 compatible.

3.2 Data Transfers/Mode Codes

The chip set can handle all types of data transfers and mode codes. The
mode codes have been fully implemented and protected against incorrect T/R bit

6 and broadcast bit. The chip set will also check that the correct number of
contiguous data words are present.

317



This chip set includes an illegal/legal message enable/disable facility
which will allow a subsystem to selectively make any valid subaddress and/or
word count illegal before the chip set starts to service the command.

A terminal loop test is also included, by which a receiver monitors the
output of its associated transmitter. Loop test fail will cause a
transmission abort and setting of the terminal flag.

3.3 Status Words

The bits in the status word have been meaningfully utilised. The
instrumentation bit, busy bit, service request bit and the broadcast command
received bit are utilised as per Mil Std 1553B.

k4 The message error bit is set if:

" The message is too long or too short.
" The message or words are invalid.
o Illegal use of broadcast is made.
" A Tx command word with contiguous data is received.
o The subsystem sets ILEGAL COMMAND.

The terminal flag will be set if:

o The loop test fails.
o The RT address parity check fails.
o Terminal self test failure occurs.
o A transmitter overrun occurs.0

The subsystem flag will be set if:

o The subsystem makes incorrect Use of the data transfer mechanism.
o Set by the subsystem.

3.4 BIT Word

An internal BIT word is available via the bus by use of the relevant
mode code. The bits of this word have been defined as follows:

*LSB o Tx timeout error
o Subsystem handshake failure
o Loop tes' failure
o Illegal T/R bit
o Illegal command
0 Word count low

* o Word count high0
o Illegal broadcast
o Bus 0 shutdown
o Bus 1 shutdown
o Bus 2 shutdown
o Terminal flag inhibited
o Tx time out on BusO 0
o Tx time out on Bus 1
o Tx time out on Bus 2
o Reserved.
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4I. SUBSYSTEM INTERFACE

4.1 Signal Definition

Listed below are the main subsystem interface lines available to the
user for remote terminal operation. Each signal definition has the signal
name, with corresponding abbreviation, the number of lines and a short
functional description.

Data Highway, BO - B15, (16 off). This is a bidirectional highway used
to transfer 16 bits of data to and from the subsystem.

Buffer Enable, BUFEN, (1 off). This line goes low to enable the data
highway buffer between the terminal and the subsystem.

Read/Write, R/W, (1 off). This line indicates the direction of
information transfer between the terminal and the subsystem.

Strobe, STROBE, (1 off). This information transfer strobe will pulse
indicating valid data present on the data highway.

* Data Transfer Request, DTRQ, (1 off). This line goes low to request
permission to transfer a data word to or from the subsystem.

Data Transfer Acknowledge, DTAK, (1 off). This line should be driven
low to grant permission to perform the requested data word transfer.

Mode Data Transfer, MDT, (1 off). This line goes low to indicate that
the data word being transferred is associated with a mode command.

Receive Command, RXCMD, (1 off). This line goes low to indicate that a
valid command word for this RT is on the data highway and should be written
into the subsystem command word latch.

Status Enable, STATEN, (1 off). When low this line will enable the
contents of subsystem status latch onto the data highway.

Address Enable, ADEN, (1 off). During terminal initialisation this line
will be used to enable the terminal address onto the data highway.

In Command, INCMD, (1 off). When low this line indicates that the
terminal is currently servicing a command word.

Good Block Received, GBR, (1 off). When a fully validated block of data
has been received this line will authorise its use by the subsystem.

Mode Data Received, MDR, (1 off). This line will pulse low when valid
mode data has been received.

Synchronise, SYNC, (1 off). This line will pulse low if a valid
synchronise without data mode code is received.
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Busy Request, BUSYREQ, (1 off). A subsystem taking this line low will
cause the chip set to set the busy bit in the status word and inhibit all data
transfers to or from the subsystem.

Busy Acknowledge, BUSYACK, (1 off). This line will go low to indicate
that the subsystem has free access to any shared store.

Reset, RESET, (1 off). This signal when low causes the internal
circuitry to reset to the quiescent initialised state.

RT/BC, RT/BC, (1 off). This line when high will cause the terminal to
function as a remote terminal, when low as a bus controller terminal.

414Hz clock, CK4, (1 off), 414Hz System Clock.

4.2 Remote Terminal Initialisation

When power is applied to the chip set a reset cycle will be
automatically executed thus causing the internal circuitry of the chips to
initialise.

* Such a reset cycle will also take place if the open drain RESET
input/output line is taken low. This can be achieved by sending a reset mode
command to the RT via the data bus, in which case the chip set will pulse the
RESET line low, or by thie subsystem pulling the RESET line low for a minimum
of 0.5 microseconds.

The reset cycle commences with the RESET line being taken low, this
forces the ADEN line low which in turn enables the RT address, parity and
broadcast enable information from the subsystem onto the data highway. The
RESET line being low also forces the internal circuitry of the LSI devices to
initialise. At the end of the reset cycle, that is on the low to high
transition of RESET, the RT address, parity and broadcast enable information
is latched into the terminal and internal circuitry is released for normal
operation.

The RT address, parity, and broadcast enable information is derived from
the subsystem and should be buffered onto the 16-bit data highway, BO-B15, by
a tristate buffer.

The terminal makes use of an B-bit external latch to record subsystem
status information which is used by the terminal to control the execution of
certain commands and to determine the terminal status word contents.

DBCACC is the dynamic bus acceptance line which is used by the subsystem
* to indicate whether or not it is willing to accept bus control if offered. If

this line is low then the dynamic bus control acceptance bit of the terminal
status word will be set in response to a legal mode command for dynamic bus
control allocation.

SSERR, the subsystem error line is the means by which the subsystem can
* flag an internal fault condition such as a self test or BITE failure. This

line being low will cause the subsystem flag of the terminal status word to be
set.
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By pulling SERVREQ service request line low the subsystem can cause the
service request bit of the terminal status word to be set and thus initiate
some predetermined asynchronous operation.

The ILLEGAL COMMAND line provides a means by which the subsystem can
declare any command word to be illegal. If this line is low the terminal will
inhibit data transfers to or from the subsystem and after message validation
will respond with the message error bit of the terminal status word set.

The most obvious use of this facility is in a system which makes use of
the instrumentation bit of the terminal status word. Within such a system any
command word which has the most significant bit of the subaddress field set
low must be illegal. Hence, by connecting the most significant bit of the
subaddress field of the command word latch to the ILLEGAL COMMAND line such
commands would not be actioned by the terminal.

The ALLOW CODE line provides the subsystem with the capability to
declare any of the currently reserved mode codes as being legal and meaningful
to the subsystem.

If a reserved mode command is received and this line is not taken low
* within the allocated time then the terminal will treat the command as being

illegal and after message validation will respond with the terminal status
word with the message error bit set.

The RESO, RESi, RES2 lines provide the subsystem with the capability of
setting any or all of the currently reserved bits of the terminal status word,
that is bits 5, 6 and 7 respectively.0

4.3 Subsystem Interface Operation

Figure 2 shows the main subsystem interface waveforms that a user would
encounter during a typical data transfer. This specific data transfer is a
bus controller to remote terminal transfer of two data words into sub address
one. The first word shown on line PDIN (the positive threshold logic line
between the chip set and the bus driver/receiver) is the command word from the
bus controller.

When the terminal receives a valid command word with the correct
terminal address any current command execution will be aborted by the INCMD
line being forced inactive. The terminal will then enable the command word
onto the data highway BO-BiS and write this into the subsystem command word
latch by means of the RXCMD and STROBE lines. There then follows a delay of
approximately 1 us to allow the subsystem to compile its status information
and_specify whether or not it is busy, after which this information is latched

* by INCHD going active low. The subsystem status latch contents are then read
into the terminal by means of the STATEN and STROBE lines.

Command execution will then take place as specified by the command word
and subsystem status information.
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When a valid, non-mode command word is received with a T/R bit of zero
the terminal will initialise and the protocol state sequencer will enter the
receive sequence.

The exact details of the receive sequence are dependent upon whether or
not the subsystem has declared itself to be busy or has declared the command
word to be illegal for that terminal via the ILLEGAL COMMAND bit of the
subsystem status latch.

In order to declare itself busy the subsystem must pull the BUSYREQ line
active low and wait for the BUSYACK line from the terminal to go low. So long
as the BUSYACK line is low the busy bit of the terminal status word will be
set. The BUSYACK cannot change state while the terminal is actively servicing
a command, that is while INCMD is low. The terminal will not make any attempt
to transfer data words to or from the subsystem while BUSYACK is low.

BUSYREQ and BUSYACK therefore constitute a true handshake mechanism between S

the terminal and the subsystem for access to the interface circuitry.

It is assumed the subsystem is not busy and the command has been allowed
by the subsystem.

This condition is defined by BUSYACK and the ILLEGAL COMMAND bit of the
subsystem status word being both high. In such a situation the normal receive
data sequence will be entered.

The terminal will wait until the valid data word is received. When a
valid data word is received the data transfer request line, DTRQ, to the
subsystem will go active low. The subsystem must reply with a data transfer S

acknowledge, DTAK, within 1.5 us when the terminal will write the data word
into the subsystem store by means of the DTRQ, BUFFEN, R/W and STROBE lines.

If the subsystem fails to reply with DTAK within the allowed time then a
handshaking failure will be declared causing the Subsystem Flag of the
terminal status word and the Subsystem Handshake Failure bit of the BIT word 0

to be set. The GBR pulse to the subsystem will be suppressed.

At the end of the data word transfer the two data words received will be
compared with that specified by the command word and the receive data sequence
will continue until these numbers are equal.

When the correct number of data words have been received the terminal

will check for an end of transmission, EOT, and if obtained will load the
terminal status word into the transmitter, shown by PDOUT, for transmission on
the bus. At the same time the good block received signal, GBR, to the

subsystem will pulse low for 250ns to declare the received data valid.

If fewer valid data words are received than specified by the command
word the Message Error bit of the terminal status word and the Word Count Low
bit of the BIT word will be set and status transmission and the GBR pulse
suppressed.
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If the received message does not terminate after the number of data
words specified by the command word then the Message Error bit of the terminal
status word and the Word Count High bit of the BIT word will be set. Status
transmission and the GBR pulse will also be suppressed.

If the command word has the broadcast terminal address, execution will
take place as above with the exception that transmission of the terminal
status word will be suppressed.
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ABSTRACT:
Two defense contractors, Boeing and Semcor, have proposed standard data

word formats for use with MIL-STD-1553 systems. These proposed formats differ
in that the Boeing proposal is based on the historical usage of English units
while the Semcor proposal is based on a conversion to metric units. At the
request of the Tri-Service Multiplex Committee, the SAE/A-2K Subcommittee for 0
Multiplexing has formed a Data Word Standardization Task Group to revise
Chapter 11, Data Word and Message Format Guidelines for publication in the
Multiplex Applications Handbook. The Chapter 11 will contain both English and
metric units to allow industry an orderly conversion to metric units while
providing an unofficial standard for English units.

The Task Group has revised the Boeing draft Chapter 11 with the following
major changes: an improved ICD format, modified data formating rules, a
simplified procedure for developing nonstandard data words, and a detailed
review of the data word formats. Chapter 11 will be submitted to the SAE/AE-9
(formerly A-2K) Subcommittee at the fall 1982 meeting. Development of an all
metric MIL-STD for data words within the next two years will be recommended. 0

BACKGROUND:
The necessity for standardizing data word and message formats became

evident as more and more subsystems used the MIL-STD-1553 interface as the
basic input and output communication interface. MIL-STD-1553 establishes a
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rigorous definition of the electrical parameters and the communications
protocol for such an interface. However, no standard exists for the format of
the data to be transferred across this interface. This has resulted in basic

incompatibilities between similar subsystems developed for different aircraft.
The solution to this problem in the past has been to utilize a processing 0
element onboard the aircraft, typically the bus controller, to rescale and
reformat data as required to make it compatible with different subsystems. This
has resulted in increasingly high levels of processing overhead.

Another factor which must be considered at this time is NATO compatibility
and metrication. Public Law 94-168, Metric Conversion Act of 1975, and
Department of Defense (DOD) Directive 4120.18, Use of Metric System of
Measurement, define a policy of conversion of military systems to the metric
system. It is necessary to define a rational approach to the conversion of
data used in avionics systems to metric units.

In response to these problems, in May 1980 the Naval Air Development
Center (NAVAIRDEVCEN) contracted with SEMCOR to perform an analysis of avionic
systems to determine whether data word format standards for aircraft armament
systems were practical. SEMCOR's report 4092 TM-81-BASIC-006, AAAS Multiplex
Armament Data Word Standardization Study, published in February 1981 developed
standard data words for 20 data types.

In August 1980, the U.S. Army Avionic Research and Development Activity

(AVRADA) contracted with SEMCOR to expand the scope of the NAVAIRDEVCEN
investigation to data word format standards applicable to the full range of
avionic systems, including communications, navigation, air data, flight
control, environmental, self-protection, display and control, electrical,
engine management, lighting, and stores management. SEMCOR's final report,
STR-DD-81273-1, MIL-STD-1553 Data Word Standardization Technical Report, was
published in September 1981. This report consolidated many of the data types
previously recommended and added 12 data types for a total of 25 generic data

types.

In December 1980, the U.S. Air Force Systems Command contracted with
Boeing Military Airplane Company to perform an investigation of data word
standardization based upon currently used data words in avionics systems. The
final report, released in October 1981, was a draft Chapter 11, Data Word and
Message Format Guidelines, for the Multiplex Applications Handbook. This study
also included documentation guidelines and message formating.

A parallel effort, Study 3914AVS, has also been initiated by NATO's Third

AVS Working Party to investigate data word and message format standards in
conjunction with STANAG 3838. The U.S. Army (AVRADA) is the project office for

this effort.

TRI-SERVICE MULTIPLEX COMMITTEE:
In Janunary and again in March 1982, members of the Tri-Service

Multiplexing Committee met to review the data word standardization efforts to
date. Since the primary difference between the SEMCOR and Boeing reports was
the choice of metric or English units, resolution of this difference was
necessary before any further progress on standardization could be made. After
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much discussion of U.S., DOD, and individual service positions on metrication,
the following position was adopted:

1. Metric units are desired for future standardization as
soon as practical. To meet this goal, a metric MIL-STD
should be developed.

2. Industry must pace the conversion to metric units. To
allow this while meeting standardization needs, a dual
units (metric and English) Chapter 11 for the Multiplex S
Applications Handbook would be developed.

This position would be submitted to the Society of Automotive Engineers
(SAE) A-2K Subcommittee for Multiplexing for industry comments and approval.
The SAE A-2K would also be asked to review in detail the draft Chapter 11 for
the Multiplex Applications Handbook. Since the completion of Chapter 11 is S
preventing the publication of the Multiplex Applications Handbook as a
MIL-HDBK, the A-2K would be asked to complete this review in a limited time.

TASK GROUP:
At the March 1982 meeting of the SAE A-2K Subcommittee for Multiplexing,

the Tri-Service position on metrication was approved in principle. The A-2K
also agreed to form a Task Group to review and submit for final approval, at
the fall 1982 meeting of the A-2K, a revised Chapter 11. In addition, this
Task Group would recommend whether the writing of a MIL-STD for data words was
practical at this time or shouli wait until industry had some experience using S
the Chapter 11 word definitions. Francis Peter of the Naval Avionics Center
was chosen as the Task Group Chairman.

The following members were chosed for the Task Group:

Military
Naval Avionics Center -- Chairman
Air Force Systems Com. (SEAFAC)
Army Avionic Research and Devel. Activity
Air Force Armaments Lab.

Airframe Integrators S
Boeing Military Aircraft Company
Grumman Aerospace Corp.
LTV Vought Corp.

Equipment and Subsystem Manufacturers

Delco Electronics
Honywell, Inc.
Rockwell, Collins
SCI Systems, Inc.
Singer Kearfott
Sperry Flight Systems
Teledyne Systems Company 0
Westinghouse Electric Corp.
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Consultants
ARlNC Research Corp.
SEMCOR, Inc.

Three meetings were scheduled and held to perform this review. The 0

results of these meetings are sumarized below.

DOCUMENTATION:
During the previously described studies, it became obvious that if

standardization is to succeed, then a common documentation format must be
developed. Such a format must allow easy computerization of the information as
well as provide the necessary level of system documentation. Figures 1 and 2
show the presentation format selected by the Task Group. Note that these
figures are not to scale and that the precise field locations are shown in
Chapter 11. This presentation format provides several unique data fields
including a descriptive name, a word unique identification (ID), original
source(s) of data, final destination(s) of data, and scaling information as
well as descriptive text fields. Similar sheets are defined for Command and
Status words to enable the documentation of complete messages.

As a data word is defined, some of the fields are filled in including 0

basic name, signal type, units, and scaling. When a specific subsystem uses a
data word, this information is expanded including a more descriptive name,
computation rate, refined scaling information, and bit names and descriptions.
This process of adding and refining data is repeated through message definition
and system documentation until a complete Interface Control Document (ICD) is
developed for the system.

A unique capability of this presentation format is the existance of both a
WORD ID and source and destination information. The WORD ID is a unique ID tag
which identifies a specific transfer of the data word on the data bus. The
source and destination are used to identify the originating point (source) for
that data word and the ultimate user (destination) for the data word. For
example, if the bus controller asks for attitude information from an inertial
system and a vertical gyro and selects the best information and sends that
information to a display and an autopilot, then the sources are the inertial
system and the vertical gyro and the destinations are the bus controller, the
display, and the autopilot. Also, if the bus controller converts the attitude
data in direction cosines and sends this data to an antenna pedestal, the bus
controller is the source of the direction cosines. Each of these transfers
would have a different WORD ID associated with the transfer.

SIGNAL CODING: 0

Several guidelines were developed for use in documenting nonstandard data
words. Foremost amoung these is the suggestion that all numeric data be
represented as 2's complement even if the quantity is never negative. This is
useful in that few computers are able to handle unsigned numeric quantities in

an efficient manner. Other rules include the packing of discrete data in the
most significant bit positions and the aligning of character and coded data on
half and quarter word boundaries as appropriate. Another important guideline
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DOC. NO. REV,
DATE
SHEET OF

WORD NAME:

WORD ID MAX VALUE
SOURCE(S) MIN VALUE
DEST(S) RESOLUTION
COMP RATE :ACCURACY

XMIT RATE :MSB
SIGNAL TYPE LSB
UNITS :FULLSCALE

SIGNAL NAME BIT NO. SIGNAL DESCRIPTION

-00-

-01-

-02-

* -03-

-04-

-05-

-06-

-07-

-08-

-09-

* -12-

-13-

-14-

* -15-
-----------------------------------------------------------------------------------
REMARKS:

* (PAGE)
Figure 1. Presentation Format, Single Word
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DOC. NO. REV,
DATE
SHEET OF

WORD NAME

WORD ID MAX VALUE :
SOURCE(S) MIN VALUE:
DEST(S) RESOLUTION:
COMP RATE ACCURACY
XMIT RATE MSB
SIGNAL TYPE LSB
UNITS :FULLSCALE

SIGNAL NAME BIT NO. SIGNAL DESCRIPTION

MSW -00-

-02-
-03-
-O i-
-05-
-06-

* -07-0
-08-
-09-
-10-
-11-
-12-

* -13-0
-14-

LSW -00-

-01-

-03-
-04-
-05-
-06-
-07-

* -08-
-09-

-12-
-13-

* -14-
-15-

REMARKS:

(PAGE)
Figure 2. Presentation Format, Double Word
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is the concept of gathering validity bits into a separate data word as
discretrs. '!his allows simultaneous testing of' all validity bits associated
with a given message.

SIGNAL CATEGORIES:
After a considerablre review of the data words recommended in the previous

studies, a set of 42 data parameters in 24 signal categories was selected.
j Table 1I, Standard Signal Catagories, lists the signal categories and the

associated units and words used with each. All metric units used, except
semicircles (defined as Pi radians); conform to National Aerospace Standard
NAS10001, Preferred Metric Units for Aerospace. The signal set was selected to
be all inclusive so that the broadest possible review of data types may be
made at this time.

MESSAGES:
After a review of potential standard messages, the decision was made to

not include any standard messages as a part of this standard. Instead,
* guidelines have been developed to standardize the structure of messages.

The concensus of the Task Group is that message standardization must wait for
industry to gain some experience in using the standard data words.

The following list of general rules for message construction should be
followed:

1. Multiple messages from a subsystem containing the same data words should
have those data words in the same order.

2. Shorter messages, which contain some of the data words found in a longer
message, should be a subset of the longer message with the same data
word positions.

3. A header word may be provided as the first word of the message.

4. A validity word may be privided to indicate the validity of individual
data words within the message.

5. The word sequence within a message should be as follows:
(a) Header word (optional)
(b) Validity Word (optional)
(c) Time tag (optional)
(d) Data words.

6. Use standard data words whenever possible.

7. Do not assign 3? data words to a message, i.e. leave room for expansion.

6. Do not leave spare or reserved words in the middle of messages.
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Table I. Standard Signal Catagories

CATEGORY UNITS WORDS

Acceleration Meters/Sec/Sec Double

Feet/Sec/See Single

Angular Semicircles Double

Angular Acceleration Semicircles/Sec/Sec Single 0

Angular Velocity Semicircles/See Double

ASCII Data Unitless Single

BCD Data Unitless Single

Convergence Factor Unitless Single

Cosine/Sine Unitless Double

Counts Unitless (Signed) Single 0
Unitless (Unsigned) Single

Data Validity Unitless (Checksum) Single
Unitless (Error Protection) Single

Deviation DDM Single 0

Distance Metres Double
Feet Double
Kilometres Double
Nautical Miles (Low Range) Single
Nautical Miles (High Range) Double

Flow Kilograms/Hour Single

Kilograms/Min Double

Frequency Hertz Four
Kilohertz (ADF) Single

Megahertz (VHF/UHF) Single

Mass Kilograms (Low Range) Single

Kilograms (High Range) Single

Percent Unitless Single

Pressure Kilopascals Double
Inches of Mercury Single

Ratio Unitless Single
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Table 1. Standard Signal Catagories (Cont.)

CATEGORY UNITS WORDS

Temperature Celsius Single

Time Time of Day Three
Microseconds (Time Tag) Single
Seconds Single

Torque Newton-metres Double

UTM Unitless Five

Velocity Metres/Sec Double
Feet/See Double

Kilometres/Hour Single
Knots Single
Mach Single

Voltage Volts Double

00
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FUTURE PLANS:
At the fall 1982 meeting of the SAE/AE-9 Aerospace Avionics Equipment and

Integ'ation Committee (formerly the A-2K Subcommittee), the revised Chapter 11
will b- prnsented for review by the committ-e membership. Pending formal

j approval of the revised document, any suggested changes will be incorporated

into a final draft and the revised Chapter 11 will be submitted to the Tri-

Service Multiplex Committee for final approval. This effort will complete

the Multiplex Applications Handbook and the complete document will be submitted

for publication as a MIL-HDBK.

Also, an all metric version of the data words has been submitted to NATO's
Third AVS Working Party as an input to Study 3914AVS. The working party is
currently reviewing the proposed data word standards.
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o MIL-STD-1553B VALIDATION TESTING

Duane J. Thorpe
ASD/ENASF (SEAFAC)

Wright Patterson AFB, OH 45433

Kumar V. Vakkalanka0
ASD/ENASF (SEAFAC)

Wright Patterson AFB, OH 45433

ABSTRACT

One of the major responsibilities of the Systems Engineering Avionics
facility (SEAFAC) is to act as the Air Force Office of Primary Responsibility
(OPR) for MIL-STD-1553 applications. Since its inception in 1974, this
organization played a vital role in promoting and enforcing the standard. In
the area of testing, SEAFAC set the pace by developing the Test Plan and
specialized test equipment. Our advanced validation Test Faciliity allows us
to test a wide variety of MIL-STD-1553B interfaces, such as Remote Terminals,
transceivers and, of particular interest, the Large Scale Integrated circuit
chips, to ensure their conformity to MIL-STD-1553B. This paper outlines our
present validation testing as well as planned automation of our testfacility.
A summary of our experiences is presented. The paper concludes with SEAFAC's
role in future testing.

INTRODUCTION:

The efforts of Systems Enginering Avionics Facility (SEAFAC) are well S

known. In its capacity as the Air Force Office of Primary Responsibility (OPR)
for MIL-STD-1553B, SEAFAC played an important role in promoting and enforcing
the standard. Several papers were presented in the past few years to keep the
industry up-to-date on the progress we made. We have seen innumerable papers
on the advantages of Multiplexing. In 1980 Charles Gifford outlined the USAF
goals for Multiplexing (Ref 1).He pointed out some of the engineering S

shortfalls,namely, lack of Standardized Test Plan, lack of Standardazied
Message Formats and lack of Specialized Test Equipment. In all these areas
SEAFAC has made considerable progress. The MULTIPLEX HANDBOOK was developed
which has become a valuable source of reference for all engineers (Ref 2).
Several bus testers were developed by SEAFAC enginers (Ref 3). Of these the
the BUS TESTER IV developed by Loral Data Systems. under USAF contract is now
being used by SEAFAC in its Validation Testing Facility. SEAFAC developed a
TESTPLAN which forms the basis for all Remote Terminal testing. Standardized
Word Formats were developed to meet the Air Force needs, under contract with
Boing Airplane Company. A Validation Test Facility was pioneered by SEAFAC
which is being widely used for validation of Remote Terminals (RTs). This
paper outlines the Validation Testing performed at SEAFAC. S
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PURPOSE OF SEAFAC'S MIL-STD-1553B VALIDATION TEST FACILITY

The following are the objectives of SEAFAC's MIL-STD-1553B Validation
Test Facility:

1. To develop a basis for supporting MIL-STD-1553. SEAFAC's Validation
Testing facility has been put to good use. Several leading Companies have
used, and are continuing to use, this facility not only to confirm their own
test results but also to gain an insight into to Air Force testing
methodology. Companies lacking adequate Test Facilities of their own have ben
coming to SEAFAC to check out their systems. Indeed, our Test Facility became
a proving ground for all those contributing to the MIL-STD-1553B.

2. To Test Large Scale Integrated Circuit (LSI) Chips. SEAFAC is
particularly interested in making the Validation Test Facility available to
MIL-STD-1553B LSI Chip manufacturers. The LSI Chips implement all of the
MIL-STD-1553B protocol features. Hence, Validation Testing of all Remote
Terminals utilizing these chips would become easier once the LSI Chips are
fully tested in our facility. S

3. To provide direct support to our Systems Program Office. This,
needless to say, is our primary function.

4. To provide a training base for the engineers. SEAFAC provides an

excellent training base for all engineers to keep them current with 0
technology. In addition to in-house training programs on the MIL-STD-1553B,
our enginers get hands-on-experience in our Test Facility. Their association
with industry personnel keeps them abreast of developments taking place
outside. This ensures credibility in providing support to our Systems Program
office as well as to industry.

0
SEAFAC'S TEST PLAN

Tests performed by SEAFAC are broken down into three categories:

1. ELECTRICAL TESTS
2. PROTOCOL TESTS
3. NOISE INJECTION TEST

The Electrical and Protocol tests are performed under normal and abnormal
conditions ."Abnormal conditions" refer to out of the ordinary stimulii the RT

may be subjected to, such as errors- both electrical and protocol- which are

rare but catastrophic if not handled properly by the RT. The Test Plan 5

outlines acceptable responses to such stimulii by the RT. Testing under the

under these conditions insures against RT failures.
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An RT failure may be defined as any condition S
1. which causes the RT to lock-up
2. which causes the RT to fail to the extent that

power must be recycled in order to recover, or
3. which causes the RT to respond in a form other than that

called out in MIL-STD-1553B".

ELECTRICAL TESTS:

These tests verify RT's compliance with the electrical specifications on
Transmission method (paragraphs 4.3.3) and Terminal characteristics (paragraph
4.5.2) outlined in the MIL-STD-1553B. The Test Plan outlines the following
nests under this category.

OUTPUT CHARACTERISTICS

1. Waveform Polarity.
2. Transmitted Word Size and Encoding. 0
3. Waveform Amplitude.
4. Waveform Risetime.
5. Terminal Response Time.
6. Frequency Stability.
7. Accuracy/Long Term Stability.

8. Short Term Stability.
9. Zero Crossing Stability.

10. Overshoot and Ringing.
11. Waveform Tailoff.

12. Output Noise.

INPUT CHARACTERISTICS

1. Zero Crossing Distortion.
2. Amplitude Variations.
3. Common Mode Rejection.
4. Input Impedance. q

PROTOCOL TESTS:

These tests verify RT's compliance with the various protocol

requirements set in the Standard.

REMOTE TERMINAL OPERATION:

1. RT Response To Command Words.
The purpose of this test is to verify that the RT under test

responds properly,in form over the data bus, to all valid and illegal command

words and that the RT does not respond to any address different from the one

defined for the RT under test.
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2. Intermessage Gap. 0

This test verifies RT's response to messages with minimum
intermessage gap of 4 microseconds.

ERROR INJECTION TESTS:
These tests are intended to examine the RT's response when 0

specific errors are forced into the message stream. When such an error is
injected into the message stream The RT should not respond with a status word
but should internally set the message error bit in its status word buffer. If
the command word it decodes fails any of the validity tests it should ignore
the command and wait for the next command and, in this case the Message Error
bit should not be set in its status word buffer. 0

The following tests are performed under this category:

1. PARITY.
2. WORD LENGTH. 0
3. BIPHASE ENCODING.
4. SYNC ENCODING.
5. MESSAGE LENGTH.

6. DATA CONTIGUITY.

DUAL REDUNDANT OPERATION: 0
This section addresses the (optional) bus switching requirements

of MIL-STD-1553B.These are:

1. Bus-Switching - RT Receiving.
2. Bus-Switching - RT Transmitting.

MODE COMMANDS
These tests verify that the Rt under test responds properly to

mode commands in both form and function. (see Table 1, Mil- Std-1553B)

STATUS BITS:

These tests verify proper implementation of the optional status

bits in the status word. The following status bits are covered.

1. Terminal Flag.
2. Subsystem Flag.
3. Busy. 0

4. Broadcast.

.340

. . . . . 1 , , . .. . .. . . . . . . . I | B - II I B I I I I II I II . . .



RT TO RT TIME OUT. 0
If the RT is capable of receiving data in an RT to RT transfer, it

should time out at approximately 54 microseconds after the receive command.

ILLEGAL COMMANDS.
This test verifies the the optional illegal commands implemented

in the RT under test

NOISE REJECTION.
Acording to MIL-STD-1553B, the terminal shall exhibit a maximum

word error rate of one part in 100 million, on all words received by the
terminal when operating in the presence of additive white Gaussian noise
distributed over a bandwidth of 1.0 KHz to 4.0 MHz at an RMS amplitude of 140 •
mV. A word error shall include any fault which causes the message error bit to
be set in the terminal's status word, or one which causes a terminal not to
respond to a valid command. The word error rate is measured with a 2.1V
peak-to-peak, line-to- line, input to the terminal. All data words used in
this test contain random bit patterns. These bit patterns are unique for each
data word in a message and change randomly from message to message. The noise 0
rejection tests the RT for acceptance or rejection criteria as per Table II of
MIL-STD-1553B.

SEAFAC'S EXPERIENCES IN VALIDATION TESTING

In the 7 or 8 years of SEAFAC's testing, we have observed that most

terminals tested for the first time have at least one error under normal
operating conditions. Most terminals also have an inproper response to
intentionally injected errors. This does not necessarily mean that the system
will not communicate under normal circumstances, since most terminals have at
least the basic command/response functions working well enough to support
communication. However, in order to achieve standardization among terminals
these sometimes apparently minor problems must be eliminated.

We have seen terminals that have peculiar functions which may or may not
be allowed in the Standard, such as transmission rate sensitivity, partially
updated data buffers, and over use of the busy bit. These functions may meet
the requirements of the Standard or the specification to which the terminal is
designed, but the user and system integrator should be aware of any
peculiarities such as these for all the terminals in the system.

In the past two years we have seen a slow but steady improvement in the
quality of terminals comming into SEAFAC for testing. This is probably due in
part to the advances in LSI and hybred devices for MIL-STD-1553B, the
distribution of the SEAFAC TEST PLAN, and the general increased knowledge and
understanding in the industrial community on the characteristics of MIL-STID-
1553B. We still continue to find the same problem areas for those devices not
using LSI parts or for a "first 1553 design" device. These problem areas are
listed below:
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1. Non-compliance with the Standard. Some people still feel that the

Standard is only a guideline and should be optimized for their application.

We can agree that in some cases there are changes to the Standard that could

be made to increase the throughput, decrease the cost, and in general modify

the subsystem to be technically better for that particular application. If

this were allowed then we would no longer have a Standard.

2. Misinterpretations of the standard. MIL-STD-1553B is very clear and
specific about most of the requirements.However, a misinterpretation

occasionally still occurs. For instance,a question often arises in the area of

bus switching, where a terminal under test is receiving a message one one bus.

Some misinterpret the Standard to say that there are only certain times during

this message transmission when they are required to receive a command on the

opposite bus. This is incorrect. The terminal must be capable of receiving a
valid, legal command on the opposite bus at any time during the original
message transmission.

3. Peculiar Functions. There are many functions that are either left

as options in the Standard or are beyond its scope. In these areas where

complete guidance is not given, some very peculiar and often potentionally
disastrous conditions do sometimes occur. For example, a MIL-STD-1553B CRT

display terminal that was designed for a certain transmission rate may blank

out if the proper update rate is not maintained

4. Incomplete Testing. Some people still believe that if a terminal

will communicate in a system with no problems, then the terminal must be

compliant with the requirements of the Standard. This is not true. In order

to gain the full benefits from a standard such as MIL-STD-1553B, each terminal

should be tested thoroughly to be fully compliant with the requirements of the

Standard.

The solution to these problems takes much time and effort from both

SEAFAC and all the implementors of MIL-STD-1553B. We are trying to attack

these problems from several different angles using as many toolR as we can,

some of which are listed below:

1. We are recommending the use of the Multiplex Applicatlivn Handbook

which gives design examples, states lessons learned and explains all aspects

of MIL-STD-1553.

2. We are encouraging the development and use of LSI and hybrid

components. Once these components have been tested and their compliance with •

the Standard verified, then the problems of terminals that use these

components should be greatly reduced.

3. We are developing a finalized Test Plan with the current preliminary

SEAFAC Test Plan as a basis and inputs from the SAE-AE9 Test Plan T:,tk Group.

The Test Plan explicitly defines what the Air Force considers to be pass/fail 0

criteria for compliance with the Standard.
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FUTURE ROLE OF SEAFAC

AUTOMATION OF TESTING

It should come as no surprise that after 7 or 8 years of time consuming
and laborous testing SEAFAC is attempting to automate its validation
facility. The time and manpower requirements for the present manual testing
are becomming a real burden on the small group of engineers at SEAFAC.
Because of the increased popularity in MIL-STD-1553B, there has been a
corresponding increase in requests for testing at our facility. We are also
attempting to train engineers in all aspects of MIL-STD-1553B to provide
support to different Air Force program offices. The complicated and tedious
testing requirements tends to over extend the training period for these
engineers.

An automated test facility that will speed up the time and effort
required for validation testing is the goal for the automation effort. Once
this is satisfactorly demonstrated as a useful tool, other companies can take
advantage of our effort and build their own automated testing facility. By
certifying a company's testing facility and having that company test all of
their future terminals, we will multiply our own engineering capabilities many
times. The key is to piovide a cost effective, well documented automated
system to perform the very complicated and detailed tests.

This automation task is not a trivial matter and can be broken down into
at least 3 phases which are listed below:

Phase I - Hardware specification, design, implementation, and delivery.
Consolidate all the required hardware items necessary for the tests into one
test station.

Phase II - Some automated assistance in setting up the different tests

especially in the protocol section. The interpretation of the terminal's
response will still be done by the engineer performing the tests. A detailed
test procedure will also be provided to accelerate the learning curve for new
engineers performing the tests.

Phase III - Full Software support for a automated test station. The
different hardware test equipment will be interconnected with the IEEE-488
instrumentation bus to a PDP-11/34 computer. Now even the electrical section
of the test plan can be set up and run automatically. The PDP-11 will be
capable of interpreting the terminals response and determining PASS or FAIL
according to the Standard and the Test Plan.

343



The tasks for Phase I have all been completed. All of the hardware items
have been integrated into one test station and all of the tests in the Test
Plan can be performed using this test station. Table 1 lists the individual
pieces of equipment and Figure 1 shows our physical layout of the equipment.
We are presently on the final documentation stages of Phase II. Most of the

* protocol tests have been programmed into our LORAL SBA-100 Bus Tester. The bus
tester can now at least set up and run these tests, but the interpretation of
the response must be doaie by the operator.

The tasks in Phase III present many challenges since we have to
automatically control not only the SBA-100 Bus Tester but also all the other
pieces of equipment that are necessary to perform the electrical tests. The
most difficult job is to program the PDP-11/34 computer to interpret the
measurements and responses of the terminal and issue a Pass/Fail decision on
these results. The Standard allows just enough flexibility and options to
make this job difficult, but possible. Also, the trigger, capture, and stack
capabilities of our MIL-STD-1553B bus tester do not allow flexible monitoring

0 and interpretation by a host computer. Nevertheless, these problems can and
will be overcome.

SERVICES OF SEAFAC

The testing services provided by SEAFAC in the areas of technical

consulting and testing have been in heavy demand in recent years. This may be

due to the fact that we do not charge for the testing, the use of our

equipment, our test time, or the completed test report preparation. In 1982 a
totally free service is almost unheard of. Whatever the reason, the demand
for our testing support has almost exceeded the capabilities of our single
test station and limited manpower. This has caused SEAFAC to set up a

a priority on scheduled tests which are listed below:

1. System Program Office (SPO) support
a. ASD programs
b. Other Air Force programs

*c. Other DOD programs

2. LSI and Hybrid device for the OEM market

3. All other requests

* In additon to our continued testing support, we are developing a final

version of the SEAFAC Test Plan with inputs from the SAE-AE9 Test Plan Task

Group. This will eventually cover both Remote Terminal and Bus Controller

test plans for 1st Article, Production, and Acceptance Tests. Our eventual

goal is to use this test plan as a tool along with the experience of our

automated test station to certify other such facilities in the industrial
* community.
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TABLE 1 4

MAIN EQUIPMENT PARTS LIST FOR AUTOMATED TEST STATION

RELAY ACTUATOR, HP 59306A
VFH SWITCH, HP 59307A
RMS VOLTMETER, FLUKE 8921A
IEEE 488 TRANSLATOR, FLUKE 1120A

NOISE SOURCE, GEN RAD 1383
NOISE AMPLIFIER, AMPLIFIER RESEARCH 1A70
NOISE FILTER, ALLEN AVIONICS F884
AUTOBUSY POWER SUPPLY, SEAFAC
RT POWER SUPPLY, SEAFAC
TIME INTERVAL PROBE, HP 5363B
VFH SWITCH, HP 59307A
TIME INTERVAL COUNTER, HP 5370A
SCOPE, TEX 7704
IMPEDANCE ANALYZER (LCRMETER), HP 4192A
TERMINAL TEST INTERFACE PATCH PANEL, SEAFAC
SPECTRUM ANALYZER, HP 8568A
DIGITIZER, BIOMATON 1912
SCOPE, TEX 7704
3325A FUNCTION GENERATOR, HP 3325A

1553 BUS TESTER, CONIC SBA-100
7000 SERIES SCOPE PLUG-IN STORAGE
COMPUTER, DEC PDP 11/34
DISKS ,RL02
CRT, DEC VTIOO
PRINTER, DEC LA30
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Abstract

In the last few years there has been significant increase
in the application of MIL-STD-1553. This has generated the
need for better understanding of all aspects of testing multi-
plex hardware and systems. This paper begins with a brief
discussion of the philosophy of testing. It highlights the
compromise involved in end-item testing. The various phases
of testing are discussed. There is also a detailed discussion
of the test requirements necessary to verify compliance with
MIL-STD-1553B. The functional requirements of special purpose
test equipment for multiplex hardware are described. The
paper ends with an overview of commercially available MIL-STD-
1553 test equipment.

I PHILOSOPHY OF TESTING

The purpose for testing is to determine the quality or
the proper functioning of an item. In a classroom setting, a
test is used to measure a student's knowledge, but it might
also be a measure of the instructor's ability to convey in- S
formation. When we test electronic equipment we can get it
to work as designed but not necessarily as desired (the
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designed unit does not always meet the requirements of the
specification). Testing may be a measure of the performance
of the designer.

When we test a piece of equipment, we want to provide a
specified level of confidence that the unit is functioning
properly. As the amount of testing is increased, we asymp-
totically approach the 100% level of confidence. To reach
the 100% level of confidence, all permutations and combina-0
tions would have to be tested, which may require an infinite
amount of testing. Since testing takes time and costs money,
we generally have to compromise on the amount of testing.
Frequently, the buyer wants a lot of testing and has to settle
for less to keep the costs down. The seller, or manufacturer,
wants to minimize testing to keep the costs down, but is forced
to increase testing and increase his sales price to cover it.
The manufacturer also needs to do enough testing to minimize
equipment coming back for repair. If he does more testing
than necessary, it is costing him extra money in testing, If
he doesn't do enough testing, it will cost him extra in repair-

* ing returned equipment. Therefore, he must make a compromise,
or reach a balance in the amount of testing to be done.

There are two aspects of testing equipment that commiuni-
cate on the multiplex data bus. First, the 1553 interface to
the data bus must be tested, and then the rest of the unit is
tested through the 1553 interface. This paper focuses pri-
marily on testing the 1553 interface. Since MIL-STD-1553 re-
quires that words and messages be validated, it is necessary
to test with injected errors in all phases of testing to
adequately test the 1553 interface.

II PHASES OF TESTING

Some of the phases of testing that can be identified are
development testing, design verification, system testing, pro-
duction testing, and field testing. Each of these phases will
be briefly discussed.

Development Testing

Development testing begins with testing breadboards of
circuits or modules to provide the designer with a clearer
understanding of their operation and capabilities. This helps
to minimize costly redesigns due to misunderstandings. The
development testing continues with the testing of the bus
interface and then the subsystem. The subsystem may function
on the data bus as a remote terminal, a bus controller, or a
bus monitor. Development testing includes testing circuit
operating margins and testing to the tolerance limits.
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Design Verification

For design verification, generally a preproduction unit
* is thoroughly tested to verify that the unit satisfies the

requirements of MIL-STD-1553 and the system specification.
The unit would be tested over the specified environment range.
The design verification testing is generally the most exten-
sive phase of testing.

System Testing

Facilities used for system testing are referred to as
System Hot Bench, System Integration Lab, or System Develop-
ment Lab. Facilities normally provide for Bus Controller
simulation and multiple Remote Terminal simulation. Bus
Monitors which provide for data recording are used for
collecting data for off-line data reduction. Primary con-
cerns for system testing are hardware interface verification
and software validation. All default conditions and system
margins should be checked.

Production Testing

Production testing can include both in-process testing
and end-item testing. Here it is assumed that the design
satisfies the requirements of the standard, and the equipment
specification and the tests are performed to verify that all
of the circuitry is functioning properly. Even though there
is in-process testing, it is still essential to do complete
testing for end-item or acceptance testing. This complete
testing requires testing with injected errors to verify that
the error detection or message validation circuits are
functioning properly.

Field Testing

Field testing at the system level involves fault isola-
tion to a line replaceable unit. For trouble-shooting and
repair it is necessary to have bus controller testers and/or
remote terminal testers. Field testing philosophy should
also consider complete periodic testing of systems to detect
failures in the error detection or message validation circuits
of the various subsystems (remote terminals, bus monitors,
and bus controllers). After the 1553 bus interface is tested,
then the rest of the subsystem is tested through the 1553
interface.

IN ALL PHASES OF TESTING IT IS NECESSARY TO TEST
WITH INJECTED ERRORS TO VERIFY THE OPERATION OF
THE MESSAGE VALIDATION AND ERROR DETECTION CIRCUITS.

* S
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III TEST REQUIREMENTS

Test requirements for terminals can be divided into the
* two main topics of electrical interface tests and terminal

protocol tests. The electrical interface tests apply to all
types of terminals, but the terminal protocol tests are a
function of the type of terminal being tested. All of the
electrical interface tests and the terminal protocol tests
should be run on each of the buses when there are redundant
buses.

Electrical Interface Tests

The electrical interface tests can be divided into three
parts. These are input tests, output tests, and tests to
determine the isolation between redundant buses. The speci-
fications given in the standard define the requirements at
the connector inputs of the terminal to be tested. These
points are illustrated in Figure 1 as point A for the direct
coupled terminal (short stub) and point B for the transformer
coupled terminal (long stub). It is important to note that
the requirements for a terminal are for that terminal by itself
and are not tested or measured in the system where they would
be dependent on other system elements. Seven input tests for
the electrical interface will be briefly discussed.

The input polarity is tested by determining that the
terminal responds appropriately to a word with a positive sync.

All terminals are to respond to Manchester signals with
peak-to-peak amplitudes in the range of 0.86 volts to 14.0
volts for transformer coupled stubs or 1.20 volts to 20.0
volts for direct coupled stubs. Terminals are not to respond
to signals with peak-to-peak amplitudes less than 0.20 volts
for the transformer coupled stubs or 0.28 volts for the direct
coupled stubs. The response to signals with peak-to-peak
amplitudes in the range of 0.20 volts to 0.86 volts for trans-
former coupled stubs or 0.28 volts to 1.20 volts for direct
coupled stubs is indeterminant. it is sometimes desirable to
determine the actual threshold voltage for a terminal by
measuring the peak-to-peak amplitude of the signal where the
response of the terminal is intermittant.

The input impedance of a terminal is specifieC to be a
* minimum of 1000 ohms for transformer coupled stubs and 2000

ohms for the direct coupled stubs. This input impedance is
specified over the frequency range of 75.0 kHz to 1.0 MHz.
The best way to measure the input impedance is with an im-
pedance meter.

The common mode rejection specification for a terminal
requires that the performance of a terminal should not be
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degraded when a common mode voltage is imposed on the input
signal. Tb*e common mode voltage range is from direct current
to 2.0 MHz with amplitudes equal to or less than ± 10.0 volts,
line-to-ground. This test can be run for a remote terminal
with a configuration as shown in Figure 2. The bus tester
would repeatedly send receive messages to the remote terminal
under test and verify that the terminal received the data
by monitoring the status response. During the transmissions,
the generator output would be varied over the frequency and0
amplitude range. If the remote terminal fails to respond
properly at any time due to the common mode voltage, the test
is not passed.

The zero crossing deviation specification requires that
a terminal be capable of receiving and operating with input
signal waveforms with a maximum deviation in the zero crossing
from the ideal of ± 150 ns.

The terminal is to be capable of operating with input
signals with transmission rates from .999 to 1.001 Megabit

* per second (long term stability 1.0 Mb/s + 0.1%). It is best
to test the terminal with the longest message it is capable
of receiving.

The noise rejection specification requires that a terminal
exhibit a maximum word error rate of one part in 10 when op-
erating in the presence of additive white Gaussian noise dis-
tributed over a band width of 1.0 KHz to 4.0 MHz. The band
limited RI4S amplitude of the noise is 140 my for transformer
coupled stubs and 200 mV for direct coupled stubs. The peak-
to-peak signal amplitude is 2.1 V for transformer coupled
stubs and 3.0 V for direct coupled stubs. All data words used
in the test are to contain random bit patterns. The bit
patterns are to be unique for each word in a message and are
to change randomly from message to message. This noise test
is run continuously until the number of words received by the
terminal exceeds the required number for acceptance or is less
than the required number for rejection for a particular number
of -irrors. The acceptance/rejection criteria is specified in
Table II in the standard. In this test, message errors are
normally detected and it is assumed that only one word in the
message is in error, independent of the number of words in
the message (up to 33 words). To minimize the probability of
the words to the bus tester being "garbled", the test can be

S run with gatted noise where the noise source is turned on
while the terminal under test is transmitting. A typical test
set-up for the noise rejection test is illustrated in Figure 3.

Ten output tests for the electrical interface will be
briefly discussed. Measurements for the output tests are made
at the connector of the terminal under test in the configura-
tion illustrated in Figure 4. The load resistor, R LP is
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specified as 70 ohms for a transformer coupled stub, and 35
ohms for a direct coupled stub.

The output polarity is tested by verifying that the 0
terminal transmits a word with a positive sync when it is
caused to transmit a command word or a status word.

The amplitude of the transmitted signal from a terminal
is to be within the range of 18.0 volts to 27.0 volts for the
transformer coupled stubs and 6.0 volts to 9.0 volts for the
direct coupled stubs. The amplitude is specified as peak-to-
peak, line-to-line.

The rise and fall times of the transmitted waveform is
specified to be from 100 ns to 300 ns when measured from the
levels of 10% to 90% of the full waveform peak-to-peak, line-
to-line voltage.

The zero crossing deviations of the transmitted signal
are to be less than or equal to + 25 ns from the ideal crossingpoints when measured with respect to the previous zero crossing.

The overshoot and ringing on the transmitted signal is
not to exceet + 900 mV for the transformer coupled stubs or

300 mV peak for the direct coupled stubs.

The output noise from a transmitter when a terminal is
not transmitting is to be less than 14.0 mV RMS for the
transformer coupled stubs or 5.0 mV RMS for the direct coupled
stubs. It is most convenient to measure the output noise with
a differential true RMS voltmeter.

The output symmetry or tailoff, is tested with the ter-
minal under test transmitting the maximum number of words it
is designed to transmit (up to 33). The maximum peak-to-peak
voltage measured after 2.5 us following the mid-bit transition
of the parity bit of the last word is required to be less than
or equal to t 250.0 mV for the transformer coupled stubs or
t 90.0 mV for the direct coupled stubs. This test is to be *
run six times with each word in a contiguous block of words
having the same bit pattern. The six word contents that are
to be used are 800016, 7FFF-6 , 0000 5555 , and AAAA
When running this test for either bd controlers or rete
terminals it may not be practical to force the first word
(command or status) to have the required bit pattern. *

The transmitted signal must be checked to verify that
both polarities of word sync and both logic one and logic
zero bit encoding conforms to the requirements in the standard.

The word length should be checked to verify that the *
words are 20 bit-times long. This can be checked by measuring
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the time from the mid-sync transition to the mid-bit transition
to the mid-bit transition of the parity bit which should be
18 us.

The transmission bit rate or clock stability is most
easily tested by measuring the clock. If the clock is not
accessable, the transmission bit rate can be checked with
the terminal transmitting the maximum number of words it de-
signed to transmit, and measuring the time from the mid-sync
transition of the first word to the mid-bit transition of the
parity bit of the last word. This time should be [(20 x Num-
ber of Words) - 2]w US.nThe accuracy and long-term stability
is required to be wihi 0.1 percent, and the short term
stability is to be within + 0.01 percent.

The isolation between redundant buses is to be a minimum
of 45 dB. The isolation requirement is given as the ratio in
dB between the output voltage on the active bus and the output
voltage on the inactive bus. The output voltage for the data
buses can be measured with a RMS voltmeter.

Terminal Protocol Tests

The terminal protocol tests will be discussed in two
parts: remote terminal tests and bus controller tests. Bus
monitor tests could be considered a subset of the remote ter-
minal tests and will not be discussed here. When testing the
terminal protocol, it is important to know what the terminal
will do for all conditions. Some tests are run to characterize
the terminal rather than to verify compliance with the standard
or system specification.

The first step in testing the remote terminal protocol
is to verify that the remote terminal responds properly for
all of the legal (valid) information transfer formats. The
three basic information transfer formats that are required
are BC to RT, RT to BC, and RT to RT. These should be tested

0 with all subaddresses and data word counts that have been im-
B plemented in the remote terminal. All mode operations that

have been implemented should be tested. This may include Mode
Commands without data, Transmit Mode Commands with a data word,
and Receive mode commands with a data word. If broadcast has
been implemented in the remote terminal, the broadcast infor-

0 mation transfers should be tested.

The unique terminal address for a remote terminal is
checked by sending commands with the RT Address bits set to
all 31 combinations (0 to 30 decimal) and verifying that the
remote terminal responds to only its own assigned address.
If the assigned address is programmable, the test should be
run for all possible combinations of assigned addresses. The
response to broadcast commands (RT Address 31) also needs to
be checked.

355



The remote terminal is required to respond to a command
within 4.0 to 12.0 us. This response time is measured from

j the mid-bit transition of the parity bit of the last word
(command or data) to the mid-sync transition in the status
response. This time corresponds to a dead time on the bus
of 2.0 to 10.0 us.

The remote terminal should be tested for its ability to
respond to superseding commands. The intermessage gap time
of the second command on the same bus is to be a minimum of
4.0 us and the command is not to occur during the response
time of the remote terminal or while the remote terminal is
transmitting. A second command on the alternate bus may
occur at any time. A second valid command to a remote termin-
al is to take precedence over the previous command.

The remote terminal response to illegal commands must be
specified in the equipment specification. The standard has
left it optional as to whether or not the remote terminal is
to monitor for illegal commands. An illegal command is a

S valid command that specifies an operation that has not been
implemented in the remote terminal.

A remote terminal is not to respond to invalid commands.
An invalid command is a command with any of the following
errors:

" Sync Field Error - either inverted sync or a shift
in the mid-sync transition.

" Bit Encoding Error - also referred to as Manchester
error or biphase error.

* Bit Count Error - too many bits or too few bits.

* Parity Error - even parity.

For a valid command with invalid data, the remote termin-
3al is to set the Message Error bit in its status word and

suppress the transmission of the status response and not use
any of the data received. If any of the data words are in-
valid, the entire message is invalid. In addition to the
four types of errors given above, invalid data may be caused
by data words being discontiguous (gaps betwecn words) or by
a data word count error (too many or too few words).

When testing the bus controller protocol, it is important
to realize that part of the protocol is done in hardware and
part is done in software. The first step in testing the bus
controller protocol is to verify that the bus controller can
issue the desired valid commands and data. The bus controller
is never to issue invalid words. The proper processing of nor-
mal valid remote terminal responses must be tested.
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The bus controller must be tested for its processing of
abnormal or invalid remote terminal responses. These abnormal
or invalid responses may include the following:

" No Response to Command

" Improper Status Bits

" Word Errors (Sync error, Bit Encoding error, Bit
Count error, or Parity error)

" Discontiguous Data Words

o Word Count Errors

The intermessage gap time is the time from the end of
one message to the command from the bus controller for the
next message. The minimum intermessage gap is 4.0 us. This
time is measured from the mid-bit transition of the parity
bit in the last word of one message to the mid-sync transition

a of the command starting the next message.

The minimum no-response time-out for a bus controller is
14.0 us. This is the minimum time the bus controller must
wait before it assumes there will not be a response, and it
issues another command.

The bus controller should also be tested to verify that
it transmits on only one data bus at a time.

IV TEST EQUIPMENT FUNCTIONAL REQUIREMENTS

Special purpose test equipment to support MIL-STD-1553
testing can be described in three categories. There is a
need for a remote terminal tester, a bus controller tester,
and a bus monitor (non-flight). Some of the requirements or
considerations for each of these testers are common. These
common requirements will first be discussed, followed by a
brief discussion of the requirements for each of the three
testers.

Common Requirements

The bus interface is common to all types of testers.
The things to consider in the bus interface is whether or not
it provides for dual standby redundant operation, and, if so,
consider how the two buses are controlled. There should be
provision for controlling the amplitude of the transmitted
signal to allow for testing the response and no-response
voltage levels. The bus interface should also provide for
operating on both direct coupled stubs and transformer coupled
stubs.
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For manual testing it is important to consider the man-
machine interface. Ease of operator understanding and use

j can result in increased productivity.

For automated testing or dynamic simulations, it is
important to consider the computer interface. Full parallel,
IEEE 488, and RS 232 are common interfaces. The parallel
interface is desirable if high data rates are required, or
for dynamic simulations.

Remote Terminal Tester

The primary function of the remote terminal tester is to
format commands and data for transmission to the remote ter-
minal under test. The tester also needs to receive, validate,
and store the res~ponses from the remote terminal under test.
To provide the capability for testing the word and message
error detection circuitry, the tester needs to be able to
generate controlled errors. The types of errors that can be
generated may include the following:

* Sync Error (inverted or shifted mid transition)

* Bit Encoding Error

*oParity Error

o Bit Count Error (too few or too many)

* Discontiguous Data (gap)

o Word Count Error (too few or too many)

* Mixed Bus Transmission in Message

* Incomplete Message with Subsequent Command

For testing operating margins in the remote terminal,
the tester may provide for controlled variations in trans-
mission bit rate, zero crossing deviation, and intermessage
gap time. The tester needs to validate the responses from
the remote terminal under test to verify that they conform
to the requirements of the standard. The validation checks
that the tester makes may include the following:

" Response Time

" Bit Encoding

o Bit Count

* Off Parity
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e Transmission Continuity

0 Word Count

* Simultaneous Bus Activity

Bus Controller Tester

The primary function of a bus controller tester is to
process received commands and data and format status and data
responses for transmission. For testing the error detection
circuitry the tester needs to be able to inject controlled
errors. The controlled errors generated by a bus controllerr tester may include the following:

" Sync Error (inverted or shifted mid transition)

* Bit Encoding Error

" Parity Error

* Bit Count Error (too many or too few)

* Discontiguous Data (gap)

" Word Count Error (too many or too few)

" N~o Response (failed bus)

o Wrong Terminal Address in Status

" Error Flags in Status

* Response on Wrong Bus

For testing operating margins in the bus controller,
the tester may provide for controlled variations in the
transmission bit rate, zero crossing deviation, and response

0 time. The tester needs to validate the commands and data
issued by the bus controller to verify that they conform to
the requirements of the standard. The validation checks that
the bus controller tester makes may include the following:

0 o Intermessage Gap Time

* Bit Encoding

* Bit Count

0 o odd Parity
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" Transmission Continuity

0 Word Count

o Simultaneous Bus Activity

Bus Monitor

Bus monitors are used during system integration and
system testing. The primary function of the bus monitor is
to receive data bus traffic and extract selected information.
There are two basic types of bus monitors. One basic type of
bus monitor does the function of Statistical Analysis, and
the other type of bus monitor functions as a Logic Analyzer.

The Statistical Analysis type of bus monitor stores and
tabulates information from data bus traffic for statistical
purposes. Information may be tabulated in the following ways:

o Active Terminals by Address and Data Bus

o Unique Commands

o Error Conditions

The Logic Analyzer type of bus monitor triggers on a
specified event in the data bus traffic and stores a snap-shot
of the data bus traffic. The snap-shot of traffic stored may
be preceding, centered about, or following the trigger event.
This type of monitor may also provide a trigger output for
synchronizing other instrumentation.

V OVERVIEW OF AVAILABLE TEST EQUIPMENT

Today there are several companies which make test equip-
ment to support work for MIL-STD-1553. The equipment available
ranges from simple manual testers, to strictly computer con-

* trolled testers, to testers which provide both manual control
and computer control. Testers range in capability from single
function testers (ie. remote terminal testers) to multi-func-
tion testers. The following Table gives manufacturers and
their products for testing MIL-STD-1553 hardware and systems.
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MIL-STD-1553 TEST EQUIPMENT

MANUFACTURER PRODUCTS

SCI SYSTEMS, INC. BUS CONTROLLER SIMULATOR (BCS 101 A
BCS/REMOTE TERMINAL (BCS/RT 202)
BUS SYSTEM TESTER (BST 1100)
BUS ACTIVITY SIMULATOR

TEST SYSTEMS, INC. BUS CONTROLLER/MONITOR (BCM)
MULTI-TERMINAL SIMULATOR (MTS)

FAIRCHILD SPACE & DATA BUS MONITOR/CONTROLLER (DBMCT

ELECTRONICS

DIGITAL TECHNOLOGY, INC. MICROPROGRAMMABLE BUS TERMINAL (MBT,

LORAL DATA SYSTEMS SERIAL BUS ANALYZER (SBA 100)

COMPUTER DATA SYSTEMS BUS SIMULATOR CARD (53A-553)

SPECTRAL SYSTEMS MODEL 20 DATA BUS TESTER

* 3
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A COMMON 1553B I/0 CHANNEL FOR THE F-16
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ABSTRACT S

'The 1980's will see increased standardization in military avionics.
MIL-STD-1553 has proven to be an effective means of assuring
communications among independently developed avionic subsystems. Future
applications of the Air Force standard computer architecture,
MIL-STD-1750A, and standard programming language, MIL-STD-1589B, will 5

further decrease the life cycle costs of many systems currently under
development.

While MIL-STD-1750A defines a specific CPU architecture, and
MIL-STD-1553B defines the method of communication among subsystems, no
current Air Force standard defines the I/0 channel that links the 1750 S

processor to the 1553 bus. In order to reduce both the cost of software
development and maintenance, General Dynamics has developed a 1553
channel architecture to be applied to all the subsystems being programmed
in-house for the F-16 Multi-National Staged Improvement Program (MSIP).
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BASIC REQUIREMENTS

The first and foremost requirement for the MSIP 15538 channel is that
it support MIL-STD-1553B. The F-16 interface requires the implementation
of the majority of the 15538 standard. (Exceptions are certain mode
commands and features such as broadcast commands and dynamic bus control.)
An additional requirement is to support communications to equipment
already on the current F-16, and scheduled to be included, without
modification, on the MSIP system. These systems communicate via 1553-F16,
a subset of the original 1974 MIL-STD-1553. Communications among old and
new terminals is possible as long as the bus controller interprets the
status words from each subsystem according to the proper version of the
standard. Figure 1 shows how the status words of the two standards
differ.

The channel must support the transfer of time consistent blocks of
input and output data. This is easily accomplished by the 1553 controller
since the CPU is aware of when bus transactions may be expected to occur.
For the asynchronous terminal, this task is much more difficult to
accomplish. Added to this is the requirement that normal channel
operations require a minimum of intervention from its host computer's CPU.
In order to reduce the complexity of the avionic system, bus controllers
on the F-16 are incorporated into existing LRU's, rather than into
dedicated units. A rudimentary intelligence, incorporated into the
channel , can assure the task of 1553 bus controller (or terminal) does not
adversely affect the throughput of it's host computer. The power of the
host CPU is always present to handle unusual situations, and to assure the
flexibility for future system growth. Provisions must therefore be made
for interrupt'ng the CPU when required. However, the generation of
interrupts should be selectable for each transmission and situation, so
that the CPU is not burdened with needless overhead.

A requirement more specific to the F-16 is the support of transaction
time-tagging[7j. Each multiplex terminal and controller on the F-16
maintains a 16 bit counter clocked every 64 microseconds. The counter may
be loaded or reset by the 1553B controller, and may be read by the host CPU
for internal use. Multiplex data time-tagging allows all F-16 avionic
subsystems to operate asynchronously while still maintaining a common

* time referencing system for age sensitive data.

Finally, some additional considerations went into the design of the
F-16 channel architecture. The architecture had to be entirely consistent
with MIL-STD-1750A and MIL-STD-1589B (the Jovial programming language).
In addition, the good and bad characteristics of other 1553 channels were
evaluated and lessons learned were applied to the design where possible.
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1553/F-16 Terminal Status Word

I ~ Il JI~ I

Terminal Flag
Bus #A Shutdown
Bus #B Shutdown
Dedicated Function Received

_____Broadcast Received
Reserved
Data Quality Error
Instrumentation
Data Parity Error
Terminal Address

1553B Terminal Status Word 
0

* 0
Terminal Flag
Dynamic Bus Control
Subsystem Flag
Busy
Broadcast Received
Reserved
Service Request 0
Instrumentation
Message Error
Terminal Address

* 0

* 0

* 0
Figure 1
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CONTROLLER ARCHITECTURE

The F-16 controller executes a channel program stored in the main
memory of the host computer. Once provided the start address of the
program and the controller enable command from the CPU, the 1/O channel
executes independently from the CPU. All input and output data needed by
the channel is obtained from the host computer memory via direct memory
access. Each instruction in the 1/O channel program is four words long and
encompasses a complete 1553 operation. Figure 2 illustrates the basic
format of each channel instruction.

Word 0 of each instruction includes an operation code and other
required control information. Allocation of the first word entirely to
the specification of opcode plus options allowed space for many desirable

61 features. Two bits specify the protocol (1553 or 1553B) of the
transmitter and receiver for the operation. Two other bits specify a
request for a CPU interrupt on successful completion and a similar request
if the transmission fails due to an external error. The channel always
interrupts the CPU in the case of an internal error. Additional bits
specify that upon an external error, an automatic re-try be attempted on

* the same or on the alternate bus wire. Automatic transmission re-tries,
when combined with external error interrupt control , serve to greatly
reduce the overhead placed by the channel on the host computer CPU. For
many data blocks, there is no need to involve the CPU in transmission
failures. If the re-try of the transmission should also fail, the channel
simply proceeds to the next command. Experience on the F-16 has shown
that a single re-try resolves almost all 1553 recoverable transmission
failures[2].

Word 1 is the first 1553 command word to be transmitted over the bus
for the transaction. Word 2 contains the second 1553 command word,
required only for terminal to terminal operations. These words contain
the transmitter and receiver terminal address, subaddress, and word
count. The last word of the command contains the host memory address for
data retrieval or storage, or the new channel program address in the case
of the branch operation code. A forth word would not be required if the
controller relied on his own terminal address and subaddress, and a
subaddress vector table, inorder to locate data storage and retrieval

* areas in main memory. However, the hardware complexity of the 1/O channel
is reduced by allocating the instruction size as a power of two, and
requiring boundary alignment. For this reason, along with the flexibility
of each command having an individual data storage address, the forth word
was included in each command.

* When the 1/O channel does interrupt the host processor, the processor
may determine the cause of the interrupt by reading key channel registers
via programmed 1/O (the MIL-STD-1750A XIO instruction). The channel is
always halted following a CPU interrupt request. The command table
address word provides the CPU with the location of the failed command.
The interrupt status word (shown in Figure 3) provides the CPU with the

* cause of the error. Two additional words provide the status words
received by the controller from the transmitting and receiving terminals,
should they be required by the CPU for its analysis. Table 3 summarizes
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CONTROLLER CHANNEL INSTRUCTION FORMAT

01 < 3 4 ~ 6 7 8 9 :ll 11 2

WORD 0 OPCODE IP11 P21I EO : R RS R A B

WORD 1 DR/MODE WORD CNT/CODE

WORD 2 TERM ADDR TRI SUBADDR/MODE WORD CNT/CODE

WORD 3 DATA BUFFER / LINK ADDRESS

OPCODE - SEE TABLE I
P1 - PROTOCOL OF TERMINAL #1
P2 - PROTOCOL OF TERMINAL #2
IC - INTERRUPT ON COMPLETE
IE - INTERRUPT ON ERROR
DS - CONTROLLER DATA STORAGE DURING TERMINAL

TO TERMINAL TRANSMISSION
RC - RESET CONTROLLER TIME TAG
RS - RETRY ON SAME BUS
RO - RETRY ON OPPOSITE BUS
A - SELECT BUS "A"
B - SELECT BUS "B"

Figure 2
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CONTROLLER TRANSACTION OPCOOES

OPCODE DESCRIPTION

000000 Perform a controller to terminal data transaction

000100 Perform a terminal to controller data transaction

001000 Perform a terminal to terminal data transaction 0

001100 Perform a mode command (with no data word)

010000 Perform a mode command (with controller generated
data word)

010100 Perform a mode command (with terminal generated data
word)

000001 STOP (do not update command table address)

000010 LINK (set new command table address)

000011 Store time-tag word

xxxxxx Perform channel built-in-test (optional)
(OPCODE selected by vendor)

Table 1
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CONTROLLER INTERRUPT STATUS WORD FORMAT

0 2 3 5 6 7 8 9 10 11 12 15 4

REEVD SPARE OC IGH BIT] B IA. ST IEXT. ERRORI

BIT DESIGNATION DESCRIPTION

0-2 RESERVED Set to logic zero

3-5 SPARE Set to logic zero

6 OC Operation complete

7 GH Graceful halt complete

8 BIT Built-in-test-complete

9 B Bus B inoperative

10 A Bus A inoperative S

11 ST Self-test/Built-in-test fail

12-15 EXT. ERROR External error code
(see Table 2)

* *

* S

Figure 3
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CONTROLLER EXTERNAL ERROR CODES

CODE INDICATION DESCRIPTION

0000 No error Cause of last interrupt was not
an external error

0001 Invalid bus Uncommanded activity present on
activity (optional) bus. Sets interrupt status

bits 9 and/or 10

0010 External status Expected status word not
unavailable received or could not be decoded

[W with proper parity

0011 Reserved Reserved

0100 Status word flag a received status word had an
error indicator set

0101 Terminal replied A received status word had the
Busy busy bit set

0110 Terminal replied A received status word had the
Service Request Service Request bit set

0111-1011 Spare Spare

1100-1111 Reserved Reserved

NOTE: Code 0001 has the highest priority.
Code 1111 has the lowest priority.

TablI 2
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CONTROLLER XIO COMMANDS

OPCODE VALID STATES DESCRIPTION

XXO0 BC/OFF Read/Write Channel Control Word

XXOI OFF Read Interrupt Status Word

XX02 OFF Read/Write Command Table Word

XX03 OFF Read Received Status Word P1

XX04 OFF Read Received Status Word #2

XX05 BC/OFF Graceful halt Request

XX06 BC/OFF Read/Write Time Tag Word

NOTES: S

XX = Eight bit code specified for each channel by the hardware
development specification. Most significant bit shall
be a logic one for a Read command and a logic zero for a
Write command.

BC/OFF May be read by CPU in either Bus control ler or OFF 5

states.

Table 3

375

0" -0.. .. . . . m . .. I I I I I I " "I I I



the set of XIO commands used by the CPU to control the 1553B chanro ',

controller mode.

TERMINAL ARCHITECTURE

The 1553 terminal mode is the most unique aspect of the F-16 1/0 >

channel. The primary consideration in designing the 1553 terminal s to
provide the CPU with consistent sets of input (and output) data while
remaining constantly online to the bus. This must be achieved wnile tre
CPU executes its program totally asynchronous to the inpJt and output
transmissions of the multiplex controller. This has been a weak point of
many previous 1553 terminal architectures. Asynchronous data cons'stency •
was previously not supported, or was maintained by interrupting the CPU at
tne end of each input transmission and allowing the CPU to capture the
data in the input buffer. To allow this process sufficient time to take
place, the terminal was required to go off-line (accomplished by setting
the BUSY bit of the 1553B terminal status word). The CPU reestablished
normal terminal mode after the data capture was complete. However, the •
controller could not send additional transmissions to the terminal during
this time interval.

The F-16 approach to this problem is to provide the I/0 channel with
the addresses of two independent receiving buffers for each subaddress.
The channel automatically alternates filling the two buffers with input 0
data. In addition, to support interrupting the CPU while remaining
on-line, a sixteen word interrupt queue is provided in computer main
memory. The channel accumulates information concerning interrupts in the
queue area, so that informdtion from new interrupts does not deE ;roy
information from interrupts yet to be processed by the CPU interrupt
software. 0

Two major data structures, located in main computer memory, support
the terminal mode of the I/O channel. The Subaddress Vector Table is a
typical feature of 1553 terminals. MIL-STD-1553B supports 30 input and 30
output messages, with the subaddress and transmit/receive fields of each
1553 command from the cntroller uniquely identifying each message. Using 0
these fields as a numerical index int, the subaddress vector table, the
terminal can determine the proper response for each 1553 message. The
F-16 terminal vector table contains 64 entries that are each four words
long. (Four entries correspond to subaddresses that identify 1553 'mode'
transmissions and hence do not identify data transmissions.) Figure 4
illustrates the format of each entry. While 256 words is more storage
than has been required by previous 1553 terminals, the added capabilities 0
provided by this structure more than compensate for the added storage
requirements.

The first two words of each entry contain pointers to bufters in main
computer memory that are to contain input or output data. For 1553 input,
the channel stores the incoming data words in the buffer identified by the
Write Pointer. At the end of the transaction, if all data words have iee
received correctly, the terminal swaps the contents of thv tw( r,,,
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TERMINAL VECTOR TABLE ENTRY FORMAT

WORD 0 WRITE BUFFER ADDRESS BUFFER

A

WORD 1 READ BUFFER ADDRESS

WORD 2 SPARE Ic

WORD 3 TRANSACTION TIME WORD BUFFER

B

IC - INTERRUPT ON COMPLETE

Figure 4
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0

words so that the Read Pointer now identifies the newly received data.
The CPU may use the Read Pointer to access the most recently received data
totally asynchronous to further channel activity. For output
subaddresses, the CPU uses the Write Pointer to fill a buffer with new
output data, and then swaps the two pointers. The channel uses the Read
Pointer to access the data when the controller requests the transmission
of that subaddress.

The third word of each vector table entry contains a CPU interrupt
flag. When this flag is set for an input subaddress, the channel will
generate a CPU interrupt request after successfully receiving the
selected subaddress. Unlike the 1553B controller, this does not cause the
terminal to halt operations. The interrupt request is generated following
the vector table pointer swap. In order to identify to the CPU which
subaddress has been received, the channel stores an entry into the
Terminal Interrupt Queue (Figure 5). This 16 word data structure is a 0
first-in, first-out queue managed by both the channel and the CPU. Two
pointers in main memory identify the current position in the queue for the
channel, and the current position in the queue for CPU processing. Each
time the channel adds an entry to the queue, it increments its queue
pointer word. After 16 entries, the pointer is set to point again to the
first queue word. The channel then checks the CPU's processing pointer in 0
order to halt operations should a queue overflow occur. As each interrupt
is processed, the CPU increments its own processing pointer. Using this
interrupt queue structure, the F-16 1553B terminal may successfully
receive up to 16 (interrupting) input subaddresses in a burst from the
controller, while always remaining on-line to the bus. It should be noted
that an interrupt is only required for those input subaddresses that 0
require the immediate attention of the terminal's host CPU. The Vector
Table pointer swap allows the CPU access to time consistent input blocks
without the need for a transaction complete interrupt.

As in the case of the teiininal mode, the complexity of the channel is
reduced if the size of each vector table entry is a power of two words. To 0
fill the entry to four words, the last word in each vector table entry is
used to receive a copy of the terminal's time-tag at the time of the
successful reception of the corresponding subaddress. The terminal's
host CPU may use this word to determine the relative freshness of its
input data.

Table 4 summarizes the set of XIO commands used by the CPU to control
the 1553B channel in the terminal mode. Once the channel has been started
in the terminal mode, it needs no further XIO communication with the CPU,
unless it halts due to an internal (self-test) error.
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TERMINAL INTERRUPT QUEUE ENTRY FORMAT

0 1 2 3 4 5 6 10 11 15

ST OV SP IA IB IT/Rj SUBADORESS/MODE IWORD COUNT/CODEJ

BIT DESIGNATION DESCRIPTION

0 ST Self-test/built-in-test
failure

1 OV Queue overflow 5

2 SPARE Set to logic zero

3 A Transaction performed on
bus A

4 B Transaction performed on 0
bus B

5 T/R Value of T/R bit used for
vector table entry index

6-10 SUBADDRESS Value of subaddress/mode used
for vector table entry index

11-15 WORD COUNT Value of word count field used
for vector table entry index

* 4

Figure 5
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TERM'LaAL XIO COMMANDS

OPCODE VALID STATES DESCRIPTION

XXO RT/OFF Read/Write Channel Control Word

XX01 RT/OFF Write Channel Status Word

XX02 OFF Write Vector Table Address Word

XX03 OFF Write Interrupt Queue Pointer

Address

XX04 OFF Read Bit Word 0

XX05 OFF No operation

XX06 RT/OFF Read/Write Time Tag Word

o

NOTES:
XX = Eight bit code specified for each channel by the hardware

development specification. Most significant bit shall
be a logic one for a Read command and a logic zero for a
Write command.

RT/OFF = May be read by CPU in either remote terminal or OFF
states.

* 4

Table 4
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EXPERIENCE TO DATE

An engineering prototype of the F-16 1553B I/O channel is now
operational in the laboratory under a MIL-STD-1750A host computer.
Algorithms to operate the channel in the controller mode have been written
and tested, successfully establishing 1553 communications with other F-16
equipment. All of these programs, including the main body of the
interrupt handler, are written in Jovial J73. Programs to exercise the
terminal mode are still under development. A possible improvement to the
channel was noted during the development of its operational software. For
many transmissions, the controller external error interrupt is enabled
solely so that the CPU may mark the contents of the input data buffer as
invalid. This is a task that could easily be performed by the I/O channel
itself.

SUMMARY

The F-16 was one of the first major applications of MIL-STD-1553.6
While numerous 1553 I/O channels have been developed since then, it is the
F-16 common I/O channel for MSIP that has solved many of the common
problems found in earlier designs. Like MIL-STD-1750A, the F-16 channel
is the definition of an architecture, not an implementation. Its
implementation is not bound by any level of technology. Perhaps other
users of both MIL-STD-1553B and MIL-STD-1750A may find some benefit to an
implementation of the F-16 channel for their own applications.
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Abstract 0

The MIL-STD-1750 Users Group was established in August 1979 as a voluntary
organization of industry representative to exchange information and status of
MIL-STD-1750, and to recommend changes to the standard. This paper is a
brief description of the Group, its committees, accomplishments, and future
direction. The purpose of the standard is reviewed.

Benefits of MIL-STD-1750

MIL-STD-1750 is a standard for and instruction set architecture ISA. It does 0
not define specific implementation details of a computer.

The standard states, in paragraph 1.4:

The expected benefits of this standard ISA are the use and re-use
of available support software such as compilers and instruction S
level simulators. Other benefits may also be achieved such as: (a)
reduction in total support software gained by the use of the
standard ISA for two or more computers in a weapon system, and (b)
software development independent of hardware development."(1)
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Organization and Membership

The MIL-STD-1750 Users Group was established in August 1979 as a voluntary0
organization of industry representatives to exchange information and status
of MIL-STD-1750, and to recommend changes to the standard. (Appendix A
contains the by-laws of the group (2)). The group is organized into
committees, and the group generally does not vote on a change to the standard
until one of the committees has itself approved it for consideration of the
entire group. Any member of the group may present a problem or
recommendation to either the group as a whole or to any committee chairman
for discussion and possibly eventual vote by the entire group.

The membership of the Users Group, excluding government personnel, Is
approximately 350 persons. Industry representatives from England regularly
attend, and other NATO country representatives also occasionally attend.
Figures 1 and 2 depict the growing and changing attendance (2).

At the time the group was formed, the Air Force had released the standard,
and was seeking industry comments and recommendations for changes to it. The
Air Force recognizes the group as the sole industry body to recommend changes
and improvements to the standard. Although the Air Force and other
government representatives participate in the committee and group discussion,
they do not vote. The Air Force uses a "Control Board" to accept changes or
refer them back to the users group. The control board and the users group is
part of the control structure which the Air Force has established for
MIL-STD-1750. (See Figure 3.) A similar structure exists for MIL-STD-1589,

JOVIAL.

The committees are the backbone of the group. The following is a simmary of
the function of the committees.

Standards - To interpret and clarify definitions and descriptions
appearing in MIL-STD-1750; to assess the scope and applicability of
the standard.

Architecture - To assess the value and impact of proposed
architecture modifications or extensions to the standard.

Verification -To address issues related to verifying and

certifying MIL-STD-1750 hardware implementation.

Software Tools - To act as an information exhange to MIL-STD-1750
related software tools, and to assess the need for MIL-STD-1750
support tools.

Liaison - To retain communication and coordination with other
related standardization groups.

The group has had meetings three or four times a year, each for about two
days. The committees elect their own committee officers and make committee
reports to the full Users Group at each meeting.
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The MIL-STD-1750 Users Group is governed by its adopted set of by-laws and
conducts its business meetings generally by Roberts Rules. Voting procedures 0
are set forth by the by-laws. It has already been noted that government
personnel do not participate in the voting of User Group issues. No company,
including all of its divisions, may be represented by more than five voting
members at any meeting.

Accomplishments 0

The principal accomplishment of the group during its first two years was the
revisions to the standard documented as MIL-STD-1750A and as Notice 1. At
each of the meetings in those first two years, the status of changes was well
known to all of industry. This is also an accomplishment since any company
wishing to implement the standard could always know which changes were being 0
studied by committees, or were already accepted by the control board.

The work load of the group may be judged by the number of substantive changes
to the original MIL-STD-1750. The following is the best available record of
the changes accepted by both the Users Group and the Control Board/Control
Agent for changes from MIL-STD-1750 to MIL-STD-1750A.

Architecture - 8
Standards - 38
Verification - 1
Editorial - 25

MIL-STD-1750A was completed in March 1980 and published on 2 July 1980. In
addition to these, several more changes were made to MIL-STD-1750A which were
incorporated in Notice 1. The work was completed in November 1981 and
published 21 May 1982.

Future Direction 0

The Users Group will be considering what changes to MIL-STD-1750A are
justified in light of technology advancements and lessons learned. The Air
Force has established a policy that the standard will not be changed until
1985 to provide needed stability. New applications are being considered that
will require revision to the standard, for example, multiple processors.
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APPENDIX

BY-LAWS OF THE MIL-STD-1750 INSTRUCTION SET
ARCHITECTURE USERS GROUP

ARTICLE I -NAME

1. This organization shall be called the MIL-STD-1750
Instruction Set Architecture Users Group and
referred to as 1750 ISAUG.

ARTICLE II - PURPOSE

1. The group is organized and will be operated
exclusively for the following purposes.

* a. To provide a means of communication between
persons involved with the use of MIL-STD-1750
Standard Instruction Set.

b. To serve as forum for making users
recommendations to the Air Force Instruction
Set Architecture Control Board.

ARTICLE III - MEMBERSHIP

1. Open to all government contractors, government
employees, and others interested in the use of
the MIL-STD-1750 Standard Instruction Set.

ARTICLE IV - OFFICERS

1. The Officers of this organization shall be a
Chairperson, Vice-Chairperson, and Secretary-

* Treasurer.

2. The Officers shall be elected from the general
membership.

3. The Officers shall serve a term of two years.

4. No member shall serve as chairperson for
consecutive terms.

ARTICLE V - DUTIES OF OFFICERS

01. The Chairperson shall preside at all meetings of
this group and of its Executive Council. The
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Chairperson shall also appoint all committees of
the group.

2. The Vice-Chairperson shall assume the duties of
the Chairperson in the event of the Chairperson's
absence. The Vice-Chairperson shall assume those
duties of the Chairperson that are delegated to
him by the Chairperson.

3. The Secretary-Treasurer shall keeep minutes of all
Group and Executive Council Meetings. The
Secretary-Treasurer is responsible for preparation
and distrubution of all meeting minutes and all
correspondence with the Air Force Instruction Set
Architecture Control Board. The Secretary-
Treasurer shall maintain financial and membership
records.

ARTICLE VI - EXECUTIVE COUNCIL

1. The Executive Council shall consist of the present
officers, the chairpersons of the standing
committees, and the most recent past chairperson.
The new Executive Council shall take office
immediately following the election of the group's
officers.

2. Minutes of all Executive Council meetings shall be
available for inspection by any member of the
group and shall be filed with the group records.

3. The Executive Council shall meet before a general
group meeting to plan the general group meeting.

4. The Executive Council shall fill vacancies which

occur between election of officers.

* ARTICLE VII - STANDING COMMITTEES

1. Standing Committees shall be:

a. Standards Committee
b. Architecture Committee

*c. Verification/Certification Committee
d. Software/Hardware Development Tools Committee
e. Liaison Committee

ARTICLE VIII - TEMPORARY COMMITTEES

1. The Chairperson, with the approval of the
Executive Council, may appoint temporary
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committees as is deemed appropriate.

ARTITCLE IX - MEETINGS

1. Meetings shall be held as planned by the Executive
Council. The group shall hold meetings uniformly
around the country.

2. Written notices shall be sent to all members at
least thirty (30) days prior to any meeting.

3. There shall be at least one (1) scheduled meeting
each year.

4. The standing committees shall meet in concert with
the Group Meeting. Additional working meetings of
the committees may be held at the discretion of
the committee chairperson with the concurrence of
the committee membership. Minutes of the
committee meetings shall be recorded and
distributed.

ARTICLE X - CONFERENCE/REGISTRATION FEES

1. Fees shall only be assessed to cover the meeting
and administrative costs of the group.

2. Fees shall be fixed and adjusted by the Executive
Council and be subject to the rules for
amendments.

3. The conference/registration fees must be published

in a Meeting Announcement prior to becoming
effective.

ARTICLE XI - AMENDMENTS AND PROCEDURE

01. Amendments to these By-Laws shall be made in the
following manner.

a. The intent to change the By-Laws will be
published in a Meeting Announcement, discussed
with the membership and voted upon.
Two-thirds of the membership present must vote
for the change in order for it to be carried.

b. The result of the change must be published in
the next Meeting Announcement.

02. By-Laws must be republished and distributed to the
membership at appropriate intervals as directed by
the Executive Council.
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3. Rulings on any point of procedure not included in
these By-Laws shall be made by the Chairperson.
The 1750 ISAUC shall use Robert's Rules of Order.

ARTICLE XII - VOTING

1. Apportionment in matters requiring group consensus
voting shall be as follows:

A. General Membership - one vote per person
present but not more than five (5) votes per
institutional representation.

B. Mail Ballots will only be permitted for
emergency issues called for by the Executive
Council. Only attendees at the previous
General Membership meeting are eligible to
vote. At least half of eligible voters
must vote for ballot to be valid.

2. Consensus

A. General or Procedural Issues

General or Procedural Issues voted upon within
the group shall be considered a consensus
(positively or negatively) by a majority vote
of the voting general membership.

B. Technical Issues

Technical Issues voted upon within the group
shall be considered a consensus by a
two-thirds majority vote of the voting general
membership and two-thirds majority for
rejection shall imply rejection, otherwise,
deferral shall be implied.

ARTICLE XIII - REFERRAL TO AIR FORCE ISA CONTROL BOARD

1. Approved techrnical issues shall be documented and
forwarded to the Air Force Control Board by the
Secretary of the 1750 ISAUG.

2. Any member or group of members has the priviledge
of preparing a minority opinion and forwarding
this to the Air Force Control Board thru the
Secretary of the 1750 ISAUG.
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ABSTRACT

- Fairchild ARDL, under contract with General Dynamics/Fort Worth, is
developing a high performance MIL-STD-1750A microprocessor chip set for use
in embedded computer applications in U.S. Air Force avionic systems. This
paper describes the development program, the design methodology and the
process technology.

Fairchild MIL-STD-1750A Microprocessor chip set is centered around the
F9450A a 20-Mfz 64 pin microprocessor with 200ns cycle time that implements
all 1750A instructions including floating point. Two support devices under
development are the F9451, a 1750A Memory Management Unit, and the F9452, a
1750A Block Protect RAM device. In addition to the microprocessor chip set,
Fairchild is developing an Engineering Test and Evaluation Equipment based
on the FS-1 Microprocessor Development System.

The paper discusses current trends in processing technologies and their
effects on system performance. .

INTRODUCTION

Fairchild Advanced Research and Development Laboratories, under contract
with General Dynamics/Fort Worth, is developing the F9450 - a single chip
high performance MIL-STD-1750A microprocessor for use in embedded computer
applications in the U.S. Air Force avionic systems. This paper describes
the development program which includes in addition to the F9450 two support
circuits (F9451 and F9452) and Engineering Test and Evaluation Equipment. 0
It discusses the design methodology and current trends in processing tech-
nologies and their effects on system performance.

PROGRAM OVEVIEW

In May 1981 Fairchild submitted to GD/FW a proposal for the MIL-STD-
1750A Microprocessor development program. In October 1981, after competitive
bidding, we were awarded the development contract. The program entails
development of a single chip microprocessor that fully implements MIL-STD-
1750A (Notice 1) ISA including floating point (F9450); it also includes
development of the F9451 - an LSI circuit that implements the MIL-STD-1750A 0
Memory Management Unit (MMU) functions, and the F9452 - an LSI circuit that
implements the MIL-STD-1750A Block Protect RAM (BPR) functions. Engineering
Test and Evaluation Equipment (ET/EE) is also developed under the program.

Fairchild started the logic design of the F9450 in June 1981 (see Figure
1). PDR and CDR were held in November 1981 and February 1982 respectively. 0
The F9450 design and circuit layout was completed in April 82. At that time
while the original design of the F9450 was fabricated as a test device
(Figure 2), a circuit optimization activity was started to improve the
manufacturability of the F9450 microprocessor. Four additional design
iterations are planned, the first of which comes out of feb in mid-November
1982 and the last one by the end of May 1983. S
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The two LSI support circuits, developed using a standard 13L gate array,
were designed in a very short time - 6 1/2 months for the F9451 and 7 1/2
months for the F9452. Only 3 design iterations are planned for these parts
which are much simpler than the F9450.

There are two delivery milestones in the program - 15 prototype chip sets
and 5 units of the ET/EE will be delivered by March 1, 1983; 100 preproduction
chip-sets will be delivered after qualification by September 1, 1983.

F9450 - MIL-STD-1750A CPU

The F9450 microprocessor (Figure 3), in a single chip, completely
implements MIL-STD 1750A (Notice 1) Instruction Set Architecture.

Implementation in the 13L-II Bipolar VLSI technology affords static
operation with 200 ns bus cycle times, low-power Schottky input/output, 0
inherent radiation tolerance (1 x 105 rads), and operation at 20 MHz over the
full military temperature range.

The F9450 provides 16 user-accessible general-purpose registers, and
operates on the following data types: bit, byte, single precision integer (16
bit), double precision integer (32 bit) floating point (32 bit), and extended 0

precision floating point (48 bit).

Real-time processing capabilities include (on chip) 2 programmable
timers, a complete 16-level interrupt processor and a comprehensive fault
handler. Instruction Abort mechanism is provided and it may be utilized for
demand paging virtual memory organizations. 0

The microprocessor features high throughput: 0.2 usec integer add, 1.85
psec integer multiply, and 5.6 psec floating point multiply at 20 MHz clock
rate and 150 nsec internal cycle time (Table 1). Performance is achieved by
means of advanced technology as veil as advanced architecture techniques
incorporating high level of pipelining and parallelism and utilizing fast
algoritms such as the Modified Booth for multiply operations.

DESIGN METHODOLOGY

To realize the very aggressive development tasks in an extremely tight

schedule Fairchild had put together a multidisciplinary design team includ-
ing Computer Architects, Logic, Circuit and Mask Designers as well as support
personnel. Working very closely with GD/FW, Fairchild's team was enhanced with
additional design resources from Honeywell Avionics, Minneapolis,.Minnesota,
GTRI, Atlanta, Georgia and SPCI, Salt lake City, Utah.

The design process was managed with heavy emphasis on close interaction
and cooperation between the team members and had high visibility from Fairchild
upper management. An Advisory Board was put in place at the beginning of the
program and is monitoring its development. Members of the Advisory Board
include Dr. Jim Early - head of the VLSI Development Lab in ARDL; Dr. Gil
Amelio - General Manager of the Microprocessor Division and Dr. Peter S
Verhofstadt - Engineering Manager of the Microprocessor Division. Dr. Tom
Longo - Vice President of Schlumberger and Chief Technical Officer of Fairchild

397



while personally supervising the 1750 microprocessor development program is
heading this Advisory Board.

The design process vas heavily oriented towards usage of Computer Aided
Design (CAD) techniques from System Level Simulation to Automatic Layout and
Routing, including Logic and Circuit Simulation and automated Design Rule
Checking. In order to combine high performance, maintaining low power and
implementing this logic in a small number of components, powerful logic design
techniques and innovative circuits were developed. Each CPU logic block was
carefully weighed for delay, power and cell area. A functional block (cell
based) layout was used on this chip. The functional block structure permitted
increased functionality by minimizing the random logic and interconnect
constraints.

A special layout technique was used resulting in reduced silicon area
and design time: In the strip layout concept, bit zero of the ALU and bit
zero of all the registers, etc are laid out to line up in a strip. Bits zero
through fifteen are laid out in strips identical to bit zero and placed
vertically next to each other separated by power buses. Each strip is
designed with identical bussing where data flows between Register File and
the ALU on first layer metal. Control signals flow across the data path in
second layer metal. This layout technique resulted in a significant layout
efficiency and high packing density and reduced bus capacitances. The
repetitive nature of the layout also had dramatic impact on design layout time.

TECHNOLOGY

Since the first days of the semiconductor era, Fairchild has been the
leader in bipolar semiconductor technology. As early as 1974, we started
work on bipolar VLSI technology. Our Isoplanar Integrated Injection Logic
(130), a technology that combines VLSI packing density with features that are
inherent to bipolar technologies like full military temperature range opera-
tion and radiation hardness, has been evolving since then.

Table 2 describes the evolution of the 13L technology, showing its usage
in various products with increased complexity and improved performance.

The first 13L products were designed in a 5-6,u technology in 1974-76.
the second generation 16-bit bipolar microprocessor, the F9445, was designed
in 1979-81 in a 4 .5p technology. The F9450 is designed in 13L-II with 3pi
feature sizes and better than 5ns gate delay leading to instruction execution
times of 700,000 instructions per second (700 KIPS) for the U.S. Air Force
DAIS mix with 16% floating point )perations.

Processing technology is evolving rapidly and in 1984 we will be intro-
ducing into production the next generation bipolar VLSI technology - 13L-III.
With feature sizes of better than 2,u, this technology will improve by more
than a factor of two the basic logic propagation delay to less than 2 ns; at
the same time reducing chip size and power dissipation.

An enhanced F9450 with innovative architecture and implemented with
13L-111 Technology can be developed for 198546 production with 2-4 MIPS DAIS
mix performance.
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SUMMARY
SU S

Implementation of MIL-STD 1750A ISA in a single-chip microprocessor is yielding

a very powerful tool for avionics system designers. Combining low power
dissipation with small physical size and inherent high reliability, the F9450 S

offers at the same time relatively high performance (700 KIPS) over the full

military temperature range. Current trends in processing technology will allow

us to upgrade the F9450 to a 2-4 MIPS machine for production in 1985-86.
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S

F9450 Instruction Execution Times (uS) - 50 ns CPU Clock Period

0

Single Double Floating Extended
Precision Precision Point Floating
Integer Integer Point

Register 02 0.8 4.5 5.75
Add/Sub

Register 1.85 5.75 5.6 12.4
Multiply 1.__7__61.
Register 4.7 12.0 9.8 21.15
Divide

La 0Load 0.6 1.25 1.25 1.3Direct 1 1

Branch Taken = 0.75 us Not Taken = 0.2 is

0

I0

Table 1

4
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ABSTRACT
-* As part of a continuing research and development program in embedded 0
computer systems, McDonnell Douglas Corporation (MDC) is developing a high-
speed MIL-STD-1750A microprocessor. The central processing unit consists of
three integrated circuits, which together form a 1750A processor capable of
performing the DAIS instruction mix at greater than 900 KIPS.

The technology used in the 1750A microprocessor is a mature complementary
metal oxide semiconductor/silicon on sapphire (CMOS/SOS) process in use at
MDC. This is a radiation-tolerant, low-power, high-speed technology that
makes it possible to achieve the processor's high throughput while consuming
less than 2 watts of power.

This paper describes the architecture of the processor and the user-
oriented approach taken in the development of the processor and its support
tools.
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INTRODUCTION

Since the early 1960's, McDonnell Douglas Astronautics Company has been
involved in developing aerospace comnputers for use in canpany-developed
systems. During the last few years, these have been built primarily from
available transistor-transistor logic (TTL) bit slice parts. However, the
physical size and power consumption of this technology have limited the
applicability of these processors. Commercial microprocessors offer an
alternative for some lower performance systems, but their performance is
generally inadequate and their instruction sets are oriented to a different
class of problems. Fortunately, by the end of the 1970's, IC design and
processing technology had matured to the point where it was realistic to
consider developing custom, high performance large scale integration/very
large scale integration (LSI/VLSI) processors.

During the 1970's, McDonnell Douglas Electronics Company worked with
several integrated circuit technologies, among which was CIVS/S05. By the end
of the decade, a very mature 5-micron process was in regular use and work was
under way on advanced processes. CI4DS/S0S is an ideal technology to meet the

* power, performance, and envirornental requirements that are imposed on an
aerospace computer. It consumes very little power, while being capable of
operating at speeds equal to Schottky TTL. Additionally, it is capable,
through careful design and process rules, of achieving space qualification
levels for radiation tolerance. Given the need for a low-power, high-speed
LSI processor, and a technology capable of achieving these goals, all that
remained was the selection of a suitable instruction set architecture.

From the beginning, McDonnell Douglas has been active in the evolution of
MIL-STD-1750A from MIL-STD-1750. Under a contract to the Air Force, a TTL bit
slice 1750A processor was developed to gain experience with the 1750A standard
as it was evolving. In addition to the computer, a set of software tools,
including a simulator, assembler, and linker, was developed for the Air
Force. As a result, a group of people at MDAC became knowledgeable about the
1750A instruction set architecture and had an appreciation for its
capabilities. It was their judgment that 1750A would be a good choice as the
instruction set architecture (ISA) for a custom LSI microprocessor. It
offered a realistic ISA for implementation in a small chip set, with all the

* necessary features (such as floating point, numerous levels of prioritized
interrupts, etc.) plus a standard set of software development tools supported
by the Air Force.

By 1981, all of the pieces were in place and a joint independent research
and development effort between the McDonnell Douglas Astronautics and

*Electronics Companies was launched. The goal of this effort is to design and
build a MIL-STD-1750A chip set that is small in physical size, low in power
constimption, space qualified for radiation tolerance, and has a throughput of
close to I MIP with the DAIS instruction mix.
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OVERVIEW

The result of this development effort is the Model 281 microprocessor, a
microprogrammed CMDS/SOS processor that implements the 1750A ISA to notice 1.
In addition to full compliance with the mandatory items in the 1750A standard, 0
the 281 CPU contains timers A and B, the trigger go timer, IMA control, and
startup ROM control. For the extended address and memory protect options, an
additional MMU/MPR IC was designed for use with the 281 CPU. The MMU/MPR chip
may be configured to be a memory management unit controller for a full
complement of page registers or a memory protect RAM controller for anywhere
from 65,536 or 64K to 1 million words of memory. 0

The 281 CPU is partitioned into three functional units, each of which is
a COS/SOS integrated circuit. The execution unit is the heart of the CPU,
containing all of the arithmetic/logic functions of the machine. The control
unit is the microengine that controls the processor, containing the
microsequencer and the microcode ROM. Through an external pin connection, the 0
control unit may be configured as a ROM only, with the microsequencer
functions disabled. This ROM may then be connected to a control unit as an
additional microcode ROM. In this way, the microstore can be expanded up to
4096 or 4K words, of which 1500 are used for the 1750A instruction set. The
third chip contains the interrupt system and fault register, plus several
1750A options, including timers A and B, the trigger go timer, 1MA controls, 0
and startup ROM controls.

For a non-radiation-hard version of the 281 processor only three ICs are
required, one of each type. However, for a space-qualified, radiation-
tolerant processor four ICs are needed, one of each type plus an extra
microcode ROM. This is due to the redundant elements that are required in the 0
hardened ROM which reduces its capacity to one half of that in the nonhardened
ROM. In all other respect the two versions are identical, with
radiation-tolerant design rules followed throughout. With a 20-MHz clock, the
non-radiation-hard 281 processor is capable of performing the DAIS instruction
mix at 940 KIPS while consuming less than 2 watts of power. Because of the
second microcode ROM, the radiation-tolerant version runs somewhat slower,
performing the DAIS mix at 780 KIPS. These performance times are for a
processor configured with a maximum of 64K words of memory with a cycle time
of 200 nsec. If a memory management unit or memory protect RAM is used, the
throughput slows down by about 25% to 705 KIPS for the nonhardened version and
585 KIPS for the hardened version. If faster memories are available, a
portion or all of the performance may be regained.

Current plans are to package all of the ICs in 64-pin leadless chip
carriers and to mount them on a thick-film assembly (TFA). Two TFA versions
are planned, a minimum version that will contain a 1750A CPU capable of
addressing up to 64K words of memory and a maximum version that will support
all of the expanded memory and memory protect options with fully buffered TTL
outputs. The TFAs will be multilayer ceramic substrates, with the circuits
between ceramic dielectric layers. The minimal version will be the size of a
standard 64-pin DIP. The maximal version will measure 2.7 by 5 inches and
will have 100 pins. Both TFAs are designed for easy mounting on a printed
circuit board.
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DETAILED DESCRIPTION

A block diagram of the 281 processor is shown in Figure 1. Each of the

three integrated circuits is shown with the primary chip interconnections. S

The H bus is the microinstruction bus, over which the control unit provides
microinstructions to the other two ICs. The address/data bus is used for

communications between the execution unit and the interrupt unit, as well as
between the execution unit and the memory and I/O systems. The 281 uses a
multiplexed address and data bus with the control signals necessary to allow
the memory or I/O system to operate asynchronously. Time-outs are used to 0

detect illegal I/O operations or references to nonexistent memory locations.

The execution unit is based upon a three-bus architecture, two operand

source buses and one destination bus, each of which is 16 bits wide. There
are four major structures within the execution unit: the register file, the
brrel shifter, the ALU, and the multiplier. Each of these structures is S

highly regular, allowing the IC layout to take place through the replication

of a small set of cell types. This greatly simplifies the IC design and

layout, which reduces the risk of an error.

The register file contains 24 16-bit registers in a dual-port RAM

structure. Sixteen of the registers serve as the 16 general registers called S

for in the 1750A standard and the remaining 8 are temporary registers for use

by the microcode.
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Execution Unit Control Unit Interrupt Unit

Figure 1. Block Diagram of The 281 Process&

408



The barrel shifter is a 32-bit input, 16-bit output right-shift network.
A double-precision operand can be shifted right arithmetically, logically, or
cyclically 0 to 31 bit positions in one machine cycle. The shift count can be
directly programmed via the microinstruction or can first be loaded into a
shift count register. The shift count register can be loaded from the
destination bus or from a normalize test circuit that provides the shift count
necessary to normalize a given operand.

The ALU is a 16-bit arithmetic logic unit capable of performing
arithmetic or logic operations in either 16- or 8-bit mode. In addition to
selecting ALU source operands from among the other elements within the
execution unit, a 16-bit constant may be loaded directly from a
microinstruction. Not shown in Figure I is a I-bit left shifter and a shift
extension register that are used for divide operations within the ALU.

The multiplier performs a 4 by 24 bit multiply plus accumulation in a
single machine cycle. Contained within the multiplier is a 48-bit product
accumulation register, the lower 24 bits of which serve as a source operand
register. On each cycle, the lower 4 bits of the accumulator are multiplied
by 24 bits from the R and S buses. The lower 24 bits of this 28-bit product
are then added to the upper 24 bits of the accumulator and the whole •
accumulator is shifted right 4 bits, making room for the upper 4 bits of the
product. The 4 bits shifted out are then used in the next multiply
iteration. By iterating the appropriate number of times, the different
precision multiply operations required by 1750A may be performed.

Instruction look ahead is employed by the 281, with the IB register •
holding the current 1750A instruction and IA the next instruction. This
allows the 281 to always have the next instruction read in and ready for

execution when the current instruction is completed. For 32-bit instructions
the data input (DI) register will be loaded with the second 16 bits of the
instruction during the instruction decode cycle so that this value will be
available at the start of the microroutine. In addition to a data input 0
register, there is a data output (DO) register, an operand register, A, and
the 1750A instruction counter and status word within the execution unit.

The control unit microcode ROM contains 2K or 2048 40-bit words in the
non- hardened version and 1024 words in thhe hardened version. In addition,
there are 8-bit extensions to 512 ROM locations that serve as the lower 8 bits
of the next microinstruction address when the instructions at these 512
locations are executed. These 8 bits are added to a fixed upper 4 bits to
form a full 12-bit microinstructon address. This allows nonsequential
microinstruction execution without having to use bits of the microinstruction
for a branch address.

The remaining area of the control unit is taken up by the microsequencer,
which consists of a microprogram counter (PC) with increment logic, micro-PC
save register, an iteration counter, and 1750A instruction decode logic. The
microinstruction address is 12 bits, as are all associated registers. The
microinstruction address is available on pinouts from the chip for use in
configurations that require more than one microcode ROM. *
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The interrupt unit is largely a collection of miscellaneous functions.
It contains the interrupt system with its associated registers, masking, and
prioritization logic. Nine interrupt levels are brought off chip on pinouts,
the remaining levels are set from on chip elements or by the microcode via the
pending interrupt register. Eight pins on the interrupt unit IC are inputs
for the fault register. The fault register is a 16-bit register, as defined
in the 1750A standard, that is used to generate a machine fault interrupt.
The rest of the chip is dedicated to 1750A options that are desirable for most
systems. These include the two timers defined by the 1750A standard, timers A
and B. In addition, there is a trigger go timer that counts down from a fixed
value and generates a machine fault if it reaches its terminal value. This
functions as a watchdog timer to ensure that the processor is alive and
functioning at all times. For external monitoring, there is an output pin on
the IC that indicates when the trigger go has counted out. There is also
control logic for a startup ROM, for DM~A, and for a power-up normal discrete.

The MMU/MPR chip, which is not shown, is used for systems that require
expanded addressing or memory protect RAM. Through external pin connections
this chip may be configured as either a memory management controller for the
fully expanded memory option or as a memory protect RAM for anywhere fran 64K

41 words to 1 million words of memory. When used as a memory management unit,
0 latches are needed to store the extended address bits and RAMs are needed to

contain the actual page registers. When configured as a memory protect RAM
for more than 64K words of memory, additional memory chips are needed to
contain the protect RAM. However, the chip does contain sufficient memory to
provide memory protect RAM for up to 64K words of memory.

TESTABILITY

Special elements, such as shift registers, are built into the 281 to aid
in testing. Each of the buses has a 16-bit shift register associated with it
and all of the shift registers are linked together so that they can be shifted
out over a single pin. The timing of the 281 was designed so that it is
possible to freeze the processor at midcycle and all the buses w.ll contain 0
the source and result data values. These values can then be shifted out over
the shift registers to verify that all of the buses have the expected values.

The control unit circuits that bring the microinstruction address off the
control unit chip are bidirectional so that microinstruction addresses can be
fed into the control unit. This allows external selection of microinstruction 0
addresses for verification of the ROM contents or for single stepping at the
microinstruction level. Similarly, test microinstructions can be fed into the
execution unit and the interrupt unit on the M bus pins to force execution of
special test instructions on a single chip.

A built-in test (BIT) is included with the microcode. The BIT is 0
executed whenever thue processor is reset or can be entered via a built-in
function (BIF) instruction without resetting the processor. The same circuit
simulations that are being used to verify the IC design are being used to test
the effectiveness of the BIT to ensure that a majority of the circuit elements
will be exercised.
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Control signals are provided so that the 281 can be single stepped by
1750A instructions. This will be used by the monitor system to allow single
stepping for both hardware and software checkout.

USER AIDS

A monitor system has been developed to provide a user interface to the
281 processor for hardware and software checkout. The monitor consists of a
single board microcomnputer that connects to the 281 and a Fortran program that
runs on a central computer system. A standard RS-232 coimmunication link 0
between the central computer and the microcomputer is all that is needed to
allow the user full control of the 281. The user simply logs into the central
computer and calls up the monitor program to establish a link to the 281.
Through the monitor, the user has all of the resources of the central computer
at his disposal for storage of 1750A load modules and processor check point
files. 0

The goal of the monitor design is to offer the user as many of the
features of an interpretive computer simulator as is possible. A user should
be able to develop software using software tools, including a simulator, on a
timeshare computer system and then without changing terminals, access the

Uactual hardware and load the program for execution. The 281 monitor offers
this capability. The monitor control program is written in standard Fortran
and uses the same command mnemonics as the 1750A simulator developed by
McDonnell Douglas for the Air Force.

The 281 monitor system allows the user to control the 281 for run, halt,
and sirgle step. Any of the processor's registers may be read or modified, as 0
can any memory location. The processor's memories and registers can be loaded
from a disk file or read and saved on a disk file. Memory locations may be
addressed symbolically using program labels by connecting the symbol table
from the 1750A linker to the monitor program. The monitor hardware contains a
trace buffer for tracing all activity on the address/data bus, including I/0
operations. The trace buffer contents are tagged to identify each value as a 0
memory references are identified as read or write instruction or operand
f etch. Instructions fetched may be disassembled into 1750A mnemonics when the
buffer contents are displayed.

S UMMARY

The 281 processor and support tools represents a significant improvement
over processors currently available for low-power embedded computers. With
its high throughput and small size, plus low power consumption, high noise
immunity, and radiation tolerance, the model 281 is an excellent processor for
embedded computer systems. A 281 processor mounted on a thick-film assembly
offers the performance of a large computer on a single 64-pin DIP.
Additionally, the monitor system provides a powerful and convenient user
interface for hardware and software checkout. The three-chip partitioning of
the 281 processor has the advantage of placing the microcode on a separate IC,
which makes reprogramming straightforward and allows for multichip microcode
ex pans ion.

411



0
Lfl
In
M A MIL-STD 1750A COMPUTER
0EMPLOYING THE MDAC CMOS-SS CHIFSET

0._~ Charles Frank/Larry Speelnar.

ROLM Corporation - Mil-Spec Computers Eivision
4900 Old Ironsides Drive

Santa Clara, California 95050
(408) 988-2900

BIOGRAPHIES

Charles F. Frank Jr. - Member of the Technical Staff, ROLM Mil-Spec Comp'terc

During his four year tenure at ROLM, Mr. Frank has been a key engineer in dE--

velopment of custom products, Nuclear Survivability/Vulnerability, lo, levc 0
interfaces, and single card processors for computers in major programrs such
as Cruise Missile Common Support Weapon System and complex Electronics Warfare
systems. Over 10 years of experience at E.S.L. and Dalmo Victor in systems
and hardware design engineering and management complete his well rojnded back-
ground.

Education - BSEE California State Polytechnic University

Larry W. Speelman - Marketing Manager for Air Force Programs, R Mil-SLec
Computers.

Currently responsible for Air Force Programs Marketing at POL1:, Mr. Speelrar. 0
has been involved with avionics system design, development, and flight test
for over twenty years. Previous assignments at Kaiser Electronics, Teledyne
Systems Company and the U.S. Air Force involved development, Frogram manage-
ment, and marketing of computer navigation, and display elements of modern
weapon systems.

Education - BSEE California State University of Northridge
MSBA California Western University

ABSTRACT

The need for higher performance, low power, radiation tolerant, MIL-STD-175A
computers for single card up to full ATR configurations is satisfied by R='
Corporation through application of the McDonnell Douglas Astronautics Corc-
ration (MDAC),'CMOS-SOS Model 281 Chipset. Combining this chipset with the 0
standard ROLM bus on an AN/UYK-19 type card permits 1750A insertion into a wide
variety of computing applications for new or retrofit programs. Government
and Prime contractors are provided access to standard catalog products where
projects must employ 1750A processors with associated memory, I/O, and Mux
Bus components without incurring large engineering expenses for these elements.
This allows 1750A processor use from the initial stages of any 16 BIT ccmputer
based system. Design trade off factors of emulator, remicrocoded mini, and
chipset approaches are presented along with typical card set and system
application.
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INTRODUCTION

ROLM Mil-Spec Computer Division designs and produces a broad spectrum of rugged
and military application 16 and 32 Bit computers, peripherals and software with
the unique combination of high performance, off the shelf availability, low cost, 0
and high reliability. This business philosophy allows our customers to access
state-of-the-art hardware without incurring R&D costs or penalties for low vol-
ume, quick reaction programs.

ROLM internally funds its development efforts and uses these assets to incorpo-
rate advancing technology and pragmatic operational improvements into its evolu- 0
tionary product line. ROLM is also very active in addressing the specific re-
quirements of our customers in such areas as nuclear hardening, EMP, special
interfaces and memories, software, and ILS tasks. This results in ever in-
creasing families of high performance equipments such as the AN/UYK-19, the
4050/4150 35 MB Winchester Disk, the powerful 32 Bit MSE/800 computing system
and the first available production quality Ada (1) compiler and development ervi- 0
ronment hosted on a 32 BIT softwarc development system. Figure 1 shows so--
salient features of ROLM pro essors and a few of the major programs currently
in production.

With Air Force imposition of the MIL-STD 1750A ISA, many programs and customers
were potentially not able to access the large ROLM resource base. Therefore 0
ROLM defined and is developing a high performance full 1750A Notice 1 pro-
cessor which employs the MDAC 281 Chipset (2). This TFA mounted CPU is inter-
faced to the family of ROLM I/O and memory products through circuitry located on
the CPU module. Also included in the module is up to 64KW of CMOS or NMOS memory
to provide a high performance, low power processor nodule.

(1) Ada is the registered trademark of the Department of Defense (Ada Joint
Program Office)

(2) A high performance MIL-STD-1750A Microprocessor, T.L. Rasset and J.H. Lane,
McDonnell Douglas Astronautics Corp., 2nd AFSC Standardization Conference,
November 1982. 414



ROLM PROCESSOR CHARACTERISTICS

" HIGH PERFORMANCE

" NUCLEAR HARDENED

* HIGH RELIABILITY

* EASE OF MAINTENANCE

* VALUE ENGINEERING

" STRONG SOFTWARE ASSETS

" FULL INTEGRATED LOGISTICS SUPPORT SYSTEM

" CUSTOMER SUPPORT AND TRAINING SERVICES

SAMPLE MAJOR PROGRAMS

" U.S. AIR FORCE DATA BASE MANAGEMENT

PROCESSING FOR AIRBORNE COMMAND POST

" U.S. AIR FORCE AFSATCOM TERMINAL PROGRAM

" U.S. NAVY AN/USQ-81 COMMAND CONTROL AND TARGETING
SYSTEM

" U.S.NAVY ANISLO-32 SNEWS

* JOINT CRUISE MISSILE COMMON WEAPON COMPUTER SYSTEM
(CWCS) 4

" U.S. ARMY ANITSQ-114 TRAILBLAZER

" U.S. ARMY ANIALQ-151 QUICK FIX

" U.S. ARMY AN/ARN-132 TACAN INERTIAL NAVIGATION SYSTEM S

FIGURE 1. ROLM OVERVIEW
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PROCESSOR SELECTION

In 1981 a ROLM task team prepared a complete business plan for developing a 1750
J processor that would be compatible with and take advantage of the current and

forecasted product line. This analysis resulted in three options:

1. Remicrocode an existing processor.
2. Design a new computer.
3. Apply a custom chip CPU.

As shown in Figure 2. these options each exhibited desirable and undesirable
characteristics. Combinations of the paths were compared for suitability to
the range of speed, cost, and flexibility typically required by ROLM's cus-
tomers and their wide variety of applications. Each approach was rejected in
turn for the following reasons.

1). Remicrocode an existing processor - This would result in a four card CPU
higher in performance but otherwise very similar to those already funded
by the government and representing the first generation of 1750A machines.

2). New Machine Design - A completely new design would involve an
9 expensive, lengthy development schedule which would yield a 0

multi card full ATR processor. This would have been physically
too large for many Air Force applications.

3). Custom Chip CPU - This promising approach offered a single card CPU
but uncertainties in performance, schedule, and government sponsor
interfaces rade this approach appear somewhat risky. Also lacking
was flexibility in the microcode and Nuclear Hardness potential for
many anticipated applications.

Upon reviewing the options, the potential advantages of a chip set approach
were recognized. ROLM then decided to more fully explore the custom chips
currently under development to determine if one could be suitable for ROLM's
needs. Microprocessor emulators were reviewed but throughput would be too slow
for complex processing and data management. Again referring to Figure 2, ROLM
ppursued discussions with McDonnell Douglas Astronautics Corporation (MDAC) to
apply their IR&D project Model 281 CPU product to the ROLM' family and an agree-
ment formalized. Major advantages of the Model 281 project that influenced the
decision were:

o Flexibility in microcode and Configuration
o High Performance (throughput)
o Low Power Consumption
o Nuclear Hardening potential
" Maturity of the design (fourth generation)
o MDAC experience in 1750 software and development tools

IS
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NEW MIC7OCOA
MACHINE EXISTING CPU CHIPSET

of 92 03

* Too expensive * Performance to * Schedule acceptable
* Too large low tr the effort * Cost fairly low
* Too lots is a first - Not optimized for * Performance too low

generation machine 1750
- Too late as a first

gienertion machine

SURVEY INDUSTRY

FOR HIGH PERFORMANCE
CHIPSET

A B C MDAC D

" Slow (300 kops) * Slow (300 kops) * Medium speed * Higher speed * Concentrating on
" Uses Emulator * Uses Emulator * No control - Schedule acceptable VHSIC

processor processor of design * Packaging good
- Probable competitor * Potential low cost * NHSV

due to high volume - Tools and
- Program schedule breadboards mature

slipping

f

PURSUE
MDAC

" Tech team visit - Prepared SOW/SPEC - Prepared product definition
" Mgmt team visit * Negotiation * Pitched this approach to potentlal customers

completed with good acceptance

FIGURE 2. 1750A PROCESSOR APPROACH TRADE OFF
ANALYSIS SUMMARY
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0 S

The ROLY, 175CA Frocessor Module is based around the MDAC Model 281 CMOS-SOS S
Chirset as mounted ox the Thick Film Assembly (TEA) ceramic substrate shown
in Figure 3. The TFA is designed for normal Froduction mounting on a Printed
Circuit card and is positioned as shown in Figure 4. The NOVA I/O and support
circuitry are mounted on the remaining surface of CPU A board. CPU B board
contains up to 128 KBtes (64F. Words) of CMOS or IDIOS memory and the associate;
memory addressing and timing circuitry.

Tne 1750A module is a standard 6"x9" shape that fits into standard ATR type
c:assis (Figure 4 . A simzlified block diagram of the CPU A/B functional 11-.-.

2.
''  

5" SUBSTRATE

BPR

e CHIPS MOUNTED ON LEADLESS CHIP CARRIERS (LCC)

* LCCs MOUNTED TO TFA

o CHIP SET TECHNOLOGY IS CMOS-SOS

FIGURE 3. MDAC SUPPLIED THICK FILM ASSEMBLY (TFA)

418



wooo

*~ w2

0,,

/ 5U

u~ So

0 cc0

/a: / 0 Sl

4419



w 'U

w cc

420



The impact of this high performance single module CPU in packaging medium and
larger processing systems is illustrated in Figure 6. The ATR unit on the left
is a standard ROLM chassis with a full module load. The single module CPU along
with a new 512K Byte RAM memory module means that a full 1 million word 1750A 0
processing system can be packaged into the 1 ATR chassis and still have room for
up to 12 dedicated I/O slots. Similarly, the ATR chassis may be configured to
accommodate 5 I/O slots and 384K Bytes of DRAM for smaller applications. The
CPU Module may also be employed as a stand alone processor with 64K Words of
memory and the ability for growth to a full 1 million words through additional
memory. Combining the 1750A module with the ROLM product line provides cus- 0
tomers with system configuration flexibilities only available with a broad range
of complimentary products.

o 1750A CPU module is pinout compatible with other ROLM processors, hereby
directly utilizing the same ATR chassis, power supply, I/O and memory
hardware. 0

o A single card MIL-STD-1553B module (3761) may be configured as terminal,
monitor, broadcast, or complete mux bus controller.

o The ROLM developed Nuclear Event Detector circumvention system permits
system configurations where stringent Nuclear Hardness~requirements S
are present. Many ROLM products have been tested an3 approved for
these environments.

o The basic 1750A CPU operates with NMOS and CMOS memory. Other existing
types of memory used in the ROLM product family could be adapted to this

processor !;uch as dynamic ram, EPROM, and core.

o A wide variety of systems design interfaces including Multi-processor,
communications, synchronous and asynchronous communications, and digital/
analog I/O are available through the standard ROLM catalog and could be
interfaced to this processor. Diagnostics have to be rewritten to S
operate under the 1750A ISA.

o A complete Integrated Logistic Support capability exists at ROLM to
support the ROLM product line with analysis, training, spares, and
technical publications throughout the life of a program.

SUMMARY

The ROLM 1750A Module employs the MDAC Model 281 CMOS-SOS high performance CPU
and is packaged in a standard 6" x 9" ATR module size. Main features of the
product are its high performance, low power, flexibility of application, and
nuclear hardness potential. This product provides ROLM customers access to the
extensive ROLM family of memory, I/O and peripherals for a wide variety of pro-
grams.
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ROLM PROCESSOR CHARACTERISTICS

* HIGH PERFORMANCE

* NUCLEAR HARDENED

" HIGH RELIABILITY

" EASE OF MAINTENANCE 0

* VALUE ENGINEERING

* STRONG SOFTWARE ASSETS

" FULL INTEGRATED LOGISTICS SUPPORT SYSTEM S

* CUSTOMER SUPPORT AND TRAINING SERVICES

SAMPLE MAJOR PROGRAMS

" U.S. AIR FORCE DATA BASE MANAGEMENT

PROCESSING FOR AIRBORNE COMMAND POST

" U.S. AIR FORCE AFSATCOM TERMINAL PROGRAM

" U.S. NAVY AN/USQ-81 COMMAND CONTROL AND TARGETING
SYSTEM

" U.S.NAVY ANISLQ-32 SNEWS

" JOINT CRUISE MISSILE COMMON WEAPON COMPUTER SYSTEM
(CWCS)

" U.S. ARMY ANITSQ.114 TRAILBLAZER

" U.S. ARMY ANIALQ-151 QUICK FIX

* U.S. ARMY AN/ARN-132 TACAN INERTIAL NAVIGATION SYSTEM

FIGURE 1. ROLM OVERVIEW
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1750A PROCESSOR

The ROLM 1750A Processor Module is based around the MDAC Model 281 CMOS-SOS
Chipset as mounted on the Thick Film Assembly (TFA) ceraUic substrate shown S

in Figure 3. The TFA is designed for normal production mounting on a Printed
Circuit card and is positioned as shown in Figure 4. The NOVA I/O and support
circuitry are mounted on the remaining surface of CPU A board. CPU B board
contains up to 128 KBytes (64K Words) of CMOS or NMOS memory and the associated
memory addressing and timing circuitry.

The 1750A module is a standard 6"x9" shape that fits into standard ATR type
chassis (Figure 4). A simplified block diagram of the CPU A/B functional layout
is depicted in Figure 5.

C CHIPS MOUNTED ON LEADLESS CHiP CARRIERS (LCC)

4 LCCs MOUNTED TO TFA

* CHIP SET TECHNOLOGY IS CMOS-SOS

FIGURE 3. MDAC SUPPLIED THICK FILM ASSEMBLY (TFA)
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FULL ATR CHASSIS

* SINGLE MODULE CPU
* 2M BYTES DRAM MEMORY
* 12 1/0 SLOTS

- 1553B (TERMINAL OR CONTROLLER)
- DETECT EVENT MODULE
- A/D & D/A
- ASYNCH MUX (RS-232/188-114)
- DIGITAL I/O
- PERIPHERAL INTERFACES

(DISCS, MT, LP, ETC.)
- CPU TO CPU COMMUNICATIONS
- NUMEROUS OTHER TYPES

1/2 A TR CHASSIS S

" SINGLE MODULE CPU
* 384K BYTES SEMICONDUCTOR

MEMORY (STATIC NMOS OR CMOS)
5 1/0 SLOTS

FIGURE 6. COSTIPERFORMANCE IMPROVEMENTS
IN LRU PACKAGING
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ABSTRACT

This paper describes the MKS1750, a new implementation of
the United States Air Force MIL-STD-1750A architecture fabri-
cated entirely in SOS/CMOS technology. The MKS1750 is a chip
set based on a proprietary microprogrammable 16-bit micropro-
cessor (the MKSl6) supported by additional logic implemented
as semi-custom gate arrays and ROMs for control store. A
total of eleven chips is required. Power consumption of the
MKS1750 is less than 1W and throughput is greater than 200 KIPS,
measured using the USAF DAIS mix.

A complete description of the chip set is given, including
the architecture of the MKSl6, gate array partitioning and the
functional specification of each array. The paper also discusses

the structure of the MKS1750 microprogram, available software
support and packaging considerations.

1. INTRODUCTION

The advantages of SOS/CMOS technology in computer applica-
tions are well known: high speed, low power consumption, high
packaging density, and radiation resistance. While the cost of
the sapphire substrate precludes its use in high-volume commer-
cial applications, the aforementioned attributes of SOS/CMOS are
overwhelmingly important (and in some cases, imperative) in
military computers (1,2).

The Mikros strategy has been to use SOS/CMOS for the design
and development of a full 16-bit CPU chip. Additionally, the
basic CPU is microprogrammable using external control store to
allow emulation of a variety of instruction set architectures.

This paper describes the emulation of the USAF MIL-STD-1750A
architecture using the Mikros MKS16 processor chip supported by
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SOS/CMOS gate arrays and control store. The chip set executes
the full 1750A instruction set (including floating-point) at
a throughput of 265 KIPS (DAIS instruction mix) and dissipates
less than 1 Watt.

2. MKS1750 ARCHITECTURE 0

2.1 OVERVIEW

The MKS1750 is a microprogrammed processor which executes
the USAF MIL-STD-1750A instruction set (3). It has the following
features:

o MULTIBUS"-compatible interface (4)
o 16-bit microprogrammable processor
o Eleven chip LSI implementation

The architecture of the MKS1750 is based on a 16-bit inter-
nal bus (the I-bus, see Fig. 1). Sequential execution of 1750A
instructions is controlled by the MKS16 processor, which is
responsible for instruction fetch and decode, effective address
calculations, operand fetch and store, and arithmetic operations.
External logic is provided to support 1750A emulation in the
following areas:

o additional microsequencing features
o MULTIBUS" interface
o 1750A interrupts and faults
o additional register file and addressing logic

The control ROM (2Kx48) provides synchronous control signals to
both the external logic and the MKSl6.

2.2 THE MKS16 MICROPROGRAMMABLE PROCESSOR

The MKS16 has a register file/ALU/sequencer architecture
with internal status, instruction and shift registers (see Fig.
2) (5). The processor communicates with a bidirectional data
bus through two multiplexers CIBX, OBX). Internal storage is
provided by the scratchpad (SPAD), a 16x16 register file. The
A and X registers (AR,XR) are used as accumulators and for shift
operations. The status register (SR) contains condition codes
and status flags. The 16-bit parallel ALU provides two's-com-
plement arithmetic and boolean operations. The architecture
supports a limited degree of parallelism at the micro-operation
level.

The MKS16 is driven by a 27-bit microinstruction word. The
microinstruction is time-multiplexed into PRIMARY and SECONDARY
words which are fetched sequentially from control store during
one microcycle. The format of the standard microinstruction
word is shown in Fig. 3. In this case, bits C15-17, C31, C32
are not used by the MKS16 and may be used as control bits for 0
external logic.
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The MKSl6 microsequencer does not use a default flow-of-
control convention; each microinstruction specifies the next
microaddress, explicitly. The low-order four bits of the address
(the WORD ADDRESS) are given by C27-C30. The high-order four
bits (the PAGE ADDRESS) are determined by a LINK MODE specifying
the source of the page address. The sequencer allows conditional S
branching based on the condition codes.

The MKS16 requires three clock signals, and can run at
either TTL or CMOS levels. The maximum clock rate is 5.5 MHz,
giving a microcycle time of 180 nsec.

2.3 REGISTER STRUCTURE

ThQ MKS1750 uses an external 16x16 register file to provide
the 1750A registers. The MKS1750 contains dedicated logic to
support register concatenation and register addressing using
macroinstruction fields. This logic uses the external instruc-
tion register (XIR), which is loaded with a 1750A instruction
during the fetch cycle. The XIR S and D fields are used by
most 1750A instructions as register addresses, and may be used
directly to access the specified register. Alternatively, a
literal-4-bit address may be specified directly by the micro-
instruction word. The S and D fields are implemented as four-
bit up/down counters, to provide access to adjacent registers
as required by 1750A multiple-precision instructions. The S
and D fields may also be concatenated to form an eight-bit
up/down counter. Zero-detect logic is provided for all three
counters. This logic is used extensively in implementing 0
indexed addressing and shift instructions.

2.4 THE MKS1750 MICROSEQUENCER

The MKS16 internal sequencer is oriented towards instruction
decoding. Typically, four bits of the instruction register (IR) 0
are used as the page address, providing a sixteen-way branch in
control store. The MKS1750 microsequencer provides logic for
expanded microaddress space, microsubroutining, instruction
decoding and testing of external conditions.

* Three extra wicroaddress bits are taken directly from the 0
microinstruction word, and are appended to the MKSl6-generated
address as the high-order bits. The resulting 11-bit address
is known as the NORMAL ADDRESS (N-address) and is one of four
inputs to the NEXT ADDRESS MULTIPLEXER in the microsequencer
(see Fig. 4). Another input is the LONG ADDRESS (L-address)
which is a literal 11-bit address specified in the microinstruc- 0
tion. The next address may also be obtained from the return
address stack (3xll). The final address mux input is obtained
by concatenating the three high-order extension bits with an
8-bit value from the I-bus.
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N-addressing is required for a microsubroutine call oper-
ation. In this case, the return address is not specified
explicitly by the microinstruction, but is determined by in-
crementing the high-order three bits of the current micro-
address. N-addressing is also required by microinstructions
which test internal or external conditions. 0

The MKS16 internal link modes may also be combined with
the external modes to provide extra sequencing features. The
microsequencer also allows the execution of an instruction to
be aborted if certain machine faults occur during execution.

2.5 THE BUS INTERFACE

The MKS1750 is logically compatible with the MULTIBUS T'
standard. Address, data, command, and status signals are
supported. *

The 20 address lines are TTL-compatible signals which pro-
vide 1 Mword of physical address space. The 16 bidirectional
data lines are TTL-compatible signals which provide a 16-bit
data bus. To communicate with slave devices, several control
signals-are provided: memory read/write (MRDC, MWTC) and I/O
read/write (IORC, IOWC). Slave devices acknowledge transfers
using the XACK control line.

A multi-master environment is supported using serial prior-
ity arbitration. BREQ and BUSY are polled by each requesting
device to determine whether a bus access may occur. 0

There are 8 user-defined interrupt signals which are pro-
cessed by the interrupt controller. A bus transfer example i5
shown in Fig. 8.

2.6 INTERRUPTS AND FAULTS 0

The MKS1750 contains three registers dedicated to the 1750A
pending interrupt (PI), interrupt mask (MK), and fault (FT)
registers. The hardware determines from the values of PI and MK
if there is a valid interrupt which requires service by the MKSI6.
If so, this logic asserts the MKS16 interrupt request line, and 4
this in turn is detected by the MKS16 sequencer. The MKS1750
normally tests for the presence of a valid interrupt at the end
of each instruction. If one is detected, the processor deter-
mines its priority by reading PI and MK, calculates the address
of the new context, and performs the context-switch operation.
Certain 1750A interrupts (executive call and arithmetic excep- 4
tions) are not asynchronous events as they occur only as the
result of instruction execution. In these cases the micropro-
gram must set the correct PI bit.

Machine faults set the appropriate FT bit to cause a machine
error interrupt (provided it is not masked). Certain machine 4
failts cause the current instruction to be aborted (see 3.7).
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2.7 SYSTEM TIMING

The MKS1750 uses a four-phase clock. 01 is used to latch
the primary microinstruction word into the processor and gate
arrays. 02 is used to latch and output the contents of the
MKS16 scratchpad during a read cycle. 03 (WAIT) is used to
synchronize processor-bus transactions. The processor waits
during this phase for a bus access and for the accessed slave
device to indicate transfer completion. 04 (CLK) is used to
latch the secondary microinstruction, the registers, the next
address and the condition codes. A system timing example is
shown in Fig. 8.

3. PRINCIPLES OF EMULATION

3.1 THE CONTROL WORD

The MKS1750 uses a 48-bit microinstruction word, shown in
Fig. 5. Bits Cl - C14 and C18 - C30 are used to control the

MKSI16 processor.

Several microinstruction fields are used to determine the
next microaddress. The high-order three bits (the BLOCK
ADDRESS) are given by C17, C31, C32. C15, C24 - 30 are used to
form the L-address. C35 - 36 are used to control the next
address multiplexer and return address stack.

The interpretation of bits C33 - 48 depends on the value of
C16. If C16 = 1 then C33 - 48 is a 16-bit constant which is
read by the MKS16 from the I-bus. This provides arbitrary con-
stants without the use of a separate constant ROM. If C16 = 0
then C33 - 48 are external logic control signals. C33 - 34 con-

trol XIR reformatting. C37 - 38, C48 control the MULTIBUSm

interface. C39 - 40 control latches for the XIR, the memory
address register (MAR) and the register file. Register file
addressing and the XIR counters are controlled by C41 - 45. C41,
C46 - 47 control the external condition multiplexer for testing
the values of the XIR counters.

3.2 CONTROL STORE ORGANIZATION

Control ROM is organized as 2Kx48. The physical micro-
address format is shown in Fig. 6. The distinction between page
and word address is valid only for N-addressing. The return
address for a subroutine call is obtained by incrementing the
block address of the calling microinstruction. The microprogram
is functionally partitioned so that floating-point and diagnostic S

microcode resides in blocks 4 - 7, while the rest of the micro-
code occupies blocks 0 - 3, and for this reason the return
address generator increments the block address modulo 4 rather
than modulo 8.
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Fig. 3-MKS16 Microinstruction word

1 , , , 1 5 1 6 1 7 , a 1 10 11 13114 .15,16
Prinmay SPAD ADOR CONTROL JARSHIT I 11BX SOURCE I ALU R

SXRCONTROL CL SELECT I FUNCTION

718.19.20.21 . .23.2. 26, 27, 30 31.32
S/condary W ,RsFoxI SRCONTROL IUNK

LEID ILD L SPEC FUNC [ MODE WORD AD //

Fig. 4- MKS1750 Microaddressing

1FROM AuINSTR FROM8MKS16

N-ADDRESS OPTIONAL CALL

L-ADDESS ROM ANSITERNAL CONDITION
EXTERNAL CONDITION

• ~L-ADORIESS •

FROM RET ADOR STACK ---J

RETURN F
L-pINCREMENTED

fp-FROM JaINSTRi F' FROM OPCOOE

DECODE F _256 -WAY BRANCH

Fig. 5- MKS1750 Microinstruction Word 0

.- 114, 15. 16

17 18. , , 23 24. 30 3132 3

BA MKSI6 CONTROL L BAMKS16 CONTROL

33,34.35,36 37,38.39,40,41 , , 45,46 47 48
I .16- BIT CONSTANT .

SWAP I se B 13REo i SPIO REG ADDR/XIR CTRL CON B3

Fig. 6- Physical Microaddres Format

3 4 4

SLOCK PAGE WORD
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3.3 MICROPROGRAM STRUCTURE

The MKS1750 microprogram makes extensive use of micro-
subroutining; three levels are supported. The functions per-
formed by the subroutines are determined by analyzing the 1750A
instruction set in the following areas:

o instruction format
o address mode
o length of operand(s)
o precision of operand(s)
o effect on condition codes

The execution of a 1750A instruction is divided into
several phases, each of which requires only a subset of the
above information. For example, effective address calculation
only requires knowledge of the instruction's address mode. All
effective address calculation routines return with the address S
loaded to the MAR and all execution routines leave their
results in prespecified internal MKS16 registers. As a result,
there -are three "operand store" routines, for 16, 32 and 48-bit
operands. Each arithmetic operation has one routine for each
applicable data type; there are four ADD routines, for single/
double precision fixed, floating and extended floating-point S
numbers. Effective address calculation is combined with the
operand fetch phase, so that each 1750A address mode has one
routine for each applicable operand length. Each of these
routines is responsible for both calculating the effective
address and fetching the correct number of operands.

3.4 REGISTER ALLOCATION

The MKS16 internal 16x16 register file (scratchpad) is
used for working registers and to maintain the status of the
1750A machine. It is possible to perform a read-modify-write
operation on an internal register during one microcycle. In
addition, the MKS16 instruction register (IR) is used to contain
the 1750A instruction word and the MKS16 status register (SR)
is used to maintain the 1750A condition codes. (See Fig. 7)

Registers 0 - 9 are available as temporary registers for
any instruction. Registers B - F are used to contain the 1750A
status. Register F is dedicated to the instruction counter;
register C contains a copy of the instruction word. Register B
is used by the BEX instruction. Registers D and E are used in
conjunction with the MKS16 SR to maintain the 1750A status word.

3.5 INSTRUCTION EXECUTION

Instruction execution starts with the fetch/decode phase.
During this phase the IC is incremented, the next instruction
is fetched, and the MKS16 tests for a valid pending interrupt.
If there is a valid interrupt the fetch sequence is aborted.
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The next microaddress is determined by the high byte of the
instruction fetched, providing a 256-way branch. The effective
address is then calculated and the operand(s) are fetched and
loaded to internal working register(s). For 1750A immediate
short address modes, one operand is extracted from the instruc-

* tion word itself; for IC-relative mode (branch instructions)
the jump address is calculated and loaded to a working register.

Final instruction decoding is performed at this point for
base-relative indexed and immediate long modes, and the opera-
tion specified by the instruction is performed. The result
is left in internal register(s). Conditional branch instructions
update the IC if necessary, and arithmetic and logical instruc-
tions update the condition codes as required. The operand store
phase transfers the results to the appropriate destination,
usually the register file. The number of words transferred is
determined by the precision of the instruction.

3.6 I/0

The MKS1750 implements I/0 instructions as follows:

o the command word is loaded to the MAR, and the
processor issues an I/0 bus request.

o the data transfer takes place during the next cycle.

However, certain XIO commands require the microprogram to
manipulate the status word or interrupt enable flag explicitly.
The MKS1750 implements all mandatory 1750A XIO commands.

3.7 ABORT FAULTS

The 1750A Standard defines an "Instruction Set Architecture"
to be the programmer's view of the machine. The standard speci-
fies the state of the machine "between instructions" and does
not address what happens during the execution of an instruction.
As a result, there are certain "gray areas" in the standard
which must be resolved in an implementation-dependent manner.

In particular, certain machine faults may occur as the
result of a memory access during the execution of an instruction.
If the execution of the instruction is allowed to proceed, the
results are unpredictable (e.g. executing an instruction when
the fetch caused a parity error). In the MKS1750, this situa-
tion is resolved by terminating the instruction, if any of the
following "abort faults" occur: CPU memory protect fault,

* memory parity fault, or illegal address fault. When such a
fault occurs, the microprogram jumps immediately to an abort
fault handler. This microroutine uses an instruction-length flag
to ensure that the IC saved during the subsequent machine error
interrupt has a consistent value.
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3.8 FLOATING-POINT ARITHMETIC

1750A floating-point instructions are implemented in firm-
ware. The MKS16 contains shift control logic which permits
detection and automatic correction of partial product overflow 4

during multiplication, and of mantissa overflow during floating-
point addition. The microprograms also use some MKS1750 features
in non-standard ways. For example, the MKS1750 may perform
multiple operations and test multiple conditions simultaneously.
This is used in floating-point normalization, shown below. AR
and XR contain the un-normalized mantissa, and XIR contains the
exponent plus one, internally represented in excess 128 form:

708: SLLX DECSD TESTSD TOV :7,CI,8
70%: RRCX TOV :(exit)
70A: XIR : IRCOPY; :(underflow)
70B: RRCX TOV :(exit) 0

The instruction at 708 is the single-instruction normalize loop.
It shifts the entire mantissa left, decrements the exponent,
and tests two conditions: overflow of the mantissa and zero
of the exponent. If both are false, instruction 708 repeats.
If the exponent reaches zero before the mantissa overflows, the
next instruction logic selects 70A, which is the first instruc-
tion of the exponent underflow handler. Mantissa overflow
indicates that normalization is complete, and the next instruc-
tion logic selects either 709 or 70B, depending upon whether
the exponent has reached zero. Either case is acceptable, and
so both instructions perform a right shift to correct for the
mantissa having been shifted one bit too far.

3.9 ARCHITECTURAL INSTRUCTIONS

Several 1750A instructions require special attention. For
example:

o TSB - the microprogram inhibits external memory
accesses during a TSB instruction by issuing a
bus request every cycle, which causes the arbitra-
tion logic to lock the bus.

o MOV - the microprogram checks for the presence
of a valid interrupt between each single-word trans-
fer. In addition, for the MOV instruction the micro-
program does not increment the value of the instruc-
tion counter until all transfers are completed.
Thus, if an interrupt occurs and is serviced, on S
return the execution of the MOV instruction will
start over again. This scheme produces the desired
result since the registers used by the MOV instruc-
tions always contain the correct values.
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Fig. 7 MKS16 Register Allocation
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4. MKS1750 IMPLEMENTATION

4.1 FUNCTIONAL PARTITIONING

The partitioning is based on a 1400-gate 102-pin SOS/CMOS
universal array manufactured by RCA. The MKS1750 logic is
partitioned into three arrays. The boundaries of each array
are shown as broken lines in Fig. 1. The emulating controller
unit (ECU) contains the logic required for microsequencing, XIR
manipulation, and external register control. The bus controller
unit (BCU) handles bus transfers, system timing, logical
addressing, and bus arbitration. The interrupt controller unit
(ICU) processes interrupt requests and executes mandatory XIO
instructions for PI, MK and FT. The external 16x16 register
file is-implemented using a second MKS16 chip. Six 2Kx8 ROMs
are used for control store.

4.2 EMULATING CONTROLLER UNIT (ECU)

The ECU contains the logic required for instruction decode,
register control, and microsequencing. The XIR provides in-
struction fields for register addressing. A 3xll microaddress
stack allows microsubroutining.

The XIR may be read into the MKS16 from the I-bus. The
value may be modified to facilitate instruction decoding, as
follows:

C16 C33 C34 OPERATION S
0 0 0 NOP: no operation
0 0 1 SWAB: swap bytes
0 1 0 SWSD: swap S and D fields-
0 1 1 SEXT: extend sign of low order byte
1 X X read 16-bit constant

The register file may be addressed by the XIR S or D fields, or
by a four-bit literal address. The counters are controlled as
follows:

C42 C44 C45 OPERATION
0 0 0 NOP
0 0 1 DEC(SD): 8-bit decrement
0 1 0 NOP
0 1 1 INC(SD): 8-bit increment
1 0 0 DEC(S): 4-bit
1 0 1 INC(S): 4-bit
1 1 0 DEC(DI: 4-bit
1 1 1 INC(D): 4-bit

Bits C16, C35 - 36, C46 - 47 are used to control the micro-
sequencer.
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4.3 INTERRUPT CONTROLLER UNIT (ICU)

The ICU contains the logic required for the MIL-STD-1750A
PI, MK and FT. In addition, a valid interrupt request to the
processor is generated according to the following equation:

valid interrupt = PI0 + PI5 + (PI nK n ) -ENB + PI1 * MK 1

where n = 2, 3, 4, 6-15 and ENB is the interrupt enable
flag.

The Pending Interrupt Register is a set of sixteen flip- S
flops which are set and reset using the RPI, SPI and RPIR XIO
commands. The Interrupt Mask Register is a set of sixteen
flip-flops which are set and reset using the SMK and RMK XIO
commanda. MK is also saved and restored as part of the pro-
cessor context by the interrupt microprogram.

When an XIO instruction is executed, the 16-bit command
field is loaded to the MAR, and an I/O request is issued. For
mandatory XIO commands, no system bus access is required. If
the XIO command is not local (such as a programmed I/O channel),
then bu$ arbitration is required. A timeout will occur if the
I/O device is not present, and the appropriate FT bit is set. 0

The Fault Register is a set of sixteen RS flip-flops used
for indicating machine faults. Setting any FT bit causes bit
1 of PI to be set. The FT is controlled by the RCFR XIO command.

4.4 BUS CONTROLLER UNIT (BCU) 0

The BCU provides logic to address memory and I/O devices,
synchronize bus transfer cycles, supply processor clocks, and
interface to the MULTIBUS TM . A 16-bit logical address is pro-
vided by loading the MAR prior to a bus transfer. For memory
management, the AS and PS fields of the SW are loaded to the
8-bit External Status Register (XSR).

During the request cycle, the address of the slave device
(I/O or memory) is latched into the MAR if the device is not
local, a bus request is issued, and the transfer type is latched.
During the transfer cycle, the processor can access the bus if
no higher-priority device is requesting it. The processor delays
the CLK phase until XACK is received. CLK is then used to latch
the slave data into a register, XIR, or MAR.

4.5 PACKAGING CONSIDERATIONS

The MKS1750 microprocessor is packaged as a set of eleven
hermetically-sealed leadless chip carriers, which are standard
JEDEC types. This includes:

o three 132-pin type A carriers, for SOS gate arrays
o two 48-pin type C carriers, for the MKS16 and register

file
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o six 32-pin type C carriers, for 2Kx8 control ROMs

Leadless carriers provide greater packaging density as they
are smaller than conventional DIPs and the shorter lead lengths
improve the switching characteristics of the processor. The
chip set may be mounted on a small ceramic card to accomodate
the particular application form factor required (6).

4.6 SOFTWARE SUPPORT

Software support for MKS1750 development is based on the
MIL-STD-1750A Support Software Package which was developed by S

McDonnell-Douglas under USAF contract. This package includes
a macropreprocessor, assembler, linker, 1750A simulator and
utilities for formatting and library maintenance.

This package, installed on a local IBM 3033 VM/CMS time-
sharing system, was used to develop a resident monitor/debugger S

for the MKS1750. This monitor is compatible with the support
software package, and allows users to develop and debug 1750A
software during system prototyping. The monitor supports "quick
look and change" commands for memory and 1750A registers, down-
line loading of 1750A programs developed using the support
package and program execution under breakpoint control. The 0
monitor also includes I/O utilities to support two serial RS232C
lines (for a terminal and downline loading) and optional dual
floppy disk drives.

4.7 MKS1750 SUMMARY SPECIFICATIONS

ARCHITECTURE full implementation of MIL-STD-1750A
(Notice 1), based on 16-bit micropro-
grammable processor

TECHNOLOGY SOS/CMOS - eleven chips

POWER
DISSIPATION less than 1W at 5.5 MHz, 10V

TEMPERATURE -550C to +125 0 C

SIZE 4 x 4 x 0.5 in. (typical)

RADIATION 10 4
RESISTANCE 10 rad (Si) transient, 10 rad total

dose

MICROCYCLE 180 nsec
TIME

PERFORMANCE 265 KIPS (100 nsec memory)
240 KIPS (250 nsec memory)
using DAIS mix (16% floating-point)
450 - 540 KIPS (fixed point only)
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ADDRESS SPACE 64K (optional memory management)

EXTERNAL
INTERFACE MULTIBUSu-compatible

5. SUMMARY

The MKS1750 is a new hardware/firmware realization of the
standard 1750A architecture. The eleven-chip set is an all
SOS/CMOS microprocessor which is high performance, low power,
small in size and radiation resistant. These features make the
MKS1750 attractive for a variety of Air Force and other embedded
computer applications.
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ABSTRACT

Delco Electronics accepted and participated with early Department of
Defense efforts to define military standard computer architectures.
This early acceptance enabled Delco Electronics to compete for and

capture the first Department of Defense (Air Force) programs requiring
a standard computer. Delco Electronics will continue to compete for
Department of Defense programs requiring these standards.

Specifically, Delco Electronics will offer to the Air Force and in the
Army current and future Delco Electronics computer products
incorporating the MIL-STD-1750A and MIL-STD-1867 architecture.
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THE USE OF COMPUTER ISA AND SOFTW ARE STANDARDS AT
(V) WESTINGHOUSE DEFENSE ELECTRONICS CENTER

Dr. Manvel A. Geyer, John G. Gregory, and Harvey R. Moran, Jr.

DUB Westinghouse Defense Electronics Center,

I Baltimore, Maryland 21203
Telephone: (301) 765-7743, 4235, 2108

Abstract:

- Mil-Std-1750A is the fourth generation of computer hardware standards
that have been embraced at Westinghouse since the early 1960's. The use of
standards has had many advantages: rapidly maturing support software and
hardware; a large pool of software engineers that can readily mtove from one
program to another; lower recurring and non-recurring costs; less lead time
on programs; similar or identical software benches for different programs.
Mil-Std-1750A is presently utilized as an embedded computer on three major

6 programs and has been proposed on several others.

Paper

* Westinghouse has long espoused the use of standard ISA's and support
software, not for love for standards, but for lower cost reasons. The use
of standards makes our job easier, more efficient, and less costly, thus
raising both our white and blue collar productivity. Fewer unique module
designs require less engineering effort. Fewer designs also provide the
means to use the same factory equipment, and personnel trained to use it, on
multiple programs. This in turn lowers the cost of our products to the
Government. Lower life cycle costs also result from a smaller number of
unique modules which must be supported at depot level maintenance. Since
designs are reused, system implementation time is also frequently decreased
as a result of the ability to order parts early in the program cycle. And
savings accrue due to volume production production.

In the late 1960's, Westinghouse utilized an internal standard ISA and
standard hardware modules to supply digital computers to five different
programs in less than one year. Without the standard ISA and standard
hardware modules, these schedules and costs could, not have been net -- the
required number of hardware designers and software engineers would have

* exceeded our capabilities. Mil-Std-1750A provides us with a).l the benefits
we had with our own internal standard and it is known to be acceptable to a
wide selection of programs.
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In the mid 1970's, Westinghouse built the AN/AYK-15 for AFWAL utilizing

an ISA which was the basis for Mil-Std-1750. This ISA was specifically

designed to easec the task of generating a Jovial compiler -- providing

multiple registers, symmetrical addressing modes and hardware supported

floating point arithmetic. During that time, Westinghouse was under contract 0
with AFWAL to design and build the Electronically Agile Radar (EAR). With

Air Force approval, Westinghouse decided to use the AN/AYK-15 design for the

control computer of EAR. Thus a proven design with hardware and support

software in place was used to improve white collar productivity. The

AN/AYK-15 has since been used in several other programs.

Concurrent with the issuance of Mil-STD-1750A, Westinghouse was under

contract to provide new modes and features for the AN/APG-66 (F-16) radar.

Since these new modes and features required an enhancement to the existing

radar computer, Westinghouse chose, with Air Force approval, to convert to

the Mil-Std-1750A ISA. Since then, two other Westinghouse programs, BlB ORS

and F-16 AFTI E-O have also embraced the standard. In fact, much of the same

hardware is used in all three programs. The control CPus for this

programmable signal processor also utilize the Mil-Std-1750A ISA. The

Westirghouse VHSIC Program is also using Mil-Std-1750A as the embedded

control computer.

* The general architecture of the processors within the systems is shown 0
in Figure 1. The structure shown provides for up to four computers in a
multi-procesor configuration. Each processor design has modules which

contains a Mil-Std-1750A computer. Figure 2 shows a picture of the
'computer' module which holds an Mil-Std-1750A CPU with interrupts, timers,

and 16K words of dual ported, parity checked, RAM including write protection

circuitry. Figure 3 summarizes its characteristics. Figure 4 is a block 0

diagram of the computer.

The Westinghouse 1750A hardware consists of building blocks

(plug-in-modules) which are normally embedded within other electronic
equipment to save volume and weight. For required applications, the building

blocks are assembled in a chassis which has its own plug-in power -supply. 0

The building blocks consist of: the above mentioned 1750A computer

module; a 64K word RAM module configured as 4 separate dual ported, parity

checked, write protected 16K banks; a companion non-volatile 'bulk' memory

available either as EPROM or in an electrically alterable technology. The
system contains an I/O processor termed a Direct Memory Access Controller 0

(DMAC) which boot loads RAM from bulk. The DMAC then accepts I/O transfer

commands from either or both of two CPU's. The BI-B configuration also
contains a Mil-Std-1553B multiplex bus module which can act as both bus

controller and remote terminal. This module is designed to require minimal

attention from a CPU once initialized. Figure 5 shows a block diagram of the

1553 interface. 0

Coi.puter and memory modules are identical in all applications. This has
many advantages in non-recurring cost and schedule, with even more in the

recurring cost. With respect to most avionics buys, the total quantity of
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each part type (Over 30 computers produced per month) becomes very large.
The disadvantage is in configuration control. To offset this, a
configuration control board staffed by appropriate personnel from each
program, has been established to cover all common modules.

common support hardware and software have proved to be great advantages.
over ten similar or identical software benches have been constructed for
three major programs. Consoles are identical or upward compatible, allowing
new features, which succeeding programs add, to be retrofittable into
previous consoles.

Westinghouse has installed, and is using, the Air Force 1750A jovial J73 0
compiler and support software package. The symbol table entries which are
available have been integrated into the debug environment of our consoles.
The present environment is to use an IBM host computer for compilations
associated with all three programs and to d~ownlink through a number of VAX
host computers to the 1750A software and system benches.

In order to achieve additional code optimizations, and advance symbolic
information into our debug environment, Westinghouse is now in the process
of containing the complete host computer and supporting hardware in a
localized environment. This will also provide for classified software

0 development. The complete software support package, including compilation,
is being hosted on VAX computers which are installed near the 1750A software
and system benches. A performance monitor utilizing a PDP-11 is also
available.

Presently, there has been approximately 40,000 lines of code generated
with the J73 Mil-Std-1589B compiler. By early 1983 approximately 250,000
lines of code will have been generated. Support software added to the 0
package by Westinghouse includes "automatic" documentation and configuration
control as well as a J731 to J73 translator which can directly translate
over 90% of the code. The support software package is rapidly becoming
mature due to the number of users and the of problems being solved.

in conjunction with another program, we are presently developing an Ada, 0
Mil-Std-1815 compiler for a VAX host and a Mil-Std-1750A target using
Mil-Std-483 as a guideline for documentation.

Advantages of Software Standards and ISA Standards

o Support software matures rapidly due to the multiplicity of users and 0
combined problem reports.

o A large pool of software engineers who can move readily from one

program to another with a minimum of training is created.

o Software benches can be identical and shared across programs. 0

o User consoles features become sophisticated due to each program
adding capabilities to a proven base.

454



o Software development can begin at the outset of the contract.

o Identical problems can have identical application software packages
which are transportable between programs.

o Non-recurring costs are lower due to fewer designs.

o Maintenance inventory costs are lower due to fewer designs.

o Recurring costs are lower due to the economies of volume production
both in delivered and support equipment.

o Lead times are reduced as a result of early ordering of parts for
existing designs.

o Technology innovations which do not affect architecture can be
readily retro- or forward-fitted.

Disadvantages of Software Standards and ISA Standards

o The delivered hardware must be slightly more powerful than in the
past to acount for compiler inefficiencies and software design
techniques made feasible by the abstraction level of HOL programming.

0 The delivered hardware cannot be readily tailored (minimized) for a
program with reduced requirements; e.g., one with no use for floating
point arithmetic.

o Technology innovations which have architectural impact can not be
used to full advantage.

0 Hardware and support software configuration control must be well
managed across multiple programs.
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0Tracor Aerospace

16500 Tracor Lane

Austin, Texas 78721

(512) 926-2800

The USAF-developed GPU Chip Set has been

utilized by Tracor to implement both USAF and Navy 0
Standard 16-Bit Airborne Computer Architectures.
Both configurations are currently being delivered
into DOD full-scale development programs.

Leadless Hermetic Chip Carrier (HCC) packag- •

ing has facilitated implementation of both archi-
tectures on single 4 " x 5" substrates. The CMOS
and CMOS/SOS implementations of the GPU Chip Set
have allowed both CPU implementations to use less
than 3 watts of power each.

Recent efforts by Tracor for USAF have in-
cluded the definition of anext-generation GPU
Chip Set that will retain the application-proven
architecture of the current chip set while offer-

ing the added cost advantages of transportability
across ISO-CMOS and CMOS/SOS processes and across
numerous semiconductor manufacturers using a newly-
defined set of common design rules. The Enhanced

GPU Chip Set will increase speed by an approximate

factor of 3 while significantly reducing chip
counts and costs of standard CPU implementations.

INTRODUCTION

Tracor's efforts in computer implementation

began in June of 1973 when under a contract with
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SAMSO, Tracor became involved with the architec-

ture, logic design, simulation, circuit design,

and layout organization of a General Processor 
0

Unit (GPU) using LSI technology. This effort led

to the development of high-performance circuits

fabricated with the CMOS/SOS process. In February,

1977, Tracor received a contract from the Air

Force Avionics Laboratory to review the control

requirements of the AN/UYK-20, AN/AYK-14, PDP-II, 0

and SKC-2000 processors and define the CMOS/SOS

LSI controller requirements to maximize utili-

zation and minimize custom designs. The Emula-

ting Microcontroller Device (MCD) that resulted,

along with the GPU and a family of Gate Universal

Arrays (GUA's) fabricated in the same CMOS/SOS 0

process, became the basis for the USAF GPU Chip

Set.

Tracor's leadership position in LSI technol-

ogy for implementing high-performance computer

architectures led in 1978 to a contract with the

Naval Ocean Systems Center (NOSC) to implement the

basic instruction set of the AN/UYK-20 computer

utilizing the Air Force CMOS/SOS circuit family.

With the need arising for improving packaging

densities for highly complex electronic circuitry

used in LSI implementation, Tracor began investi-

gating the Hermetic Chip Carrier (HCC) technology

and it's use in packaging CMOS/SOS circuits for

military applications. Tracor's confidence in the

future growth of HCC technology resulted in the

commitment of corporate IR&D funds and the invest-

ment in capital equipment to develop a facility

for assembling and testing circuit card assemblies

populated with HCCs.

Tracor's efforts in developing the HCC manu-

facturing technology led to a contract in October,

1980, from the Air Force Materials Laboratory to

establish HCC assembly to packaging and intercon-

nect (P/I) structures as a viable manufacturing
technology.
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Currently, Tracor has one of the few complete
production HCC facilities in the country. The
line features automatic placement equipment with
provisions for automatic testing of individual de- 0
vices. Supplementing the HCC assembly facility is
a thick-film processing facility used to manufac-
ture ceramic Printed Wiring Boards (PWB).

Tracor's efforts as a contractor/contributor
in high-performance computer technology develop-
ment for the Navy and Air Force resulted in a con-
tract with the Magnavox Government and Industrial
Electronics Company to develop the CPU for the
Receiver Processor Unit of the user segment of the
GPS/NAVSTAR System using the Air Force CMOS/SOS
LSI circuit family with a modified AN/UYK-20 emu-
lation. The GPS/CPU design includes memory man-
agement and uses HCC packaging technology through-
out. The HCCs are mounted on a 4.5" x 5" substrate
which is assembled to the Magnavox motherboard in a
piggy-back configuration.

Tracor is also under contract with the Air
Force Avionics Laboratory to develop a 16-Bit
Radiation Hard Emulating Computer (RHEC) that will
implement two target architectures, one of which
will be MIL-STD-1750A, using the Air Force CMOS/
SOS LSI circuit family. Two new GUA circuit de-
signs were developed during this program to faci-
litate MIL-STD-1750A implementation. The other
target architecture is the Navy UYK-20/AYK-14.

In October 1981, Tracor received a contract
from General Electric to develop a MIL-STD-1750A
computer to fit on a three-quarter ATR circuit
card to be used in the F5G radar system. This
MIL-STD-1750A CPU is the baseline product that
will be used as a yardstick for enhancements to
the USAF GPU Chip Set.

BASIC CPU ARCHITECTURE

Figure 1 is a block diagram of the basic
architecture. Each block in the figure represents

05
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a functional circuit used one or more times. The
entire implementation of the CPU is accomplished
with seven generic LSI circuit types.

GENERAL REGISTER ORGANIZATION

The computation section of the CPU contains
two pairs of General Processor Units (GPUs). Each
GPU is an 8-Bit slice. The GPU pairs are referred
to as an "upper ALU" (Arithmetic Logic Unit) and a 0
"lower ALU" deriving their designations from the
respective most-and least-significant halves of
32-Bit arithmetic computations. The dual 16-Bit

ALU also provides a 32-Bit parallel arithmetic
capability.

Each GPU pair contains sixteen 16-Bit regis-
ters. The internal registers are assigned to be
the 16 general registers addressed by the 4-Bit
register fields of the respective macroinstructions.
The 16 general register assignments are identical
in the two GPU pairs. In other words, at the end

of each macroinstruction the contents of the reg-
isters of the upper ALU are the same as the con-
tents of the respectively addressed registers of
the lower ALU. The dual 16-Bit ALU provides the

following advantages:

a. 32-Bit parallel configuration simplifies
double-precision arithmetic, and floating-
point arithmetic macroinstructions.

b. Requires less microprogram memory.

c. Enhances execution speed for floating

point and double precision
macroinstructions.

d. Avoids multiplexing of GPU status signals.

e. Provides efficient built-in-test

capabilities.

The ALU is further extended to 48-Bits by
concatenating the Address Computations GPU pair
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for extended Precision Floating Point. Therefore,
the CPU has the ability to configure a 16-, 32-,
or 48-Bit ALU as required by the microprogrammer.

CONTROL

The architecture uses two independent micro-
controllers. The approach incorporates several
concepts designed for more efficient utilization

of micromemory that results in reduced part count
and minimization of the number of cycles for
Register-Register operations.

The dual-controller approach is based upon
the observation that performance of most macro-
instructions can be accomplished with two sequen-
ces of microcode, both of which can be independently
common to other macroinstructions. One sequence
is classification. Macroinstructions are classi-
fied by whether they use a second general register,
a general register pair, a macroinstruction literal
field, a bitposition mask, a memory word, or a mem-
ory double word as an operand source. In most
cases, this is called the operand derivation. The
other sequence is mathematical function. Among
these functions are load, add, subtract, one's 0
complement, negate (two's complement), compare,
and logical AND and OR. This sequence is called
execution.

The micromemory is divided into three sections.
The ASU provides the means by which each section 0
can be allocated to either controller in a well-
defined manner. One section is primarily addressed
by the classification controller. This section
contains most of the control fields to the cir-
cuits that are used mainly for fetch, operand der-

* ivation, and interrupt control. Another section is
primarily addressed by the execution controller.
This section contains most of the common controls
necessary to perform function execution of the
macroinstruction. The third section is in the
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middle, and control of it is passed from the clas-
sification controller when operand derivation is S
complete to the execution control to finish func-
tioning processing. The middle section provides
the missing control signals to indicate the oper-

and location and controls the Bus Interface Unit
(BIP).

This architecture is designed to give optimum
performance with no duplication of microcode. The
same microcode that performs a single precision
add is used for all corresponding addressing and
data formats. This approach also allows for bet-
ter packaging of microcode because, with sectioned S
micromemory, much of the respective microcode can
occupy the same address space. At times the pro-
gram being executed in each controller may require
the entire processor to perform a task.

MICROMEMORY 0

The micromemory is implemented with 4K CMOS/
SOS ROM circuits. The ROM circuits contain a
transparent latch to hold the microword for the
current operation simultaneous to accessing thp
next microword. 0

OPCODE TRANSFORM

The remapping or ordering of the instruction
opcodes requires a small memory (512 X 16-Bits).
The memory is implemented with 4K ROM circuits. S

STATUS REGISTER

The CPU contains a distributed status word
(SW). In other words, depending upon the function,
the fields or individual bits are stored where used S

and recombined when the SW is output.

INTERRUPT

The Interrupt Control Unit (ICU) circuit is
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an 8-BIT slice containing all of the circuitry re-
quired to perform the fanctions defined by the
Interrupt System Flowchart (Figure 2 of MIL-STD-
1750A). The circuit is concatenatable and re-
quires two circuits to implement the 16 interrupts.

PIO DECODE

The 256 X 16-Bit (4K) ROM circuit is used to
decode the XIO operand into individual control
signals. Four outputs are used to set up entry
points to the MCU for XIO operations requiring
several microwords (i.e., READ TTMER, LOAD TIMER,
READ FAULT REGISTER, etc.).

INPUT/OUTPUT

The CPU has an interface for a multi-Channel,
High-Speed Memory Controller. The CPU places no
constraints on the DMA process. The CPU can also
interface with any type of random access memory.
The CPU Control Panel Interface is an EIA standard
RS-232C Serial I/O Channel which operates indepen-
dently of the CPU Microcode Control Logic. The CPU
transfers data to and from the RS-232C Interface

using the programmed I/O instructions.

TIMERS A AND B

Each ICU device includes an 8-Bit concatenable
clock circuit that is loaded, read, and enabled
under microcontrol. The two circuits will imple-
ment the two timers by using the 100K cycle and 10K
cycle for Timer clock inputs generated by the 10MHz
Oscillator and divide input timing circuit.

CPU DEVICES

The circuits selected for the CPU realization
utilize the Air Porce GPU chip family and other com-
patible CMOS devices wherever practicable. These
devices consist of two custom arrays, ROM and five
customized Gate Universal Arrays (GUA) as listed in

* Table 1. 0
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INTERFACE CIRCUITS

The CPU interface power and signal condition-
ing circuits will consist of compatible standard
devices including an oscillator, three 54LS162
counter/divider, 5407 buffer, a CD4024B counter,
five CD40116 buffers, a resistor array, and the
startup ROM. The oscillators and the counters
will provide the external clock functions.

BASELINE CPU PHYSICAL DESCRIPTION 0

The devices listed in Table 1 plus four each
CD4000 series support circuits (53 devices) are
mounted on a 4.6-inch X 5.1-inch single-sided
thick-film substrate which is then mounted to a
conventional 3/4 ATR PWB as shown in Figure 2.
The substrate assembly includes chip resistors
and capacitors and two circuit protection devices.
The complete CPU design includes the power and
signal interface devices, and connectors.

The CPU operates with 10 volts in the CMOS/ 0

SOS LSI implementation and uses 5 volts to imple-
ment the external clock functions. Tracor can pro-
vide the CD40116 level convertors as shown in
Figure 2 mounted on the host PWB to interface with
5VDC user memory and Schottky TTL signal inter-

faces. The two bus networks may be isolated to
allow simultaneous operation.

Tracor's CPU weighs less than 0.75 pounds,
including the host PWB, and occupies approximately
16 cubic inches. 0

CURRENT PRODUCT STATUS

Under the GPS User Equipment Contract with
Magnavox Advanced Products Division, Torrance,
California, TRACOR commenced deliveries of UYK-20/ 0
AYK-14 Architecture Single-Card CPU's in March
1982. Through 1983, approximately 100 preproduc-
tion units are scheduled for delivery. Volume pro-
duction for GPS will cxmence in 1984.

Under the MIL-STD-1750A CPU contract with 0
G.E., TRACOR commenced deliveries of preproduc-
tion single-card units in September 1982.
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Production for this program will commence in
1983.

ENHANCED GPU CHIP SET 0

Development efforts are currently commencing
on the next generation GPU Chip Set. The overall
objective of this evolutionary upgrade is to in-

corporate available new circuit technology to the
maximum practicable extent while minimizing im- 4
pacts to the architecture of the chip set. The
reason for the latter is to take maximum advantage
of the existing chip set architecture, which has
evolved through the implementation of two major
standard military instruction set architectures,
the AN/UYK-20 and MIL-STD-1750A. 0

A special set of objectives has been set for
the enhanced chip set based on potential user re-

quirements and high confidence projections of what
can be done with current circuit technology.

Performance-wise, we have an interim goal to
provide a throughput capability of 500 KOPS, based
on the full DAIS Mix, in the 1984 time frame.
This is a "half-generation" update and requires

little or no architecture change, primarily new,
higher density implementations of the existing 0
devices. The "full-generation" update calls for
a throughput of 1 MOPS based on the full DAIS mix
and requires some architectural enhancement. This
"full-generation" update is projected to be avail-

able in 1985.

Figure 3 is a generalized illustration of the
distributed network architecture targeted for
MIL-STD-1750A application. In addition to the pro-
cessor elements, the system would include data
buffers, system input/output modules and central

memory modules. Data and variables would flow
through the system on separate buses.
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The data buf fer will be a random access memory
module used for buffering blocks of input/output
data, providing residence for files of ('ata shared
by two or more of the distributed processor ele-
ments, and serving as a system level cache memory
and a postman for messages within the system.

System input/output will consist of allocat-
able assets that can be used to set up autonomous
channels in response to commands orginating from 0
the system executives residing in individual pro-
cessor elements. Global data records would be
buffered via the system data bus. Multiple word
inputs could be directed to specific processor

elements via the system variables bus.

Central memory would consist of large blocks
(1 megaword or larger) of bulk storage, e.g. bub-
ble memory or equivalent.

System buses would segregate global data from
global variables. The variables bus would trans-
mit commands to set up transfers, pass variables,
request status and other high priority communica-
tions. This bus could be MIL-STD-1553B compatible
if desired. The data bus would trasmit large
blocks of data within the system under the control
of commands transmitted on the variables bus.

Figure 4 is an illustration of the distributed
processor element architecture appropriate for
this Hierarchical Network Application. It depicts
the architecture changes required which, although

*transparent to MIL-STD-1750A, will have some ef-
fect on GPU Chip Set Architecture, particularly
the Bus Interface Unit and the Projected memory
Management Unit.

The Memory Management Unit (MMU) device design
* will be architecturally keyed to the targeted dis-

tributed system requirements. It will be designed
to be the functional interface between the proces-
sor element (local) and system (global) addressing

10 0
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systems. It will contain 4 sets of 64 -page re-
gisters to provide a 1 million word address space
at the system level. There will be provisions
made for adding additional sets of page registers.
The MMU will also have access comparison and mem-
ory protect comparison functions per MIL-STD-1750A.
The CPU Bus interface will potentially change to

segregate data and address functions into local
variables and local data. This would segregate
local memory also and expand it's capacity from
64K to 128K words.

Architecture changes in the MIL-STD-1750A CPU,
other than the Bus interface, will be primarily
aimed at throughput enhancement to achieve 1 MOPS
on the DAIS mix. The operand derivation (right)
side functions and the execution (left) side
functions of the CPU will be further separated
and pipelined to a higher degree. One or two
levels of instruction prefetch and partial decode
will be added in parallel. "Referenced" register
status will be maintained to aid in pipelining of
the operand derivation (right) side of the machine.

Double word fetch in a single access will also be
considered. Bidirectional CPU Bus interfaces will
reduce time devoted to inter-bus switching. Look-
up tables housed in ROM devices will be considered
for implementation of high-speed function conver-
sions. A wider shift path will be added and an
addition of a high-speed parallel multiplier de-
vice (existing design) will be traded against
multiply on the ALU chip for speed. Although
architectural considerations, these GPU changes
will have some impact on the enhanced GPU Chip
Set.

CHIP SET ENHANCEMENTS

Specific changes to the GPU Chip Set will in-

clude moving to 2 or 3 Micron feature-size devices.
Smaller feature size will allow repartitioning of
devices into larger functions, allowing smaller

47
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chip counts for a specific implementation. This
will not only reduce the size of a MIL-STD-1750A
CPU to about 3.5 inches on a side, but will also 0
significantly reduce cost and increase reliabil-
ity. A bonus of the smaller feature size is 5VDC
operation at speed. This will obviate extra cir-
cuits and the associated delays for level con-
version to 5V buses and thus provide both size
and speed advantages.

Another specific change for the GPU Chip Set
will be in the method of sourcing. It is desir-
able to have the option of implementing these de-
vices in either CMOS/SOS or Bulk CMOS Rad-Hard
Technologies, as well as Low-Cost Bulk CMOS,
depending on the application. It is also desir-
able to have multiple sources available for the
same set of Government-owned device designs with
the ability to procure them competitively. A set
of common design rules has been defined as a
"common denominator" of the design rules of 10

suppliers of CMOS/SOS and Bulk CMOS. The unique
features (alignment marks, etc.) of each suppli-

er's design rules is filed separately and used in
making specific program generation tapes of de-
signs to which that contractor can directly bid
for fabrication. We expect to have 5 to 10 sour-
ces available for the Enhanced GPU Chip Set in
both CMOS/SOS and Bulk CMOS technologies. Major

advantages will include lower costs through com-
petition and greatly increased circuit availabil-
ity, as well as protection from source failure.

Examples of the most significant changes in
the Enhanced GPU Chip Set are the double GPU

(ALU circuit) and the 1000-gate government-o-ned
Gate Universal Array (GUA).

The double GPU will be a 16-Bit wide ALU
slice compared to the current 8-Bit GPU. Li.
the current GPU, it will have the ability to
concatenate directly with other GPU's without
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support circuitry. The new GPU will feature BYTE
recognition and have ability to operate in either
upper or lower BYTE mode. It will have an 8-bit-
wide shifter compared to the current 2-bit-shifter. 0
This will greatly enhance multiply and floating
point operation. Two bidirectional data ports will
aid execution side pipelining and limit critical
pin-out requirements on the Bus Interface Unit

(BIU). A temporary register will be moved from
the BIU to the GPU in order to minimize off-chip

execution functions. Decode functions will aid
prealignment for normalize or operations using a
matrix multiplier. A position location register
will be considered to keep track of boundary con-
ditions for concatenation and a configuration re-
gister will limit extra pinouts by internally 0

keeping track of word, upper BYTE and lower BYTE

modes in the ALU. The 16-Bit GPU with the above
features incorporated can be implemented and pack-
aged in a 64-Pin HCC.

The new 1000-gate GUA is intended to address 0

current lack of ability to procure random logic
devices in GUA form from multiple sources. Cur-
rent GUA's are proprietary company-developed cir-
cuit devices. Most are not organized for high

gate utilization efficiency. The current software
aids available to support these devices are also S
proprietary and, for the most part, inadequate.
They range from none to verification checks. The
more sophisticated the software is, the less adapt-
able it is to various GUA types.

The new GUA will be a government-owned design. 0

It will bedesignedusingthe new common design rules
and thus be multi-sourceable in both CMOS/SOS and
Bulk CMOS. It will be sized and organized to
achieve both a reasonable degree of complexity and
a high percentage utilization of the available
gates. It will be designed for compatibility with •
an automatic software router.
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New circuit types included in GPU Chip Set
Enhancement plans include a Memory Management Unit
(MMU) device for distributed network system appli-
cation, capable of global/local address transition.
It will have protect checks built in. It will have
4 sets of 64-page registers and be control-
concatenable to add additional page register sets.
Most importantly, it will be MIL-STD-1750A
compatible.

0

A new high-density output-latched ROM device
for micromemory will be developed. This memory
will be organized as 1K X 32. It will reduce the
current MIL-STD-1750A micromemory device ccunt
from 23 to 4 devices and increase micromemoryca-
pacity from 768 to 1024 words. S

A new Bus Interface Circuit (BIC) will replace
the current BIU in the 1 MOPS distributed system

applications. Some functions will be moved and
some pipelining functions added in order to fur-
ther separate CPU execution and operand deriva- 0
tion. The new circuit will contain memory proto-
col, a program counter, instruction queuing, par-
tial instruction decode, prefetch, and register

preference for operand address.

An Error Detection and Correction(EDAC) de- S
vice will be implemented using a proven, existing
EDAC algorithm. Depending on chip space and pin-
out, this function may be a part of the new BIC
device discvssed above.

In order to connect elements of the distribu-
ted network system to its global buses, a new Bus
User Connect (BUC) device will be implemented.
This device will format, send, receive and exe-
cute parallel-to-serial and serial-to-parallel
buffer functions.
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SUMMARY

The complete program of GPU Chip Set Enhance-

ment planned will produce parts for a 1 MOPS MIL- 0
STD-1750A CPU substrate.

The effect of the enhancements on the Chip Set

device complement for the MIL-STD-1750A is summar-

ized in Table 2. Coupled with multiple sourcing

of the Chip Set, this will produce dramatic cost

improvements and greatly inreased availability.

The preplanned distributed system architecture

enhancement will also expand the application of

MIL-STD-1750A significantly.

TABLE 2

MIL-STD-1750A CPU CHIP SET COMPLEMENT

PRESENT CHIP SET ENHANCED CHIP SET

TYPE QTY TYPE

8-Bit GPU 6 16-Bit GPU 3

MCU 2 MCU 2

RSU (1000) 1 RSU (1000) 1 0

ASU (300) 3 ASU (1000) 1

ICU (452) 4 ICU (1000) 2

ILT (300) 3

BIU (452) 4 BIU (1000) 2 0

ROM (4096) 26 ROM (32K) 5

49 16
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ABSTRACT

A study was undertaken to examine the issues involved in establishing
instruction set architecture (ISA) standards for computers used in embedded 0

spaceborne applications on Air Force Space Division projects. The specific
areas addressed were (a) Space Division requirements and ISA tradeoffs, (b)

comparisons of military standard and commercial spaceborne ISAs, (c) an LSI
implementation study and (d) an LSI cost study. The bottom line of the study

is that the MIL-STD-1750A ISA addresses the onboard processing needs of all
present and near term Space Division projects as well as many of those on far S

term projects. In addition, the development of space qualified 1750A
computers should be a low risk project with relatively modest costs once the

efforts currently sponsored by other agencies are successfully completed.

INTRODUCTION

During FY81 a study was conducted under Project Element 64740F in order

to provide Space Division (SD) with the information required to establish the •
degree of instruction set architecture (ISA) standardization desirable and

possible within SD for onboard processing. This paper is an overview of
portions of the final report of that study.
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The project was divided into four major interrelated activities, the
first of which was the task of establishing-requirements and benchmarks.
After examining a number of existing and near term Space Division satellite

projects, onboard processing was divided into the three broad functional
areas of housekeeping, station keeping and mission data processing. Each of

these areas in turn vas divided into numerous subfunctions and several SD
projects were examined in detail to produce data on timing, sizing, loading

and instruction mixes for these subfunctions. Based on comparisons of the
findings with the properties of the MIL-STD-1750A ISA and existing
implementations, it was determined that there are no inherent limitations
which would preclude the use of 1750A. The details of the results of this
portion of the study are not essential to an understanding of the ISA
comparisons and costing study and are therefore not covered in depth in the
present paper.

The second major task, which forms the bulk of this paper, was to compare
the ISA's of a cross section of existing spaceborne computers with the ISA of
MIL-STD-1750A. A set of five current commercial space qualified computers
ranging from the smallest to the largest and most powerful computers in use
was selected for the comparisons. The basic result of the comparisons is
that the functionality of the MIL-STD-1750A ISA exceeds that of all of the
coumercial computers studied, with minor exceptions. The only significant
areas where some of the commercial ISA's surpassed the 1750A was the
inclusion of specialized application dependent instructions. As will be
seen, the flexibility and extendability of the 1750A ISA will allow it to
overcome these handicaps.

The third major portion of the study was an investigation into the
feasibility of building low power, low weight, hardened LSI implementations
of MIL-STD-1750A computers. This task involved considerable discussions and
interactions with other government agencies and private companies conducting
such work. In addition, detailed algorithms for the implementation of
several MIL-STD-1750A instructions were developed. These experiments
revealed that it is indeed feasible to implement a suitable VLSI version of
1750A. Historically, spacecraft computers have generally been developed as
derivatives of avionics computers. The data gathered in the course of the
LSI study indicates that the level of developments for 1750A is such that the
normal evolution from avionics to spacecraft computers is indeed possible.
Many of the efforts surveyed are the subject of other presentations in the
present conference and thus are not discussed here.

The fourth task in the project was a cost study. The cost study was
divided into two major efforts. The first was to develop a comprehensive
cost model for the implementation of ISA standards. The resulting model
includes 1750A R&D costs, investment costs and O&M costs. The second part of
the cost study was to use the model to estimate the relative costs of the
various options for the imposition of ISA standards. Not surprisingly, it

was found that for the near term, it would be less expensive to continue
using the existing commercial ISA's. Next, it was established that modifying

existing spaceborne computers to conform to 1750A would cost less initially
than building new 1750A computers. The cost differential largely depended on
the ISA of the existing machine as well as the degree of performance
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improvement to be achieved during the upgrade. Most importantly, it was

established that building new 1750A computers should cost no more initially
than building to some nonstandard ISA whether off-the-shelf components or new

VLSI devices were used. In additir , the use of a standardized ISA would
result in a lower cost per hardware unit and eliminate support software costs

and thus would lower overall life cycle costs.

ISA COMPARISONS

The ISA comparison task was to compare an existing military standard
instruction set architecture with those of a cross section of existing space
computers. The computers chosen for the study were the Litton LC-4516 which

has been used in a number of satellite projects, the Delco Magic 432S used in
an upper stage, the GE Alpha-16 which serves as the flight computer on a
communications satellite, the RCA SCP-234 used on a weather satellite and the
CDC 469, a bare-bones spaceborne machine with a minimal instruction set used

as a spacecraft controller. A summary of the characteristics of these five
computers is given in Figure 1.

Before performing the comparisons, it was first necessary to choose from
the two current military standard ISA's. The first is the 16-bit instruction
set architecture embodied in MIL-STD-1750A. The 1750A ISA was originally
developed by the Air Force as an ISA for avionics applications. Since most
presently existing space qualified computers have evolved from avionics
computers, the 1750A ISA is a natural candidate to consider for a possible
Spaceborne ISA. The second available military ISA Is the "Nebula" ISA which
is defined by MIL-STD-1862A. Nebula is a very advanced 32-bit ISA which was
designed to support Ada programming in embedded applications. Unlike 1750A

which is strictly an Air Force effort, Nebula originated as an Army project
(it is the ISA of the Army's Military Computer Family) and is now a joint
Army-Air Force ISA.

The ISA of MIL-STD-1750A was deemed to be closer to those presently

implemented in space qualified computers. In particular, the 1750A is a
16-bit machine, as are most of the commerical machines presently in use,

while Nebula is a 32-bit machine. Thus, it was decided to compare the ISA's
of the selected commercial computers to the 1750A ISA, while saving

comparisons with the Nebula ISA for later.

Before giving the results of the comparisons, several notes are in
order. The first is that the five selected commercial computers are actual
machines which exist and are being used in current programs. However, rather
than being interested in the actual hardware implementation, the current
section is concerned with the ISA only. In contrast, the 1705A ISA, for the

purpose of this study, is just that, an instruction set architecture, not a
physical implementation of a machine. Although MIL-STD-1750A is being
implemented in a variety of machines, none of them are presently space
qualified. Thus, it would make no sense to compare the execution rates for

execution rates for a particular instruction. On the other hand, the
presence or absence of a particular instruction or class of instructions in
an ISA can be indicative of the efficiency of the ISA. In addition, the
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efficiency can be impacted by the number and types of addressing modes
included in an ISA. Figure 2 summarizes the areas where major differences
were encountered in the various ISAs.

The first ISA compared with the 1750A ISA was that of the Litton
LC-4516, a space qualified computer which has been used successfully in
three space projects. There are six instructions in the LC-4516 repertoire
which are not included in the 1750A ISA. All of the missing instructions
can be performed by short sequences (one, two or three) cf 1750A ISA
instructions. Examples are the LC-4516 "Compare Register (and Jump)"
instruction which can be implemented on a 1750A ISA machine as a "compare"
instruction followed by a "jump" instruction or, more trivially, the LC-4516
"increment register" instruction which is equivalent to adding a code stream
literal with value 'one" to a register on a 1750A machine. In general,

other than examples falling into the above class, there are no instructions
in the LC-4516 ISA which do not have equivalents in the MIL-STD-1750A ISA.
Furthermore, the LC-4516 instructions not found in MIL-STD-1750A tend to be
very low frequency instructions thus minimizing the impact of requiring a
sequence of 1750A instructions to perform their operations.

On the other hand, there are at least two dozen instructions in the
MIL-STD-1750A ISA which are not found in the LC-4516 ISA. Among the missing
instructions are an extensive set of bit and byte manipulation instructions
as well as implied register stack operations. In addition, the 1750A ISA
contains several sophisticated 'Izove" instructions not included in the
LC-4516. Finally, the 1750A has vectored I/O instructions, a feature not
found in the LC-4516D. The bottom line is that the MIL-STD-1750A ISA can
not only replace the LC-4516D ISA in spaceborne applications, but also
includes an extensive body of additional powerful instructions which could
easily find use in onboard applications.

The Magic 362 computer produced by the Delco Electronics Division of
General Motors is used as the flight computer in the upper stage of the
space shuttle. While the ISA of the Magic 362 has several specialized
and/or exotic instructions lacking in the 1750A instruction set, the study
revealed that, in general, the everyday, more common instructions forming
the heart of an ISA were more powerful and had more useful addressing modes
in the MIL-STD-1750 ISA.

Among the specialized Magic 362 instructions not included in
MIL-STD-1750A are a set of macro-instructions designed to facilitate the
coding of flight equations. These include the floating point instructions
@#square root," "sum of squares," "polynominal expansion," normal and odd
powers and a limiting function. It should be noted however, that if such
instructions are, in fact, required to achieve performance goals,
MIL-STD-1750A does include provisions for built-in functions. In effect,
the 1750A built-in function mechanism allows the implementor to define one
or more of the presently undefined opcodes. This mechanism was included in
the standard in order to allow the freedom to implement application
dependent instructions without burdening the entire user community with theig.
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With the exception of the above mentioned macro-instructions, the 1750A
ISA was found to be superior to that of the Magic 362 in several areas.
Foremost among these was the addressing modes. The 1750A ISA allows
extensive use of code stream literals and more powerful branching 0
capabilities than the Magic 362. Although both ISA's have sixteen general

registers, the Magic 362 requires them to be addressed in specific pairs and
triples, while the 1750A may address the registers arbitrarily. These
features result in more compact code which presumably will execute faster.
In addition, the 1750A has numerous instructions which have no equivalent in
the Magic 362. These include a wide selection of load/store, logical, 0
comparison, branch, arithmetic and floating point instructions. In
addition, 1750A has a full set of 48-bit extended precision floating point
operators while the Magic 362 has 64-bit extended precision with only
addition and subtraction implemented. In summary, while the Magic 362 has
several powerful instructions not found in MIL-STD-1750A, 1750A has more
powerful addressing modes and many additional instructions. To date, no 0
flight functions have been coded in both Magic and 1750A assembly languages
so a quantitative comparison cannot be made. However, it is quite clear
that, with the possible inclusion of some built-in functions, the
MIL-STD-1750A ISA could replace the Magic 362 ISA in spaceborne applications.

The Alpha-16 is a space qualified computer produced by GE and serves as 0
the flight computer on a communications satellite. The Alpha-16 was
designed to emulate the DEC LSI-11 instruction set architecture. An
advantage of this ISA over that of MIL-STD-1750A is the inclusion of
numerous extra addressing modes. Of these, the most commonly used ones are
register, absolute and immediate, all of which are in 1750A, thus minimizing
the advantages. In addition, the 1750A ISA has sixteen general registers 0

rather than eight and, additionally, does not have even-odd usage
restrictions. The LSI-11 ISA is rather unconventional, making an
instruction-by-instruction comparison difficult. However, it was clear that
1750A has numerous instructions in all categories that are not included in
the LSI-11 ISA. Since these two ISA's were so difficult to compare, it was

j decided to recode portions of a real flight program in 1750A assembler 0
language. The result was that the 1750A version not only contained fewer
instructions but also required 20% less storage. The conclusion was that
the MIL-STD-1750A ISA could easily replace that of the LSI-11 in the
DSCS-III flight computer.

The ISA of the RCA SCP-234 computer, which is used in a weather •
satellite, was compared with the MIL-STD-1750A ISA. The results were very
similar to those obtained when the LC-4516 ISA was compared with the 1750A
(mentioned previously). In particular, there are six instructions in the
SCP-234 ISA which are not in MIL-STD-1750A and 58 instructions MIL-STD-1750A
which are not implemented on the SCP-234. As was the case with the Litton
LC-4516, most of the SCP-234 instructions not found in 1750A tend to be S

compound instructions such as "Multiply Cumulative" or "Add to Memory."
Again, they can all be easily performed by a 1750A machine as a short
sequence of 1750A instructions without any great loss of performance. The
58 MIL-STD-1750A instructions not found on the SCP-234 consisted mainly of
the same types of bit, byte and stack manipulation and floating point
instructions which were found to be missing from the LC-4516. Again, it was S
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found that the HIL-STD-1750A ISA could replace that of the SCP-234 in the
DH2SP project.

The final ISA examined during the study was that of the CDC 469, a

general purpose, 16-bit, single address machine used in several applications -
as a spacecraft controller. The CDC 469 has a very limited number of

addressing modes. In addition, although it has sixteen registers, their
usage is, in general, severely restricted and depends in part on the

interrupt level. The CDC 469 has a very brief set of instructions, most of
which correspond directly to MIL-STD-1750A instructions. It is quite clear

that the HIL-STD-1750A ISA, or even a small subset of it, could easily 0
replace that of the CDC 469 in spaceborne applications.

The primary conclusion reached from the ISA comparisons is that the
MIL-STD-1750A ISA could replace that of existing spaceborne computers now in
use for near term missions. In fact, the richness of the 1750A exceeds that
of most present spaceborne ISA's, particularly in the area of floating point 0
which is not presently implemented on many spaceborne computers. On the
other hand, 1750A is lacking some of the more powerful and specialized
macro-instructions found on some of the larger spaceborne computers.
However, as mentioned earlier, this does not pose a serious problem since
MIL-STD-1750A does allow for the inclusion of application dependent built-in
functions. Whether or not such functions should be included in a proposed 0

standardized spaceborne ISA or left as options is not clear without further
study. Actual utilization, of course, depends on having a 1750A
implementation meeting Space Division's throughput, power, weight, size and

radiation hardness requirements.

The overall conclusion is that there is sufficient commonality between 0

the ISA's of existing near term spaceborne processors currently performing
housekeeping and station keeping functions to warrant the use of a

standardized instruction set. This conclusion is independent of the
question of whether or not HIL-STD-1750A or some subset, superset or
modification of it will serve as the standard. On the other hand, for

mission data processing requirements of the future, the current 16-bit 0
architectures could prove a severe limitation. There are indications,
however, that the VHSIC versions of 1750A offer the potential to satisfy a

number of mission data processing applications. When a more powerful
conventional ISA is required, the Nebula ISA of MIL-STD-1862A should be
examined in this regard. Since it is a thirty-two bit ISA there are few of

the limitations inherent in sixteen-bit machines. In addition, Nebula was 0

specially designed to run programs written in high level languages,
particularly Ada, and includes hardware features for multi-level secure

operating systems. On the other hand, Nebula is unlikely to be implemented
in a suitable configuration for several years.

Thus, it appears that KIL-STD-1750A, perhaps with suitable alterations, S

could serve as a spaceborne ISA standard for near term projects as well as

for the housekeeping and station keeping processing for far term projects.
At the same time, the Nebula ISA, again with possible alterations, could

serve as a standardized spaceborne ISA for those projects where a larger,

more powerful ISA is required.
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COST ESTIM4ATES

The cost study task was to explore the cost of implementing an ISA for

space applications. As was the case in the part of the study concerned with 0
ISA comparisons, the MIL-STD-1750A instruction set architecture was used a
the baseline. As part of this study, information was obtained from vendors
experienced either in building spaceborne computers or in implementing

MIL-STD-1750A computers. Foremost among this group of vendors were Litton
and Delco.

The initial part of the cost study was to develop a comprehensive cost

model and cost estimating relationships related to the 1750A's research and
development costs, investment costs and operations and maintenance costs.

Since the immediate interest in the present study lies with the R&D costs of
a 1750A computer, exploration of these costs was given priority. Basic cost
models of the two other major cost elements were explored but not evaluated
in great detail.

The second part of the cost study was to obtain estimates of the costs

associated with pursuing the various ISA options. Since earlier parts of
the study had indicated that the MIL-STD-1750A ISA was a viable, and in fact

* the leading, candidate for use as a spaceborne ISA standard, particular
attention was paid to costing those options which would result in a space
qualified 1750A computer meeting the special SD requirements. The options
ranged from relatively modest upgrades of existing computers to full-scale
development of a new 1750A computer using new VLSI developments. To provide
a baseline, or set of constraints, the costs of obtaining an existing space
qualified computer and of developing a new non-1750A ISA computer were also
explored. This task involved considerable interaction with vendors to
obtain costing information as well as with Air Force program offices
(particularly F-16) to substantiate and validate the findings. In addition,
extensive use was made of the costing models discussed above. The results
of the cost study, summarized below, are highlighted in Figure 3.

In order to provide a frame of reference, prices were obtained for
several of the existing computers discussed in the section on ISA
comparisons. Typical of these is the Delco Magic 362S. The M362S is a
non-VLSI machine of high weight (11 pounds) and power consumption (65 watts)
which does not conform to MIL-STD-1750A. A space qualified version of the

* machine can be obtained for $150K. This figure is a purchase price for an
off-the-shelf machine and does not include any development costs. To
provide a contrast, an avionics version of the same machine costs $80K (in
large quantities) and is heavier and consumes more power while having higher

throughput and a larger memory. On the other hand, it has a lower MTBF
(300 vs. 36,400 hours) and a lower degree of radiation hardness.

It was determined that the least expensive method of developing a space
qualified MIL-STD-1750A ISA computer would be to modify an existing
machine. The ISA comparison task revealed that the ISAs of the Litton
LC4516E and the Delco Magic 362S were closer to that of 1750A than the
others. It was found that the cost of converting either of these two

machines to implement 1750A would fall in the range of $1 - 5 million. (In 0
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Cost Estimates for Developing a Space

Qualified MIL-STD-17501A ISA Computer

1) By upgrading existing computers to conform to MIL-STD-1750A
(Contractor supplied/derived estimates)

Litton LC-4516E $1 - 5M

Delco M362S 31 - 5M

Delco M372 $3M

(LANTIRN/F -16)

2) By developing a new 1750A computer

Using off-the-shelf components $7.4

With new VLSI development $12.4

3) Cost of developing a new non-1750A computer

Using of f-the-shelf components $10M

With new VLSI development $15M

NOTE: These costs are estimates obtained from the costing model or

from informal discussions with venders. No contractual obligation
is implied.

Figure 3
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contrast to the purchase price of the M362S mentioned above, this is the
development cost.) The low end of this range corresponds to modifying the
machine so as to implement MIL-STD-1750A instead of the native ISA. Such an
implementation would result essentially only in those performanceS
enhancements inherent in converting to the 1750A ISA. To substantially
increase the throughput of either machine would require a much more
extensive redesign and would thus fall into the higher end of the range.
Similarly, implementations reducing the size, weight and power requirements
of these non-VLSI computers would result in development costs near $5M.

A similar, but possibly less expensive alternative is the redesign of
the Delco M372. The Delco M372 is an avionics computer implementation of
MIL-STD-1750A presently in use on the LANTIRN and F-16 projects. The M372
can be modified to conform to Space Division's needs for an estimated $3
million. The resulting computer would be comparable to that obtained via
the more expensive modification of the LC-4516E or M362S mentioned above.

In contrast, it was determined that a new space qualified, militarized
MIL-STD-1750A computer conforming to SD's requirements can be developed for
$7.4 million using off-the-shelf components. To build such a new 1750A
machine using new VLSI developments (seven devices would be required) would
cost an additional $5 million. The total of $12.4 million would result in a
machine with higher throughput than those in the $5 million range. In
addition, the new machine would have substantially lower power, size and
weight requirements than the lower priced alternatives.

The final cost estimates obtained were for developing an implementation
of a non-1750A ISA. It was determined that the hardware development costs 0
would be the same as for MIL-STD-1750A: $7.4 million for an implementation
using off-the-shelf components and $12.4 million with new VLSI
developments. However, there is an immediate extra cost associated with
this option: The cost of support software. There are presently several
sets of MIL-STD-1750A support software available or under development.
These can be obtained from the government and do not add to development S
costs. For a nonstandard ISA such software would have to be developed. It
is conservatively estimated that a compiler and assembler alone would cost
at least $2 million with additional costs for acceptance test, debug and
interpretive simulator software. Thus, in effect, the real cost of
developing a suitable non-1750A computer is significantly greater than

*developing a 1750A implementation.

As seen above, the use of the MIL-STD-1750A ISA would result in a
significant upfront savings by avoiding thne cost of compilers, assemblers
and other software development tools. However, this is only a one time
savings. Of far greater potential impact is the savings inherent in the

0 ability to reuse software modules during upgrades and to share compatible
software modules between projects. In addition, the use of a standard ISA
and a standard set of software development tools on a wide spectrum of
projects would help to alleviate the problems with personnel resources since
programmers would be portable from project to project with little or no
retraining.

0
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If an existing onboard computer is upgraded into a 1750A machine, then

clearly the software will have to be rewritten. On the other hand, even if
the same ISA is retained, but the computer is upgraded to today's hardware -
technology, a considerable portion, if not all, of the existing software
will also have to be rewritten. This is due to the fact that a different
implementation will result in different timing dependencies and the real
time software will have to be changed to accommodate it. In addition, it is

nearly unheard of to have a hardware upgrade without concurrent
modifications of the mission or other parts of the satellite hardware. Such 0

changes would clearly result in the modification of existing software
requirements or the inclusion of new ones. Finally, if new instructions are

added to the ISA of the machine, then extensive modifications of the code

must be made to take advantage of them. Thus, it is not clear that

retaining or slightly extending an existing ISA during a hardware upgrade
will always result in lower software recoding costs than would converting to S

MIL-STD-1750A. Thus in an upgrade where it appears that an existing machine
can be salvaged, it is recommended that a study be made to compare the costs
with those of converting both the machine and the software to 1750A.

In conclusion, the numbers speak for themselves. If an existing

S spaceborne computer meets the requirements of a project then it should be 0
used, but only after its costs have been compared with those of using

MIL-STD-1750A computers. On the other hand, in those projects where an
off-the-shelf computer does not meet the requirements, the development and
use of MIL-STD-1750A computers can and will result in significantly lower
costs. COSTSS

CONCLUSION

The overall conclusion resulting from the present study is that it is

not only possible but is, in fact, advantageous to establish standardized
instruction set architectures for use in onboard housekeeping and station S

keeping processing. Additionally, it has been determined that there is
sufficient commonality among the ISA requirements of the various SD projects
that it is possible to formulate a standard ISA encompassing all of their
features. Extensive comparisons of standard ISA's and existing spaceborne
ISA's have shown .that the ISA of MIL-STD-1750A is a viable candidate for a
Space Division standard. The 1750A ISA will not only satisfy present and 0

near term SD needs but will address most long term requirements for
housekeeping and station keeping processing. As more and more mission data

processing is done onboard the spacecraft VHSIC versions of 1750A with
signal processing capabilities could prove useful. It is recommended that
the Nebula ISA of MIL-STD-1862A be considered when a larger, more powerful
ISA becomes necessary. There are two additional reasons to consider these S
existing standard ISA's rather than formulating an entirely new SD ISA. The
first is the obvious benefit derived from reduced development costs, both in
hardware and in support software. The second is that the development of a
mature ISA (just the ISA, not the hardware) is a long lead time task. For
example, it took over two years to define and refine the Nebula ISA. In
addition, using or even modifying 1750A and 1862A would not only reduce the •
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risk involved but would provide a previously existing network of user's
groups, control boards, etc. to aid in maintenance and growth of the
standard.

After it was found that it was possible to define a standardized ISA and
MIL-STD-1750A was found to be a candidate, questions of implementation and
costs still remained. The study has documented that it is feasible to build
a space qualified MIL-STD-1750A computer and that such an undertaking would
not be a high risk project. Finally, it was established that the cost of
building such standardized ISA space computers is reasonable. In fact, it
was determined that, by capitalizing on the progress made by other agencies
on 1750A implementations and support software, it would cost considerably
less to develop a new VLSI 1750A spacecraft computer than it would to build
one using a nonstandard ISA. In addition, it has been shown that non-VLSI
space qualified 1750A computers can be obtained for even lower costs by
upgrading existing spacecraft computers to conform to MIL-STD-1750A.
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Q MIL-STD-1750A Verification Testing.

0 Luis E. Velez, ASD/ENASF (SEAFAC)

Wright-Patterson Air Force Base, Ohio.

ABSTRACT 0

This paper describes reasons for and importance of
verifying that a computer correctly implements MIL-STD-1750A
architectural specifications. It includes a brief summnary of
verification history. It describes present methodology for
verification testing including test procedures, results analysis,
and test reporting Finally, a future approach for verification
testing is discussed.

INTRODUCTION

The intention of this paper is to give a brief overview
of what the U. S. Air Force is doing to ensure architectural
compliance to MIL-STD-1750 Instruction Set Architecture (ISA) of
different computers from various contractors.

BACKGROUND

MIL-STD-1750A defines the Air Force standard 16-bit
computer ISA for airborne computers from a machine language
programmer's point of view. It does not define specific
implementations of a computer such as speed or size.

Use of this standard will allow the Air Force to use and
re-use available support software such as compilers, linkers,
loaders, assemblers, etc., allowing reduction in software costs.
Reduction in logistic management, number of support software
packages, and software development cycle will also be a factor in
cost reduction.

Knowing in advance which ISA is to be used for a
computer contract, allows reduction in development time. This
means we can begin software coding very early in the system life
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cycle.

Competition would be encouraged by requiring the use of
the standard. Programs like LANTIRN HUD, F-16 FCC, F-16
microprocessor, F-111, C-X, F-5G, HH-60D, MATE, and B-IB show this
competition when contracts awards were made to five different
firms.

Developments in technology allow users to have smaller,
faster. lower power consumption, and higher reliability computers.
An example of this is the development of chip sets by manufactures
such as Delco, Mikros, McDonnell Douglas, Honeywell, Tracor and Air
Force sponsored development of a single chip by Fairchild. Higher
performance chips are under development by Westinghouse and-Texas
Instruments using VHSIC technology. This clearly shows potential
growth of technology along with the architercture.

When the Air Force decided to adopt ISA
standardizatiott,a method of verifying that a vendor's computer
conforms to the standard architectural specification was needed.
The Systems Engineering Avionics Facilities Branch (SEAFAC),
ASD/ENASF, Wright-Patterson Air Force Base, Ohio has received the
responsibility for compliance certification of MIL-STD-1750
computers.

VERIFICATION HISTORY

The Architectural Test Program (ATP) was originally
developed by TRW (under contract to the Avionics Laboratories) as
an acceptance test for the AN/AYK-15A (MIL-STD-1750) processors
developed by Sperry-Univac and Westinghouse. The ATP was
subsequently chosen by SEAFAC for an interim verification tool, and
was updated by TRW to MIL-STD-1750A. Since delivery by TRW in
March 1981, SEAFAC has added a number of features to the ATP.
including a stand-alone interrupt test and changes which reflect
MIL-STD-1750A Notice 1. The ATP has been distributed to 28
contractors, four Air Force offices, one university, and three
foreign agencies in either 1750A or 1750. Notice 1 configuration
and has been successfully used i. verification testing of 10
processors. It is a relatively mature tool, and will continue to
be used until the Verification Software (VSW) comes on line next
summer.
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CURRENT APPROACH

Currently, testing of MIL-STD-1750A processors is done
using the SEAFAC 1750A ATP. A period of one to two weeks is
allowed for test completion. Testing can be done either at SEAFAC
or contractor facilities depending on the contractor needs.

Various requirements must be met to make verification
testing possible. On the contractor side, a request for the ATP
must be received by ASD/AXT. AXT will send a Terms and Conditions
Agreement Contract to be signed by the contractor agreeing not tc
sell the ATP back to the Air Force. Upon receipt of the signed
contract by AXT, SEAFAC will send a copy of the. most current
version of the ATP along with its documentation. The contractor
will then use the ATP to test the processor at their facilities
prior to final verification testing by SEAFAC. A minimum of 32K
continuous random access memory from address 0 is required,
although 64K is preferred. A single RS-232C I/O channel is
required for both downloading the ATP to the processor or unit
under test (UUT) and interactive execution of the ATP. This
interface must be controllable by XIO commandsuse a standard
25-pin RS-232C connector, and have selectable baud rate
(9600,4800,2400,1200,600,300). Data format will be 1 start bit, 2
stop bits, and no parity. The contractor will also supply a
maintenance (user).console uith a mass storage device (tapedisk),
I/O connectors and cables. The contractor must supply, prior to
verification testing, two routines called QETCHR and PUTCHR used in
the ATP to perform input and output through the RS-232C interface.
They are called by SJS R15,GETCHR and SJS R15,PUTCHR for QETCHR and
PUTCHR respectively. Upon return from QETCHR, one ASCII character
is expected in the least significant eight bits of general register
RO. If no input is available, QETCHR must wait until input is
available before returning. In PUTCHR, one ASCII character is
supplied in the least significant eight bits of RO. If output is
not immediately possible, PUTCHR must wait and perform the output
before returning. These routines must be linked in with any ATP
load or stand-alone module that is to be executed. For on-site
testing, a hard copy terminal with a keyboard is required for
recording test results. Also, a TV monitor or TV set for use with
an APPLE computer is needed.

SEAFAC will. supply all ATP load modules which include
executive-controlled and stand-alone tests, and an ATP loader which
interacts with a VAX or APPLE driver to allow load or dump of UUT
memory. SEAFAC personnel will brief the contractors on test S
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procedures, recording and analysis of results, and test reporting.
Communication is established between UUT and the VAX or APPLE using -
the loader program. Then each ATP load module is downloaded,
executed, and results are recorded.

Recorded results are analysed and a test report is
written and forwarded within two weeks of test completion to the
contractor tested. The test report contains date of test, ATP -
version used, processor ID, a list of testable options present in
the processor such as expanded memory addressing, memory block
protect, etc., results of all executive controlled loads and
stand-alone tests, and SEAFAC interpretations of the results.

IBM AND SPERRY UNIVAC STUDIES

An IBM study investigated eight different verification
methods.These verification approaches were grouped into four
generic types: Functional,Random, Lockstep, and Analytical. S

The Functional types consist of programs which verify
the architecture by executing a number of test cases which test the
architecture at a functional level.

In the Random Instruction verification approach, a 0
sequence of randomly generated instructions is executed and
verified that the proper results are generated by comparing them to
results from a simulator.

The Analytical approach consists of manual generation of
an architectural specification in a special high order language 5
called Language for Symbolic Simulation (LSS). A manually
generated description of each machine in the LSS format is also
required. A set of defined relationships is automatically
generated through a computer program. The program then compares
the specification of the architecture to the design implementation
using proof tree analysis.

In the Lockstep test approach, a functional type test
program is execute in parallel on two computers. One is a
certified MIL-STD-1750A computer and the other is the UUT. Data
describing the state uf the UUT i. sdveJ and comparud to the state
of the certified computer. S
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The recommendation of this studyi to the Air Force was a
two phase approach to certification. Phase I consists of a
Functional verification approach based on modification to the AFAL
(DAIS) ATP to be run on the MIL-STD-1750A computer being tested
In Phase It, a Random verification approach would be used to
generate large numbers of test cases. A test case contains a
sequence of 32 randomlyj generated instructions which is first run
on a MIL-STD-1750A simulator and then run on the MIL-STD-1750
computer being tested. The results from the computer being tested
are compared with the simulator results.

The Sperry Univac study investigated four different
verification methods. These methods were evaluated relative to the
design goals which consisted of complete testing of each functional
entity, testing of interrupts, 1/0, and processing, ease of system
use, test data easyj to expand, validated certification process,
certification process adaptable to specific options and/or changes
in MIL-STD-1750, and a certification facility able to provide a
means of generating, testing, and archiving test procedures.

Method I suggested use of the existing AFAL ATP and/or
the Sperry Univac ATP. Method II required the development and use
of a simulator to validate either or both ATP's to be used. Method
III called for the design of a new set of test programs that would
utilize bootstrap and/or control console functions for entering

r_* programs and test data and for reporting results. Method IV also
consisted of design of a new set of test programs, but to be0
controlled from the VAX-11/780 computer via data links. Detailed
evaluation of these methods showed that Method IV was technically
superior to the other mvethods and that Method 1 was of lowest cost.

The recommended approach was to design a test program
that maximizes the number of instruction codes and instruction code
sequences to be executed byj the UUT. It would contain test modules
defined so that the testing effort could be concentrated in a
particular architectural entityj. A simulator would be used to
obtain the expected results. Test programs, data, and expected
results would be transfarred between the UUT and the VAX-11/7e0
test control computer via an RS-232C or MIL-STD-1533B interface.
The VAX test control program would produce summaryj reports which
include test modules that were executed and provide infortmation
about test failures. The test control program would invoke options
that were or were not tested.
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VERIFICATION SOFTWARE (Intermetrics)

The future approach for verification testing will be the
Verification Software (VSW). It is divided into two main parts;
the VAX-11/780 resident VSW Control Programs and the 1750 resident
UUT executive and test programs. The VSW Control Programs are
divided into two functional segments, the User Interface and the
Test Execution, Analysis and Reporting Segment. The 1750 resident S
software is divided into two functional segments, the Test Control
Executive and the Deterministic Test Programs.

VSW will have the capability to set up configuration
parameters of the UUT such as MIL-STD-1750 options, spares, and
characteristics of the UUT. The VSW will also set up test control S
parameters that describe communications and testing modes, which
include test composition, and reporting. Two methodologies will be
used, deterministic and random testing. In deterministic testing,
defined MIL-STD-1750 features will be verified using
deterministically chosen test cases. In the random testing,
streams of randomly generated legal instructions are executed in 0
both the UUT and a simulator hosted on the VAX computer. The Air
Force suppliesmaintains, and provides configuration management of
this simulator. The analysis portion of the test compares test
case results to expected results obtained from the simulator to
detect errors.

FUTURE APPROACH

Once the VSW is operational, the ATP will no longer be
used as the test for compliance to MIL-STD-1750A. Test S
requirements will be as mentioned before except that the testing
will be done at SEAFAC exclusively and either a single RS-232C I/O
channel or MIL-STD-1553 data bus will be required.

0
SUMMARY

The proliferation problem of multiple ISA's results in
multiple hardware and software systems, leading to high software
costs. Using MIL-STD-1750A ISA, we can reduce software costs,
software development time and encourage use of new technology by
industry. Use of the ATP as the verification testing tool to
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ensure architectural compliance to MIL-STD-1750A makes these
benefits possible. The verification process will be enhanced by
the use of the VSW when it comes available in the third quarter of
1983.
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ABSTRACT

Update of the State of Ada Language Standardization
and Other Ada Related Standards

Larry E. Druffel

Ada Joint Program Office (OUSDRE R&AT)

The Ada Program is a joint service activity to adopt a ccmmn language and
support system for embedded computer applications. It serves as the basis
for a shared envircment through whid the state of practice for defense
software systems may be improved. This presentation will provide an up-
date of the state of Ada language standardization and other Ada related
standards.
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Abstract

NAVY TRANSITION TO ADA - POTENTIAL FOR~ A FRESH START

There are many problems associated with Navy software development and post
deployment support that must be solved in order to provide affordable systems
that enhance fleet readiness. These problems will intensify in the coming
decade with the increased use of embedded computer resources in Navy weapon
systems. The Navy's computer software development and support workload is
clearly outstripping Navy and industry resources to adequately execute. The
situation only promises to worsen as national competition for the diminishing
supply of trained weapon system engineering personnel intensifies. One
workable solution appears to be through application of the productivity
improving concepts of automated support embodied in compatible, large scale
computer-based support systems, such as the Ada Progranmming Support
Environment. This paper discusses the Navy's current software engineering
initiatives, short and long range Ada implementation plans, and Ada

* implementation policy. A short discussion of current Navy language
standardization policy is also included.
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ABSTRACT

Air Force Systems Cmnand has developed a four-phased plan for introducing Ada
into Air Force systems, and has established definite criteria for advancing to
each successive phase. The objective is to start using Ada as soon as
possible, but to do it prudently. The four phases are: laboratory
development and exploration; product division parallel operational system 0
development; use of Ada on selected programs; and mandatory use of Ada on
nearly all programs. At each phase there are readiness criteria related to
compiler maturity, completeness of tool sets, availability of documentation,
maintenance, and training, and adequacy of the experience base. The criteria
can prevent errors of haste that have plagued past Air Force language
introductions; they can also provide near-term goals for projects in the early 0
phases. The next step in the planning process is to design projects for each
phase that will accomplish the goals.

*5O
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Look before, or you'll find yourself behind

Poor Richards Almanack, 1732

in
i' ADA AS A PROGRAM DESIGN LANGUAGE

A Rational Approach to Transitioning Industry to
O the World of Ada Through a Program Design Language Criteria

0
0k. Robert M. Blasewitz

0RCA Government Systems Division
Missile and Surface Radar

(609) 778-3955

ABSTRACT

- The Department of Defense requirements to use the higher order language Ada/by
the mid-1980s will create challenges to developers of military software that encompass
two major concerns: (1) developing a core of Ada software personnel, and' j 'achieving
productivity and software quality gains that have been targeted as Ada life cycle objec-
tives. Because of recent government direction to use Ada-based PDLs, many organiza- 0

tions are developing prototype Ada-based design methods. The IEEE working group on
"Ada as a PDL" is working on guidelines for the use of Ada-based design languages.
The guidelines will include recommendations reflecting the. current state of the art as
well as alternative approaches in order to preserve good practice. The extent of indus-
try's involvement with Ada PDLs, and also the status of the IEEE guidelines, may sub- 4

stantially impact both the acceptance of the Ada language and the efficiency of its use.

INTRODUCTION - PROGRAM DESIGN LANGUAGES AND ADA

During the past several years, industry has seen an explosion in the cost of gener-
ating and maintaning software products, coupled with a decline in the quality and relia-
bility of the software product. A need for a radically different approach to the develop-
ment of software is readily apparent.

One of the first tools for documenting software - the flowchart - was developed
from the belief that a program should be documented after it was written. Today, the
view is that program design and documentation, at the very least, must precede coding.

* *Registered trademark of the US Government (AJPO) 5
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A current tool for software design is the program design language (PDL), or pseudo-
code approach. PDLs are based on a common theme of software engineering that com-
plex technical developments require an iterative approach. The human mind works more
efficieritly at successive refinements of an idea - seldom is perfection achieved on the
first attempt. However, iterative coding can be burdensome because of the very exacting0
syntax of the programming language. Pseudocoding allows the developer to experiment
with many successive versions of a program with a minimum investment in time.

What is pseudocoding? It is a mixture of language-oriented control key words and
English-like statements used to concretely describe an abstract design. It should support
the following identifiable software goals:

(1) Focus attention on appropriate levels of design detail without becoming over-
whelmed with minor issues.

(2) Provide a process that is amenable to the creation of well-structured programs

(3) Replace flowcharts and other difficult software tools with an efficient approach
to software production.

(4) Provide a natural transition from high levels of logic abstraction into detailed
* code.

(5) Facilitate program logic documentation and maintenance.

Besides their use in coding, many computer scientists believe that Ada-compatible
design methods and languages can also be applied throughout software life-cycle phases.
Such uses include requirements definition, specification, and analysis; design; testing;
docmentation; maintenance; and project management and control. Many organizations
have already derived their own unique Ada-based pseudocode or design language in or-
der to (1) allow immediate training in the Ada language (2) realize Ada's software po-
tential as a design tool; and (3) respond to present DoD interest in program design lan-
guages as specification tools via RFPs.

This paper will outline the importance of creating a guideline for an Ada Program
Design Language (PDL) and will present the activities of the IEEE working group on
"Ada as a PDL." The value of a guideline (IEEE goal) or recommended practice will aid

* the widespread acceptance and use of Ada. If a guideline is produced, it will illustrate
software practices centered around an Ada PDL that will support and enhance military
documentation.

The selection of either a guideline or recommended practice is accomplished by
* means of a consensus of technical opinion within the IEEE working group. It is hoped

that this group's efforts will not have damaging effects on present corporate investments
in PDL design. However, the IEEE guideline will be directly influenced by the lessons
learned from these developers and will hopefully bring together the wide scope of work
in the PDL area. The availability of a PDL tool in the APSE will also foster develop-

* ment of DoD software throughout the life-cycle of the software, if such an end product
can b~e realized in a timely fashion. (Some of the technical problems associated with the
IEEE effort will be detailed throughout this report.)
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DoD initiated the Ada program to save taxpayer money, with savings coming from
the portability and reuse of operational software, more effective use of support software
(including PDLs), improved programmer productivity, and reduced software mainte-
nance. There is little question that the entire software industry is in need of a modern, 0
efficient, and highly portable system implementation language and tool set. In summary,
technical arguments about which language to use at best miss the point, for only the
Ada language will benefit from DoD's investment in standards enforcement for compilers
and supporting tools, and in particular a program design language tool.

0

PROGRAM DESIGN LANGUAGES - NYHY A COMMON ADA PDL?

Computer programming is unlike bther engineering disciplines in that it is exclu-
sively a design process. The software life cycle is initiated with a functional require-
ment; the design of the system interfaces with its external environment; continues with
the design phase (architectural, module, internal interfaces, data bases); and is followed
up with coding, a stepwise refinement of previous designs. Testing, integration, and
maintenance of these phases are repeated throughout the development process.

* 0
With this point of view, software tools can be considered design tools. One of the

most widely used tools to construct software is the programming language, which is re-
ally a software design language although a machine that executes algorithms also embo-
dies a design language. Algol, Pascal and Ada are prime examples of design languages
that are also used as programming languages.

Higher order programming languages typically have been successfully used as tools
at the coding phase of software development cycle. Tools that supported software designs
earlier in the development cycle were informal ones, such as Von Neumann Flow
Charts, Hierarchical Structure Charts, and Data Flow Diagrams. These graphical meth-
ods worked at different levels of detail. For instance, detailed flow charts may tend to
correspond one-to-one with a machine-language program, a logical flowchart could have
English text, which might correspond to any amount of machine code in its defined rep-
resentation (usually boxes, diamonds, etc.).

*One machine-processable design language tool that is widely used is "P.D.L.", a
product of Caine, Gordon and Farber, Inc., which provides a programming language-like
structure for expressing in English or "structured English" what a to-be-written com-
puter program will do without having to describe exactly how it will do it. Informal ex-
pressions of program design follow the P.D.L. idea quite closely. From Wirth, the pro-

*gramming language is Pascal, which is used as a design language by enclosing non-Pas-
cal descriptions in English, set off by quotation marks, as in:

begin "move an item from j to k" end

*Dijkstra uses a mythical programming language designed to express formally provable

algorithms expressed with non-deterministic flow of control.
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In considering Ada as a program design language, we can use the definition from
IEEE Standard 729, "Standard Glossary of Software Engineering Terminology," (Ap-
proved by IEEE Standards Board, 23 September 1982):

"Design Language - A language with special constructs, and sometimes VERIFI-
CATION protocols are used to develop, analyze, and DOCUMENT a DESIGN."

An efficient PDL should not only be useful in the stage between the requirements
phase and the implementation phase of a project, it should also (1) aid the designer in
expressing the design, (2) aid the design reviewers in evaluating it, (3) aid the imple-
mentation and validation of the design into a product, and (4) aid the maintenance team
in correcting or changing the design.

What other features should a PDL possess? Consider the following desirable fea-
tures or characteristics. It should:

(1) Be engineered as an aid to the programmer and not be an extra nuisance, as
documentation is often perceived by programmers.

(2) Be a repository for design decisions.

(3) Have selective focus to help programmers abstract patterns from complex soft-
ware.

(4) Allow a system to be viewed top-down so that system level consideratins are not
overlooked respective to details of specific programs.

(5) Support early prototyping - the PDL should aid a programmer in designing
complex software systems at the beginning of a project.

A PDL should also have the capability to describe sections of a design that are 1)
tentative or sketchy or 2) frozen and dependable. The PDL should resemble the actual
language used in the project or at least should be machine-translatable into the project
language. Programmers should find the PDL easy to learn and use within their projects.

CAN ADA BE USED AS A COMMON PDL?

Ada is new and relatively untested as a PDL, but nevertheless meets several or
most of the requirements of a design language. While Ada programs are not particularly
easy to write, the complexity of the language exists largely to enforce good programming
practices. Ada was designed to be readable, which meets one PDL goal - of being an

* aid to programmers.

Like most modern higher order languages, Ada has a subroutine mechanism (proce-
dures and functions) so that top- down programming can be practiced and partially spec-
ified programs can be put to paper. Other design language features of Ada include:

(1) A generic subprogram - Programmers can specify programs independent of the
data types to be used; i.e., code can be written without specifying all details.
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(2) Packages, which allow external interfaces of a software module to bqstated
while concealing the main sections.

(3) Pragmas that allow special requirements to be communicated to the compiler,
which would in turn allow the processor to know that a program text under con-
sideration is being used for a design language or for final program description.

An Ada PDL will surely support early design activities as well as a compiler, but
what of other advantages? The basic advantages to using an Ada PDL include:

(1) It is a "human-engineered" design tool that is available early in the software
life cycle.

(2) A programming staff can be trained to full Ada programming, which reduces
costs.

(3) Enhanced communications can occur among managers, customers, and mainte-
nance personnel.

(4) Detailed design can be eliminated until required by the project.

(5) It can be used for Ada software design until a validated Ada compiler becomes 0

available.

ISSUES ASSOCIATED WITH ADA AS A PDL
0

There is currently time to explore and resolve alternative usable strategies of Ada
as a PDL. Some basic issues derived from the IEEE working group meetings include:

(1) What features separate an Ada PDL from a non-Ada PDL?

(2) Should the Ada PDL be a subset or superset of the Ada language?

(3) Should an Ada PDL try to encompass software engineering methodology? Is one
methodology more suitable than another?

(4) Will the Ada PDL be machine processable or compilable by an Ada compiler?

(5) What tools will be needed to support the Ada PDL?

(6) Should the PDL be based upon the syntax and semantics of Ada?

(7) How does the PDL relate to required documentation?

(8) How will the PDL be used to support all the phases of the software life-cycle?

(9) Should the PDL aid and support formal verification, testing, and V&V tech-
niques?

Obviously Ada, by itself, provides much of what we need in terms of a PDL. How-
ever, the answers to the above issues are required before a common Ada PDL can be de-
signed and developed. The answers to these questions may or may not lead to a single
Ada PDL and methodology (under the assumption that Ada does not represent a
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methodology). Because Ada has such strong features, which enable it to support software
design activities, many organizations* have already developed prototype Ada-based
PDLs. If a commonly accepted PDL is developed and enforced by the Department of De-
fense, will these developers be satisfied with the return on their investment?

The IEEE Working Group on Ada as a PDL has forecast that a guideline for Ada-
based design will be completed by early 1984. This guideline will include recommenda-
tions reflecting the current state of the art and alternative approaches to good practice.
Whether or not the group will recommend a single Ada- based PDL (or a single
methodology) remains to be seen.

EDUCATION AND TRAINING ISSUES

The introduction of Ada as a PDL will involve more than just learnipg a new lan-
guage or a pseudo-language. It offers a unique opportunity to provide training in mod-
ern programming methods that are appropriate to Ada but which are inappropriate to
lower level languages. Realizing that Ada permits a coordinated view of modern pro-
gramming practice, complete with a language and support environment, does it not 0

make sense that a common Ada-based PDL will do the same?

Ada was designed to incorporate the best software engineering research of the
1970s. An Ada-based PDL will certainly also encapsulate the same advances in its de-
sign. It will reduce personnel training requirements, increase proficiency in software-re-
lated job skills, and give managers a "larger" labor force from which to draw. For DoD
to derive these benefits at an early stage in the software life cycle, the Ada-PDL must
be widely accepted and used. The rewards could include:

(1) Conservation of manpower, time, and money

(2) Enhancement of portability, reliability, and maintainability

(3) Optimal use of processes and practices relating to software development

(4) An early transition of personnel to Ada-based design and Ada usage.

Not only is the software procurement community interested in Ada and software de-
velopment methodology, but so are a number of organizations that are required by the
DoD to make a transition to the new language. Transition is the key - can there be a
simpler, more esoteric means of achieving this transition than by means of a common
PDL? *

*A full compilation of industry activity in the area of PDL development is also compiled
by Ada TEC (the S[GPLAN Technical Committee on Ada by the Design Methodologies
group). *
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THE AIM OF THE IEEE IN PRODUCING A GUIDELINE

The main objective of the IEEE is to advance the theory and practice of engineering
or related arts and sciences. In a 1968 membership attitude survey, a large percentage
of IEEE members indicated that they felt that issuing of technical guidelines was an im-
portant means by which IEEE could carry out its objectives, providing a common ground
among those using the guidelines. Guidelines also could provide criteria for the accepta-
ble performance of equipment or materials pertinent to the electrical engineering field.
IEEE guidelines are published to record a consensus of the engineers who are substan-
tially concerned with the scopes of these guidelines, reflecting the best thinking of the
experts of the institute and ensuring that proper procedures have been carried out. The
production of an Ada-based PDL guideline is certainly in line with IEEE objectives.

SUMMARY

The advent of the Ada programming language provides a means for bridging the
* gap in software development methodology. Ada, by means of introducing formalized con-

structs such as packages, generics, concurrent tasks, exceptions, and separate program
unit specifications, provides design representation. The use of Ada as a PDL is not only
a realizable goal, but one that has been achieved by a number of organizations at this
time.

The IEEE Ada as a PDL Working Group has been chartered to generate, at the
very least, a guideline document for Ada-based PDL(s). The derivation of a guideline by
the IEEE working group will add to the momentum of the Ada effort and should help
ensure both the acceptance of the Ada language and its efficient use as a learning mech-

* anism through its use as a PDL throughout industry.
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ABSTRACT

The Kernel Ada* Programming Support Environment (KAPSE) Interface Team
(KIT) was established by the Ada Joint Program office to address the issues 0
involved in sharing Ada support tools among APSEs. The goal is to establish
interface standards which will assure the transportability of tools and data
bases between APSEs. The KIT and its auxiliary team, the KAPSE Interface
Team from Industry and Academia -(ITIA, have been meeting since early 1982.
The paper discusses their progress to date, the plans for the future and the
major issues confronting them in achieving this major goal of the Ada program. 0

1. BACKGROUND

From its inception, one of the major objectives of the Ada program was
to provide the three military services with a common programming language S
which would allow them to make use of a common set of programming support
tools. In the past, each service had its own standard language and a require-
ment to invest time and money in the development and maintenance of the unique
tools required to write systems in that language. Thus each service developed
compilers, linkers, loaders and other support tools which none of the other
services could use. With Ada it was anticipated that the three services 0
could now develop tools which were of interest to the other services and
which could be shared.

The first step in making this sharing a reality came with the publica-
tion of STONEMAN in February 1980. STONEMAN presents the requirements for
an Ada Programming Support Environment (APSE). It discusses some general S
characteristics of an APSE and the minimal set of tools which an APSE must
contain (thereby called a Minimal APSE or MAPSE). In order to address the
requirements for sharing, STONEMAN put forward an architecture based on a
machine-transportable kernel of software (the Kernel APSE or KAPSE). A
KAPSE provides the interfaces the tools need to function in a way that is
not dependent on a particular operating system or machine. Thus to move the 0
tools from one machine to another, it is not necessary to change any of the
tools; it is only necessary to provide a KAPSE on the new machine which will

*Ada is a trademark of the Department of Defense (Ada Joint Program office) 0
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support the tools with the same interfaces as the KAPSE on the old machine.
The STONEMAN picture of this is shown in Figure 1.

In late 1979, while the finishing touches were being put on STONEMAN,
both the Army and the Air Force announced plans to develop MAPSEs. The Army S
contract for the Ada Language System (ALS) was initiated with SofTech Inc.
in June 1980. The first ALS version that generates code for a target computer
is expected in late 1983. The Air Force contract for the Ada Integrated
Environment (AIE) began with a six-month competitive design phase, which was
won by Intermetrics, Inc. with Massachusetts Computer Associates. The second

phase (to develop the AIE) was initiated in May 1982. The first delivery of
the AIE is expected in 1984.

The existence of two different contracts for the development of two
different MAPSEs presented the Ada Joint Program Office (AJPO) with a problem.
Each of these MAPSEs includes a KAPSE, a unique KAPSE that would most likely
be unable to support the tools being developed by the other service. This S
would put the DoD in the same position again: Army tools for Army systems,
Air Force tools for Air Force systems, etc., and no way to share them. It
was clear to the AJPO that, in addition to agreeing on a KAPSE-oriented
architecture, it would be necessary to standardize on the set of interfaces
which the KAPSEs provide in support of the tools.

In order to achieve this standardization of KAPSE interfaces, the AJPO
obtained a Memorandum of Agreement (MOA) between all three services. This
MOA established the KAPSE Interface Team (KIT), a Navy-led DoD team, as the
agent for formulating appropriate KAPSE interface standards. The MOA also
contains agreements by the Army and Air Force to evolve the ALS and AIE,
respectively, towards these standards when they are established. •

Subsequent to the organization of the KIT, it was decided to also
organize an auxiliary team of experts from industry and the universities.
This team, the KAPSE Interface Team from Industry and Academia (KITIA), is
intended to provide the KIT with a broad range of expertise in interface
problems and a source of ideas and feedback. 0

2. KIT STATUS

The KIT held its first meeting in January 1982; the KITIA's first
meeting was the following month. Since then each team has had three other
meetings, including their first joint meeting in October 1982. The work to 5
date has been in five major areas: basic definitions, KAPSE interface
categories, AIE/ALS analysis, requirements and tool development.

2.1 BASIC DEFINITIONS

Definitions for terms that are central to this work have been establish- S
ed. Chief among these are:

INTEROPERABILITY - Interoperability is the ability of APSEs to exchange
data base objects and their relationships in forms usable by tools and user
programs without conversion.
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APSE

KAPSE

level 0: Hardware and host software as appropriate

level 1: Kernel Ada Program Support Environment (KAPSE), which provides S
database, communication and run-time support functions to enable the ex-
ecution of an Ada program (including a MAPSE tool) and which presents a
machine-independent portability interface.

level 2: Minimal Ada Program Support Environment (MAPSE) which provides a

minimal set of tools, written in Ada and supported by the KAPSE, which are S
bth necessary and sufficient for the development and continuing support of
Ada programs.

level 3: Ada Program Support Environments (APSEs) which are constructed
by extensions of the MAPSE to provide fuller support of particular
applications or methodologies. 0

FIGURE 1
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TRANSPORTABILITY - Transportability of an APSE tool is the ability of
the tool to be installed on a different KAPSE; the tool must perform with
the same functionality in both APSEs.

Additional terms are being defined as their use becomes important to 0
the effort.

2.2 KAPSE INTERFACE CATEGORIES

As a starting place for organizing everyone's thoughts, a set of in-
terface categories was created. These are areas which the collective wisdom 0
and experience of the KIT and KITIA members show to be important to inter-
operability and transportability (I&T). The current interface categories
are:

Program Invocation and Control
Logon/Logoff Services 0

Device Interactions
The Subset MAPSE
Basic I/O Interfaces
Database Management and Control
Inter-tool Data Interfaces
Ada Program Run-Time System (RTS) 0
Bindings and Their Effect on Tools
Performance Measurement
Recovery Mechanisms
Distributed APSE
Security
Support for Targets 0
Extensibility

Each of these is described in a KAPSE Interface Worksheet. The de-
scriptions give an explanation of the interface category, its relevance to
I&T, standardization problems it presents, its priority, other categories
that are related to it, proposed approaches (e.g., AIE, ALS), the risk 0
associated with not standardizing in this category and recommended actions
to be taken. These descriptions are not yet complete and will evolve as the
work progresses.

2.3 AIE/ALS ANALYSIS

One of the most important KIT/KITIA jobs in this first year is to
understand the similarities and differences between the ALS and the AIE.
There are several reasons why this is of great interest to the KIT/KITIA:

(1) as the first KAPSEs, these two systems will provide the KIT/KITIA
with a great deal of insight into the basic properties and interfaces that 0
are required of a KAPSE;

(2) as the first DoD MAPSEs, these two systems will be required by the
MOA to evolve towards the standards established by the KIT/KITIA; therefore,
the KIT/KITIA do not want to choose interface standards which are arbitrarily
different from the interfaces found in the AIE/ALS; this is not to say that 0
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the standards will not differ from the ALS/AIE, but that an attempt will be
made to be consistent with their interface choices when there is no reason
to differ;

(3) the KIT/KITIA is also charged by the MOA with making recommendations
for how the AIE/ALS can be changed to meet the standard; this task requires
intimate knowledge of how and why the two systems differ, both philosophically
and technically, and a firm understanding of what can be changed without de-
stroying the very differences that make the dual development worthwhile.

2.4 REQUIREMENTS AND CRITERIA

Any undertaking of this size and importance must have some ground rules
and requirements which guide the decision-making process; this effort is no
exception. The requirements and criteria define the guildelines we plan to
use in choosing which interfaces to standardize and the form those standard 0
interfaces should take. Many of the requirements and criteria have been
formulated using three Operating System Command and Response Language (OSCRL)
requirements documents as models: the OSCRL User Requirements, Functional
Requirements and Design Criteria. In addition, as other issues arise and are
resolved, those resolutions are added to the requirements and criteria docu-
ment in the appropriate section. 0

2.5 TOOL DEVELOPMENT

The MOA which created the KIT also called for the KIT to provide for the
development of three or more APSE tools. The purpose of these tools is to
provide the KIT with real experience with the AIE and ALS interfaces. They S
are each. to be developed to run on both systems. While each tool is to be
functionally useful to the process of developing and/or maintaining Ada pro-
grams, their main purpose is to expose interface differences and transporta-
bility problems which arise as a result of trying to develop them to run on
both the ALS and AIE.

Two of the tools to be so developed have been chosen from the designs
that were not selected for the AIE. One will be a Configuration Management
System by Computer Sciences Corporation and the other will be an APSE Inter-
active Monitor by Texas Instruments. One or more other tools will be
selected through competitive procurement.

Representatives from the tool-builder companies participate on the KIT.
All of their experiences and recommendations will be documented for the KIT
and will form another part of the basis for the interface standards.

3. KIT PLANS

All of the work discussed in the last section is still in progress. Each
will evolve during the remaining three years of the KIT/KITIA work. The
definitions are relatively stable, and the descriptions of the KAPSE inter-
face categories have reached a plateau and will now be completed as new in-
formation becomes available. The AIE/ALS analysis and the requirements and

* criteria are both in their early stages, and the tool developments have a S
number of steps left to take. In addition, three other major areas of work
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have not yet been initiated: interface standards, interface implementation,
and guidelines, conventions and standards documents.

3.1 AIE/ALS ANALYSIS

A basic model for comparing the AIE and ALS has emerged. Now this model
must be used to display the capabilities of each system. In this way it can
be seen where they have features in common and where they differ. The common
features will help provide a first draftof the interface standards. The
differences may be of two kinds: some differences may lie in areas which are
covered by one system and not by the other, while other differences may lie 0
in incompatible treatments of the same area. In either case, these dif-
ferences will be important to further KIT/KITIA decision-making.

3.2 REQUIREMENTS AND CRITERIA

These will continue to evolve from the October rough draft. As new 0
issues are resolved, the results will be incorporated. Several areas will be
refined and made more consistent. In addition the KIT/KITIA are looking at
deficiencies in STONEMAN and making recommendations for revisions to it.

3.3 TOOL DEVELOPMENT

The first two tool developments are -underway and should have initial
implementations ready in the next three months in one case and about eighteen
months in the other. Following initial development, each of these tools must
in turn be integrated into the ALS and the AIE as those systems become avail-
able.

The competitively procured tools will follow the same pattern. It is
expected that these tools will be selected and underway during the first half
of 1983.

3.4 INTERFACE STANDARDS

The first rough incomplete version of the interface standards will con-
sist largely of those interfaces which the AIE and ALS are found to have in
common. This initial version will evolve as ALS/AIE differences are examined
and other decisions are made.

*To the greatest extent possible, these interface standards will be ex- 0
pressed as Ada package specifications. These will be augmented by narrative
or other more formal specification techniques for those aspects which package
specifications do not cover (e.g., semantics).

3.5 INTE,: ACE IMPLEMENTATION

Although it is not the objective of this work to produce a standard
KAPSE implementation, it also is not realistic to expect that 50 people from
across the U. S. and- Europe will be able to develop a complete, consistent,
workable set of interface standards without the ability to "try them out."
The ability of the tool developments to address this need is limited. Thus a
means will be found to experiment with the emerging interface set in order to
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assure its practicality and suitability. A full implementation may not be

necessary; some ineans of simulation/emulation may be more useful.

3.6 GUID:L:NE3, CONVENTIONS AND STA.D;PDS

The KIT/KITIA will document to the greatest extent possible the ideas and
lessons learned in this effort, in addition to the standards themselves. We
expect to publish guidelines for the use of the standards and for attention to
other topics related to I&T which are not addressed by interface standardiza-
tion (e.g., designing tools for reusability). These guidelines will be dir-
ected to both the tool builder and the KAPSE builder. They will also contain 0
the KIT/KITIA recommendations for a future agency whose charter is to verify

conformance of KAPSEs to the interface standards.

The conventions document will be used as a holding place for potential
standards. It will represent practices that are encouraged but not yet
standardized. For areas in which standardization is considered to be pre- 0
mature, it will contain various possibilities for a standard in the area.
This document will evolve as the standards evolve.

The standards document will be in a form appropriate for issue as a
military standard. As such it will contain a number of required sections in
addition to the Ada package specifications which document the standard inter- S
faces.

4. MAJOR ISSUES

Since the KIT and KITIA are still in their infancy, the majority of the
issues still lie ahead. The following is a sampling of the issues that

have been raised to date.

4.1 DOD POLICY

There is a major concern, particularly among the industry representatives,
that the KIT/KITIA effort may be too late. To much of the world outside the 0

DoD, it appears that once again each of the services is pursuing its own
direction, thus defeating the tool-sharing objective. While the Navy plans
to use the Army system to the greatest extent possible, it still appears that
two DoD-sponsored APSEs is one too many. The DoD must formulate a clear
policy for dealing with the existence of two APSEs in the near future and for

* how it plans to evolve to one in the long run. 0

4.2 RESOLUTION OF ALS/AIE DIFFERENCES

Although this issue is related to the first one, it expresses very real
technical concerns. There appear to be some major philosophical differences
between the approaches taken to the ALS and AIE. While these differences •

are part of the reason for having two DoD efforts, their eventual resolution
is not obvious. Chief among these concerns is the apparent disparity between
the approaches taken to the central data base; for example, one is hierarchi-
cal while the other is relational. Such differences need technical solutions
as well as policy ones. 0
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4.3 SECURITY

Multi-level secure support systems for use in the development of military
systems are currently receiving a great deal of attention. Since a system

*such as an APSE cannot be more secure than the system which hosts it, the 0
* APSE cannot guarantee security. But it is desirable that the KAPSE be built

in such a way that it does not compromise security provisions that do exist
in an underlying system. The proper approach to this relatively new aspect
is very much at issue.

4.4 SEMANTICS0

While Ada package specifications are an excellent form for the expression
of the interfaces themselves, it is not as clear how to describe the semantics
intended by the standard. The semantic systems developed for programming lan-
guages are generally quite complex, but English narrative is known to allow

1Wtoo much ambiguity for a rigorous specification. Some satisfactory middle 0
ground must be found which suits the needs of rigor while being appropriate
for use in a military standard document.

4.5 VALIDATION

5Although it is not in the KIT/KITIA purview, the question of how one will 0
validate the conformance of a KAPSE to the interface standard is an important
one. it is clear that what the KIT/KITIA produce could have a very great in-
fluence on how validation can be approached. While no answers are available
today, this issue is being investigated, and it is expected that the results
will contribute . to decisions concerning the interface standards.

5. CONCLUSI0"4S

The KIT/KITIA work is very important to the future of Ada and its
ability to fulfill its objectives. A large number of very difficult issues
and decisions lie ahead. widespread participation and comment are invited,
as they have been with all other aspects of the Ada program.

* 0
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A Standard Run-Time Executive for Compiled Ada.

Ben Hyde, Intermetrics 0

A vast range of applications will be addressed with Ada.
Can a single runtime executive satisfy the the needs of both a S

multiprocessor operation system and a toaster oven controller?
It seems unlikely. The programming environment that supports the
Ada programmer must allow him to progressively refine his runtime
system. There are important advantages to a standard, and they
do not need to preclude the tuning of a system. A catalog of
standard runtime support components can go a long way toward pro-
viding the advantages of a standard. Such a catalog should have
at least these features: a modular design allowing new components
to address special needs, a default set of modules to support all
Ada semantics, and a set of specialized modules to allow fine
tuning. The support enviroment tools (MAPSE tool set) must be
designed with care not to preclude such tuning. The Air Force S

Ada Integrated Programming Environment provides some examples of
how such goals may be achieved.

d0

Mr. Hyde is a member of the Air Force Ada Integrated Enviroment
(AIE) project at Intermetrics Inc. in Cambridge Mass. with spe-
cial intrest in the Ada compiler, a component of that system. S
Mr. Hyde graduated from Carnegie Mellon University where he also
taught in the Computer Science Department. Both at CMU and
since, Mr. Hyde has worked extensively in the fields of multipro-
cessor operating system design and data communication systems.
In recent years Mr. Hyde has aided in the development of a number

0 of real time control systems in both industry and the high energy
physics community.
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1. The scope of the problem.

Ada will be used for a vast range of applications. Take as one
example the AIE's KAPSE, an operating system' s kernel [AIE).
This system provides a file system, multitasking, memory
management, message systems and 1/O support. On top of the KAPSE
will be built a programming environment, the MAPSE. Over its
life span of, say, 20 years, this system may run on many
different kinds of machines. Some of those machines will be
large, expensive mainframes costing hundreds of thousands of
dollars.

How are the runtime system needs of that system comparable to the
needs of a toaster oven controller? The toaster oven's product
life span is likely to be only a few years, the software will beS
frozen after, say, six months of development, and it will run on
only the machine costing a few dollars. It is likely that there
will be more copies of the toaster control program than the AIE's
KAPSE.

There are more than enough diffences between those systems toS
make any parallels one might attempt to draw quite suspect. In
spite of that there is something compelling about one image of a
multitasking toaster oven garbage collecting the burnt toast
while in rendezvous with an english muffin.

2. The value of standards.

Before I climb too far out on a limb, let me say there are
significant advantages to standards. Just because the problem is
hard does not mean we can ignore it. There are many standards
that address hard problems. Data communication standards,
documentation standards, and even Ada her self, are all good
examples. A standard that addresss a hard problem is always a
tradeoff; one hopes to gain more than one precludes.

Ada's language designers tackled a number of hard problems. The0
language' s mechanisms for addressing these problems do not make
the problems disappear. Like all standards which address hard
problems, Ada's contribution is to provide a common notation.

It is a constructive contribution to any exercise to recall one's
* goals. Standards can deliver substantial return on almost anyS

investment. All of the costs of any particular task, e.g.,
training, staffing, testing, equipping, startup, etc. are reduced
by any standard. The standard allows costs to be shared by the
community; why reinvent the wheel? The leverage of a standard is
so great that quality can seem irrelevant.
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Historically, standards developed after a concensus had developed
in a community of users. Today the standards making process is
often the mechanism by which consensus is reached. Anyone who
has participated in this process will attest to its
unpleasantness. There is substantial payoff in a standard, so
substantial that the pain of reaching a consensus can be well
rewarded.

3. A proposal: A catalog of runtime systems.

We at Intermetrics are addressing the problem of implementing
Ada. We want to make it a powerful tool for a wide range of
problems. As a part of that problem we have been addressing the
problem of run time support.

There, as in the rest of the language we have attempted to
achieve two not always coinpatable goals. First, it is clear, we
must support the full semantics of the language. Second we want
the user to be able to craft the system he is building exactly as
he needs.

These are only incompatible goals in so far as the user may not
need the full power of the language. The designers of the
language have taken great care not to charge applications for
language features they do not use. The pragma suppress, which
allows the programmer to indicate that he accepts responsiblity
for bounds checking, is a typical example. The language
implementor, Intermetrics to take an example, must continue that
care.

One can not serve two masters. Our primary goal is to implement
the full semantic power of the language. To enable both goals to
be addressed, we use what the author calls the "safety net"
approach. A sequential view of this approach might run as
follows: first one implements the general, and then one
implements the special cases. of course, clever people may do

* both at the same time.

The set of cases form a "catalog"; the system builder selects
from that catalog as he tunes his system. Free space management
is a good example. The language leaves open the exact management
technique used to control the various heaps in the users program.

* A default solution might implement garbage collection, or mark
release The catalog will, as time passes, grow to contain a
large'number of methods [Space].

One aspect of the safety net approach is that it allows the user,
as well as the implementor, the advantages of successive

* refinement. The user can start with a rough model. Tuning can0
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then be done, as it should, as the system matures. This approach
doesn't relieve the user of the necessity of good design, but it
does reduce the risks as the system develops along unexpected
paths.

I want to emphasis the importance of tuning. The language
designers took great care to leave tuning to the system builder.
The minimal specification of free space management is one way
they did this. The powerful semantics of tasking in Ada are
another.

4. An examples: tasking

I want to say a little about tasking. Ada provides very powerful
tasking semantics, so powerful that many people's initial
reaction to them is that they are not practical. System
designers have over the last few years identified quite a catalog
[Sync] of practical multitasking constructs: monitors, mail
boxes, critical regions, path expressions, etc. Researchers have

* done extensive work on both issues of practicality and provablity
for all of these methods. It is a strength of Ada tasking that
these methods can be used by relatively straightforward
application of Ada tasking constructs. It is up to implementors
to ensure efficiency.

These methods are a valuable resource. The language implementor
must take care not to preclude their application within the
language. We hope to do even better; we hope to make it possible
for the system builder to integrate those methods with the
language's constructs. A single example will help to illustrate
how we hope to reach that goal.

* A common example of an Ada task is a queue.

task queue is
entry insert(e:in element);
entry remove(e:out element);

* end queue;

The task supports two kinds of access, inserts and removes. The
body of the task is a simple loop whose body either accepts an
insertion or a removal. In the body of the task, conditionals
are used to refuse removals when the buffer is full and refuse
insertions when the buffer is empty.

loop
select when not empty =>

accept remove do
*.code to return an element ...
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or when not full =>
accept insert do

... code to insert an element ...

end select
end loop

To some, this device shouldn't be a task at all; they would say
its really just a data structure and two procedures. of course,
those two procedures must do some scheduling activities to avoid
asyncronous access to the queue. Key to their argument is the
idea that this "task" never runs except when some other task is
rendezvousing with it.,

This use of tasks to implement protected data structures is
expected to be very common in Ada. A simple minded
implementation might allocate a stack for each instance of this
queue. Our intention is to allow the user, via a pragma we call
monitor, to indicate the desirablity of implementing this without
the overhead of a stack.

* of course, the safety net solution would provide a stack, even if
its nev~er used. The compiler might notice the legality of a
special case, for now though we leave that to the user. The
catalog of possible special case implementations of the tasking
primitives can be very large. For example, if a task is forced
to wait for the queue, it might do a busy wait or pass control to

j some other task.

The details of the example are unimportant; it is the
architecture used that is important. The user must be able to
tune his system.

5. Some final words.

What would any talk about standards be without mentioning
modularity. The successful construction of a catalog-like

* runtime system requires the careful specification of the
interfaces between the parts. As anybody who has ever tried
knows, this is no easy task.

Consider the interface that would enable three different kinds of
free space management schemes to be plug compatable, say garbage

* collection, mark release, and explicit allocate and deallocate.
There seem to be a lot of activies on this interface; what to do
on an allocate, what to do to intialize a collection, what to do
to intialize an access type, what to do as a background task and
when to do it and on and on. Some of those interfaces lie deep
within the compiler.
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These are hard problems. The standardization process can make a
significant contribution in providing a forum for reaching
consensus about where such interfaces should be required. Hard
problems don't go away just by being ignored. Making Ada an even
more valuable tool requires that we work for consensus on some of
these issues. I believe that the catalog approach reduces some
of the risks in the process of selecting such a standard in
reaching a consensus.
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0 . THE ADA RU"-.I.. ....

SDr. Joseph K. CrossLn
Sperry Univac, Defense Systems Division

P.O. Box 3525
OSt. Paul, KN 55164-0525
o(612) 456-4929

ABSTRACT

The requirements on an Ada run-time environment are surprisingly few
and straightforward. The free choices left up to the implementors of a
run-time environment are many and significant. These requirements and
freedoms are enumerated and discussed, and the importance of these issues to
the success of an Ada software system is described.

DEFINITION OF "RUN-TIME EIVIRONMENT"

An Ada run-time environment is, roughly, the set of target-machine

facilities that an Ada compiler can use to carry out the run-time operations
required by Ada programs. Those facilities consist of the instruction set
provided by the physical target machine, possibly with additions and

deletions. Additions to the facilities provided by the physical target
machine's instruction set are generally provided by some predefined
software, such as an executive, that, in the compiler's eyes, might as well
be implemented in hardware. Other additions to the physical target
machine's facilities can be provided by additional hardware, such as an
array processor, and by user microcode. Deletions from the physical target
machine's facilities generally result from a conscious decision not to use
some capabilify, generally in the interest of safety or simplicity. For
example, after it had been decided to use a certain executive in the target
machine, it might be determined that all code emitted by the Ada compiler
will run only in task state; then the priviledged instructions in the
hardware's instruction set would not be usable by the Ada compiler, and
would therefore not be part of the run-time environment.

The Virtual Target Machine

After the target hardware has been chosen, after any predefined
software (exec, I/O handlers, math routines, etc.) have seen specified, and
after all restrictions and conventions have been imposed, we have what the
compiler sees as a new target machine - the virtual target machine for which
code is actually to be emitted. To the compiler, this virtual target
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machine is as different from the original physical target as if it wre a
different box: for examDle, the virtual machine may have a SIN instruction
while the physical machine did not, and the physical machine might let any
register be used as a stack pointer, while the virtual machine reserves

regi3ter 15 for that purpose.

Tne Pole of the Executive

A comon question about Ada is "What executives does it run under?"
The common answer is "Ada programs don't need an executive." This leaves
both parties staring blankly at each other. 0

In fact, Ada compilers can generate code for bare machines -- that is,
a physical target machine with no support software in it. Phrased
otherwise, a run-time environment need not provide the facilities generally

provided by executives (such as task scheduling and I/0 initiation). In
such a case, the compiler emits code to perform these operations. Now, in S

all but the most highly optimizing compilers, this exec-function-performing

code will be boilerplate -- the same for every program the compiler
compiles. Hence that boilerplate cod6 constitutes an executive, even though
it was written by the compiler writers, and may change whimsically from one

release of the compiler to the next.

On the other hand, a run-time environment may be designed to contain a
fixed executive. Provided that the executive in question provides the
services Ada needs, this works fine (see Standardization of the Run-Time
Environment, below). Unfortunately, all existing executives that were not
specifically designed for Ada do not provide a comfortable fit with Ada's

requirements, especially its tasking requirements. In some applications, •
such as software development facilities, this poor fit is tolerable; for
example, an entire Ada program may have to be regarded by the executive as a
single task. In other applications, notably some embedded applications, the

poor fit is not tolerable: the Ada program's interrupt-handling tasks may
not be able to wait for two levels of scheduling bureaucracy to decide on

whom to dispatch.

The Present Viewpoint

The viewpoint taken in this paper is that a certain computer has been
picked to run some Ada software, but that the corresponding run-time
environment has not been chosen. That is, the physical machine is specified

but the virtual machine is not. The rest of this paper is a discussion of
the choices left open by Ada to tbe specifiers of the run-time environment,
with the purpose of appalling the reader with the amount of freedom Ada
gives the specifiers of the run-time environment, and with the consequences
of an inappropriate specification.
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'.:LIT ADA REQUI.S

This section describes the requirements izposad by Ada on its run-tim.e
environments.

Operations

Ada requires that its run-time environments provide the usual kinds of
operations (addition, comparison, assignment, indexing) on the usual kinds
of values (integer, floating point, boolean, record, array). The usual
sorts of branches (GOTO, IF, CASE, LOOP, subprogram call and return) are
also required. Considerable care was taken in the design of Ada to specify
these operaticns in such a way that as many as possible could be supported
directly by the physical machine's instruction set (e.g., integer addition)
and the rest could be implemented easily in software (e.g., CASE branch).

Ada also requires tasking operations, including the dynamic creation
and destruction of tasks, and rendezvous between tasks (i.e., simultanecus
synchronization and data interchange). Ada tasking operations are not like
those of any other implementation language, and as a result, the question
arose of whether these operations could be implemented with reasonable
effort on real target machines. The result of considerable study is that
there is a straightforward implementation of the Ada tasking operations on
every general purpose computer.

Input/Output 0

Ada requires the ability to do sequential, direct-access, text, and
low-level I/0. While the specification of Ada I/O is voluminous (e.g., what
happens if when outputting a real value to a text file the specified width
of the exponent field is not sufficient to hold the exponent's value and its
sign?), and its implementation nauseating, no technical challenge is
presented.

Exception Processing

Ada requires that certain errors be detected at run-time, such as an
attempt to assign the value 11 to a variable that has been declared to hold
only values between I and 10. Such a run-time error is called an exception,
and the result of an exception is to transfer control to a user-specified
exception handler.

It is not true that Ada requires its run-time environments to support
exception processing. An Ada compiler can easily emit all the code that's
necessary. Some run-time environments do support exception processing, in
the hope of getting a speed or size improvement. How much difference is
made by run-time environment support is hard to say -- it depends on the
merit of the compiler (which can optimize away most exception checks) and -n
the style of the source code (sloppy code requires more exception checking
then clean code). 0
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:enory

The run-time environment must provide the ability to store and retrieve
values. This requirement, although breathtakingly obvious, is sometimes the
hardest to satisfy in practice. The difficulty is that on one hand, space 0
or tire inefficiencies in accessing data have a heavy impact on system
efficiency (unlike, say, inefficiencies in exception handling), and on the
other hand, the Ada memory model is hard to map onto some physical
addressing structures.

This is not the place for details, but here's a brief discussion of the 0

Ada memory model. Ada would like to store its data - mostly variables - in
a tree structure, with the main program's data at the root, each task
activation causing a new branch, and each procedure call extending an
existing branch. Ada would like all this memory to be visible (i.e.,
addressable without too much overhead) at all times, but Ada will settle for
having all the memory from the root to the current leaf visible at once. It 0
is hard to map this kind of tree structure onto some hardware addressing
structures, such as certain base register schemes.

That discussion concerned memory for data. Memory for code has similar
problems, but they are less bothersome.

WiUAT ADA PERMITS

This section discusses the facilities that a run-time environment nay

provide, over and above the requirements described in the previous section. 0

Interrupt Handling

In Ada, an interrupt is treated like an entry call from an invisible
task of very high priority. Hence a run-time environment can satisfy the
letter of the law by treating interrupts just like any other tasking
operation. In some cases (the reactorovertemperature interrupt, say), the
user community might appreciate some form of expedited dispatching of the
interrupt handling task. That is, interrupt handling tasks may be given

control directly upon receipt of the interrupt, and without an intervening
enqueuing, scheduling decision, and dequeuing of the request; also,
advantage may be taken of hardware register-saving capabilities.

Fancy Mfemory Management

Many software system designers regard the issues of memory management
-- overlays, non-resident data, and garbage collection -- as major questions
needing to be settled early in a system design. But the specification of
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4

the Ada language is altogether silent on the topic' (with one e;:ception:
the programmer may explicitly decline garbage collection). That maans t:a:
an ii:plementation is free to provide any fancy memory manage:ent facilities
it chooses, including none.

It is important to note that the provision of such facilities does r'o:
buy any indulgence from the rules of Ada. For example, an implementation
that provides non-resident data, rolling in and out off mass storage, nay
not mumble in its specification anything like "It is the user's
responsibility to insure that all referenced data is in cain memory". On
the other hand, an implementation may provide predefined procedures such as
"Load Task", provided that their use affects only timing and not legality.

Fancy I/0

:othing prevents an implementation from providing 1/0 facilities in
addition to those (rather elementary) capabilities required by Lda. For
example, some applications might want formatted I/O facilities 2 ,

asynchronous I/O, or DMS-style access functions. As long as the new
functions are expressed as Ada packages (no statement labels as parameters),
no difficulties arise.

Distributed Processing and Multiprocessing

The virtual machine on which an Ada program runs may have more than one
processor. Physically, these processors may be anything from two CPUs
sharing a memory, one CPU and several I/O controllers, up to the ARPA:KET.

As in the other cases, the Ada language definition leaves these issues
up to the implementation. If distributed processing or multiprocessing
facilities are crucial for success of the applicating, it is up to the
specifier of the run-time environment to see that they are provided.

STANDARDIZATION OF THE RUN-TIME ENVIRONMENT

All readers of this paper are aware of the benefits of standardizing:
reduced costs in procurements, shakedown, maintenance and training. The
difficulty in standardizing on a single Ada run-time environment (i.e., a

The facts that Ada does not deal with memory management and that system

designers like to talk about memory management provide a chewy
tidbit for those who would use Ada as a system design language.

2 A member of the business community recently announced his deter-mination

that Ada cannot be used for business applications because of its lack of
the floating dollar sign.
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set of facilities) is also probably obvious: not every application vants
the same facilities. Sone ..ant overlays and some don't; some want garbate
collection and some don't; etc.

There is an analogy vith interfaces between physical devices. ':ot 
every pair of devices can communicate over any single standard physical
interface, but nevertherless, the RS232 standard has been a great blessing.

One run-time environment whose standardization would have tremendous
significance is the iLAPSE. See "Te Kernal Ada Prcgramning Support
Environment (KAPSE) Interface Team (KT)", in these proceedings. •

CON CLUSION

The standardization of the Ada language has greatly reduced the 0
dependence of application code on the e:ecuting system. But Valhalla has
not quite been achieved. It is still true that the success of an
application can depend on the optional facilities provided by the run-time
environment in which the application will execute. It is therefcce still
the responsibility of the specifiers of the run-time environment to ensure
that adequate functionality is available; else failure is guaranteed before S
the first pencil hits the coding pad.

4 1

Dr. Cross graduated from the University of <igangin i1971 -ith a
doctorate in mathematics. Fe taught nathematics ant computer sciance for
four years, and then spent one year as a visitor at Naw York Univarsity,
working ;ith the SETL project.

Since then, he has worked at Sperry Univac, Jf: nse System >? tision.
He is project leader of the '4a Generation P-oject, .hich has prc--aced a
compiler for a subset of '4IL-STD 1315. That project is now building a
code-generator generator, which is a tool that facilitates the rerargeting
of Ada compilers by outputting Ada code generators.
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THE ADA WORK CENTER
ITS FEATURES, CAPABILITIES AND DEVELOPMENTS 

David Babcock

ROLM

BIOGRAPHY

David Babcock is presently Manager of Software Development at ROIM Corporation's
Mil-Spec Computer Division. Prior to his 4 years with ROLM, he was the system's
analyst and later Supervisor of Academic Applications at the ccnputer center of
California State University Northridge.

A biographic in Who's Who in the West, he has authored several articles in the
camputer field, co-authored a computer textbook and was, for 8 years, the
associate editor of Popular Ccnputing magazine. He has also been an active
nmber of AC4's technical group on Ada (Ada TEC) for the past 3 years.

ABSTRACT

Ada, the DoD sponsored high-order language, is having a major impact on software
development. As important as Ada is, its goal of significantly improving
programrmer productivity can only be met by having a ccuplete prograrming
environrment within which to develop software. Such an environent must address
and support all aspects of a software project from definition, through design,
coding and testing to final product. The "tools" of the environment must be S
ccplete, consistent, easy to use and yet powerful. They must aid, not hinder,
the prograimer in what he wants to accomlish while at the same time protecting
him from making serious errors.

This paper will explore just such an all-inclusive environment - the ROLM Ada
Work Center - its features, capabilities and development.

539

.. . . .. . . . . . . . . . . 0 il" - il i i • " -



.........................A CODE OF PRACTICE TO CONSTRAIN ADA
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Dr. T. G. Swann

Ln Airborne Software Division

ILn Marconi Avionics Limited
Elstree Way
Borehamwood

o Hertfordshire
Englando 01-953-2030

Tim Swann obtained his degree in Cybernetics in 1966, followed by
S a doctorate in Control Engineering. He has worked in electronics,
S microprogram and system software, and is now with Marconi Avionics

as Assistant Chief Engineer of the Airborne Software Division.

SCOPE is more than just a code of practice for software development,
it is the way we work in Marconi Avionics. Whatever project, whatever
language, SCOPE enables us to maintain a'Mhouse-style'i-and a level of
visibility and transportability across all our software.

But the scale and complexity of Ada introduce a new dimension.
it will be difficult to ensure a similarity of style within a project
team, let alone across the breadth of the company. And while Ada
encourages good practices, it cannot prevent vices.

We must extend our code of practice. But to keep it simple we

propose to integrate SCOPE with the Ada manuals to show not only what
can be done, but what should be done, from choosing a language construct
to setting up a project database.

For the price of a manual we achieve a standard.

BACKGROUND

In 35 years of computer programming the greatest single step forward
has been the introduction of high level languages. Before, programming
was an obscure art akin to crosswords and jigsaws. The tools of the
trade were store locations and instruction codes. Binary and octal were
essential knowledge. After, programming became a discipline. The tools
became procedures, vectors and loops. Obscurity became a mark of
failure rather than a source of pride.

At least that is the theory. In practice the step has been long
and painful and is still far from complete.

It is certainly true that programmers can now take a higher level
view of their task, and produce solutions far more elegant than machine
code or assembler permit. This is an overwhelming benefit.

But as the problems of endless detail have been swept aside, new
problems have taken their place.
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With machine code it was possible to make elementary mistakes, such
as multiplying code by data. With modern languages this is no longer
possible. We are protected by data typing, data structures and so on.
But this protection implies some degree of abstraction from the numerical
details, indeed each statement is equivalent to several primitive operations.
This leads to a "credibility gap" between the source language and its
implementation.

When we write a high level statement we must consider:-

i) What we think should happen.

ii) What the language designers intended should happen

iii) What the compiler manual says should happen

iv) What the compiler writer thought should happen

v) What the compiler actually does.

It is not unknown for all these to be different. The worst offender is
mixed mode arithmetic. A typical compiler manual requires 12 pages to
describe how scaling algorithms are implemented - and still leaves
ambiguities.

For some programs we may be able to ignore these considerations

but in the avionics business we cannot afford to. We require a high level
of confidence in the detailed operation of the software beneath the
facade of high level statements. No language system to date has given us
this confidence.

The difficulties have been amplified by an increasing optimism that
has led to systems of ever increasing size. Thus the declaration of
a variable may no longer be "at the top of the page" but embedded in a
10 page block, perhaps written by another programmer. Indeed most of our
recent projects have been sufficiently large to break the available tools.

Large systems have large teams many programs with hundreds of modules
and thousands of variables. There are interfaces between modules,
between programs and between hardware and software. Such systems bring
whole new problem areas in complexity management.

It could be said that the software crisis of the 1960's was caused
by encountering the problems of size without first having solved the
problems of detail. Programmers could not, and cannot, deal with
objects that are both detailed and large.

'The answer to the crisis has been a systematic approach, a disciplined
0 use of appropriate software.tools. The tools are mainly high level 0

languages and operating systems. The disciplines are project planning,
role allocation, configuration control, test methods, structured programming
and so on.

Alongside the new languages we have a %4hole new art of software
management, embodied in Codes of Practice and reflected in company 0
management structures. The success of a large project depends as much on
this organisation and control as it does on the skills of the individual
programuers.
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INTRODUCTION OF ADA

We are about to emabark on large high integrity systems using a
new language, Ada.

Ada is in many ways a concensus language. it brings together a
wide range of language features that have been tried and found useful.
Examples are: records, arrays, loop control, CASE statement, separate
compilation. It also introduces new features that until now have only
been available in specialised'forms. Examples are: tasking, generics,
packages, strong typing. The result is a powerful language with
features that assist all levels of software design, from bit level to
system level.

But such power does not come cheaply. The wealth of features makes
the language extremely complex. And this means a whole host of new
problems.

one of the design goals of Ada was to produce a language that
could be read as well as written. And to a large extent this has been
achieved. If we look at the fragments of Ada text in the guide books
we can see what the code is doing far more than would be possible in
many other languages, especially those that are facetiously termed
"owrite-only". But in the real world "readability" means much more than
this.

A real system may have 100,000 lines of code. An individual writing
this code cafn always stick to just a few well known structures, and
fellow programmers soon get to know the style. But that is not the
problem - it never has been. The problem comes:-

*- When a system engineer needs to read the code: 0

which of the 100,000 lines should be read first?

- When a specification change forces an update - years after
the original team have left.

- When, dare I say it, software managers want to check things

with their own eyes.

The "readability" of the local text is still an asset. But just
as important is the visibility of the whole software structure - or
rather the hardware and software structure, for we are talking here of

0 embedded systems. And this visibility can only come from a systematic
approach.

The source text of the programs is just one component of the whole
development structure - an intermediate form between the customer's
need and the delivered avionics system. And in this context the power
of Ada is not something we can leave to the whims of individual
programmers.

As an example consider the deceptively simply statement: D=V*T.
In most current languages we would check that D,V and T were all of the
same type, and deduce the effect of * from the context.. (This alone is
more subtle than most programmers believe). But the flexibility of Ada
allows the definition of new types of variable and new operations: to the
extent of redefining the standard operators. This is termed "overloading".
It is a powerful feature as it effectively allows us to extend the language.
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The drawback is that to understand and check this Ada statement we need
to know the definitions of not just D,V and T but also *. A clerical
error could even redefine * by accident.

So the subtlety of having operators defined implicitly has been
* replaced by the complexity of defining them in the program. This in

turn brings new possibilities for confusion.

For another example we can look at "typing". Strong typing is
a great asset of Ada, but it too can lead to confusion. Consider the
program of Fig.l. We can suppose that the package, of types, was

* written in 1985. In 1986, the type SMALL was used in procedure DOUBLE-
using this standard package. But then in 1987, a post-delivery team
had to modify the code. They introduced a new type which, by accident,
was also called SMALL. The new type hid the old and procedure DOUBLE
promptly failed. Luckily they thought to test it.

What was wrong? Everyone had done their best, with the best of
intentions. But a name chosen by the second team clashed with another
name chosen two years before.

This was not a program bug, it was a management error. The management
had allowed programmers to pile up packages as if they were children's
bricks. And they had failed to apply configuration control to the
identifier names. The remedy is not clever programmers but better manage-
ment. And this brings us to the real value of Ada.

Until now, nearly all our software has been written in CORAL 66, the
U.K. Standard. The way we document our systems is described in a volume
called AvP7O, another U.K. Standard. The interpretation of AvP7O and
the way we write CORAL, is descriled in our own Marconi Avionics Software
Code of Practice:SCOPE. All the problems of variable names, data
encapsulation, tasking, and so on, are discussed within SCOPE which
recommends ways to tackle them - in CORAL.

But more than any other language, Ada impacts on the way programs
are constructed. The jargon phrase is "programming in the large", and
the key constructs are packages, abstract data types and tasking.

We could just extend our Code of Practice to include the Ada
constructs: but there is a far better way. We propose to revise SCORE
to change it from a CORAL base to an Ada base. And we believe that the
power of Ada will give us a better manual than we had before. 0 4

With Ada we need no longer just make recommendations. We can
actually demonstrate solutions, even to the extent of providing standard
packages, and tools to manipulate them. Programmers so often find
they are re-inventing the wheel. The high level features of Ada let us
describe not just the details (which are always custom built), but the
general shape - which may be the same from project to project. so
instead of discussing parallelism in general, we can show standard
solutions using Ada Tasking. Instead of recommending data encapsulation,
we can write example code. The problems foretold above will be avoided,
not by warning against them, but by preventing the circumstances in which
they arise.
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Of course there will be constraints and even forbidden constructs.
Ada is a large concensus language and contains many things that are in- 0
appropriate to the avionics environment. And sadly there may even be
restrictions due to run-time efficiency. There are plenty of PASCAL
programs around the world which avoid even the use of procedures because
of the overheads involved. And sadder still, there will be language
features which simply do not work (or cannot be trusted to work, which
is the same thing). 0

But the key to our approach is that no programmer works in isolation.
The high level features of Ada are not "clever tricks" to be either
encouraged or forbidden. They are software design aids to be used in
appropriate ways by teams of software engineers; just as hardware
engineers might use wire-wrap joints or rivets - each in the appropriate 0
place. The trick is to know when and how to use them. And that is what
SCOPE is all about.

CONCLUSION

When we first came to study Ada we were sceptical. Here was an 0
immense new language breaking new ground in complexity for compiler
writers and programmers alike.

But when we take a positive line we see that Ada is more than just
a new language, it impacts on our whole approach to software development.
We may still be sceptical - there are many problems to be solved - but 0
we have the opportunity to integrate the best of software engineering
practice with a language designed for the job. Now, we have two books
a Code of Practice and a Language Manual. In future we will have just
one: SCOPE: a Software Code of Practice, and more than that, a useable
standard.
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Package P is

type SMALL is range 0. .100; 1985

end P;

type SMALL is range 0. .50; J 1987

.4 procedure DOUBLE is

begin

use P; 1986

A SMALL :- 30;

X : 2 X

end;

call DOUBLE;0

Figure 1 A "Typing" problem
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Use of Ada in System Design: A Case Study

Michael B. Patrick and Hal C. Ferguson
General Dynamics Data Systems Division Central Center

Since Ada has been adopted by the Department of Defense as the

standard programming language for embedded computer systems, it is

vitally important that government and industry personnel understand

the consequence of using Ada in system development. A case study

was recently completed in which Ada was used throughout the develop-

ment of a large digital message switch. Prior to the start of

system design, personnel were trained in the use of Ada and a methodo-

logy incorporating Ada compatible requirements and design techniques

was developed. With judicious application of the methodology, a

system design was produced. One major component of the system was

programmed in Ada. In this paper, the case study effort is described.

Examples of system design structures and Ada code are presented.

Lessons learned and conclusions regarding the use of Ada are discussed.

Michael B. Patrick, an employee of General Dynamics Data Systems Division,
has 20 years of experience in computer prograrning and software design,
speciali zing in real time embedded computer systems. He served as
Project manager for the recently completed Ada Capability Study. In
that capacity he was instrumental in selecting the team menbers, securing
expert consultants, and coordinating contract activities.

Hal C. Ferguson. an emploYee of General Dynamics Data Systems Division,
has extensive experience in both hardware and software design and the
development of real time process control systems. He served as chief
systems engineer on the Army Ada Capability Study contract. In that
contract he lead the design team effort which produced a u.ell-documented
redesign of an ANIflC-39 message switching system, using Ada throughout
the development process.
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ADA* TRAINING CONSIDERATIONS

o) Christine L. Braun

0 Sofeh, Inc.
O460 Totten Pond Road

Waltham, MA 02154
617/890-6900

<0

ABSTrRCT

The government has instituted the Ada program with the objective of
reducing its rapidly-increasing software development costs. Ada will do
this by providing programmers with modern capabilities that have been
demonstrated to promote more cost-effective software development.
Clearly, the government's objective can be met only if programmers
actually learn to use these capbilities effectively. This requires
significant change from the way they are used to working, and poses a
massive retraining requirement. SofTech has been working with the U.S.
Army to assess the training needs of various segments of the industry and
government work forces, to identify training issues and effective
techniques for addressing them, and to recommend a training approach.
This effort has resulted in development of a complete recommended Ada
curriculum. The curriculum provides training in the Ada language, the
environment, and modern development methodologies. It consists of a set
of modular building blocks that can be configured to meet varying
individual or organizational needs, adapted to different organizations'
practices, and packaged to meet scheduling needs. This approach answers
many of the difficult questions that have been asked about Ada training,
and presents a realistic roadmap to widespread industry competence in Ada.

THE DESIGN METHODS PROGRAM

The Army established the Ada Software Design Methods Formulation**
program as the first step in developing a comprehensive Ada education
program for industry and government. The overall effort involved three
participating contractors. Two design contractors (General Dynamics and
Control Data Corporation) redesigned and reprogrammed portions of two
existing embedded computer systems, an air defense system and a message
switch. The objectives of these contracts were:

*Ada is a trademark of the Department of Defense (Ada Joint Program
Office).

**The work described in this paper was supported by the U.S. Army CEXOM
under Contract No. DAAKS0-81-C-0187.
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0 to identify issues (including potential benefits and potential
problems) with the use of Ada for design of embedded software

* to define and work with a set of methodologies supporting Ada
* design and development, recording results of experience with

these methodologies

* to identify difficulties encountered in learning and using Ada.

Sof~ech 's role as the Design Methods contractor was threefold, as
* illustrated in Figure 1. One major activity was aimed at the development

of Ada case studies. SofTech met with each design contractor, and with
Army representatives, in moKnthly Technical Interchange meetings. These
meetings involved detailed review and discussion of the contractors'
designs, and of their observations concerning the Ada design process, at
each project phase. Ob~servations at these meetings were the starting
point for developmient of the Ada case studies. Each case study addresses
a major issue that arose during the effort, expanding on the initial
observation to provide a more general discussion of the underlying issue,
which might be a particularly effective use of Ada, a recurring Ada
design problem, or a methodological issue. The case studies provide
valuable material for inclusion in a training program; their primary

* intent is pedagogical. These materials are particularly important because
they provide significant examples from real-time applications systems, a
noted deficiency of most existing courses and texts. Some example case
studies are:

* Task Structure for a Target Tracking System
j Use of Types to Describe Hardware Interface Requirements

* Stubbing and Readability
* Memory-mapped I/0 in Ada
* Decoupling partly independent activities.

The case studies effort also identified a numb~er of areas for future
research in the effective use of Ada.0

In parallel with the case studies work, Soffech conducted two surveys
designed to provide additional input to the training program
recommiendations. The major survey was the work force survey, which
involved respondents from six major DoD prime contractors and from the
Army. This survey asked respondents about their backgrounds and current
knowledge levels, and about their job duties, responsibilities, and
outputs. This data was used to define generic job categories representa-
tive of the overall DoD Ada user commiunity. These job categories were
then used as a basis for identifying Ada training requirements, as
described in subsequent sections.

The second survey was the industry training survey. This survey was
designed to elicit information about training practFices currently in use
by industry. Respondents were asked questions dealing with issues such as:
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* amount of time devoted to training employees

* ways of integrating training with on-the-job practice

0 experience with and receptivity to various training media, e.g.,

vieotpe, ccxnputer-aided instruction

* current plans for Ada training.

This information was considered in the design of the recommended training
program.

Results of these three parallel activities (the case studies and the
two surveys) were used to define a curriculum tree, which identifies the
background and Ada knowledge requirements of each generic job category.
ibis information was then the basis for the specification of a model Ada
training program that effectively meets identified industry reqirementiFs. 0
These are describe later in the paper.

THE GENERIC ME~ CATEGORIES

0As indicated above, a major emphasis of the work force survey was to
determine what job the respondent performs. This is not simply his job
title; it is what he actually does and what he actually produces.
Extensive sets of questions asked respondents to classify potential
activities and job outputs according to frequency and importance in their
job. These results were subjected to computer analysis using MIT's
Consistent system.1 An Interpretive Nominal Clustering Technique2 was
used to cluster respondents according to similarity of job function. The
first level of clustering resulted in five clusters (Figure 2).
Representative titles were then assigned to each cluster. (It is
important to note that the generic titles used for the clusters were
assigned by Sofrech based on the activity and output information for the
cluster. They do not necessarily correspond to actual titles of any 0
individual respondent.)

mNIERN ADIITV DEVELOPMENT SUPPORT IGAISENIOR PROJECT SYSTEMNERNDMNSRTV ENGINEERING MANAGER ITGA OMAGER L ANA idJ NIEERINGJ

Figure 2. Initial Job Classification Clusters
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Two categories in the initial clustering, the Development Engineering
and System Integration Engineering groups, included large numbers of
respondents. These groups were analyzed individually, resulting in five
subclusters for Development Engineering and three for System Integration
Engineering (Figure 3).

In analyzing the Ada requirements of the eleven categories that
resulted from the clustering process, it appeared that further sub-
division was desirable in two areas (Figure 4). The first was simply a
breakdown of the Configuration Manager/Quality Assurance Engineering into
those who perform in-depth technical review and analysis and those who
function at a more general overview level. The second subdivision was in
the Software Developer area. This is a significant subdivision that
reflects one of the major choices underlying the training recommendations.

SENIOR PROJECTSPOR
ENGINEERING ADMINISTRATIVE SUPPORT

MANAGER MANAGER MANAGER

DEVELOPMENT ENGINEERING

I I I CONFIGURATION l iiJUNIOR STAFF
PROJECT/TASK IMANAGEMENTII DESIGN SOFTWARE MEMBER /

LEADER A '"D E CONSULTANT DEVELOPER TECHNICAL

SYSTEM INTEGRATION ENGINEERING

SYSTEM Y TEINTEGRATION INTEGRATION SYSTEM
MANAGER/ SENIOR INTEGRATION

TECHNICAL ENGINEER

EE.CH S
T

AFF L STAFF

L- - -- J

Figure 3. Secondary Breakdown of Development Engineering and
System Integration Clusters
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One program objective stated by the Army was to identify any new job
categories that, while not apparent in the survey of the current work
force, might be required in an Ada work force. This projection is the
basis for the subdivision of the Software Developer category. In the
survey, responses in this cluster did not support any f cther breakdown 0
according to phase of development in which respondents participated or
complexity of tasks performed. However, based on observations during
technical interchange activities with the design contractors, it became
apparent that a different view would be required for Ada. The complexity
of certain aspects of the language is such that it is neither realistic
nor practical to train all developers in full use of the language.
Furthermore, such complete training is not necessary. The most complex
tasks need be performed by only a relatively small subset of the
development staff. Training individuals to only the necessary level of
competence permits them to be productive more quickly and is much more
cost-effective for industry and government.

The specific subcategories identified for Software Developers are as
follows:

0 Programmer - These individuals will implement program units
according to specifications prepared by more senior designers.
They will require training in roughly the "Pascal subset" of Ada. S

0 Software Desizner - These individuals will have a good overall
wo-rkingnowledge of Ada, adequate to design sizable modules,
but will not perform high-level real-time and concurrent systems
design.

0 Real-Time Architect - Real-time architects will design the
high-level system architecture. They must be thoroughly versed
in Ada's real-time features and in how to actually use them
effectively in system design. They must also be capable of
viewing the entire software/hardware system as a whole.

• Specialist - This group includes individuals who will specialize
in a selected aspect of Ada. An example is numerical pro-
gramming; only these specialists will require in-depth
understanding of Ada's fixed and floating point features.

The clustering process ultimately resulted in 15 job categories, 0
which formed the basis for the curriculum tree.

ThE CRRICULM TREE

The curriculum tree presents background and Ada viewpoint for each
identified generic job category. Background is derived from the results
of the work force survey. It includes summaries of years of experience,
education, and present knowledge of language and software engineering
concepts for the individuals in the category. The Ada viewpoint is the
Ada knowledge considered necessary to perform the job functions
identified for the category. (These job functions were inferred directly
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fromn the responses to the work force survey; it should be rememb~ered that
the functions defined the clusters, not vice versa.) These recormnenda-
tions are based on SofTech's observations during the technical inter-
change and case study activities. The Ada knowledge requirements are
grouped in three categories:

* Environment - The Ada Programing Support Environment (APSE);
i.e., the tools, file system, etc., provided in the Ada
environment that is to be used for development.

* Language - The Ada-language itself.

" Methodolog - The design and development methodologies to be
used in conjunction with Ada.

All three of the categories are essential to effective Ada training. The
language was designed to be used in conjunction with modern software
engineering methodologies; students must learn to use them when designing
and developing Ada software. The APSE is necessary in order to actually
develop Ada programs; it is most effectively taught in conjunction with
programming courses. Thus, all three areas must be considered when
planning the transition of today's work force to Ada.

The Ada knowledge requirements identified in the curriculum tree were
then used to design a model Ada training curriculum.

THIE MODULAR CURRICUUM4

The model Ada training curriculum was designed as a set of modular
"building block" courses that can be configured in a variety of ways to
meet the needs of any individual or organization. Figure 5 illustrates
the course modules and their prerequisite relationships; Tables 1-3 give
brief descriptions of the modules.

The modules are grouped into Environment, Language, and Methodology
categories, corresponding to the Ada knowledge requirements discussed in
the preceding section. The Environment and methodology courses represent
"replaceable components;" a specific organization's training plan would
include modules that reflect organization-specific environment and
methodology requirements. Fbr example, an organization might use a
particular MIL-STI1 that would be taught in the methodology modules, or
might require use of particular design techniques such as Structured
Design, HIPO Charts, etc., or of a particular Program Design Language. In
the environment area, an organization would select a particular

* environment such as the Army 's Ada Language System3 or the Air Force's5
Ada Integrated Environment. 4 They might then customize the environment
by developing new tools, ccmand procedures, etc. The best training plan
for the organization would be one that included specific training in
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TABLE 1. ADA PREGRAMMIN SUPPORT ENVIRWI4ET CURRICJLUM MODLES

NO. TITLE DESCRIPTION DURATION

E1Ol APSE Concepts for broad overview of APSE emphasizing 1 day
Technical Managers how it supports s/w life cycle 0

E1O2 APSE Overview for broad overview of APSE for software 1/2 day
Programmers developers

E103 Basic APSE Operation introduction to APSE concepts, 1/2 day

basic editing, etc., for people who
will not be real users 0

E201 User's Introduction to basic use of the APSE database, file 3 days
the APSE system, command language; tool

overview

E301 Command Lanouage command language, substitutors, I/O 1 day

redirections

E302 Program Development Compiler, linker, exporter, loader 2 days

E303 Database files, directories, attributes, 2 days
associations, access control, node
sharing, program libraries, etc. 0

E304 Debugging debugger, timing analyzer, frequency 1 1/2 days
analyzer

E305 Assembling and Importing assembly language, importer 1/2 day

E306 Configuration Management tools to support CM and PM, example 3 days •
and Program Management tools one might build

E4Ol How to Add Tools programming with the command 2 days
language, KAPSE tool interfaces,
examples of useful tools

E402 System Administrator's user authorization and protection, 3 days
Course installation, backup, system support

554

. . .. * . .0 .. I ... il ..



TABLE 2. ADA LANUAGE CURRICUUM ?MMUJES

NO. TITLE DESCRIPTION DURATION

L101 Ada Orientation for overview of development and 1/2 day
Managers features of Ada

L102 Ada Technical Overview overview of language-introduction I day
to language features in more
depth than above

L103 Introduction to High key HOL concepts for assembly I day
Order Languages language programmners

L104 Beginning Programmling introduction to computer 4 weeks
programmning in an Ada context

L201 Ada for Technical use of Ada for good systems design; 3 days
Managers packages, types, generics,

portability features, etc.

L202 Basic Ada Programmwing essentially the Pascal subset 1 week

L301 Using the Ada Language how to use the alarm effectively 2 days
Reference Manual as a reference

L302 Use of Ada for Ada as a requirements definition 2 days
Requirement s language

L303 Real Time Concepts real time design concepts for 1 day
technical managers

L304 Ada Reader's Course reading an Ada design or program 1 day
for its key points and overall
structure

L305 Algor ithms and Data packages, access types, private 1 week
Structures in Ada types, discriminated records,

generics, basic tasking, basic
algorithms

L401 Real Time Systems everything about tasking, external 1 week
in Ada interfaces, low-level features

*L500 Specialty Courses numerical analysis, hardware varying 4
diagnostics, man/machine interface
database management, etc.
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TABLE 3. ADA LANGEUM CURRICUfLUM MCUIES

NO. TITLE DESCRIPTION DURATION

Mi0l Software Engineering software life-cycle, top-down I day
for Managers concepts, documentation, testing2

M102 Introduction to Software life-cycle, top-down concepts, 2 days
Engineering overview of various methodologies

M201 Software Engineering thorough coverage of major I week
methodologies methodologies

[AM202 Overview of a Specific overview of an organization's 1/2 day
Methodology selected life-cycle methodology

M301 Requirements Methodology requirements definition techniques 1 week
and methodology

*M302 Design Methodology how to do design, with required 4 days
methodology

M303 Coding Methodology structured programming, coding 2 days
standards, programming style, etc.

M304 Software Review Walkthroughs, code reading 1 day
Methodology

M401 Introducing A~da to Your how to use the recommended 1 day
Organization curriculum to meet specific needs

M40O2 Psychological Aspects techniques for overcoming resistance 1 day
of Retraining to change

* these areas. The curriculum can also be customized by developing4
exercises and examples that are representative of the kinds of
applications actually performed by the organization, e.g., signal
processing, commrunications, etc.

The modular curriculum is thus not a single, fixed curriculum.
* Rather, it is a framework that can be used to design a training plan to

meet any stated requirement. Its flexibility is its major asset. It
provides a basis for planning an individual or corporate approach to the
Ada training problem.
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APPOINGI THE TRAINING PROBLEM

The modular curriculum is a starting point for an Ada training
program, but only a starting point. How can an organization develop an
Ada training program designed to meet its specific requirements? First,
the organization must analyze its requirements. It must assess:

* number of peple who need training
0 skill level required - how many at each level
* required time framep * sources of people - are they there now, or must they be hired
* current skill levels

* tailoring required
- specific methodology
- specific environment
- application-specific examples
- specialist courses

* scheduling/cost constraints
* additional training aids desired (e.g., video, texts)

The organization must then arrange to develop/adapt the training
materials as required, either on its own or via outside contractor
support. Instructor resource requirements must be identified and courses
must be scheduled.

Courses can mrost effectively be scheduled in a top-down manner,
training managers before staff and designers before implementors. This
has two advantages. First, prior training of managers ensures that they
will understand and support the transition to Ada before leading their
staffs in that transition. Management cormitment to the concepts behind
Ada and understanding of potential problems is essential to its positive
reception by employees. The second advantage is that this approach leads
to a "bootstrap" process of introducing Ada. A core of well-motivated
top-level designers is trained, and begins the design process. While
lower-level developers are in training, they have the support and
direction of the initial group, and can work with them to gain hands-on,
on-the-job experience to augment their training. The initial group
provides an Mda nucleus on which to build.

Finally, once courses are given much of the cycle repeats itself.
Needs continue to evolve, new employees arrive to be trained or existing
employees advance to new responsibilities, and materials require
improvement. Ada training must be an ongoing process.

S1J4AR

The Mda Software [esign Methods Formulation program was a
comprehensive program designed to gain an in-depth understanding of Mda
training requirements and specify a curriculum that meets those
requirements. Based on Mda case studies, an industry training survey, and
a work force survey, a model Mda curriculum was developed.
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The curriculum is modular, consisting of 35 modules comnprising 89
class-days of training. This modular approach provides maximum

j flexibility to individual and organizational needs. It is also cost-
effective; it minimizes investment in emiployee time, as people can be
productive quickly. The curriculum has been designed to support
customization to specific organization methodologies and training
environments.

IThis curriculum, and the supporting study that explains its deriva- 0
tion, provides a strong foundation for training program design. Its
modularity and adaptability offer a solution to many of the problems
confronting today's Ada course designers. These designers, trying to
develop courses that will be all things to all people, have been
frustrated by the many unanswered questions that still exist about Ada
(e.g., what is the best PDL?) and by the difficulty of teaching the
entire language to all students. This framework lets curriculum
developers produce useful materials without answering all of these
questions. It provides a basis for gaining maximum industry-wide benefit
from the work of all individuals involved in development of Ada training
materials, thus supporting a cost-effective transition to widespread

3 industry comipetence in -Ada.
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