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1.0 Introduction

.-.. The purpose of this investigation was to test the relative

importance of various aspects of correcting predicted values on a

grid by incorporating information from observed values at scat-

tered data points. Grid and observation configurations were

patterned after those routinely available over North America.

Although investigations were limited to the univariate objective

analysis methods, I believe the results are indicative of those

that would be achieved in the more general case.

Previous investigations on the error contribution of various

steps in the objective analysis process are limited. Koehler

-- (1979) separately studied the errors of a number of grid-to-

observation and observation-to-grid interpolation (approximation)

routines. He noted that although little attention is typically

*paid to the grid-to-observation interpolation process significant

errors may be caused by this phase of objective analysis. While

this may be a surprise since these errors are usually small

compared to the first-guess errors at thn grid points, my results

further demonstrated that the contribution to overall error made

by the grid-to-observation interpolation process should not be

ignored. This investigation complements recent work by Seaman

(19931) regarding the accuracy of statistical and successive cor-

rection schemes. His work provides expected mean squared error

estimates for these schemes. His work is very thorough in that

it provides estimates of the anAlysis error as the parameters of

the first-guess error are varied while holding the &ssume,' values

constant, and vice-versa.
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In Section 2 1 derive a gnerlized nxpression for tli

overall error in objective analysis which leads to severril

observations. In Section 3 I describe the simulation ,nethocd inr

the various options which can be easily handled. In Section 4 T

present the results of the simulations and discuss their inplic,!-

tions with regard to the observations made in Section 2.

2.0 The Form of the Error Term in Objective Analysis

My setting for study of the objective analysis process

assumes the following:

(i) The true field (function) to be analyzed is H.

(ii) H is known imperfectly at grid points through a "first-

guess" which is in error by an amount to be denoted by g. T'he

error is a normally distributed stationary random function which

has a certain spatial correlation and standard deviation.

(iii) H is imperfectly measured at observation points yield-

ing values with errors o. These errors are independent and

normally distributed with certain standard deviation.

The nature of the errors makes it only possible to av-lualtc

g at grid points, and o at observation points, although it is

sometimes convenient to think of them as functions rather than as

sets of errors. The objective analysis process consists of int-

erpolation of the first-guess values from the grid to th.• obser-

vation points (by a linear operator designated M) followed by

Interpolation of the differencP between the ohservel an.! first-

guess values back to the grid point (by a linear operator desig-

nited L) as a correction to the first-guess valus. Denote the

error in the entire process by E, then the final approximation is

2
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- iH + E = H * g + L(I( + o - M(H + g)) .

Let m(H) represent the error in the approximation of t! by 1.1(II),

then M(H) = H - m (H). Rearranqing and simplifying the abov -,

leads to
i%,

E = g + L(H + o - M(H) - M(g))

= g + L(H + o - H + m(H) - M(g))

= + L(o + re(H)) - LM (g)

and finally,

$ E = L(o) + Lm(H) + (g - LM(g)) . (1)

Thus the error is made up of three parts. The term L(o) is

7dependent on the 'function' o, which describes instrumentation

error and is typically not controlable. It is obviously aivan-

tageous to have o small. Since the values of o are assumel

independent and random it is desirable for L to be a smoothing

operator. The second part, Lm(H) is within our control ani the

grid-to-observation point interpolations error should be made

small. If it is, then interpolation of the error back to tice

grid points by L is also small, assuming this smoothing operator

is typical and does not magnify the error. The third pairt (g -

LM(g)) is the error in interpolation of the first-guess error at

the grid points to the observation locations by M, then back to

the grid points by L. While it is possible that a certain sym-

biosis between parts could occur, the goal is cprtainly for rach

interpolation process to have small errors. Ideally the operator

L should be a left inverse of the operator M, although this is

almost certainly impossible.

Partitioning the error in this 4ay shows, for '-xample, tht

3
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using a better interpolation process from thc qrid to tle ohs)ar-

vation points should decrease the overall inalysis error. In

certain realizations, of course, the errors may Len i to can7>-I.

Since the three terms represent uncorrelated errors, the total

error variance over many realizations will ten:d to .e the sum of

the individual variances. Thus, decreasing any one will lead to

statistically smaller error variances.

3.0 The Computer Simulation Methods

In order to simulate the behavior of the overall error undcr

various interpolation processes and first-guess error assump-

tions, a modular computer program was written to give severnl

options for the different processes. This made it possible to

test a large number of combinations of methods an4 issumptions.

In general terms, the process simulated consists of the

following steps:

(i) An underlying mathematically defined function

describing the field to be analyzed is evaluated on a

grid of points.

(ii) "First-guess" error is genarated from normal rnnlom

deviates with a pre-specified standard deviation !ini spatial

correlation.

(iii) "Observed values" are gen srated by cvaluitinq tha

field to be analyzed at the observation points, and adding

normally distributed uncorrelated ranJom ,leviates to these?

values.

(tv) The first-guess values at the observation points -re

obtained by one of several interpolation schemes.

4
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(v) Based on the difference between first-gjuss ,n1 3hs.,r-

ved values at the observation locations, "corr:!cted(" values at

the grid points are obtained. I will refer to th correc:ted

values as the analysis values.

Most of the simulations were done with two diff trc:nt gr ids

and observation point sets. One was based on a 2.50 grid cover-

ing 112.50 W to 82.5 0 W and 30O N to 5'0 N, with 117 = ix9 qrir!

points and 36 observation points within the grid, as shown in

Figure 1. The other was based on a 50 grid coverin] 1250 W to

750 W, and 250 N to 50O N, with 88 = 11x8 grid points, and '7

observation points within the grid. This grid rind the observi-

tion locations are shown in Figure 2. All the simulations used

were univariate analysis methods on a two-dim-,nsion-l field.

This simplification was necessary for two reasons. The first

reason is that the generation of error with a spec7ified satial

correlation required factorization of the correlation matrix into

the product of a lower triangular matrix and its transpose. The

correlation matrix is of order equal to the number of grid points,

and it is not particularly well conditioned. Incorporation of

multiple levels, a large grid, or correlated multiple variables

was therefore not possible. The other reason is that statistic-l

results required that numerous realizations be simulated, thereby

limiting the time available to do the computations.

The underlying mathematically defined field can be any spec-

ified function. The height field test function useO is the on-

given by Koehler (1979) and also described in ,ahba and

Wendelberger (1911). The input pirimaters, (90 (the location of

4 5



~~~--------

the longitudinal wave), A8, (amount part of ti ficld is sk.wd

. ... logitudinally), and P (the pressure for the height field) arc

easily varied. The experiments simulated the 5 , rib heignt

field, using fixed or randomly varying Eo and A9. A typical

field of height contours generated by this function is shown in

Figure 3. First-guess errors had a nominal standard deviation,

rg, of 30 m. The spatial correlation function was mo:,liled using

exp((-d/Cd)) 2 , where d is distance (on the degree grid), and c

is a correlation distance, specified as lo 0. I have used dccw

measure for distance rather than true distance, to maintain a

. rectangular grid of first-guess points. This resulted in ii

distortion of the distance varying with location. The observa-

tion errors had a nominal standard deviation, ro , of iC, n. The

observation locations approximately correspond to the North Ame-

rican radiosonde network within the grids being used. They are

shown, along with the grids, in Figures 1 and 2.

The output consisted of mean, root-mean-squire, and maximum

errors over each data set (first-guess at grid points, first-

. guess at observation locations, observation at observation loca-

tions, and analysis values at grid points) for each realization.

The first and third of these mainly served as a chack on thc

psuedo-random number generator (IMSL subroutines GGNSI and

GGN rL). The output also gave summaries of the same errors over

all realizations as well as the mean and standard deviation of

the root-mean-square errors over the2 realizations. Intprpolation

processes are sometimes ill-behaved around boundaries. Since in

the global problem this can be avoided, the effects were nini-

mized here by tabulating error only over the interior grid

• ." . . . . . . • • " " -" " " .4 "', . '. , .. .".'. .'. " ," .'"*.'".",, -. "" . '" ,."



points. Thus the results are oieir 77 gri'i points on th-, .

grid and 54 grid points on the 50 grid. Th.? options siMrulate '

for each step are deascribed below.

a. Grid-to-observation point interpolation

First-guess values at the observation points :re ohtain. ] by

interpolation from the first-guess grid values. I compaLed four

schemes. Others could be easily inzlufri, howt v r my csu' t-s

indicate it will probably not be fruitful to do so. The methods

I have used are:

(i) Piecewise bilinear interpolation. As with any pier, -

wise defined method, one must first determine the rectangle in

which the evaluation point lies. Then, the evaluntion is most

easily seen as translation to the square [0,1! 2 , followed by 3

one dimensional interpolations. This requires ' operiltions,

where an operation is defined as a multiplication or division

-. followed by an addition or subtraction. Practically, the cvaluai-

tion can be accomplished in 5 operations (and a couple of extra

additions/subtractions). In my cost analysis I hive used 8

4 operations; this cost is very low compared to that of other

necessary calculations.

(ii) Bicubic splin? interpolation. T used the fMSL subrou-

tines IBCCCU and IBCEVL. Preprocessing for the spline coeffi-

cients on a NexNi grid requires 12NgxN$+27A$+5]Ng-1(; operitions.

Evaluation requires 2 operations to translate to (0,1] 2 and 5

cubic interpolations :it 9 oper,-tions eich for a tot,-l of 47

operations. The preprocessing operations involve solution of

tridiagon-1 systems of equtiLions whvich atc amenable to voctoriz1-

7
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tion for pir'eline computers.

(iii) Piecewise bicubic interpolation. My irialemont.ation

of this scheme used 2 operations for a translation to ro,11 2

followed by 5 cubic interpolations, each costing 5 opt-rations.

In addition, a difference table was formed at a cost of several

. subtractions.

(iv) E essel bicubic interpolation. My imrpllmentition of

this scheme used 2 operations for a translation to r(J,3J 2 fol-

lowed by 5 cubic interpolations, each costing 5 op2r,,tio:is.

Because of default to parabolic interpolation in boundary

regions, there were some additional tests. There were .'lso .n few

subtractions to form the difference table.

b. Observation-to-grid point interpolation

- As in operational weather forecasting programs, the differ-

ences between first-guess and observed values at th2 ohserv:ition

points are used to correct the first-guess values on the grirl to

obtain analysis values on the grid. I havo testpd twelvc s:h-ii 's

for performing this correction. I will give a brief description

of each method and refer the reader elsewhare for complete ,Ic-

tails. The first-guess error at the observation location, Pk =

(Gdk), is denoted by AHk, k I,... p* The number of grid

points is NaNs. I want to evaluate the approximation at grid

points, but will write it in terris of a generic point, P = (9,6).

Recall that the standard deviation of the first-guess errors is

rg, and the spatial covariance function is -lenoted by C(P,2).

An operation count has been made for each of the methods. I

discuss briefly how various phases of the process contribute, an.]

%
.. ' , 8
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L7'
summarize the results in fable I, along with som- rr

numbers that arise from my simulations. I have describd soi.ic

s-hermes as local, implying that others t-o glob. 1. Tn th- 2o:n-

text of global objective analysis, all the schemes 1 consi.ler -iro

local; the schemes which are global for my simulation -re 10S,;

local than the ones I refer to as local.

(i) Optimum interpolation (01). This sch: ,ne ws intro u..

to the meteorological literature by Gandin (19%3) and has re-

ceived widespread attention in recent years, e.g. soe Hergrmin

(1979) and Lorenc (1981). The method in its proper form requires

Z that the spatial covariance function of the first-gu?ss ?rrors

and the standard deviation of the observation error be known.

'. Since these are known for this simulation, I have useH their

properties. I have implemented the scheme as described in Franke

and Gordon (1983), viewing the approximation as a ]in ar combin.-

tion of the covariance functiorv- associated with the observation

points. Thus we have

NO

AH(P) = E akC(P,Pk) I

k=1

where C(P,Q) is as noted above. The ak are determined from the

system of equations

(C(Pi,Pj) + 6 ijr2) (1) (u
No  HNo

where AHi is the difference between the first-guess and observed

values at the it" observation point, ro is the standard *i(-viation

of the observation error, and 6ij is the Kronecker delta.

eThe cost of (01) consists of a preprocessing ph -se that

9
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includes the generation ind solution of th.- systor:a of eqjtions,

followed by evaluation of the analysis at the grid points. Fot

NO observations, preprocessing is at ,t cost of No(L'ofl)/2 funr-

tion evaluations to generate the coefficient matrix ind ( +5N 2

N0 )/6 operations plus No square roots to perform CholesKy decom-

position and solution of the system of equations for the ak-

Evaluation costs N covariance function evalu3tions ind .o opera,-

tions to form the linear combination representing the value of

-'; -the correction at each grid point.

(ii) Local optimum interpolation. In my version of this

scheme, nominally only points within the surrounding 100 square

are used; if fewer than 4 observations are available, the squnr'

* is expanded to 150 and so on, by 2.50 increments in each direc-

tion until at least 4 observations are zivailabl> The costs of

the search were not assessed. For each grid value correction, a

system of equations must be formed and solved, and the correspon-

ding correction computed. With n observations being used the

expressions given for 01 above apply with n replacing 1O . This

process was performed for each grid point, making the total cost

the sum of these costs over all grid points.

(iii) Global Barnes' method. This type of scheme is des-

cribed by Barnes (1973) and others. My scheme used the known

correlation functions as the weights for the first pass. Thus,

the approximation is

N 1
N0 0

k= 1  K=1

wee',= exp( PPkI/cd) ), and Atik is as before. For the

~ * * . .. .,* .... •.* . •.. _.' --;_-..*" .[ . .



second pass the correction has the samz form, but AIl k  is r'.-)l. :

by AHk, I , the difference between the corrected first-guess anl

the observations. The quantity cd is replaced by cd/31/2 for the

second pass. The total correction at the grid points is then the

sum of the two corrections. For each grid point the cost of this

method is No weight function evaluations per pass and No+l opera-

tions per pass. In addition a separate interpolation from the

* ." grid points to the observation points is required before the

second pass. This type of scheme has been defined and studied in

a different context, without a change of weight functions between

iterations, by Foley and Nielson (1981).

(iv) Local Barnes' method. The same localization process

as used for the local Of scheme (ii) was used here. As for the

global version, two passes were used. Hence the cost for an

evaluation at a grid point with n neighboring points is the same

expression as in the global scheme, but with n replacing No . In

addition, there was the search cost to determine the nearby

observations, which was not assessed. Costs of an interpolation

from the grid points to the observation points between passes was

included.

(v) Statistical interpolation (cd = 140). In practical

applications of 01 the error correlations and standard deviations

cannot be modeled precisely. This has lead to the use of the

name "statistical interpolation". Computationally the method is

identical to the Of scheme (i). Here the only differencP is the

substitution of an inexact correlation distance, cd = 14. The

algorithm and costs are identical.

(vi) Statistical interpolation (cd = 70). Again this is

t@ 11
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identical to (i) except that the inexact value subst-ituit ' for C,

is 7.

(vii) Statistical interpolation (damped cosine correlation

function). Once more this scheme is computationally identical to

(i) except that the correlation function used is of thc- forii

exp(-lI IP-QI I/cd) )cos((I IP-QI I/cd)( /2)). 1 used the value c,.,

[ ".- •.

(viii) Thin plate splines. This method is 1-:scrib(d by

Wahba and Wendlelberger (198'J) and others. The approximating

function used by the scheme is

N 0-

H(P) = Z AkB(P,Pk) + a + b4 + c

k=l

where the basis function B(P,Q) = IIPQI I2loqjl IP-QII k rh k

*-) and a, b, and c, are obtained by solving the system of equations

N 0
2

E Ak(B(Pi'Pj)+XNkro ij)+a~i+bi+c = Ai 0
j=l

Vp 0

_ Aje9 = 0

j=1

N0E-":', N o

j=1

0

A j=l

In the above, X is a smoothing parameter. The smoothing parnme-

ter was chosen on the basis of a few trials with no attempt to

optimize its choice for a particular data set, as c,-n b, done.

Wendelberger (1931) describes a program that will automatically

choose A (and m as well, see next method), but I have not t~rsted

12
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it yet. This system of equ=ations is syinrnietric, but nor positi',

definite. I have used standard L-U decomposition routines to

solve the system. Methods for symmetric in-Aefinite systems us-

about half as many operations, however I observed greater numeri-

cal stability using the general decomposition process. Tnere .1r:'

No(No+l)/2 basis function evaluations, and solution of the system

of equations requires (No+3)(No+!SN 0 +3)/3 + (No+3)2 operations.

Unlike symmetric positive definite systems, solution of thes

equations requires searching for a pivot and pivoting. Evaluj-

tion at each grid point then requires N basis function evalua-

tions and No+2 operations to form the sum.

(ix) Laplacian smoothing spline (m=3). This scheme is also

described by Wahba and Wendelberger (1980), anJ is on_ of those

available in the program by Wendelberger (1981). The thin plate

spline method is a member of this family (with m:2), but also h,s

the "thin plate" interpretation. The reason for inclusion of

this method is that the results of Wahba and Wcndelberger indii-

cate that pressure height fields are better approximatel using

values of m = 3 or 4. I will not describe the m--thod fully. It

requires evaluation of No(No+l)/2 basis functions ind 3No multi-

- plications to set up the system of No+6 equations to be solveH.

Then N 0+5 operations would be required for evaluation at each
.40

grid point, along with tne evaluation of No basis functions.

(x) Franke/Gordon. This scheme was suggestad by Franke and

Gordon (1983) ajs one which is an explicit sobsrme, similar to

Barnes' method, but which when iterated converges to the 01

interpolant. Three iterations, with th2 parameter = .(!51 wi I

13
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(in the notation of that report) were performed. ',I cost in

operations is 2No(No+1) plus 3N for each grid point. Th. numb,-r

of weight function evaluations is 2N2 plus 3No for each grid

4%p i n t.
J .,

(xi) Pseudo-Barnes' method. This method was desuribeJ in

Franke and Gordon (1983) and was at that time mistaken for Barnes'

method. It differs in that the error at the second iteration is

Barnes' approximation evaluated at the observation point minus

the first-guess error, rather than the the corrected first-guess

at the grid point interpolated to the observation point minus the

observed value. The cost of this algorithm is evaluation of M2

weight functions plus 2No for each grid point. It requires

No(No+l) operations, plus 2(No+1) for each grid point.

(xii) Local pseudo-Barnes' method. This is a local version

of (xi), using the same "nearby" observation points as (ii) an!!

(iv). A grid point with n nearby observation points requires

evaluation of n2 +2n basis functions and n2 +3n+2 operations.

4.0. Results

The simulation program described in the previous section w-s

run for a substantial number of different options. Each run

consisted of 100 realizations of a test field each containing

associated first-guess and observation errors. Table 2 gives the

assumed parameter values for the various cases. Not all combinq-

tions of grid-to-observation point and observation-to-grid point

interpolation schemes were used in every case. The tables d]etail

the complete results and the entries indicate which combinations

were computed. Each combination in a given table (3-14)

14
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corresponds to the same set of realizations, but diffecrent tlhl-s

depend on different realizations.

This investigation was designed to determine tha influence

of the grid-to-observation point interpolation scheme. This

influence is seen by noting changes in error for a particular

observation-to-grid point interpolation scheme ,As the grid-to-

observation point interpolation scheme is varied. The rows of

Tables 3-14 give this information. The bicubic spline

interpolation produced significant improvement over piecewise

bilinear interpolation. This verifies the smaller magnitude of

the term Lm(H) in the error expression given by (1) for th,?

spline method. For 2.50 grids the errors were no smaller for

spline interpolation than for piecewise bicubic or Bessel bicubic

interpolation. Evidently the grid spacing was small enough (for

the test function used) that the interpolation error was not

significant. Spline interpolation did show an improvement over

piecewise bicubic and dessel bicubic interpolation on the 50

grid. Spline interpolation and the cubic interpolation methods

showed even greater improvement over piecewise linear interpola-

tion on the 50 grid than on the 2.50 grid. Interestingly the

first-guess errors at the observation points had grea ter rms

values for cubic interpolation than they did for linear interpo-

lation. This occurs because linear interpolation inherently has

greater smoothing.

Most of the useful information given in Tables 1-14 can be

more easily obtained from plots of the salient values. F'igures

4-8 give plots of skill vs. cost of the algorithm in thousanJs of

15
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.4..*operations per analysis. He~re "skill" is 3hf in.:J to br I
0%,

V' rmsa/r o , where rmsa is the rms error in the analysis values. Tho

skill with respect to bilinear and bicubic interpolaJtion are e.-ro h

" indicated, connected with a straight line to delineate the extent

between the two. The results for only one of the statistical

schemes, (vi), has been plotted since the others were nearly

identical. For these purposes I counted an evaluation uf a basis,

weight, square root, or covariance function as 10 operations.

The plots reveal that the statistical schemes, loca] 0, iind thin

plate splines all had close to the same accuracy and all were

slightly less accurate than 01. The Barnes' schemes, th

Franke/Gordon scheme, and Laplacian smoothing splines were least

accurate. The poor performance of the Laplacian smoothing

splines here, in contrast to the better performance obtained by

Wahba and Wendelberger (1930) is probably due to the scheme being

applied to the first-guess error function rather than to the

underlying true height field. The degradation in the perforinanc

of the less than optimal statistical schemes is perhaps less

drastic than one might expect. It does appear that it w~s better

*to underestimate the correlation distance than to overestimate

it.

Figure 9 shows plots of the rms errors in th.? anailysis

values as a function of first-guess errors. The improvement in

the Barnes' scheme as the first-guess errors ducreise was rapid.

The scheme gave results nearly as good as 01, the statistical

schemes, and thin plate splines. This occurred becausa th,

principal problem became smoothing observation errors as the

first-guess errors tended to zero. Figure i shows plots of the

iIA
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rms errors in the analysis vilues as a function nf obs.srvit-ion

errors. As observation errors go to zero the importance of

modelling the first-guess error was more import;-nL th~n

- smoothing. Thus 01, the statistical schemes, and thin plate

splines improved the most, while both Barnes' sihmes improvrA-I

little. Figures 11-13 show the rms errors in the analysis valu's

when incorrect variances were specified for th- interpolation

routines. Methods not using these values were naturally unaf-

fected so that changes in the rms errors in the niysis v-. 1d:s

for these methods only reflect the variability of the (different)

realizations used in the various cases. The plots show tht th,

. use of incorrect values for the first-guess and observation error

*variances did not drastically affect the accurcy of tlip stit -ist-

ical methods. The interested reader is referred to Seaman (1981)

for more extensive tests of the effects of incorrect pardmeter

specification on the performance of statistical interpolation

methods.

One of the attractive features of the statistical sciem 2s is

that they afford a calculation for the estimated mean squared

error. These estimates do not depend on any pirLicular r:zal izn-

tion, so they were not incorporated into the process. However, I

did compute them as a side cilculation for my grids *1ni ohsorv.-

tion points. The results of these calculations are tabullted for

the 2.50 grid, along with tne empirical rms ±rror; obtain: d

during the simulations. Table 15 shows that the estimates given

% by 01 were quite good; th- estimated and empirical errors varied

only a few percent. They also were accurate for local 01, as

..
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they should be. On the othar hand, the slight degradation in

performance of statistical methods when incorrect correlations of

variances were specified did not carry over to the e-rror esti-

mates. In fact the schemes that have their performance degraded

the most (in this case, using too long a correlation distan-e)

showed a decrease in the estimated error variance. Conversely,

shortening the correlation distance in the statistical mrth:)-

increased the error estimate as well as the empirical error

obtained, although the empirical error is underestimated. This

indicates that one must not put too much faith in the error

estimates when the actual covariance structure is not known, as

in practice. It appears one could obtain just about any error

% estimate wished simply by specifying unrealistic parameters for

the covariance structure.

The principal results of this study were as follows. Thc

decomposition of the error into independent components in (1)

identified possible ways to decrease the analysis error. This

lead to the results showing the contribution of the grid-to-

observation interpolation process, the necessity of smoothing in

the observation-to-grid interpolation process, along with accuracy.

The simulations provided confirmation of the above andi yielded

information concerning the sensitivity of statistical interpola-

tion schemes to inexact parameter specification. The error esti-

mates provided by statistical schemes were shown to be sensitive

to inexact parameter specification.

18
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Tablel rg Eo  griJ nots

3 30 10 10L 0 13x9,2.50

4 30 10 100 13.775 13x9,2. 50

5 20 10 100 0 13x9,2.5 0

5 30 5 100 0 13x9,2. 50

. 7 30 10 randoma randomb 13x9,2.5 0

a b

8 30 10 randoma randomb 13x9,2.50  (ro) =3

9 20 10 randoma randomb 13x9,2.5 °  (rg) = 20

10 30 10 randoma randomb 13x9,2.5 (ro) = 5

11 30 5 randoma randomb 13x9,2.5 (ri = 

12 5 10 randoma randormb 13x9,2.5 0

13 30 0 randoma randomb 13x9,2.50

14 30 10 randoma randomb 11 x8,5 0

Table 2

a 8 uniformly distributed in (-82.50,112.50)
b A uniformly distributed in (-150,150)
c The statistical interpolation routines were given

incorrect variances, as indicated
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P = 50C, Iheta= 100, telth = Entries: RMSE Analysis
rg = 3C, ro = 10 Mean RMSE(StDrv)
Number cf realizations = 100
13X9 grid of 2.5 degrees, 36 observation points

Grid-to-cbs: PW linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid
-------------------------------------------------------------------------------
Opt Inteip 6.64 6.09 6.09 6.09
(Cd = 10) 6.53(1.18) 5.97(1.20) 5.98(1.19) 5.98(1.19)

Local 01 7.09 6.53 6.54 6.55
(Cd= 10) E.99 (1.19) 6.42(1.19) 6.44(1.19) 6.44(1.18)

Barnes' 9.27 8.87 8.87 8.88
2-Pass 9.08(1.03) 8.68(1.82) 8.68(1.82) 8.69(1.82)

Barnes' 8.42 7.95 7.96 7.96
(Lccal) 8.27(1.57) 7.79(1.56) 7.80(1.56) 7.81 (1.56)

Stat Interp 7.28 6.78 6.79 6.79
(Cd = 14) 7.23(1.22) 6.66(1.27) 6.67 (1.26) 6.6811.26)

Stat Inteip 7.34 6.87 6.87 6.87
(Cd = 7) 7.23(1.25) 6.75(1.26) 6.76 (1.25) 6.76(1.25)

Stat Interp 7.37 6.91 6.91 6.91
(Dmpd Cos) 7.26 (1.28) 6.79 (1.28) 6.79(1.28) 6.79(1.28)

Thin P1 SFl 7.12 6.59 6.60 6.60
(m = 2) 7.00(1.30) 6.45 (1.33) 6.46 (1.32) 6.47(1.32)

Lapi Sm Spl 10.54 10.25 10.25 10.25
(m = 3) 10.4 0(1.73) 10.10(1.73) 10.10(1.73) 10.11(1.73)

Yrnke/Grdn 12.02 11.75 11.76 11.76
(3 Pass) 11.72(2.65) 11.45(2.65) 11.45(2.65) 11.45 (2.65)

PseudoBarnes' 9.28 8.87 8.87 8.88
(2 Pass) 9.10(1.83) 8.68 (1.82) 8.68(1.82) 8.69(1.82)

PseudoBarnes' 8.20 7.70 7.71 7.72
(Local) 8.06(1.51) 7.55 (1.50) 7.57(1.50) 7.57 ( 1. '0)

TABLE 3
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= 500, Tbheta = 100, Delth - 13.775 Entries: RMSE Analysis
xg = 3C, to = 10 MNan RMSE(StD'v)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-obs: PW Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-gzid

Opt Inteip 6.88 6.19 6.20 6.21
(Cd = 10) E.72(1.49) 6.05(1.34) 6.06(1.34) 6.06(1.34)

Local 01 7.40 6.76 6.77
(Cd = 10) 7.24(1.51) 6.62(1.37) 6.63(1.37)

Bar res' 9.73 9.28 9.29
2-pass 9.53(1.96) 9.09(1.88) 9.10(1.88)

Barnes' 8.29 7.79 7.77
(Lecal) 8.16(1.48) 7.67(1.36) 7.66(1.36)

Stat Interp 7.71 7.08 7.09
(Cd = 14) 7.56(1.50) 6.95(1.35) 6.96(1.35)

Stat Interp 7.54 6.96 6.96
(Cd = 7) 7.39(1.50) 6.8241.36) 6.83(1.36)

Stat Intezp 7.37 6.91 6.91 6.91
(Dzpd CcQ) 7.26 (1.28) 6.79 (1.28) 6.79(1.28) 6.79(1.28)

Thir P1 Spl 7.45 6.80 6.81
(m = 2) 7.29(1.51) 6.66(1.37) 6.67(1.37)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 lass)

PseudoBarnes' 9.75 9.28
(2 lass) 9.55(1.97) 9.09(1.88)

PseudoBarnqs'
(Local)

ATABLE 4
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500, Ibeta = 100, Celth = 0 Entries: R*SE Aralysi
g= 20, Ic = 10 Mean EMSE(StDev)

.iumber of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PW Linear Bicub SpI PW Bicub Bs1 Bicub

Obs-to-grid

Opt Inteip 6.23 5.75 5.76
(Cd = 10) 6.10(1.28) 5.62(1.22) 5.63(1.22)

Local 01 6.54 6.10 6.10
SI (Cd = 10) 6.41(1.28) 5.97 (1.22) 5.98(1.22)

Barnes' 7.18 6.85 6.86
2-Pass 7.03(1.47) 6.71(1.47) 6.71(1.41)

Barnes' 7.19 6.77 6.76
(Lccal) 7.08(1.22) 6.68(1.11) 6.67(1.10)

Stat Interp 6.70 6.30 6.31
(Cd = 14) 6.58(1.27) 6.19(1.19) 6.19(1.19)

*.., Stat Interp 6.71 6.24 6.25
(Cd = 7) 6.58(1.30) 6.12(1.25) 6.12(1.24)

Stat Interp 6.78 6.31 6.32
%"; (Dmpd Cos) 6.65 (1.33) 6.18 (1.28) 6.18(1.28)

Thir P1 S1l 6.66 6.20 6.20
.* (m = 2) 6.52 (1.34) 6.06 (1.29) 6.07 (1.29)

-. LaFl Sm Spl 11.05 10.71 10.71
(m = 3) 1C.84 (2. 16) 10.50 (2. 12) 10.50(2.12)

Frrke/Grdn 8.72 8.56 8.56
(3 Pass) 8.54 (1.78) 8.39 (1.70) 8.39(1.70)

PseudoBarnes' 7.19 6.85 6.86
(2 Pass) 7.03(1.47) 6.85(1.41) 6.71(1.41)

PseudoBarnes' 6.78 6.37 6.38
(Local) 6.66(1.28) 6.25(1.24) 6.26(1.23)

TABLE 5
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S= 500, Theta = 100, Eelth = 0 Entries: RMSE Analysis

- x 3C. to = 5 Mean RMSE(StDev)

Number of realizations a 100
13X9 grid of 2.5 degrees, 36 Observatioa points

Grid-to-cts: PU Linear Bicut Spl PW Bicub Bsl Bicub

obs-to-grid

Opt Intelp 4.57 3.76 3.77

(Cd = 10) 4.50(0.83) 3.70(0.69) 3.70(0.69)

Local 01 5.03 4.26 4.27

(Cd = 10) 4.95(0.91) 4.19(0.77) 4.20(0.77)

Barnes' 8.88 8.48 8.49

... 2-Pass 8.69(1.85) 8.29 (1.76) 8.30(1.77)

Barnes' 6.39 5.90 5.89

(Lccal) 6.30(1. 10) 5.79(1.11) 5.78(1.11)

Stat IntAerp 5.26 4.57 4.57

(Cd = 14) 5.17(0.92) 4.49(0.83) 4.50(0.83)

Stat Interp 5.02 4.28 4.28

(cd = 7) 4.95(0.82) 4.21(0.74) 4.21(0.74)

Stat Intexr 4.96 4.22 4.22

(Dmpd Cos) 4.89 (0.83) 4.16 (0.75) 4.16(0.75)

Thix Pl Sl 4.92 4.15 4.16

(a = 2) 4.85(0.84) 4.09 (0.72) 4.10(0.72)

Lapl Sm Spi 6.08 5.43 5.43

(m = 3) 5.98 (1.05) 5.33 (1.06) 5.33(1.06)

Frrke/Grdn 11.82 11.61 11.61

(3 Pass) 11.55(2.55) 11.34(2.51) 11.34(2.50)

L PseudoEarnes' 8.89 8.48 8.49

(2 Pass) 8.70(1.85) 8.29(1.76) 8.30(1.77)

PseudoBarnes' 7.30 6.75 6.76

(Local) 7.15(1.47) 6.60(1.40) 6.62(1.41)

TABLE 6
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P = 500, Theta - RANDCF, Delth = RANDOM, Entries: RMSE Analysis
rg z 30, ro = 10 Me.an HMSE(StD,v)
Number cf realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PU Linear Bicub SpI PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 7.00 6.40

(Cd = IC) 6.85(1.44) 6.27(1.30)

Local 01 7.48 6.90
(Cd = 10) 7.33(1.49) 6.90(1.36)

Barnes' 9.92 9.52
2-Pass 9.70(2.07) 9.33(1.89)

Balmes' 8.34 7.89
(Lccal) 8.21 (1.46) 7.76 (1.39)

Stat InItep 7.92 7.41
(Cd = 14) 7.77(1.56) 7.27(1.43)

Stat Interp 7.56 7.01
(Cd = 7) 7.41 (1.51) 6.88(1.36)

Stat Interp 7.58 7.04
(Dard Ccs) 7.43(1. 53) 6.90(1.38)

Thin Pl pl 7.63 7.06
(a f 2) 7.47(1.58) 6.92(1.42)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 lass)

PseudoBatnes'
(2 lass)

PseudoBaznesE

(Lccal)

TABLE 7
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F = 500, be.a = RANDCM, Delth - RANDOM, Entries: RMSE AnalysiLs
3g 30, Ic = 10, rg(lie) = 20 Mean EMSE(StDev)

lumber of realizations - 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: EP Linear Bicub SpI Pu Bicub Bsl Bicub

Obs-to-grid

Opt Interp 7.14 6.47
(Cd = 10) 6.97(1.52) 6.32(1.35)

Local 01 7.56 6.92
(Cd = 10) 7.39(1.62) 6.77(1.41)

Barnes' 9.64 9.21
2-Fass 9.42(2.04) 9.01 (1.9C)

Barnes' 8.30 7.73
(Local) 7.04(1.43) 7.62(1.33)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(Dard Cc*)

Thin P1 SF1 7.19 6.52
(3 = 2) 7.0 4(1.45) 6.39(1.26)

Lapl Sm, Spl
S(m = 3)

Frnke/Grdn
(3 Pass)

PseudoBarnes'
(2 Pass)

PseudoBarnes'
(Lccal)

TABLE 8
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E - 500, Ibeta - RANDCH, Delth R RANDOM, Entries: RMSE Analysis
rg= 2C, ic = 10, rg(lie) = 30 Mean RMSE(StDev)
Number of realizations = 100
13X9 gzid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PM Linear Bicub SpI PW Bicub BSI Bicub

obs-to-grid

Opt Interp 6.32 5.72
(Cd = 1() 6.17(1.36) 5.60(1.21)

Local 01 6.60 6.05
(Cd = 10) 6.47(1.33) 5.94 (1.16)

-" Barnes# 7.10 6.69
2-Fass 6.95(1.45) 6.55(1.39)

Barnes' 7.09 6.54
(Local) 6.98(1.22) 6.45(1.08)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(Dipd Cc*)

" Thin P1 S I 6.31 5.75
, (u = 2) 6.17(1.30) 5.63(1.16)

Lapl Sm Spi
$(' = 3)

Frnke/Grdn
(3 Fass)

PseudoBarnqEI
(2 eass)

PseudoBarn~s'
(Local)

TABLE 9
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I = 500, Theta = RANDCM, Delth * RANDOM, Entries: RMSE Analysis
zg = 3C, rc = 10, ro(lie) = 5 Mean RMSE(StDev)
Number of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: EV Linear Bicub Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Int eip 7.51 6.88
(Cd = 10) 7.37(1.43) 6.74(1.38)

Local 01 7.96 7.37
(Cd = 10) 7.85(1.36) 7.26 (1.27)

Barnes' 5.81 9.28
2-lass 9.60(2.01) 9.06(1.99)

Barnes' 8.47 7.91
(Local) 8.36(1.32) 7.80(1.31)

Stat Interp
:xc. (Cd = 14)

Stat Interp
(Cd = 7)

.-"Stat Interp
(Dzpd Ccs)

Thin P1 El 7.65 6.94
'" (a = 2) 7.51(1.43) 6.80(1.39)

Lapl Sm -p1
(n = 3)

Frnke/Grdn
(3 ass)

PseudoBarnes'
(2 lass)

PseudoBarnEo
(Lccal)

4. ',

TABLE 10
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= 500, Iheta = RANDCH, Delth - RANDOM, Entries: RMSE Analysi3
x = 30, xo = 5, ro(lie) = 10 Mean RMSE(StDev)
lumber of realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: PW Linear Bicub Spl PW Bicub Bsl Bi4cab

Obs-to-grid

Opt Interp 5.18 4.19
(Cd = lC) 5.10(0.91) 4.13(0.71)

Local 01 5.66 4.76
(Cd = 10) 5.56(1.04) 4.69(0.81)

Barnes' 9.09 8.62

2-Fass 8.93(l.69) 8.47(1.61)

Baires' 6.71 6.06
(Lccal) 6.63(1.07) 5.97(1,04)

Stat Interp
(Cd = 14)

Stat Interp
(Cd = 7)

Stat Interp
(DwEd Ccs)

Thin P1 Erl 6.13 5.34
(m = 2) 6.02(1.15) 5.25 (0.95)

Lapl Sm Spl
(m = 3)

Frnke/Grdn
(3 lass)

PseudoBaines'
(2 lass)

PseudoBarneE'
(Lccal)

TABLE 11
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P 50C, Theta - BANDCE, Delth B RANDON, Entries: BMSE Analysis
rg =5, rc = 10 Mean EMSE(StDqv)
Number cf realizations = 100
13X9 grid of 2.5 degrees, 36 Observation points

Grid-to-cbs: E Linear Bicub SpI PW Bicub Bsl Bicub

Obs-to-grid

Opt Interp 3.58 3.32
(Cd = 1C) 3.44(1.01) 3.18(0.94)

Local 01 3.77 3.53
(Cd = 10) 3.63(1.02) 3.40(0.9769

Barnes' 4.44 3.98
2-Pass 4.32(1.01) 3.87(0.90)

Barnes' 6.26 5.73
(Local) 6.15(1.16) 5.64(1.00)

Stat Interp 3.61 3.41
(Cd = 14) 3.46 (1.03) 3.27(0.96)

Stat Interp 3.65 3.39
(Cd = 7) 3.50(1.03) 3.25 (0.97)

Stat Interp 3.78 3.51
(Dzpd Ccs) 3.62(1.07) 3.36 (1.02

Thin P1 Spl 4.00 3.85
(m = 2) 3.84(1.13) 3.70(1.07)

Lapl Sm Spl
(a = 3)

Frnke/Grdn
(3 ass)

PseudoBarnes'
(2 Eass)

PseudoBaxnes'
(Lccal)

TABLE 12
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F. P

F =500, Ibeta = ANDCM, Delth =RANDOM, Entripes: RMSE Analysi-s
xg = 30, re = 0 Mean PMSE(S+-Oev)

Number of realizations = 100
13X9 gxid of 2.5 degrees, 36 Observation points

Grid-to-cts: EW Linear Bicut Spl PW Bicub Bsl Bicub

Obs-to-grid

Opt Intexp 6.06 0.74
(Cd = 10) 5.84(l.62) 0.69(0.27)

Local 01 3 .86 2.40
(Cd = 10) 3.79 (0.76) 2.2.30(0.69

Barres' 9.38 8.96
2-Pass 9.16 (2.05) 8.74 (l.98)

Barnes' 6.27 5.63
(Local) 6.15 (1. 21) 5.49 (1.23)

Stat Interp 7.62 1.23
(Cd = 14) 7.10(2.74) 1.16(0.40)

Stat Interp 3.70 1.29
(Cd = 7) 3.64 (0.68) 1.20(0.48)

star Inte D.a8 1.03
(Dmpd Cos) o.37 (0.96) 0.97(0.36

Thc Pl S0! 3.7 2.18
(m - 2) 3.66(0.78) 2.02(0.83)

LaFI Sm Spl
(m a 3)

Frrke/Grdn
(3 Pass)

Pseudoarn3s 8
(2 Pass)

PseudoBarns'
(Lccal)

TABLE 13
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Iq!

= 500, Ibeta = 100, relth = 0 Entries: RMSE Analysis
rg = 30, zo = 10 Mean RMSE(StDsv)
lumber of realizations = 100
11 BY e grid of 5 degrees, 67 Observation points

Grid-to-obs: PW Linear Bicub SpI PW Bicub BZl Bicub

Obs-to-grd

Opt Interp 12.84 7.62 7.93 8.11
(Cd = 10) 12.74(1.62) 7.53(1.19) 7.84(1.20) 8.02(1.19)

Local 01 13.33 8.44 8.74 8.92
(Cd = 10) 13.22(1.73) 8.33(1.33) 8.63(1.35) 8.82(1.32)

Bazres' 14.33 10.62 10.82 10.95
2-Pass 14.21 (1.85) 10.49(1.70) 10.68(1.70) 10.81 (1.71)

Barnes' 14.00 8.82 9.12 9.40
(Lccal) 13.91(1.55) 8.71(1.36) 9.79(1.35) 9.31 (1.33)

Stat Interp 13.75 8.80 9.02 9.20
(Cd = 14) 13.25(1.57) 8.70(1.33) 8.92(1.31) 9.10 (1.32)

Stat Interp 13.44 8.31 8.62 8.79
(Cd = 7) 13.35(1.63) 8.23(1.18) 8.53(1.21) 8.70(1.19)

Stat Interp 13.57 8.47 8.78 6.95
(Dmpd Cos) 13.47 (1.65) 8.38 (1.25) 8.68(1.27) 8.86(1.25)

Thin P1 SplI 13.17 8.08 8.36 8.47
(a = 2) 13.07(1.59) 7.99(1.17) 8.27(1.19) 8.39(1.19)

Lapl Sm Spl 17.12 11.87 12.08 12.16
(m = 3) 17.01(1.86) 11.76(1.60) 11.97(1.57) 12.05(1.58)

Frnke/Grdn 17.29 15.23 15.31 15.36
(3 lass) 17.14(2.29) 15.04(2.35) 15.13(2.34) 15.17(2.37)

PseudoBatnesl4 .27 10.62 10.82 13.95
(2 Eass) 14.14 (1.87) 10.49 (1.70) 10.69(1.70) 10.82(1.71)

Pseudolarnes 13.89 9.73 10.00 10.17
(Lccal) 13.77(1.82) 9.60 (1.58) 9.87(1.58) 10.05(1.57)

TABLE 14
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Estimated and (empirical) RMS errors for statistical methcds

-g: 5 20 30 30 30
mo: 10 10 10 5 0

2 :. method

Opt IntexF 3.30 5.62 6.29 3.78 0.65
(ed = 10) (3.32) (5.76) (6.40) (3.77) (0.74)

Local OI 3.55 5.96 6.80 4.39 2.21
(cd = 10) (3.53) (6.10) (6.90) (4.27) (2.40)

Stat Intexp 2.90 4.60 5.07 2.95 0.11
(cd = 14) (3.41) (6.31) (7.41) (4.57) (1.23)

Stat Intezp 3.76 7.14 8.26 5.46 2.90
(cd = 7) (3.39) (6.25) (7.01) (4.28) 1.29)

Stat Interp 3.82 7.00 7.94 5.03 2.06
(Dmpd Cos) (3.51) (6.32) (7.04) (4.22) (1.03)

TABLE 15
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T3: RG = 30, RO = 10, 13X9 2.5 DEGREE GRID
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T5: RG = 20, RO = 10, 13X9 2.5 DEGREE GRID
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T6: RG = 30, RO = 5, 13X9 2.5 DEGREE GRID
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T7: RG - 30, RO - 10, 13X9 2.5 DEGREE GRID
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T14: RG - 30, RO 1 10, I1X8 5 DEGREE GRID
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F -RD 10, 13X9 2.5 DEGREE GRID
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PERFORMANCE DEGRADATION, RG = 30, RO 5
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