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SIGNIFICANCE AND EXPLANATION

Scientists often wish to describe the relationship between a response

variable and a collection of explanatory variables. When the particular

nature of the relationship is unknown, as is often the case, a common strategy

is to develop an empirical model by using a simple graduating function such as

a low-degree polynomial to approximate the true relationship. The techniques

of response surface methodology were developed to accomplish this goal.

We consider a generalization of standard response surface methodolgy that

attempts to take into account the approximate nature of the graduating

functions that are used. We propose a model in which the graduating function

is augmented by a bias term that represents the difference between the true,

but unknown, response function and the graduating function. The bias term is

characterized in terms of the scientist's prior beliefs about its likely

magnitude and its likely similarity for similar combinations of the

explanatory variables. The use of prior information is central to the

Bayesian approach to statistical inference.

We derive estimates of the response surface and measures of precision for

the estimates. It is shown how both of these depend critically on the bias

term. Two examples illustrate the technique and afford a comparison between

the conclusions of the Bayesian model and those of standard response surface

models.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.,

.. ........... .



BAYESIAN MODELS FOR RESPONSE SURFACES II:

ESTIMATING THE RESPONSE SURFACE*

David M. Steinberg

1. INTRODUCTION

We consider the common situation in which an empirical model is sought to

describe the relationship between a response variable Y and a collection

XI, .... ,k of explanatory variables. We assume that the true dependence of

Y on x - (X1,....,Xk) is given by an unknown response function g(x) and

that our goal is to obtain a reasonable approximation to g on the basis of
n

experimental data IY in A standard approach to the empirical modeling

problem described above is that of response surface methodology (see Box and

Wilson 1951, Box 1954, Box and Youle 1955, and Myers 1976), in which a simple

graduating function, such as a polynomial of low degree, is used to

approximate g. We will consider a generalization of classical response

surface models that includes not only a simple graduating function, but also a

characterization of the extent to which the graduating function is believed to

accurately represent the true response function. The model is Bayesian in

that the characterization is expressed in terms of prior distributions.

The model we will analyze is a straightforward extension of a Bayesian

model proposed by Blight and Ott (1975) for the special case of polynomial

regression with a single explanatory variable. Smith (1973), Young (1977),

and O'Hagan (1978) also proposed Bayesian models for estimating an unknown

This work forms part of the author's Ph.D. dissertation written under the
direction of Professor G. E. P. Box. The author is grateful to Professor Box
for his many valuable comments. The author would also like to thank Professor
R. Myers for permission to use the data cited in Section 8.

This research was sponsored by the United States Army under Contract No.
DAAG29-80-C-0041. This material is based upon work supported by the National
Science Foundation under Grant No. MCS-8210950.



response function. Steinberg (1984) showed that these models are

equivalent to the extended Blight-Ott model and that, for certain

prior specifications, the models are equivalent to those described

by Wahba (1978), which yield generalized smoothing splines as

estimates of g. Some of the results in this paper are included in

each of the preceding papers. By combining their separate results

and some new results, we are able to present a more complete

description of Bayesian response surface estimates.

Section 2 describes the model and Section 3 presents the Bayes

estimator of the response function g when all the prior distribu-

tiona in the model are proper. Section 4 studies the implications

of assigning improper priors to some of the parameters in the

model. Section 5 presents some additional results regarding the

vector of estimated values at the design points and Section 6 gives

results on the precision of the estimates. Section 7 describes some

methods that might be used to estimate additional parameters that

appear in the model. Two examples are presented in Section 8 and

discussion and concluding comments are offered in Section 9.

2. THE BAYESIAN RESPONSE SURFACE MODEL

Classical response surface models for a response variable Y

and explanatory variables x = (X1, .... ,k) can be written as

multiple regression models:

Y " f'(x)0 + C, (2.1)

where f(x) is a column vector of functions of the explanatory

variables, S is a column vector of unknown parameters that must be

estimated, C denotes experimental error, and primes denote vector

) -2-



(or matrix) transposes. We include the subscript x on Y in

(2.1) to emphasize that this is the model for the response variable

at the particular collection x of explanatory variables. We also

write (2.1) as an approximate equality (-) rather than an exact

equality to emphasize that f'(x)1 is assumed to be a reasonable

local approximation to the true response function g(x), but is not

an exact representation. Throughout the paper, we will indicate

vectors and matrices with boldface type.

Blight and Ott (1975) suggested that (2.1) could be improved,

in the case of polynomial regression, by including an additional

term to account for the (in)adequacy of the graduating function

f'(x)8 to accurately represent g(x). To extend their approach to

the general empirical modeling situation described in Section I is

perfectly straightforward and we do so here. We replace (2.1) by:

Yx = f'(x)B + nx + c, (2.2)

where lix = g(x) - f'(x)B is the bias at x associated with the

particular graduating function that has been chosen. We write

(2.2), unlike (2.1), with an equals (=) sign to emphasize that

inclusion of the additiondl term n. is assumed to make an exact

representation of q(x) possible.

We now make the following assumptions about the terms in (2.2):

C - N(0,6 2) i.i.d. (2.3a)

0 - N(00,V) (2.3b)

nx  is a continuous Gaussian stochastic process (2.3c)

nX - N(O,TO 2R(x,x)) (2.3d)"

-3-



Cov(nu,nl TO2R(u,V). (2. 3e)

Assumption (2.3a) is the common assumption that the random error

terms are i.i.d. normal deviates and assumption (2.3b) states that

the parameters in the graduating function are assumed, a priori, to

have a multivariate normal distribution. Thus assumptions (2.3a,b)

are the standard assumptions for a Bayesian multiple regression

analysis. A special case that has been afforded special attention

(see Lindley and Smith 1972, Blight and Ott 1975, Steinberg 1984) is

when the regression coefficients are assigned a vague prior

distribution. Following Lindley and Smith (1972), a vague prior can

be obtained from (2.3b) by considering limiting forms as V-1 + 0.

The special feature of (2.2) is the introduction of the "bias"

function n directly into the statistical model. Assumptions

(2.3c-e) are designed to provide a characterization of the extent of

the bias and justification for these assumptions is made by a direct

appeal to prior belief (see, for example, Bliqht and Ott 1975, p.

80). First, it is assumed that a graduating function has been

chosen which captures the primary features of the dependence of Y

on x; therefore, it is reasonable to anticipate that the bias at

any given point will be 0. The prior variances in (2.3d) express

the believed extent of bias throughout the explanatory variable

space. Thus, for example, if the graduating function is thought to

provide a good approximation in one region of the factor space, but

may be increasingly susceptible to bias outside that region (see,

for example, Box and Draper 1959), the prior variances in (2.3d) can

-4-



be defined to reflect that belief. Finally, the prior covariances

in (2.3e) can be chosen to reflect the likely similarity of the bias

at proximate locations in the factor space, which is closely related

to prior beliefs about the "smoothness" of the true response

function. The particular parameterization for the covariance

function emphasizes two aspects: (i) it is natural to measure bias,

not absoutely, but relative to the magnitude of experimental error,

2so a has been factored out of (2.3e), and (ii) it is natural to

further decompose the covariance function into a "standardized"

covariance function R(u,v) and a proportionality constant T that

indicates the overall magnitude of the bias, relative to that of

experimental error. The standardization of the covariance function

might be accomplished in a number of ways. If, for example,

Var{rxl is assumed to be constant (as in Smith 1973 and Blight and

Ott 1975), then it would be natural to let R(uv) be the

corresponding correlation function. Alternatively, R(x,z) might

be set equal to I for some particular point x; then T would

measure the relative extent of bias at that point. Assumptions

(2.3c-e) generalize those made by Blight and Ott (1975), who

proposed a particular parametric form for the covariance function

which they felt was appropriate for polynomial regression.

Steinberg (1984) showed how (2.2)-(2.3) is related to models

that were proposed by Smith (1973) and O'Hagan (1978) and to the

generalized smoothing spline estimates of Wahba (1978), and also

showed how (2.2)-(2.3) can be expressed in terms of a generalized

-10+1
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Fourier series for the response function. We briefly indicate the

form of these models so that we can relate the results of later

sections to them. See Steinberg (1984) for further details.

Smith (1973) proposed a hierarchical model for the nxl data

vector Y:

y/O - N(O,a 2 1) (2.4a)

/ ~ N(XS,T0 2R) (2.4b)

B N(00,V), (2.4c)

where 6 is the vector of expected values of the observations, X

is the nxp matrix whose ith row is given by f'(xi), and R is

the nxn matrix whose i,jth entry is R(xiZj). O'Hagan (1978)

generalized (2.1) by allowing the parameter vector 8 to be a

function of x and used prior distributional assumptions to express

the believed variability of O(x).

Wahba (1978) proposed estimating g(x) by finding that

function gn,T(X) in a Hilbert space that minimizes:

n)1

n[ [Y, - h(xi)2 + T 1J(h), (2.5)
i= 1

where J is a semi-norm on the Hilbert space that is typically a

roughness penalty. Wahba proved that the estimate g obtained

from (2.5) is also the solution to a Bayesian estimation problem and

Steinberg (1984) showed that the appropriate Bayesian model is

precisely (2.3) when the regression coefficients are assigned a

vague prior distribution. (Note that T in (2.5) is equal to

-6-



(h) -1 in Wahba's formulation.) Wecker and Ansley (1983) also

studied this model.

Steinberg (1984) showed that (2.3) also results from

consideration of a Bayesian model for a generalized Fourier series

expansion of g(x):

g(x) = 8 f (Z) + c' 8gi(X), (2.6a)
j=1 

J  i 01

where B N(,01V) (2.6b)

and 8i  N(OTO2mi), independent. (2.6c)

Defining nx to be the second summation in (2.6a) yields (2.3) with

R(U'w) - mi g.(u) gi(V)i
i=O

provided the above series converges whenever u = v. Moreover,

(2.3) admits such an expansion whenever the factor space is a

compact set.

-7--



3. BAYESIAN ESTIMATES WITH PROPER PRIORS

In this section we derive estimates of the response function

g(x) and the regression coefficients based on the Bayesian model

defined by (2.2)-(2.3) of Section 2. Throughout this section, we

will assume that the regression coefficients have been assigned a

proper prior distribution; estimation with an improper prior will be

discussed in Section 4.

Consider first the problem of estimating the response

function g at the point x=(X ..... ,Xk) in the factor space. The

Bayesian model presented in Section 2 represents g(x) as

f'(x)0 + nX and so provides a prior distribution for g(x). A

natural way to estimate g(x), then, is to find its posterior

distribution; i.e., to find the conditional distribution of g(x)

given the observed data. Similarly, estimates of the vector of

regression coefficients should be based on the posterior

distribution of B. To find these distributions, denote the

experimental responses by the nxl random vector Y. Then:

Y = KB + 11 + E (3.1a)

g(x) = f'(x)B + nz (3.1b)

where X is the nxp matrix whose ith row is f'(xi),

=.(............,nXn)', and e is the nxl vector of experimental

errors for the observed data. Applying (2.3), simple computations

reveal that the joint distribution of (Y',g(x),B')' is

multivariate normal with expected value: ((Xo)',f'(x)Bo,60  '

and covariance matrix:

- 8 -



2 2 2
XVX' + TO2 R + 0 21 XI(x) + Ta r( x) XV

2r 2
f'(x)VZ' + To r'( x) f'(x)VE(x) + TO Rx ,z) f'(x)V

VXI' Vf(x) V

where R is the nxn matrix whose i,jth entry is R(xitzj), I is

the nxn identity matrix, and r(z) is an nxl vector whose ith

entry is Nxim).

Since the joint distribution of (T',g(x),B') is multivariate

normal, the posterior distributions of g(x) and 0 will also be

normal. Thus the natural point estimates of g(x) and 0 based on

their posterior distributions will be their posterior

expectations. Certainly, if the estimation problem is placed in a

decision-theoretic framework, the posterior expectations will be the

beat estimates with respect to all symmetric loss functions. We

give the posterior expectations in the following theorem.

Theorem 3.1: Suppose that the model is specified by (2.2)-(2.3) and

that the observed data are Y=y. Denoting the posterior expectation

of g(z) by g(x), we have:

g(x) - fgz)/r-yl

2
f'x)B 0 + [O r'l(x) + f'(x)VII'

2 2 -1
x (0 I + TO R + XVXI') y - No . (3.2)

The posterior expectation of 0 is:
K{/'l *+V'I+ 2 -1

EO/Tj - 0 0 + V'(a2 1 + TO 2R + XVI') (y - XB 0). (3.3)

Proof: The proof follows directly from standard results for

conditional expectations of multivariate normal distributions (see,

for example, Anderson 1958, p. 28).

-9-



Although Theorem 3.1 is straightforward, it is not particularly

revealing. The following results provide more intuition into the

form of the estimates. We begin by observing how (3.2) and (3.3)

are related.

Corollary: (i) The posterior expectation of g(x) has a natural

decomposition as the sum of a graduating function whose coefficients

are estimated by (3.3) and a second term, which Blight and Ott call

the correction for bias, that depends on r(x), T, and 2:

g(x) = f'(x)EfB/Y-yl + E X/Y-y}, (3.4)

where EjiT.} 2r 2 2 -1(

n x /TY7 - -a 2 r(x)( 21 + To R + XVX') - o0 (3.5)

(ii) The bias term (3.5) can be expressed in terms of the residuals

at the design points when the graduating function alone is fit.

Denote by YGF the vector of predictions that results from fitting

just the graduating function: Y GF= XE{B/TYy, and denote by eGF

the corresponding residual vector: e,,= y - Y GF. Then

En /Yaj} = Tr'(x)(I + TR) 
- 1

= eGF.

Proof: Part (ii) of the corollary is trivial. Part (i) can be

verified directly, using the same approach as in Theorem 3.1.

Alternatively, since g(X) - f'(x)0 + nx , it follows that

E{g(x)/T.l} Elf-'(x)B/Ty} + EfnX/1,!

f'(x)EIB/Y',yl + EIn/-71

which proves (3.4) and, along with equations (3.2) and (3.3),

implies (3.5).

The corollary provides valuable insight into the role of the

- 10 -
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bias covariance function To2R(u,v) in estimating g(z).

Substituting this expression into the second term of (3.4) yields:

- 2 n

g(x) _ f,(x)E{P/_Yy + 2 ! a iR(xix,) (3.6)

where the coefficients ai are estimated from the data. Thus the

estimation equation, as a function of x, combines a graduating

function with a linear combination of n functions that are

completely determined by the form of the covariance function

R(u,v) and the choice of design points.

Equation (3.6) provides a broad, flexible class of estimators

for response surfaces. Moreover, it may suggest useful guidelines

for choosing a prior covariance function, since some choices will

lead to especially appealing estimation equations while others may

have undesirable consequences. For example, Blight and Ott (1975)

considered the special case of univariate polynomial regression and

suggested using R(u,v) - Alu -vi, O<A<I, which is the covariance

function for a first order autoregressive process. It can be seen

from (3.6) that this choice leads to an estimate g(x) whose

derivative is discontinuous at each design point. If it is believed

that the response function has a continuous derivative, then this

prior covariance function leads to a poor representation of

posterior belief.

Smith's (1973) prior specification for univariate regression,

whereby R - I, is also called into question. (Smith made prior

- 11 -
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assumptions only about the matrix R, not about the complete

covariance function.) In general, R will be equal to the identity

only if R(u,v) decreases rapidly as lu - vi increases, in which

case R(x,xi) will have a rather sharp "spike" around xi. From

(3.6), the resulting estimate g(x) will deviate from the

graduating function only in the vicinity of the design points, but

these deviations may be quite sharp. This also would seem to be an

unlikely summary of posterior belief about the nature of the

response function.

O'Hagan (1978) also considered in detail the case of univariate

polynomial regression and sugqested a covariance function of the

form:

R(u,v) = exp{-(u-v)2/d2} x f'(u)Vf(v),

where d2 is a scaling parameter and W is a positive definite

pxp matrix. This choice is similar to Blight and Ott's, but there

are two differences. First, R(u,u) will now typically be an

increasing function of u2k, where k is the degree of the

polynomial, instead of a constant, as in Blight and Ott's

specification; second, R(u,v) now decreases exponentially in the

square of lu - vj. An important consequence of the latter change

is that g(x) will now be an analytic function of x instead of a

function with a discontinuous first derivative.

Wahba (1978) devoted particular attention to univariate

polynomial regression on the interval (0,I) and recommended

choosinq R to produce polynomial spline estimates. In particular,

- 12 -



for the popular cubic splines, the graduating function is a straight

line and:

(3u2v - u3)/6 if u 4 v

R(u,v) =

(3UV2 - v3)/6 if v < u,

which is the covariance function for an integrated Brownian motion

on the unit interval (see Shepp 1966). Note that for fixed v,

R(u,v) is itself a cubic spline as a function of u; since a linear

combination of cubic splines is again a cubic spline, it follows

from (3.6) that this choice of R(u,v) will lead to an estimate

g(x) which is a cubic spline. (Note, however, that (3.6) will not

give Wahba's cubic spline estimate of g(x), which results only

when the regression coefficients are assigned a vague priori the

results above show that even with a proper prior, it is possible to

obtain an estimate that is a cubic spline.)

If a Bayesian generalized Fourier series representation of

g(x) is used as a basis to derive the covariance function, then the

estimate g(x) can also be written as a generalized Fourier

series. In particular, if the experiment is modeled by (2.6a-c),

then substituting (2.7) into (3.6) yields:

g(x) - f'(x)Ef{B,/T + b g9 x), (3.7)

2 n

where bj W To2 iIIai gj (xi). The {ail in the last expression are

the same coefficients that appear in (3.6). Moreover, it is easy to

- 13 -
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show that:

b RIO-/YUY}.

Thus, if the generalized Fourier series approach is employed, g(x)

is a series of exactly the same form as g(x), but with the

coefficients of all the terms in the series estimated by their

posterior means.

4. BAYESIAN ESTIMATES WITH IMPROPER PRIORS

The authors of the Bayesian models that were described in

Section 2 have argued that it is often appropriate to assume an

improper prior distribution for the regression coefficients S. In

this section, we explore the consequences of such an assumption for

estimating the response surface and the regression parameters. For

discussion of the significance of assigning 0 an improper prior,

see Steinberg (1984, Sect. 5.3).

As noted in Section 2, a natural way to assign 0 an improper

prior is to consider limiting forms as its prior precision matrix

V -" converges to a 0 matrix; i.e., to retain the form of a normal

distribution but to allow the prior variance of that distribution to

become arbitrarily large. We can then derive the posterior

distributions of g(x) and B by taking limits of the

corresponding posterior distributions when a proper prior is used.

Specifically, we will derive limiting values for their posterior

means (in this section) and variances (in Section 6) and will show

that these limits exist provided that the X matrix has full column

- 14 -



rank. Since the posterior distributions are normal when a proper

prior is used, the corresponding posterior densities must converge

to a normal density with the limiting mean and variance as its

parameters. Applying a theorem of Schefff (1947), we conclude that

the limiting posterior distributions are also normal. As such, the

posterior means will be the natural estimates of the response

function and the regression parameters and we give these in the

following theorem.

Theorem 4.1: Suppose X has full column rank and an improper prior

is assigned to the regression coefficients. Then the posterior mean

of g(x) is:

g(x) "-*li E{g(z)/u-yj (4.1)

V * rf(x)'U t x-1 .- 1xn;j-xn-- - 0

where N - (3 + TR). The estimated regression coefficients are:

lif EJI/Yu71 - [x,-'-'Z t,* (4.2)=, -. 042
V +0

Before proceeding with the proof, we note that this result is by no

means new; in fact, Theorem 4.1 is only a slight generalization of

Theorem 2 in Wahba (1978) and Theorem 2 in O'Haqan (1978), both of

which assume that V - kI.

Proof: The proof relies on two simple matrix identities, which we

state as lemmas. In both of the lemmas, we assume that the

dimensions of the matrices are such that the indicated matrix

operations are well-defined and that all the necessary matrix

inverses exist.

- 15 - ,



mem I: (A + XV') -, a " - AA'XZ'a-X + V-)1-ZA "1  (4.3)

-1 -1 -1 -1 -1
Lemma 2: VZJ'(A + VIr') - (ZIA I + V ) IA • (4.4)

Both of the lemmas can be verified directly; an interesting

statistical proof of Lemma I was given by Lindley and Smith (1972)

using properties of a hierarchical Bayesian linear model. The proof

of the main result follows directly upon using the lemmas to rewrite

(3.2) and (3.3) with A = a2K . 02(1 + TR), noting that:

(X'A- 1  + V-) - 1 + 02(IX'-1x) - 1 as V- 1 + 0

provided that X has full column rank. Details are given in the

Appendix. Whereas earlier proofs required several complicated

limits, only the simple limiting result above is needed here.

As with the estimates (3.1) and (3.2) (when proper priors are

used), (4.1) can be decomposed into the sum of a graduating function

whose coefficients are estimated by (4.2) and a "correction for

bias" term:

li, Efg(x)/?.yl - t'(x) lii? EIO/T.'yV; + 0 V; + 0

+ 0Eil Ej? /T-y}, (4.5)

where the latter term is given by the final line of (4.1). Also,

the estimated response function can once again be written, as in

(3.6), as the sum of a graduating function and n functions whose

form is completely determined by the covariance function (2.3e):
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n
lij E{g(x)/Y-uy - f'(x) lij EfO/Yuy} + T a R(x,Zi,
V + 0 V + 0 i-I

(4.6)

where the coefficients a, are estimated from the data. Thus all

the comments of the previous section on the role of the covariance

function R(u,v) in the estimated response function are also valid

if the regression coefficients are assigned an improper prior. In

particular, if the covariance function is derived using a

generalized Fourier series model, the estimate will be a generalized

Fourier series of the same form whose coefficients will be estimated

by: li 0{e /Yy}.

V 40

There are two important differences in the estimated response

function that result from assuming a vague prior distribution for

the regression coefficients. First, the estimation equation no

longer depends on the prior mean 00 for these coefficients. The

regression coefficients are now estimated on the basis of the data

alone. Second, the estimation equation is independent of a2, but

does depend on the parameter T which expresses the overall

magnitude of bias relative to that of experimental error.

The estimate (4.2) for the regression coefficients is clearly

the generalized least squares estimate that corresponds to the

model Y - Z$ + 9 in which the error terms are correlated with

E{sC'} - a2(I + TR), and is the maximum likelihood estimate for

this model if it is further assumed that the errors have a

multivariate normal distribution. These facts suggest a

- 17 -
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justification for (4.2) as an estimator of B in classical sampling

theory terms. If the proposed regression model is only an

approximation to the true response function, then deviations from

that model will be the sum of two components, one due to

experimental error and the other due to bias. It is common to

assume that experimental errors are independent of one another, but

such an assumption seems quite implausible for errors due to bias.

Thus the resulting model should involve correlated error terms in

which the correlations reflect the extent of the bias, just as in

the above model. Of course, such an argument does not suggest what

the precise form of the error covariance matrix should be. (One

possibility might be to assume a simple parametric form for the

covariance matrix and then to maximize the resulting likelihood

function over all the parameters.) Also, the frequentist approach

would lead to an estimator that includes only the first term of

(4.1), the best fitting graduating function in light of experimental

error and bias, the second term, which gives the adjustment for

bias, arises only in the Bayesian context.

Allowing T to range from 0 to infinity permits us to model a

wide range of situations, from those in which experimental error is

dominant (when, say, scientific knowledge provides an exact form for

the response function) through those in which the bias is dominant

(as might be the case in numerical analysis). We now consider the

estimates that result in these limiting cases.

Theorem 4.2: Given the model (2.2)-(2.3) with an improper prior

- 18 -



assigned to the regression coefficients, the estimates (4.1) and

(4.2) have the following limiting forms as T + 0:

lim lij Eig(x)/Y-yl = f'(x)(I)X'y. (4.7)
T+0 V" + 0

lim li. EIB/Y=yj (X'x) -x'. (4.8)
r+O v- + 0

If R is non-singular, then the estimates (4.1) and (4.2) have the

following limiting forms as T + -:

lir lij E{g(x)/Y=y} = f'(x)(CX'R- 1) K1R -ly + (4.9)
r (x){R-I- R1-l(KR1-l)-1 'R-}y.

rx= R,} -1 -1 1

lim ll, EI/TyI = (VI X) 1R y. (4.10)
T-e V + 0

Proof: Equations (4.7) and (4.8) follow directly from (4.1) and

-1
(4.2) upon noting that (I + TR) + I as T + 0. To obtain

equations (4.9) and (4.10), we rewrite (4.1) and (4.2), replacing

(I + TR)- I by T(T-I + R) - . After some cancellation, the

expressions now depend on T only through (T-1 1 + R) 1, which

converges to *-1  as T + 0, provided that R is non-singular,

and results in (4.9) and (4.10).

The first half of Theorem 4.2 yields familiar answers: the

ordinary least squares estimators. Thus, ordinary least squares

obtains as a limiting case of the Bayesian model when the regression

parameters have an improper prior and when the bias is assumed to be

negligible relative to experimental error (i.e. when the graduating

function is assumed to exactly represent the response function).

The second half of Theorem 4.2 does not have so immediate an
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interpretation, but the following section will clarify what happens

when T tends to infinity.

5. SPECIAL FORMS FOR THE Y VECTOR

In this section we derive some results describing the vector

Y of precicted values whose ith entry is g(x i), where xi is

the ith design point. We begin by examining the relationship

between Y and T, the presumed extent of bias relative to

experimental error, when the regression coefficients are assigned an

improper prior.

Theorem 5.1: Suppose, given the model (2.2)-(2.3), that X has

full column rank and that R = (R(xi,xj)) is non-singular. Then:

lim li = y; (5.1)
T" W V 0

i.e., the estimation equation interpolates the observed data.

Replicate observations at any design points will contribute

identical rows and columns to R, making it singular. Suppose,

however, that elimination of all identical rows and columns yields a

non-singular matrix. Then:

Yi = average of all observations at x. (5.2)

Proof: Noting that the ith row of X is f'(xi), and that the

ith row of R is r'(xi), (5.1) is an immediate consequence of

(4.9). To obtain (5.2), observe that if there are replicate

observations at xi, all the information they provide about g(x)

is contained in their average. Thus we can compute (3.2), (4.1),
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and (4.9) conditioning only on the vector of replicate averages,

rather than the entire data vector, which leads to (5.2). Details

are given in the Appendix.

Combining the results of Theorem 4.2 and Theorem 5.1 provides

considerable insight into how the estimated response function g(x)

behaves as a function of T: it varies from the least squares

graduating function (when T = 0) to an interpolant (when T +

As an intuitive justification for the latter result, we might think

of T +- as an appropriate way to model data that are not subject

to experimental error, so that the observed responses are exact

values of the response function. The estimated response function

reflects this certain knowledge by correctly estimating the response

at those points.

The above description of how the estimated response function

depends on T is well-known in the spline literature when all the

design points are distinct (see, for example, Kimeldorf and Wahba

1971), but has generally not been extended to cover replicates nor

has it been observed in connection to the Bayesian models. Blight

and Ott, for example, proposed a parametric form for the covariance

function R and then suggested that these parameters and T be

jointly estimated by minimizing the residual sum of squares,

2
S(R,T) ) (y - Yi) It is clear from Theorem 5.1 that S(R,T)

will always be minimized when T + -, regardless of the values of

the other parameters.

A common property of Bayes estimates using proper priors is

- 21 -

110



that they can be expressed as weighted averages of their prior means

and the observed data. This is not possible for g(x) for an

arbitrary point x because, in general, no observation has been

made there; for the n observed data points, however, and for the

estimated regression coefficients, we can write such weighted

averages.

Theorem 5.2: Given the model (2.2)-(2.3), the predicted value

vector ; can be expressed as a weighted average of its prior

mean X0 and the observed response vector y, where the weights

are inversely proportional to the respective measures of

variation, TO2R + X' and a2:

[-21 + (TO2 R + XYE')]

x [-2y + (TO 2 R + XVX')-I1 00. (5.3)

Similarly, the estimated regression coefficients can be written as a

weighted average of their prior mean 00 and the observed

responses, with the weights inversely proportional to the prior and

data covariance matrices, respectively:

E{6/Y=yl = [a-2X,(Z + TR)-I + V-1 -1

x [a -2, (3 + TR)- 1 y + V-0

Proof: We exploit here the hierarchical model formulation (2.4a-c)

proposed by Smith (1973). In this formulation, E{Y/of = 0, so

that Y = E{e/T=yl. Equation (5.3) is then a special case of a

theorem proved by Lindley and Smith (1972, equations 12 and 13). To

prove (5.4), we combine (2.4a) and (2.4b) to obtain the distribution

of Y conditional on $ without the mediating parameter 0:
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Y/O - N($,o 2 (I + TR)).

This, together with (2.4c) matches the assumptions of a lemma proved

by Lindley and Smith (1972)1 their equations (7) and (8) imply

(5.4).

Steinberg (1984), exploiting results of Wahba (1978), showed

that the Bayesian model considered here leads to generalized spline

estimates when the regression coefficients are assigned an improper

prior. The underlying motivation for spline estimates is to find a

reasonably "smooth" function that closely follows the observed

data. Spline estimates are derived as solutions to the minimization

problem (2.5) stated in Section 2. In the following theorem, we

show that ; is the solution to a discrete analogue of (2.5).

Theorem 5.3: Y solves the minimization problem: find u to

minimize

(u-y)'(u-y) + (W-28 )' (To2 R + XVX')- (u- 0). (5.5)

As V-1 + 0, (5.5) tends to:

(u-y)'(u-y) + -1u'[R-1- i-Rx(X'R-1 x)-,X'a-ju. (5.6)

Moreover, the second term in (5.6) is 0 if and only if u e col(X);

that is, if and only if u can be written as a linear combination of

the columns of X.

Proof; The proof is given in the Appendix.

Both (5.5) and (5.6) describe the vector Y of predicted

values as the solution to a minimization problem composed of two

terms: the residual sum of squares, (Y-y)'(Y-y), and a quadratic

penalty term. For the general case (5.5), the quadratic term
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penalizes Y in accord with its distance from its prior

expectation, X 0 . This has the effect of "shrinking" the vector of

predicted values toward its prior expectation. The extent of the

2 2 -1
shrinkage depends on the weighting matrix a (TO R + XVXI') , which

is proportional to a2, but is inversely proportional to the prior

variance TO2R + XVX'. Thus the prior expectation will be most

influential when our prior precision is great relative to

experimental error; when our prior precision is not great, the data

will dominate the prior in determining Y.

The quadratic penalty term undergoes several interesting

changes in the limiting case of (5.6). First, the penalty depends

2on the variance-bias tradeoff parameter T but not on a . Second,

the penalty is independent of the prior expectation X0"- Third,

the penalty is 0 only for those vectors of predicted values which

are in the column space of X; i.e., for those vectors of predicted

values which can be exactly written as a graduating function. The

meaning of these last two points is that the penalty no longer

induces shrinkage toward a particular, pre-specified vector of

predicted values; rather, in a more general sense, there is

shrinkage toward the response plane spanned by the graduating

function. Finally, equation (5.6) is an exact discrete analogue of

(2.5), the continuous smoothing problem that leads to generalized

spline estimation. Thus Theorem 5.3 further illustrates the close

link between spline estimation and the Bayesian models when a

diffuse prior is assigned to the regression coefficients.
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Theorem 5.3 can also be used to show how the residual sum of

squares depends on the choice of T. Let us denote the vector of

predicted values by Y(T) to emphasize its dependence on T. Then

define the residual sum of squares function by

RSS(T) = Cy - Y(T)]'[y - Y(T)].

Corollary: If X has full column rank and the regression

coefficients are assigned an improper prior, then RSS(T) is a

monotone decreasing function of T, with RSS(O) equal to the

residual sum of squares from fitting the graduating function by

ordinary least squares. If, in addition, R is non-singular,

then RSS(-) = 0.
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6. PRECISION OF THE ESTIMATES

Measures of precision for the Bayesian model described in

Section 2 can be obtained in exactly the same fashion as the

estimates derived in the preceding sections. Since the posterior

distributions of g(x) and of 0 are normal, the natural measures

of precision are the corresponding posterior variances, which we

give in the following theorem.

Theorem 6.1 Given the model (2.2)-(2.3), the posterior variance

of g(x) is:

2
Var{g(x)/Ty = TO R(x,Z) + f'(x)VW(x)

- [o 2r' (x) + f (x)X' ](02  + T02R + ,v,]-'

X [TO2 r(x) + XIf(z)]. (6.1)

The posterior variance matrix for B is:

2 2 -
VarlP/Y-y} = V - VX'(C I + TO R + X') -IXV. (6.2)

Proof: The proof, like that of Theorem 3.1, follows from standard

properties of multivariate normal vectors.

The posterior variance of g(x), like the posterior mean, can

be decomposed into several terms. Following equation (2.2),

Varjg()/VImy} -Varf'.x) + n /Y1

- f'(z)VarB/-.y}f(x) + Var{, ,/Y,}

+ 2f'(x)Cov{,nx/Y=y}• (6.3)

Once again, it is particularly interesting to study the special

case when the regression coefficients are assigned an improper

prior. As we noted in Section 4, the posterior distributions are

still normal, provided the X matrix has full column rank. In the
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following theorem, we derive the posterior variances.

Theorem 6.2: Suppose X has full column rank and an improper prior

is assigned to the regression coefficients of (2.2)-(2.3). Then the

posterior variance of g(x) is:

lij Var{g(x)/Y-yl -a 2{TR(zz) +

- 2Tr'(x)N -1X(IN- X) -f(x)

T r2 r , (z)[M-1(-I'N-)'N 1 ]rlx)},

(6.4)

where M I I + TR. The posterior variance matrix of 0 is:

lij Var{0/Ty} = 2 (z'M-z)- y6.5)

Proof: The proof is given in the Appendix.

When the regression coefficients are assigned an improper

prior, we found in Section 4 that the posterior means are

independent of C2y we see above that the posterior variances are

proportional to a2 with a constant of proportionality that is a

function of T, the covariance function R(u,v), the experimental

design and, in the case of g(x), the point x. The posterior

variance matrix for 0 is the same matrix that would result from a

classical sampling theory model in which the error terms are

correlated with E{fe'} - a2(1 + TR). Although the posterior

variances do depend on the experimental design, they are independent

of the observed responses. For the special case when R is

non-singular, we note that Wahba (1983, Theorem 2) gives an

alternative expression for (6.4) . The equivalence of her formula
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and (6.4) can be verified by straightforward, but tedious, algebra.

It is quite difficult to describe precisely how the posterior

variances behave as functions of the bias covariance parameters, the

design, and the estimation site. Some general conclusions, however,

can be reached. The following theorem describes how the posterior

variances depend on T.

Theorem 6.3: Assume the data are modeled by (2.2)-(2.3). Then the

following conclusions hold:

(i) The posterior variance of g(x) is a monotone increasing

function of T.

(ii) The posterior variance of g(x) obtains a minimum value of

02f.(x)(X'Z + a2,-1)-lf(x)

when T - 0. If the regression coefficients are assigned an

improper prior, the minimum value is

02f'(x)('ZX)-f(x).

(iii) If x is a design point, then:
< °2.

Varfg(x)/Y=yl (Ta

(iv) Suppose the design includes m distinct points, x1 , .... ,xm .

Denote by i the mxl vector of average responses at the distinct

design points; i.e., Yi = average of observations at xi. Denote

by To2R the bias covariance matrix of Y and denote by T2RX

the bias covariance matrix of (T',g(x)). If both R and k are

non-singular, then the posterior variance of q(x) diverges to

infinity as T + .

(v) The posterior variance of 0 is also a monotone increasinq
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function of T. i.e., if we denote (6.2) by D(T) to emphasize its

dependence on T, then D(T2 ) - D(T1 ) is a positive semi-definite

matrix whenever T2 > T.

(vi) The minimum posterior variance of 0 is attained when T = 0

and is

02(M'X + a2v- _-1.

If the regression coefficients are assigned an improper prior, the

minimum value is

Proof: The proof is given in the Appendix.

The monotonicity property proved in Theorem 6.3 is intuitively

appealing. If we recall that T reflects the suspected extent of

bias relative to experimental error, then increasing T (all else

fixed) corresponds to positing a model in which the effect of bias

is more severe. As we might expect, such an assumption leads to a

degradation in the precision of the estimates. In particular,

Theorem 6.3 allows us to compare models that include a bias term

(T > 0) with models that include only a graduating function

(T - 0). The (tentative) assumption that a particular graduating

function exactly describes the response function must lead to a more

optimistic assessment of the pre,4sion of the estimates than would

be obtained if possible bias were ex licitly included in the

model. In particular, the 4 'atir variances provided by ordinary

least squares (OLS) regression analysis are identical to the

posterior variances when T - 0 and the regression coefficients are

- 29 -
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assigned an improper prior. Thus OLS leads to a "best case"

assessment of precision that may be unduly optimistic.

Another interesting conclusion from Theorem 6.3 concerns the

contrasting behavior of the posterior variance of g(x) at design

2
points and at other points. Whereas the former is bounded by a 2

the latter may diverge to infinity as T + -. The key term in

determining the limiting behavior of Varfg(x)/Ywyl is

Var{,n/T'Y}, the posterior variance of the bias term at x, which

depends on R(u,w) and the experimental design used. If the

posterior variance of the bias is positive, then Var{g(x)/Tyl

will diverge to infinity as T + -. In general, the only way to

assure a minimal level of precision for estimating g(x) is to take

an observation at x. This contrasts markedly with the implication,

when it is assumed that no bias is present, that maximal precision

for estimating g(x) can sometimes be obtained by taking

observations far away from x.

Useful information about the form of the posterior variances

can be obtained by considering the vector of estimated values at

the n design points. The basic results are given in the following

theorem, which is also found in Wahba (1983) for the special case

when R is non-singular and the regression coefficients are

assigned an improper prior.

Theorem 6.4: Define 0 as in (2.4) to be the vector of expected

values at the design points. The posterior variance matrix of

is:
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Va{6Y-I 2 -4 2 2 -1

Varle/T-TI - a2I - 04(0 1 + TO R + ZV')- (6.6)

(6.6) is monotone increasing in T (i.e., T2 > T1 implies that

the difference of the respective variance matrices is positive

semi-definite) and achieves a minimum of

02 X(X'X + a2V'1)-1i ,

when T - 0. If R is non-singular, (6.6) converges to a21 as

T + 0. If the regression coefficients are assigned an improper

prior distribution, then the limiting posterior covariance matrix

is:

li2 +Var{ /u'2J -1 I u-ZI'xI-1' .'}.

(6.7)

(6.7) is also monotone increasing in T and achieves a minimum of

02X(X'1)-lxV when T 0 0. If R is non-singular, (6.7) also

converges to 021 as T +

Proof: The proof is given in the Appendix.

Several conclusions can be drawn from the limiting forms in

Theorem 6.4. If T - 0, the Bayesian model produces the familiar

formulas for Bayesian multiple regression with a proper prior (6.6)

or for OLS regression (6.7) when an improper prior is employed. At

the other extreme, as T + -, R non-singular implies that the

posterior variance matrix of 0 is o21. One possible

interpretation of this result is that T + - corresponds to a

situation in which the experimenter believes that the response

function is so erratic that observations at different points are

essentially samples from independent, unrelated distributions. Thus
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r2

only observations made at x provide any basis for inference

about g(x) and the posterior variance of g(x) at each desiqn

2point is equal to a , the variance of the observation made there.

7. ESTIMATION OF VARIANCE PARAMETERS

Thus far we have presented results for the Bayesian model of

2
Section 2 that depend on the experimental error variance a , the

parameter T that reflects the magnitude of bias relative to

experimental error, and the form of the bias covariance function,

R(u,v). In this section we consider various methods that might be

used to make inferences about these components of the model. The

discussion here will be rather general; we hope to present more

exact results in a later paper.

7.1 Estimating a2

Ideally we would like to use replicate observations to

estimate 02 . Just as in ordinary least squares regression,

replicate observations allow us to form a "pure error" sum of

squares that provides an estimate of a2 independent of any

assumptions about the nature of the response function. Bayes

2
estimates can be obtained by assuming a prior distribution for 

a

and combining the prior with the information in the replicates.

If there are no replicates in the experimental design,

estimates of 02 can be based on the vector of residuals

e - y - T from the estimated response function. Wahba (1983), in
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the context of cubic spline regression, suggested the estimate:

2=
a = e'e/tr(B), (7.1)

where B is the matrix that maps y into e and tr denotes

matrix trace. If T = 0, (7.1) reduces to the conventional least

squares regression estimate of 0 The rationale for dividing by

tr(B) is that Var{e} = 02B.

Bayes estimates of 02 can be derived by assuming an

appropriate prior distribution for a2. As one possibility, suppose

we adopt a uniform prior for a2. Then the posterior density of

02 under (2.2)-(2.3), up to a proportionality constant, is:

exp(-(Y-o )'[02 + TO2R + XVX' -(Y- 0 )/21
p(O2/y) 2 2

det(O I + To R + XVZ')} (/2
(7.2)

Since (7.2) results in a rather complicated posterior distribution

for a2, we might, following Lindley and Smith (1972), estimate

02 by the mode of the posterior density. Differentiating (7.2)

with respect to 02 and equating to 0 yields the equation:

(Y- o0 )'C-I(1 + TR)C-I (Y- 0 ) - tr[(I + TR)C -'] = 0, (7.3)

where C - 021 + T02R + XVX'. In general, (7.3) does not provide a

closed form solution for a2. We can, however, state a closed form

for the special case in which the regression coefficients are

assigned an improper prior. As in Section 4, we consider the limit

of the left hand side of (7.3) as V- 1 converges to a 0 matrix.

Using Lemma I of Section 4, it is easily verified that

C "I + -28 as V - 1 + 0, where B is the matrix referred to above
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that maps y into the residual vector e. Further, (I + TR)B is

an idempotent matrix that projects into the orthogonal complement of

the column space of X, so that the second term in (7.3) converges

2to (n - p)/O . Thus, the posterior modal estimate when the

regression coefficients are assigned an improper prior is:

2 = e'(I + TR)e / (n - p). (7.4)

The estimate (7.4) is quite similar to Wahba's estimate (7.1); (7.4)

modifies (7.1) by including (I + TR) in both the numerator and the

denominator to obtain a weighted sum of squares divided by a

constant divisor. In addition, (7.4) is precisely the estimate of

a2 that would result from a conventional generalized least squares

analysis of the regression model Y = XO + £ when the errors are

correlated with E{e'l = a2(I + TR).

Another possibility, again suggested by Lindley and Smith

(1972), is to estimate a2 by the mode of the joint posterior of

02 and 0, rather than the mode of the marginal posterior of

2• If we denote the prior densities of a2 and 0 by p(2

and p(O), respectively, then their joint posterior will be:

2PG2 -1O 212 p(02)p(B) exp{-(Y-18)' (I+tR)-I(Y-W)/2a 2

p(a , O/Y) {det(I+TR)} 1 /2 0,

(7.5)

For each fixed value of a2 , the posterior distribution of 0 is

normal with mean (and modal) value [X'(I+TR)- X] -1'(I+TR)- Y. To

find the joint modes, then, we need only substitute the modal value

of 0 into (7.5) and maximize with respect to a2. It is easy to
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verify that, with this substitution, the quadratic form in the

numerator of (7.5) is equal to e'(I+TR)e. If, a priori, a2 is

assigned an inverse chi-square distribution, then the resulting

function of a2 will retain the form of an inverse chi-square

density. A special limiting case of the inverse chi-square is the

commonly used improper prior in which p(2 ) 1/0 2, for which (7.5)

leads to the modal estimate:
-2
a = e'(X+TR)e / (n + 2). (7.6)

If we were to consider (7.5) evaluated at the mode of 8 as an

inverse chi-square density for a2, the corresponding mean estimate

would be:
.2
a e'(I+TR)e / (n - 2). (7.7)

Wecker and Ansley (1983) analyzed the cubic spline model from a

frequentist, rather than a Bayesian, perspective and derived a

maximum likelihood estimate of 02:

-2
0 , e'(I+TR)e / n. (7.8)

The derivation of (7.8) is identical to that of (7.6) except that no

prior is introduced, so that only the likelihood is maximized.

7.2 Estimating T

We have already seen that the estimated response function and

the precision of the estimates can vary considerably as functions

of T. Thus it is clearly important to consider methods for

estimating T. The spline literature, in particular, has devoted

considerable attention to this problem. Craven and Wahba (1977)
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proposed choosing T to minimize the generalized cross validation

(GCV) function:

V(T) = e'e / [tr(B)J2, (7.9)

where e and B are defined as in Section 7.1. Since V(T) is

not a simple function of T, a numerical search algorithm is

necessary to find the estimate. The GCV method is justified as an

approximation to choosing T to minimize mean squared error and has

been found to work well provided the data are not too sparse.

Wecker and Ansley (1983) proposed the use of maximum likelihood

to estimate T, which amounts to choosing T to minimize:

el(I+TR)e / {det[(I+TR)-Il] 1/ n. (7.10)

As witb the GCV method, a numerical search is necessary to carry out

the minimization.

A strictly Bayesian approach would be to postulate a prior

distribution for T and then to compute its posterior distribution

given the observed data. Moreover, since we have derived posterior

distributions for the response function that are conditional on

T, it would then be appropriate to derive the marginal distribution

of the response function by averaging over the posterior of T.

Unfortunately, the posterior distribution will inevitably be quite

complicated, so that the averaging with respect to T that is

contemplated above will probably be intractable analytically. We

could, as an approximation, simply derive a point estimate of T

and then proceed to estimate the response function as though that

were the true value, a procedure that is reminiscent of empirical
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Bayes estimation (see, for example, Morris 1983). The point

estimate for T, like that for 02, could be derived as the

posterior mode and, assuming that the posterior is dominated by the

likelihood, would be similar to Wecker and Ansley's maximum

likelihood estimate (7.10).

It is not at all clear what would constitute a reasonable prior

distribution for T. Ideally, a prior for T should reflect the

experimenter's beliefs about how severe the bias is likely to be

relative to experimental error. Young (1977) suggested that the

prior for T be chosen from the family of inverse chi-square

distributions, but it is still necessary to specify a prior mean and

variance for T. Another possibility would be to assign an

"uninformative" prior to T, an approach that is often advocated

for parameters about which prior information is weak. But what

should this uninformative prior be? One candidate is p(r) M 1/T,

since T is a scale parameter in the model. (This would also be

the uninformative prior from within the inverse chi-square

family.) But the model here is a complicated one and, without

further research, it is not clear what priors will lead to

reasonable answers.

7.3 Estimating R(u,w)

The covariance function R(u,v) may be seen here as a

high-dimensional nuisance parameter in which we have little or no

intrinsic interest but which we require in order to estimate the
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response function. Although non-parametric estimation of R(uv)

might be possible, the common strategy has been to propose some

simple parametric form such as those described in Section 3. The

problem of estimating R is thus reduced to one of estimating the

associated parameters, which could be accomplished using the methods

described in Section 7.2 for estimating T. The parameters in R,

however, typically enter the likelihood in a much more complicated

fashion than does T, so that all the comments in the preceding

section on the difficulty of estimating T and of assigning it a

prior distribution will be even more true of parameters in R.
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8. EXAMPLES

In this section we present two examples to illustrate the

Bayesian response surface model. The first example involves

simulated data with just one explanatory variablei the second

example considers actual data from a chemical response surface

experiment with two explanatory variables. All the Bayes estimates

described in this section were calculated using the MATLAB matrix

laboratory package (see Moler 1981).

8.1 Simulated Data

Suppose the true mean response to a scaled, centered

explanatory variable x is qiven by the response function:

g(x) x + 3x/(1 + x + 3x2), (8.1)

which is the sum of a linear function and an inverse polynomial (see

Nelder 1966 for a discussion of inverse polynomials). The graph of

this function appears in Figure 1. Experimental data were simulated

by adding computer generated random errors to 15 equally spaced

design points between x - -1.4 and x - 1.4. The random errors

were generated from a normal(0,0.22 ) distribution via the NRANDOM

command in Minitab (see Ryan, Joiner, and Ryan 1981). The simulated

data appear as asterisks in Figure 1.

To model the data, we used a straight line as a graduating

function (assigning improper priors to its coefficients) and defined

the bias term by considering an expansion of the response function

in normalized Hermite polynomials (see Steinberg 1984 for
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details). The resulting covariance function for the bias (2.3e) is:

2 exp{-(u-v)2 w 2/(1-w 2) + 2uvw/(1-w)}coVlflur)v = 2 1/2(8.2)
(1-w2)1 /2

where w is a smoothing parameter that indicates the rate at which

higher degree polynomials in the expansion are downweighted. Rather

than estimate w, we chose to set w = 0.4; similar results were

obtained with other values of w. We used generalized cross

validation (7.9) to estimate T; the criterion function leveled off

at about T = 5 and we used this as our estimate of T. (The

maximum likelihood criterion (7.10) indicated that T should be

much closer to 0 and, in both this and the following example,

appeared to severely underestimate T.) Both (7.1) and (7.4) were

considered as estimators of a2 and, for the estimated value of

T, they were in near agreement, giving estimates of .064 and

.060, respectively (for other values of T, (7.1) and (7.4)

differed by as much as 30%).

The Bayes estimate of g(x) is graphed in Figure 1. It does

an excellent job of reproducing g for low and high values of x;

although it is less successful in the middle region, this seems in

large part to be the consequence of the error sequence, for which

most of the errors at low x's were positive but most of the errors

at high x's were negative. In particular, the large positive

error term at x = -0.4 and the large negative error at x = 0.4

appear to strongly influence the fit in the middle of Figure 1. The
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Bayes estimate certainly matches both the data and the true response

function far more closely than would the OLS straight line fit here,

and we think it is a useful alternative.

Figure 2 contrasts the variance of the estimated response

function under the Bayesian model and under OLS. Since the

variances are symmetric about 0, Figure 2 includes only positive

x. Three features are noteworthy. First, for fixed a2 , the

Bayesian model with bias always suggests larger variances than does

OLS. Over most of the experimental range, the variances are two to

three times larger with the Bayesian model. Second, for small x,

the Bayesian variances actually increase more slowly than the OLS

variances. This phenomenon can be explained by remembering that,

with the Bayesian model, most of the information used to estimate

g(x) comes from nearby observations. Thus g(1/2) can be estimated

with almost as much precision as g(O) because the distribution of

design points close to 1/2 is about the same as that close to

0. Third, for x's near the edge of and outside the range of the

data, variances increase dramatically with the Bayesian model.

Reasonably precise estimates are possible only over the range of the

data, where we have hard information on the nature of the response

function; outside that range, precision is markedly worse. The

Bayesian model, by explicitly stating that a tentative model will be

subject to bias, leads to the realistic, albeit pessimistic,

conclusion that the data provide little basis for extrapolation.
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8.2 Chemical Experiment

Myers (1976) discusses a response surface experiment to model

yield of the chemical mercaptobenzothiazole (MBT) as a function of

reaction time and temperature. The experiment used a rotatable

central composite design which is commonly used for fitting second

order polynomials. The observed data are listed in Table 1 and

shown in Figure 3. The number at the center of the design in Figure

3 is the average of the three runs made there; also, there was an

additional run made at (-1,0) which we have deleted from our

analysis in order to preserve the central composite structure (our

results would not change much if the run were included).

Following Myers, we fit a second order polynomial in time and

temperature to the MBT data using OLS. Figure 4 shows a contour

plot of estimated yields from the OLS fit. The duplicate runs at

the origin make possible a standard test for lack of fit of the

second order polynomial model. The mean square error for lack of

fit is 39.61 with 3 d.f. compared with a pure error mean square

of 0.763 with 2 d.f. from the center replicates, indicating highly

significant lack of fit. Inspection of the data (as well as any

standard diagnostics) reveals that the two low yields in the

northeast corner of Figure 3 are the major source of discrepancy.

One possible explanation is that these two observations had unusual

errors, but their proximity suggests, to the contrary, that they

accurately reflect a severe degradation of yield when temperature

and reaction time are too high. The OLS fit is unable to account
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Table 1: Data from the MET experiment. The explanatory
variables have been standardized so that

X1aReaction time - 12 minutes

8 minutes

x2 w
30 degrees C

X1 x2  Y

-0.71 -0.71 81.3
0.71 -0.71 85.3

-0.71 0.71 83.1
0.71 0.71 72.7

-1.00 0.00 83.8
1.00 0.00 81.7
0.00 -1.00 84.7
0.00 1.00 57.9
0.00 0.00 82.4
0.00 0.00 82.9
0.00 0.00 81.2

Tigure 3: Plot of the MET data.

1.1 *57.9

*83.1 *72.7

i0.0 *83.8 *82.2 *1 1. 7

*81.3 *85.3

-1.1 '84.7

-1.1 0.0 1.1

Reaction Time

L __ 
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80 09

-1.0.

Reaction Time

Figure 4: Contour plot of estimated MBT yield based
on OLS regression.
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figure 5: Contour plot of Dayes estimates of MDT yield.
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for this sharp degradation and, as a result, all the OLS estimates

are biased.

Now consider a Bayesian model for the MBT data that accounts

for the possible presence of bias. We used a second order

polynomial in time and temperature as the graduating function and

defined the bias covariance to correspond to a two-dimensional

expansion using Hermite polynomials (see Steinberg 1984 for

details). The resulting covariance function is:

2 exp{-(u-v)'(u-v)w 2/(1-w 2 ) + 2u'vw/(1-w)}
21 - w

(8.3)

As in the first example, w is a smoothing parameter that indicates

how rapidly higher-degree terms should be discounted. Similar

results were obtained for a range of values of w and we elected to

set w = 0.4 rather than attempting to estimate it from the data.

For this choice of w, the generalized cross validation (7.9)

2
estimate of T was T = 80. To estimate a , we computed both

(7.1) and a modified version of (7.4), with the pure error sum of

squares subtracted from the numerator and the associated degrees of

freedom subtracted from the denominator. The resulting estimates

were 0.765 and 0.756, respectively, in close agreement with the

pure error estimate of 0.763.

A contour plot of the Bayes estimates of MBT yield is qiven in

Figure 5. The Bayes estimates differ from the OLS estimates (in

Figure 4) most noticeably across the top of the plots. The Bayes
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estimates are high in the northwest corner of the plot and decrease

rapidly as reaction time is increased, as indicated by the closeness

of the contour lines in this region. The OLS estimates, on the

other hand, are much higher in the immediate vicinity of the low

observations and change gradually over the top half of the plot.

The Bayes estimates in the northeast corner of the plot suggest that

yield will increase if reaction time is increased still further, a

conclusion that seems implausible. The poor performance of the

Bayes estimates in this region is really not surprising: it simply

reflects the inability of any model to give accurate estimates

throughout the range of time and temperature when there are so few

degrees of freedom to estimate the bias component. Also, it is

worth remembering that this region is situated outside the circular

design region, so the Bayes estimates there have very large

variances. Within the design region, we think the Bayes estimates

are superior to the OLS estimates.

9. DISCUSSION

In this paper, we have analyzed a Bayesian model for estimating

response surfaces. The key feature of the Bayesian model is the

inclusion of a term that explicitly represents the bias that arises

when a simple graduating function is used to provide a local

approximation to a complex response function. The resulting

estimate of the response function includes an estimate of the
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graduating function and a "correction for bias" term that lends it

the flexibility to accurately represent data when the graduating

function alone is inadequate. We have derived measures of precision

for the Bayes response surface estimates and have shown that OLS may

lead to an overly optimistic assessment of precision if bias is

present.

The bias term in the model is described in terms of a prior

probability distribution and we have emphasized how the nature of

that distribution, in particular its covariance function (2.3e),

determine the nature of the estimate of the response surface. We

have reviewed suggestions in the literature for defining realistic

covariance functions and methods that have been proposed for

estimating covariance parameters. We believe that there i much

room for useful research on this topic.

In building empirical models, we usually seek some compromise

between the goals of good fit and model simplicity. Occasionally,

we find ourselves in the ideal situation where good fit can be

achieved with a simple model, but such models often prove too rigid

to provide a good fit. We think that the Bayesian model discussed

here offers a useful approach for introducing additional flexibility

in empirical modeling.
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APPENDIX

This section contains proofs for some of the theorems stated in

the text.

Theorem 4.1: Suppose X has full column rank and an improper

prior is assigned to the regression coefficients in (2.2)-(2.3).

Then:

g(x) - li, Efg(x)/Y=yl (4.1)
f +,(x)[X,.-']-1  ,-y +

TO 2 r, (xl1 - 1 . K l-11H ,-1 Z]-1z'N-ly ,

where M = (I + TR), and

i E{B/-y} = ['i 1 ]-'.'y.
V +0

Proof: From Theorem 3.1,

E{g(z)/YYj = f'(x)00 + [To r'(x) + f'(x)V'Q
2 2 -1

X(02 + To R + V.) (y - 10
2 2 -1

Sf'(x) 0 + f'(x)VI'(o 2I + To R + XVIX') (y - O0

+ To2r'(x)(2I + TO2R + ZVI')-I (Y - 0 )

and applying Lerma 2 to the first line and Lemma I to the second

line of the last expression,

=f'(x)1 0 + f,(x2[o x'n Iz + v- 1 ]-o XE -2n-I()_]o0

+ To2 r (x) 0-2H- - O-
2n-1 o -2X, '-x + V-11 - 1

and provided X has full column rank, as V- 1 + 0, this converges

to:

f (x)0 + f'(z)[XN" IX'1-1 XH-'1(Y,.,

+ tr' (x){N - - N i E - ' Iz]- xE-5}(12 0 )
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= f'(x)[X'1-1 ] 1 1 Y

+ Tr' (x) { - I - 1-X[IX'- 1 ]-x'M-1 Iy.

The proof of (4.2) is contained in the proof of (4.1).

Theorem 5.1: Given the model (2.2)-(2.3), suppose that the matrix

i derived from R by eliminating identical rows and columns is

non-singular. Then:

Yi = average of all observations at xi. (5.2)

Proof: Denote the distinct design points by x1 , .... ,xm, and denote

by I the mx vector of average responses at the design points.

The sampling density of Y can be factored into the density of

times the density of Y given Y. The latter is clearly

independent of g(x), so we can compute the posterior distribution

of g(x) by conditioning only on T. The sampling distribution

of T, conditional on B and it, is:

- N(20 + q, 02D),

where X is the mxp matrix whose ith row is f(xi) , 11 is

the mxl vector of bias terms at the distinct design points, and

D is a diagonal matrix whose ith entry is I/ni, where ni is

the number of observations at xi. The prior covariance matrix of

is TO2-, where I is precisely the matrix obtained by

eliminating duplicate rows and columns of R. If we recompute

(3.2), (4.1), and (4.9) conditioning on 1, we obtain (5.2) directly

from (4.9) under the assumption that R is non-sinqular.
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Theorem 5.3: Y solves the minimization problem: find u to

minimize

2 -1
(u-y)'(u-y) + (u-Z0 )'a (Ta R + XVX') (u-0 ). (5.5)

If R is non-singular, then (5.5) converges to:

(u-y)'(u-y) + T [ 1 x(x'I) 'xR•u (5.6)

as V- 1 + 0. The second term in (5.6) is 0 if and only if

u e col(Z).

Proof: Denote by 0 the vector of expected values at the design

points, as in (2.4). Then, by definition, Y is the posterior

expectation of 0. 1'rom (2.4), the prior distribution of 0 is:

8 - N(XO0 ,TO
2R + XVXI'),

and the sampling distribution of Y given e is:

Y/8 - N(8,a 2 1).

Applying Bayes' Theorem, the posterior density of e is

proportional to:

exp-[ -2(y-8),(4-8) + (e-Xo0 )'(TO 2R + XV I)- (e-Io ,o)1/2}

= exp{-Q(e)/2},

which corresponds to the density for a normal distribution. Thus

the posterior mean of 0, Y, can be found by minimizing the

quadratic form Q(9), and that is clearly equivalent to minimizing

(5.5). We can easily derive (5.6) from (5.5) by applying Lemma 1 of

Section 4 with A - TO2R. If u e col(X), then u = Xy for some

vector y and it is easy to verify that the second term in (5.6) is

0. To prove the converse, note that the second term has the form

u'lB, where the matrix L is obtained as the limit of the matrIx
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in the second term of (5.5). This latter matrix is positive

definite, so L must be positive semi-definite. Thus u'Lu = 0

implies Lu = and 0 = RLu P= , where

P = RL = I - X(X'R-X)- IR -  is an idempotent matrix that projects

into the orthogonal complement of col(K). Thus Pu = 0 implies

that u e col(X), as claimed.

Theorem 6.2: Given (2.2)-(2.3),

liT Varfg(x)/=yi = a2{TR(x,z) + f'(x)(X'M-X) -1f(x)
V 0 - 1-

- 2Tr'(x)N -X(X'- IX)- f(x)

- t 2 r'(x)[ - 1 - M-1X( ,l- )-lM-'E 1 ]r(x)}.

(6.4)

11T Var{B/Y=y} = O2 (I'M11.X1 (6.5)

V + 0
Proof: Applying Lemma 1 of Section 4 in reverse to (6.2) yields the

identity:

V - VK'(aO2 1 + + XVXI-I XV = [o-2 XIn-1IX + v-

and (6.5) follows immediately. To prove (6.4), note that we can

rewrite (6.1) as:

Varig(x)/Y'y} TOR)x,z) + f'(x)[V - V 2(O2M + XV ') -]]f(x)

- 2Ta 2 r'(x)[O2 + zVxV']-l1Zf(x)

- T2a4r,(xl[02H + Mi-lrlx).

Now apply the above identity to the first line, Lemma 2 of Section 4

to the second line, and Lemma 1 of Section 4 to the third line.

Taking limits as V- 1 + 0 yields (6.4).
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Theorem 6.3: Given the model (2.2)-(2.3):

(i) The posterior variance of g(x) is a monotone increasing

function of T.

(ii) The posterior variance of g(x) obtains a minimum value of

02f'(x)(X'Z + a2v-1)-I (x)

when T - 0. If the regression coefficients are assigned an

improper prior, the minimum value is

C~Ox) (XX)-f(x).

(iii) If x is a design point, then:~2.

Varlg(x)/Y-yl 4 a.

(iv) If both A and are non-singular, then the posterior

variance of g(x) diverges to infinity as T + .

(v) The posterior variance of 0 is a monotone increasing function

of T.

(vi) The minimum posterior variance of 0 is attained when T = 0

and is

a2 (X' + 02V-1)-i .

If the regression coefficients are assigned an improper prior, the

minimum value is

o 2 (X'z)- 1 .

Proof: Results (ii) and (vi) are trivial. To prove (1), denote

by W(T) the prior covariance matrix of (Y',g(x)). This matrix has

the form: W(T) - O21* + T02R* + rlVx*,. The posterior variance

of g(x) is simply the inverse of the lower right-hand corner

element of W(T) _I that is,
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Var{g(x)/Y=y}= [+, W l,.n+l ,

where vn+ 1 is a unit vector whose (n+1)st element is 1 and whose

remaining elements are 0. Now, suppose T2 > T > 0. Then

W(T2 ) - W(t) will be positive semi-definite, because R* is

positive semi-definite, and W(T) - 1 - W(T2 )- will also be

positive semi-definite. Therefore:

0 n 1W(t)- - (+

= fvarjg(x)/Y=y, T 1}] -
1 - [varfg(x)/Y='yt 2 }]-

which implies that

Var{g(x)/Y=y,T 1 } 
< Var{g(x)/Y=y,T2},

proving the claimed monotonicity property.

(iii) It will suffice to consider the posterior variance at x I.

Conditional on g(xj), Y, has a normal (g(xl),a 2 ) distribution, so

the conditional distribution of g(xj) given Y1, which we know to

2be normal, has a variance of at most a . Thus:

Var~g(x1 )/Y=yI < Var<g(x )y =y C a.

(iv) As in Theorem 5.1, we can compute the posterior variance of

g(x) by conditioning only on the replicate averages, which yields a

formula analogous to (6.1) but with A in place of R, an mxl

vector i(x) in place of r(x), and a diagonal matrix D in place

of I, where Dii = I/ni, and ni is the number of observations

at the ith design point. Rearranging terms, we obtain:

Varjg(x)/Y-y = f'(x)(Va r{./Y=yIf(x)
- 2t 2 ,( )[ 2 D + t0 2i + XVX'-Vf(x)

224- [ 2 D 2t+X -I -
+To R(x,z) - T24 x + ar 2( + '- r(x).
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The first line of the last expression is clearly non-negative,

regardless of the value of T. The second term can be rewritten

- 202 ,(x)[T-1 2 D + a + T- 1ZY]'VlX(X)

and converges to the finite limit -2r(x)i-1 E T(x) as T +

when A is non-singular. The final line can be rewritten

To2 {R(xx) - a2 ,(x)[ - 2 .D + C + T- 1 XV,']- 1 (x)}.

If R is non-singular, the term in curly brackets converges to

R(x,x) - r'(x)R' r(x) as T + -, and if X is non-singular,

this expression is positive. Thus, if both matrices are

non-singular, the last line tends to infinity as T + -, so that

Var{g'x)/T'r.y diverges to infinity as T + *.

(v) The proof of (v) follows the same lines as the proof of (i).

Theorem 6.4: The posterior variance matrix of 0 is:

V r/_Y 2 4 2 2 -1
Var 6/Yyr = a I - 0 (a I TO R + X')-1o (6.6)

(6.6) is monotone increasing in T and achieves a minimum of

02(X'1 + a2V-1)1lZ' when T = 0. If R is non-singular, (6.6)

converges to 021 as t + .

lij Var{0/Y-y} 0 2{i - -1 + K-X[X'KI-IX-''-1f.
V +0

(6.7)

(6.7) is also monotone increasing in t and achieves a minimum of

a2Z(Z'X)IX1 when T = 0. If R is non-singular, (6.7) converges

to r21 as T *

Proof: From (2.4), the joint distribution of (B',Y') is

multivariate normal with covariance matrix:
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T 2 R + XVX' TO 2 R + XVX'

TO 2 R + XVX' 2 + TO2 R + XVX'

From standard properties of multivariate normal distributions,

Var{0/Y=yj = TO2R + XVX' - (TO2R + XVI')

x (O2I + TO 2R + XMi') I(To 2R + XVX').

Now add and subtract a21 to each of the (T02R + I=') terms.

After some obvious cancellations, we obtain (6.6). Let V(O,T)

denote (6.6) as a function of T. If T2 > TI,

V(O,.r) - V(O,.r) =2 1- 2

y4[(021 + TI2 R + xV') - (.21 + T 2aR + XV')].

Were the matrices in the square brackets not inverted, their

difference would clearly be negative semi-definite; with the

inverses, then, the difference is positive semi-definite, as

claimed. The minimum is then achieved when T = 0 and is

V(0,0) = 02I - 04(o21 + XVX')
1

= O2X(X'X + 02v-1)1 X ,

upon application of Lemma 1 of Section 4. The limit as T +

follows immediately from (6.6). we obtain (6.7) from (6.6) by

applying Lemma 1 of Section 4 to the second term and taking limits

as V-1 + 0. The monotonicity with respect to T is unaltered by

the limiting process and the minimum value for T = 0 follows from

(6.7). To obtain the limit of (6.7) as T + -, we first take

limits of the expression derived above as V"1 + 0, obtaining o2I

- 02B(T), where B(T) is the matrix that maps T into the

residual vector. If R is non-singular, we know that the estimated
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response function converges to an interpolant as T + -, 80 B(T)

must converge to a 0 matrix. Thus, if R is non-singular, (6.7)

converges to 0 2 1 s
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