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1. INTRODUCTION.

We consider gravity waves at the interface between two
uniform, unbounded fluids of different densities in the

presence of a current or relative horizontal velocity U.
The fluids are supposed to be immiscible, incompressible and

inviscid, and the motion is assumed to be irrotational. We
are concerned with the properties and existence of finite
amplitude two-dimensional, periodic waves of permanent form

which propagate steadily without change of shape. By two-
dimensional, we mean that the flow field depends only on the

horizontal direction of propagation, which will be the x-
axis, and the vertical y-direction. In the field of surface

gravity waves, which is the limit of the present study when

the density of the upper fluid is zero, it has been found

recently that three-dimensional waves of permanent form

exist and are observed experimentally (see e.g. [5]). It is

expected that such waves will also exist and be important

for interfacial waves, but they will not be considered in

the present work.

For the purpose of calculating steady waves, there is

no loss of generality in taking the speed of propagation

c parallel to the current U, as an arbitrary constant

transverse velocity may be linearly superposed on any

WAVES ON FLUID INTERFACES All dI p roCw3b in any lhm " .
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2 P. G. Saffman

two-dimensional steady wave without affecting its properties

(the stability characteristics would, however, be

affected). The wave can be reduced to rest by choosing a

frame of reference moving with the wave. The problem is

then to calculate steady irrotational solutions of the Euler

equations which satisfy continuity of pressure across a

common streamline. It follows from dimensional analysis

that apart from scaling factors all flow variables will

depend upon three dimensionless parameters:

h P2  P2U
2

where h is the height of the wave defined as the vertical

distance between crest and trough, L is the wavelength

(the horizontal distance over which the flow field repeats

itself which in the present work will be the distance

between crests), P2 and p are the densities of the

upper and lower fluid respectively, and g is the

acceleration due to gravity. For example, the speed of the

waves is given by

~2
c = (gL/2w)l/2C(, P2 P2g (1.2)

where C is a dimensionless function of its arguments. For

surface waves, where p2 = 0 and there is dependence on

only one parameter, namely h/L, it is known that many

interesting and unexpected phenomena exist, especially when

the wave steepness becomes large. When there is dependence

on three parameters, it is to be expected that many more

phenomena are likely. However, in the absence of exact

solutions for large h/L, it is a highly non-trivial task

to search a three-dimensional parameter space. The results

to be presented below are limited to those phenomena which

seem currently to be of the most interest.
In contrast to the voluminous work on surface waves,

relatively little seems to have been done on interfacial

waves of permanent form, and that work seems to have been

confined to the case of zero current, i.e. U - 0. Tsuji
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and Nagata [7) calculated Stokes type expansions to order

(h/L)5 , and Holyer [3) used the computer to compute the

coefficients in such an expansion to order (h/L)3 7, and

then used Pad6 approximants to estimate the behavior for

large h/L. We are not aware of any work for waves with

current.

For the mathematical formulation, there is no loss of

generality in taking g - 1, L = 2%, and p1 = 1. The

mathematical problem is to determine the x-periodic velocity

potentials and stream functions, for the lower and upper

fluid respectively, which satisfy Laplace's equation and are

harmonic conjugate pairs, so that at the unknown interface

y = Y(x),

= 0. 2(xY(x)) - 0 , (1.3)
112+ Y) +b1=

1 (V#I)2 + Y(x) + b = 1 2 + PBY(x) . (1.4)

In general, pB = 0 but we allow for the possibility of

Boussinesq waves (in which the inertia of the two fluids is

the same and density differences only matter when multiplied

by g) by setting P2 -1 and pB = 0. Surface tension is

neglected throughout. The quantity b is the Bernoulli

constant, which by suitable choice of the origin of pressure

may be set equal to zero in the lower fluid. Infinitely far

from the interface, we have

1 ~-Cx, 02 - (U - c)x . (1.5)

The vertical origin is set by requiring that the mean

elevation of the interface is zero and the horizontal origin

can be fixed by placing the crest at x - 0. This problem

now appears to be free of arbitrary constants and the wave

is determined by the crest to trough height h. It is

expected that isolated families of solutions exist in

connected regions in (hP 2,U) space, although this does

not yet appear to have been proved.

One question of considerable interest is the domain of

parameter space in which solutions exist. Suppose that we

consider a fixed value of P2 and vary h and U. It is

found that as U increases with h kept constant the

t
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system of equations describing steady solutions fails to

have a solution, even though the 'limiting' wave profile is

smooth and exhibits no singular properties. For U ) 0

there are, when solutions exist, at least two physically

distinct waves corresponding to the two wave speeds for

propagation with and against the current. As U increases,

the wave propagating against the current is 'entrained' by

the current and at a certain value of U, which depends

on h and P2' the two waves become identical and for

larger U there are no real solutions of the equations.

Mathematically, this is like the disappearance of roots of a

quadratic). We shall term this factor which limits

existence a 'dynamical limit'.

The second factor is what we term a 'geometrical

limit'. The mathematical formulation remains well-behaved

but the solutions cease to make physical sense as the wave

profiles cross themselves. This occurs for fixed U and

increasing h. Examples of this phenomenon are found in

pure capillary and capillary-gravity waves [2,1] for which

the wave profile crosses itself at a critical value of h.

If U * 0, this limit is going to be different for the two
solutions of waves moving with and against the current. In

the case of surface waves, this limit corresponds to a 120*
cusp. It is easy to see that except for two special cases

(see 14), this cannot happen for interfacial waves. Holyer
[3) identified the geometrical limit for U - 0 with the

existence of a vertical tangent. We shall present evidence

that waves can exist with a vertical tangent and significant

overhang, and the evidence indicates that the geometrical

limit is associated with the wave crossing itself when it is

sufficiently high for U ) 0.

2. WEAKLY NONLINEAR WAVES.

The properties of weakly nonlinear steady waves may be
obtained by using the Stokes expansion in which all

variables are expanded as power series in h/L. However,

the algebra can be simplified somewhat by using Whitham's

variational approach. Proceeding in the usual manner, one

finds after some algebra that the average Lagrangian is
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L 1 (p 1 2 h+a2)
B a4 2

2aha 2  2 2k 6 P(

- a - P2 ( Uk - w) 2 I + O(h ) (2.1)

for the wave with interface shape

Y(x} - h cos(kx - wt) + a coo 2(kx - wt) (2.2)

The value of a2  is found from DL/Da2 = 0 to be

a = h2  CC2 _ 2
2 =8(1 - 2B) p2 (U - C) 2 ] + O(h4)

where C = w1/k is the phase speed. The dispersion relation

for the weakly nonlinear wave then follows from 3L/ah - 0:

c2 + P2(U -C) 2

(1 - PB)[ 1 + h2 ( 2C2  1)2 + h2] + O(h4 ) (2.4)B 9- 1• P

For U = 0, the values of C agree with those in [7)

The values of the energy, momentum and action densities

and fluxes follow from the expression (2.1) for L in the

usual way. In particular, the total energy density E is

given by

E - kCL - L. (2.5)

It is to be noted that for U > 0, the energy is measured

relative to the energy of the uniform state with a flat

interface. Negative energies may therefore exist and mean

that the energy of the state with waves is less than that of

the undisturbed flow.

It follows from the dispersion relation (2.4) that for

linear waves (h + 0) and given values of P2 and U,

there are two solutions corresponding to the two roots of

the quadratic equation for C in terms of P2 and U. We

denote these two solutions by C+ and C-, where
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C+ ) C_. For the linear case, steady solutions cease to

exist when U exceeds a critical value Uco given by

UcO = [(1 + p2 )(1 - pB)/P2 ] 1 / 2  (2.6)

for which the two wave speeds are equal with the value

C+ = C_ = P2 Uco/(l + P2 ) .

The values of C+ and C- are

p2U i pU 2 - ( + p2)(PU 2 - 1 + PB))l/2 . (2.7)

For U = 0, the values are equal and opposite. As U

increases, the speed of the wave propagating with the

current originally increases but eventually decreases.

The speed of the wave propagating against the current

increases monotonically (in the algebraic sense), becomes

zero when U = C(I - pB)P2]I /2 and then increases to

equal C+ when U is given by (2.6). According to

the linear approximation, the energy density E equals
Sh 2[C 2(l+r) - rCU3, and it is interesting that the energy

becomes negative when the direction of the C_ waves

changes.

For finite amplitude waves, the two solutions

corresponding to C+ and C- waves continue into two

families of solutions marked by wave speeds C +(h, 2,U) and

C_(h,p 2 ,U). For any given value of h and P21 there

will again be a critical current Uc beyond which steady

solutions no longer exist. For the weakly nonlinear

approximation, this value is given by
2 (1 + p 2 1/2

Uc =Uc°[1 + h2) " (2.9)

It is noteworthy that increasing h increases Uc.
3. NUMERICAL METHODS.

For values of h that are not small, it is necessary

to employ numerical methods. Three different techniques

were employed. The first was to compute in physical space,

i.e. the interface, potentials and stream function were

expanded as Fourier series in x with coefficients which



Finite-Amplitude Ititerfacial Waves

are exponential in y. The series were truncated to N

modes and the boundary conditions were then satisfied at

N + 1 equally horizontally spaced points on the

interface. This procedure gives 3N + 4 equations for

3N + 4 unknowns. These equations were solved by Newton's
method, using continuation in either U or h to give the

first guesses. Note that this formulation is essentially

equivalent to calculating numerically the coefficients of

the Stokes expansion as done in [3].

The second method used the potential and stream

function as the independent variables and expands the

physical coordinates as series in these. The boundary

conditions are now satisfied at equally spaced values of the
velocity potential and the resulting system of 3N + 3

equations in 3N + 3 variables, the expansions being

truncated to N modes, was also solved by Newton's method

with continuation in U and h employed to give a first

guess.

The third method used a vortex sheet representation in

which the unknowns are the shape of the interface and the

dipole strength of the equivalent double layer. This gives

a nonlinear integrodifferential equation, which was solved

by discretization and collocation, the resulting system of

nonlinear equations again being solved by Newton's method

with continuation.

For details, see [4,5]. All methods worked extremely

well for small values of h/L, which generally meant

h < 0.6, with some dependence on P2 and U. (With our

scaling, the surface wave of greatest height has h = 0.89).

The first method was the first to fail as h increased. It

is of course clear that this approach of working in physical

space must fail when the wave becomes very steep, but the

failure, marked by the apparent failure of the Fourier

series to converge, seemed to be due to other causes. What

actually happened was that the singularities of the analytic

continuation of the lower velocity potential, say, into the

upper half plane moved down below the crest. In this case,

the expansion of the velocity potential would have to

diverge near the crest, even though the solution was

f
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perfectly well behaved and physically meaningful. This

difficulty would not affect the other two methods which were

used for values of h up to 1.2 for various values of P2

and U. For large values of h, 100 modes were used in the

second method and this seemed adequate except for the

largest h. The vortex sheet method with 65 intervals was

employed for this case. This method offers in principle the

advantage of being able to concentrate points near regions

of high curvature, although this was not done.

The accuracy of the calculations was checked by

comparing the results of the somewhat different methods with

each other in regions of apparent validity and by performing

the usual tests of internal consistency by investigating the

dependence on number of retained modes. The calculations

were carried out on a PRIME 750 and the CRAY-l at NCAR.

4. A SPECIAL CLASS OF SOLUTIONS.

It is interesting to note that a special class of

solutions exist which are simple transformations of the

well-known surface permanent wave solutions, which have been

extensively studied both numerically and theoretically by

many authors. For each value of P2, these solutions

describe the shape of the interface for the C+ case when

C+ = U = (I - PB) /2Cs(h) (4.1)

where Cs(h) is the wave speed of the surface wave of

permanent frm for the given wave height h. Since C+ = U,

the upper fluid is stagnant in the wave-fixed coordinates.

The dynamic boundary condition for the motion in the lower

fluid then becomes that for surface waves with a reduced

gravity g(l - pB) / . The velocities and wave speed are

therefore those of the surface wave multiplied by the factor
(1 - 11/2

For the C_ branch, special solutions exist with

C_ - 0, U - [(1 - PB)/P2 /2 C8(h) . (4.2)

In this case, the lower fluid is stagnant and the dynamic

boundary condition on the motion of the upper fluid is that

with a reduced upside down gravity. The wave profiles are
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inverted surface waves, with negative gravity multiplied by

the factor [(i - PB)/p2 ]

These special solutions have geometrical limits when

h = 0.892, where the waves have a corner at the crest for

the C+ wave, and a corner at the trough for the C_ wave,

with an interior angle of 1200. However, these special

geometrical limits are only for the case when one of the

fluids is moving with the wave. In general, it is expected

(see below) that the geometrical limit is associated with

the wave surface crossing itself.

5. RESULTS.

The equations have been solved numerically for various

values of h, r = p2/pl, and U. The existence of the

dynamical limit was confirmed, and it was found that the

weakly nonlinear approximation (2.9) is a good approximation

for values of h up to 0.6. A typical set of results is

shown in figure 1. These results are for r = 0.5 and

h = 0.6, and show the wave speeds C, total energies E,

and kinetic energies T for both the + and - waves as

functions of the current velocity U. The existence of the

dynamical limit where C+ - C_ is clearly demonstrated.

One feature of remarkable interest is the existence of

a region of negative energy. This implies that there will

be a range of parameters in which the energy of the state

with finite amplitude waves is less than that with the same

current and a flat surface. Spontaneous generation of such

flows is then a definite possibility. The computed results

and linear analysis suggest that negative energies appear

when C is zero and continue for values of U up to that

for which the dynamical limit is reached. This aspect of

the solutions needs to be explored further in detail.

The geometrical limit or the shape of the wave of

greatest height has been addressed for the case of zero

current. Solutions were obtained for three values of r

(1.0, 0.9, 0.1), using the vortex sheet method as this

seemed to provide the best resolution when the waves are

large. Values of the wave speed C for + waves are shown

in figure 2. For the larger values of r, it was possible

to calculate solutions with vertical slope and the shapes

i m ~ m m
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Figure 2. Phase speed C vs wave steepness a/ = h/L

for r=0.1, 0.9, 1.0. x denotes point of
vertical tangency.
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are shown in figures 3 and 4 for r = 0.9 and r = 1.0,

respectively. These demonstrate clearly the existence of

waves of permanent form with a substantial overhang region

in which heavy fluid lies on top of light fluid. It is

interesting to note that the fluid particles on the

interface between the points of vertical tangency in the

overhang region are moving faster than the wave. For the

smallest value of the density ratio, we did not have

sufficient resolution to distinguish the wave shape near the

geometrical limit. This difficulty is to be expected, since

the smaller the density ratio, the closer the geometrical

limit will be to the 120* cusp and the smaller the size of

the overhang region.
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