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DETFRMINING THE NUMBER OF SIGNALS
BY INFORMATION THEORETIC CRITERIA'

By _
i tri
Mati Wax and Thomas Kailath FANR S
Information Systems Laboratory Cist Sontl

Stanford University i
Stanford, CA 94305

ABSTRACT

The determinination of the number of signals in a
wide class of problems, including array processing, har-
monic retrieval and pole retrieval, is addressed. A new
approach, based on the application of the information
theoretic oriteria for model identification introduced by
Akaike, Schwartz and Rissanen, is presented. It is shown
that the criterion introduced by Schwartz and Rissanen
yields a consistent estimate of the number of signals,
while the criterion introduced by Akaike yields an incon-
sistent estimate that tends, in the large-sample limit, to
overestimate the number of signals.

L Introduction

In many problems in signal processing, the vector of
observations can be modeled as a linear combination of a
finite number of signals that are contaminated by addi-
tive noise. This is the case, for example, in the harmonic
retrieval problem [13), in the array processing problem
[12], and in the probiem of retrieving the poles of a sys-
tem from the natural response [15]. A key issue in these
problems is that of determining the number of signals.

A promising approach to the prob'-. 1 is based on
the observation that the number of signals can be deter-
mined from the multiplicity of the smallest eigenvalue
of the covariance matrix of the observation vector. The
conventicnal method used for determining this multipli-
city is based on a procedure known as the Bartlett-
Lawley test. This procedure takes the form of a sequence
of hypothesis tests for the multiplicity of the smallest
eigenvalue. For each hypothesis, the likelihood ratio
statistic is compared to a threshold. The hypothesis
accepted is the first one for which the threshoid is
crossed. The problem with this method is the subjective
judgment required for deciding on the threshold level.

In this paper we present a new method for deter-
rining the number of signals. It is based on the applica-
tion of the information theoretic criteria for model
identification introduced by Akaike (AIC), and by
Schwartz and Rissanen (MDL). The advantage of this
method is that no subjective judgement is required in
the decision process; the number of signals is deter-
mined as the value for which the chosen criterion is
minimized.

The problem is formulated in section 1I. The infor-
mation theoretic criteria for model identification are
This worik was supported in part by the Air Force O%ice of Sc.enufic
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introduced in section lll. The application of these criteria
to the problem of determining the number of signals
from the multiplicity of the smallest eigenvalue of the
covariance matrix is presented in section [lIl. The con-
sistency of these criteria is discussed in section IV. ]t s
shown that the criterion introduced by Schwartz and Ris-
sanen yields a consistent estimate of the number of sig-
nals, while the criterion introduced by Akaike yields an
inconsistent estimate that tends, in the large-sample
limit, to overestimate the number of signals. Simuiation
results that illustrate the performance of the new
method are described in section V1.

1. Formulation of the Problem

Certain important problems in signal processing
such as harmonic retrieval, array processing, and pole
retrieval from the natural response, have identical struc-
ture; their observation vector can be expressed as

r(t) = $A0,) s.(t) + n(t) (1)
§21

where a.(-) - the i-th signal - ia & zero-mean complex
random process, A{®) (i=1..9) isa pxl1 complex
vector, determined by the dx1 parameter vector 0,
associated with the i-th signal, and n(:} isa px1 com-
plex vector of additive white noise. We use complex (ana-
lytic signal) representation since this is the natural
representation for the probiems of interest.

A key issue in the generic mode) described in (1) is
that of determining the number of signals ¢ from the
observed data r(f,) (k& =1...N).

A promising approach to this problem is based on
the analysis of the eigenstructure of the covariance
matrix of the observation vector r(-). To introduce this
approach, let us, first, rewrite (1) as

r(t) = As(t) + n(t) (2.a)

where A is the pxg matrix
A=[A®)...A®8,)) (2.)

and s(t) isthe gx1 vector
27() = [5i(t) ... sy(e) ) (2.c)

The covariance matrix of r(¢t), assuming that the sig-
nals and noises are uncorrelated, is given by

R=v+d% (3.0)
where
¥ = ASA’ (3.b)
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with { denoting the conjugate transpose, and S denot-
ing the covariance matrix of the sources, i.e.,

S = E[s(t)s'(¢)] (3.c)
We assume that the following conditions hold:
(I) S is nonsingwlar, i.e., the signals are noncoherent.

(I1) The matrix A is of full column rank, i.e., the vec-
tors A(Q;) (i =1..g) are linearly independent.

Under the above assumptions, it follows that the
rank of ¥ is g, thatis.its p —g smallest eigenvalues
are equal to zero. Denoting the eigenvalues of R by
A Z Az -2 A, it follows, therefore, that the small
p - q eigenvalues of R are equal to o i.e.,

MNe1=Age2=.. .= A =0* 4)
The rank q can hence be determined from the maultipli-
city of Lthe smallest eigenvalue of R.

The conventional approach to the problem, pro-
posed by Bartlett (1954) and Lawley {1958), is based on a
sequence of hypothesis tests for the multiplicity of the
smallest eigenvalue. The problem associated with this
approach is the subjective judgement required in choos-
ing the threshold levels.

In this paper we take a different approach. Given
the observations r(¢,)....r(ty). we try to determine
which of the family covariance matrices

R. = 1’. + Uzl (5)

where ¥, is a semi-positive matrix of rank k and ¢ is
an unknown scalar, best fits the data.

Posed in this way, it is clear that the prablem is that
of model identification, and therefore the information
theoretic criteria for model identification can be applied.

1. Information Theoretic Criteria

The first objective procedure for model
identiflcation was proposed by Akaike (1973) (1974).
When there are several competing models, this pro-
cedure selects the model which gives the minimum AIC,
defined by

maxim number of free
AC=~208 et | 2 itated perameters| (o)

The first term is the well-known log-likelihood of the
maximum likelihood estimates of the parameters of the
model. The second term is a bias correction term,
inserted so as to make the AIC an estimate of the mean
Kulback-Liebler distance between the true distribution
and the estimated distribution, determined by the
maximum-likelihood method.

Inspired by Akaike’'s pioneering work, Schwartz
(1978) and Rissanen (1978) approached the problem
from quite different points of view. Schwartz's approach
is based on Bayesian arguments. He assumed that each
compeling model can be assigned a prior probability,
and proposed to select the model that yields the max-
imum posterior probability. Rissanen’'s approach is
based on information theoretic arguments. Since each
model can be used to encode the observed sequence,
Rissanen proposed to select the model that yields the
minimum code length of the observed data. It turns out
that «n the large-sample limit, both Schwartz's and
Rissanen’s approaches yie!d the same cniterion, given by

MDL=-log [likelihood +

djusted parameters| logN (7)
within the model

where N denotes the number of observations. We call
the criterion MDL (for Minimum Description Length) as
done in Rissanen (1983), since Rissanen's derivation is
more general; Schwartz's derivation 1s restricted to the
case that the observations are independent and come
from an exponential distribution.

maximum] ,_{ number of free
a

IV. Determining the Number of Signals

To apply the information theoretic criteria to deter-
mine the number of signals, or equivalently, to deter-
mine the rank of the matrix ¥ ., we muet firet
parameterize the model. Using the well-known spectral
representation theorem, we can express R, as

f 3
= E (Ak.\' - az)thvk'.l + 0%l (8)
izl

where Agy.....Agx and Vg, ..., Vex are the eigen-
values and eigenvectors, respectively, of R,. Denoting
by ¢, the vector of the parameters of the model, it fol-
lows that

[ MEN G VT V- £ T Vi, (9)

With this parameterization, we can now derive the
maximum likelihood estimates of the parameters.
Assuming that the observations rp,. ..., ry are
independently and identically distributed as N,(O.R). it
follows that, up to a constant, the log-likelihood is given
by

L{$,) = ~N log det R, — tr Ry 'R (10.a)
where R is the sample-covariance matrix defined by
- &
R= Tt”\-— r{t)r () (10.b)

=
The maximum-likelihood (ML) estimate of ¢, is the

value of &, that maximizes L($,). Following Anderson
(1963), the ML estimates are given by

Rei = t=1...k (11.a)
7 = $ b
d P -.nh ( )

Vei=C, 1= 1.k (11.0)

where ;>0 -+ >4 and C,. ... . C, are the eigen-
values and eigenvectors , respectively, of the sample
covariance matrix R.

Substituting the maximum likelihood estimates (11)
in the log-likelihood (10), we obtain. after some algebra
1Y
maximum 1., .l
tog [likelihood =g | (2

P k uaol

The number of independently adjusted parameters
in the model is obtained by counting the number of
degrees of freedom of the space spanned by the parame-
ter vector ¢,. Recalling that the eigenvalues of a com-
plex covariance matrix are real, but that the eigenvec-
tors are complex, it follows that ¢, has k + 1 + 2pk
parameters. However. not all of the parameters are
independently adjusted; the eigenvectors are con-
strained to have unit norm and lo be mutuallv




orthogonal. This amounts to reduction of 2k degrees
of freedom due to the normalization and 2 -z—k(k -1)

degrees of freedom due to the mutual orthogonalization.
Thus, we obtain

number of free 1 ]
adjusted parameters! = k +14+2pk — —k (k-1)
within the model

=k(2p-k)+1 (13)

The form of AIC for this problem is therefore given by
N

+2k(2p—k) (14)

=

Pk (¥ ] )
The implementation of these criteria is as follows. First,
the chosen criterion is computed for every possible k.
that is, k=0.,1,...,p —1. The rank of ¥ is then
determined as the value of k for which the criterion is
minimized.

V. Consistency of the MDL Criterion

The concept of consistency is fundamental in sta-
tistical inference. In our problem, consistency means
convergence of the selection criterion to the true rank
g in the large-sample limit. We shall show, by generaliz-
ing a method of proof given in Rissanen {1980) and Ean-
nan and Quinn (1979), that the MDL yields a consistent
estimate, and that the AIC yields an inconsistent esti-
mate that tends, in the large-sample limit, to overesti-
mate the true rank.

The consistency of the MDL is proved by showing
that in the large-sample limit, the criterion MDL(k) is
minimized for the true rank k = g. Taking first k <gq,
it follows from (15) that

'AT[ MDL(g) - MDL(k)] =

4
i-lol

1 e
(-hol ]

’L. AN X

‘k [T Yy l‘J

= log

+ log

4%1(q-k)(2p-q-k +1) (16)

Now, it is well-known that the eigenvectors of the
sample-covariance  matrix L (i=l..p) are

consistent estimates of the eigenvectors of the true
covariance matrix A. Thus, in the large-sample limit
the eigenvectors I (i=k+l...q) are not all equal
with probability one. Therefore, by the arithmetic-mean
geometric-mean inequality, it follows that in the large-
sample limit

=k +1

1
_1 ] . '_‘k
b olid

Thus, the first term in (18) is negative with probability
one in the large-sample limit. Similarly, by the general-
ized arithmetic-mean geometric-mean inequality

WA, + wady = A, M4, w,+wy=1 (18)
it follows that

A=l B -k
1 1 Pk 1 Pk
- > | —— —
p-k ﬁzgnl‘ p-k “g:ul‘ ] [q-k i:gul‘ (19)
Thus, the second term in (18) is also negative with proba-
bility one in the large-sample limit. Now, since the last
term in (16) goes to zero as the sample size increases,
the difference [ MDL(q) - MDL(k)] is negative with
probability one in the large-sample limit, for k < g.

Taking now k > q. it follows from (15) that
2{ MDL(k) — MDL(g) ] =

N N
< f 1 x 1“
=-{-2log A +2log Lo
l— f‘ -9 l_ Pk
(P q‘-'”l‘)’ l P"‘i:g:oll‘) ]
+ (k~9)(2p —k —q +1)logN (20)

Note that the terms in the curly brackets are twice the
log-likelihoods of the maximum likelihood estimator
under the hypotheses that the rank of ¥ is ¢ and &,
respectively. Thus, their difference is the likelihood-ratio
for deciding between these two hypothesises. From the
general theory of likelihood ratios (see e.g Cox and Hink-
ley (1974}) it follows that the asymptotic distribution of
this statistic is x* with number of degrees of freedom
equal to the difference of the dimensions of the parame-
ter spaces under the two hypothesises, i.e.,
[k(2p-k)+1]-[9(2p~q)+1] = (k~g)2p-k-g+1)

Thus, as the sample size increase, the probability that
the term in the curly brackets in (18) exceeds the last
term in (18), is given by the area in the tail from
(k-g)(2p~k -q +1)logN of the mentioned x? distribu-
tion with (k-9)(2p-k~gq+1) degrees of freedom.
Since the area in this tail approaches zero as the sample
size increases, it follows that in the large-sample limit
the difference [ MDL(k) - MDL(g) ] is positive with
probability one for & >q. Combining this with the
previous result for k < g, it follows that MDL(k) has
aminimurm at k = q.

Repeating the above arguments for the A/C, it fol-
lows that in the large-sample limit [ AIC(g) ~ AIC(k) )
is negative mth probability one for k < g. Fowever, for
k>q . [AIC(k) - AIC(g) ] has non-zero probability
to be negative even in the large-sample himit, since the
tail of the probability distribution from




{(k-q)2p-k —-gq+1) of the mentioned x* distribution
with (k-g)(2p~k-q+1) degrees of freedom, is not
zero in this case. Hence, the AIC tends, in the large-
sample limit, to overestimate the rank g.

VIl. Simulation Results

In this section we present simulation results that
illustrate the performance of the proposed method. The
examples are taken from array processing. though, by
the well-known duality between spatial frequency and
temporal frequency, they can also be interpreted in the
context of harmonic-retrieval. The examples refer to a
uniform linear array of p sensors, with g incoherent
sinusoidal plane-waves impinging from directions
§9,..9,). The received signal at the i'th sensor
(i = 1.....p) is thus given by

r(t) = $aTnal ey (21)
'
where

#u = random phase uniformly distributed on {0,2r)

n(-)= white noise with mean zero and variance ¢?
Note that this model is a special case of the generic
model presented in (1).

In the first example, we considered an array with
seven sensors (p = 7) and two sources (q =2). The
signal-to-noise ratio, defined as 10log—5 was 1245
and the directions-of-arrivals were 20° and 23% Using

N = 100 samples, the values of the AIC obtained by (14),
are given by

Alc(o) | arciy) | arcte) | ascay | ates) | alc) | arcis)

1945.6 453 43.1 46.8 1N} 51.6 $5.0

Clearly, the minimum value of the AIC is obtained for the
g=2

In the second example, we added another source at
—5° to the scenario described in the first example, and
raised the signal-to-noise ratlo to 20d8. The results
obtained in this case were

AIC(0) | AIC(H | AIC(2) | AIC(3) | AIC() | AlC(3) | AlC(e)

2624.5 1824 5t.9 468 50.9 519 55.0

Note that the minimum AIC is obtained, correctly, for
g = 3. The two examples above demonstrate clearly the
ability of the new procedure to detect correctly the
number of sources even in relatively difficult scenario of
two closely spaced sources and low signal-to-noise ratio.

V1. Concluding Remarks

The method we have described is a time-domain
method since it is based on the processing of the
covariance matrix of the observation vector. In some
cases, especially in array processing, the frequency-
domain is more natural. The extension of the method to
the frequency domain, that is to the problem of deter-
mining the number of signals from the spectral-density
matrix of the observation vector is presented in [14].
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