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DETERMINING THE NUMBER OF SIGNALS
BY INFORMATION THEORETIC CRITERIA'

Mati Wax and Thomas Kailath

Information Systems Laboratory D iSt L "
Stanford University
Stanford, CA 94305

ABSTRACT introduced in section 111. The application of these criteria
The determinination of the number of signals in a to the problem of determining the number of signals

wide class of problems, including array processing, har- from the multiplicity of the smallest eigenvalue of the
monic retrieval and pole retrieval, is addressed. A new covariance matrix is presented in section Ill. The con-
approach, based on the application of the information sistency of these criteria is discussed in section IV. It is
theoretic criteria for model identifioation introdueod by shown that the criterion introduced by Schwartz and Ris-
Akaike. Schwartz and Rissanen. is presented. It is shown sanen yields a consistent estimate of the number of sig-
that the criterion introduced by Schwartz and Rissanen nals. while the criterion introduced by Akaike yields an
yields a consistent estimate of the number of signals, inconsistent estimate that tends, in the large-sample
while the criterion introduced by Akaike yields an incon- limit, to overestimate the number of signals. Simulation
sistent estimate that tends, in the large-sample limit, to results that illustrate the performance of the new
overestimate the number of signals. method are described in section VI.

L Introduction
II. Formulation of the Problem

In many problems in signal processing, the vector of
observations can be modeled as a linear combination of a Certain important problems in signal processing
finite number of signals that are contaminated by addi- such as harmonic retrieval, array processing, and pole
tive noise. This is the case, for example, in the harmonic retrieval from the natural response, have identical struc-
retrieval problem [13], in the array processing problem ture; their observation vector can be expressed as
[12], and in the problem of retrieving the poles of a sys-
tem from the natural response [15]. A key issue in these r(t) = A(O,) si(t) + n(t) (1)
problems is that of determining the number of signals. i=A

A promising approach to the probl. a is based on where at(-) - the ;-th eigr"eL - im a zero-mrean complex
the observation that the number of signals can be deter- random process. A(9J (i = 1.q ) is a pxl complex

mined from the multiplicity of the smallest eigenvaue vector, determined by the dxl parameter vector 0,
of the covariance matrix of the observation vector. The associated with the i-th signal, and n() is a pxl com-

conventional method used for determining this multipli- plex vector of additive white noise. We use complex (ana-
city is based on a procedure known as the Bartlett- lytic signal) representation since this is the natural
Lawley test. This procedure takes the form of a sequence representation for the problems of interest.
of hypothesis tests for the multiplicity of the smallest A key issue in the generic model described in (I) is
eigenvalue. For each hypothesis, the likelihood ratio that of determining the number of signals q from the
statistic is compared to a threshold. The hypothesis observed data r(th) (k =1I.....N ).
accepted is the first one for which the threshold is A promising approach to this problem is based on
crossed. The problem with this method is the subjective the analysis of the eigenstructure of the covariance
judgment required ?or deciding on the threshold level, matrix of the observation vector r(). To introduce this

In this paper we present a new method for deter- approach, let us, first, rewrite (1) as
raining the number of signals. It is based on the applica- r(t) As(t) + n(t) (2.a)
tion of the information theoretic criteria for model

identification introduced by Akaike (AIC), and by where A is the p xq matrix
Schwartz and Rissanen (MDL). The advantage of this
method is that no subjective judgement is required in A = [A(G,)... A(Q,) ] (z.b)
the decision process; the number of signals is deter- and (t) is the q xl vector
mined as the value for which the chosen criterion is sT(t) [ s 1 (t).. s,(t) ] (2.c)
minimized. 11( li 2c

The problem is formulated in section II. The infor- The covariance matrix of r(t) , assuming that the sig-
mation theoretic criteria for model identification are nals and noises are uncorrelated. is given by
Tos wor was UP orted in part by the Air Force O'7:ce o! Fc.en,.ic R + + oA| (3. i)
.tesearcn, Ar F'orce Sys-ers Co.r.nand mder Contract A?49,?0"7-QC
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with t denoting the conjugate transpose, and S denot- o ih ladmum uteprameter. logN (7)
ing the covariance matrix of the sources. i.e.. MDL-log ikelihood 2j Within the model

S El (t)5t(t)] (3.c) where N denotes the number of observations. We call
We assume that the following conditions hold: the criterion MDL (for Minimum Description Length) as

done in Rissanen (1983). since Rissanen's derivation is
(1) S is nonsingular, i.e.. the signals are notcoherent, more general: Schwartz's derivation is restricted to the
(11) The matrix A is of full column rank. i.e.. the vec- case that the observations are independent and come

tors A(e) ( i = 1._q ) are linearly independent, from an exponential distribution.
Under the above assumptions, it follows that the

rank of +P is q, that is. its p - q smallest eigenvalues
are equal to zero. Denoting the eigenvalues of R by IV. Determining the Number of Signals
AI 2 A2 .. i A, it follows, therefore, that the small
p - q eigenvalues of R are equal to a2 .i.e.. To apply the information theoretic criteria to deter-

, = , = A, = a2 (4) mine the number of signals. or equivalently, to deter-
r.n the rank of the matrix m . we must first

The rank q can hence be determined from the multipli- parameterize the model. Using the well-known spectral
city of the smallest eigenvalue of R. representation theorem, we can express R5 as

The conventional approach to the problem, pro- k
posed by Bartlett (1954) and Lawley (1956), is based on a RK = j (14.i - a2

)V,.,V1.. + a2
l (8)

sequence of hypothesis tests for the multiplicity of the t.l

smallest eigenvalue. The problem associated with this where A.,. and V. 1 . VkA are the eigen-
approach is the subjective judgement required in choos- values and eigenvectors. respectively, of Rk. Denoting
ing the threshold levels. by 4) the vector of the parameters of the model, it fol-

In this paper we take a different approach. Given lows that
the observations r(t 1 )..r(tN), we try to determine lr = ( Kh.. . , a

2
. VkA. a. ) (9)

which of the family covariance matrices
With this parameterization, we can now derive the

RA = +A- a2
l (5) maximum likelihood estimates of the parameters.

where +,, is a semi-positive matrix of rank k and a is Assuming that the observations r, . rNy are
an unknown scalar, best flts the data. independently and identically distributed as N,(0,R), it

Posed in this way, it is clear that the problem is tha, follows that. up to a constant, the log-likelihood is given
of model identification , and therefore the information by
theoretic criteria for model identification can be applied. L(O$5 ) = -N log det RA - tr RkR (tO.a)

where R is the sample-covariance matrix defined by
Ill. Information Theoretic Criteria - IN

N. r(t 1 )r(t,' (l0.b)
The first objective procedure for model The maximum-likelihood (ML) estimate of t% is the

identification was proposed by Akaike (1973) (1974). value of #k that maximizes L(4,). Following Anderson
When there are several competing models, this pro- (1963), the ML estimates are given by
cedure selects the model which gives the minimum AIC,
defined by &., = 

4 1 = 
1,....k (ll.a)

Imaximuml I number of free 1l.b)
AC-2logl. ...... +adjusted parameters/I (6) p k

eo within the model 1Vk,,= Ct i =1,.....k (Ic)

The first term is the well-known log-likelihood of the where l > 1i ... >lp and C, ..... C. are the eigen-
maximum likelihood estimates of the parameters of the values and eigenvectors , respectively, of the sample
model. The second term is a bias correction term. covariance matrix R.
inserted so as to make the AIC an estimate of the mean Substituting the maximum likelihood estimates (1I)
Kulback-Liebler distance between the true distribution in the log-likelihood (10). we obtain, after some algebra
and the estimated distribution, determined by the f
maximum-likelihood method. r ___________

Inspired by Akaike's pioneering work. Schwartz log ai m log (12)
(1978) and Rissanen (1978) approached the problem I I-_.-I = ? I-I
from quite different points of view. Schwartz's approach p-'. t
is based on Bayesian arguments. He assumed that each
competing model can be assigned a prior probability, The number of independently adjusted parameters
and proposed to select the model that yields the max- in the model is obtained by counting the number of
imum posterior probability. Rissanen's approach is degrees of freedom of the space spanned by the parame-
based on information theoretic arguments. Since each ter vector 0&. Recalling that the eigenvalues of a com-
model can be used to encode the observed sequence. plex covariance matrix are real, but that the eigenvec-
Rissanen proposed to select the model that yields the tors are complex, it follows that 01 has k + I + 2pk
minimum code length of the observed data. It turns out parameters. However. not all of the parameters .are
that in the large-sample limit, both Schwartz's and independently adjusted; the eigenvectors are con-
Rissanen's approaches yie!d the same criterion, given by strained to have unit norm and to be mutualv

| -I
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orthogonal. This amounts to reduction of 2k degrees consistent estimates of the eigenvectors of the true
of freedom due to the normalization and 2 1 (k-1) covariance matrix Xt. Thus. in the large-sample limit

the eigenvectors 1, (-.= k+l .....q ) are not all equaldegrees of freedom due to the mutual orthogonalization. with probability one. Therefore. by the arithmetic-mean
Thus, we obtain geometric-mean inequality, it follows that in the large-

I number of free I sample limitadjusted parameters| k + l 2pk - [ -k (k -1)] apl

within te model I I++1 2c S~i~ (Vi) -1; 1=k(2p-k)+1 (13) k /'
>  

' 1)

Thus. the first term in (16) is negative with probability
The form of AIC for this problem is therefore given by one in the large-sample limit. Similarly. by the general-

S / ]ized arithmetic-mean geometric-mean inequality

ftC~k-o " 4( wAI+w 2A2A 1 'A A 1  
W I + W2 = 1 (18)

A1C(k)=-2log t i 2k(2p-k (14) it follows that
k t t +fl.

while the MDL criterion is given by - (19)
N 1

Thus, the second term in (16) is also negative with proba-
DL(k)=-og, = _ +-(2j-k)logN (15) bility one in the large-sample limit. Now. since the last

2p__ O 1term in (16) goes to zero as the sample size increases,
the difference [ MDL(q) - MDL(k) ] is negative with

e • oprobability one in the large-sample limit, for k < q.
The implementation of these criteria is as follows. Frst.(15) that
the chosen criterion is computed for every possible k.
that is. k =0.1.....p-1. The rank of + is then 2[MDL(k) MDL(q)
determined as the value of k for which the criterion is N 'N
minimized. ni 4 6

--- 2log ~= ~ +2log *

V. Consistency of the MDL Criterion j p -k

The concept of consistency is fundamental in sta-
tistical inference. In our problem, consistency means
convergence of the selection criterion to the true rank + (k -q )( 2p -k -q + 1)logN (20)
q in the large-sample limit. We shall show. by generaliz-
ing a method of proof given in Rissanen (1980) and lan-
nan and Quinn (1979). that the MDL yields a consistent
estimate, and that the AIC yields an inconsistent esti- Note that the terms in the curly brackets are twice the
mate that tends, in the large-sample limit, to overesti- log-likelihoods of the maximum likelihood estimator
mate the true rank. under the hypotheses that the rank of + is q and k.

The consistency of the MDL is proved by showing respectively. Thus, their difference is the likelihood-ratio
that in the large-sample limit, the criterion MDL(k) is for deciding between these two hypothesises. From the
minimized for the true rank k = 9. Taking first k < q. general theory of likelihood ratios (see e.g Cox and Hink-
it follows from (15) that lay (1974)) it follows that the asymptotic distribution of

I.. this statistic is X" with number of degrees of freedom
N D MDL(k)] = equal to the difference of the dimensions of the parame-ter spaces under the two hypothesises, i.e..

itt  [ k(2p-k)+l ] - [q(2p-q)+l ] = (k -q)(2p-k-q +1)
log Thus. as the sample size increase. the probability that

the term in the curly brackets in (18) exceeds the last
i term in (18). is given by the area in the tail from

V--'-'6k "'(k-q)(2p-k-q+1)logN of the mentioned X
2 

distribu-
tion with (k -q )(2p -k -q + 1) degrees of freedom.

+ log - "1 Since the area in this tail approaches zero as the sample
size incrcases, it follows that in the large-sample limit

-. t /the difference [ MDL(k) - MDL(q) I is positive with
probability one for k > q. Combining this with the
previous result for k < q,. it follows that MDL(k) has
a minimum at k = q.

+l1N- k)(2p -q -k + 1) (16) Repeating the above arguments for the AC, it fol-2N lows that in the large-sample limit [ AIC(q) - AC(Ic) I
is negative with probability one for k < q. Fowever, for
k > q , [ AJC(k) - AIC(q) ] has niofn-zero probability

Now, it is well-known that the eigenvectors of the to be negative even in the large-sample limit. since the
sample-covariance matrix £ (i = I.p ) are tail of the probability distribution from



(k -q )(2p-k -q + l) of the mentioned X distribution VII. Concluding Remarks
with (k-q)(2;p-k-q+1) degrees of freedom, is not
zero in this case. Hence. the AIC tends, in the large- The method we have described is a time-domain
sample limit, to overestimate the rank q. method since it is based on the processing of the

covariance matrix of the observation vector. In some
cases, especially in array processing, the frequency-

VII. Simulation Results domain is more natural. The extension of the method to
the frequency domain, that is to the problem of deter-

In this section we present simulation results that mining the number of signals from the spectral-density
illustrate the performance of the proposed method. The matrix of the observation vector is presented in [14].
examples are taken from array processing, though, by
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