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ESTIIATION AND CONTROL IN THE VLSI FRA1

by

Thomas Kailath
Department of Electrical Engineering

Stanford University
Stanford. CA 94035

can lead to more efficient implementation.

INTRODUCTION j In this paper we present a parallel computing struc-
ture of the systolic array type for implementing a new

The theme of this lecture is that the availability of algorithm for the measurement update stcp of the Kal-
very high density integrated circuits will be changing our man filter for state-space estimation. With a single serial
approach and emphasis to several problems in estima- processor, the update of a scalar measurement would
Lion and control. take time 0(n 2 ). where n is the state dimension: we

For example, the minimality of realizations will be present an array with 2n +4 elementary processors and a
less significant than their modularity. Local interconnect- bank of delay units, that will carry out the measurement

* edness. area time complexity measures, etc. Similarly. update in time 0(n). More savings can be realized by an
good algorithms for serial processing may be poor candi- extended architecture that will update a p-dimensional
dates for parallel implementation.While it is hard for me measurement with 0(np) processors in time
in mid-August to predict exactly what I shall say in the O(max in. p ), instead of time O(mzznf 2p. np 2 , p 3j) for
lecture in mid-December. I think it might be useful to the single-processor implementation.
provide in written form some of the background material The only earlier work that we are aware of in this
on which a good part of my talk will be based. Thus, at direction is that of Andrews (1951) who developed a
this meeting at least. I plan to illustrate the above points parallel structure with 0(n

2) elementary processors for
by several examples, including: implementing the so-called U-D algorithm tor the meas-urement update by rearranging the order of computa-

1) description of a parallel architecture for the m eas- Lio n of ce t e by er man (197u ).'. tion of certain equations given by Bierman (1975),
urement update step (in triangular array form) of (1977). Our structure allows us to update not only the
the Kalman filter, covariance factors but also the state estimates them-

2) development of the Schur algorithm as a better can- selves, and also has other advantages over Andrews
didate than the Levinson algorithm for VLSI imple- scheme.
mentation of Toeplitz equation solvers. The new structure was in fact suggested by a

3) comparison of the Berlekamp-Massey-Rissanen and different way (Kailath (1982)) of carrying out the U-D
Lanczo: algorithms in the problems of partial reali- measurement update--using triangularization of an
zation and of the decoding of BCH codes, (n+p)x(n+p) matrix via Modified Givens rotations (as

4) development of minimal, but pipelined and given by Gentleman (1973)). It can be shown that for a

orthogonally-cascaded. implementations of time- scalar measurement and a serial processor, Bierman's
invariant, finite-dimensional (ARMA) systems. equations are equivalent to our triangularization

method. However, the fact that there are no explicit
equations in our scheme seems to make it easier to con-

On the other hand. while much of the development ceive of a parallel computing structure. The architec-
and demonstration of new parallel computing structures, ture we propose is of the wavefront or systolic-type (see.

7 such as systolic arrays and dataflow machines. has been e.g., Mead and Conway (1900), M. T. Kung (1982). S. Y.
carried out by computer scientists, I hope to show (by Kung (1982)).
examples) that system theori ts can contribute to the Moreover, it is significant that our algorithm is
understanding and analysis of such structures and help essentially the same whether we have scalar or vector
develop more efficient ones. measurements, while to otur knowledge it is difficult to

extend Bierman's equations to the vector case. The1. A PARALLEL ARCTITECTURE FOR MEASUREMENT main reason is that lOierman's derivation is based on a
UPDATES formula of Agee and Turner (1972) for updating the LDU

This part of the talk will be based upon a paper "A factors ot a rank-one perturbation of a given matrix; with
Parallel Nrchitecture for Kalman Filter Measurement a p-dimensional measurement, we have a rank p update
Update," by J. Jover and T. Kalath, June 1983. and there i no simple extension of the Agee-Turner for-

The main theme, in this example and some of the mula to this case. The usual way around this is to pro-
later ones, is to show how reformulation of an algorithm cess the measurements sequentially, after %ome prehim-

inary data transformation, but a direct parallel imple-
Tis talk will be based in part on work supported ia recent years at mentation will then take time O(np) as opposed to the

Stanford by the Air Force Office of Scientide Resear¢n, the Army 0(mnaz)n, pj) time for our structure.
Research Office, the Joint Services Electromcs Program, tne De.ense
Advamned Research Budgets Agency. and the Nationa- Science Found&- We might mention that the ideas and schemes of

-*.i, this paper can also be used for other forms of the

C) 4' ApproVed for publ rel ea9e & 84.*,.. ~ ~ ....
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In the following, brackets will refer to a particular
measurement update, e.g. using strictly triangular fac- element in a matrix or vector, e.g., 1,[0k.11 is the
tors (with scalar arithmetic square roots) rather than (k.j)-th element of the matrix L.; the diagonal ele-
the LOU forms. Parallet architectures for time-update ments will be denoted by a single index, c.g. Dtj 1:
calculations can also be obtained, though apparently
with 0(n 2 ) processors rather than 0(n): since this ques- Define: b

r 
= h2L

tion is still under study, we restrict ourselves in this
paper to the measurement update problem. Initiaize: a 0 ( x vector

1.1 MFASUREMENT UPDATE AND BIERMAN'S U-D EQUA-
TIONS Iterate for j = n~n I

We use the by now almost standard notation intro- Aj-i = A, + b
2
[3] D[3}

duced by Kalman (1960), in terms of which we can state D4.j] =
the

MEASUREMENT UPDATE EQUATIONS. L.[.] = L[*1 -[. a

so:=0 (ib) Examination of this algorithm shows that it takes
Klr0 :,P0 (Ib) 0(n

2
) additions and multiplications and 0(n) divisions to

K1 .5 =,PH
t
rRa- (2) go from JL. D1 to JL,. D, (see l3icrman (1977)

R.,. HP.H + R (3) P.10
7
).

P, 1. P, - P, Hrr5 5 R.- H, P, (4a) Andrews' Parallel Implementation

P,:= [Ho (4b) With the advent of VISI technology, it was natural to
ask if the processing time could be reduced by using

TIME UPDATE EQUATIONS: parallel processing arrays. e.g. of the systolic type. A
systolic-type network (see Pr. Kung (1982)) is charac-

. 0 (5) terized by the smooth flow of data through a network of
simple Processing Elements (PEs) with unly local com-

Pt.
= 

F*PjjjF*[+ GqQ1G!
t  (6) munication among the Pls and with limited access to

external data. Such an architecture is convenient for

Several alternatives to Eqns. (1)-(6) have been sug- VLSI implementation because of the regularity and sim-

gested. based on the idea (first used by Potter (1963)) of plicity of the PEs and the short path of communication

propagating square-root factors of P. and P11 . There links. However. the algorithms that can be mapped into

are several forms of such algorithms (see Kaminski Bry- such an architecture must be such that maximum

son, and Schmidt (1971); Morf and Kailath (1975); Bier- advantage is taken of the data available at a given time

man (1977)). In particular Bierman modified a measure- in a PE. [We may remark here that by the term
ment update algorithm derived by Carlson (1973) 5o that systolic-type networks we are not making any distinction

it did not use any arithmetic square roots--a feature that as to whether the final implementation will use the syn-

may be important in certain implementations. This algo- chronous systolic arrays of F.T. Kung (1982) or the asyn-

rithm is based on working with LDU (lower-triangular, chronous Wavefront Array Processors of S.Y. Kung

diagonal. upper-triangular) factorizations of Pt and (1982)--the distinction really depends upon the size of

P,,,. Since P and PI, are symmetric. U = L". Bier- the matrix.]
man uses the UDUT form and calls his version of the A first attempt at a parallel implementation was
algorithm for computing the IU. DI factors of P 1, from made by Andrews (1981). who modified the order of exe-
the |U, D1 factors of P1 the U-D algorithm. cution of some of the equations in the Bierman algorithm

and gave a data flow diagram. However, his scheme can-
ierman' Equations not be implemented using simple and synchronized Pro-

Let cessing Elements (PEs) as in a systolic-type network. As
indicated by Andrews' attempt. Bierman's version (1975)

P, = LDLr, PI' = L.DLT of the U-D measurement update does not appear to be
the best form for suggesting a parallel implementation.

Substituting these expressions into the measure- We shall describe in the next section how another look at
ment update Eqn, (4) gives the problem yielded a new algorithm. with no explicit

L.DLf = L ( D - DLHR&R1HLD ) L7 = LDL
r 

. say equations, that suggests some satisfactory parallel

Now if we have only a single measurement. i.e. p = 1. implementations.

then H, will be a row matrix, say 1.2 A NEW AIGORITIIM FUR LDU MNASUREMENT UPDATE

Hi - h - R,,t = r..t . Rt = rt It will be useful to illustrate the difficulty that led to
and if we now factor D as the Bierman equations for the measurement update by

first showing how to obtain a square-root algorithm forD= , Dr = D - DLhAr;.4hATLD the time-update equation (6),

then clearly P, t = k 5 , Fr + G, Q, Gj

L = U D.D For any nonnegative-definite matrix A, we shall

Note that D is a rank-one modification of D: in 1972 define a lower triangular matrix All" as its unique lower
Agee and Turner showed how to compute the )L. D1 fac- triangular square root factor if
tors of such a matrix. Incorporating a numerical A = A 2 ,l r / 2  

Ar/S = (A1/
2
)r

improvement suggested by Carlson (1973) (in particular
replacing a subtraction by a division) Bierman (1975) and (for uniqueness) A" 2 has nonnegative diagonal
obtained the following set of equations for the scalar entries.

measurement update (in a different notation). Then we claim the following: the time update is

• .. . .... . -. -. . • ... . 4 .. .....'. . fo. -



solved by finding a orthogonl matrix 0 to triangular- the stepSexplicitly (which is riot necessary in the array
ize the array (FpPv1  GQ " 2

]. i.e. such that methods) will lead exactly to the U-1 equt tris of% Bierman's (1975). which were obtained in the quite
[FiPi' 2  

G Q5/
2
]G-- [P/i

2
.i ]different way described before.

This claim can be immediately verified by "squaring"
both sides of Eqn. (7). The Givens and Modified Givens Methods

Computing the triangular factors Pr 2 and P,'.' 1
2  The GL.ens method of matrix triingulari/ation is to

may imply taking arithmetic square roots, which are note that we can readily find an elem'entary orthogonaloften somewhat more expensive to compute than multi- transformation to rotate any given I x 2 vector [Pi P

plications or divisions, and therefore are sometimes to make it lie along the first coordiate axis. In fact,avoided. This can be done by using LDU factorizations. note that

Kailath (1982) noted that the difficulty with the Pi -P2 1
minus sign in the update measurement (Eqn. (4a)) +/p- - /. ]

P t - P,HrR;.H, Pt [PI Ps) = [ Vp+p7 0

could be avoided by first noting that the right hand side -P
above is the so-called Schur complement of R,. i in the Vpi +P2 Vp I +Pi
(larger) matrix By systematically applying a sequence of such elemen-

R.j Hi Pi] tary transformations we can triangularize any given

matrix. as any uncertain reader can check on a simple

% 4 he ssu ishow o aoidthe(scalamr) square roots in?"•This Schur complement arises in the block LDU factori- Teisei o oaodte(clr qaerusi
tio the transformation. Gentleman (1973) showed that this

to check the decomposi- could be done by introducing weighted norms: rotate
tion [pn p2 I to lie along [ 1 0 keeping equality of the" I J(H i i '.0, 1 0 .,, 0 1 Kj i weighted norms

. .. i- = AHR- " [

On the other hand. we can also consider the Schur 1 P 0 II I
, complement of P, in M, which will be (see Eqn. (3)) 0 p i

% R.., - HtPP iPH r = R= [ 0 1 fdql (o)

corresponding to the block LDU factorization 0 dqz 0

1 H1 1
1 Rt l 0 ol0 In most problems Idj. d.21 will be given (as for exam-

u = IIpie in (9)) and Idqi. 1d,2 have to be determined. It is
40 1 jA HiT I not hard to see what to do. We need to find an orthogo-

From these two block factorizations of M. we can con- hat matrix 0 such that

elude that there must be an orthogonal transformation 1 0 1

matrix 0 such that [PI P21 0IR4  H P I I R0
0 P P I P tH R j '2# , [ 1 0 1 1

This is in fact the form of a well-known square root algo- or equivalently to find 9D such that
rithm due to Dyer and McReynolds (1969). 1PI Pei G3 = [1 ] (Ila)

As mentioned before, the transformation e in suchalgorithms may involve the use of scalar square roots. where

and in some situations it is useful to be able to avoid -S d.jip~ a
them. This can be attempted by using the LDU decompo- OD= dA d (1lb)s . itions s d -pi
R LRDRL. P, 

= LDL r Pi = .. +L= I (1c)

and rewriting the above expression as (dropping all Now note that from (10) ri is determined as
'me-index subscripts for convenience)

Li/ HL DR.0 w = p~dpI+p~dVZ (12)
LR H D 0Next it is easy to check that

LR. 0 110..o 0 11/2 (pa P lP , 21 ,I,,1/d, I [ I 0] (13)

pKIL. L, 0 D, So we have a candidate for OD and the only issue is if
or (cf. (i b))

LI L 110l(9b 0 1

IL I I L7, 0 I I Ip /4, -pJ i

Kailath (1982) showed how to use an algorithm due to -P.J d7ij -P2\I ;2i i
Gentleman (1973) to find 0,, as a product of rl-mentarv =

matrices none of which contains any scalar square roots PIp/-- Pi V/i i-
in the case of scalar measurements (p z i). writing out

.9 .*. • •. • " ..* ** - . ,' *• ' " . ' s
• X: -. • -o . - .



is of the form 1 1 85 0 01 55296
(c -sI cs + S2 0 1 0 0 1

is c ]. .5558e-2 3 1 0 1.2733 0(1.2)

This constraint can be met by choosing 2063e -1 -2 2.060 1 0487

2(14) 1 0 0 0 9521

T th nEn(1)t ar- .1092e -2 1 0 0 9290To apply the transformation in Eqn. (13) to an arbi- .8468e-2 2.636 1 0 1.2733

trary vector Pi pal']. .1699e -1 -3.3412 2.0608 1047

"P15 In the next section we describe a parallel arcnitec-

i P, / d I [p q2,] ture15) for the Kalman filter measurement update with the
I I. same structure as this numerical example.

will require four multiplications and two additions. In

many applications, including ours, it happens that p I 
= 1 1.3 ARCHITECTURE FUR PARALI, MASVR1MFNT

and for this case Golub (see Gentleman (1973)) noted UPDATE
that one could manage with two multiplies and two adds.

To see this note that we can write It might seem that our problem could be solved by

92=-p + P2 (16a) applying existing architectures for triangulari/ing
matrices. Gentleman and Kung (1981) presented a tri-

6 -P+P2 a P angular systolic array for this purpose: so did Ahmed.
111 dqi Delosme, and Morf (1982). who used a structure based on

p. d 2CORDICS as the basic Processing Element. however, our
= I. P; +P2 ,t (9i +P2P) problem has special structure and requires to do addi-

tional computations (like determinuig the product

d. 
+ 

pld,,. +. , hrL). We shall combine all these specidl requirements

= d P1 Pa 2 in an architecture that (i) solves the problem with a

linear number of processors (as opposed to O(n
2

) in gen-

, I + 4(P *3- a. (16b) eral). (ii) computes the error covariance and state
.updates at the same time. and (iii) avoids a significant

Since pad /d is given as an element of the matrix bottleneck in many systolic networks--namely, that the

(15). we see that (16a) and (16b) each requires only one Processing Elements (usually on the boundary) that have
multiply and one add. to do more complex calculations slow down the

multplyand ne dd.throughput rate for the whole system.

This is the Modified Givens transformation intro-

duced by Gentleman (1973); because scalar square roots For simplicity, we start with the scalar measure-

% are avoided, the use of the modified Givens transforma- ment update (so

tion generally yields a speedup in computation. leading H = h
r
, LR = I. DR = r. Lp. = 1 = r ). In the

to the name fast Givens transformation, next section we extend this architecture to the vector
case. The architecture we propose is depicted in Figure
1. where for simplicity of illustration, and without loss of

The following numerical example shows how generality, we have taken the number of states, n. to
Tefloignmrcleapesoshw be 4.

modified Givens transformations can be used to zero out

one row of elements in a matrix with the same structure From Eqn. (9) we see that we have to compute the

as in the measurement update algorithm presented in product hrL = b
r and then zero each of the com-

this paper (Eqn. (9)). with H a row vector (scalar meas- ponents of the vector 6. Each time we input a set of

urement update) and LR.DR,Ln,. and DR. scalars. To tri- data to our architecture, we shall zero out one element

angularize the matrix we will zero out all but the first of the vector b, using the transformation OD(l. j+l). as

element of the first row, and to avoid fill-in we will start in the example of the previous section.

zeroing out the element (1,4) [using the first and forth Eqn. (9) suggests that the architecture should have

columns]. Then we will zero out the element (1.3) [using four parts. First, a column of elementary processors at

the first and third columns]; and so on. Let the left whose function is to compute the inner product
hr L =b. Second, a processor at the top of Figure 1

*O =0 (l, n+ l )GD( t . ) '' . D(t,2) whose objective is to compute the parameters for the

where the elementary rotation ft(i. j) places a zero in elementary transformation. GD(1,3+1). Third. a column
the (t. J) element of the matrix, and n is the dimension of processors (at the right of the figure) to apply the
of the state vector (in this numerical example 7t = 3). transformation. Finally, a delay network that will delay
We write in the diagonal matrices for convenience of the values of the matrix I. until the appropriate
ref.:rence: moment to apply the transformation.

1 A more detailed description of the different Process-
55 103 107 571 ing Elements (PEs) involved in our architecture followv.

1 0 The column of processors that perform the product
01 0 eD(1,4) hrL is compoed of n PEs. One of these PEs is dep-

icted in Figure 2; with 6[ 1. h[ 1, and 1.( . I representing
-2 3 any element of the vectors b. h and of the malrix L.

Every PE in this column of processors has a memory ell1 5 103 0( 346 to hold one floatin point number (one ee If tohe

1911080 1 vector h) which can be changed as explained at the rnd0 G(1.3) of Section V. The function of each of these PE4 iA to

1 -2 3 .0487 compute the product of the real number at one of the
inputs with the value stored in memory and add theresult to the other input.
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We define Processing Element Time (PET) as the
total time it takes a given PE to compute the output-- 0 0
including the time to transfer the data to a neighboring l[l I1:.2 I
processor (with a protocol if the system is asynchro- 0L[1
nous). Note that the PET is independent of whether the
individual PE is internally pipelinable (which will affect We shall read this data in by diagonals starting at
the throughput rate for the PE). In the literature on the upper left corner: so that the input matrix isSsystolic-type arrays, the PET is usually called the clock [0 0 0 I]
(which can be misleading), and it is usually assumed to 1 I
be 1. In systolic-type arrays the PEs with the largest PET 0. =  

L[3.1 11 I
will determine when data will be available to neighboring 4, L 4.2 L1.31
processors; therefore these processors will lower the In each time interval. PET, we shall process one column
throughput rate of the whole array. In our of the matrix I.. starting from the one at the right.
architecture--see Eqns. (17)-(19)--the largest PET The first h processor requires an initialiing datum

processor that computes the param- at each PET. for which we shall enter a row of zeros:
eters for the elementary transformation G8(l. j+). a

,- , = n. n-t. 1; by dividing this processor into four 1, =o 0 0 0J
stages (other numbers can be chosen if required by
hardware considerations) and by adding some appropri- The input to the top processor (see Figure 3) will be
ate delay banks, we make the whole architecture work based on the weighting matrix in the left hand side of
with the PET corresponding to the simplest PE (viz. one Eqn. (9). viz.
of the processors in the left column of Figure 1). From Ir I
now on we will refer to this PET as the architecture PET. Dl[]
namely, the time it takes the whole architecture to D
accept another set of data; this is the time required to I[3]
perform a multiplication of two real numbers, plus onet=, =arranged as follows (recall that we do riot need to taske- addition, plus the time involved in transferring data to a are as foll s eathat e don ret i
neighboring processor (see Figure 2). Note that, in gen- see

0 % eral. the PET is greater than the clock period of the ID =2] 0(31 014] * * -hardware. D [ 3 1
where the asterisks stand for don't care inputs. The.; %. The processor that computes the parameters of the matrices I. and ID contain all the information we need

transformation is composed of of four PEs (see Figure 3); for processing one measurement.
its structure allows us to pipeline the computation of

o parameters for different transformations. We can divide Description of the Output
the computation of D(1. j+1) into more than four
stages to make sure that every single stage will take only
the architecture PET to compute. We assume four The output from the column of proces'ors at the
stages; then it takes 4 PETs to compute the transforma- right can be described by a matrix. 0,. which will be
tion parameters. Note that only one of the four PEs delayed (n+a+I)PFTs with respect to 1. (i.e.requires a memory cell. (n+a-l)PETs due to delay network plus 2 lm;rs due tothe processing by the right and left columns of proces-The transformation 0,D(1.1+1) is applied, in the sors).
form shown in Eqn. (16). by a column of n processors.
A PE of this group is depicted in Figure 4; each of these 0 0 a 11
PEa can be thought as being composed of three of the = 0 0 L,[2.l I I1
PEs of Figure 2. Finally, the delay is achieved by 0 L13.1] L,13.21 ]
nX(n + a - 1) registers, where usually a = 5--as dis- JL[4.11 L[4,21 L,[4,3] I
cussed at the end of this section. The output from the top processor is given by Oo
Description of the Input which will be delayed 3 PET with respect to ID (i.e. the

time it takes to propagate through three stages of the
The inputs to our architecture are as follows (see top processor):

Figure 1): n inputs to the column of processors at the 00 = (D4(I] D21 D,(31 D[4] * *left. plus one input to initialize the h processors, plusone input to the processor at the top of the architecture. This completes the description of the architecture
We use the following notation: we represent the signals at for updating the covarian e factors (Eqns. ()-(4)) of the

usa given point of the architecture by a row vector whose measurement update.
gelements are the numbers appearing at that point of the

architecture at different instants of time (usually every Updating the ottate hetmate
rtPET); the most recent values are in the leftmost column.

Therefore we can talk about input matrices, comprised An important advantage of our architecture is that
of several rows containing the input to several proces- the same structure allows tIs to compute the updated
sors at consecutive PETs. In this matrix, each column measurement--viz. Eqn. (1); this fact does not follow
will show all the inputs to a defined set of processors at a from Eqn. (9). but from an understanding of the archi-
given instant of time; the next column shows the input tecture. It is easy to show that if we include the stateafter one PET. Similarly for output matrices. (Note that vector z in the input matrix !, as follows
these systems can be asynchronous; in a row of the 1 0 0 0 Z1l1 I1
matrix, data in successive columns merely show the fact L 0 0 0[2 4lN J 11that one datum succeeds the other, but not necessarily =  [31 1131 L1[.l] I
after exactly one PET.] [4 ] L[4.1] 1,14.21 1,. 4.3 1

For the column of processors that computes the and also Initialize the h processors to include the scalar
product hr.L we have to input the elements of the measurement y as follows
matrix L in Eqn. (9) (for n a 4) 11 = [O 0 a -y a]

Square brackets refer to an eenent of a vector or rrariz.
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then the output will have the same structure, and will here. such is the the %%ay the c oeffic ivfits of the : matrix
include the updated state vector z, are introduced in the ineniory cells. Die input 111'1 Ot -

1 o 0 0 zj[l 11 put mnatrices I. and 0, are exactly the samn is fur the

= 0 0 X.121 LJ21 11 scalar case. The init ializamtioni niatrix Aill be also the

= 0 x [3] L.[.1] L.3[21 1 same. 1C.. The vector of rimasuretcits, y . (p = :3) is

J [41 L[4.11 L[4.2] L,..31 11 input as

The input of the diagonal elements and the correspond- [, o o 0 -[ I]

ing output remain unchanged. = [ 0 0 0 -y[2] 0 ]

lnitialization n h [0 0 0 -y[3l] 0)]

To initialize the top pro-essor in the cotumns of

For the algorithm to work properly we need to ini- processors which perform the II L product we will tse

tialize the memory cells in the right column of proces- Ic, o 0 a
sors with the value zero. This initialization can be done
using the following input matrix before entering I4 IC. [0 0 0 * I

to 0 O]C = [0 0 0*

* = 1= 0 where the asterisks show don t care values; here they are
0 used to indicate proper tmning. There is much more to

The s(ructure of the matrix IC will be preserved at be said about timing, operation counts and other com-

the output. Additionally, we need to enter a string of plexity aspects, for which we rnust refer to the full

n-I zeros to initialize the first h processor paper.

IC, = [0 00] 2. Some Algorithms for Toeplitz Matrces

4'* The material in this section is based on part of a
Implementation Issues paper to appear in Modern, Signal Plrocessing and VISI.

S.Y. Kung. F. Whitehouse and T. Kaildth (eds.), 1'rcntice
-

This architecture shows potential for a practical Hall. 1984.
implementation: each processor can be implemented The by now well-known linear predictive coding
with standard chips now being developed (see Fisher et (LPC) methods for speech analysis are based on the

al. (1983) and S.Y. Kung (1984)). Furthermore, the flow hypothetht speech aforms ar be ded as the

of information follows a very simple and regular path.the
However other structures are also possible, including for output of a linear time-invariant filter drisen White noise.

example the use of CORDIC modules (see Section 2 The linear time-invarnant filter can be modeled in

below), many ways, but for a variety of reasons early attention
was focused on using "all-pole" mnodl.s, or equivalently

1.4 KCrENSION TO VECTOR CASE on modeling speech as a stationary autoregrmssive
discrete-time raridom process:

As shown in Equation (9), in the vector case we have y 
+ 

A.viyg -i + + AV ,; y e ant
to zero the pxn matrix HL using as a reference the where lej,.j is a zero-mean wshite nioie process. The
lower triangular matrix L 5 . Each Givens transformation modeling problem is to choose the order N, the
will zero out one element; however, in order to preserve coefficients lANdt and the noise-variance. R. N say. so
the elements already zeroed we must proceed in a given
order that must fulfill the following requirements: as to best flt the observed speech signal %, t 0j

I. All the elements above the one we want to zero (in The standard procedure is to form the Ro-cailed

the same column) must be zeroed firt. This 'sample covariance' estimate of the second-order statis-

requirement comes by our choosing as a reference tic,

the lower triangular matrix LR. R, = E V!I .j

2. All the elements to the right of the one we want to of the stationary process 1y, t > 0j, and to notice that
sera (in the same row) must be zeroed first. This the coefficients AN.jI can be obtained by solving the
requirement comes by choosing a particular struc- so-called Yule-Walker equations
ture for the L matrix (lower triangular). Re R Ry

One way to fulfill both requirements is to zero the R, Re
elements of the HL matrix by diagonals, starting in the
upper right corner, and in every diagonal to start by [AN.N A.1. 11
zeroing out the uppermost element. Figure 5 shows the R,
extension of the architecture to process p measure- RN R, R 0

ments (with p = 3 and n = 4). As expected. this archi-
tecture requires more processors that the scalar one,
but presents the following additional advantages: [0 0f]

* The processors and structure are the same as for There is room for disagreement with this formulation
the scalar update. However, one reason it is popular is that the .p,-i i

* It takes time 0(maz$n. p1) (see below), as opposed constant-along-diagonals (Toeptitz) nature of the
to O(np) for processing all the measurements using coefficient matrix in (1) lends itself to a convenient fist
the scalar architecture, recursive solution algorithm -- the so-called levirsun

* Processing the measurements one at a time algorithm:
requires the additional work of uncorrelating the A,# - '
measurements; using the architecture for the vec- - a -kN

tor case, there is no need for uncorrelating the = ..
measurements. INVa(z) J
Most of the considerations discussed in Section IV Ac(e I 11/(z)

for the scalar measurement architecture apply directly
where
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AN(s) 
= 
AN.m + AN.llz + • +• A.1 N-1 + zN must tie within the unit cirvie. but this condition d')eN

not translate easily into botLindF )n ttt coeTficinvrts
BN(z) = the so-called *reverse polynomial' of Av(z) IA,[. For this and other ra.soris the riniric,il proper-

= A.q..vz
N
v + Ay.,_1 . ... A..1 + Ities of the (norrnal zcd) lattive filter tend to be better

A'"Z 'N. 4 1than those of the transversal filter. Thierefor-. it may
and not be surprising that l'exas Ino'truiients chose to use
All i  AN,.NR!+A.AI-,R,+...+A.v.I1+RA.I this structure when building their very successful speech

RA (3a) synthesis chip (Wiggins and llraritinham (1978)): the
modular structure, local inturconnections and rhythnmlc

R1. I RX(I -k,), R8 = R0 (3b) data flow all make for convenient VLSI iniplernientat ion
(Mead and Conway (1960). F. T. Kung (1979). (19S2). 5. Y.

The point is that we i'ccessively build up the solu- Kung et al. (1982)).
tions IA~.,.N = 0.1.... . with the major computational
burden being that of forming the 'inner product' for CORDIC Implementations
kN,1. which requires N multiplications and N addi-
tions. Therefore, computing Jkt ....kAI will require ofthe order of Each section in Figure 7(a) requires two multiplica-

tions and two additions; the multiplications tend to be1 + 2 + + N = N(N + 1)/2 more expensive and. therefore, rearrangements have
or O(N

2
) elementary computations, which is an order of been devised that use scaling to manage with only one

magnitude less than the O(Na) computations required multiplication (see e.g.. Markel and Gray (1976. See.
to solve aA arbitrary set of linear equations, i.e., one 5.5)). For numerical reasons, one often goes to a section
without the sstructure of with four multipliers, as in Figure 7(b). Somewhat ironi-

t especial Toeplitz sf(). cty, it turns out that this section can tit fact be imple-The Levinson algorithm can be used to produce a mented without using any explicit multiplications at all.family of autoregressive models of increasing order, and by using the so-called CORDIC (Coordinate Rotation Digt-we have to decide in some way on the appropriate order. tal Computer) implementations, based on the property
There are various tests (e.g.. Akaike's Information Cri- shown in (5) below.terion) and other considerations (e.g., practical design Such circuits have been proposed and already used
limits on integrated circuit implementations) involved in in several applications (e.g.. by Despain (1974). (1979).this choice, which we shall not elaborate here. What we laviland and Tuszynski (1960). see also Schelin (1953)):
do wish to emphasize is that Levinson algorithm has a have been suggested for a variety ofspecial structure that allows us some flexibility in mak- in recent years they
ing a decision on the order, one- and two-dimenional VLSI computing structures of

the systolic and wavefront array types -- see, e.g.. the
The traditional way of implementing a filter to cor- papers of Ahmed, Delosme and Morf (19B2), Rao andpute e.v. is via a transversal (tapped-delay-line) filter Kailath (1983a,b), Dewide et al. (1984). and also thewith coefficients tAN..,.. ALL.It|, see Figure 6; we should thesis of Ahmed (1982) and Delosme (1982).

remark, to avoid confusion, that the transfer function of
the filter that computes a..# is not AL(z) but rather Parallel Computation and Lhc Schur Algorithm

ANN + 4AN.N_.Z - ' + 4 - • + X-N = z-NAN(z) .
However, if we were uncertain about our choice of order A natural question with VLSI technology is to explore
and wished to compute say eNv.v, then we would have the question of how much the determination of thenot only a longer transversal filter but we would have to reflection coefficients can be speeded up by using paral-
reset all the tap-gain coefficients from JA.O... AN. to lel computation -- say with N processors working

,AN, lsN . There are many examples in which it together. The hope is that if a processor takes one unit
is desirable to compute the filter response over a range of time for each elementary computation, then we wouldof values of N before deciding on a fixed order, and this hope to use N processors to obtain the answer in time
is not convenient with transversal filter implementations. O(N) as compared to O(N2) with a single serial proces-

Now the Levinson recursion (2) shows that the sor.
1k. i = 1.....NI along, with the fact that However, it is not hard to see that a parallel imple-A(s) = B(z) = 1. provide an alternative parametriza- mentation of the Levinson algorithm will take timetion of the filter: knowing these values allows us to con- O(N log .V) because of the inner product operation
struct A(z). and hence the coefficients |AN.ti, from needed to form the Jkd -- N processors can carry out(2). If we wish to go to a different order, say N + 2, in the N multiplications needed to form kN.1 in parallelthis parametrization we need only to add two more in one time unit, but the additions required will take at
coefficients lkv.i,kAN.q( without having to change any of least log N steps.
the earlier values. This invariance property of the Jkj- This seems disappointing, but there is hope. Itparametrization can be exploited by using a different turns out that there is a mathematically equivalent algo-implementation of the filter in terms of the rithm. traceable to Schur (1917), that avoids the inner
kt, I [ i NI rather than the AAA. , Examination of product step in forming the kj and thus will allow(2) suggests that we can build the filter as a cascade of implementation in time O(N) with N processors."lattice sections", as in Figure 7(a), or in a certain nor- The Schur algorithm was originally presented in

m~cized (see Eq. (5) below) form as in Figure 7(b). 1917 as a test to see if a power series was analvtn: antiIt is easy to calculate the inverse of the lattice bounded in the unit disc. In our problem it reduces to a
filters in Figure 7 by using signal flow graph rules - the simple three step procedure (see Dewilde, Vicira aridresult of doing this for Figure 7(b) is shown in Figure 8 Kailath (197H) and lev-Ari and Kailath (1994)) for the4 and provides the "modeling" filter. It has the form of a computation of the JkJ associated with a covariance
discrete transmission line, and helps explain why the sequence IN0,I t . .
|ki I are often called reflection coefftcipnts.

This physical interpretation suggests that we must Step 1: Start with a Renerator matrix (supersIcript
have 

* denotes riatrix tralispose)

(4) I"R R Ia fact that also follows from (b) (since the variances Go' 0
IRV? must be nonrmgative). There is a correspondmiconstraint on A,(*): the roots of the polynomial x'A()

I' ~ ? . % - * . ' -
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and shift the first column down one row to get the )Gj rnears that the values at th,' input of th. ?-th

0 R1 delay element are the entries of t he, i-th ihjn:r ')f th,

Copt-h { =ICholusky fatctor C. Consequ-ntly, %%u liti .isn,iy thit

[ R, .the values at the inputs of the deliY rrie:ts at any
time I are the entries of t te I -th riw of t ho , lh ky
factor C. [Incidentally. this iiter)ri.titoin rernove

Step 2: Compute k, as the ratio of the (2,2) and much of the mystique sonlet.ines asoc'itd with the ,-

(2,1) entries of 171. called fast Cholesk-by--olumn and fast Chohsky-tiv-row

algorithms.I

- - Step 3: Form a matrix This transrnission-line titerpret,ti on s!iugets thit

S.• -k the computations could be carrtd out tiy .xv.ti:g trut'-
1 - I tures as in Figure 9 with light or other ieh(etror,,irietic

ID(k ) = (5a) waves, depending upon the medium 'hi-en ft r inipi-
Z, ek) I I mentation (e.g.. fiber optics or dcouti wcives in solids.

and apply it to t to obtain a new Schur-reduced gen- etc.).

erator of the form In fact, we might mention that t irt i g with the

inz 1 graphical representations in ligure 9. and using onie

G* G=9(k) j J (5b) fundamental wave propdsgatiori and energy consevivtiori
0.X'... Z concepts. we can obtain simriple proofs of all the above

wsxresults and in the process develop intimate arnd useful
where the x denotes elements whose exact value is not connections between transmussion line theory. Chole-ky
relevant at the moment; 9 is known as a J-rotation arid inverse Cholesky factorizition. rverse seattcring
matrix because theory and the Schur and dual chur algorithns (sec

[1 0 1 Bruckstein and Kailath (19B3)). This trruinirnssiori line
9(k) J 0(k) = i , 0 = picture was also helpful in obtaining cert ii or!h, oral

10 -11 cascade implementations of .A-.fA (pole-ri.,-Amro) filters

Its role is to rotate in the I-metric (i.e... to hyperbo" : with excellent numerical properties (Rao aid Kaikath
the 2' row of G to lie along the first coordinate direc- (19 )3)) and excellent potential f(er VIjI 'implementation.
tion. On the other hand, we can approach the results

Now we can repeat Steps 1, 2. 3 to obtain k2 and a from quite another direction by noting that Cholesky fac-
new reduced generator matrix G2. And so on. torization is actually a way of testing for positive

It can be shown that the Jkd computed in the definiteness of a matrix: if we now ask what matrix struc-

, Schur algorithm are exactly the same quantities as tures lend themselves to easy testine in this way, we

defined before in the Levinson algorithm. However, note shall be led to a class of matrices (with "displacement"

that the Schur algorithm only requires sets of 2 x I row structure) of which the Toeplitz family is only one special

vector by 2 x 2 matrix multiplications, which can be case (Lev-&ri and Kaiuath (1911)). By this route, all the

carried out in parallel at each stage. Therefore, we will previously mentioned results on parallel computation

need only 0(N) time units to carry out the Schur algo- and transmission line interpretations and implementa-

rithm with N processors, as compared to O(N log N) tions can be carried over to a much larger class of prob-

for the Levinson algorithm. lems as we shall briefly review in the next section.

In fact. a parallel and pipelined lattice VLSI comput- 3. Minimal Realizations and Decoding of BCIi Codes
ing structure based on the Schur algorithm has already
been designed and built (see Kung and Hu (1983). Consider a discrete-time system with transfer function

Cholesky Factorization H(z)

The Schur algorithm is also closely connected with so that the hk define the impulse response of the system.
the so-called Cholesky factorization of the Toeplitz Suppose, to take a very simple case, that we know the sys-
covariance matrix R in (1). Such factorizations are tem is finite dimensional of order n, and that we wish to

important in many calculations involving the find polynomials cz(z).6(z), such that

corresponding stochastic process. The Cholesky factor. H(s) b(z)/ a(z)
say C. is the unique lower triangular matrix with posi-
tive diagonal entries such that where

R = CC* o(z) = n" ,za-'...+a,

It turns out that C is immediately determined by the b(z) b 2z - 1 + ." + b

Schur algorithm: Then it is easy to check that we have the relation

the t -tht column of C = the first column of G, , (6)~~where the }Gq| are the reduced generator matrices h -' -bt-

obtained in the Schur algorithm. Thus we have a fast h

algorithm, using O(N2) computations, for Cholesky fac-
I . torization of aToeplitz matrix, asecompared to(93. 0(-'3) in 0 ,i

general, (see Bareiss (1969). Morf (1970). Rissanen
(1973))..

h h, - I I

Transmission la ne Interpretations and Inverse h h -L

A good indication of a natural connection between

the Schur algorithm and potential VLSI or other imple-
mentation methods can be obtained from the graphical
representations of .he Schur algorithm shown in Figure
9. Then the above result on the relation between C and

" ...., .. .. .... ...-.. .:,,,:,,,,,,.- .',,
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From tLis set of equations. it is clear that b(z) may be recursions sri L't r suli cl fur tr iii,:i innipl,'ini'ri tt.oi. In

easily found via back substitution once a(z ) is known his thesis researuh ai Starjnrd. ('itron h dv,'m .i ft

Thus, the main work involved is to find a (z ) by solving the highly pairaihl irnipi' l1 1n1titIoNi of thf. Ufier 111.-,
iHankel matrix equation, recursions for solvni the partil re,ilitit ani Ht. 'i' cod-

ii ing problemys.
rh • 4. VI Implementations of Signal Processing Operations

.- (2) In the last few years, there has been great activity in

h 2,, the area of systolic array implementation of basic signal
I.-., processing operations such as convolution. polynom'1ial mTul-

General methods of solving n linear equations in n unk- tiplication and division, matrix multiplication and IU and
nowns require O(n 3 ) elementary computations. However. Cholesky matrix decomposition (see. e.g.. H. T Kun.g (19HZ)
here the special -ankel structure can be exploited to solve and the chapter by Kung and Leiserson in Mead arid Conway
the equations with O(N ) computations. This result was (1980)). Systolic arrays have the advantages of modularity.
perhaps first noted in the coding theory literature, where local interconnectedness and regular data flow and there-
Berlekamp (1968) developed an important decoding algo- fore are being studied as prime candidates for VlSI iniple-
rithm for BCH codes, which essentially involved the solution mentation. However. numerical issues inportant fc)r actual
of Hankel linear equations over Galois field with elements implementation, such as sensitivity to coefricient truncation
I0.1; Massey (1969) later showed the relation to minimal and rounding and susceptibiity to overflow and rIMtt-cycle
realization problems over this field. The Berlekamp-Massey oscillations, do not appear to have been addressed as yet.

algorithm can be in its simplest form described as follows: In Rao and Katlath (19B3b). it is shown that most presently
known systolic arrays would in fact softer from such prob-

a(z) = ARO(z) lems. because they can be interpreted as rearrangemenits of

where the so-called controller and observer (or direct) canorncal
l~th*i)z) 11 - a ~ikis) ~c~2~ 1r~iform of linear system theory; the rearrangements are[.- . I A i 1 1 f essentially those required to make these canonia, forms

I I I ); *j~Ii(3) pipelineable. In linear system theory, it is kniuwn that
Lki (+)J + ik+i (1-4+0d)zJ L( [)(Z () LO numerical problems can be reduced by using cascade reali-
6j+-n =  6 6 O = 0 zations. and that in fact overflow and limit (ycle oscillations

-= can be completely avoided by using cascades of orthogonal
k AJ/)h+ _1  (4) sections. The Schur algorithm describe:d in Section ? can be

* -" j=+I =  used to derive two new classeT of pipelined. systolic ARMA
By "simplest form" we mean that the coefficient matrix is digital filters of this type. In the AR (all pote) case, they are
assumed to have all leading minors nonzero. This unrealis- exactly the lattice filters shown in Figs. 7 and .3 In the
tassumdton aveall leadinmno s aheot Tse funrtea- ARMA (pole-zero) case, we have single input, Lwo-output
tic assumption can be removed, at the cost of some further structures of the types shown in Fig. 1O thtsc are derived
complexity in the algorithm. We ignore this (important) by applying energy-conservation constraints to the
refinement here, because our point is that the inner pro- transmission-line analysis mentiori'd at the end of Section
duct in (4) prevents effective parallel implementation of the
Berlekamp-Massey algorithm: with n processors we will 2.

- need 0(ntogn) elementary computations rather than There is a tradeoff between chip area and computation
O(n) as we might expect. time in VLSI implementation and several authors have

developed lower bounds for the area in terms of a quadratic
An alternative method of solving the linear equations function of the computer rate. Computer-science analyses

"" can be based on attempting a triangular factorization of the of signal processing chips have not generally taken into
coefficient matrix in the form account the rationality of the transfer functions that may

111 = = • l [ I a be involved: by doing this. tighter lower bounds have been

I = 1. . (5) observer and controller canonical forms, and the parallel
jn c, 1 0a1 cascade and orthogonal cascade structures mentioned

0 . . . above all meet the complexity lower bounds; however, the
widely-used (and very low sensitivity) wave-digital filters and

More compactly, we denote this as most noncanonical state-space realizations do not.

M(n,n + 1)P(n + 1,n + 1) = Q(nn + 1)

The factorization of M is generated by recursively comput-
ing the columns of P. This leads to recursions of the form 5. Compur-Aided l'nglnecring Analysis and Design

p.(Z) -(Z )P( - 6kPA-i(Z) (6) A less analytical. but no less significant development in

where the VLSI era is the growing availability of desk-top coMput-
" • ers and work stations with powerful simulation, graphical

45k = and computational capabilities. Dramatic improvements
&M- can be expected in the level and sophistication of advaiced

Spa(s ) iS a polynomial formed from the (/+l)' column of theoretical techniques that can be brought to bear, in often
- P with the top element assigned the power z and so user-transparent and very user-friendly ways. on practical

forth. I ) is the ith element below the main diagonal in problems. Not the least significant %ill be the development
the (k )+1) column of Q. e.g., lO) is the clement in the of the proper ( :rioination of human skills and :machme
(k.1)" column that is on the main diagonal. This "three- capabilities that Professor Rosenbrock presciently ientified

term" recursion is standard in the theory of orthogonal serayasag(18CDPlnyLcte.lo nS-
polynomials and in fact the above polynomials are already temns & Control Letters, Vol. 1, pp. 2-6. July 1931) iN an

known in that literature as Lanczos polynonials. Again the essential ingredient in rightly shaping the relationship
classical theory has to be extended when M(n,n+I) can between man and machine, autunation aid society.
have zero leading minors; this can be done by replacing the
term (Z - -y) in (6) by a polynomial in z of higher
degree; see Kung ((1977), Ch. 4). [The main point here. how' 6. Concluding Remarks

.4.. ever, is that the coefficients %,y4:1 in (6) arise naturally in
each step of the factorization, and no inner products are This written version is only meant to provide some
involved. Therefore, as noted by Todd Citron, the Lanctos more background and detail on the major technical topics

. *. .\* *%. - .. %- V m li m ~ ~ ~ ~ ' . . * ~ -.
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that I expect to use, to varying degrees, in the actual [cc- Kaminski. P.C., Brysun. A E. Jr and Schriidt. ".
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