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INTRODUCTION

The theme of this lecture is that the availability of

approach and emphasis to several problems in estima-
tion and control.

For example, the minimality of realizations will be
less significant than their modularity, local interconnect-
edness, area time complexity measures, etc. Similarly,
good algorithms for serial processing may be poor candi-
dates for parallel implementation,While it is hard for me
in mid-August to predict exactly what 1 shall say in the
lecture in mid-December, | think it might be useful to
provide in written form some of the background material
on which a good part of my talk will be based. Thus, at
this meeting at least. I plan to illustrate the above points
by several examples, including:

1) description of a parallel architecture for the meas-
urement update step (in triangular array form) of
the Kalman fliter,

2) development of the Schur algorithm as a better can-
didate than the Levinson algorithm for VLSI imple-
mentation of Toeplitz equation solvers,

3) comparison of the Berlekamp-Massey-Rissanen and
Lanczos algorithms in the problems of partial reali-
zation and of the decoding of BCH codes,

4) development of minimal, but pipelined and
orthogonally-cascaded, implementations ol time-
invariant, Ainite-dimensional (ARMA) systems.

On the other hand. while much of the development
and demonstration of new parallel computing structures,
such as systolic arrays and dataflow machines, has been
carried out by computer scientists, [ hope to show (by

. examples) that system theori ts can contribute to the
understanding and analysis of such structures and help
develop more eflicient ones.

1. A PARALLFEL ARCHITECTURE FOR MEASUREMENT
UPDATES

This part of the talk will be based upon a paper “'A
Parailel Architecture for Kalman Filter Measurement
Update,’ by J. Jover and T. Kailath, June 1963,

The main theme. in this example and some of the
later ones, is to show how reformulation of an algorithm
—

This talk will be based in part on work supported in recent years st
Stanford by the Air Force Office of Scienufic Research, the Army
Research Office, the Joint Services Ejectrorics Program, tne Delense
Advanced Research Budgets Agency, and the Nationa: Science Founda-
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' can lead to more eflicient implementation.

| In this paper we present a parallel computing struc-

f ture of the systolic array type for implementing a new
algorithm for the measurement update step of the Kal-
man filter for state-space estimation. With a single serial
processor, the update of a scalar measurement would
take time O(n?), where n is the state dimension; we
present an array with 2n +4 elementary processors and a
bank of delay units, that will carry out the measurement
update in time O(n). More savings can be realized by an
extended architecture that will update a p-dimensional
measurement with O(np) processors in time
O(maz {n, p}), instead of time O(mazin?p, np?, p3}) for
the single-processor implementation.

The only earlier work that we are aware of in this
direction is that of Andrews (1981) who developed a
parallel structure with 0(n?) elementary processors for
implementing the so-called U -0 algorithm for the incas-
urement update by rearranging the order of computa-
tion of certain equations given by Bierman (1975).
(1977). Our structure allows us to update not only the
covariance factors but also the state estimates them-
selves, and also has other advantages over Andrews
scheme.

The new structure was in fact suggested by a
different way (Kailath (1982)) of carrying out the U-D _
measurement update--using triangularization of an |
(n+p)x(n +p) matrix via Modified Givens rotations (as
given by Gentleman (1973)). It can be shown that for a
scalar measurement and a serial processor, Bierman's
equations are equivalent to our triangularization
method. However, the fact that there are no explicit
equations in our schermne seems to make it easier to con-
ceive of a paraillel computing structure. The architec-
ture we propose is of the wavefront or systolic-type (see,
e.g.. Mead and Conway (1980), M. T. Kung (1982), S. Y
Kung (1982)).

Moreover, it is significant that our aigorithm is
essentially the same whether we have scalar or vector
measurements, while to our knowledge it 1s difficuit to
extend Hierman's equations to the veclor case. The
main reason s that Bierman's derivation is based on a
formula of Agee and Turner (1972) for updating the LDU
factors of a rank-one perturbation of a given matrix; with
a p-dimensional measurement, we have a rank p update
and there 1= no simple extension of the Agee-Turner for-
mula to this case. The usual way around this is to pro-
cess the mceasurements sequentially, after <ome prehm-
inary data transformation. but a direct paralicl imple-
mentation will then take time O(np) as opposed to the

O(mazin. p{) ime for our structure.

We might mention that the i1deas and schemes of
this paper can aiso be used for other forms of the

PO IS N ‘A A.n_.)“-
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measurement update, e.g. using strictly triangular fac-
tors (with scalar arithmetic square roots) rather than
the LDU forms. Parallel architectures for time-update
calculations can also be obtained, though apparently
with 0(n?) processors rather than O(n); since this ques-
tion is still under study, we restrict ourselves in this
paper to the measurement update problem.

1.1 MFEASUREMENT UPDATE AND BIERMAN'S U-D EQUA-
TIONS

We use the by now almost standard notation intro-
duced by Kalman (1960), in terms of which we can state
the

MEASUREMENT UPDATE EQUATIONS:

T T Xy “Kf,t(yt ~ Hiz,) i=20 (1a)
£0:=0 (1b)
Ky SPHIRS! (2)
Ra.l‘ = HiPs”\r* Ri (3)
Py = Py - PHIRSIHP, (4a)
Po:=1l {at)
TIME UPDATE. EQUATIONS:

2 = Ry i>0 (5)
P = FPFT + GQGT (8)

Several alternatives to Eqns. (1)-(6) have been sug-
gested, based on the idea (first used by Potter (1963)) of
propagating square-root factors of P, and F . There
are several forms of such algorithms (zee Kaminski, Bry-
son, and Schmidt (1971); Morf and Kailath (1975): Bier-
man (1977)). In particular Bierman modified a measure-
ment update algorithm derived by Carison (1973) so that
it did not use any arithmetic square roots--a feature that
may be important in certain implementations. This algo-
rithmn is based on working with LDU (lower-triangular,
diagonal, upper-triangular) factorizations of P; and
P. Since P, and_P,, are symmetric, U = LT. Bier-
man uses the UDUT form and calls his version of the
algorithm for computing the {U. D{ factors of P,y from
the {U, D| factors of P the U-D algorithm.

Bierman's Equations
Let

P =LDLT, Pue=L.D,LT

Substituting these expressions into the measure-
ment update Eqn, (4) gives
LD,LT =L (D ~DLTHIRSIHLD) LT = LDLT, say
Now it we have only a single measurement, i.e. p =1,
then H; will be a row matrix, say

Hy = hlr~ ’ Rys =Tgs Ri=r
and if we now factor D as

D =LDLT = D - DLThRsr)R]LD
then clearly
L,=LL , D.=D

Note that D is a rank-one modification of D; in 1972
Agee and Turner showed how to compute the §L, D{ fac-
tors of =uch a matrix. Incorporating a numerical
improvement suggested by Carlson (1973) (in particutar
replacing a subtraction by a division) Bierman (1975)
obtained the following set of equations for the scalar
measurement update (in a different notation).

) sadhoush sinh Subribie DA PR ST Rl TN SRR S I

o Ad « v - .
e Ar AR A T A NN ASIL

L 2t 4 bt A
gt Mtk a Ous vt A A AT R

In the following, brackets will refer to a particular
element in a matnx or vector, eg., [I,[k.3] is the
(k.j)-th element of the matrix L,: the diagonal ele-
ments will be denoted by a single index, e.g8. D|;]:

Define: b7 = h7L

Initialize: a, =0 (n x 1 vector)
1.9

fterate for 3 = n.n-1,.., 1

Ajoy = A + 0751 Dlj)
DJjl=4; Dlslra
B =bi710li17 3

Lilsjl=Lloa]1-8[5] a
a a; +§8 Lfeg]

'y -1
Examination of this algorithm shows that it takes
0(n?) additions and multiplications and 0(n) divisions to
go from (L. D} to {L,. D,} (see Bierman (1977)
p-107).

(scaler)

i
-

Andrews' Parallel Implementation

With the advent of V131 technology, it was natural to
ask if the processing time could be reduced by using
parallel processing arrays, e.g. of the systolic type. A
systolic-type network (see H.T. Kung (1982)) is charac-
terized by the smooth flow of data through a network of
simple Processing Elements (PEs) with onty local com-
munication among the Phs and with hmited access to
external data. Such an architecture is convenient for
VLS! implementation because of the regularity and sim-
plicity of the PEs and the short path of communication
links. However, the algorithms that can be mapped into
such an architecture must be such that mawimum
advantage is taken of the data available at a given time
in a PE. [We may remark here that by the term
systolic-type networks we are not making any distinction
as to whether the final implementation will use the syn-
chronous systolic arrays of }.T. Kung (1982) or the asyn-
chronous Wavefront Array Processors of SY. Kung
(1982)--the distinction really depends upon the size of
the matrix. ]

A first attempt at a parallel implementation was
made by Andrews (1981), who modified the order of exe-
cution of sotme of the equations in the Bierman algorithm
and gave a data flow diagram. However, his scheme can-
not be implemented using stmple and synchronized Pro-
cessing Elements (PEs) as in a systolic-type network. As
indicated by Andrews’ attempt, Bierman's version (1975)
of the U—-D measurement update does not appear to be
the best form for suggesting a parallel implementation.
We shall describe in the next section how another look at
the problem yielded a new algorithm, with no explicit
equations, that suggests some satisfactory parallel
implementations.

1.2 A NEW ALGORITHM FOR LDU MEASURKEMENT UPDATE

It will be useful to illustrate the difficulty that led to
the Bierman equations for the measurement update by
first showing how to obtain a square-root algorittun for
the time-update equation (6),

Piy = FP L FT + GQGT

For any nonnegative-definite matrix 4, we shall
define a lower triangular matrix A2 as its unique lower
triangular square root factor if

A =AI/2A1'/2 ; AT/2=(A|/2)7'

and (for uniqueness) AY2% has nonnegative diagonat
entrics,

Then we claim the following: the time update 1s
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solved by finding un} arthagonal matrix O to trianguiar-
ize the array [F,P%® G;@Q!/?], i.e. such that

[RP}M? GQVle=[AY? 0] (7
This claim can be immediately verifled by "squaring”
both sides of Eqn. (7).

Computing the triangular factors P2 and PY?
may imply taking arithmetic square roots, which are
often somewhat more expensive to compute than multi-
plications or divisions, and therefore are sometimes
avoided. This can be done by using LDU factorizations.

Kailath (1982) noted that the difficulty with the
minus sign in the update measurement (Eqn. (4a))

Piy = P - PHIRSIH: P

could be avoided by first noting that the right hand side
above is the so-called Schur complement of R, in the
(larger) matrix

[ Rei HP !
M =
"lpHE A

This Schur complement arises in the block LDU factori-
zation of this matrix; it is easy to check the decomposi-
tion

1 oo lRre o M gl
M = .
Kes 1 H 0 Py “H;T 1 I

Kp4 = PHIRS)
On the other hand, we can also consider the Schur
complement of P;in M, which will be (see Egqn. (3))
Ry« - HPP'\PH] = R
corresponding to the block LDU factorization

Vv omMe oll; ol
u'lo 1”0 A lH{Il

From these two block factorizations of M, we can con-
clude that there must be an orthogonal transformation
matrix © such that

R¥ H.P¥ R o

e = 8)
o Pk PHIRT’? PH (

This is in fact the form of a well-known square root algo-
rithm due to Dyer and McReynolds (1969).

As mentioned before, the transformation 6 in such
algorithms may involve the use of scalar square roots,
and in some situations it is useful to be able to avoid
themn. This can be attempted by using the LDU decompo-
sitions
R = LaDplLf. P, = LDLT , Py = L.D,L]

and rewriting the above expression as (dropping all
time-index subscripts for convenience)

te HL Dy o I"?
o 2 lo s
e O |lDpe o |2
(9a)
K,Lg. L, 0 D,
or
[ |
Ly H Lpe 0
p = (Qb)
o L Kplea L.

Kailath {1982) showed how to use an algorithm due to
Gentleman (1973) toﬂﬂnd Op as a product of rlementarv
matrices none of which contains any scalar square roots.
In the case of scalar measurements (p=1), writing out

the stepSexplicitly (which 1s not necessary 1n the array
methods) will lead exactly to the {-p) equations of
Bierman's (1975). which were obtained in the quite
different way described before.

The Givens and Modified Givens Methods

The Gi.ens method of matrix triangularization s to
note that we can readily find an elementary orthogonal
transformation to rotate any given t x 2 vector | p, P2
to make it he along the first coordinate axis. In fact,
note that

P il ]
Vei+pi Vpi+pi s
[p1 P2l = [Vpi+pf 0]
~P2 P,

Vvpi+pi ~pl+pd
By systematically applying a sequence of such elemen-
tary transformations we can triangularize any given

matrix, as any uncertain reader can check on a sumple
example.

The issue is how to avoid the (scalar) square roots in
the transformation. Gentleman (1973) showed that this
could be done by introducing weighted norms: rotate
[P1 2] tolie along [ 1 0 ], keeping equalty of the
weighted norms

——

[
dyy O
[PI Pz]l ol d,z
[a,,
=[101[° lo] (10)

In most problems fdp,. dp2| will be given (as for exam-
ple in (8)) and {dg,, dy} have to be determined. It is
not hard to see what to do. We need to find an orthogo-
nal matrix @ such that

o 1
sl
‘“”1? a;]

or equivalently to find 8p such that

dye

( %
[P, Pz]ldp
0

Py P2} By = [1 0] (11a)
where
dX [c —sl d#f 0
8p = (11b)
at Jls cllo a2
c?4+s?2 =2 1 (11c)
Now note that trom (10) 4y, is determincd as
dgy = pidy, + pidy, (12)
Next it is easy to check that
[ ]‘pldpl/d'l ‘Pz} (10] (13)
PP = 13
b Ipl'dpz/d'l P ]

So we have a candidate for 9, and the only issue is if
(cf. (11b))

'dp# ]‘Pldpl/d'l "Pz"
( dp?’ l [Pzdpz/ L T ]
1

o= | dv”l

]
0 ak

|pwvaign pevage
[P!J‘ifzi dyy pVilga/ dy
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N s ¢ l ¢ 5588e-2 3 1 0] 1.2733 0p(1.2)
. This constraint can be met by choosing 2063e -1 -2 2.0608 1 0487
! dp1dpe
K = 4
N dz =~ (14) - 0 o o s
e o y 1092e ~2 1 0o o 9290
AR tr Toe:‘:gly[;f-'e 'ﬁnmrmatm in Eqn. (13) to an arbi B468e~2 26368 1 0| 1.2733
';-.f_- ary v 1 Pzl 116992 ~1 -3.3412 2.0608 1 0487
.y ‘
L. 'P\dﬂ/dﬂ P2 =[q. 2] (15) In the next section we describe a parallel architec-
I [p: Pl ‘ /d =[q. 92 ture for the Kalman filter measurement update with the
T Pedpz/dgr P same structure as this numerical example.
F""* will require four multiplications and two additions. In
ﬂf‘ many applications, including ours, it happens that p, = 1 1.3 ARCHITECTURE FOR PARALLEL MPASUREMENT
e and for this case Golub (see Gentleman (1973)) noted UPDATE
Y that one could manage with two multiplies and two adds.
»

To see this note that we can write
. [ .
g2 = ~paP. + P2 (16a)

18 gz

. . 2 .
q 241 P11+ Pz 2q1 P2

2:—?; + P2 ‘%(q'z +pap?

It might seem that our problem could be solved by
applying existing architectures for triangularizing
matrices. Gentleman and Kung (1981) presented a tri-
angular systolic array for this purpose: so did Ahmed,
Delosme, and Morf (1982). who used a structure based on
CORDICS as the basic Processing Element. However, our
problem has special structure and requires to do addi-

2 tional computations (like determinming the product

- ;‘zl ”'szzz pi+p ;‘zz_qz AT-L). We shall combine all these special requirements

- dgy ! 2 dgy in an architecture that (i) solves the problem with a

linear number of processors (as opposed to O(n?) in gen-

=p; + (P2 %L)qé (18b) eral), (ii) computes the error covariance and slate
)

Since padya/ dq, is given as an element of the matrix
(15), we see that (168a) and (16b) each requires only one
multiply and one add.

This is the Modified Givens transformation intro-
duced by Gentieman (1973); because scalar square roots

An Fxample

The following numerical example shows how
modified Givens transformations can be used to zero out
one row of elements in a matrix with the same structur"e
as in the measurement update algorithm presented in
this paper (Eqn. (9)). with H a row vector (scalar meas-
urement update) and Lg.Dp.Lg,. and Dg, scalars. To tri-
angularize the matrix we will zero out all but the first
element of the first row, and to avoid fill-in we will start
zeroing out the element (1.4) [using the first and forth
columns]. Then we will zero out the element (1,3) [using
the first and third columns); and so on. Let

8p = 8p(1, n+1)-6p{t.n) - - 8p(1.2)

where the elementary rotation 0p(i. j) places a zero in
the (i, ) element of the matrix, and n is the dimension
of the state vector (in this numerical example n = 3).
We write in the diagonal matrices for convenience of
refl-rence:

1 85 103 107 71

1 0 O 1
k] 1 ol 3 90(1'4)

-2 3 1 2

f 1 65 103 0
0 1 0
0 3 1
9118e-2 ~2 3

—

l23469 !
9,(1.3)

- O O
w

.0487

updates at the same time, and (iii) avoids a significant
bottleneck in many systolic networks--namely, that the
Processing Elements (usually on the boundary) that have
to do more complex caiculations slow down the
Ahroughput rate for the whole system.

For simplicity, we start with the scalar measure-

§ : . - t update (so
are avoided, the use of the modified Givens transforma me:x r _ _ _ _

W tion generally yields a speedup in computation, leading H -th ' t‘LR : t tDR by :‘hc LR.,h—_tl. . Dre = Te). In the

\-‘;:3 to the name fast Givens transformation. next section we exten ig architecture to the vector

case. The architecture we propose is depicted 1n Figure
1, where for simplicity of illustration, and without loss of

generality, we have taken the number of states, n. to
be 4.

From Egn. (9) we see that we have to compute the
product A7-L = b7 and then zero each of the com-
ponents of the vector 4. Each time we input a set of
data to our architecture, we shall zero out one element
of the vector b, using the transformation @p(1. j+1). as
in the example of the previous section.

Eqn. (9) suggests that the architecture should have
four parts. First, a column of elementary processors at
the left whose function is to compute the inner product
hRT - L =bT. Second. a processor at the top of Figure 1
whose objective is to compute the parameters for the
elementary transformation, 8,(1,5+1). Third, a column
of processors (at the right of the figure) to apply the
transformation. Finally, a dclay network that will dclay
the values of the matrix L until the appropriate
moment to apply the transformation.

A more detailed description of the different Process-
ing Elements (PEs) involved in our architecture foliows.
The column of processors that perform the product
RT-L s composed of n PEs. One of these PEs is dep-
icted in Figure 2; with &( ], o[ ], and L] . ] representing
any element of the vectors b,A and of the matnx (.
Every PE in this column of processors has a memory cell
to hold one floating point number (one clement of the
vector h) which can be changed as explained at the end
of Section V. The function of cach of these PHs (s to
compute the product of the real number at one of the
inputs with the value stored n memorv and add the
resuit to the other input.
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We define Processing Llement Time (PET) as the
total time it takes a given PE to compute the output--
including the Lime to transfer the data to a neighboring
processor (with a protocol if the system is asynchro-
nous). Note that the PET is independent of whether the
individual PE is internally pipelinable (which will affect
the throughput rate for the PE). In the literature on
systolic-type arrays, the PET is usually called the clock
(which can be misleading). and it is usually assumed to
be 1. In systolic-type arrays the PEs with the largest PET
will determine when data will be available to neighboring
processors; therefore these processors will lower the
throughput rate of the whole array. In our
architecture--see Eqns. (17)-(19)--the largest PET
corresponds to the processor that coniputes the param-
eters for the elementary transformation ©p(1, j+1),
J=n.n-1, --- 1; by dividing this processor into four
stages (other numbers can be chosen if required by
hardware considerations) and by adding some appropri-
ate delay banks, we make the whole architecture work
with the PET corresponding to the simplest PE (viz. one
of the procéssors in the left column of Figure 1). From
now on we will refer to this PET as the architecture PET.
namely, the time it takes the whole architecture to
accept another set of data: this is the time required to
perform a multiplication of two real numbers, plus one
addition, plus the time involved in transferring data to a

neighboring processor (see Figure 2). Note that, in gen- |

eral, the PET is greater than the clock period of the
hardware.

The processor that computes the parameters of the
transformation is composed of of four PEs (see Figure 3);
its structure allows us to pipeline the computation of
parameters for different transformations. We can divide
the computation of @p(1.j+1) into more than four
stages to make sure that every single stage will take only
the architecture PET to compute. We assume four
stages; then it takes 4 PETs to compute the transforma-
tion parameters. Note that only one of the four PEs
requires a memory cell.

The transformation 8p(1.j+1) is applied, in the
form shown in Eqn. (18), by a column of n processors.
A PE of this group is depicted in Figure 4; each of these
PEs can be thought as being composed of three of the
PEs of Figure 2. Finally. the delay is achieved by
nx(n + a — 1) registers, where usually « = 5--as dis-
cussed at the end of this section.

Description of the Input

The inputs to our architecture are as follows (see
Figure 1): n inputs to the column of processors at the
left, plus one input to initialize the A processors, plus
one input to the processor at the top of the architecture.
We use the following notation: we represent the signals at
a given point of the architecture by a row vector whose
elements are the numbers appearing at that point of the
architecture at different instants of time (usually every
PET): the most recent values are in the leftmost column.
Therefore we can talk about input matrices, comprised
of several rows containing the input to several proces-
sors at consecutive PETs, In this matrix, each column
will show all the inputs Lo a defined set of processors at a
given instant of time: the next column shows the input
after one PET. Similarly for output matrices. [Note that
these systems can be asynchronous; in a row of the
matrix, data in successive columns merely show the fact
that one datum succeeds the other, but not necessarily
after exactly one PET.)

For the column of processors that computes the
product A7-L we have to input the elements of the
matrix L in Eqn. (9) (forn = 4)

WP’.‘) '-'\~v.‘.-‘-'-~"‘ﬁ-‘.-.‘.b I PR A A |
*-=
[ 1 0 o ol
L[21 1 0 0
L13.1 [(11.2 1 0
LIaa] cla2] £[a3]) 1
We shall read this data tn by diagonals starting at
the upper left corner; so that the tnput matrix s
{ o 0 o 1l
[ = 0 0 [1e)
° 0 L{3.1] L{3.2] 1
[4.1]) L]a,2] L]4.3] 1
In each time interval, PET, we shall process one column
of the matrix /,, starting from the one at the right,

The first A processor requires an initializing datumn

at each PET, for which we shall enter a row of zeros:
I, = {0 00 o}

The input to the top processor (see Figure 3) will be
based on the weighting matrix in the left hand side of
Eqn. (9), viz.

]
D{1]
nlz]
i3}
Di4]
arranged as follows (recall that we do not nced to take
the square root cl:f this matrix, see Scction 1)
o = {PU1] D(2) D(3) Dfs} = * <]
where the asterisks stand for don't care inputs. The
matrices /, and /p contain all the information we need
for processing one measurement.
Description of the Output
) The output from the column of protessors at the
right can be described by a matrix, 0,. which will be
delayed (n+a+1)PETs with respect to [, (ie.
(n+a-1)PETs due to delay network plus 2 PETs due to
the processing by the right and left columns of proces-
sors).
[ o 0 o 1l
o=| @ 0 L,a1] 1
o 0 L,03.1]) L,3.2) 1
L.(4.1] L.[4.2] L,[4.3] 1
) The output from the top processor is given by O
thlch will be delayed 3 PET with respect to /p (i.e. the
time it takes to propagate through three stages of the
top processor):
OD =[Do[1] D.[ZI Dv[sl 00[4] .. ‘]

This campletes the description of the architecture
for updating the covariance factors (Eqns. (2)-(4)) of the
measurement update.

Updating the State Estimate

An important advantage of our architecture is that
the same structure allows us to compute the updated
measurement--viz, Fqn. (1); this fact does not follow
from Eqn. (9). but from an understanding of the archi-
tecture. It is easy to show that if we include the state
vector z in the input matrix /, as follows

[ o 0 o z[1] 1}
=0 0 z[2] Lia1]1
° 0 z[3) L[31] L]3.2] 1]
{4] Lla.1] L{a2] L]4.3] 1
and also initialize the A processors to include the scalar
measurement y as follows
H=[000 -y 0)
t Square brackets refer to an element of a vector or mairix.
T R
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then the output will have the sarne structure, and will
include the updated state vector z,

I o 0 o z.)n

v 1

0, = Y ° z,[2] L.[z.}\ 1
1510 z[3] L. 3.1] L. [32] 1
4] Lfa] £.[42] L.fa3] 8

The input of the diagonal elements and the correspond-"

ing output remain unchanged.
Initialization

For the algorithm to work properly we need to ini-
tialize the memory cells in the right column of proces-
sors with the value zero. This initialization can be done
using the following input matrix before entering /,

fo ool
.
Icczlg(o)o

The structure of the matrix /C, will be preserved at
the output. Additionally, we need to enter a string of
n -1 zeros to initialize the first A processor

Ic,=[000]
Implementation Issues

This architecture shows potential for a practical
implementation: each processor can be implemented
with standard chips now being developed (see Fisher et
al. (1983) and S.Y. Kung (1984)). Furthermore, the flow
of information follows a very simple and regular path.
However other structures are also possible, including for
example the use of CORDIC modules (see Section 2
below).

1.4 EXTENSION TO VECTOR CASE

As shown in Equation (9), in the vector case we have
to zero the pxn matrix HL using as a reference the
lower triangular matrix Lp. Each Givens transformation
will zero out one element; however, in order to preserve
the elements already zeroed we must proceed in a given
order that must fulflll the following requirements:

1. All the elements above the one we want to zero (in
the same column) must be zeroced first. This
requirement comes by our choosing as a reference
the lower triangular matrix Lg.

2. Al the elements to the right of the one we want fo
zero (in the same row) must be zeroed first. This
requirement comes by choosing a particular strue-
ture for the L matrix (lower triangular).

One way to fulfill both requirements is to zero the
elements of the HL matrix by diagonais, starting in the
upper right corner, and in every diagonal to start by
zeroing out the uppermost element. Figure 5 shows the
extension of the architecture to process p measure-
ments (with p =3 and n = 4). As expected, this archi-
tecture requires more processors that the scalar one,
but presents the following additional advantages:

. The processors and structure are the same as for
the scalar update.

e It takes time O(mazin. pl) (see below), as opposed
to O(np) for processing all the measurements using
the scalar architecture.

. Processing the measurements one at a time
requires the additional work of uncorrelating the
measurements; using the architecture for the vec-

tor case, there is no need for uncorrelating the
measurements.

Most of the considerations discussed in Section IV
for the scalar measurement architecture apply directly

here. such as the the way the coetlicients of the P omatrix
are introduced in the memory cells. he mnput and out-
put matrices [, and 0, are exactly the same as for the
scalar case. The imtalization matrix will be also the
same, /C,. The vector of measurements, y ., (p = 3) s
input as

Iy=[000 -y[t] 0]
I,={000 -y[2] 0]
I3={0 00 —y[i3] 0]

To initialize the top processor in the columns of
processors which perform the # [ product we will use

1c,={0oo0o0}
IC,={000 *]
1C3={0 00 *]

where the asterisks show don 't care values: here they are
used to indicate proper tirning. There is much rnore to
be said about timing, operation counts and other comn-
plexity aspects, for which we must refer to the full
paper.

2. Some Algorithms for Toeplitz Matrices

The material in this section is based on part cf a
paper to appear in Madern Signal Processing and VI.S/.
S.Y. Kung, K. Whitehouse and T. Kailath (eds.), Prentice-
Hall, 1984.

The by now well-known linear predictive ceding
(LPC) methods for speech analysis are based on the
hypothesis that speech waveforms can be modeled as the
output of a linear time-invariant filter driven white noise.

The linear time-invariant filter can be modeled in
many ways, but for a variety of reasons carly attention
was focused on using “all-pole” models, or equivalentiy
on modeling speech as a stationary auloregressive
discrete-time random process:

Ye + Ayayea t + Ay Ny v T eNg

where fey,{ is a zero-mean white noise process. The
modeling problem is to choose the order N, the
coefflicients {Ay;{ and the noise-variance, R, y say. so
as to best fit the observed speech signal jy;. t > 0}.

The standard procedure is to form the so-called
‘sample covariance’ estirnate of the second-order statis-
tic,

Ry = £ yiyin

of the stationary process {y,. ¢t > 0}, and to notice that
the coeflicients {Ay,] can be obtained by solving the
so-called Yule-Walker equations

(Re Ry, - - Ry
R, Rq
[Avy - Any 1]
. . R‘
Ry - Ry R,
(1)
=fo - 017]

There is room for disagreement with this formulation
However, one reason it is popular is that the speesl
constant-along-diagonals (Toepiitz) nature of the
coeflicient matrix in (1) lends itsell to a convenient fast

recursive solution algorithm -- the so-called lLevinson
algorithm:
A‘VH(Z)‘ [, _kh.”] ll‘v(l)
= . {2)
Arva(z)] [T#vaz 1 [ly(2)

Ac(z) = 1 = Hy(2)

where
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Av(3) = Avy + Avvaiz ¢ - ¢ Ay Nt gV |

By (z) = the so-called 'reverse polynomial’ of Ay(z)
=AY Ay w2Vl - a2 e,

and

ko, = AMNRI"AN.N-|R;;.-.+A~.|R~+R~,, (32)

Rboy = RR(1 —k§.\). R§ = Ry (3b)

The point is that we fuccessively build up the solu-
tions {Av,.N =0.1...{. with the major computational
burden being that of forming the ‘inner product’ for
ky.,. which requires N multiplications and N addi-
tions. Therefore, computing tey....kx] will require of
the order of

1424+ --- + N=N(N+1)2

or O(N?) elementary computations, which is an order of
magnitude less than the O(N?) computations required
to solve aA arbitrary set of linear equations, i.e.. one
without the special Toeplitz structure of (1).

The Levinson algorithm can be used to produce a
family of autoregressive models of increasing order, and
we have to decide in some way on the appropriate order.
There are various tests (e.g.. Akaike's Information Cri-
terion) and other considerations (e.g.. practical design
Iin}itS on integrated circuit implementations) involved in
this choice, which we shall not elaborate here. What we
do wish to emphasize is that Levinson algorithm has a
special structure that allows us some flexibility in mak-
ing a decision on the order.

The traditional way of implementing a filter to com-
pute ey, is via a transversal (tapped-delay-line) filter
with coeflicients {Ayq....Ay v, see Figure 6; we should
remark, to avoid confusion, that the transfer function of
the fliter that computes e,, is not Ay(z) but rather

AvN +Avnaz i b o N =gV (2) .

However, if we were uncertain about our choice of order
and wished to compute say ey,g;. then we would have
not only a longer transversal filter but we would have to
reset all the tap-gain coeflicients from §Ayg,....Av x| to
{4v+20.An.ane2l. There are many examples in which it
is desirable to compute the filter response over a range
of values of N before deciding on a fixed order, and this
is not convenient with transversal filter implementations.

Now the Levinson recursion (2) shows that the
the. 1 = 1.....N} along. with the tact that
A.o(l) = Bo(z) = 1, provide an alternative parametriza-
tion of the filter: knowing these values allows us to con-
struct Av(z). and hence the coefficients {Ay,}. from
(2). If we wish to go to a different order., say N +2, in
this parametrization we need only to add two more
coeflicients fky,,.ky.a{ without having to change any of
the earlier values. This invariance property of the {k,{-
parametrization can be exploited by using a different
implementation of the fliter in terms of the
k. 1<i < N| rather than the fAv <. Examination of
2) suggests that we can build the filter as a cascade of
“lattice sections”, as in Figure 7(a). or in a certain nor-
malized (see Eq. (5) below) form as in Figure 7(b).

lt.is easy to calculate the inverse of the lattice
fllters in Figure 7 by using signal flow graph rules - the
result of doing this for Figure 7(b) is shown in Figure 8
and provides the "‘modeling” filter. It has the form of a
discrete transmission line, and helps explain why the
k| are often called reflection coefficients.

n This physical interpretation suggests that we must
ave

kgl €1 . (4)

8 fact that also follows from (3b) (since the variances
fRY{ must be nonrregative). There is a corresponding
constraint on Ay(z): the roots of the polynomial z”A(z)

- T -~ .l
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must lie within the umt circte, but this condition does
not translate easily into bounds on the coeflicients
1Ax .. For this and other reasons the numertcal proper-
ties of the (normalized) lattice filter tend to be better

than those of the transversal filter. Thercfore, it may 1
not be surprising that Texas Instruments chose to use
this structure when butlding therr very successful speech
synthesis chip (Wiggins and Brantingham (1978)). the
modular structure, local interconnections and rhythmie
data flow all make for conventent VLS] implementation
{(Mcad and Conway {1980), E. T. Kung (1979), (1982), S. Y.
Kung et al. (1982)).

CORDIC Implementations

Each section in Figure 7(a) requircs two muiltiplica-
tions and two additions: the multiphcations tend to be
more expensive and, therefore, rearrangements have
been devised that use scaling to manage with only one
multiplication (see e.g.. Markel and Gray (1976, Sec.
5.5)). For numerical reasons, one often goes to a section
with four multipliers, as in Figure 7(b). Somewhat irom-
cally, it turns out that this section can in fact be imple-
mented without using any explicit multiplications at all,
by using the so-called CORDIC (Coordinate Rotation Digi-
tal Computer) implementations, based on the property
shown in {5) below.

Such circuits have been proposed and already used
in several applications (e.g.. by Despain (1974), (1979),
Haviland and Tuszynski (1980). see also Schelin (1983)):
in recent years they have been suggested for a variety of
one- and two-dimen.sional VLSl computing structures of
the systolic and wavefront array types -- see, e.g., the
papers of Ahmed, Delosme and Morf (1982), Rao and
Kailath (1983a,b), Dewilde et al. (1984)., and also the
thesis of Ahmed (1982) and Delosme (1982).

Parallel Computation and the Schur Algorithm

A naturat question with VLS] technology is to explore
the question of how much the determination of the
reflection coeflicients can be speeded up by using paral-
lel computation -- say with N processors working
together. The hope is that if a processor takes one unit
of time for each elementary computation, then we would
hope to use N processors to obtain the answer in time
O(N) as comparcd to O{N?) with a single serial proces-
sor.

However, it is not hard to see that a parallel imple-
mentation of the Levinson algorithm will take time
O(N log N) because of the inner product operation
needed to form the (k] ~ N processors can carry out
the N multiplications needed to form ky,; in parallel
in one time unit, but the additions required will take at 1
least log N steps.

This seems disappointing, but there is hope. It
turns out that there is a mathematically equivalent algo-
rithm, traceable to Schur (1917), that avoids the inner
product step in forming the }k,{ and thus will allow
implementation in time O(N) with N processors.

The Schur algorithm was originally presented in
1917 as a test Lo see if a power series was analvtic and
bounded in the unit dise. In our problem it reduces to a
simple three step procedure (sce Dewilde, Vicira and
Kaitath (1978) and lev-Ari and Kailath (1984)) for the
computation of the {k,{ associated with a covanance
sequence {Ro fty,... . Kyi.

Step 1: Start with a generator matnix (superseript
* denotes matrix transpose)

. I’1’3 R, "’,vI
Gy :=

0 R, Ry
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and shift the first column down one row to get

. [0 RU . RJV-ll
G'_lo R, .. R,.,l

Step 2: Compute k, as the ratio of the (2,2) and
(2.1) entries of G-

Step 3: Form a matrix

(1 -]

I
o(k)) = =t l—k,

and apply it to &, to obtain a new Schur-reduced gen-
erator of the form

. . zz
Gy = 0(k,)G, =
0=z

.z

(5b)
.z

where the, z denotes elements whose exact value is not
relevant at the moment;, © is known as a J-rotation
matrix because

Bk)JO(k)=J , J= [; fl‘l .

Its role is to rotate in the J-metric (i.e.., to hyperbo.: )

the 2™ row of G to lie along the first coordinate direc-
tion.

Now we can repeat Steps 1, 2, 3 to obtain k; and a
new reduced generator matrix G,. And so on.

It can be shown that the {k;{ computed in the
Schur algorithm are exactly the same quantities as
defined before in the Levinson algorithm. However, note
that the Schur algorithm only requires sets of 2 x 1 row
vector by 2 x 2 matrix multiplications, which can be
carried out in paralle] at each stage. Therefore, we will
need only O(N) time units to carry out the Schur algo-
rithm with N processors, as compared to O(N log N)
for the Levinson algorithm.

In fact, a parallel and pipelined lattice VLS] comput-
ing structure based on the Schur algorithm has already
been designed and built (see Kung and Hu (1983).

Cholesky Factorization

The Schur algorithm is also closely connected with
the so-called Cholesky factorization of the Toepiitz
covariance matrix R in (1). Such factorizations are
important in many calculations involving the
corresponding stochastic process. The Cholesky factor.
say C, is the unique lower triangular matrix with posi-
tive diagonal entries such that

R=cCC’

It turns out that C is immediately determined by the
Schur algorithm:

the {—th columnof C = the first columnof G, , (8)

where the (G| are the reduced generator matrices
obtained in the Schur algorithm. Thus we have a last
algorithm, using O(~N?) computations, for Cholesky fac-
torization of a Toeplitz matrix, as compared to O(N3) in

general, (see Bareiss (1989), Morf (1970), Rissanen
(1973)).

Transmission Line Interpretations and Inverse
Scattering Problems

A good indication of a natural connection between
the Schur algorithm and potentiat VLS or other imple-
mentation methods can be obtained from the graphical
representations of the Schur algorithm shown in figure
9. Then the above result on the relation between € and

l (5a)
1 .

A B B T R AN IETLIL T Tl gt S

the $G,} means that the values at the input of the 1-th
delay element are the entries of the 1-th eolumn of the
Cholesky factor €. Consequently, we can aisn say that
the values at the nputs of the delay elemernts at any
time ! are the entries of the Lth row of the Cholesky
factor C. [Incidentally, this anterpretation removes
much of the mystique sometimes associated with the so-
called fast Cholesky-by-column and fast Cholesky-by-row
algorithms. |

This transmission-hne interpretation suggests that
the computations could be carried out by exciting strue-
tures as in Figure 9 with light or other clectromagnetic
waves, depending upon the medwum chosen {or unple-
mentation (e.g.. fiber optics or acoustic waves in sohds,
etc.).

In fact, we might mentijon that <tarting with the
graphical representations 1n Figure 4, and using some
fundamental wave propagation and evnergy conservation
concepts, we can obtain simple proofs of all the above

results and in the process develop intimate and useful
connections between transmussion line theory, Cholesky
and inverse Cholesky factorization, inverse scattering
theory and the Schur and dual Schur algorithms (see
Bruckstein and Kailath (19873)). This transimssion hne
picture was also heipful 1n obtaiming certan orthngonal
cascade implementations of A {MA (pole-and-sero) filters
with excellent numerical properties {Kao and Kaath
(19,3)) and excellent potential for VI.SThimplementation.

On the other hand, we can approach the results
from quite another direction by noting that Cholesky fac-
torization is actually a way of testing for positive
definiteness of a matrix; if we now ask what matrix struc-
tures lend themselves to easy testing in this way, we
shall be led to a class of matrices (with “displacement”
structure) of which the Toeplitz family is only one special
case (Lev-Ari and Kailath (1984)). By tms roule, all the
previously mentioned results on parallel computation
and transmission line interpretations and implementa-
tions can be carried over to a much larger class of prob-
lems as we shall briefly review in the next section.

3. Minimal Realizations and Decoding of BCH Codes

Consider a discrete-time system with transfer function

H(z)=$m“

ST s TN

=

so that the {h;{ define the impulse response of the system.
Suppose, to take a very simple case, that we know the sys-
tem is finitc dimensional of order n, and that we wish to

find polynomials {a(z).6(z)}{ such that
H(z)=b(z)/a(z) .
where
a(z) =z +a, 2" '+ .40,
b(z)=b,2" '+ - 4+ b,

Then it is easy Lo check that we have the relation

bl Ta e

. - e
e e “ L R N
EIEP AAC AR PE PO AT AL L




- v L i B B A S 2R
o L SEAEACN S GRS N A A A falnt Aty R Bl oo
ANANERARS A
- -

TN
O
O

.
r

]
.

Bl

.

L L
PR I
A . .
Fhd 2 AR
.

GG
ANy

l'
o

s

S,-
~n

=
g

A
L

-

<

.
]

s

.
.
S

*
2
4
o
-

YK

by

*
P
A e

LN
) Nn;'i' N A

~

PR X4

>
(4

From ti.is set of equations, it is clear that b(z) may be
easily found via back substitution once a(z) is known.
Thus, the main work involved is to find a(z) by solving the
Hankel matrix equation,

! fol

[hl h“.‘] Cn 0
= (@

h2n all 0

General methods of solving n linear equations in n unk-
nowns require 0{(n% elementary computations. However,
here the special Fankel structure can be exploited to solve
the equations with O(N?) computations. This result was
perhaps first noted in the coding thecry literature. where
Berlekamp (1968) developed an important decoding algo-
rithm for BCE codes, which essentially involved the solution
of Hankel linear equations over Galois field with elements
§0.1; Massey (1969) later showed the relation to minimal
realization probiemns over this field. The Berlekamp-Massey
algorithm can be in its simplest form described as follows:

afz) = A®)(2)
where
Iate *Nz) 1] 1 =8 112 ] [A(H(z) ] [Ac(z) Il

o] b ool bl b ©
ken(y) £410k 1 (1-6e 1)z (®)(2) (z) 1

Spey=1—-6, 6p=0

&2

it 120 Ay @
By "simplest form” we mean that the coefficient matrix is
assumed to have all leading minors nonzero. This unrealis-
tic assumption can be removed, at the cost of same further
complexity in the algorithm. We ignore this {important)
refinement here, because our point is that the inner pro-
duct in (4) prevents effective parallel implementation of the
Berlekamp-Massey algorithm: with m processors we will
need O(nlogn) elementary computations rather than
0(n) as we might expect.

An alternative method of solving the linear equations

can be based on attempting a triangular factorization of the
coefficient matrix in the form

A !

by o B TE N F

E: meifp 12 AR O S
oo Y ke

More compactly, we denote this as
Hinn +1)P(n +1n+1)=Q(nm +1)

The factorization of M is generated by recursively comput-
ing the columns of P. This leads to recursions of the form

Prer(z) = (z = 72)pe(2) = 8xpr-1(2) (6)
where
L gi»  git

m{z) is a polvnomial formed from the (k+1)* column of
P with the top element assigned the power 2° and so
forth. B{* is the ith element below the main diagonal in
the (k+1)* column of Q. e.g., A% is the clement in the
{k+1)* column that is on the main diagonal. This "three-
term” recursion is standard in the theory of orthogonal
polynomials and in fact the above polynomials are already
known in that literature as Lanczos polynomials. Again the
classical theory has to be extended when #(n.n+1) can
have zero leading minors; this can be done by replacing the
term (z ~v.) in (6) by a polynormual in z of higher
degree; see Kung ({1977), Ch. 4). The main point here, how-
ever, is that the coeflicicnts 18,.7,| in (6) arise naturally in
each step of the factorization, and no inner products are
involved. Therefore. as noted by Todd Citron, the Lanczos
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recursions are better suited for par afel implementation. In
his thesis research at Stanford, Citron has develsped g fast
highly parallel implementation of the generahized Lanezos

recursions for solving the partial realization and (!

decod-
ing problems.

4. V1S] Implementations of Signal Processing Operations

In the last few years, there has been great activity in
the area of systolic array implementation of basic signal
processing operations such as convolution, polynonual mul-
tiplication and division, matrix multiplication and LU and
Cholesky matrix decomposition (sec, e.g., E. T Kung (1982)
and the chapter by Kung and Leiserson in Mead and Conway
(1980)). Systolic arrays have the advantages of modularity,
local interconnectedness and regular data flow and there-
fore are being studied as prime candiudates for VLSl imple-
mentation. Fowever, nurmerical issues unportant for actual
implementation, such as sensitivity to coeflicrent truncation
and rounding and susceptibility to overflow and lirmut-cycle
oscillations, do not appear to have been addressed as yet.
In Rao and Kailath {1983b), it is shown that most presently
known systolic arrays would in fact suffer from such prob-
lems, because they can be interpreted as rearrangerments of
the so-called controller and observer (or direct) canomcal
form of linear system theory: the rearrangements are
essentially those required to make these canonical forms
pipelineable. In linear system theory, 1t s known that
numerical problems can be reduced by using cascade reali-
zations, and that in fact overflow and hmit cycle osciilations
can be completely avoided by using cvascades of orthogonal
sections. The Schur algorithm described in Section 2 can be
used to derive two new classes of pipehned, systolic ARMA
digital filters of this type. In the AR (all pote) case, they are
exactly the lattice filters shown in tigs. 7 and 8 In the
ARMA (pole-zerc) case, we have singilt input, iwo-output
structures of the types shown in Fig. 10 these are derived
by applying energy-conservation constraints to the
transmission-line analysis mentioned at the end of Section
2.

There is a tradeoff between chip area and computation
time in VLSl implementation and several authors have
developed lower bounds for the area in terms of a quadratic
function of the computer rate. Computer-science analyses
of signal processing chips have not generally taken into
account the rationality of the transfer functions that may
be involved: by doing this, tighter lower bounds have been
obtained in Rao and Kailath {(1993b). It turns out that the
observer and controller canomical forms, and the parallel
cascade and orthogonal cascade structures mentioned
above all meet the complexity lower bounds: however, the
widely-used (and very low sensitivity) wave-digital filters and
most noncanonical state-space realizations do not.

5. Computer-Aided Engincering Analysis and Design

A less analytical, but no less significant development in
the VLSI era is the growing availability of desk-top comput-
ers and work stations with powerful simulation, graphical
and computational capabilities. Dramatic improvements
can be expected in the level and sophistication of advanced
theoretical techniques that can be brought to bear, in often
user-transparent and very user-friendly ways. on practical
problems. Not the teast significant will be the developrent
of the proper cumuination of human skills and machine
capabilities that Professor Rosenbrock presciently iaentified
several years ago (1980 CDC Plenary Lecture; also in Sys-
terns & Control letters, Vol. 1, pp. 2-6, July 1981) as an
essential ingredient in rightly shaping the relationship
between man and machine, autormation and society.

8. Concluding Remarks

This written version 1= only meant to provide some
more background and detail on the major techmcai topics
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Gupta, H. Jagadish, J. Jover, S. Y. Kung, D. T. Lee, K. Lev-Ari,
M. Morf, S. K. Rao. 8. Shah and H. Whitehouse, for many
patient discussions and talks that have helped shape my
understanding of a fascinating new set of problems and
applications. | am also grateful to the conference organiz-
ers, and especially S. Marcus and J. Melsa, for the invitation
to present this lecture.
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