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Modeling Rate-Modulated Selfexciting Point Processes

.1A.M. Bruckstein and T. Kailath
Information Systems Laboratory

;:. Department of Electrical Engineering
I-. Stanford University

Stanford, CA 94305 USA

p.'i

the modulating time function with the ensemble rate of the
Abstract: This paper addresses several issues arising in the controlled point process.
modeling of discrete event processes for which the sample-
path evolution depends on the past trajectory and is also
controlled by an independent modulating process. While I3. A MODEL FOR CONTROLLED SELVEXCIflG
information on local, sample-path evolution is sometimes POINT PROCESSES
readily obtainable or measurable, in many applications it is A realization of a point process is an ordered sequence
more important to predict ensemble averaged responses to of occurrence times 7Tn ,EN, and for convenience we may
variations in the modulation process. We shall discuss this formally define it as a time function
problem in the framework of a general model for rate-
modulated selfexciting processes and, under certain
assumptions, derive a nonlinear ordinary differential equa- f (t) = (t - T) (1)
tion for approximately predicting ensemble behavior from
known sample-path evolution laws. A successful application
of this method to a neural encoding process has already It is usual to associate with a point process a counting (or
been made. unit-jump) process, with realizations defined as follows

.INTRODUCTION N, =ff(( (2)
Point processes arise as natural models for optical

communications, for traffic analysis in computer networks
and for transmission of information in nervous systems. As The complete definition of a selfexciting point process
such they are extensively used to evaluate the performance specifies, given a realization of the process up time -. or the
of various man-made systems and also to explain the experi- sigma field a, = lNt;fCT|. a function f(t I a,) for t >r which
mentally recorded behavior in neurophysiological research, provides the probability that the next occurrence of the
The properties of sample-path evolution for such processes process will exceed t. Thus formally
are usually not very difficult to obtain. In many applications
however one is interested in predicting an ensemble aver- no Ia,)= prirx, , > t ivi (3)
aged behavior rather than some local properties. This is the
case. for example, in communications networks where the
important parameters are average throughput and delays. Clearly. the function n(. I-). determines tht sample-path
rather than the exact evolution of a particular data transfer evolution of the selfexciting process complexly. We may
scenario. The philosophy of this approach is that if the aver- think of it as the process model since in fact it provides the
age behavior is satisfactory, the actual realizations will not causal realization-dependent statistics of the next
significantly depart from it in their performance. Thus sys- interevent interval Associated with the sample-path evolu-
tem engineers are faced with the problem of designing the tlion there is also an instantaneous rate function p(t I0)
local processing (protocols, routing laws etc.) that induces defined as
good global behavior. In research of neurosensory systems
one obtains ensemble averaged responses by repeating the Pr| TN,.JC(t~t+d)lo ,
experiment many times under similar stimuli and environ- p~t ?o,) 

= 
liraIa4)

mental conditions. However, unlike the engineers' problems l I
of design, the scientists strive to discover what kind of local
stimulus encoding principles and influences from environ- and it is easy to show (see e.g. Snyder,[l]) that it can be
merit could have led to the recorded behavior, obtained from (t s () as follows

In this paper we discuss the interrelations that exist

between the given local sample-path evolution laws of a con- a In n(( I =(
trolled selfexciting point process and its ensemble P(t Ia.) = = In[) (5)
occurrence rate or density process. We shall present a gen-
eral model for such processes that accounts for the
assumed local behavior and use the model to obtain an ordi- Note that if 11(t Ia,) = 11(t -T) then the instantaneous rate
nary, possibly nonlinear differential equation that relates Will also depend only on the time elapsed since the last

This wrk was supported in pat t7 the Air pores OMlVl Scientific occurrence of the process. This is indeed the cm when the
11000-h, Air Fae IyKtemmmand nider Coatret AF40I0?-C-00ce. process is generated by choosing the interevent intervals

independently- according to a given distri~utiosi density. In84 06 28 070
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this case one obtains what is called a renewal process. and R(t Ms) tE.N.IAI] = U,4im'] (9)
there are many results available for such processes. In fact.
if the interoccurrence intervals are independent and distri-
buted according to the density p(t), then it is easy to see where the last equality follows from the fact that the
that difference between the counting process and the integrated

rate is a martingale (and of course under the assumptions
p(t - TN) of differentiability and the usual commutativity of linear

'(t I,) 1 - p (()d ( and p(t I o ) = (t - N (6) operations).

SosLet us now consider the modulation model given by (7). Sup-
pose that we have for the effective modulation (or time-

In the sequel we assume that the function fl(t I a,) also rescaling derivative) the following form
depends on a positive modulating function m(t. the realiza-
tion of a "slowly varying" continuous stochastic process. The
modulation will therefore influence the local rate function P[(t)I a,] = (t) + V(u,) (10)
too. Suppose that the local rate function is affected by the
modulation in the following way Also assume that FWJ .1 corresponds to a sequence of

exponential interevent distributions with past-dependent

(7 Fparameter a,. This provides, using (6).

Ce

where Af, = |m(Q);(it . If in the above equation F.1-1 is F.,|f4I =a's (ii)
regarded as the instantaneous rate of some selfexciting pro-
cess. then the interpretation of the above formula is a
time-scaling controlled by the modulating function via the Therefore we have
past-dependent functional [. I-]. Indeed this would be the N [-M + V(ac) (12)
result if we considered a stochastic integrate to threshold
pulse frequency modulation model, with two feedback
effects: one influencing the effective modulation (through 0) and taking expectations w.r.t a, we readily get
and the other controlling the threshold behavior. Such a
model recently proved fruitful in describing neural coding R(t IM,) = E.,[. ,] = m(t)E[a.,I,]+E[a.,(a.)IMi] (13)
processes, see for example [2] or [3]. In the sequel we
adopt the above formula as a model for modulated selfexcit-
ing point processes. Now we shall make the following approximation: we assume

that expectations of both a and ago can be well approxi-
mated by some function of a weighted integration on the

M. SAMPLE-PATH BEHAVIOR AND ENSEMBLE RATES past ouput rat., as follows
Segall and Kailath (4]. introduced a method for model-

in randomly modulated jump proceses based on mar-Hfwt cr}
tingale theory. Their results state that. under rather mild E[aM#] = H .,(t-()R((J()d (14)
assumptions, given the increasing set of sigma fields a, or
some other, richer set of sigma fields E,.)a, one can associ- and
ate to the sample-path of a jupnp process an adapted local
rate process At so that N, - f0 A,di- will be a martingale. It A ~a. v(u,)] = Hz fw(t-C)R (t IMl) (15)
Is not difficult to show (see e.g. (I]) that the local rate pro-
cess is. for the example discussed above, given by

Therefore we shall have the following functional equation.
)4 = p(t Ior,) for f CETh. Tk+,) (1) approximating the evolution of the ensemble rate

It has been also pointed out by Segall and Kailath that the R(t I ,) = r(f) H1 t,(t-()R((IM.)dJ (16)
local rate process is a function of the associated increasing
sequence of sigma fields. In the rate modulated example of
the previous section we consider the increasing sequence of + H, ws(t-()R(t JM)
past information as E, = |Nf.m)(tlst 1. Then the rate is
again given by the above formula. and clearly the local rate
would be different if we would have no knowledge of the past This equation in fact describes a nonlinear system with
rate-modulation process realization. All the above results input m (t) and output R(t IMe) as depicted in the diagram
however concern the local sample-path evolution and give below
no clue as to what the ensemble rate of the modulated pro-
cess is as a function of the modulation process realization.
AS we pointed out earlier, knowing the mapping between H
m&(t) and the ensemble rate is sometimes of more impor-
tance than characterizing the local evolution. In fact what a(t)
we would like to determine is E.,[AJM,] Le. the rate
adapted to the causal sigma fiold induced by realizat.ione of - _jT
the modulating process alone. This however proves to be an
Impossible task. since it is not known how to assess the pro-
bability measure induced by all possible sample-path on the
values of the rate process. In order to obtain the ensemble
rate evolution we thus have to introduce further assump-
tions and make some "engineering" approximations. Let us
first give some alternative definitions for what we under-
stand by the ensemble rate. The most obvious definition is In order to find the suitable functions and linear welghtings

in the above equations we have to rely on the assumed past
dependence of a., and of Ve,. It is worth noting that one can

-- '4,



IV. CONCLUDING REMAIRK
always obtain a evaluation of the ensemble approximation In this short paper we suggested a rather general
considered by extensive simulations, which can subse- approach to the description of both sample-path and ensem-
quently be used to improve the model. ble behavior of selfexciting rate modulated point processes.

Suppose, for example, that a,, = A (constant) and that A special case of the above analysis already proved useful in

P(ot)  0 0. This immediately yields that the ensemble rate modeling neural coding processes, however the approach is
simply follows the modulation function, as expected from a general and applicable to a variety of problems involving
simple Poisson process with a trivial time-rescaling module- point processes with memory. Once a formal model for a
tion. If however we assume that a.j decreases proportionally discrete event process has been defined one still has to pro-

to the number of discrete events that occurred in the vide some evidence for its validation. In case one has an

recent past then the ensemble rate will be, approximately, ensemble of experimental responses to a variety of input or

the output of an "automatic gain control" type system. modulating functions. one may apply likelihood tests on it in

When both feedback effects are in action, their interplay order to compare several competing models. If however one

may lead to some rather interesting nonlinear interactions, only has access to ensemble averaged responses, an approx-

The freedom to choose those interactions led to the develop- imate model for the ensemble rate behavior may prove to
ment of a neural encoder model which was able to ade- be an useful tool for evaluating the validity of various

quately reproduce the recorded experimental behavior, see assumptions on the local behavior.

e.g. [3]. However we wish to point out here that the above
presented theory is quite general and can be adapted to
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