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Abstract

A theoretical analysis of the spatial response characteristics of photon
drag detectors used for the measurement of high power pulses from CO2
lasers is presented. Details of the model and the numerical methods
employed are described and the results obtained for several electrode
configurations together with a comparison of experimental values
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1. Introduction

Photon drag detectors (References 1,2) are widely used for power and

pulse-shape measurement of high-power, pulsed, transversely excited

atmospheric pressure (TEA) CO2 and CO lasers. They have a very fast

response time ('1 ns), and are linear up to powers close to their damage

threshold -100 MW/cm2 (Ref.3); in practice, anti-reflection coating

2
damage limits the maximum power density to "30 MW/cm . Unfortunately

they have a very low sensitivity, typically 100 mV/MW (Ref.4). No other

means are currently available for fast pulse-shape measurements of this

type of laser, which is widely used in laser fusion research and

range-finders.

Calibrations of the sensitivities of commercially available detectors

(manufactured by Rofin Ltd) carried out at NPL have shown their response

to be dependent on the position of the laser beam in the device, and

this can vary as much as 40% between the centre and the edge.

In this report we describe a theoretical method used to analyse the

performance of various designs of detectors by computational techniques.

These include the conventional two electrode commercial design, a novel

4 electrode structure designed by us to flatten the spatial variation in

the response (Refs.5,6) and a potentially useful 4 quadrant beam

centering device. Details of experimental measurements carried out on

several detectors made by us are given in a separate paper (Ref.5)

although some of the results are given here for comparison with the

theory.
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2. Principle of operation of photon drag detectors

Only a brief description of the basic theory behind the photon drag

effect is presented here. Fuller analyses taking into account the

semi-conductor band structure have been given elsewhere (Ref.7) and it

is sufficient for our purposes to consider the results obtained by them

on the macroscopic scale.

Typically a photon drag detector consists of a cylinder of doped

germanium, which is relatively transparent at 10.6 microns, with ring

electrodes on the circumference at the ends. This is illustrated

diagramatically in Figure 1. In a standard commercial device, for

example the Rofin Ltd. Model 7441, the germanium is usually p-doped to

about 10 ohm cm. The laser beam is partially absorbed as it travels

through the device and in the process the momentum of the photons is

transferred into that of the carriers (mainly the free carriers

introduced by doping, although the intrinsic holes and electrons can

also make a small contribution). This generates a current flow along the

beam, proportional to the laser power density at the point, which then

flows back through the bulk of the material. A potential difference is

generated between the electrodes and this is measured through an

external load resistance. Normally this signal is amplified and viewed

on an oscilloscope to display the temporal waveform of the laser pulse.

The response time is fast, inherently limited by the relaxation time of

the carriers ( <10 ps) and the transit time of the laser pulse through

the crystal although, in practice, it is mainly determined by the

external circuitry, in particular inductance.

Previous analyses of the signal generated (Ref.1) have assumed open

circuit conditions (i.e. infinite load) and relatively long, narrow

crystals in which the field is uniform in the device. With current
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commercial detectors (typically 12.5 - diameter by 20 mm long) and ring

electrodes this analysis is not valid and it is necessary to consider

the field distribution within the germanium in order to calculate the

sensitivity.

I.



3. Theoretical model

We have carried out a theoretical analysis of the spatial response of

detectors under various conditions of illumination and for different

electrode configurations. Since the response time of the detector is

fast (sub-nanosecond) it is possible to consider a steady-state solution

in which a step impulse is incident on the detector. After -1 ns the

current densities in the germanium have reached an equilibrium state and

the voltage produced between the electrodes is constant. We can

therefore ignore transient effects and the build-up of current or

carrier mobility and diffusion in the device and assume a CW laser

power. An analytical solution to the problem is only possible under

special conditions (see Section 3.2). In order to allow arbitrary

choices of electrode structures and beam profiles we adopted a numerical

approach.

Because of the shape of the device it is convenient to use

cylindrical coordinates. Assuming the beam propagates in the positive z

direction parallel to the axis the current density generated by the

laser is given by

J1 (z,r,e) = kP0F(r,9)exp(-gz)! ..... (1)

where k is the photon drag coefficient of the material, P0 is the laser

peak power density at the entry face, F(r,8) the intensity spatial

profile at the entrance position z = 0, g the absorption coefficient and

i the unit vector in the axial direction. Equation 1 expresses the local

current flow driven by the laser power. In the above we assume that the

ends of the crystal are anti-reflection coated and the material is

homogeneous (i.e. g and k are independent of z and r). The electrostatic

field I(z,r,e) set up by this non-uniform distribution of carriers
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produces a current density through the whole of the device

J2(z,re) = sOE(z,r,e) .... (2)

where so is the conductivity. Equation 2 merely expresses the normal

current flow under the influence of electric fields. The total current

density at any point is therefore given by

J Z J + J .... (3).

Since current continuity, namely V.J = 0, must be maintained at every

point within the region, the equation which we must solve reduces to

2 kP 0g
\7V = -k- F(r,8) exp(-gz) .... (4)

so

which is Poisson's equation where V is the electrostatic potential.

3.1 Numerical technique

If we assume that the laser spatial profile is also cylindrically

symmetrical about the crystal axis (a disc or annulus) then we may solve

equation (4) in 2 dimensions, which simplifies the problem considerably.

In practice we normally take a flat-topped annular power profile, that

is constant between two given radial positions and zero elsewhere. By

setting up a set of grid points in z and r (see Figure 2) and applying

suitable boundary conditions we can use a finite difference

approximation to solve the problem numerically using an iterative

relaxation process with successive displacement (Ref.8). We used the

simplest method where only the four nearest points are considered in

calculating the potentials at a grid point. Current flow is calculated

from the fields around each grid point and the cross-sectional area



enclosing that region. Each grid point is assumed to have a volume

associated with it corresponding to the distance midway to the next

point in the axial and radial directions. Grid points at the edges or on

electrodes are assumed to lie flush with the surface and the "volume" is

calculated appropriately. The external circuit (the load) is taken into

account by allowing the current flowing through the electrodes to

generate a potential difference across the load and therefore modify the

potentials on the electrodes for the succeeding iteration (see below).

In the program an over-relaxation method was used to speed up

convergence. The normal successive displacement approach is to calculate

the new values of the potentials for the n+1 th iteration for each grid

point (J,k) using

J f - f  Laser Power term) .... (5a),

where V are the potentials of the four neighbouring points (less at
J'k'

the boundaries) from either the previous iteration set or the current

one, since the values are updated (displaced successively) during the

iteration cycle. Faster convergence is achieved by using the algorithm

Vn+l yn (Vn+l Vnjk= ik + F . jk - ik)  .... (5b)

vn+1
where the values Vn on the right side of the equation are calculated

from equation 5a. Note that if the constant F = 1 the normal successive

displacement formula is used. It can be shown (Ref.8) that an optimum

value of the over-relaxation factor F can be calculated from the number

and sizes of the grids. Using this, although derived for Laplace's

equation , it was found that values of F in the range 1.7 to 1.9 gave

much faster convergence. If too large a value is used the potentials



tend to oscillate and convergence does not occur.

In a second version of the program assymetry was allowed (using a

three-dimensional grid in r, z, 9). Although this requires much larger

computer storage and run-times for the same accuracy, it permits the use

of localised off-axis beams and also allows segmented electrodes.

3.1.1 Boundary conditions

No current may flow across the boundary of the cylinder either at the

ends or on the circumference, unless there is an electrode present. This

is allowed for by calculating the total net current flow into each grid

"box". This must be zero, even in the case of a region where the laser

is generating current. At an electrode, current can flow into or out of

the device (see below) but in doing so may alter the potentials of the

electrodes, depending on the external load. During one iteration cycle

all the electrode potentials are fixed.

3.1.2 Effect of external load

Initially we set up arbitrary values for the potentials within the

device and on the electrodes. If, after n iterations, we have a pair of
n n

electrodes with potentials of V and V2, with an external load R0

connected across them, then we must reset them for the next iteration

such that

vn+1 - Vnl = InR (6)
2 1 0....

where I n (In - I) is the mean current flowing into one and out of

the other electrode. (In and are calculated from the fields around

the electrodes, the conductivity and area.) In general it is found that

resetting the potentials in this way is not sufficient to produce a



convergent solution since the two currents can, during early iterations,

differ considerably and result in large changes to the potentials. An

additional constraint may be applied, namely that the voltages are reset

such that the current flowing into the two electrodes are equal and

opposite, that is,

n+1 n1n1 n+1.. (7a).12 = 1. ..

We may express this in terms of the new electrode potentials and the

mean potentials of the grid points adjacent to the electrodes Vn and 72,
1 2n

weighted to allow for the grid sizes, (which, along with V and Vn

determine the current on the nth iteration), to give

n+1 n+1 n n
1 + V2 1 +  V2 .... (7b).

Solving equations 6 and 7b leads to

Vn+1 = n n ) .... (8a)1 1 2 (0 

and

Vn+1 I (, + n + InRo) .... (Sb).

These formulae give satisfactory results for very low values of load

resistance R., but with large ones instability occurs, caused by too

rapid changes in the potentials between iterations. A form of

under-relaxation is used therefore, the algorithm being the same form as

for the standard over-relaxation method, namely

Vn+1 = Vn + F (Vn+1 - V n) ... (9)

and similarly for It is clear that this can always satisfyand siilarl for 2"



convergence requirements with a sufficiently small value of F. Similar

equations apply to other pairs of electrodes, if present. The value of F

was determined by trial and error and found to have typical values of

-0.2 and -0.01 for loads R0 of 50 and 500 ohms respectively although it

is dependent on the device dimensions and grid sizes. If the initial

values are taken from a previously calculated set for similar electrode

positions or beam profile a larger value of F is permissible and speeds

up convergence.

The program is also used for calculating the resistance of the

device, important for determining the conductivity of the material

experimentally. This is done by setting fixed voltages on the electrodes

(equivalent to placing a DC voltage across them) and using F = 0 in

equation 9. By evaluating the current flowing across the

electrode-germanium boundary the resistance is calculated.

An additional mode of operation of the program, particularly important

when more than two electrodes are employed, is provided for isolated

electrodes (rings on the circumference not connected to any external

load or to a high resistance). In this case the potentials of the grid

points occupied by these electrodes are calculated as though the

electrodes are absent and after each iteration they are reset to the

mean values. Both connected and isolated electrodes may be combined for

any device. The ability to operate the program in this way is also

useful for loaded devices as is described later.

3.1.3 Conditions for convergence

The relaxation process is repeated until a suitable stable state is

obtained. No restriction is made at any point as to the absolute values

of the potentials (a constant may be added to them) and the program will

settle to different values depending on the initial values set, although
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in practice these are normally zero. Since only differences are required

this does not matter.

The number of iterations required depends on the accuracy desired and

is a function not only of the number of grid points but also the grid

sizes and the electrode and beam dimensions. The criteria used are:

(a) the change in values of the potentials at all the grid points

within the device must tend to zero,

(b) the currents flowing into or out of the electrode pairs are equal

(or agree to within some percentage) and

(c) the potential differences between the electrode pairs settle

to a value.

The most critical of these is (b), especially for large values of load

resistance, although the discrepancy can be relatively large (-25%)

under some conditions, without significantly affecting the final

potentials. For convenience we use another criterion to determine when

sufficient iterations have been carried out and allow the program to

exit. The two error parameters employed are

MaxI6VIl

Error(a) ..... (lOa)
Mean lVii

16 vi I
Error(b) .... (lOb)

lviI

where6Vi are the changes in the values of Vi for all the grid points on

each iteration (MaxjbV I is the modulus of the largest change of

potential in the region). In general the values of these two parameters

are of the same order and the program exits automatically when both of

them are less than a specified value typically 10- 4 .
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3.1.4 Accuracy of program

The accuracy of the program is determined mainly by the finite

difference approximation to Poisson's equation, and hence the grid sizes

and the number of iterations. The program was run for a detector with a

single pair of ring electrodes near the ends (the conventional type as

detailed in Table 1) with a narrow beam incident on axis, for a range of

numbers of grid points axially and radially (M,N), to obtain the

potential difference between the electrodes. In each case the specified

accuracy, as defined by the error parameters above was the same, 10- 4.

By running the program for (M,N) values of (21,6) to (101,51) and

extrapolating to an infinite number of points the error was found to be

- 0.3% in the voltage (for a 101 by 51 grid). Part of this error arises

from a variation in the beam diameter imposed by the choice of radial

grid size (the response is dependent on radial position as is described

below). The effect of the number of iterations was also estimated by

plotting the electrode voltages against the inverse number of

iterations. Examples of the convergence as a function of iterations and

grid sizes are shown in Figure 3. Note that the scales are chosen such

that the origin corresponds to an infinite number of iterations or grid

points. A relatively coarse grid was used to allow up to 1000 iterations

with reasonable run-time. An error of - 0.1% in the voltage was

estimated for the above error parameter (10- compared with the value

on extrapolation to an infinite number of iterations. An overall

computational error of - 0.4% (from adding the two above values

directly) is considerably less than the experimental errors arising from

instrumental errors, imprecise knowledge of the material properties and

systematic errors from poor contacting of the ring electrodes. For a

given device, however, it is necessary to evaluate the errors using the

above methods, since they depend on, among other things, the electrode
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dimensions and positions, and the aspect ratio of the crystal. It is

not, for example, only the number of grid points that determine the

convergence rate, but also the relative grid increments 6z and 6r.

Convergence is much faster if bz > br. For long thin devices this means

a large number of grid points is required if the electrodes are much

shorter than the length (the longitudinal grid size must be chosen to

allow the correct electrode length), and hence an appreciably greater

number of iterations to achieve the same accuracy is necessary. For the

conventional device geometry values (M,N) of (51,21) give an estimated

accuracy -1 % with 750 iterations, although this number may be reduced

if appropriate initial potential values are chosen (eg from previous

runs).

As stated above the analysis assumes an annular beam profile.

Experimentally, the device was illuminated by a narrow beam at various

positions off-axis. It may be shown by superposition theory that the two

methods are equivalent - an annular beam can be considered as a number

of segments each producing a field distribution in the material. To

verify this, the second version of the program was run, with a coarse

grid to minimise run-time, to solve the equation in three dimensions

with a localised beam. The results obtained were identical as regards

the potentials generated on the electrodes for the same beam power

although the current distribution in the detector was of course no

longer symmetrical.

The effect of the laser beam and the electrodes on the current

distribution in the crystal is shown in Figure 4. The potentials were

calculated for an annular beam on-axis and a wedge shaped beam off-axis

using the two and three dimensional versions of the program

respectively. Current lines were derived by considering holes, starting

in arbitrary specified positions, allowed to move under the action of
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the fields, calculated from the neighbouring potentials, and the laser

momentum transfer. Note that, except for lines ending on electrodes -

and hence giving rise to the output signal - they form closed loops.

Inside the laser beam, although the electric field is such as to drive

the current from right to left, the momentum transfer from the laser

forces the current in the opposite direction.

3.2 Analytical solution

As a check on the numerical approach we compared the results with

those obtained by analytically solving equation 4. This may be done in

the imaginary special case of a detector where optically transparent

electrodes are positioned on the end faces of the device and the beam

occupies the whole region. Equation 4 then takes the one-dimensional

form

d2V kP-0 exp(-gz) .... (11).

d2z - 0

Integrating this with respect to z gives

dV kPo

V0 = (d) L -- (exp(-gL) - 1 + gL) .... (12),
0  (-) 0 s0 g

where V0 is the potential difference between the electrodes, L the

length of the devices and (d-v) the potential gradient at the left (beam
dz 0

entry) electrode. The current I flowing through the electrode, of

cross-sectional area A for a current density J is, using equations

1 - 3, given by

I a JA z (kP0 + S0E0 ) A .... (13)

where P0 and E0 are the laser power density and electrostatic field at
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the electrode. Since E = V) and V IR0, where R is the external
0 ~dz 0 0 R, 0

load, we can rewrite equation 13 in the form

(0)O = s-- SoVo0 .... (14),

dz0 0A sH 0A

where we have replaced the power density P0 by -. P is the total laser

power which is assumed to be uniform across the device. Substituting

this into equation 12 gives

V0 k P ( - exp(-gL)) (15).

S0 gA ( + )
R0

L

where R -- is the resistance of the crystal. For the values given in
s0A

Table 1, R = 19.64 ohms and with R0 = 50 ohms this gives V0 = 252.0 mV.

Using the program gives a value of 251.8 mV, in excellent agreement. In

the case of infinite load the above equation reduces to the same form as

given in Reference 1. Note that if the detector resistance is of the

same order as the load (50 ohms), the signal is approximately half the

open circuit value and that if the device is reverse terminated by

adding a series resistance to make it up to 50 ohm the signal is exactly

half the open circuit value (see Section 4.1.2). The behaviour of a

detector with ring electrodes is discussed in Chapter 4.
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4. Theoretical and experimental results

Using the above numerical techniques we have calculated the

sensitivities and the spatial variation of the response of several

photon drag detector structures and also the dependence on the material

properties of the crystal. These include a standard commercially

available device (for which the results are compared with experimental

measurements), and a four electrode system, specially designed by us to

give uniform response. In addition the effects of poor electrode

contacts and a proposed quadrant centering device are described.

4.1 Two electrode device

4.1.1 Conventional detector

Initial calculations were carried out for an existing commercial

device on which experimental measurements of the sensitivity had been

made. These showed pronounced spatial dependence of sensitivity. The

detector, Type 7441 manufactured by Rofin Ltd, has ring electrodes of

-1.5 mm long at each end of the germanium. The properties of the

material were not well established but are typically as those given in

Table 1, determined from later samples. The signal from the detector was

fed into a 50 ohm load and, to avoid reflections, to which the amplifier

is sensitive, an additional resistance had been added in series with the

crystal to reverse terminate it in 50 ohm. The theoretical and

experimental (see Reference 5 for details) sensitivities at 10.6 microns

are shown in Figure 5. Because of the lack of accurate figures for the

conductivity, photon drag coefficient and electrode dimensions (the

electrodes were formed by wires wrapped round the crystal and soldered

on, giving a varying thickness) only the relative shapes of the response

curves should be considered. The theoretical values were linearly scaled

to give agreement in magnitude at the centre. These demonstrate
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reasonably good agreement as regard the general form of the curves and

emphasise the large variation of the response as a function of the

radial position of the laser beam. The discrepancy is probably

attributable to variations in the electrode dimensions as later results

with improved structures show much better agreement. The fall off in

response close to the edge obtained experimentally is caused by the

finite beam diameter used. Only part of it is incident on the detector

since it overlaps the edge and the effective power absorbed is reduced.

In the theoretical computations a very narrow beam is assumed, and the

response may be calculated right out to the edge. In principle the

program could be modified to allow better comparison with experiment in

this region but it was not considered to be necessary. The assymetrical

shape of the experimental curve is attributed to variations in the

contacting of the electrodes to the crystal and a more detailed analysis

of the effects of this is considered in Section 4.2.

4.1.2 Loading conditions

Equation 15 shows that for a device of resistance R generating an

open circuit voltage Voc, the signal produced into a resistive load R0

is given by VL where

V

L .... (16).

Since it is normal practise to reverse terminate detectors, to avoid

reflections which affect amplifier response, the resistance of the

device must be known before the total load resistance across the device

can be calculated and the reponse of it determined. This is inconvenient

if parameters such as the electrode sizes or positions are being varied

and consequently the resistance changes. However, it may be easily shown

that with reverse termination and feeding into the same load (50 ohms)
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the output signal is exactly half V irrespective of the deviceoc

resistance. Although it is not possible to show mathematically that

Equation 16 also holds for a detector with ring electrodes, the effect

of any load across the device is to act as a shunt. It is therefore

simpler to carry out all calculations under the open circuit condition

(and speeds up the rate of convergence slightly). The signal obtained

with any other load or reverse termination can then be evaluated using

Equation 16.

4.1.3 Crystal parameters

In attempting to compare theoretical and experimental results a

difficulty arises through lack of knowledge of some of the germanium

crystal parameters. In particular the conductivity and photon drag

coefficient are not normally well known; the absorption coefficient can

be determined experimentally. The resistance of the detector can,

however, be measured and compared with the resistance calculated and the

conductivity may therefore be determined. The photon drag coefficient is

less important in that the results obtained can be scaled linearly for

comparison of relative response. The three parameters, conductivity,

absorption and photon drag coefficients are interdependent; from a

simplistic physical model one can consider that high doping of the

crystal leads to high conductivity, greater absorption of photons and

higher transfer of momentum to the carriers. The precise details and the

relationship between them is not considered here but fuller descriptions

have been given elsewhere (Refs.1,10). It is therefore sufficient to

know the conductivity (or resistivity) of the material accurately to

determine the absolute sensitivity of a device. For convenience the

relationships (Ref.5) are reproduced in Figure 6(a). It is also

interesting to note how the overall sensitivity behaves as a function of

the resistivity. This is shown in Figure 6(b) which has been obtained
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using the relationship between the parameters and Equation 15. Note that

in general low conductivity material is to be preferred.

It is, hoever, also useful to know the way in which the sensitivity

scales with the individual parameters since then any calculations can be

scaled. For the simple case of a detector with electrodes on the end

faces (referred to as the end-electrode device) %he dependence of the

signal on the crystal conductivity, photon-drag and absorption

coefficients is given by Equation 15. It is clear that for ring

electrodes the scaling will be the same, that is linear, for the

conductivity and photon-drag coefficient. However, the absorption

coefficient alters the current generated in a non-linear manner

(exponentially) which affects its distribution in the crystal and hence

the signal measured on the electrodes. We have calculated the response

and axial variation for two ring electrodes 2 mm long. The behaviour is

shown in Figure 7. The axial signal is plotted against both the

absorption coefficient and the parameter (1- exp(-gL)) , for which oneg

expects a linear relationship in the case of the end-electrode device.

Note that the line is almost straight implying that scaling is

approximately the same as for an end-electrode detector with only a

small deviation over the range. This is sufficiently small to enable us

to use the end-electrode calculation to obtain preliminary estimates for

design purposes and scaling the results. For absolute response a fuller

analysis is required. The non-uniformity of response, defined here as

the signal close to the edge divided by the axial value increases with

the absorption coefficient; this might be expected since the signal is

absorbed closer to the input end of the detector and the current

produced will have a proportionally greater radial to axial

distribution.
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4.1.4 Crystal dimensions

The dimensions assumed up till now, have been those typical of a

Rofin 7441 detector. In practice, however, we must select these

according to the desired application. Detectors may be used in two

ways - as in-line monitors, in which case a high transmission is

required (typically 70%) commensurate with adequate sensitivity, and as

power meters where most of the radiation may be absorbed. This places

conditions on the length of the detector (assuming a restricted

availability of choice in the crystal resistivity) and its radius. For

high power use a large diameter beam must be used to avoid damage to the

germanium.

Since it has been shown above, from the use of Equation 15, that the

voltage generated by an end-electrode detector predicts the general form

of the behaviour for ring structures, although not, of course, for

response flatness, it is useful to apply it and compare the sensitivity

as a function of the crystal length and area. In terms of these two

parameters the signal produced V is

V oc F= (1 - exp(-gL)) .... (17).1 A

The behaviour can be shown by plotting the voltages obtained for ring

electrodes against the parameter F1. We have calculated the axial and

off-axis open circuit signals for two samples of the same material,

lengths 20 and 50 mm, with different radii. The electrodes for the two

lengths are 1.75 and 2.5 mm long respectively, of ring structure on the

circumference at the ends. The axial voltages against F I are shown in

Figure 8(a), together with the values calculated from Equation 15. The

agreement is sufficiently close to enable useful design decisions to be

made. An alternative parameter to use is the "Aspect ratio", defined
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here as L. In terms of physical dimensions this is more meaningful and

although no simple relationship can be expected the relationship is

similar (Fig.8(b)). Note that from Equation 17 if gL << 1 (low

absorption) the end-electrode signal is inversely proportional to the

area and hence the aspect ratio for a given length.

The aspect ratio also affects the reponse as a function of beam

position. The signal relative to the axial valne is plotted as as a

function of the relative radial position (that is the beam position

divided by the cylinder radius) in Figure 9(a). The behaviour can be

seen more clearly by considering the non-linearity as a function of the

inverse aspect ratio. This is shown in Figure 9(b) where the relative

signal V is defined as the ratio of the signal for the beam at 50 % ofr

the cylinder radius to that on axis. As can be seen, the reponse is

flatter for longer devices. For a given crystal length therefore, the

flatness of response is better for devices with smaller radii as is the

overall sensitivity. Where possible the smallest radius should be used,

consistent with the laser beam radius and damage threshold requirements.

4.1.5 Electrode positions and dimensions

We calculated the reponse properties of a detector 20 mm long by

12.5 mm diameter with various combinations of electrode positions and

lengths, to determine the effect on sensitivity and flatness of

response. The knowledge of the behaviour as these are varied is

important for comparison with experiment, in addition to determining the

optimal configuration, since it is difficult to measure the effective

widths of electrodes accurately.

Figure 10(a) shows that as the electrodes (1.2 mm long) are moved in

towards the centre the axial (and consequently total) signal is reduced.

In addition the ratio of the off-axis (at 75% of the crystal radius) to
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the axial signal above) is seen to decrease similarly, implying that by

moving the electrodes away from the ends an improvement in profile

flatness is obtained, although at a cost in sensitivity as shown in

Figure 10(b).

A similar behaviour occurs as the lengths of the electrodes, which

extend to the ends of the crystal, are altered, and this is shown in

Figure 11. The results are similar to those above, (short electrodes at

different positions) which is to be expected since the parts of the

electrodes nearer to the centre have a dominant effect on the response.

The program is less accurate in calculating the behaviour if the

electrodes become to close together (at the centre) because of the large

differences in the fields near the electrodes between the ends and

centre. Decreasing the grid sizes improves the accuracy (at the expense

of computer time) although for practical purposes this is not necessary.

An alternative way to increase the accuracy would be to use a 9 point

algorithm (the 8 points nearest the grid point being calculated) instead

of a 5 point one but again this is not important for our purposes.

4.2 Contact resistance

In calibration of photon drag detectors it is often found that

although the sensitivity is much greater at the edge the response is not

symmetrical about the axis (Fig 5). A possible explanation for this is

poor contacting of the electrodes to the germanium, with electrical

contact being achieved only over part of the circumference. To

investigate this we used the three dimensional version of the program to

calculate the response as a function of beam position where the

electrodes consisted of segments of rings. For simplicity we assumed

that both electrodes consisted of partial rings, in contact with

approximately 60% of the circumference only. Both electrodes covered the
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same angular region of the device. The results are shown in contour form

in Figure 12(a). These contours were calculated using a standard routine

(Ref.9), modified slightly to reduce the weightings placed Dn regions

close to data points, and they display the typical form encountered

experimentally. Figure 12(b) shows the profile along the x-axis. In

practice, real detectors are liable to show more random variations,

because of irregular contacts.

4.3 Four electrode detector

As shown above, the two-electrode structure is much more sensitive at

the edge than in the centre although the flatness may be improved by

shifting the electrodes closer together. We felt that by using a pair of

signal electrodes closer together and applying a shunt resistance across

a pair at the end the response could be flattened.

4.3.1 General properties

We have, therefore, designed a four-electrode device (see Figure 13)

in which the two outer ones are connected together via a variable

resistor and the signal is generated between the inner pair. The outer

electrodes are 1.5 mm long and the inner pair 1.4 mm centred 3.8 mm from

the ends. The variation of response (open-circuit voltage) determined

theoretically, as a function of beam position, is shown for a range of

values of the outer resistance. (The crystal parameters are as before.)

As can be seen, it is possible, by suitable outer loading to achieve a

response flat to -4% over the whole area. This is within the normal

calibration accuracy of +5% absolute, +2% relative. The sensitivity

attained for this uniformity is higher than can be obtained using one

pair of electrodes which would have to be positioned closer together.

Figure 14 shows the theoretical and experimentally measured
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sensitivities for a device which we produced (Ref.5). The calculations

were based on accurately measured electrode lengths and positions

together with the crystal parameters. These curves are for a signal load

of 50 ohms. The resistance across the inner pair (the device resistance)

was 12.5 ohms. In order to obtain the absolute values of the crystal

parameters for comparison both the conductivity and absorption

coefficient were measured. The photon drag coefficent was obtained by

scaling the value in the theoretical prediction to the experiment to

give a fit for the axial sensitivity measured across the outer

electrodes with the inner pair isolated. The good agreement in profile

and in the magnitude of the signals measured across the inner pair

demonstrate the excellent correspondence between the theory and

experiment. The conductivity was evaluated theoretically by assuming an

arbitrary value and applying a fixed voltage across the outer pair of

electrodes and calculating the voltages on the isolated central pair.

The potential difference could thus be calculated across the inner pair

for a known current flow through the crystal. By measuring this

experimentally the voltages could be compared and the conductivity

derived. The advantage of this four terminal method is to eliminate any

errors that could be caused by contact potentials between the electrodes

and crystal (although it cannot determine the effects of any

non-uniformities in the material). Using this value for the conductivity

and repeating this 4 - terminal measurement, theoretically and

experimentally, between all combinations of electrodes with the contact

resistances at all electrodes can be calculated. It was found that with

our newly developed method of vacuum deposition of the electrodes

(details in Ref.5), there was negligible contact resistance - to within

the errors involved.
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4.3.2 Improved designs

The effect of the conductivity on the sensitivity was described in

Section 4.1.3, in which the advantage of low conductivity germanium was

shown. We have therefore designed two new detectors to be used as

in-line beam monitors with approximately 75 % transmission with

diameters of 12.5 mm and 22 mm for handling different laser powers. The

relevant crystal parameters, electrode positions and theoretical

performances are given in Table 2. It is interesting to note that for

the narrow version little improvement is achieved by using 4 electrodes

and satisfactory uniformity of reponse can be obtained by placing the

electrodes only 5 mm from the ends. In practice, however, it is useful

to have the additional electrodes for resistance measurement. These

devices are currently under construction.

4.4 Quadrant detector

A possible modification to the conventional design, making use of the

non-uniformity with beam position, is to segment the electrodes into

four sections to produce a "quadrant" detector which can be used for

beam centering at 10.6 microns (Fig. 15(a)). By measuring the potential

difference between corresponding pairs of segments (with equal loads of

50 ohms) and taking the difference voltages in the X and Y directions a

signal is generated if the beam is off-axis (Fig. 15(b)). A difference

voltage of ~ 1 mV (a 5% variation) is produced by a 1 mm displacement of

the 1 MW beam in either direction, a signal well within measurement

capabilities. The calculations have been carried out for the original

crystal and dimensions and an improvement on the differential response

could be obtained by altering the aspect ratio (shortening the crystal)

and crystal conductivity to improve the sensitivity. The limit to the

application of this approach and the usefulness are determined mainly by
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the difficulties of measuring small signals in the electrically noisy

environment of TEA lasers.

It should, however, be noted that the signal varies non-linearly with

beam displacement. In addition, the form of relationship is more

complicated if the shift is at an angle to the x or y axes, resulting in

"cross-talk" between the signals. While this is not necessarily

important for well-behaved uniform (or symmetrical) beam profiles, the

presence of non-uniformities (eg "hot spots") can give erroneous results

for the position of the centroid of the beam. For this reason, the use

of a slower linear detector, for example a pyroelectric system, would be

more useful.
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5. Conclusions

We have shown that the numerical approach developed to calculate the

spatial response of photon drag detectors gives results in very good

agreement with experiment. This has enabled us to develop various

electrode configurations which allow either flattening of the response

without too great a loss in sensitivity, or a potentially useful beam

alignment method. The importance of achieving good uniform electrical

contact between the ring electrodes and the crystal has also been

demonstrated and is essential if reliable accurate power measurement

with variable size laser beams is required.
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Table 1

Typical crystal parameters and dimensions of 2 electrode detector

Crystal length L 20.0 mm

Crystal radius r 6.25 mmc
2

Cross-sectional area A 1.227 cm

Electrode lengths ( I)  1 1.5 mm

Device resistance(2) R 20.6 ohms
c

External load R0  50 ohms

Conductivity( 3 )  so  8.3 ohm-1m-1

Photon drag coefficient(4 )  k 22.3 10- 9 A/W

Absorption coefficient g 23.0 m

Laser power (6 )  P 1.0 MW

Notes

(1) Electrodes positioned on circumference at the ends of the crystal.

(2) Calculated numerically from the detector parameters.

(3) Calculated by matching the experimentally measured and

calculated values for this device.

(4) Value found by scaling theoretical sensitivities to experimental

ones.

(5) Measured experimentally at 10.6 microns.

(6) A constant value for the total power was used and the power

density P0 (dependent on the beam profile) calculated at run-time.
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Table 2

Parameters and predicted responses of 4 electrode detectors

NPL device I II III

Crystal length - 30 30 20

Crystal radius mm 11.0 6.25 6.25

Inner eleftrode mm 7.5 5.5 3.8
position

Conductivity 9-m- 4.0 4.0 10.0

Resistivity cm 25.0 25.0 10.0

Photon drag nA/W 11.1 11.1 18.6
coefficient

-1
Absorption m_ 9.8 9.8 19.0
coefficient

Transmission % 75 75 68

Resistance(2) 13.6 45.0 10.0

Outer load (3 )  50 - 50

Predicted mV/MW 77 370 103 (4)
sensitivity 185 (5)

Notes

(1) Distance between centre of electrode and crystal end.

(2) Between inner electrodes with appropriate outer load.

(3) Resistive load connected across outer pair of electrodes to give

flattest response.

(4) Across the inner electrodes with an infinite impedance;

(ie open-circuit signal) for a narrow on-axis beam.

(5) Open-circuit voltage across the outer pair of electrodes with the

inner pair isolated - this is approximately the same as for a two

electrode detector of the same dimensions.

. . .. ... . . I I~m " I' 1 .. .. 1 . .. . ... .. ..• ,
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Fig.1 Schematic diagram or a typical two-electrode photon drag

detector.
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Fig.3 Convergence of the detector signal (electrode potential

difference) as a function of: (a) the number of iterations for a

fixed grid size ; the number of grid points in the axial (b) and

radial (c) directions. In (b) and (c) the error parameter was the

same for all sets.
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