
REMOTE SENSING(U) ARMY ENGINEER TOPOGRAPHIC LABS FORT
BELVOIR VA E A MARGERUM NO 83 ETL-8346

UNCLASSIFIED F/G 4/1 NL

IDA4 2 AHMTCLMTO FRIVRINI 
TOPEI /



.jW . ,.*

1.5 LA1.
1111 = 13

MIRCOYRSOUIO ETmHR
NAIOA BU EAU ONAD-16-

11111 pi



V~ 77

r: s ETL-0346

AD-A142 728

- A mathematical method for
inversion in atmospheric

", remote sensing

Eugene A. Margerum

NOVEMBER 1983

DTI
SELECTE,' JUL 0 6 1984

D .0
U.S. ARMY CORPS OF ENGINEERS
ENGINEER TOPOGRAPHIC LABORATORIES
FORT BELVOIR, VIRGINIA 22060

$1APPWOYID OR PIDUUC NELIA3E: DSTU1ION UNLMTED 0 6

-=~ $4 1 0' 05 0 8



UNCLASSIFIED
r.Y CLASSIFICATION OF THIS PAGE (When Data Entered)

.6. .. READ INSTRUCTIONS ""
REPORT DOCUMENTATION PAGE RE CNMTRETIOR

% -PORT NUMBER 2.QOPir ESSION NO.. R~~!T'S CATALOG NUMBER

ETL-0346
T ITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

0
A MATHEMATICAL METHOD FOR INVERSION Research Note

IN ATMOSPHERIC REMOTE SENSING 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(a) 5. CONTRACT OR GRANT NUMBER(e)

Eugene A. Margerum
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK

AREA A WORK UNIT NUMBERS

U.S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060 4A161 102B52C, A, 0003

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U.S. Army Engineer Topographic Laboratories November 1983 ..

Fort Belvoir, Virginia 22060 10 "---

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlllng Office) IS. SECURITY CLASS. (of this report)

Unclassified
ISa. DECL ASSI FICATION/DOWN GRADIN G

SCHEDULE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited. 1 14900

17. DISTRIBUTION STATEMENT (of the abstract miteed In Block 20, If different from Report)

II. SUPPLEMENTARY MOTES

It. KEY WORDS (Continue on reverse lde If necessary and Identify by block number)

Integral equations
Inversion methods
Radiative transfer
Remote sensing

[2 AifTRACT (Cbi GI revim o N neeiemY =d identify by block n~mfmlr)

A method is developed for solving Fredholm integral equations of the first kind. The method
is particularly intended for use in obtaining atmospheric profiles from remotely sensed radi-
ance measurements and should be generally useful for numerical inversion problems where
the solution can be expressed as a linear superposition. Some discussion of general mathe-
matical and physical considerations is also given.

DO cs 1 to-o or INov 65 is IoOLETe UNCLASSIFIED

SECUmtTY CLASSIFICATION OF mtNS PAGE (Whien Dote Entered) , *

% - .'. m , . , ' " . ' . . . " :,Q .. . ' , ... ...



PREFACE
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A KAT8124ATICAL MKTWD FOR INVERSION IN

kIMOSPHERIC REMOTE SENSING

INTWODUCTION

The importance of Fredhoim integral equations of the first kind is
well known to applied mathematicians. One reason for this is that they
occur in almost every area of the exact sciences either in the formulation
and solution of theoretical problems or in the decomposition of sets of
measurements to obtain desirable values and other types of information.

* Examples of their occurrence include convolution equations, integral
transforms, instrumental broadening, and Inversion of indirect measure-

4. ments, in addition to convenience in expressing some physical laws. In
areas of remote sensing amenable to quantitative description, the
opportunities for their application are particularly numerous. indeed,
for successful solution of many remote sensing problems they are essential
and unavoidable; yet they remain unused because of numerical, analytical,
and other difficulties, and because researchers in this area often have
backgrounds in inexact and descriptive sciences and neither understand nor
appreciate the importance of integral equations.

This has not been true in the area of atmospheric inversion, where as
early as 1959 Kaplan suggested that it was possible to use remote infrared
measurements to infer the structure of the atmosphere. In spite of
considerable skepticism, which was based partly on well-founded physical,
experimental, and mathematical difficulties, progress has been substantial
and a limited degree of success has been achieved.

From an analytical point of view, the difficulty in solving Fredhoim
equations of the first kind often arises because the equation transforms
or maps the manifold on which the unknown functions are defined onto a
different, smaller, or more restrictive manifold. In such cases there may
no longer be a unique solution because the mapping of one function space
onto the other is "many to one." Well-known examples include band-limited
convolution products and integral transformations of discontinuous
functions using continuous kernels.

For problems where a numerical (not an analytical) type of solution is
needed, the integral equation formulation constitutes an incorrect or ill-
posed problem in the sense of Hadamard, i.e. a unique solution depending
continuously on the transformed or unknown function does not exist.
Nevertheless, by redefining the problem, correctness can be established in
other ways and solutions can be constructed. In addition to the problem
of correctness, severe limitations in the amount of available data, errors
in data, and limitations in the numerical methods used, combined with
usual computational inaccuracies and possible instability, have led to
solutions that were meaningless and even physically impossible for many
methods that have been tried.

3
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The method to be proposed here attempts to overcome these difficulties
by introducing certain types of discretization and by restricting the
function space of the solution. Only the formal aspects are presented and
the method is general since it leaves many choices to the ingenuity of a

.,. user. It is related to some other methods that have been used, and the
discussion should help to elucidate some of the problems encountered in
using them.

in rElsm RSQ AT ION

Before proceeding to the mathematical method for its solution, a
discussion of the transfer equation will be given. Although this

- formulation is well known, the brief discussion will define the problem in
physical terms and show how the transfer equation is expressed as a
Fredholm equation.

It is assumed that the transfer of energy within the atmosphere occurs
by radiation through a clear column of air, that clouds are not present,

- .iand that scattering processes are unimportant. Furthermore, a local
condition of radiative thermodynamic equilibrium is assumed so that the
ratio of the coefficient of emission to that of absorption is given by the
Kirchhoff-Planck equation

B(v, T) a 2hv 3  I
kv(1

e -I
Se.

where v is the frequency of the radiation, and T is the absolute
temperature. This represents a convenient abstraction for situations
where continuous spectra are encountered and where no correlation exists
between the particular emissions and absorptions that participate in the
multiplicity of processes Involved.

If p is used for pressure level, the temperature profile is defined by
T(p) corresponding with measured radiance intensity I(v), and an initial
approximation is assumed to be given by T(p), 1(v). The quantity

a& I(V) - 1(v) - !(V) (2)

is then expressable by a different form of the radiative transfer equation

_v) - B(s) Tv(S) + f AB(p) diV(p) (3)

4
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where rv(p) is the transmittance of the atmosphere from pressure level p
to the top and where s refers to the surface pressure level. Furthermore,
6B and AB are given by

6B(s) - B(vr, T(p)) - B(Vr, T(s)) (4)

AB(s) - B(Vr, T(p)) - B(Vr, T(p)) (5)

where T(p) is the assumed surface temperature and has been a particular
source of difficulty. By noting that

1
f dTv (p) - 1 -T v (s) (6)
1V(s)

both terms of the transfer equation (3) can be combined.

AI(V) - 1) AB(p) + 6B(s)[_( ]}dlv(p) (7)
V(s) i-Tv(s)

It is to be expected that a correspondence (not necessarily one to one)
exists between the bracketed term and some function of the pressure
profile

h(p) = v (a) (8)
-V(s)

so that the transfer equation assumes the customary form for this problem

Ai(v) = -J x(p) - dp (9)
o dp

where

x(p) - AB(p) + 8B(s) h(p) (10)

In this form, the radiative transfer equation (9) is a Fredholm integral
equation of the first kind to be solved for x(p) where the boundary
term 6B(s) h(p) is to be subtracted to obtain AB(p). Since the function
h(p) is not known, it could be constructed by integrating the transfer
equation for many known widely divergent profiles at several wavelengths
and using

5
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h(p) = [x(p) - AB(p)]/6B(s) (11)

but it more often mist be obtained by using surface transmittances.

Different functions h(p) are characteristic of atmospheres of differenttemperature and humidity type.

THE NATHEIATICAL IIVERSION METhOD

In more conventional mathematical notation, the equation of transfer
(9) can be written in the form

b
f(x) f f K(x, 6) u(&) dt (12)

a

where the function f is given by a series of measurements for fixed values
of x and where the kernel K is considered to be known. The problem of
inversion consists of recovering the unknown function.u to within some
reasonable limits. In atmospheric inversion problems, the kernel function
is smooth and limits the ability to recover higher frequency components
resulting in an ambiguity (or in some methods, a so-called "inherent
instability") in the inversion for f.

In order to effect an inversion, a set of basis functions ui(x) is
selected to span a function space of low dimension, but capable of giving
a representation of the solution u(x) in the form

N

u(x) a u i(x) (13)

This is suggested by the linearity of the integral equation (12), but the
basis functions need not physically represent actual atmospheric profiles.
They need only be capable of being summed to give a good approximation to
the profile being sought. The solution will consist of determining the
constants ai.

From the basis functions ui, a new set of N functions fi(x) is to be
computed by performing the quadratures indicated by

b
fi(x) f I K(x, ) ui(E) dt (14)

- a
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for the values of x at which measurements have been made.

Another set of N functions *j(x) is also to be constructed, at the
same values of the argument x, as linear combinations of the
functions fi(x)

N
j(x) - kI I ajk fk(x) (15)

where the constants ajk are determined by imposing the condition

b
f Wjlx) f (x) dx - (16)

where the integral implies a numerical quadrature over the appropriate
values of x. Multiplying both sides of equation (15) by f&(x) and
performing a similar quadrature leads to

b N b

af 0j f (x) dx a k- "Jk ! fk(x) ft(x) dx (17)

which becomes

N

-J = k = a jk kt (18)

when equation (16) is introduced and the constants Okt are defined by
equation (19).

b
0 kZ f f a k(x ) fL(x) dx (19)

-I."

The quantities Okjt are compatible by the numerical quadrature indicated in
. equation (19) since the functions fk(x) are known. Then, aik satisfying

equation (18) can be found by taking the matrix a1k to be te inverse

-. of {Ojk) where it may be convenient to make use of the fact that both
matrices must be symmetrical. The functions *j(x) can now be obtained by
use of equation (15). It will be found that they are not needed for a
final computation, but are useful in the derivation of the solution.

*14, 7
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Inserting equation (13) into the integral equation (12),

b N
f(x) - f K(x, I) Y am uM () d4 (?n)

a m=l

N b
f(x) = am f K(x, ) U(E) d (21)

m-1 a

it is found by using equation (14) that

N

f(x) - Y a f (x). (22)
m-1

Multiplying both sides of equation (22) by On(x) and integrating
(performing a quadrature) yields a method for computing the
coefficients an.

b N b
f 0 (x) f(x) dx I ) a 0 n(X) fW(x) dx (23)
a rn-i a

N
- a 6 (24)hni rn nm

b
I n(x) f(x) dx - an (25)
a

The insertion of equation (15) for On(x) into equation (25) leads to the
proper expression for computing the coefficients ai in equation (11),

b N
a f - f(x) f(x)dx (26)

n a k-i fk~

N b
a - y  k a fk(x) f(x) dx (27)

I .. k" a8
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a- nk k (28)
k-i

where Yk is defined as follows.

b
Y f f x f(x) dx (29)

a

The final solution can now be written by replacing ai in equation (13)
* with equation (28).

N N
u(x) - ~ k T  (x) (30)

n-i k=

Recapitulating, the steps in finding the solution consist of performing
the quadratures indicated in equations (14), (19), and (29) and inverting

* {
8

1.cX) to obtain faki),.

It should be remarked that the same type of quadrature formula can be
used f or most cases involved. Also, N must not exceed the number of
points at which the function f(x) is given if the matrix n t is to be
successfully inverted.

ONCLUSION

A method of solving Fredholm integral equations of the first kind for
use in the numerical inversion of remotely sensed radiance measurements
has been presented. Use of this method requires the specification of a
basic set of functions from which the solution can be written as a linear
Superposition. It does not impose further unnecessary conditions, such as
the orthogonality often used in obtaining such solutions. This should

.4- allow a good representation asong the physically realizable solutions from
a relatively small number of basis functions. This is Important since the
information available for the function to 'he inverted is usually severely
limited by physical restrictions on the number and types of measurements.

The general mathematical aspects of the problem and a brief derivation
of the mathematical equation from physical considerations have been
presented.
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