

Act many water water

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

46. 1 car

AMERICAN FELT DAM CT 00043

PHASE 1 INSPECTION REPORT NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS.

FEBRUARY, 1980

IIE FII

This document has been approved for public release and sale; its distribution is unlimited.

84

07

02

044

LINCLASSIFIED

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
CT 00043	<u> </u>
4 TITLE (and Subilile)	5. TYPE OF REPORT & PERIOD COVERED
	INSPECTION REPORT
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS	5 PERFORMING ORG. REPORT NUMBER
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(+)
U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
DEPT. OF THE ARMY, CORPS OF ENGINEERS	Feb. 1980
NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II ditterent from Centrolling Office)	115 15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	184. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED	

17. DISTRIBUTION STATEMENT (of the obstract entered in Black 20, if different from Report)

18. SUPPLEMENTARY NOTES

THE STATE OF STATE OF THE PROPERTY OF THE PROP

Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

DAMS, INSPECTION, DAM SAFETY.

Southwestern Coastal Basin Greenwich, Conn. American Felt Dam

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

This dam is a concrete rubble and masonry construction with earth embankments on each side. The dam is approx. 208 ft. long, 37 ft. high and has a top width of 13 ft. It was constructed about 1867 and presently serves only an aesthetic function. This dam is classified as SMALL in size and a HIGH hazard potential structure in accordance with recommended guidelines established by the Corps of Engineers. The test flood for this dam is 1/2 the PMF. The test flood has an outflow discharge equal to 13000 cfs and will overtop the dam by 7.4 ft. in a stillwater condition. The maximum outflow capacity of the spillway under stillwater conditions is 1335 cf

DD PONE la percent of the test flood

DEPARTMENT OF THE ARMY

NEW ENGLAND DIVISION. CORPS OF ENGINEERS 424 TRAPELO ROAD WALTHAM. MASSACHUSETTS 02154

REPLY TO ATTENTION OF NEDED

MAR 2 1 1900

Honorable Ella T. Grasso Governor of the State of Connecticut State Capitol Hartford, Connecticut 06115

Dear Governor Grasso:

Inclosed is a copy of the American Felt Dam Phase I Inspection Report, which was prepared under the National Program for Inspection of Non-Federal Dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

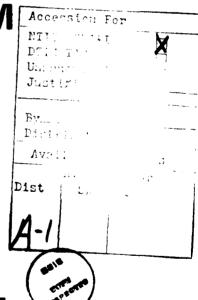
A copy of this report has been forwarded to the Department of Environmental Protection, the cooperating agency for the State of Connecticut. In addition, a copy of the report has also been furnished the owner, Fairfield Associates, Inc., Greenwich, Connecticut.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Department of Environmental Protection for your cooperation in carrying out this program.

Sincerely,

Incl
As stated


Colonel, Corps of Engineers

Division Engineer

SOUTHWESTERN COASTAL BASIN GREENWICH, CONNECTICUT

AMERICAN FELT DAM

CT 00043

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM

PHASE I - INSPECTION REPORT

Identification No.: CT 00043

Name of Dam: American Felt Dam

Town: Greenwich

County and State: Fairfield, Connecticut

Stream: Byram River

Date of Inspection: November 12, 1979

BRIEF ASSESSMENT

This dam is a concrete rubble and masonry construction with earth embankments on each side. The dam is approximately 208 feet long, 37 feet high and has a top width of 13 feet. It was constructed about 1867 and presently serves only an aesthetic function.

Based on the visual inspection and past operational performance, the dam is judged to be in FAIR condition. Seepage was noted on the downstream face. Both faces are vegetated and in need of repointing, and a few stones are missing from the dam at the ends of the spillway.

This dam is classified as SMALL in size and a HIGH hazard potential structure in accordance with recommended guidelines established by the Corps of Engineers.

The test flood for this dam is 1/2 the Probable Maximum Flood (PMF). The test flood has an outflow discharge equal to 13000 cfs and will overtop the dam by 7.4 feet in a stillwater condition. The maximum outflow capacity of the spillway under stillwater conditions is 1335 cfs which is 10 percent of the test flood.

It is recommended that the following items be studied further: The leakage of the 60 inch outlet pipe sluice gate; seepage on the downstream face; the toe; the upstream face; and the spillway capacity.

Recommendations and remedial measures that should be implemented by the Owner within one year period after receipt of this Phase I Inspection Report, are further described in Section 7.

JAMES P. PURCELL ASSOCIATES, INC.

Suchin A. Stal

Sudhir A. Shah, P.E.

Vice-President

Connecticut P.E. No. 8012

This Phase I Inspection Report on American Felt Dam has been reviewed by the undersigned Review Board members. In our opinion, the reported findings, conclusions, and recommendations are consistent with the Recommended Guidelines for Safety Inspection of Dame, and with good engineering judgment and practice, and is hereby submitted for approval.

Carney M. Vergian

CARNEY M. TERZIAN, MEMBER Design Branch Engineering Division

Kilerdy D. Buon

RICHARD DIBUONO, MEMBER Water Control Branch Engineering Division

assunt total

ARAMAST MAHTESIAN, CHAIRMAN Foundation & Materials Branch Engineering Division

APPROVAL RECOMMENDED:

OE B. FRYAR
Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation. However, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there by any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the spillway test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and downstream damage primatial.

The Phase I Investigation does not include an assessment of the need for ferces, gates, no-trespassing signs, repairs to existing fences and railings and other items which may be needed to minimize trespass and provide greater security for the facility and safety to the public. An evaluation of the project for compliance with OSHA rules and regulations is also excluded.

TABLE OF CONTENTS

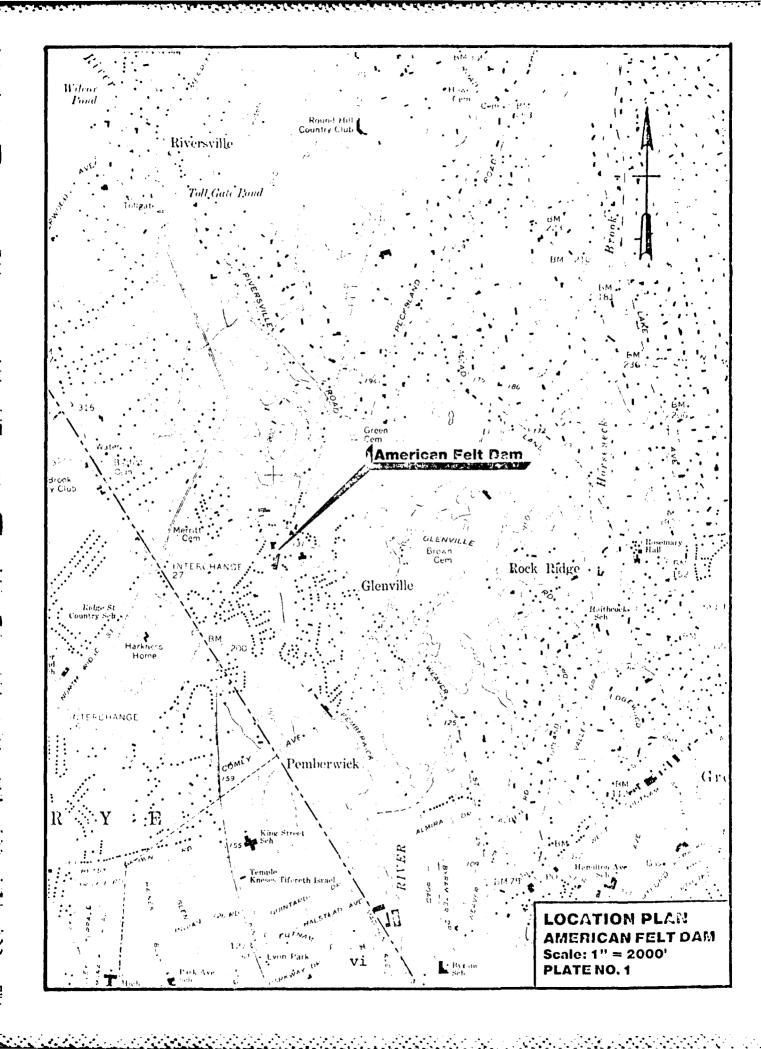
Sect	tion			Page
Lette	er of	Tran	esmittal	
Brief	f Ass	essn	nent	
Revi	ew B	oard	Page	
Pref	ace			i
Tabl	e of	Cont	tents	ii-iv
Ove	rview	Pho	oto	v
Loca	ation	Мар	,	vi
			REPORT	
1.	PRO	JECT	TINFORMATION	
	1.1	Gen	neral	1
		a. b.	Authority Purpose of Inspection	
	4.0		Purpose of Inspection	
	1.2	Des	scription of Project	1
		a .	Location	
		b.	Description of Dam and Appurtenances	
		C.	Size Classification	•
		d.	Hazard Classification	
		₿.	Ownership	
		f.	Operator	
		g.	Purpose	
		h. i.	Design and Construction History	
		ı.	Normal Operationing Procedures	
	1.3	Peri	tinent Data	4
2 .	ENG	INEE	RING DATA	
	2.1	Des	sign	8
	2.2	Cor	nstruction	8

TABLE OF CONTENTS (CONT'D)

Sect	tion		Page
	2.3	. Operation	8
	2.4	Evaluation	8
3.	VISI	JAL INSPECTION	
•			9
	3.1	Findings	3
		a. General	
		b. Dam c. Dike	
		d. Appurtenant Structures	
		e. Reservoir Area	
		f. Downstream Channel	
	3.2	Evaluation	11
4.	OPE	RATIONAL AND MAINTENANCE PROCEDURES	
	4.1	Operational Procedures	13
	4.2	Maintenance of the Dam	13
	4.3	Maintenance of the Operating Facilities	13
	4.4	Description of Any Warning System in Effect	13
	4.5	Evaluation	13
5.	EVA	LUATION OF HYDRAULIC/HYDROLOGIC FEATURES	
	5.1	General	14
	5.2	Design Data	14
	5.3	Experience Data	14
•	5.4	Test Flood Analysis	15
	5.5	Dam Failure Analysis	15

TABLE OF CONTENTS (CONT'D)

Sec	tion		Page
6.	EVA	ALUATION OF STRUCTURAL STABILITY	
	6.1	Visual Observation	17
	6.2	Design and Construction	17
	6.3	Post Construction Changes	17
	6.4	Seismic Stability	17
7 .	ASS	SESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
	7.1	Dam Assessment	18
		a. Conditionb. Adequacy of Informationc. Urgency	
	7.2	Recommendations	18
	7.3	Remedial Measures	18
		a. Operation and Maintenance Procedures	
	7.4	Alternatives	19
		APPENDIXES	
API	PEND	IX A - INSPECTION CHECKLIST	A-1
APi	PEND	IX B - ENGINEERING DATA	B-1
API	PENDI	IX C - PHOTOGRAPHS	C-1
AP	PEND	IX D - HYDROLOGIC AND HYDRAULIC COMPUTATIONS	D-1
API	PEND	IX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1



OVERVIEW PHOTO - AMERICAN FELT DAM

93

27.7

S

NATIONAL DAM INSPECTION PROGRAM

PHASE I - INSPECTION REPORT

NAME OF DAM: AMERICAN FELT DAM

SECTION 1

PROJECT INFORMATION

1.1 General

a. Authority: Public Law 92-367, August 8, 1972, authorized the Secretary of the Army through the Corps of Engineers to initiate a national program of dam inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. James P. Purcell Associates, Inc. has been retained by the New England Division to inspect and report on selected dams in the State of Connecticut. Authorization and notice to proceed was issued to James P. Purcell Associates, Inc., under a letter from William E. Hodgson, Jr., Colonel, Corps of Engineers. Contract No. DACW33-80-C-0G02 has been assigned by the Corps of Engineers for this work.

b. Purpose of Inspection

- Perform technical inspection and evaluation of non-Federal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by non-Federal interests.
- 2. Encourage and prepare the States to initiate quickly, effective dam safety programs for non-Federal dams.
- 3. To update, verify and complete the National Inventory of Dams.

1.2 Description of Project:

a. Location

The American Felt Dam is located in Fairfield County, Connecticut, in the Village of Glenville near the Connecticut, New York state line. (See Plate No.

1). The dam impounds water from the Byram River and is located approximately 4 miles upstream from Long Island Sound and 3000 feet upstream of the Pemberwick Dam. The impoundment is situated in a north/south direction with the dam located at the southern end. The latitude is 41°-02′-18″ and the longitude is 73°-40′-00″.

b. Description of Dam and Appurtenances

The American Felt Dam, built about 1867, is constructed of cement rubble masonry with a sloped (1H:10V) downstream face and a stepped back face. The spillway section is arched in plan with a length of 49 ft. The top of the dam has a 4 inch concrete cap. There are concrete paved overflow channels below the east and west portion of the dam to protect buildings located immediately downstream of the dam from flood waters overtopping the dam. Cement rubble and stone masonry retaining walls extend from the downstream face, perpendicular to the darn, defining the stream channel to a distance of 800 ft. downstream.

An earth dike extends from the end of the west crest upstream, parallel to the river.

One inlet, consisting of a wooden rectangular slidegate, controls the discharge into a 60 inch pipe through the dam, which at one time supplied water to the downstream factory building. The outlet is now permanently sealed within the build about may be drained via a 6 inch tap. The bottom of the slide gate is located of feet below the spillway level on the east side of the dam. The man, if y operated gate lift mechanism is located on the top of the dam on the east side.

Another inlet to a 12 inch diameter pipe through the dam, is located approximately 12 feet upstream and on the east side of the dam. The inlet pipe is approximately 12 feet below the water surface and is controlled by a manually operated valve in a pit just below the east overflow channel. The pipe extends to the downstream factory building where it terminates in a blind flange, which consists of a removable bolted plate covering the end of the pipe.

Two other low level outlets indicated on the record drawings are no longer operational.

c. Size Classification

The dam is classified as a SMALL structure as per the criteria set forth in the Recommended Guidelines for the Safety Inspection of Dams by the Corps of Engineers. The impoundment storage at the dam's crest is 49 acre-feet (range

equals 50 to 1000 acre-feet) and the maximum height of the dam is 37 feet (within the range 25 to 40 feet). The size classification is based on both the height and storage criteria.

d. Hazard Classification

The dam is classified as a HIGH hazard potential structure as per the criteria set forth in the Recommended Guidelines for the Safety Inspection of Dams by the Corps of Engineers. Residential homes and an industrial plant are located on the banks of the downstream channel, where failure discharge can cause the loss of more than a few lives and can cause excessive damage, due to high velocity impact from debris and flooding. The estimated water depth due to the possible dam failure may range from 15.5 feet at the dam to 6.2 feet above normal at the Pemberwick Dam.

The failure of the American Felt Dam may have a potential hazardous effect on the downstream Pemberwick Dam.

e. Ownership

The American Felt Dam is presently owned by Fairfield Associates, Inc., 100 Putnam Green, Greenwich, Connecticut, 06830. The property was acquired in 1979 from the GAF Cooperation, Wayne, New Jersey as a development investment. Subsequent to the development of the property, the owners will be a condominium association.

f. Operator

The operator and caretaker for the American Felt Dam is:

Mr. John Koslowski, Maintenance Supt. Fairfield Associates, Inc. 6 Glenville Street Greenwich, CT 06830 Telephone: 531-1822 (mill)

531-9093 (home)

g. Purpose of Dam

The American Felt Dam impounds water from the Byram River. In the past, the dam supplied water power to the adjacent downstream mill. However, its present purpose is only aesthetic.

h. Design and Construction History

The American Felt Dam was constructed after the Civil War in 1867 to furnish water power to the adjacent mill buildings. In about 1955, walls were built on the top of the dam and the overflow channels below the dam were constructed (the existing east channel was improved). The earth dike extending the western top of the dam upstream was built in 1973.

i. Normal Operating Procedures

The dam, as it is presently used, requires no attention for normal operating procedures.

1.3 Pertinent Data

a. Drainage Area

The American Felt Dam is located in Fairfield County, Connecticut. The drainage basin lies approximately 1.0 miles north of the Village of Pemberwick. The basin is generally rectangular in shape having a length of 11.2 miles and an average width of 2.2 miles. The total drainage area to the dam is 25.4 square miles. (See drainage basin map in Appendix D.) The topography is generally rolling to moderate terrain, with elevations ranging from a high of 740.0 to 100.0 at the spillway crest. Stream and basin slopes are flat to moderate having average grades of 0.9 percent to 1.2 percent, respectively. The normal pond surface area is 2.6 acres which is approximately 0.02 percent of the watershed.

All elevations in this report are based on the National Geodetic Vertical Datum (NGVD). Elevations are based on a spillway crest elevation of 100.00 estimated from available mapping.

- b. Discharge at Dam Site: Discharge records are limited to estimated flows for the 1938 and 1955 storms (Refer to Section 5.3 - Experience Data). Listed below are calculated discharge values for the spillway and the 12 inch outlet. The 60 inch outlet can be drained only by a 6 inch tap with an approximate discharge of 4 cfs at a pool elevation of 104.7 (top of dam).
 - Outlet Works: A 12 inch pipe with an intake approximately at elevation 88.0 and a discharge capacity of 13 cfs at elevation 100.0.
 - 2. Maximum known flood at dam site: Estimated by an unknown source to have been 3000 cfs in October, 1955.

3. Spillway capacity at top of dam: 1335 cfs at elevation 10
--

- 4. Spillway capacity at test flood: 5570 cfs at elevation 112.1.
- 5. Gated outlet capacity at normal pool elevation 13 cfs at elevation 100.0.
- 6. Gated outlet capacity at test flood elevation 19 cfs at elevation 112.1.
- 7. Gated outlet capacity at top of dam elevation 15 cfs at elevation 104.7.
- 8. Total project discharge at top of dam 1350 cfs at elevation 104.7.
- 9. Total project discharge at test flood elevation 5590 cfs at elevation 112.1.

c. Elevation(Feet Above NGVD)

d.

1.	Streamed at toe of dam	67.7	
2.	Bottom of cutoff	Unknown	
3.	Maximum tailwater	Unknown	
4.	Recreation pool	N/A	
5 .	Full flood control pool	N/A	
6.	Spillway crest	100.0	
7 .	Design surcharge (Original Design)	Unknown	
8.	Top of dam	104.7	
9.	Test flood level	112.1	
Reservoir(Length in feet)			
1.	Normal pool	400	
2.	Flood control pool	N/A	
3.	Spillway crest pool	400	

	4.	Top of dam	400
	5 .	Test flood pool	600
€.	Sto	orage (acre-feet)	
	1.	Normal pool	36
	2.	Flood control pool	N/A
	3.	Spillway crest pool	36
	4.	Top of dam	49
	5.	Test flood pool	72
f.	Res	servoir Surface (acres)	
	1.	Normal pool	2.6
	2.	Flond control pool	N/A
	3.	Spillway crest	2.6
	4.	Test flood pool	3.5
	5 .	Top of dam	2.8
g.	Dar	n	
	1.	Туре	Cement rubble masonry
	2.	Length	208 feet
	3.	Height	37 feet
	4.	Top Width	13 ft. at spillway
	5.	Side slopes	Upstream: Vertical above spillway Downstream: 1H:10V
	6.	Zoning	Unknown

A T REGION CONTRACTOR DE LA CONTRACTOR D

7. Impervious core

Unknown

8. Cutoff

Unknown

9. Grout curtain

Unknown

h. Dike

An earth embankment with a concrete wall on the downstream face continues the western top of the dam upstream.

i. Diversion and Regulating Tunnel

N/A

j. Spillway

1. Type

Overflow, broad crested,

uncontrolled weir.

2. Length of weir

49 feet

3. Crest elevation

100.0

4. Gates

None

5. U/S Channel

Natural Bed

6. D/S Channel

Cement rubble and stone masonry retaining walls to a distance of 800 ft.

downstream.

k. Regulating Outlets

Refer to Paragraph 1.2b - "Description of Dam and Appurtenances" for description of Outlet Works.

1. Inverts and Size:

86.0 - 60 in. pipe

88.0 - 12 in. pipe

2. Description:

Cast Iron Pipes

3. Control Mechanisms:

Sluice gate for

60 inch pipe.

Gate valve for 12 inch pipe.

SECTION 2

ENGINEERING DATA

2.1 Design

There are limited available records presenting design information for the construction of the American Felt Dam. A 1917 plan of the inlet for the 60 inch pipe outlet has been included in Appendix B of this report. Plans made during previous inspections, one in 1938 and one in 1956, are also included in Appendix B of this report.

2.2 Construction

There are no available records of the construction of this dam. Walls on the crest and the overflow channels were constructed about 1955, and it is assumed that the 1956 drawing illustrates the "as built" condition.

2.3 Operation

No formal records of operation are kept for this facility. The only data which is recorded is the daily water temperature via a permanent thermocouple. The dam is inspected weekly by personnel from Greenwich Associates, Inc., developers of the surrounding property inclusive of the American Felt Dam. The dam has only an aesthetic use at this time.

プランシングラン アンファンシング アンファンシング アンファンシング アンファンシング アンファンタン 関係など アンファンタン アンファンシング アンファンシング たいかい アンファンシン

2.4 Evaluation

- a. Availability: The information noted above for this facility is available in the file of the Department of Environmental Protection, V/ater and Related Resources Unit, Dam Safety Engineers, State Office Building, Hartford, Connecticut, and Greenwich Associates, Inc., Greenwich, Connecticut.
- b. Adequacy: The lack of indepth engineering did not allow a definitive review. Therefore, the adequacy of this dam could not be assessed from the stand-point of reviewing design and construction data, but is based primarily on the visual inspection, the dam's past performance, and sound engineering judgment.
- validity: The validity of the limited information available must be verified.

SECTION 3

VISUAL INSPECTION

3.1 Findings

 a. General: The visual inspection of the American Felt Dam was conducted on November 12, 1979 and a copy of the visual inspection check list is contained in Appendix A of this report.

The following precedure was used:

- Inspection of the upstream reach of the river which was impounded by the dam.
- 2. Visual inspection of the face and top of the dam and spillway for cracks, loose stones, leakage, etc.
- 3. Inspection of the outlet works and other appurtenances as to their existence, location, and operability.

- 4. Review of procedures that could be utilized in the event of an emergency situation.
- A check of the downstream area for seepage, piping, boils or other indications of abnormal conditions. The downstream hazard potential in the event of dam failure was investigated.
- 6. Photographs of the general area of the dam and of specific items of note were taken and are included in Appendix C of this report.

Before the inspection, the available existing data and aerial photographs were studied and reviewed.

b. Dam

Crest: The top of the dam is constructed of stone masonry with a 4 inch
concrete cap (Photo C-2). There was no evidence of settlement or
misalignment. There are low stone walls on the ends of the top of the
dam, which were constructed about 1955 to increase the flood capacity
of the dam (Photo C-6). The top is generally in good condition with some
minor cracking of the concrete cap noted.

- 2. Upstream Slope: The upstream face of the dam is stone masonry with a vertical face above the water level, which, at the time of inspection, was approximately 46 inches below the east top elevation. Grass and shrubs were growing in the joints between some of the stones.
- 3. Downstream Slope: The downstream face is also stone masonry with a nearly vertical face. See Appendix B for a typical section through the dam. Grass, shrubs, and small trees were growing between some of the stones. Minor leakage was noted through the abutments and through the masonry at several points and mortar is missing in several joints (Photo C-9). The dam appears to be founded on bedrock.

Overflow channels were constructed in about 1955 just downstream of the dam to channel water flowing over the dam during flood conditions back to the river. The east channel existed prior to 1938 but was improved in 1955. The channels consist of a masonry wall downstream of the dam and a paved (concrete) invert (Photos C-7, 8). Grass and small shrubs are growing from cracks in the concrete and between the stones.

c. Dike: A dike continues upstream parallel to the river from the end of the western top of the dam (Photo C-4). It is an earth fill structure with a concrete wall on the downstream face. It appears to be generally in good condition with a good grass cover. However, several shrubs and small trees are growing on the embankment.

d. Appurtenant Structures

- 1. Spillway: The spillway is a 49 foot long and 13 foot wide broad crested weir with a free drop of approximately 24 feet to the tailwater (Photo C-1). It is constructed of capstones and is flush with the downstream face of the dam. Water was flowing over the spillway at the time of the inspection. However, it was noted that several stones were missing from the walls at the ends of the spillway (Photos C-3, 4).
- 2. Low Level Outlets: Record drawings indicate the presence of a low level outlet on the east side of the dam and a square opening was noted on the downstream face. However, there was no indication of how the outlet was regulated. Representatives of the owner believe it to be inoperable and the present silt level on the upstream side of the dam indicate that the intake is buried. An opening on the west side of the dam, as indicated on record drawings, was covered by the construction of the overflow channel.
- 3. 60 Inch Pipe Outlet: This outlet is regulated by a sluice gate located on

the east side of the dam approximately 14 feet below the spillway level. The sluice gate is controlled by a lift mechanism on the eastern top of the dam and appears to be operational (Photo C-5). It was operated in 1968 - 1969 for cleaning and again in 1977, at which time it would not close fully, resulting in leakage.

The pipe extends through the dam to the former American Felt Company building downstream on the east bank of the river. A vent pipe connected to this outlet pipe is located just downstream of the dam and the water level was noted as being approximately equal to the pond level.

The pipe is permanently sealed off within the building by a welded and bolted cap over the end, but may be drained via a 6 inch line to a rectangular masonry channel extending from within the building to the river. An apparent groundwater flow of approximately 5 gpm was noted into this channel.

- 4. 12 Inch Pipe Outlet: A free access intake is located on the east embankment, approximately 12 feet upstream of the dam and 12 feet below the spillway level. The pipe extends through the dam and continues to the former American Felt Company building on the east bank of the river downstream. It is regulated by a valve located in a covered pit on the downstream slope of the dam just below the overflow channel (Photo C-10). The 12 inch line terminates in a removable blind flange (bolted plate over end) in the building and was last used in 1972 1973.
- e. Reservoir Area: The impoundment created by the dam is a narrow flooded portion of the natural riverbed. There are fairly gentle slopes on the valley walls surrounding the reservoir. Bedrock appears to be at or near the surface. No geologic features were detected that could be expected to adversely affect the dam or its appurtenance structures.

Trespassing on the dam is prohibited. However, the area is not fenced and is located near well-traveled roads. No evidence of trespassing was noted during this inspection.

f. Downstream Channel: The downstream channel is fairly straight and uniform with stone walls on both sides for approximately 800 feet downstream (Photo C-11). A bridge is located across the channel 150 feet downstream from the dam (Photo C-12) and a small dam, approximately 7 feet high, is a short distance downstream beyond the bridge.

3.2 Evaluation

Based on the visual inspection, the American Felt Dam appears to be in fair condi-

tion overall, and there were no major areas of distress noted. Specific areas of concern that were noted are:

The presence of leakage on the downstream face and vegetative growth on the faces of the dam.

The missing stones at the edges of the spillway and missing grout between stones on the faces.

The structural integrity cannot be evaluated due to the unknown conditions within and below the dam.

SECTION 4

OPERATIONAL AND MAINTENANCE PROCEDURES

4.1 Operational Procedures

There are presently no operational procedures for the American Felt Dam. It has only an aesthetic purpose at this time.

4.2 Maintenance of the Dam

There is no regular maintenance schedule for this dam. The downstream channel is contained by stone retaining walls and is relatively free of vegetation. Upstream of the dam, the shore is in a natural state.

4.3 Maintenance of the Operating Facilities

Since they are no longer used for industrial purposes, maintenance of operating facilities has been lax. The inlet gate for the 60 inch outlet was last operated in 1968-1969 for cleaning the flume. In 1977, the gate was exercised again but would not close fully resulting in constant leakage through the wooden rectangular slide gate.

4.4 Description of Any Warning System in Effect:

No formal emergency or contingency plan is in effect to reduce or minimize downstream damage in emergency situations.

4.5 Evaluation

To insure the safety of the residents and industries immediately downstream, a regular inspection and maintenance program should be developed and implemented.

SECTION 5

EVALUATION OF HYDRAULIC/HYDROLOGIC FEATURES

5.1 General

The American Felt Dam, built across the Byram River, creates an impoundment with a total storage capacity of 36 ac-ft at the spillway elevation of 100.0. Each foot of depth in the pond above the spillway crest can accommodate approximately 2.6 ac-ft. The spillway is a 49 foot long by 13 foot wide broad crested weir. Stream and basin slopes are flat to moderate having average grades of 0.9 percent to 1.2 percent respectively.

5.2 Design Data

 Flood calculations were done by the State of Connecticut in November, 1955 and yielded a 100-year frequency flood of 3320 cfs for the American Felt Dam site.

To supplement this date, U.S.G.S. Topographic Maps (Scale 1: = 2000') were utilized to develop hydrologic parameters such as drainage areas, reservoir surface areas, basin length, time of concentration and other runoff characteristics. Elevation - storage relationships for the reservoir were approximated. Surcharge storage was computed using U.S.G.S. maps. Some of the pertinent hydraulic design data was obtained and/or confirmed by actual field measurements at the time of the visual field inspection.

b. Outflow values (routing procedures) and dam overtopping analysis were computed in accordance with the guidelines developed by the Corps of Engineers. Judgment was used in calculating final values outlined in this report, which are quite approximate and should not be considered a substitute for actual detailed analysis.

5.3 Experience Data

Historical data for recorded discharges at the dam site is limited to the following approximations derived in 1955 from an unknown source:

July and September 1938 - 2200 cfs October 1955 - 3000 cfs From the spillway capacity and dam overtopping analysis calculations, both of these floods overtopped the dam by at least a foot, but were contained by the flood walls.

5.4 Test Flood Analysis

Recommended guidelines for the Safety Inspection of Dams by the Corps of Engineers were used for the selection of the "Test Flood". This dam is classified as a HIGH hazard and a SMALL size structure. Guidelines indicate that 1/2 to 1 times the Probable Maximum Flood (PMF) be used as the test flood for these classifications. A test flood equal to 1/2 PMF was chosen because the dam has a small storage capacity. The watershed has a total area of 25.4 square miles. Snyder's lag was calculated to be 7.00 hours and a Snyder peaking coefficient of 0.625 was used. The 200 square miles - 24 hour probable maximum precipitation (PMP) is 22 inches. The flood hydrograph package, HEC-1 computer program, developed by the Corps of Engineers was utilized to develop the inflow hydrograph, route the flood through the reservoir, and for the dam overtopping analysis. A test flood equal to 1/2 PMF was calculated to have an inflow of 13000 cfs. The outlet works were assumed to be closed and the flood walls on the top of the dam were not considered in this analysis.

The spillway capacity is hydraulically inadequate to pass the test flood (1/2 PMF) and overtopping of the dam and walls will occur. The maximum outflow capacity of the spillway without overtopping the dam is 1335 cfs. This corresponds to 10 percent of the test flood and a storage above the spillway level of 13 ac.-ft. The maximum outflow discharge value for the test flood is 13000 cfs corresponding to a depth of flow over the top of the dam of 7.4 feet and a storage above the spillway level of 36 ac.-ft. A spillway rating curve, outlet works rating curve, and a reservoir surface area - capacity curve are included in Appendix D of this report.

At the spillway crest elevation of 100.0, the capacity of the 12 inch outlet structure is 13 cfs. Since this is less than the normal flow of the Byram River, storage for impending flood conditions cannot be provided if the pool level is high. Use of the 6 inch tap to the 60 inch pipe will not change this situation.

5.5 Dam Failure Analysis

This dam is classified as a HIGH hazard structure. Failure discharge can cause loss of life and damage due to high velocities, impact from debris, and the flooding of 5 to 8 residential homes and industrial buildings of the former American Felt Company. Calculated dam failure discharge is 9479 cfs at a pool level equal to the top of the dam. At this level, the pre-failure flow in the downstream channel will be 1335 cfs equal to the full spillway capacity and a corresponding depth of flow of 1 to 2 feet downstream. Failure will produce a water surface level approximately 15.5

feet immediately downstream from the dam and approximately 10 feet at the factory buildings. The failure discharge will affect downstream areas for a distance of 3000 feet from the dam. At this distance the water surface level will be approximately 6.2 feet above normal observations. Beyond 3000 feet, the effects of the failure discharge will be reduced as it enters the Pemberwick Dam Pond. Water surface elevations due to the failure of the dam are listed in Appendix D. Probable consequences including the prime impact areas, are also listed in Appendix D.

SECTION 6

EVALUATION OF STRUCTURAL STABILITY

6.1 Visual Observation

The visual inspection revealed no signs of major physical distress in the structure. However, seepage is occurring through each abutment, and stones were missing from each wall at the ends of the spillway.

6.2 Design and Construction

There is insufficient design and construction data to permit a formal evaluation of stability. A previous inspection conducted by S. E. Minor and Co., Inc. in 1938 expressed concern for the stability of the structure. The above inspection report is contained in Appendix B of this report.

6.3 Post-Construction Changes

No post-construction design data pertinent to the embankment or foundation is available.

Recommended improvements based on the 1938 inspection appear to have been carried out. These include the construction of the overflow channels, building up of the downstream west face (accomplished by the overflow channel), and extension of the dike at the west end of the dam.

Portions of the crests of the dam were raised in about 1955 by the addition of walls along the downstream edges of the crests.

The earth dike continuing the west crest was built in 1973.

6.4 Seismic Stability

This dam is in Seismic Zone 1 and hence does not require evaluation for seismic stability according to the Corps of Engineers Recommended Guidelines.

SECTION 7

ASSESSMENT, RECOMMENDATIONS, AND REMEDIAL MEASURES

7.1 Dam Assessment

- a. Condition: Based on the visual inspection, past performance and hydraulic/ hydrologic evaluation, the American Felt Dam and appurtenances are judged to be generally in FAIR condition. Items of concern that should be addressed as a result of this inspection are listed in Sections 7.2 and 7.3.
- b. Adequacy of Information: The absence of existing engineering data did not allow for definitive review. Therefore, the adequacy of the dam is based on visual inspection, past performance history, and engineering judgment.
- c. Urgency: The recommendations and remedial measures described below should be implemented by the owner within one year after receipt of this Phase I Inspection Report.

7.2 Recommendations

It is recommended that the owner engage a qualified registered engineer to carry out the following actions:

- A detailed hydrologic-hydraulic investigation to determine the need and means of increasing the discharge capacity of the project.
- b. Correction of the leakage occurring from the sluice gate for the 60 inch outlet pipe. This is recommended because the entire 60 inch pipe is under pressure creating a potential flooding hazard, should the pipe rupture.
- c. The pond be lowered and the upstream face be visually inspected and the toe checked for potential undermining.
- d. Determine the feasibility of providing a low level outlet with a control on the upstream side of the dam.

7.3 Remedial Measures

a. Operational and Maintenance Procedures

1. The vegetation should be removed from the joints and the joints repointed on the faces and crest of the dam.

- 2. The missing stones should be replaced at the edges of the spillway.
- 3. The seepage on the downstream face should be monitored to note any change from the existing conditions.
- 4. Develop a formal flood warning and surveillance plan, including round-the-clock monitoring during heavy precipitation.

のためにありません。 (1年)のできるとのできる。 (1年)のできることが、 (1年)のできるとのできる。 (1年)のできるとのできる。 (1年)のできるとのできる。 (1年)のできるとのできる。 (1年)のできる。 (1年)の

- 5. The shrubs and small trees should be removed from the dike.
- 6. Institute a program of annual periodic technical inspection.

7.4 Alternatives

SCOT SESSESSES TREPERED HERRESSES BESTELLE

Remove the dam.

APPENDIX A

INSPECTION CHECK LIST.

INSPECTION CHECK LIST

PARTY ORGANIZATION

PRO	JECT American Felt Dam	DATE November 12, 1979
		TIME 1:00 - 3:00
		WEATHER Overcast
		W.S. ELEVU.SDN.S.
PAR	TY:	
1.	R. Johnston, JPPA	6. D. Knabel - Greenwich Assoc.
2.	R. Lyon, JPPA	7.
3.	G. Salzman, CWDD	
4.		
		•
P	ROJECT FFATURE	INSPECTED BY REMARKS
		INSPFCTED BY REMARKS R. Johnston
1.	Hydraulics	
1. 2.	Hydraulics Structural	R. Johnston
1. 2. 3.	Hydraulics Structural Geotechnical	R. Johnston R. Lyon G. Salzman
1. 2. 3.	Hydraulics Structural Geotechnical	R. Johnston R. Lyon G. Salzman
1. 2. 3.	Hydraulics Structural Geotechnical	R. Johnston R. Lyon G. Salzman
1. 2. 3. 4. 5.	Hydraulics Structural Geotechnical	R. Lyon G. Salzman
1. 2. 3. 4. 5. 6.	Hydraulics Structural Geotechnical	R. Lyon G. Salzman
1. 2. 3. 4. 5. 6. 7.	Hydraulics Structural Geotechnical	R. Lyon G. Salzman
1. 2. 3. 4. 5. 6. 7.	Hydraulics Structural Geotechnical	R. Lyon G. Salzman

INSPECTION CHECK LIST PROJECT American Felt Dam DATE 11-12-79 NAME ____ PROJECT FEATURE DISCIPLINE____ NAME _____ AREA EVALUATED CONDITION DAM EMBANKMENT 104.7 Good - 4 inch concrete Crest Elevation Current Pool Elevation 100.0 46" Below left crest Maximum Impoundment to Date Minor cracking in concrete Surface Cracks Good - Minor spalling of concrete Pavement Condition None observed Movement or Settlement of Crest None observed Lateral Movement Good Vertical Alignment Good Horizontal Alignment Good Condition at Abutment and at Concrete Structures None observed Indications of Movement of Structural Items on Slopes Not permitted Trespassing on Slopes Grass, brush and trees (up to 20") Vegetation on Slopes None observed Sloughing or Erosion of Slopes or Abutments None observed Rock Slope Protection - Riprap Failures Toe not visible - underwater Unusual Movement or Cracking at or near Toes Minor leakage through abutments Unusual Embankment or Downstream and various points through Seepage masonry on downstream face of dam. Piping or Boils None observed Foundation Drainage Features None observed None observed Toe Drains Instrumentation System Continuous water temp. measurements

A-2

taken from right crest at spillway.

INSPECTION CHECK LIST		
PPOJECT American Felt Dam	DATE 11-12-79	
PPOJECT FEATURE	NAME	
DISCIPLINE	NAME	
AREA EVALUATED	CONDITION	
DIKE EMBANKMENT		
Location	Extension of right dam embankment extending upstream parallel to flow.	
Crest	Good - Grass and shrubs on crest	
Surface Cracks	N/A	
Pavement Condition	N/A	
Movement or Settlement of Crest	None observed	
Lateral Movement	None observed	
Vertical Alignment	Good	
Horizontal Alignment	Good	
Condition at Abutment and at Concrete Structures	Good	
Indications of Movement of Structural Items on Slopes	N/A	
Trespassing on Slopes Vegetation on Slopes Sloughing or Erosion of Slopes or Abutments	Not permitted Grass & shrubs on upstream face None observed	
Rock Slope Protection - Riprap Failures	N/A	
Unusual Movement or Cracking at or near Toes	None observed	
Unusual Fmbankment or Downstream Seepage	None observed	
Piping or Boils	None observed	
Foundation Drainage Features	None observed	
Toe Drains	None observed	
Instrumentation System	None observed	
λ-3		

İ

100 (00) (00) (00)

INSPECTION CHECK LIST	
PROJECT American Felt Dam	DATE 11-12-79
PROJECT FEATURE	NAME
DISCIPLINE	NAME
ĄREA EVALUATED	CONDITION
OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE	
a. Approach Channel	Entire riverbed - under water Silt level approximately 3 ft. below water level in places.
b. 60 inch pipe outlet	Wood rectangular sluicegate approximately 14 ft. below spill-way level. Visible portion in good condition and gear lift on top of dam is operable.
c. 12 inch pipe outlet	Free access pipe inlet approximately 12 ft. upstream of dam and 12 ft. below spillway level. Not visible. Controlled by valve in a covered pit on the slope downstream of the dam.
d. Low Level Outlet	Record drawings indicate a wood intake upstream of the dam, not visible. Suspected to be below present silt level and inoperable.
A-4	

INSPECTION CHECK LIST	
PROJECT American Felt Dam	DATE 11-12-79
PROJECT FEATURE	NAME
DISCIPLINE	NAME
AREA EVALUATED	CONDITION
OUTLET WORKS - TRANSITION & CONDUIT	
a. 60 inch pipe outlet	60 inch pipe leads from the dam to the former American Felt Company Mill Building. A vertical vent pipe just downstream of the dam contains water at about the pond level. 60 inch pipe is sealed in the building but can be drained via a 6 inch line.
b. 12 inch pipe outlet	12 inch pipe leads from the dam to the former American Felt Company Mill Building where it terminates in a blind flange.
c. Low level outlet	Record drawings indicates that the conduit transitions from wood to masonry and extends to the downstream face of the dam. Not visible.
A-5	

| AN | 1000 |

INSPECTION CHECK LIST			
DATE 11-12-79			
NAME			
NAME			
CONDITION			
•			
60 inch pipe is sealed in building. Slight flow maintained via the 6 inch line during high flow conditions. A rectangular masonry channel then continues through the building basement and back to the river. Seapage, apparently groundwater, was occuring from channel walls, approximately 5 gpm			
Blind flange last opened in 1972 or 1973. Discharges back to the river.			
Square masonry opening in down-stream face of dam.			

3

ĺ

. . . .

三天

INSPECTION CHECK LIST	
PROJECT American Felt Dam	DATE 11-12-79
PROJECT FEATURE	NAME
DISCIPLINE	NAME
	<u></u>
AREA EVALUATED	CONDITION
OUTLET WORKS - SPILLWAY WEIR, APPROACH AND DISCHARGE CHANNELS	
a. Approach Channel	Entire riverbed - under water
General Condition	
Loose Rock Overhanging Channel	
Trees Overhanging Channel	
Floor of Approach Channel	
b. Weir and Training Walls	
General Condition of granite	Fair to Good. A few stones missing from wall at sides of spillway
Rust or Staining	N/A
Spalling	None observed
Any Visible Reinforcing	None observed
Any Seepage or Efflorescence	Spillway flowing - None visible
Drain Holes	None observed
c. Discharge Channel	Entire river bed - Underwater
General Condition	Good
Loose Rock Overhanging Channel	None observed
Trees Overhanging Channel	One
Floor of Channel	Underwater - Apparently rock
Other Obstructions	Bridge approximately 150 ft. downstream of dam.
	Small (7' high) dam a short distance downstream bridge.
·	
A-7	

Several processing as expensive and the process of a contract the process of the process of the contract of th

go continuos de la passaga de la passaga de la conserva de massaga de la conserva de la conserva de la conserva

.

0

77

1500 ACM

•

· ·

1-1

APPENDIX B

ENGINEERING DATA

APPENDIX B-1

DESIGN, CONSTRUCTION AND MAINTENANCE RECORDS AND LOCATION

Mr. Victor J. Galgowski
Dam Safety Engineer
Water and Related Resources Unit
Department of Environmental Protection
State of Connecticut
State Office Building
Hartford, Connecticut 06115

Greenwich Associates, Inc. 100 Putnam Green Greenwich, Connecticut 06830

APPENDIX B-2 COPIES OF PAST INSPECTION REPORTS

INTERDEPARTMENT MESSAGE STO 200 2/69

SAVE TIME: Handwritten messages are acceptable.

Use carbon if you really need a copy

FROM Victor F. Galgowski Supt. of Dam Maintenance

AGENCY Water and Related Resources

AGENCY Water and Related Resources

Water and Related Resources

TELEPHONE

TELEPHONE

SUBJECT American Felt Company Dam, Greenwich 4 BY3.6

The undersigned inspected this site on April 4, 1972. The dam is well-maintained and appears to be in very good condition. There was three inches of water flowing over the spillway so a close inspection of the face was impossible.

Supt. of Dam Maintenance

VFG:1jg

SAVE TIME: If convenient, handwrite reply to sender on this same sheet.

No. SUPERVISION OF DAMS Inventoried By Name of Dam or Pond Addition American Amer		~ C+
Date Street Location Technical AMER FELT PAN Code No. Nearest Street Location Technical AMER FELT PAN Come Genomical Columnation Name of Stream Byring R Owner G GAF Owner G GAF 1361 Olph Road Address Wayne Not office Pond Used For DA 252:07 Dimensions of Pond: Width Length Area 311 Total Length of Dam F 200 Length of Spillway 40 Height of Pond Above Stream Bed 15 15 15 15 15 15 15 15 15 15 15 15 15	No.	WATER RESOURCES COUNTSSION
Name of Dam or Pond Additional April 3-E27 PAN Code No. Nearest Street Location Technology Town Geenwich (General U.S.G.S. Quad. Ceen vices Name of Stream Bykinin R Owner G GAF 1361 Olip Read. Address Wayne N5 07470 ok 12/18 Pond Used For Dimensions of Pond: Midth Length Area 2/1 Total Length of Dam \$\frac{1}{12} \cdot \frac{1}{12} \cdot \f		,)
Name of Dam or Fond Code No. Nearest Street Location (CLNVICL) Town Gelevined (General U.S.G.S. Quad. Clenvice Name of Stream Byring R Owner 1 361 Olip Road Address Wayne No orgo ok 1978 Pond Used For Dam General Length Area 3/1 Total Length of Dam General Height of Pond Above Stream Bed Hari (35 dress bulle s.W) Height of Embankment Above Spillway General Type of Spillway Construction Steve (Helly) Hinderal Type of Dike Construction Steve (Helly) Hinderal Remarks Byring Pouch icon Research Single Summary of File Data Remarks Byring Pouch icon Research Single Length Of Single (Icon Research Single) Remarks Byring Pouch icon Research Single According 13 for the Construction Single Remarks Byring Pouch icon Research Single Remarks Byring Pouch icon Research Single Last Research Mass rings 13 for the Construction Constr		
Code No. Nearest Street Location (CCN VICE 2) Town Geconwerd (CCN VICE 2) U.S.G.S. Quad. CEEN VICE Name of Stream BYRING Remarks BYRING 1000 1000 1000 1000 1000 1000 1000 10	Date	1. 11-1-1-1
Nearest Street Location Technical Red Town Cleanwich (General U.S.G.S. Quad. Clean vices Name of Stream Byrin R Owner 1: G.A.F. Owner 1: G.A.F. Address Wayne N5 07470 ok 1978 Pond Used For Dimensions of Pond: Width Length Area 2/1. Total Length of Dam 1 Doc' Length of Spillway 49 Location of Spillway 1 Divil Height of Pond Above Stream Bed 13000 (35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	•	Name of Dain or Pond HATTIETH AMER TELT DANS
Name of Stream BYRIP ROWLE OF STREET		Code No.
Name of Stream BYKINI R Owner 1 136 I OLD Road Address Wayne NJ 07470 ok 1978 Pond Used For DA 25.2:117 Dimensions of Pond: Width Length Area 2/1. Total Length of Dam 200 Length of Spillway 400 Height of Pond Above Stream Bed 400 15 depth factor 201211. Height of Embankment Above Spillway 4 15 depth factor 201211. Type of Spillway Construction 51000 Heilvy functional Type of Dike Construction 51000 Downstream Conditions Summary of File Data 1000 18000 Summary Remarks 251000 File Data 10000 18000 Summary Division Reserve File Data 10000 Sum		Nearest Street Location (ICH VICE)
Name of Stream BYRIPI R Owner 1: GAF 1361 OLD Road Address Wayne NJ 07470 ok 12/78 Pond Used For Dimensions of Pond: Width Length Area 3/1 Total Length of Dam Tod' Length Spillway 4 19/1 Height of Pond Above Stream Bed Tod' (35 Area table 5.6) Height of Embankment Above Spillway 4 15 deft frebr 20/200 Type of Spillway Construction Steve Height Mellovy Ministract Type of Dike Construction Steve Height Mellovy Ministract Type of Dike Construction Steve Height Mellovy Ministract Downstream Conditions Summary of File Data 11 Remarks Syring Proce icon Proce Summis Just Becom Free Mass Mass Mass Mass Mass Commented		Town GREENINGER (GELINIEL
Owner 1 1361 Olpo Road Address Wayne: NJ 07470 ok 12/78 Pond Used For Dimensions of Pond: Width Length Area 3/11 Total Length of Dam 12 200' Length of Spillway 40 49 Location of Spillway 1 10/11 Height of Pond Above Stream Bed 43 45 (35 11 11 11 11 11 11 11 11 11 11 11 11 11		U.S.G.S. Quad. CLEN VILLE
Pond Used For Dimensions of Pond: Width Length Area 3/1 Total Length of Dam Length of Spillway 4 1/1 Height of Pond Above Stream Bed 130/16 (35 1/10 1/16 5.6) Height of Embankment Above Spillway 15 depth for Polation Type of Spillway Construction 5/2/2		Name of Stream BYRIMI R
Pond Used For Dimensions of Pond: Width Length Area 3/1 Total Length of Dam Length of Spillway 4 1/1 Height of Pond Above Stream Bed 130/16 (35 1/10 1/16 5.6) Height of Embankment Above Spillway 15 depth for Polation Type of Spillway Construction 5/2/2		Owner 1 G.A.F.
Pond Used For Dimensions of Pond: Width Length Area 3/1 Total Length of Dam Length of Spillway 4 1/1 Height of Pond Above Stream Bed 130/16 (35 1/10 1/16 5.6) Height of Embankment Above Spillway 15 depth for Polation Type of Spillway Construction 5/2/2	• •	Address Warmer NT 07470
Pond Used For Dimensions of Pond: Width Length Area 2/1/ Total Length of Dam 25 200' Length of Spillway 40 49 Location of Spillway 1 10/1/ Height of Pond Above Stream Bed 45 45 15 16 16 5.00 16 16 16 16 16 16 16 16 16 16 16 16 16		$oldsymbol{v}$
Dimensions of Pond: Width Length Area 3/1/ Total Length of Dam 200 Length of Spillway 40 49 Location of Spillway 4 1941 Height of Pond Above Stream Bed 42 45 15 16 16 5.60 Height of Embankment Above Spillway 4 15 16 16 16 5.60 Type of Spillway Construction 5/2/2/2 16/10/2/20/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2		OK (3)/18
Dimensions of Pond: Width Length Area 3/1/ Total Length of Dam 200 Length of Spillway 40 49 Location of Spillway 4 1941 Height of Pond Above Stream Bed 42 45 15 16 16 5.60 Height of Embankment Above Spillway 4 15 16 16 16 5.60 Type of Spillway Construction 5/2/2/2 16/10/2/20/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2/2		
Total Length of Dam		
Height of Pond Above Stream Bed 430 (35 done 124 (5.6)) Height of Embankment Above Spillway 4 15 done 20 (188) Type of Spillway Construction 570 (168 V) plus construction Downstream Conditions Summary of File Data Remarks 372 plus 1000 1200 1200 5 1000 5 1		Dimensions of Pond: Width Length Area 2/1
Height of Pond Above Stream Bed Height of Embankment Above Spillway Type of Spillway Construction Sieve Henry publicant Type of Dike Construction Downstream Conditions Summary of File Data Remarks Syrifat Proces icen Proces Single Just Become into Man - incre icen Some Decision Mass this is in the Construction Construction Proces in Single Decision Mass this is the first fine Construction And the construction of the construction	•	Total Length of Dam = 200 Length of Spillway 40 49
Height of Embankment Above Spillway Type of Spillway Construction Sience Type of Dike Construction Downstream Conditions Summary of File Data Remarks Sykhon Finek icen ikeser Sinkis Lust Beleve Into iher inek ieee Some Decision Mass into is in the Color Color Color Sinkis Lust Beleve Into iher inek ieee Some Decision Mass into is in the Color Colo		Location of Spillway 4 Ddrl
Height of Embankment Above Spillway Type of Spillway Construction Siewe Hellvy plusicion Type of Dike Construction Siewe Downstream Conditions Summary of File Data Remarks Sykhon Puck iccon ikaser Sinkis Just Below Ford Mast inter feet Sevan Occision Mast inter 13.5 in fink (inch Col)	• • • • •	Height of Pond Above Stream Bed 430 (35 the blace S. 6)
Type of Spillway Construction STONE Type of Dike Construction STONE Downstream Conditions Summary of File Data Remarks SYRHINI FINER ICCON TRUSCUS SINKIS JUST BELOW THIS WHAT THERE FORE SOME DECISION MAST THIS BETWEEN CHIEF CONT.		16 1 16 1 16 1 1 1 1 1 1 1 1 1 1 1 1 1
Type of Dike Construction Signal Downstream Conditions Summary of File Data Remarks BYRHAN FINER ICCON PROSECT SIME IS LUST BELEW THIS THAT THERE FOR SOME DECISION MAST MINE 13.5 W HIM (MINE CAP)	• •	
Summary of File Data Remarks BYRHINI PLUCK ICCO PROJECT SINKES JUST BELOW THIS WHAT THERE FOR SOME DECISION MAST THE BETT FINE (MINE CAP)		7
Summary of File Data Remarks BYRHINI PLUCK ICCON PROSECT SINKIS LUST BELOW THIS WHIT - THERE FORE SOME DECISION MAST MINE BETT HIME (1901)		
Remarks BYRHAM PINER ICOM PROSECT SIMETS JUST BELOW THIS WHAT - THERE FORE SOME DECISION MAST MINE BLEW MINE (1864 CAP)		Zowistiem Conditions
Remarks BYRHAM PINER ICOM PROSECT SIMETS JUST BELOW THIS WHAT - THERE FORE SOME DECISION MAST MINE BLEW MARK (1864 C.S.P.)		
DECISION ALAST MINE BLEW HARE (HOLD CAP)		Summary of File Data
DECISION ALAST MINE BLEW HARE (HOLD CAP)	•	
DECISION MAST PHINE BLEW FINE (MINE CAP)		Remarks BYRHAM PINCIE ICCON PROJECT SINIETS
4		Just Below Trus What - THERE FERE Some
4	•	DECISION MAST MINE BLEW FINE (HOL CAP)
Would Failure Course Disease & Course V. T. T. C.		
	-4	Would Failure Cause Damage? Bay 136 Y To Iderois / Class 5

Conc. cap on s. W. + top of dam

STATE OF CONNECTICUT

BOARD FOR THE SUPERVISION OF DAMS

DAM SURVEY DATA SHEET

Owner AMERICAN FELT CO.

GLENVILLE LEAD

GENVILLE, LONN.

Code
Town FREENWICH
Stream PYRAM PIVER
Local Name FRE SOMPANY DAM
Date Built 1867

Location Data

Quadrangle Longitude Latitude

Watershed Westenester County, N.Y. & FAREHER County, Conn Asun Hill Beam & Linverse Frence

Physical Characteristics

Dam Concrete Rubble & MIASONARY CONSTRUCTION WITH EARTH EMBRAKMENTS ON LITHER SIDE. SEE ACCOMPANYING PLAN WITH ELEVATIONS FOR DETAILS.

Spillway NIASONARY CONSTRUCTION - NORMAL TISCHARGE THRU 49'WOF BY 5'1" HIGH OPENING BETWEEN MAIN ABUTMENTS. SEE PLANS.

Dykes or Butresses NIASONARY CONSTRUCTION SEE PLANS.

Foundation APPACENTLY POURED CONCRETE ON LEDGE ROCK.

Stream Bed UPSTREAM - SILT & CTENVER SOWN TREAM - NOUSTEV LEAGE ROCK.

Pond Area 2.6 Acres Length 1200' 1 Width 50' 70 200'

History Criginal DAM EVERPAPED IN 1877, 1938 AND 1955. JER REPORTS OF J.W. CONE.

COMMISSIONER D. P.W. GREENWICK 1950.

Downstream Conditions C.B. & W. DAM ABOUT 3300' DOWNSTREAM WHICH IS ABOUT I MILE HOOVE LEMBREWICK FLOOD FLAMS. ABOUT EX MILES TO FIDE WATER. AREA BELOW DAM AND PARTICULARLY IN THE FLOOD PLAIN IS DENSELY POPULATED WITH MANY ROADS CROSSING BYRAM RIVER INCLUDING U.S. Nº 1 AT N.Y. STATE LINE.

Condition of Structures PNYSICAL PPPEARANCE IS SOUND WITH INDICATIONS OF SOME OPEN JOINTS LACKING MORTAR IN DOWNSTREAM FACE LE SPILLWAY.

CONSIDERABLE REPAIR WORK WAS DONE THIS YEAR PRIOR TO OUR INSPECTION.

Watershed Data

General Cover SPARSELY FORULATED Average Slope 45.2 ft/mi/e Area 23.3 59. mices.

Spillway Capacity 47.5.1 12.3.2 = 1805 c.ms.

Expected Flood Discharge 100 VE FLOOD F320 c.ms.

Effective Discharge Depth

Gates or Valves and Sizes / GATE ABOUT 2'EZ'

Classification PRIMARY STRUCTURE

Effective Capacity 14 c. F. s.
Use PROCESS WATER & FIRE FIGHTING.

Recommended Construction or Alteration

SPALWAY & ADJOINING DOWNSTREAM SURPACES SHOULD BE N'INTED UP BY A PRESSURE PROCESS. FURTHER INSPECTION SHOULD BE NIADE WHEN CONVENIENT TO DEWATER POND FOR INSPECTION OF UPSTREAM! FACE OF STRUCTURE.

Inspection Data WEATHER DRY - COLD - CLEAR

Road Location and Nearest Junction CLEANISCE ROAD + PEMBERWICH ROAD - CLEANISCE COMM.

Remarks SEE ATTACHED REPORT WITH REFERENCES TO PAST INSPECTIONS.

Inspection Date October 26, 1956
Made By DEAN JEAN JEAN
(ALL G. VESPESEN
KARL G. JESPI RAIN
(OS COB LUNN

S. E. MINOR & CO., INC.

56-1-1 from in Cadmiell's

December 15, 1938

Drainage Commission Town Hall Greenwich, Conn.

Gentlemen: -

COPY

Re: Byram River Dams

At the request of your Commission, representing the Town of Greenwich, and other interested parties, an inspection was made November 2, 1938 of three dams on the Byram River by a committee of this Board consisting of Messrs. Palmer, Blair and Cone, with particular reference to loss or damage in the Pemberwick flood area should these dams break away.

A study of the watershed to determine probable maximum runoff was made by the writer and field data was obtained under his supervision.

The dams under consideration, in order following downstream, are commonly known as the: - Reynolds Dem, Felt Co. Dam, and R. B. & . Dam, owned respectively by Grace V. A. Reynolds, The American Felt Co. and Russell, Burdsall & Ward Bolt & Nut Co.

Watershed.

Natershed tributary to the Felt Co. dem is 27.35 sq. mi. and to the R. B. & W. dem 27.75 sq. mi., both approximate. Tater is diverted from the watershed at two points; by New York City on the west branch of the Byram at the State Line and on the east branch by the Greenwich Water Co. above Old Mill Road.

Estimated flood flow on July 23, 1938 and Sept. 21, 1938, both of the same magnitude, was approximately 2000 cubic feet per second. Had both tunnels been closed, the flow would have been

Drainage Commission
approximately 2200 c.f.s.

- E -

The watershed, from a runoff viewpoint, is undeveloped.

Quicker runoff with higher flood stages is to be expected in the future due to swamp clearence and drainage, construction of storm drains, buildings, payements, and other impervious surfaces.

Using the Fuller formula with a watershed constant of 60 and time frequency of 1000 a maximum rate of runoff is obtained of 5200 cubic feet per second or more than twice the flood flow of the floods of July and September. This is not an unreasonable flood to expect sometime in the future, particularly considering the comparatively small area of the watershed. Had the center of the hurricane of September passed along the Byram watershed, this flow would have been obtained.

Plans.

No construction plans of the dams are known to be in existence. The Reynolds and Felt Co. dams are evidently by their appearance quite old. The original R. B. & 7. dam quite likely failed in the flood of October 9, 1877 when precipitation was 9.7 inches in 10.5 hours at Thite Plains, N. Y. It is reasonable to presume the present R. B. & 7. dam was built shortly thereafter.

Back profiles of sections of dams at maximum height were obtained by sounding from a boat with an iron rod through water and silt, consequently sections are approximate. Condition of toe of R. B. & H. dam was investigated in the same manner.

Reynolds Dam.

This dam is a typical dry rubble overflow dam with vertical

face, originally with a tight-line and probably an impact platform. Abutments are against ledge rock. Headrace ends in a
wooden bulkhead in poor condition. Old mill has been razed. The
pond formed by the dam is shallow due to silting and impounds
about 5 acre feet.

The dam is a small affair in poor condition and unless repaired will go out during some freshet. Failure will be comparatively slow; the dam will not give way all at once. For this reason and since only a small amount of water is retained by the dam, no serious harm will be done.

Felt Co. Dem.

This dem is located 1700°± below the Reynolds dem and 3500°± above the R. B. & W. dem. Principal dimensions are as follows:-

Crest length	200 °±
Spillway length	49 •
Maximum height at spillway	30*
Top width at spillway	13*
Bottom width at spillway	19°±
Freeboard	4.75 Aver.
Area of pond	2.6± Ac.
Capacity of pond (silted)	6± ho. ft.

The dam is constructed of cement rubble masonry with a vertical face. The back, as nearly as could be determined by soundings, is stepped. The spillway section is arched in plan with a face radius of 85°. The east abutment has considerable mass and is backed by a retaining wall, perpendicular to the dam, with heavy fill in back of retaining wall and between dam and mill building. The west abutment has not sufficient mass nor is the plan proper to take arch thrust. Consequently the dam should be considered as a gravity section disregarding arch action.

Impact of overflow at spillway is taken by exposed ledge rock and there is no danger of concealed underscour. It is believed the main portion of the dam is on ledge rock. The extreme ends may not be.

The spillway is inadequate. The creat was topped by a few inches during the floods of 1938. If spillway length remains the same and creat length is held to 165° by building up ends, it is probable a future flood would have a still water height of about 2.5° above creat of dam and about 7.3 above spillway. Length of spillway should be increased by extending same to the west.

Under the conditions stated above and considered as a gravity section, the resultant of forces acting on the dam falls well outside the middle third and while the dam is theoretically safe against overturning, there is probable tension in masonry in the back of the dam. There is not the margin of safety indicated by good practice, particularly when the condition of the masonry in the interior of the dam is unknown. The dam can be strengthened by additional masonry along the downstream face.

Trees have been allowed to grow on and close to the dam. This should not be allowed account of root action.

There is a collecting trough along the east portion of the dam to take overtopping. If this was not included in the original design, it was built as the result of some experience in the past. The bottom of this grough should be paved to prevent scouring.

If the building on the downstreem side of the west end of

the dam is to be protected, a similar trough should be constructed along the west portion of the dam.

An extraordinary flood would probably cut around the ends of the dam, perticularly the west end. This might result in progressive undermining of the ends of the dam and final failure. To prevent this, ends of dam should be raised and carried back into solid ground.

There is a leak through the bottom of the sluideway under the easterly portion of the spillway. This should be repaired. The old sluideway in the western portion of the dam is not used and should be closed with masonry.

The fact that a dam has stood for a long period of years should not of itself give assurance the dam will withstand all future floods. To refute this idea there is the evidence, throughout New England, of numerous neglected dams that have failed. An old dam requires frequent and thorough maintenance. Moreover, it is quite probable the particular watershed has not been subject to a serious flood condition for a period far beyond the memory of the oldest inhabitant.

To place the dam in better condition the following is recommended:- Lengthen spillway - Additional masonry to increase section - Remove trees - Pave east collecting trough - Construct similar trough slong west end - Build up ends of dam to prevent end scour - Repair leak - Close up old sluiceway - Careful maintenance.

The volume impounded by this dam is small, the distance to the R. B. & V. dam is 3300 feet mostly still water, area

of the R. B. & A. pond is 5.51 acres, surge would flatten out quickly and still water level at the R. B. & A. dam would be only slightly raised. Should the dem fail, loss or damage would be confined to the American Folt Co. and the Pemberwick flood plain would not suffer loss or damage.

R. B. & W. Dam.

This dam is located 3300'± below the Felt Co. dam end immediately above the flood plain section of "Pemberwick". Principal dimensions are as follows:-

Crest longth	115*
Spillway length	63 *
Maximum height at spillway	41'
Top width at spillway	84
Bottom width at spillway	17°±
Freeboard	3.5
Area of pond	5.5± Ac.
Capacity of pond (silted)	291 Ao. ft.

This is an arch dam, between ledge rock abutments, in a narrow gorge with nearly vertical sides. Face of dam is vertical and face radius of erch is 180°±. Face masonry is coursed ashlar and is a wonderful piece of work. Entire visible portion of dam is on ledge rock. As nearly as could be determined by sounding with iron rods from a boet in the spillway pool, overflow impact is taken by ledge rock and there was no underscouring of the dam that could be found by prodding.

Still water height over spillway during recent floods was 4.3.1. The entire length of the dam acts as an overflow dam during floods with no danger of end scour.

The dam is safe in its present condition and will withstand

any flood it is reasonable to expect.

The stability of this type of dam, among other things, depends on tight contact with gorge walls and constant intercontact of the various sections of the dam; and of course, as with any dam, underscouring must be prevented. Consequently this dam must be inspected periodically to determine (1) that gorge walls are not softening and that no leaks are developing around ends or along bottom; (2) that morter in masonry joints has not seriously deteriorated and is in good condition; (3) that underscouring is not taking place.

It is recommended that the spillway pool be dewatered during the next low water stage of the river to determine by visual inspection the exact condition of the dam and foundation at the toe in the pool, and to determine whether or not repairs are necessary.

Conclusion.

It is our opinion that:-

The Reynolds dam is in poor condition and will fail during some freshet but the Pemberwick Section will not suffer loss or damage on account of such failure.

The Felt Co. dam may fail during some future flood but the Pemberwick Section will not suffer loss or damage on account of such failure.

The R. B. & M. dam is safe at present and will not

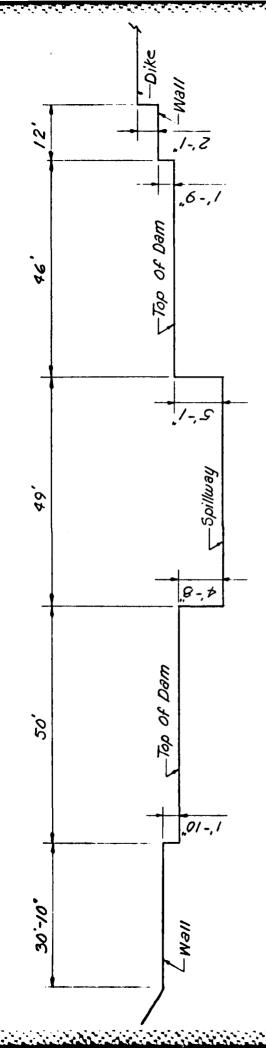
Greenwich Drainage Cormission

- 8 -

fail under the action of any flood it is reasonable to expect, provided the dam is maintained in good condition.

Yours very truly,

State Board of Civil Engineers


Joseph 7. Cone Member for Fourth District

Concurred in

Shepard B. Palmer Member for Second District

Clorence i. Blair Eember for Third District

APPENDIX B-3 RECORD DRAWINGS AND SKETCHES

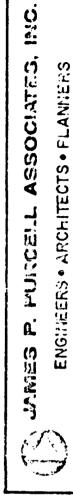
7

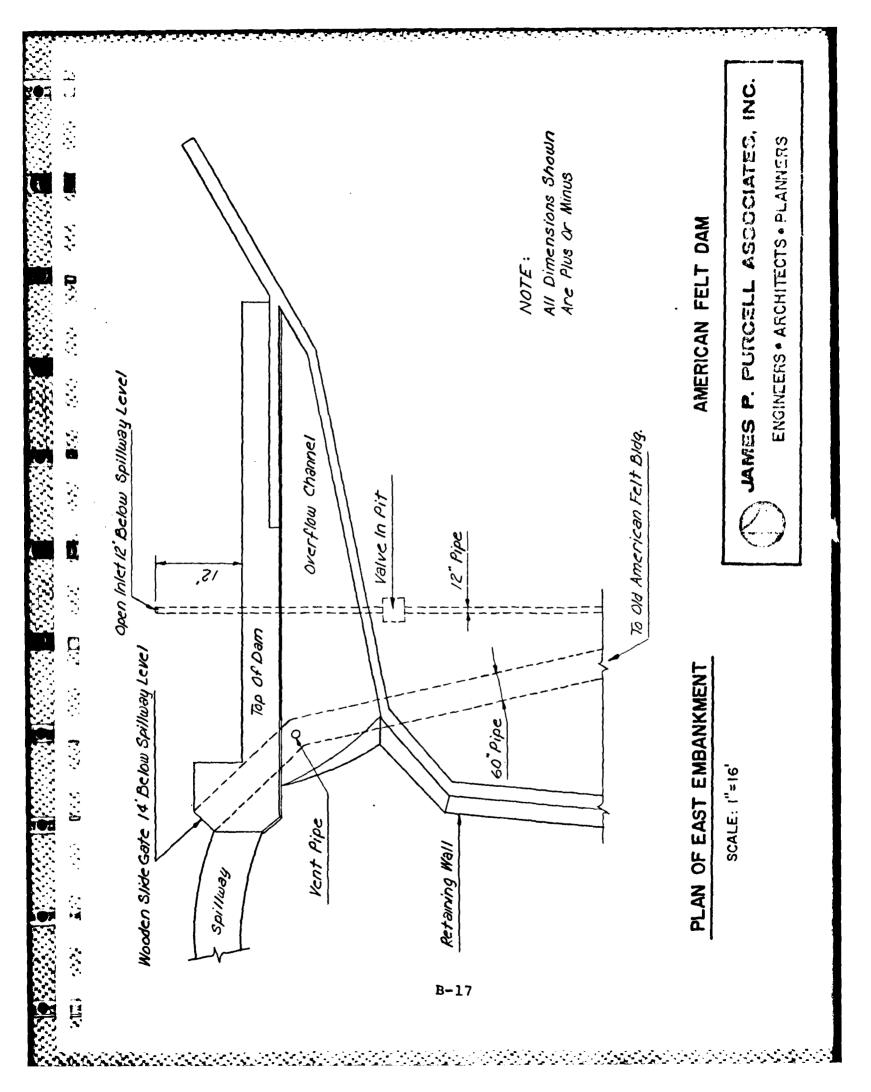
٠.

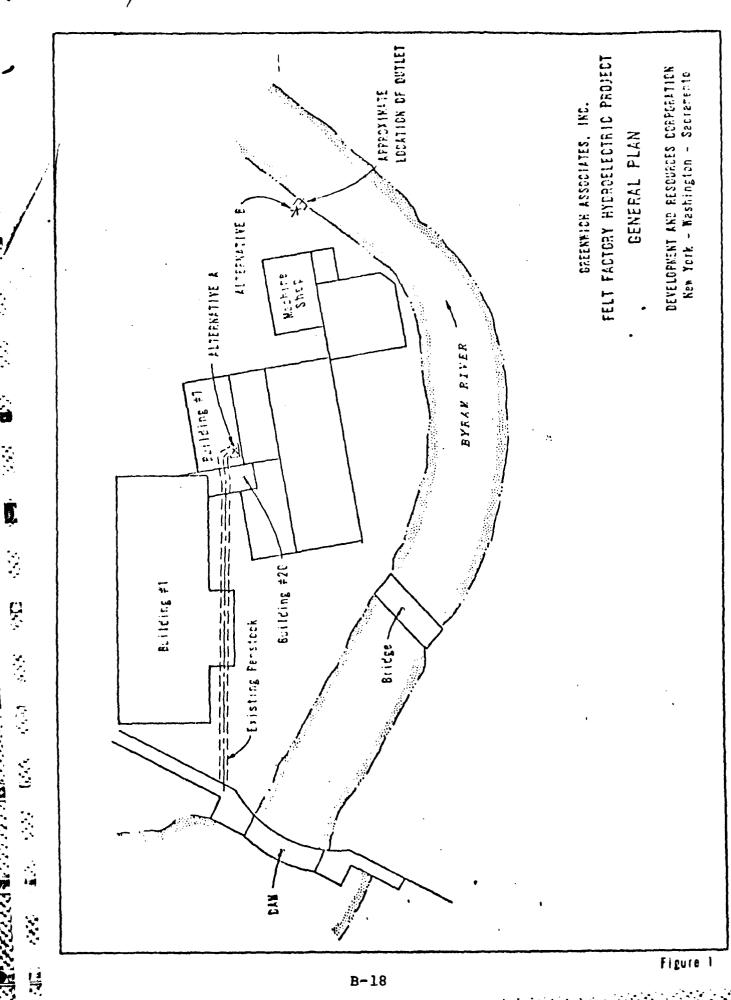
Š

ない。

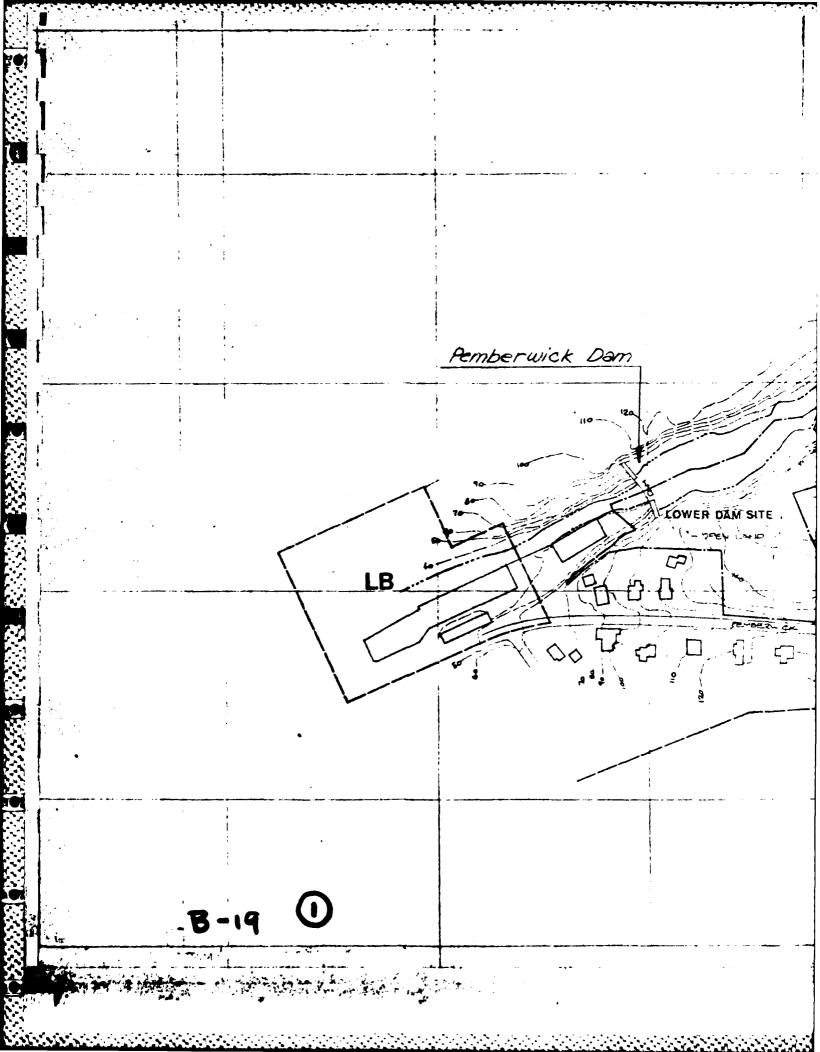
NOTE: All Dimensions Shown Are Plus Or Minus

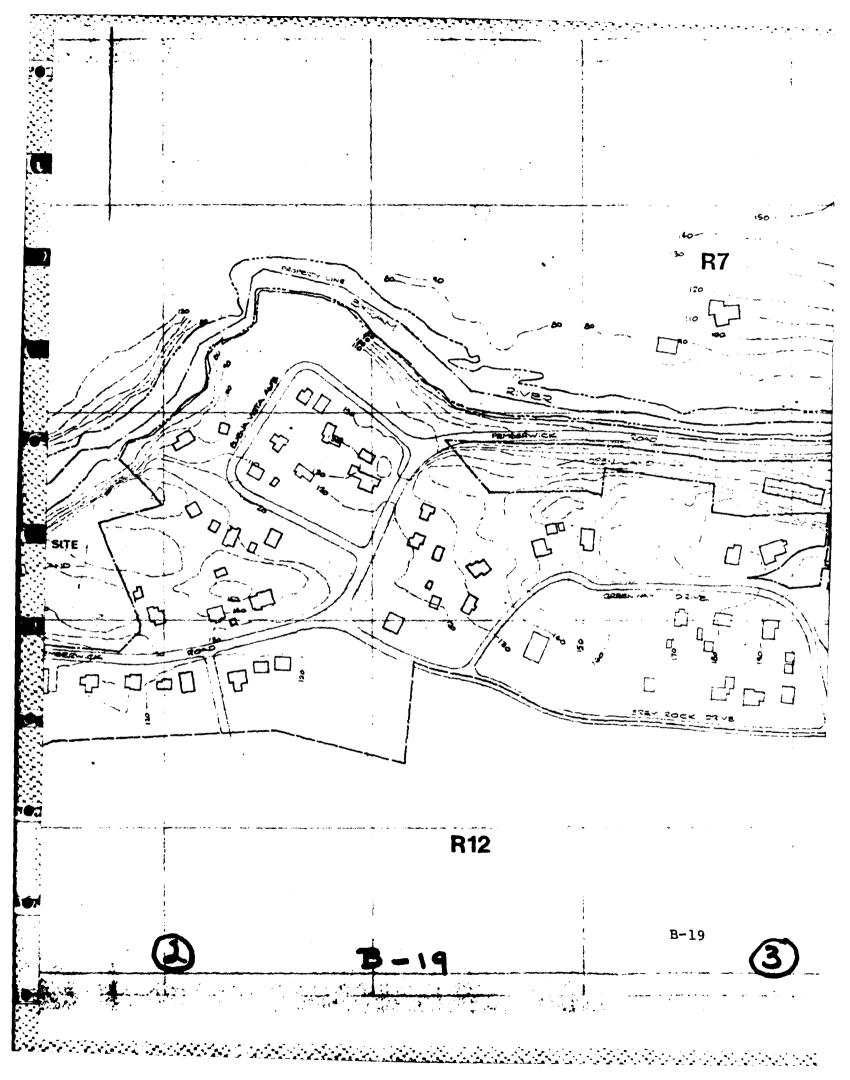

PROFILE ALONG TOP OF DAM

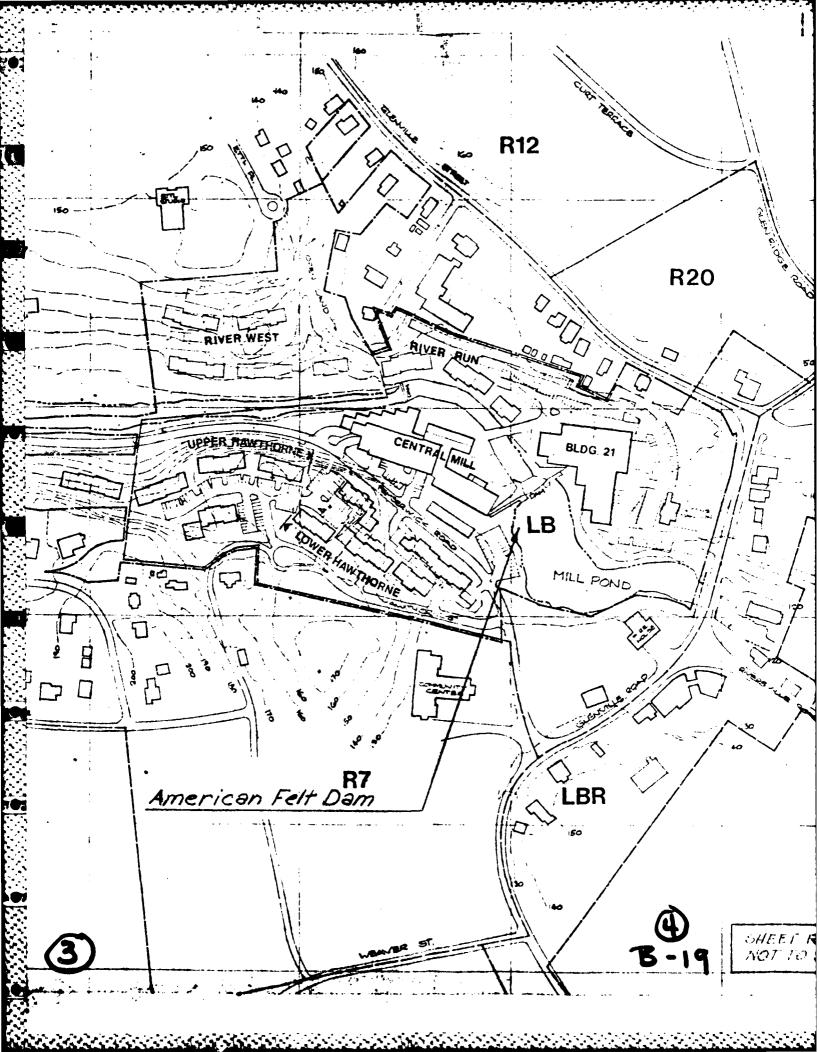

B-16

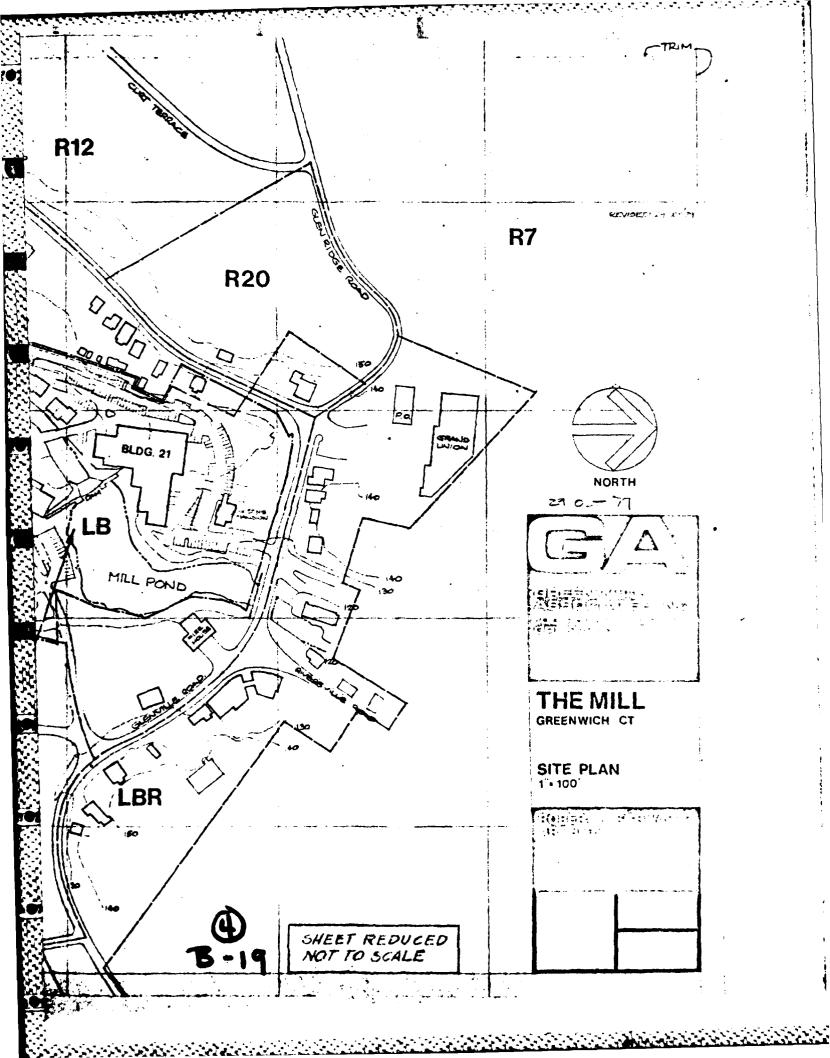

LOOKING DOWNSTREAM

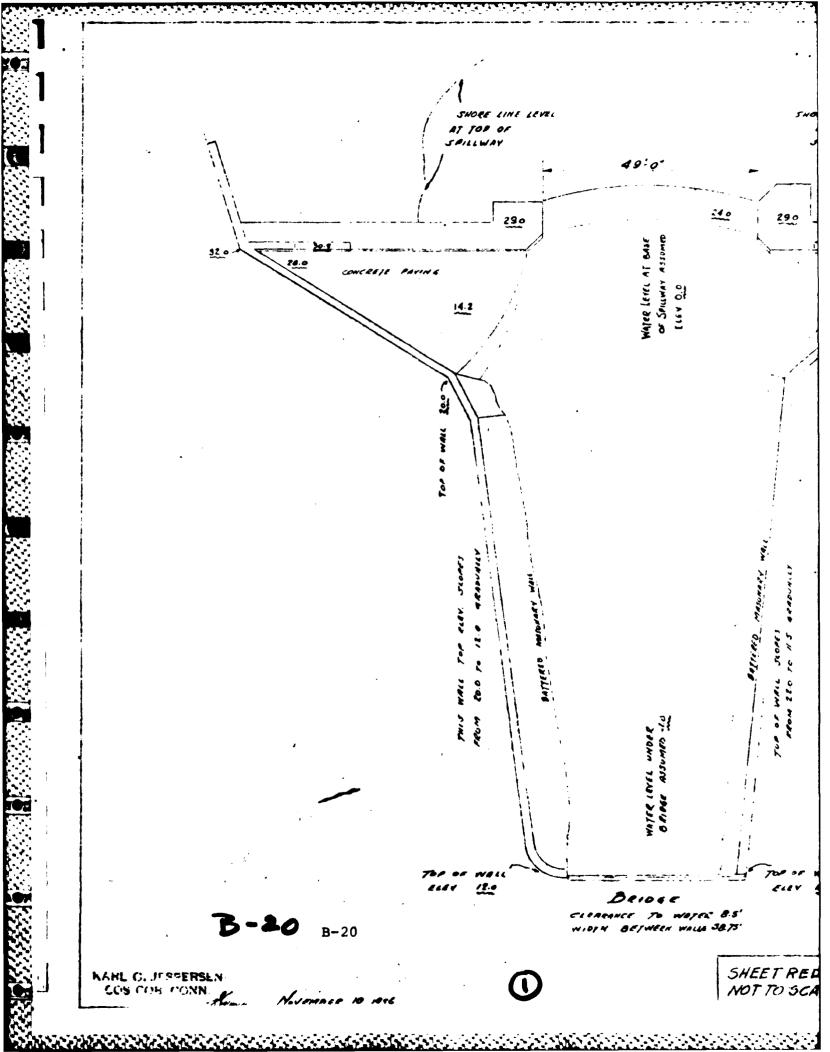
SCALE: HORIZ. |"=20' VERT. |"=10'


AMERICAN FELT DAM



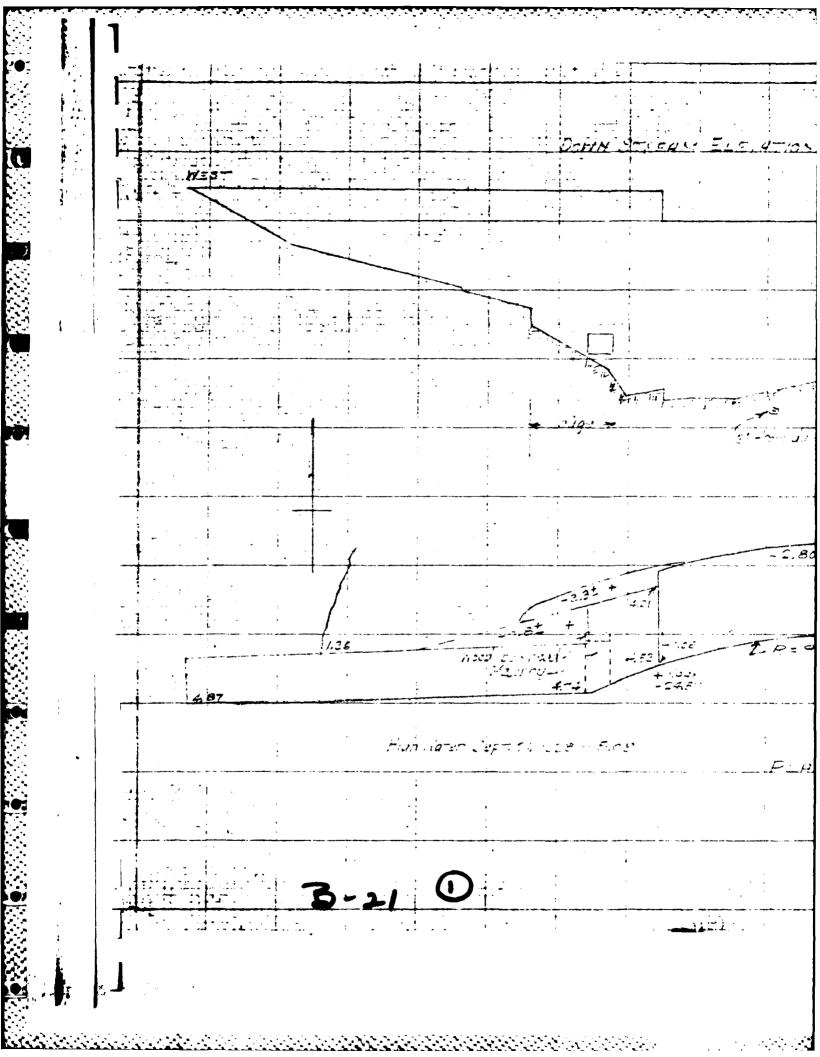


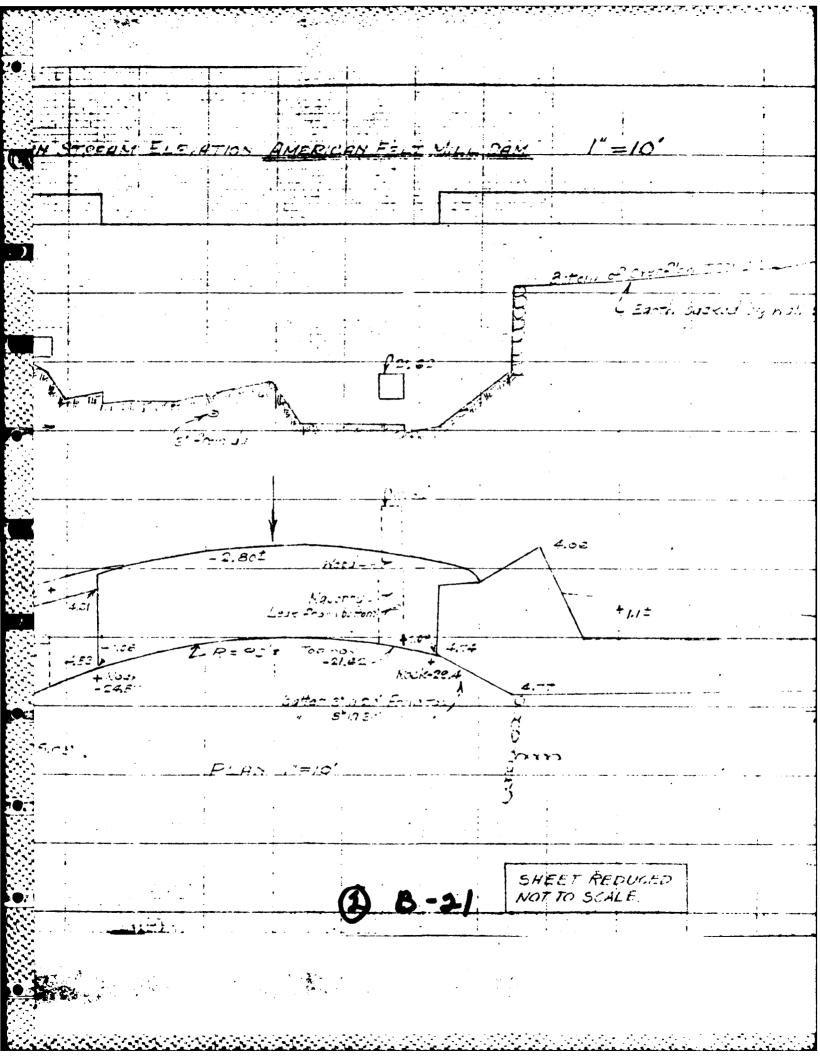


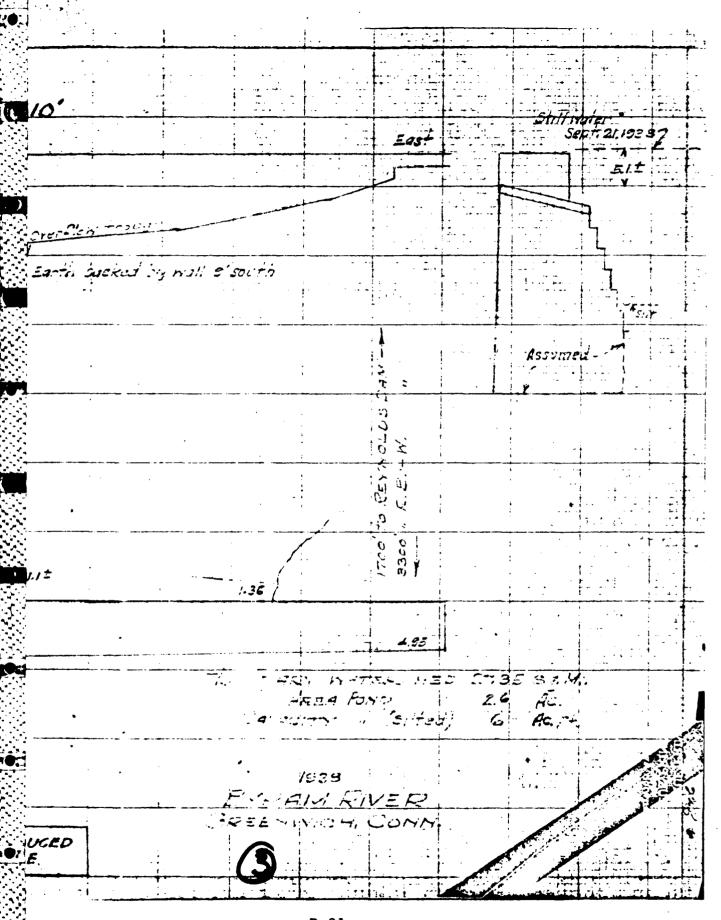

<u>.</u>;

IORE LINE LEVEL 47 70P OF SPILL WAY. OF WALL IS OF ELEVATION AS 220 GENERAL NOTES:-ALL ELEVATIONS ARE RELATIVE AND UNDERLINED THUS ... ALL DISTANCES TO SCALE 1": 16:0" SPILLWAY 19-0' + 5'-1" TO ABUTMENTS TOP OF DAM 102' = 1:6" BETWEEN WALLS. TOP OF LOWER WHILS 158'0": 2'0" TO ELEV. 32.0" APROXIMATELY 719 59 FT STILLWAY ANEN BEFORE OVER JOSPING THE ENTIRE STRUCTURE.

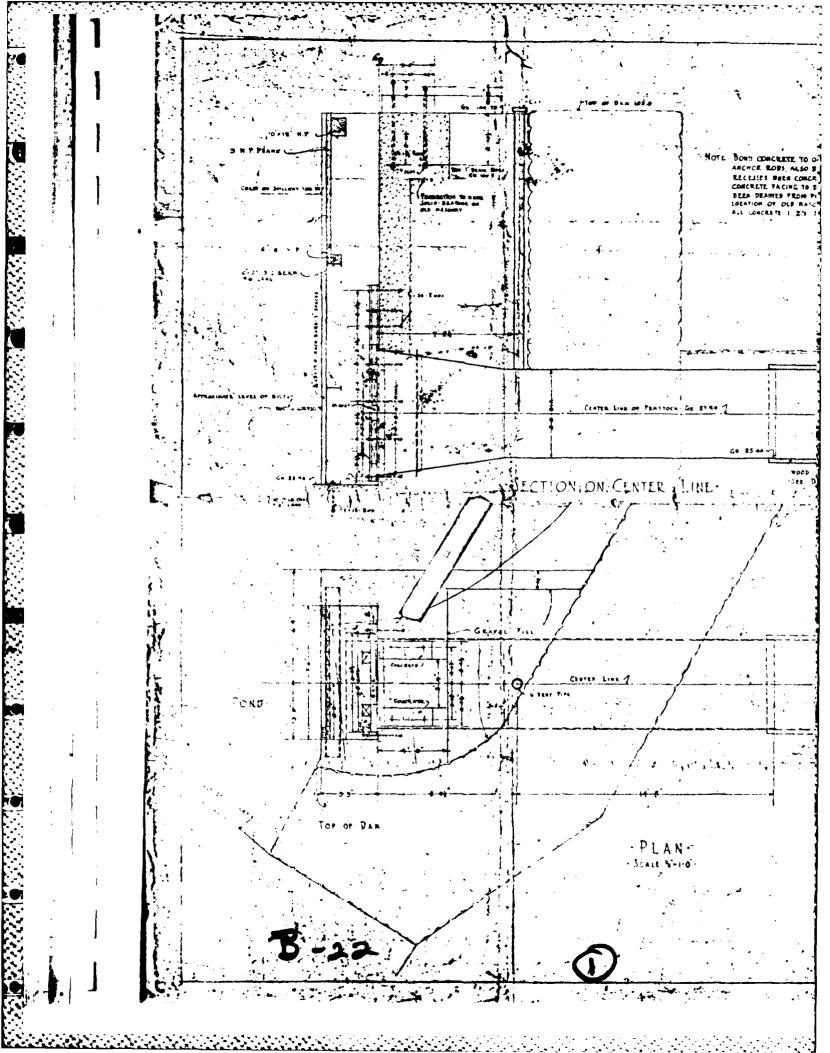
eur N.S

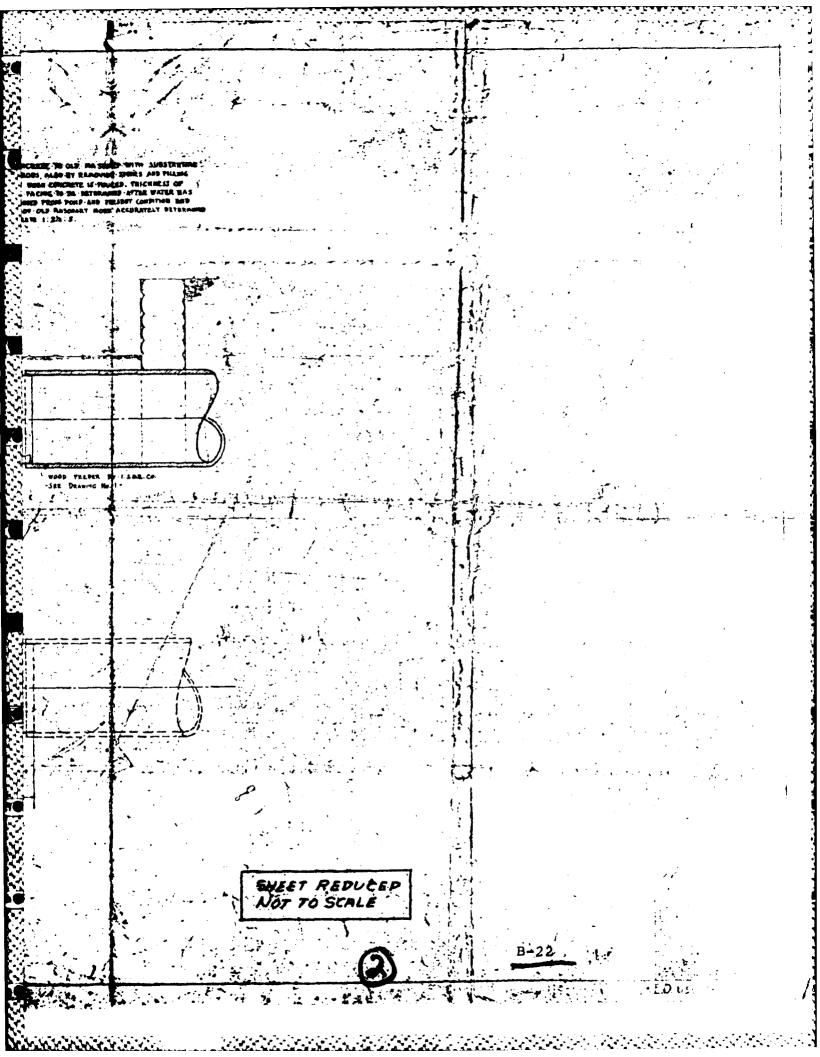

T REDUCED


STATE OF CONNECTICUT
BOARD FOR THE SUPERVISION OF DAMS
DAM SURVEY DATA SHEET

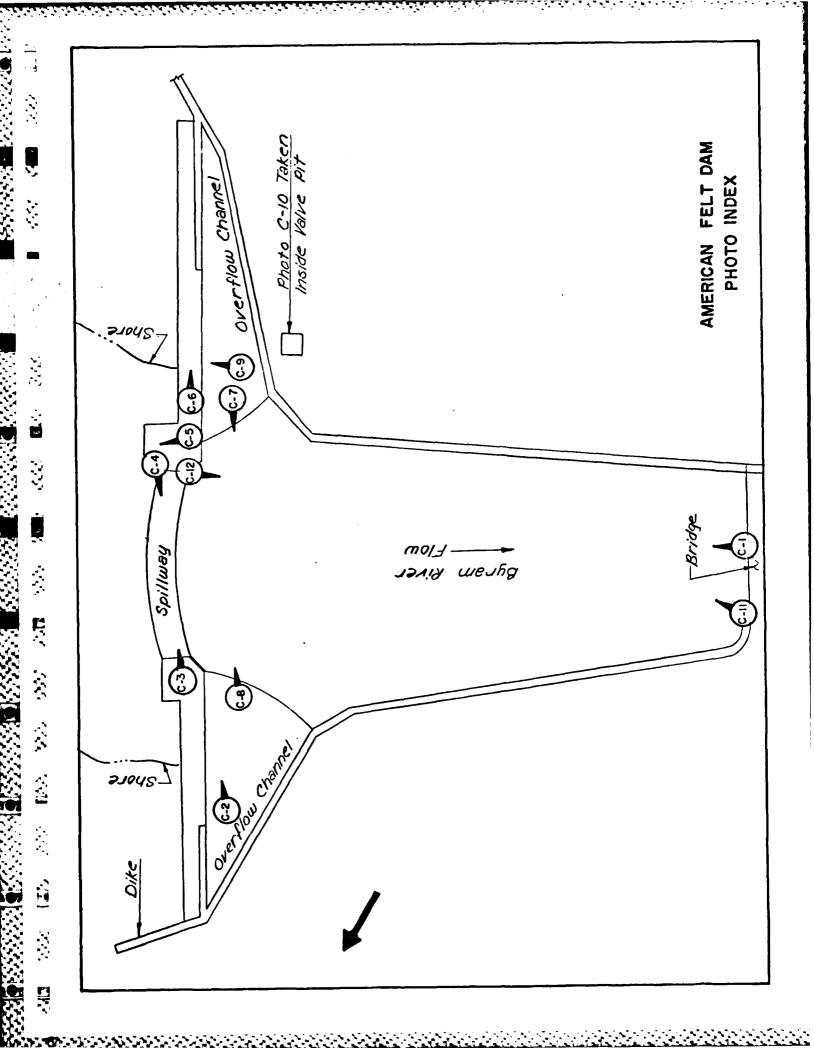

AMERICAN FEY G.

B-20


Town GREENWICH
Stream BURAM FIVER
Local Name Fey Commune Dom
Date Built 1847

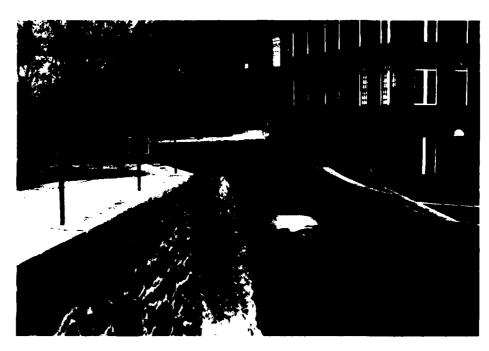


B-21



APPENDIX C PHOTOGRAPHS

: :


in

,如果是一种的现在分词,不是不是不是不是不是一种的,也是不是一种的,我们就是一种的,我们就是一种的,我们也是一种的,也是一种的,我们也是一种的,我们的人们的,也是 第二章

C-1 SPILLWAY - LOOKING FROM DOWNSTREAM BRIDGE

C-2 CREST AND DOWNSTREAM FACE - LOOKING FROM WEST OVERFLOW CHANNEL

C-3 EAST CREST AT SPILLWAY

the second provided actions accessed and execute accessed and execute provided and and appropriately

... ...

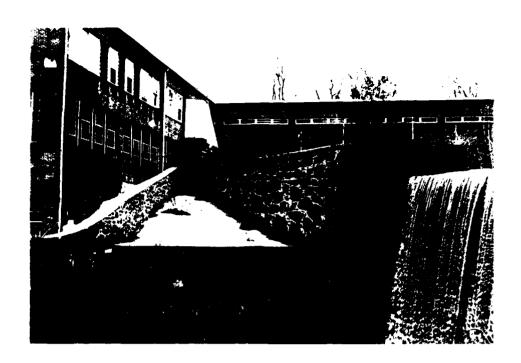
7

Ò

.5.4

. . .

C-4 WEST CREST AT SPILLWAY - DIKE IN RIGHT HALF OF PHOTOGRAPH



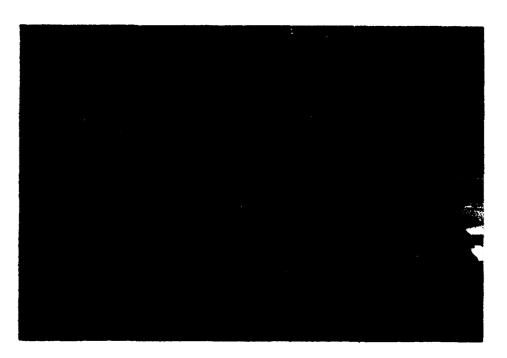
C-5 LIFT MECHANISM FOR 60 INCH PIPE

STATES OF THE CONTRACT PRODUCTION OF THE CONTRACT CONTRAC

C-6 EAST CREST WITH FLOODWALL

C-7 WEST OVERFLOW CHANNEL

C-8 EAST OVERFLOW CHANNEL


C-9 SEEPAGE POINT - DOWNSTREAM EAST FACE IN OVERFLOW CHANNEL

C-10 VALVE FOR 12 INCH DRAIN - IN COVERED PIT ON EAST SLOPE BELOW OVERFLOW CHANNEL

C-11 FAST CREST, DOWNSTREAM FACE, AND RETAINING WALL - LOOKING FROM DOWNSTREAM BRIDGE

C-12 DOWNSTREAM CHANNEL SHOWING MILL RUILDING, BRIDGE, AND RETAINING WALLS

APPENDIX D HYDROLOGIC AND HYDRAULIC COMPUTATIONS

HYDROLOGIC AND HYDRAULIC ANALYSIS SUMMARY SHEET

INFLOW HYDROGRAPH DEVELOPMENT Drainage Area 25.4 sq. mi. Probable Maximum Precipation 24 hour - 200 square mile PMP 22 inches Initial Railfall Loss _0 Inch Uniform Railfall loss _1 Inch Snyder's Lag 7.0 hours	Dam American Felt Dam	
Drainage Area 25.4 sq. mi. Probable Maximum Precipation 24 hour - 200 square mile PMP 22 inches Initial Railfall Loss 0 Inch Uniform Railfall loss 1 Inch Snyder's Lag 7.0 hours Snyder's Peaking Coefficient 625 Test Flood Inflow 13000 CFS PMF Inflow 26000 CFS RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS 6 of Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	Test Flood 1/2 PMF	
Probable Maximum Precipation 24 hour - 200 square mile PMP 22 inches Initial Railfall Loss 0 Inch Uniform Railfall loss 1 Inch Snyder's Lag 7.0 hours Snyder's Peaking Coefficient .625 Test Flood Inflow 13000 CFS PMF Inflow 26000 CFS RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS 10 % of Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	INFLOW HYDROGRAPH DEVELOPMENT	
Initial Railfall Loss 0 Inch Uniform Railfall Loss 1 Inch Snyder's Lag 7.0 hours Snyder's Peaking Coefficient .625 Test Flood Inflow 13000 CFS PMF Inflow 26000 CFS RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS 10 % of Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	Drainage Area 25.4 sq. mi.	
Uniform Railfall loss Inch Snyder's Lag		
Test Flood Inflow 13000 CFS PMF Inflow 26000 CFS RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS % of Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet		
PMF Inflow 26000 CFS RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS		
RESERVOIR ROUTING AND DAM OVERTOPPING Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS for Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	Test Flood Inflow 13000 CFS	
Test Flood Outflow 13000 CFS Spillway Capacity at Top of Dam 1335 CFS	PMF Inflow 26000 CFS	
Spillway Capacity at Top of Dam 1335 CFS 10 tof Test Flood Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	RESERVOIR ROUTING AND DAM OVERTOPPING	
Flow Over Spillway at Test Flood 5570 CFS Spillway Crest Elevation 100.0 Feet	Test Flood Outflow 13000 CFS	
Spillway Crest Elevation 100.0 Feet		- -
Spillway Crest Elevation 100.0 Feet	Flow Over Spillway at Test Flood 5570	CFS
Top of Dam Elevation 104.7 Feet Test Flood Elevation 112.1 Feet	Top of Dam Elevation 104.7 Feet	

ALL SECTION OF THE SE

PLOUD HYDROGRAPH PACKAGE (HEC-1)	X A S	E (HEC-	: =							
LAST MODIFICATION	8	JULY 1978	80							
***************************************	: =	• •	M SAFFT	***** DAM SAFFTY ANALYSIS-108 NO. 79-905/03-FRJ	110R NO	79-96	5/03-FK.	-		
• ~	٠,٨	Z	ERICAN	AHERICAN FELT DAM-GREENWICH-CT	BRENWIC	15-E				
m	A 3	1	12-06-79							
•	Œ	75		•	0	0	0	0	8	•
s.	=	ď								
•	7	-	N	-						
~	5	r.	-	0	0	0	0	0	0	0
•	×	0		0	0	¢	0		c	
•	=	દ	MPUTATI	COMPUTATION OF PMF.	-DEVELOR	OPMENT OF	INFLOW	HYDROGRAPH		
07	2	-	-	25.4	0	25.4	0	0		_
-	۵	0	22	100	114	124	132			
12	_	0	0	0	0	c	0	c	-	
13	>	7.0	•625							
-	×		.05	2.0						
15	×	-	-	0	0	0	0	_		
16	-	C.	UTING I	NFLOW HYD!	ROGRAPH	THRU LA	KE-OVER	ROUTING INFLOW HYDROGRAPH THRU LAKE-OVERTOPPING ANALYSIS	LYSIS	
1.7	:-	0	0	0	-					
£ _	7	-	•	0	0	0	0	7		
6=	¥ \$	2.6	3.2	•						
20		100	118	120						
21	\$3	100	•	2.1	1.5					
22	Ç	104.7	2.7	1.5	139					
23	¥	66								

of accessed to a contract of the contract of t

PREVIEW OF SEQUENCE OF STREAM NETWORK CALCULATIONS

<u>د</u>

\$50 CO CO CO

· 14

Appear - mecesses Bassessas Bassasas Aresessas

RUNOFF HYDROGRAPH AT ROUTE HYDROGRAPH TO END OF NETWORK た。 「大学などのなっては、このでは、1970年のできたのでは、「日本のできないのでは、「日本のできなのでは、「日本のできないのです」というできた。このできた。「日本のできたのでは、「日本のできたので、「日本のできた」というできた。「日本のできた」」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。」」というできた。「日本のできた。」」というできた。

FLOUD HYDROGRAPH PACKAGE (HEC-1) LAST MODIFICATION NAM SAFETY VERSION

BUN DITED 12/06/79. TIMED 14.5H.01. DAM SAFETY ANALYSIS-JOB NO. 79-905/03-ERJ Amfrican Felt Dam-Grfenwich-Ct 12-06-79 JOB SPECIFICATION
NO NHR NMIN IDAY IHR IMIN METRC IPLT IPRT NSTAN
75 1 0 0 0 0 2 0 0
75 1 0 JOPFR NWI LROPI TRACE
5 0 0 0

MULTI-PLAN ANALYSES TO BE PERFORMED NOLAN= 1 NRTIO= 2 LRTIO= 1

RTIOS= .90 1.00

SUR-AREA RUNDFF COMPUTATION

COMPUTATION OF PMF-DEVELOPMENT OF INFLOW HYDROGRAPH

ISTAG ICOMP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO

LOCAL ISAWE ISNOM RAT 10 0.00 HYDROGRAPH DATA TRSPC TRSDA 25.40 SNAP 0.00 TARFA 25.40 IUHG IHYDG

R96 0.00 872 0.00 PRECIP DATA R6 H12 R24 H48 100.00 114.00 124.00 132.00 PMS 10 22.00 1 SPFE 0.00 TRSPC COMPUTED BY THE PROGRAM IS

RT IMP 0.00 ALSMX 0.00 CNSTL .10 STRTL 0.00 STRKS RT10K 0.00 1.00 LOSS DATA FRAIN STRKS 70.00 PT 10L 1.00 0.00 STRKP 0.00 LROPT

UNIT HYDROGRAPH DATA

TP= 7.00 CP= .63 NTA=

STHTO= 1.50 OHCSN= .05 RTIOR= 2.00 APPHOXIMATE CLARK CREFFICIENTS FROM GIVEN SNYDER CP AND TP ARE IC= 7.86 AND R= 6.36 INTERVALS RTIOR= 2.00 RECESSION DATA

1128. UNIT HYDROGRAPH 38 END-OF-PERIOD ORDINATES, LAG= 6.96 HOURS, CP= 6.53 VOL= 1.00 PR2. 1473. 1370. 1374. 1406. 1473. 1370. 573. The second of th

D-5

	3126.	4459.	711	0125	4313	2000	25053	601A	5340	3288	0587	7871	5415	3278	1420	798	390	171	125	232	469	818	107	7.86	2 6	350	95		1000	1 0	782	. 49 Y	563.	477	404	325.	0 7 0 0	334004	9601.3						
• ;	.10	. 10	.10	• 10	⊸ .	٠,		-	-	_	0	•	۰.	•	9	•	0	•	•	00.0	•	•	9 9	•	•	•	? (•	•	• ·	•	•			0	0	Ċ	3.00	•						
			6.84	•	•	000		80	800	.08	•		•	•	•	•	•	•	•	00.0	٠	•	•	٠	•	•	•	•	•	•	•	•		•	•		٥	20.00	529.1						
	-	•	46.9	ŝ	٠,		- ~	•		_	c.	٠.	0	•	•	•	•	ç	•	0	•	•	•	٠, ٠	= 4	9 9	•	•	•	•	•		٠,	· C			-	-		UME	902	97 . .69	4	0.8	•
3	38	36	0	1 🔻	4 4	7 4	. 4 	4	7	4	64	50	51	25	S	S.	52	5	57	10 10 10 10 10 10 10 10 10 10 10 10 10 1	59	20	<u>.</u> ;	29	50	# U	000	0 7	ē v	8 4		? =	: 2	73	74	75	7	E		AL VO	3389	φ <u>ν</u>	'n		LO:
13.3	•	•	0	•	9 9	•	21.00	0	0	0	0	0	0	•	•	•	•	Ō,	•	0	•	9 6	•	9	•	•	•	•	•	•	•		0	0	0	3.00				TOT NU	7.	33.) e	∞	
	0	0	0	0	9	۰ د	1.02	•	9	•	٠.	٥.	0	•	•	•	•	•	•	0	•	•	•	•	•	•	•	•	•	•	, c			0	0	0				72-H	47	- 0	525	280	
	1.	:	1.	:	: .	• .	•			1:	1.	2.	0	∞	Φ.	•	7.	٠. ا	٠.	86.	•	:.	•••	•	•	<u>.</u> .	•	•	0 0	u m	2		. ~		5.					24-H0UR	12763.	361.	474.91	25315.	31226.
•													•	~	س	0 1	SE I	25	79	9-	F 6	Ŧ,	- 1	ž u		*	*		9 4	7 4	e e	5	127	169	225					6-H0UR	3645	670. 8.66	19.9	11725.	14462.
	.01	.0	.01	ē ;				0.0	.03	.03	• 03	• 10	.10	•10	0.	0.	• 10	.0	ē.	50.	.01			07.	?	01.	•	•	•	•	0	2	10	. 10	07.									_	_
* 64	•	•	•	•	9 9	•		•	9	•	0.	-05	*0	. O.	• 35	.07	•	•	•	00.0	•	•	•	20.		\ C) P	. 33	• 33	1.73					PEA	25018.	737			
	.0	ē.	.01	6.		•	0 0	0.0	03	.03	•03	.12	₹.	. 18	\$ 5	.17	. 13	ē.	.0		- -			71.	2:	71.	71.	01.	77	ָרָייִל היי		- M		E #	1.83						CFS	CHE		O	E C
1.00 m	-	~	m	• 1	so «	D P	۰ «	•	10	11	12	13	<u>.</u>	15	16	17	6	6	20	21	25	£ 2	• u	ç; ;	9 7	200	ם טיי	,	9 6	100	36	9 (10 10	36	37	•						- L	•	⋖	THOUS
	•	•	9	•	•	•		9	0	.:	2.0	3.0	•	٠. د	9.0	.0	A.0	0	0.0	•	0.7	0.0	•	•	•	•	•	•	•	•	? ?	0.0	0	2.0	3.0										

Gerel eccessi deserbit deserbe perezes perezes presecte deserbentes esta deserbitables estas deserbitables. D

RELECTED

ii

<u>:</u>

		•		. ف	. ب	. .	ب. د	ب ،	_	۔ بہ	۔ د	. ب	- - -	۲. ۲.	۲×	× ;	× × _ L	ب :	. ب	ر ر	. ب	<u>.</u> -	۲۲	: <u>۲</u>	ر ر ۲ ۲	<u>ر</u> ×	× ×	×	×	× ×	(×	×	×	× ×	×	Ľ	<u>ن</u> خ	× × - L	× ×	Ľ.		ں پ
			(4)66													_												-	. ب	ـ لـ	XXXXX	XXXXX	XXXXX	X	XXXXX							
		0	. C. V. C. E.	•	•	• •		•	•	•		•	• •	• •	•	•	• •	• •		• •	•	•	• •	•	• •			•	•	•	גי	CXXX	XXXXX	(XX	•	•	• •		•	•	:
			() Avg																							• • • • •							LX	*****	ı							
		0	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •		• •	•	•	• •	•	• •	•••••	•••	•	•	•	• •	•	• 1	******	•	•	•	•	• •	•	•	•
		•	ė	•	•	• •	• •	•	•	•	•	•	• •	• •	•	•	• •	• •	•••••	• •	•	•	• •	•	• •			•	•	• •	• •	•	• 3	. * * * * * * * * *	•	•	•	• •	• •	•	•	
		•		•	•	• •		•	•	•	•	•	•		•	•			•	• •	•	•		•		•		•				•	•	•						•	•	
											•								•							•								•								•
		28000.	•	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	•	•	• •	•	•	• •	•	• •	•	• •	•	•	• •	• •	•	•	•	•	•	•	•	· •	•	•	•
		FLOW(*) 24000.	•	•	•	• •	• •	•	•	•	•	•	• •	• •	•	•	• •	•	•	• •	•	• •	• •	•	• •		• •	•	•	•	• •	•	•	: .	•	•	•		•		•	•
	~	AND ORSERVED 20000.	0.	ě	•	• •		•	•	•	•	•	• •	•	•	•	• •	•	•		÷		•	•		•	• •	•	•			•	•	•	•	•	•		•	••	-	•
	STATION	AND OR 200									•															•								•	,	-					To leave	
	•,	OUTFLOW (0)	6	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	• •	•		• •	•	• •	•	•	• •	• • • • • • • • • • • • • • • • • • • •	• •	•	•	• •	•	•	•	•		•	•	• •	•	•	•	•
		• •	•	•	•	• •	• •	•	•	•	•	•	• •	•	•	•	• •	•	•	•	•	• •	•	•	• •	••••••	• •	•	•	• •	•	•	•		•	•	• •	• •	•	•	•	
		INFLOW(!) 8000. 1200	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•		•	• • • • • • • • • • • • • • • • • • • •	• •	•	• •	•	•	• •	• • • • • • • •	• •	•	•	• •	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•	•		•	•	•	
		•		•		• •			•	•		•			•	•					•			•		•••••			•				-	•		•	•		•			
		4000	•								• • • • • • •															•			•	, ==				•)))
		•		=;							_	111	~ ~	_	~		18.1	19.1	20.1	22. I	23. 1	25.	26.1	27.I	200	30.1.	32	33. 1	34. 1	36.	37.	38.	39.	• • •	. 54	43.		• 9	47.	8 0	50	51.
9	• 4 A			3.00	00.7	00.4	5.00	00.9	7.00	800	10.00	1.00	3.00	07.4	5.00	9.00	. 60	9.00	000	2.00	3.00	00.0	2.00	000	2.00	2.00	9.00	00.6	0 0	200	3.00	00.4	00.5	7.00	9.00	000		2.00	3.00	000	2.00	3.00

Ŀ

•
•
2
•
- 3

,

CANADA TANDARA TANDARA

0.73

M

		HYDRO	GRAPH AT	S	1 F0	PLAN 1	• RTIO 1			
		1:				•	•	•	•	•
•		-	•			;	102.	179.	262.	339.
393.		408.	370.			279.	245.	221.	204.	194.
201.		326.	458.			847.	1128.	1563.	2230.	3355.
062.		9348.	11258.			.6001	12670.	11644.	10293.	8935.
706.		5710.	4899			1586.	3063.	2616.	2235.	1909.
631.	1393.	1190.	1016.	868.		741.	633.	541.	460.	391.
332.		239.	239. 202.							
		PE	_	IOUR	24-HOUR	72-H(OUR TOTAL			
	<u>د</u>	S 13009.		11822.	6382.	23		_		
	£			135.	181.	-	67.	4798.		
	INCHE			.33	9,35	10	•34	10.34		
	I	I	109	16.0	237.45	262	.71	242.72		
	AC-FT	_	58	162.	12658.	140	04.	14004.		
	THOUS CU	I	72	31.	15613.	17274	74.	17274.		

		HYDR	OGRAPH AT	STA 1	FOR PLAN 1	. RTIO 2			
-:	-	-	1. 1.	1.	-	-	,		
-	-1	?	•	28.	88.	204.	357.	525.	67
786.	834.	817.	741.	644.	559.	491.	441.	408.	38
402.	483.	655.	916.	1272.	1694.	2255.	3126.	4459.	671
10125.	14313.	18696.	22516.	25063.	26018.	25340.	23288.	20587.	1787
15412.	13278.	11420.	9798.	8390.	7171.	6125.	5232.	4469.	381
3261.	2784.	2379.	2032.	1736.	1482.	1266.	1081.	920.	7.8
444.	563.	477.	+0+	325.					

D-9

TOTAL VOLUME 338902. 9597. 20.69 525.43 34548. 72-HOUR 4707. 133. 20.69 525.43 28008. 24-HOUR 12763. 361. 18.70 474.91 25315. 6-HOUR 23645. 670. 8.66 219.95 11725. PEAK 26018. 737. CFS CMS INCHES MM AC-FT THOUS CU M

HYDROGRAPH ROUTING

ROUTING INFLOW HYDROGRAPH THRU LAKE-OVERTOPPING ANALYSIS

	IAUTO	0					
	ISTAGE	0		LSTR	0	ISPRAT	0
	INAMF					STORA	-
l	JPRT	0		IPMP	0	TSK	0.000
	JPLT	0		1001	0	×	000.0
	ITAPE	0	ING DATA	ISAME	-	AMSKK	0.000
	IECON	0	₩0N	IRES	-	LAG	0
	ICOMP	-		AVG	00.0	NSTOL	0
	ISTAO	_		CLOSS	0.000	NSTPS	-
				92076	0.0		

SUPFACF APEA=

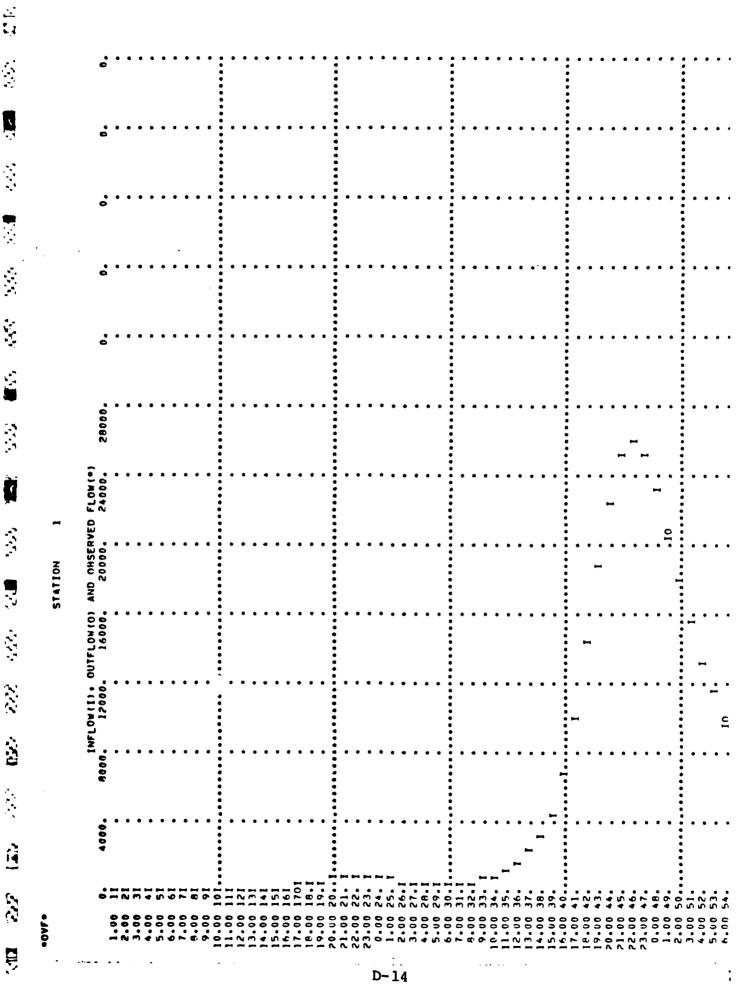
ċ

1. 77. 88. 111. 71.

	100.0	49.0	2.1	1.5	0.0	0.0	0.0	•		
			10PEL 104.7	1. C000	DATA EXPD 1.5	DAMWID 139.				
			STATION	~	. PLAN 1.	RATIO 1				
			END-0	END-OF-PERIOD HYDROGRAPH ORDINATES	PROGRAPH	ORDINATES				
				OUTFLOW						
•		•			-	:	0	6	•	
	•	-	٠,	.6	*	89.	166.	251.	930	
			376.	328.	. 487		1630	\$ 0.00 0.00	1906	
		313.				12696	11556	ישכרטן הטוטט	0000 0000	
_		, EF 62		• (3500	3078.	2627.	2248	1919.	
_		1209.	1028.	882	751	644	540	468	398	
	288.	244.	207.	169.						
				STOBAGE						
	•	ć		10000	0	ć	0	0	•0	
•	• •	• •	• 6	• •	: -:				'n	
• •	• 4	• 4	, k			•	•	•	i m	
ה	• •	ď	• •			11.	14.	16.	19.	
200	56.	90	en	35.	36.	35.	34.	32.	29.	
27.	25.	24.	22.	21.	19.	18.	17.	16.	15.	
•	13.	12.	11.	10.	•	æ	7.	•	•9	
្តិស	;	;	<i>;</i>	3.						
				STAGE						
100.0	100.0	190.0	300.0	100.0	100.0	100.0	100.0	100.0	100.0	
100.0	100.0	100.0	100.1	100.2	100.4	100.A	101.2	101.5	101.8	
102.0	102.1	102.1	102.0	101.8	101.7	101.5	101.4	101.3	101.3	
101.3	101.5	101.8	102.2	102.8	103.4	104.1	105.0	105.7	106.7	
107.9	109.1	110.3	111.2	111.8	112.0	111.9	111.4	110.8	110.1	
6	108.9	108.3	107.A	107.3	106.9	106.5	106.1	105.8	105.4	
105.1	104.8 101.7	101.5	103.9	103.5	103.2	102.9	102.6	10%3	1041	
PEAK OUTFLOW IS 13003.	3. AT TIME	46.00 HOURS	URS							
					1					
		•	K 6-H0UR	24-HOUR	72	R TOTAL	VOLUME			
	ָה ער בי						4797			
	INCHES					•	10.34			
	I		109.94	23		ų.	262.66			
	AC-F		5861	-	14001.	•	14001.			
	THOUS CU H	_	1229	. 15614.		•	17270.			

5.1		•	•	•	•			•	•	•	•		• •	. •	•	•		•	•	•		•	•		•	:		•			•	•	• •	•	•			•	•		•			
		•																•																										
		•	•	•	• •	• •	•	•	•		•	•	• •	•	•	•	• •		•	•	• •	•	•	• •	•		• •	•	•		•	•		•	•	• •	• •	•	•	• •	•	• •	• •	•
		•		•	• •		•	•	•		•		• •	•	•	•	• •		•	•		•	•	• •	•			•	•		•	•		•				•						
																		•															•											
	٠	•	•	•	•	• •	•	•	•		•	•	• (•	•	•	• •	•	•	•	•	•	•	•	•	• • • • • • • • • • • • • • • • • • • •	• •	•	•	• •	•	•	•	•	•	• •	• •	•	•	• •		•	•	•
		•	•	•	• •	• •	•	•	•		•	•	• •	•	•	•	•		•	•	• •	•	•	• •	•		• •	•	•	• •	•	•		•	•	• •	• •	•	•	• •		• •		•
•		•	•	•	•			•	•	•		•	• (•	•	• (•	•	•			•	• •	•	•	• •	•	•		•	•		•				•		• •		• •		•
83		14000																• • • • • •								•											-	-	-					
Í		FLOW(*)	•	•	• •	• •	•	•	•		•	•	• •	•	•	•	•	•	•	•	• •	•	•	• •	•	•	• •	•	•	• •	•	•	•	•	•	• •	•	•	-	• •		• •	•	•
	~ Z	OHSERVED	•	•	•		•	•	•		•	•	• •	•	•	•	• •	•	•	•	• •	•	•	• •	•	• • • • • • • • • • • • • • • • • • • •	• •	•	•		•	•		•	•	• •	•	•	•	.:	•	• •	•	•
	STATION	Ā		•	•			•	•		•		• •	•	•	•	• •	•	•	•		•	•		•			•	•		•	•	•	•	•	• •		•	•		· I · · · · · ·	••		•
		OUTFLOW(0)	•																																-								•	
		INFLOW(I) . O.	•	•	•	• •	•	•	•	•	•	•	• •	•	•	•	• •	•	•	•	• •	•	•	• •	•	• • • • • • • • • • • • • • • • • • • •	• •	•	• •	• •	•	•	•		• •	• •	•	•	•	• •		• •	· :	10
		1MFL0	•	•	•		• •	•	•			•	• •	• •	•	•	• •	•	•	•	• •	•	•	• •	•	•	• •	•	•	• •	•	•	I	•	•	• •	•	•	•	• •		• •	•	
\$ X X				•	•	• •			•	•		•	•		•	•	•		•	•	• •		•	•		•		•				•	_	•	•			•	•	• •	•			•
		2000																•								•					10	-												
					I •		_		_		111				16	~ :		20	21			25	5	28	59	30	32.			3	37		, 0	7							50	u n	53	3
	•0VF		1. U	2.00	000		9	7.00	8.00	00.0	11.00	2.00		5.00	00.9	7.00	000	000	1.00	2000	000	1.00	5.00		9.00	9 6	00.5	00.6	00.0	2.00	3.00	000	2.00	7.00	000	000	.00	2.00	0000	1.00	2.00	4.00	5.00	6.00

D-11


1. PLAN 1. RATIO 2 STATION

END-OF-PERIOD HYDROGRAPH ORDINATES

	-:	663.	390.	6648.	17925.	3833.	794.			•	80	5.	25.	**	20.	•			100.0	102.9	102.1	108.8	114.1	107.1	103.3		
	-	506.	411.	4419.	20647.	4487.	933.			0	7.	ę.	21.	49.	21.	10.			100.0	102.4	102.1	107.5	115.2	107.5	103.7		
	1.	338.	446.	3096.	23344.	5252	1096.			0	'n	•	18.	54.	23.				100.0	101.9	102.2	106.5	116.2	108.0	104.1		
	-:	183.	497.	2232.	25373.	6147.	1282.			•	3.	•9	16.	57.	24.	12.			100.0	101.2	102.4	105.8	117.0	108.6	104.5		
3 C			567.						يو		2•							iai.							104.9		
OUTFL	-:	21.	654.	1239.	25025.	8416.	1747.	335.	STORA	•	-	•	12.	57.	28.	14.	\$	STAG	100.0	100.3	102.9	104.4	116.8	109.8	105.3	101.9	
	-	'n	750.	888.	22442.	9828.	2043.	415.		•	•	•	10.	52.	31.	15.	•		100.0	1001	103.2	103.6	115.9	110.5	105.6	102.1	
	-	-	821.	631.	18606.	11455.	2391.	486.		•	•	•	•	* 9*	33.	16.	•		100.0	100.0	103.4	102.A	114.4	111.3	105.9	102.4	
	-1	-	832.	.10.	14222.	13314.	2799.	573.		•	•	•	?	38.	37.	17.	۲.		100.0	100.0	103.4	102.3	112.6	112.2	106.3	102.7	
	-	-	177.	398.	10047.	15459.	3276.	675.		•	•	6	•	31.	•0•	19.	8		100.0	100.0	103.3	102.1	110.7	113.1	105.6	103.0	
																-			I	D-	-1	.3					

26013. AT TIME 46.00 HOURS PEAK OUTFLOW IS

TOTAL VOLUME	3388:4.	9545	20.68	525.34	28004.	34545
72-HOUR	4706.	133.	20.68	525.34	28003.	34542
24-HOUR	12764.	361.	18.70	474.92	25316.	31227.
6-H0UR	23637.	.649	8.66	219.88	11721.	14458.
PEAK	26013.	737.				
	CFS	CMS	INCHES	I	AC-F1	THOUS CU M

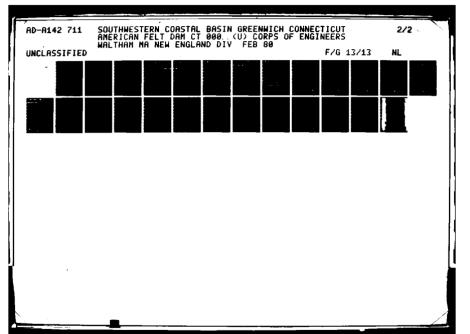
COCCOS CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

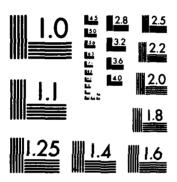
ANT AND LESS THE BOX DAY BY SALE AND THE SAL

		·	•	FLOWS 1	N CURIC FE AREA IN SQ	SUMMENT OF THE SECOND UARE MILES (S)	FLOWS IN CHILC FEET PER SECOND (CUBIC MFTERS PER SECOND AREA IN SQUARE MILES (SQUARE KILOMETERS)
DPENATION .		STATION	AREA	PLAN	PLAN RATIO 1 RATIO 2 .50 1.00		RATIOS APPLIED TO FLOWS
MYDROGRAPH AT	4	_~	25.40	-~	13009. 26018. (368.3A) (736.75)	26018. 736.76)(
#0UTED TO		-	25.40	-	13003. 368.19) (26013. 736.62) (

<u>:</u>

H.


Ì.


5

 $\frac{\mathcal{L}}{\mathbb{Q}}$

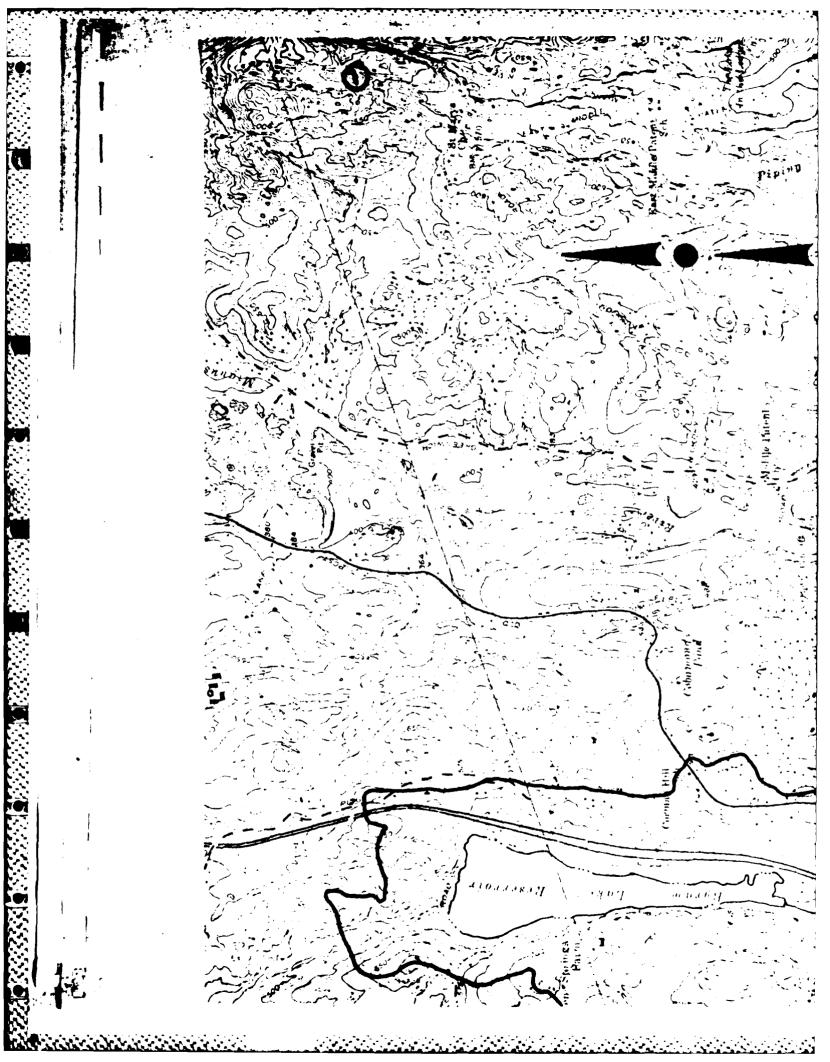
	F TIME OF LOW FAILURE HOURS	
100 OF DAW 104.70 13.	TIME OF MAX OUTFLOW HOURS	46.00
	OURATION OVER TOP Hours	25.00 31.00
SPILLWAY CREST 100.00 0.	MAXIMUM OUTFLOW CFS	13003.
INITIAL VALUE 100.00 0.	MAXIMUM Storage AC-FT	36. 59.
AN AN AN AN AN AN AN AN AN AN AN AN AN A	MAXIMUM Depth Over dam	7.35
ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVOIR W.S.ELEV	112.05
•	84710 0F PMF	1.00

A.	Size Classification
Height	t of dam = 37 ft.; hence small
Storag	ge capacity at top of dam (elev. 100.0^{\pm}) = 49 AC-FT.; hence small
Adopte	ed size classificationsmall
B.i)	Hazard Potential
	This dam is located upstream of and urbanized area.
	Residential homes are located along the downstream channel.
	The dam was originally used for process water and fire
ii)	protection by American Felt Co. Presently, it has no specific function. Impact of Failure of Dam at Maximum Pool (Top of Dam)
4 1,	
	It is estimated from the rule of "thumb" failure hydrograph, the following adverse impacts are a possibility by the failure s dam.
	a) Loss of homes Yes 5-8;
	a) Loss of homes Yes 5-8; b) Loss of buildings Yes (Commercial); c) Loss of highways or roads No;
	d) Loss of bridges No ;
from t	The failure profile can affect a distance of 3000 feet the dam.
C.	Hazard Potential Classifications
HAZARD	SIZE TEST FLOOD RANGE
High	h Small 1/2 PMF to PMF
Adopte	ed Test Flood = $1/2$ PMF = 510 CSM
	= 13,000 CFS
D.	Overtopping Potential
	Drainage Area 16,267 Acres = 25.4 sq. miles
	Spillway crest elevation = 100.0 NGVD
	Top of Dam Elevation = 104.7 NGVD
	um spillway discharge
	ty without overtopping of dam = 1,335 CFS flood" inflow discharge = 13,000 CFS
"test	flood" outflow discharge = 13,000 CFS

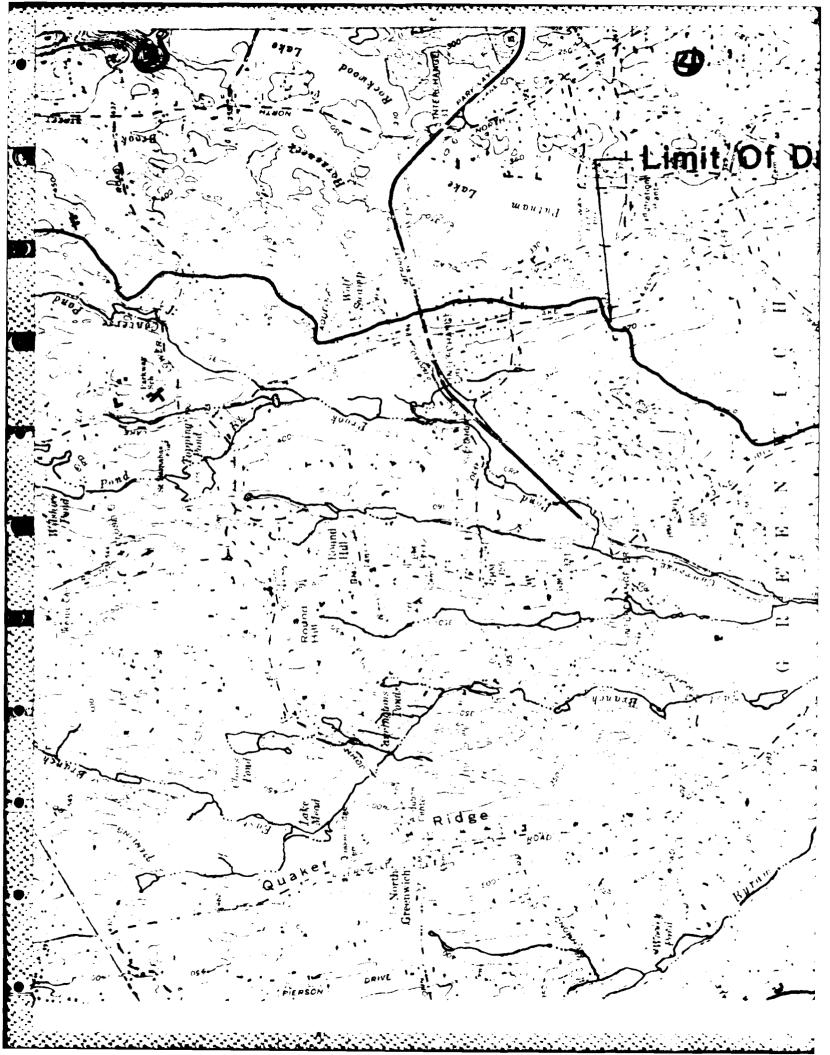
MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

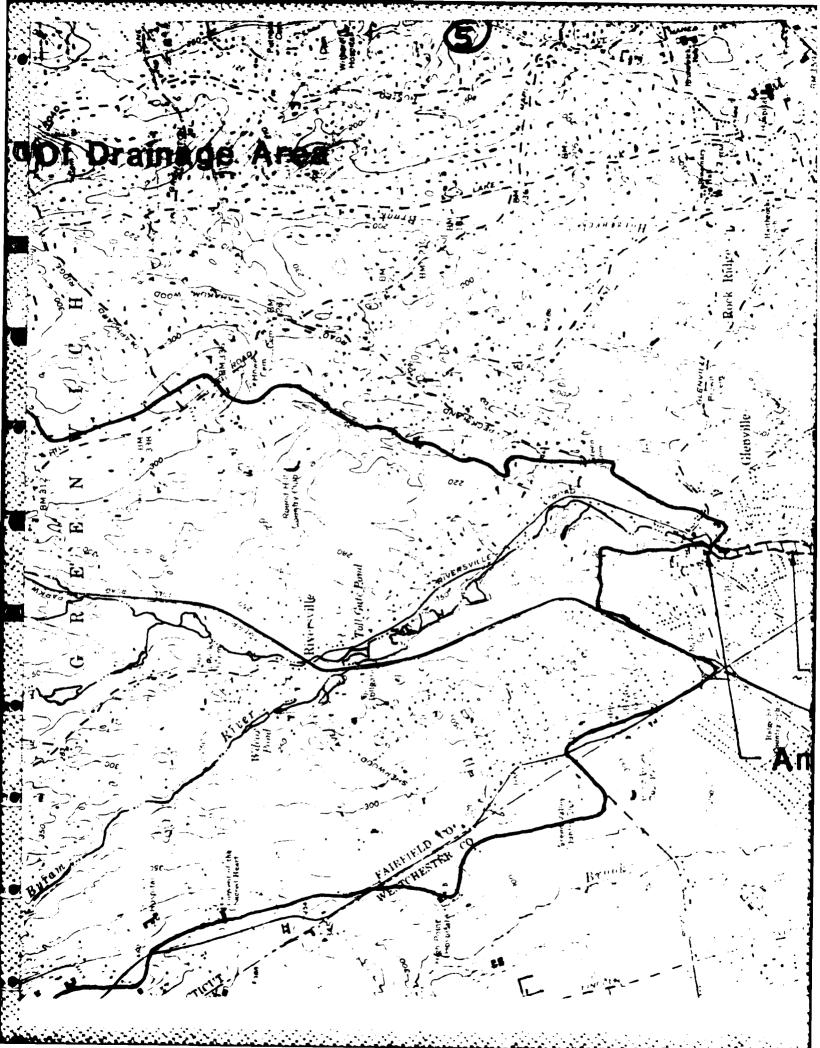
AMERICAN FELT DAM

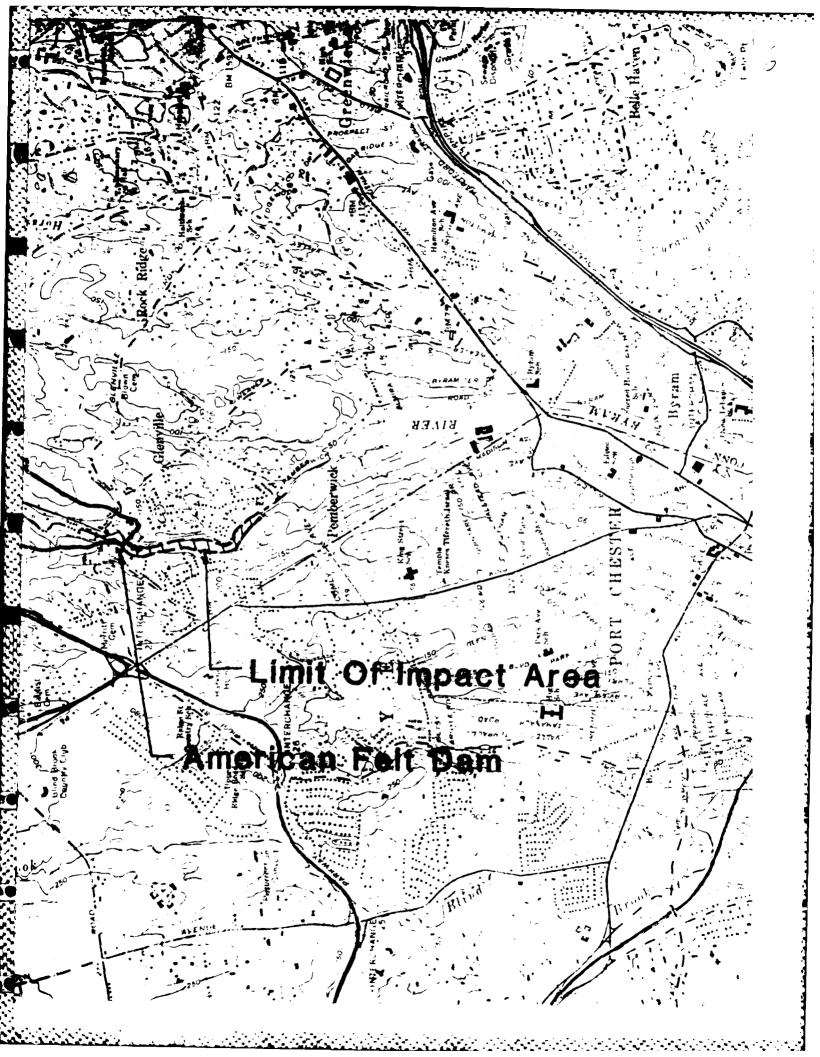
Dam Failure Analysis

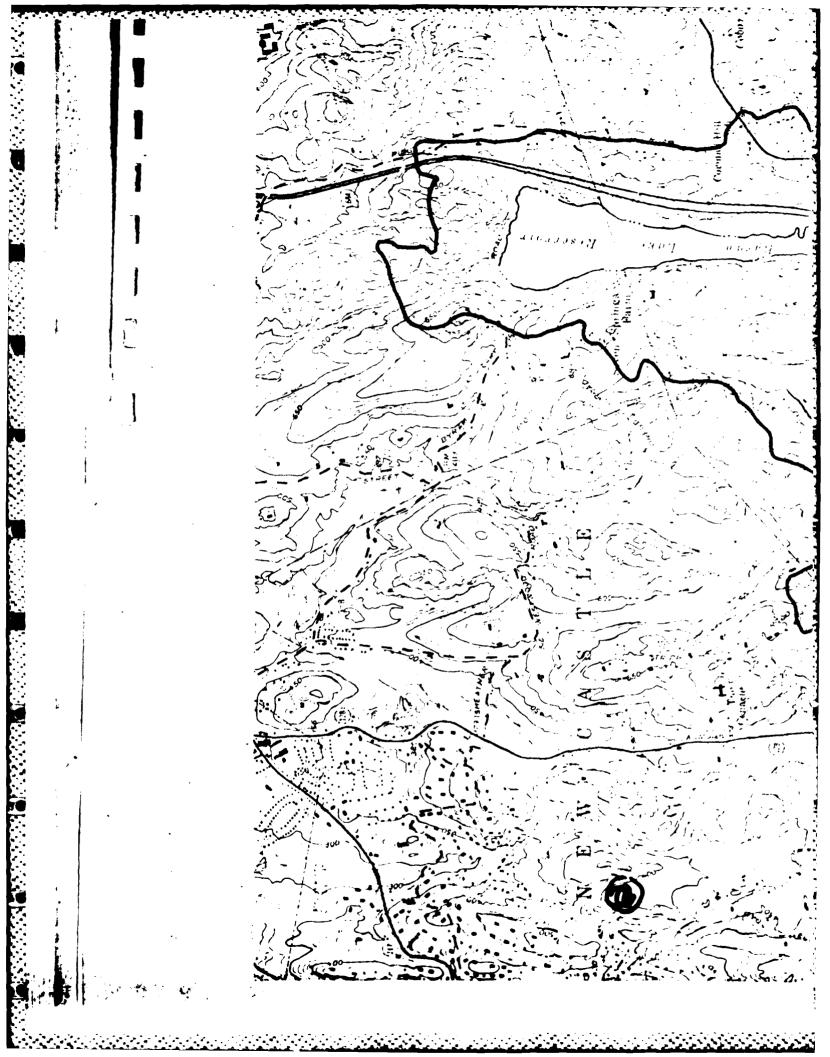

1. Failure discharge with	th pool at top of dam (elev. <u>10</u>	(4.7) = 9479 CFS
2. Depth of water in res	servoir at time of failure = _	35 ft.
3. Maximum depth of flow	w downstream of dam = @ Face	15.5 ft.
4. Water surface elevation of dam at time of fair		0.5 NGVD
The failure discharge	e of 9479 CFS will enter and	d flow down-
stream 3000 feet unti	il the brook reaches Pemberwic	k Dam •
Valley storage in this _	3000 foot length of brook is	s <u>substantial i</u> n
reducing the discharge.	Also due to roughness charac	teristics,
obstructions and friction	nal losses, it is very likely	that the
unsteady dam failure flow	w will dissipate its wave and !	kinetic
energy and thus convert	to steady and uniform flow obe	ying Manning's
formulae 3000 feet do	ownstream. The failure profile	e will have
the following hydraulic	characteristics:	
DISTANCE FROM THE DAM	WATER SURFACE ELEVATION NGVD	REMARKS
0	104.7	Upstream of dam
, 0	80.5	Downstream of dam
1000	61.5	
2000	56.5	
3000	51.2	
Beyond 3000 feet Pe	mberwick Dam controlls the f	ailure discharge:
Q =N/A	CFS; S =N/A	· · · · · · · · · · · · · · · · · · ·
n = N/A :	h = N/2 : d =	r: /n

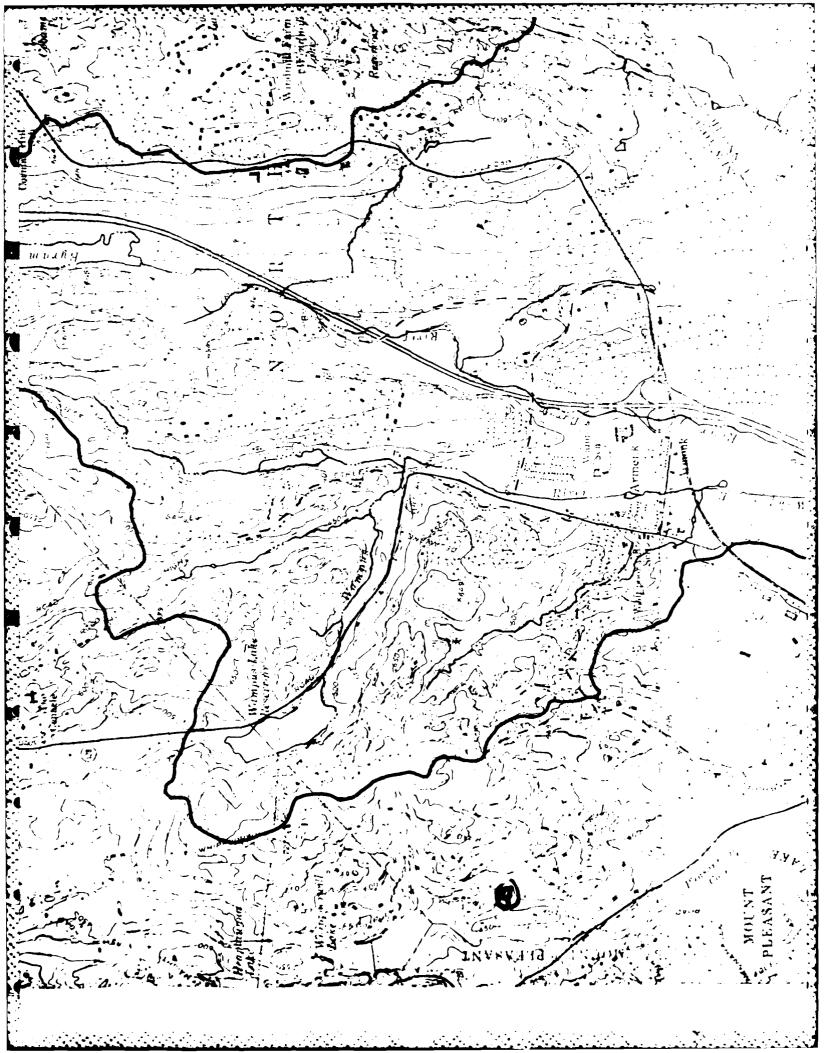
"Rule of Thumb Guidance for Estimating Downstream Dam Failure Analysis"

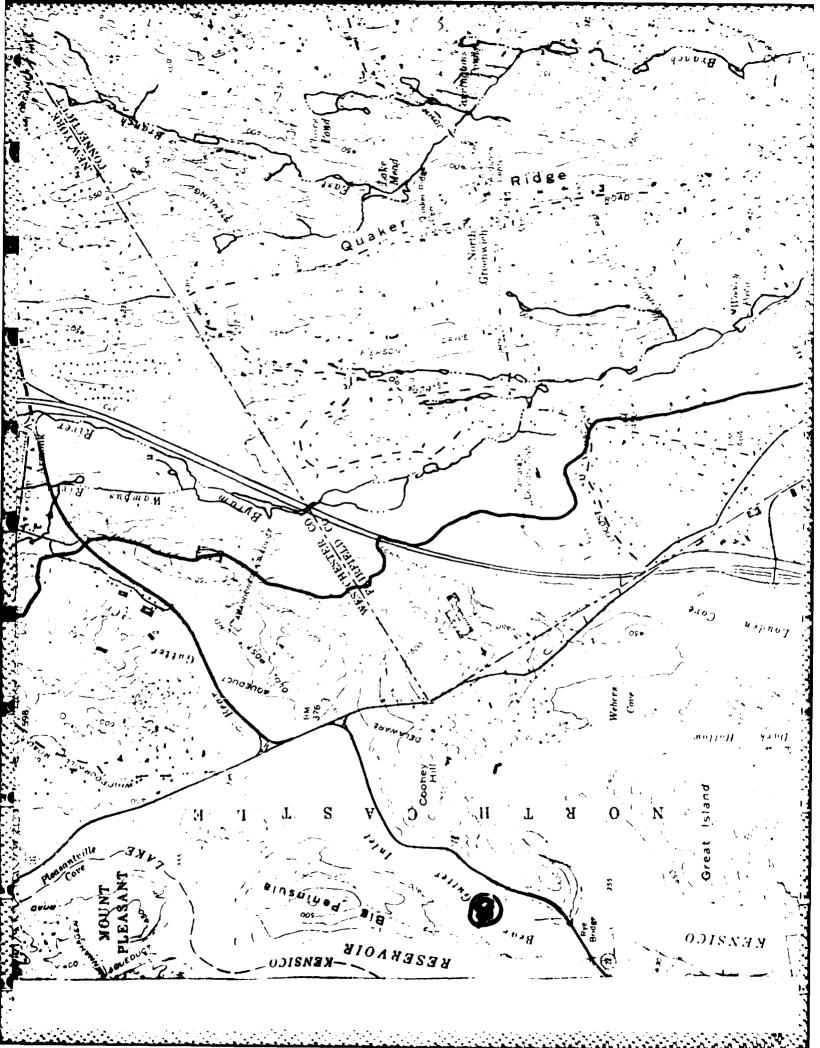

DATA

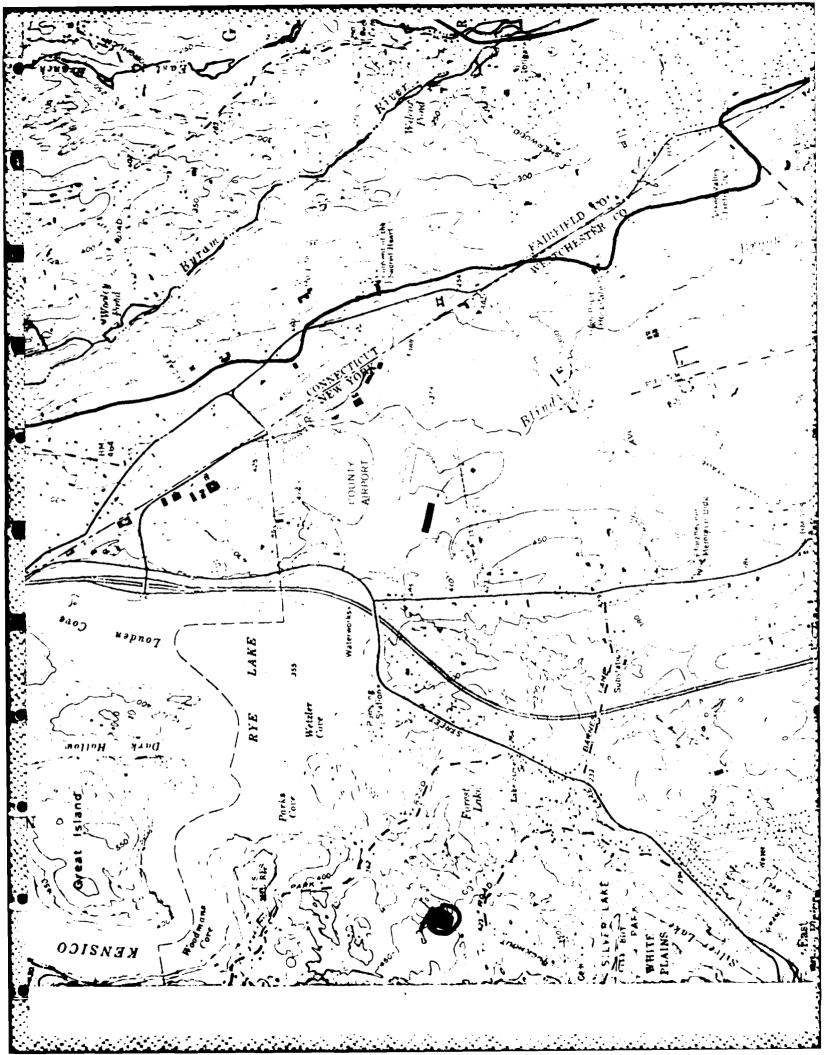

Name of Dam American Felt Dam
Location North of Pemberwick, CT
Drainage Area 25.4 sq. mi., Top of Dam 104.7 MGVE
Spillway Type Overflow-broad crest, Crest of Spillway 100.0 NGVD
Surface Area @ Crest Elev. 2.6 Acres = 0.004 sq. mi.
Pool Bottom Near Dam = 67.7± NGVD
Assumed Side Slopes of Embankments = 2:1
Depth of Pool at Dam (Yo) = 37 Feet
Mid-Height Elev. 86.2 NGVD
Length of Dam at Crest = 187.8 Feet
Length of Dam at Mid-Height = 109 Feet
25 % of Dam Length at Mid-Height = $W_b = 27$ Feet
Step 1
Storage (S) at time of failure 49 Ac-FT (Equal to top of dam)
Step' 2
Peak Failure Discharge $Q_{pl} = 8/27 W_b \sqrt{g} Y_0 3/2$
= 1.68 W _b Yo ^{3/2} $= 9479$ cfs
Failure is assumed to coincide with pool elevation at top of dam.

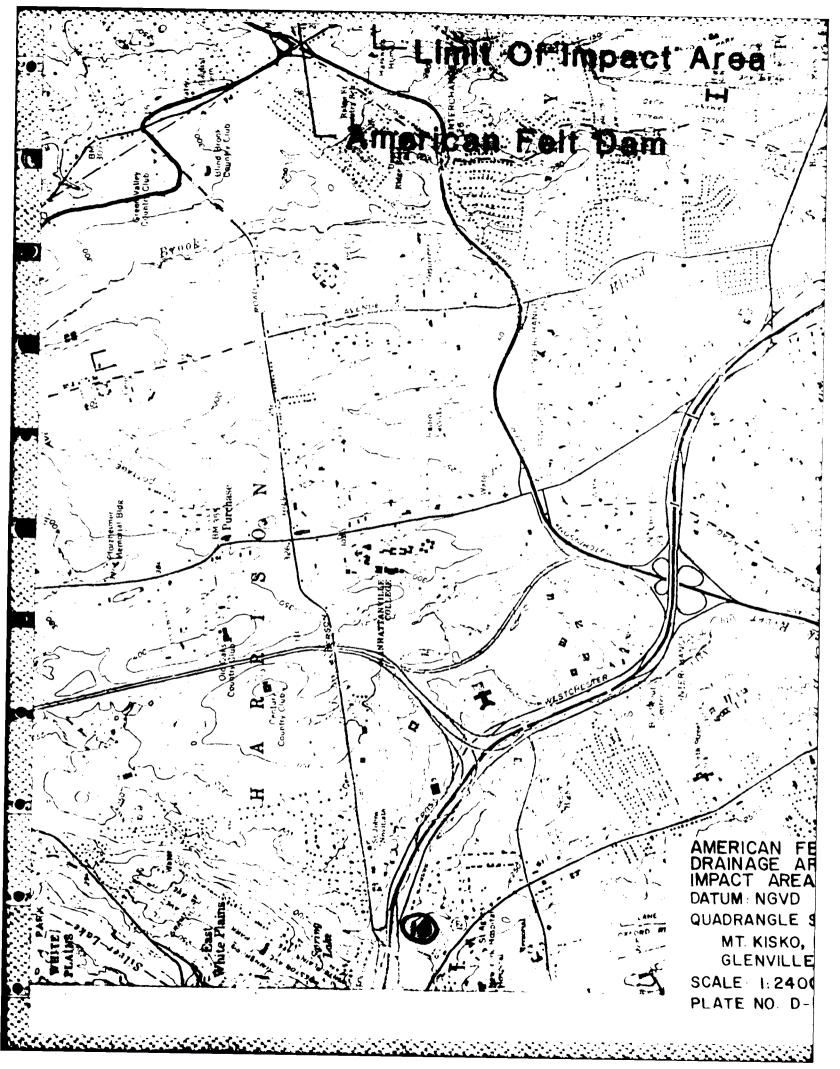

A SECONDARY CONTROL OF THE SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SECONDARY SEC

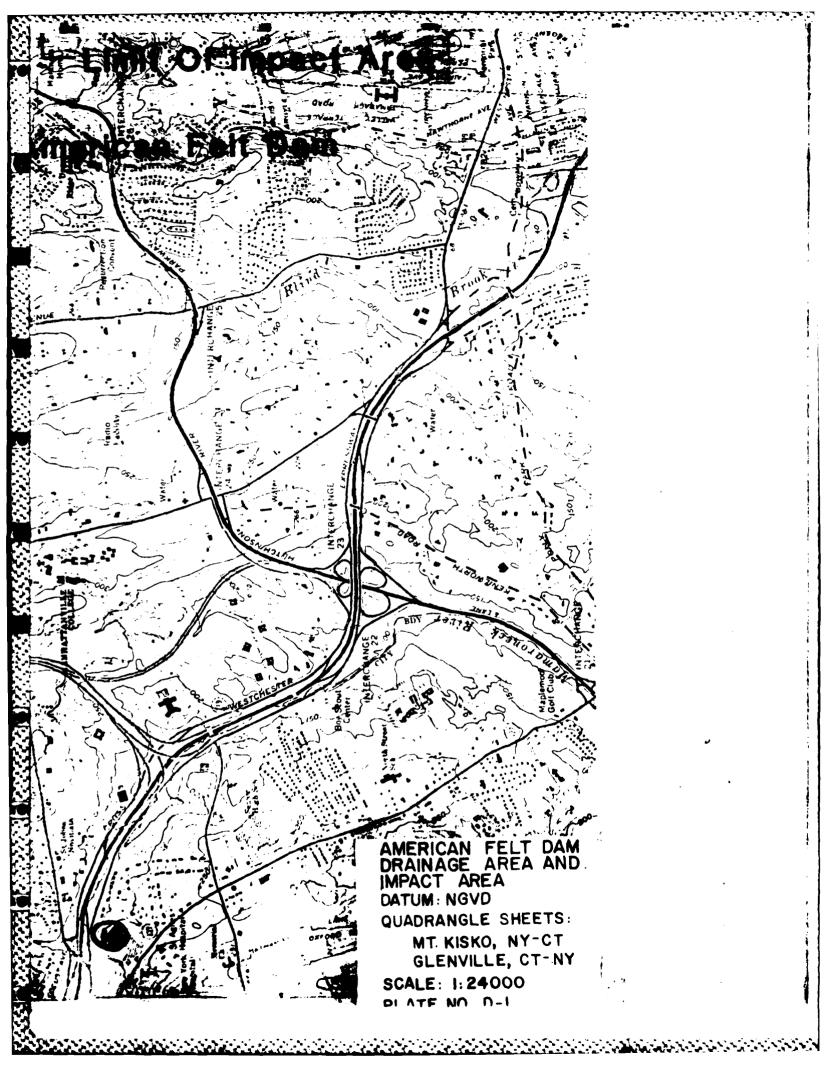


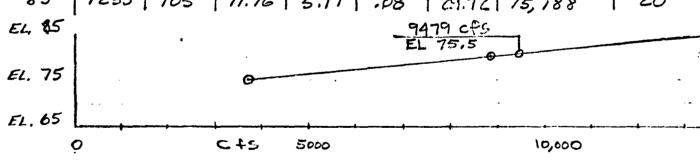










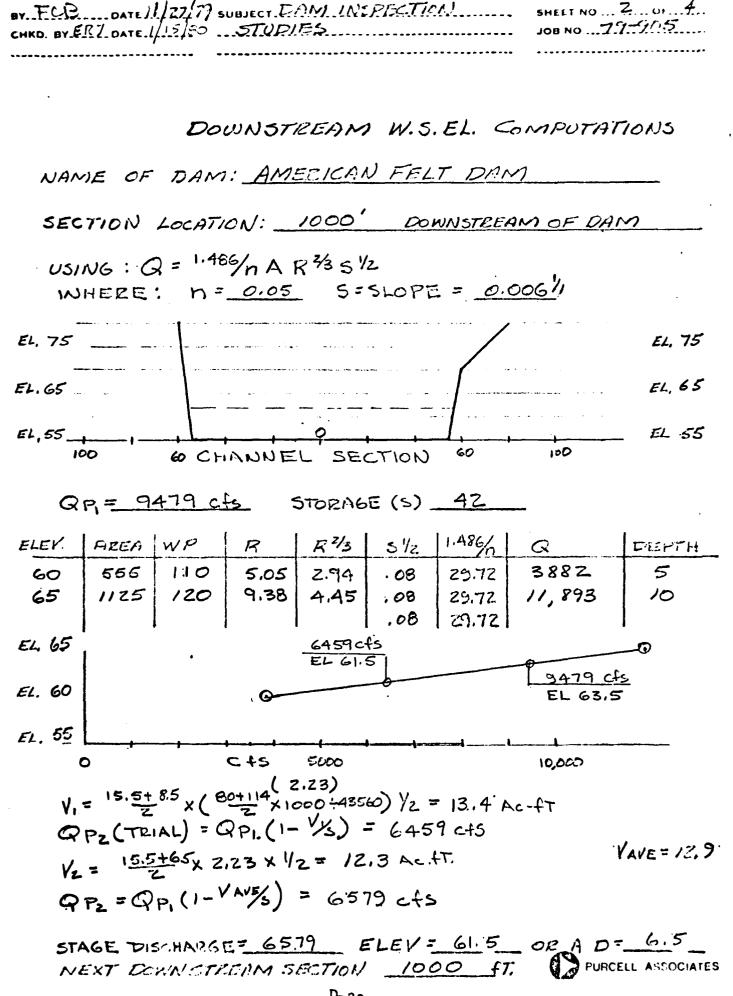


Pemb	perwick Dam	is	located	3000) 	feet down	stream	
of	American Felt		dam. Th	ere is	a	20	foot	
drop	to Pemberwick Dam		whic	h will	cause	the dissi	pation	
of wave and kinetic energy of the failure discharge. Approximately,								
the water surface elevations between American Felt dam								
and Pemberwick Dam will be as given on Dam Failure								
Analy	sis. The increase of	de	oth_at_Pe	emberwi	ck Dam		due to	
failu	ure of Amorian Folt		dam is e	stimat	ed to b	ne 6.2	feet.	

BY FCD DATE 1/127/77 SUBJECT DAM INSPECTIONS CHKD. BYFRI DATE 1/15/20 STUDIES	SHEET NO J OF

DOWNSTREAM W.S.EL. COMPUTATIONS

ELEY.	AZEA	WP	R	R2/3	5 1/z	1.486/	Q	प्राथम
75	450	70	643	3.46	.08	29.72	370Z 8866 15,188	10
80	825	86	9.59	4.52	.08	29.72	8866	15
85	1235	105	11.76	5.17	.08	29.72	15,188	20



DEPTH @ DOWNSTREAM FACE OF DAM EQUAL TO 15.5 OR EL 80.5

STAGE DISCHARGE 9479 ELEV = 80.5 OR A D = 15.5

NEXT DOWN CIREAM SECTION 1000 FT. PURCELL ASSOCIATES

D-22

DATE 1/22/17 SUBJECT DOM INSPECTION D. BY. ER] DATE 1/15/80 ... 5TU: 21ES. DOWNSTREAM W.S.EL. COMPUTATIONS NAME OF DAM: AMERICAN FELT DAIN SECTION LOCATION: ZOOD DOWNSTREAM OF DAM USING: Q = 1.486/n A R 3/3 5 1/2 WHERE! n= 0.05 S=SLOPE = 0.006 1 EL. 70 EL. 70 EL, 60 __ EL. 60 EL.50 100 EL 50 CHANNEL SECTION QR = 6579 _ STORAGE (S) __42 5/2 1.486/n ELEY. R 2/3 ALEA WP R THEFTH 55 500 4.55 110 2.74 .08 29.72 3262 8.33 60 120 1000 4.11 9773 10 .08 29.72 29.72 El., 60 5280 cfs EL 56.5 EL. 55 EL. 50 C +5 5,000 10,000 $V_1 = \frac{6.5 + 7.0}{2} \times \frac{(114 + 100)}{2} \times (2.46)$ $V_2 = 8.3 \text{ Ac-fT}$ QP2 (TEAIL) = QP1 (1- 1/5) = 5280 C+S Vz = 6.5 x 2,46 x 1/2 = 8.0 Ac-fT V AVE = 8.15 Ac-fT QPZ = QP, (1- VAVES) = 5302 cfs STAGE DISCHARGE 530Z ELEV = 56.5 OR A D= 6.5 NEXT DOWNSTREAM SECTION 1000 IT. FURCELL AS OCIATES

D-24

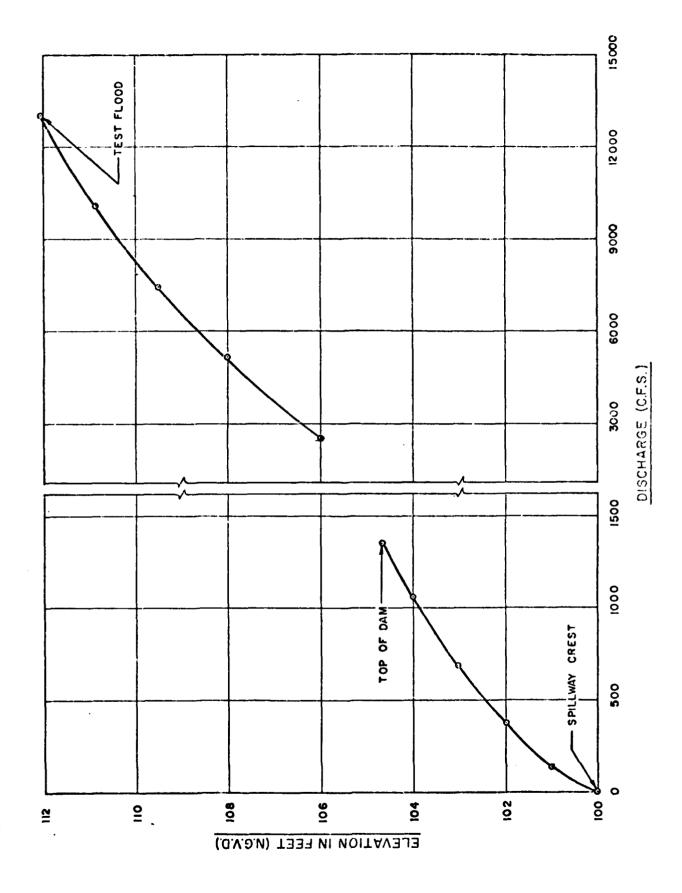
DATE 1/27/79 SUBJECT DAM INSPECTION BY EBJOATE 1/15/80 STUDIES DOWNSTREAM W.S.EL. COMPUTATIONS NAME OF DAM: AMERICAN FELT DAM! SECTION LOCATION: 3000 DOWNSTREAM OF DAM USING: Q = 1.486/n A R 3/2 5 1/2 WHERE: n = 0.05 S=SLOPE = 0.006/1 EL. 65 EL. 55 EL. 55 EL 45 60 CHANNEL SECTION QP = 5302 ____ STORAGE (S) <u>42</u> 1.486/ ELEY. FIZER WP R 2/3 R 5 1/2 DEFTH 5 450 100 4.5 2.73 27.72 2916 .08 5 10 900 110 8118 4.06 .08 29.72 8689 10 29.72 5302 cfs EL 52.0 EL 55 EL. 50 EL. 45 10000 C +5 5000 $V_1 = \frac{6.5+70}{2} \times (\frac{100+90}{2} \times \frac{2.18}{1000+43560}) \frac{1}{2} = 7.4 \text{ Ac-fT}$ QPZ (TRIAL) = QPI (1- 1/5) = 4373 Cfs Vz = 6.5+6.2 x 2.18 x 1/2 = 6.9 Ac-ft, VAVE = 7.2 Ac-ft. QPZ = QPI (1 - VAVE) = 4393 cfs (SEE PEMBERWICK COMPS FOR CONTINUATION) STAGE DISCHARGE 4393 ELEV = 51.2 OF A D= 6.2 FURCELL ASSOCIATES NEXT DON'N' STEERM SECTION __N/A FT. D-25

RATING CURVE DEVELOPMENT

American Felt Dam

Spillway

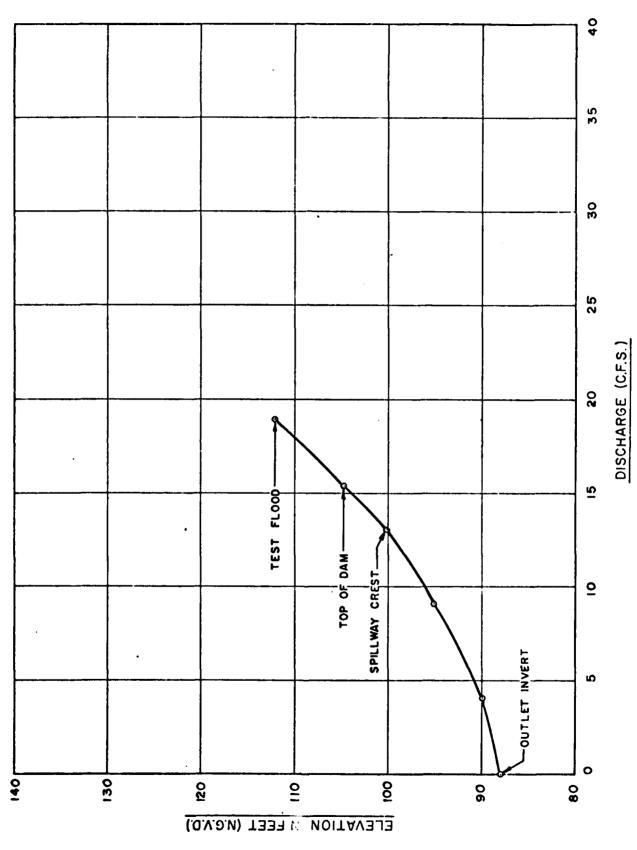
$$Q = C L H^{2/3}$$


$$C = 2.70$$

$$L = 49$$
 feet

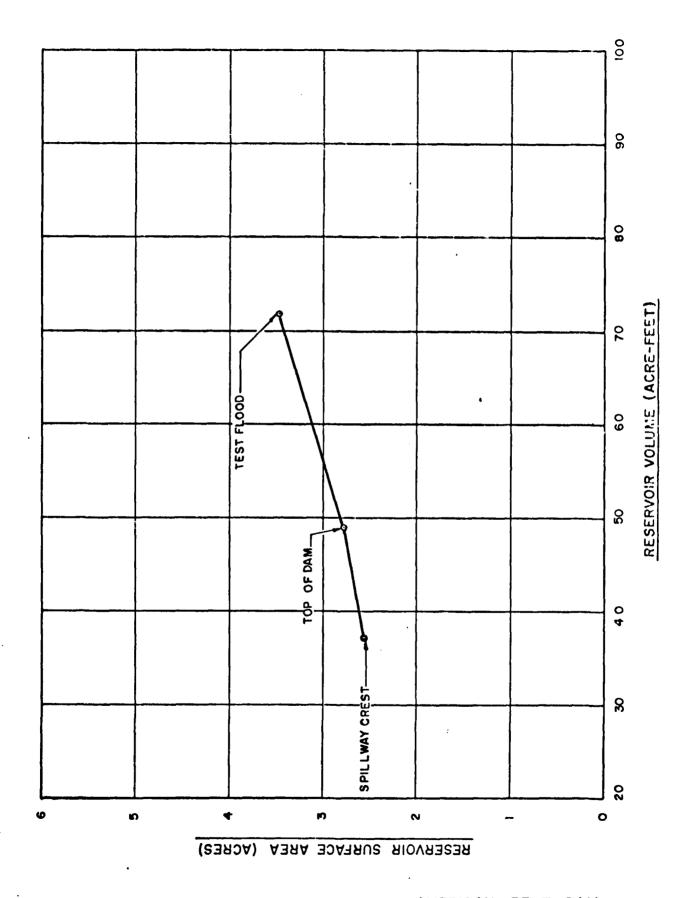
12 Inch Pipe

$$Q = c a (2gh)^{1/2}$$


$$c = .60$$

%.1 **6**2

Ħ.


AMERICAN FELT DAM SPILLWAY RATING CURVE

D-28

SM

AMERICAN FELT DAM
12 INCH PIPE
OUTLET WORKS RATING CURVE

AMERICAN FELT DAM
RESERVOIR AREA-CAPACITY CURVE

APPENDIX E INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS

THE STATE OF THE S

CONTRACTOR CONTRACT IN TOTAL CONTRACTOR STATEMENT CONTRACTOR CONTRACTOR

SCS A PRV/FED REPORT DATE DAY | NO YR 1000 210EC79 POPULATION FED R 2 * 0 PROMOMA (MI.) LATITUDE LONGITUDE (WEST) 4102.3 7340.0 CONSTRUCTION BY € ⋑ 36 NEU MPOUNDING CAPACITIES

MACKIMUM

ACREMENT

ACREMENT

ACREMENT

181 NAME OF IMPOUNDMENT • INVENTORY OF DAMS IN THE UNITED STATES 3 NEAREST DOWNSTREAM CITY-TOWN-VILLAGE MILL POND PEMBERNICK HVD HVD ENGINEERING BY 3 NAME REMARKS 3 AMERICAN FELT DAM ◉ 22 AESTHETIC 21-CEMENT HUBBLE MASONRY 37 WOLUME OF DAM (CY) 3600 PURPOSES RIVER OR STREAM SPILLWAY MAXIMUM SPILLWAY DISCHARGE FAIHFIELD ASSUCIATES INC POPULAR NAME 1335 ➌ S. LOL COCK ITY UNKNOWN STATE COUNTY BUST STORE COUNTY | DOCT | YEAR COMPLETED 1867 D7 BYRAM RIVER 7 OWNER **၁** TYPE OF DAM 001 00 20B ECIONBASE PGVAUT ◉ 5 43 NED

VER/DATE

CT DEPT'ENVIR PROT

CT DEPT ENVIR PROT

© OPERATION

REGULATORY AGENCY

CONSTRUCTION

DESIGN

AUTHORITY FOR INSPECTION

INSPECTION DATE
DAY | MO | YR

PL-92-367

12NOV79

JAMES P PUNCELL ASSOCIATES

INSPECTION BY

the state of the s