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appears to be approximately 0.025 mm. A similar approach is
also used by others such as Kaufman et al (3). They

45 measured crack mouth displacement with position sensors
:3: located outside the heated region and connected to the
DA specimen by extension rods. The relation between crack
AN mouth displacement and crack length is obtained from

- experimental calibration. They do not report the

’. resolution, but an optimistic estimate is 0.040 mm. The
o relative uncertainty of the calibration curve should be
considered in describing this technique. These techniques
measure an average crack length; the actual measuring is
o done far from the crack tip.

Another technique that measures average crack lengths
is the electropotential method. Current passing through the
uncracked portion of the specimen is a measure of the crack
size. Examples of this are given by Landes and Begley (4)
and Haigh (5). Landes and Begley report a resolution of 0.3
mm at 650 C, while Haigh's resolution is given as 0.1 mm at
550 C. This method has its output based on the physical
location and shape of the crack tip, whereas the crack
opening displacement techniques locate the crack by
computation. Both approaches (except that by Hsu (2))
provide real-time continuous data that is easily recorded.

Donath (1) used a compliance technique in addition to
the microscope measurements to determine crack length. He
measured load-line displacement with linear variable
differential transformers mounted outside the furnace and
periodically lowered the load 15 to 25 per cent of the
maximum value to record a compliance. Effective crack
length was calculated from an elasticity-based analysis.
The resolution of this method is not reported, but it
appears from the plotted results to be on the order of 0.1
mm,

The work reported here is a study of a more sensitive
crack opening displacement approach as it applies to both
creep and fatigue. The laser-based interferometric
strain/displacement gage (ISDG) has a short gage length and
high sensitivity. The idea then is to measure crack opening
displacement, v, which is related to the crack length, load,
and location of the measurement position with respect to the
crack tip, r, 9, by:
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If the crack grows an increment 1 away from the
measurement position, the relative changes in "a" and " "
are much smaller, so approximately:
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) Taking some typical values as used in this work, r = 100 ]
= micrometers, v = 5 micrometers then ]

! At I

The ISDG has a resolution of 0.02 micrometers, so one should
be able to detect an increment of 0.8 micrometers. This
reported research 1is a study of the capabilities of this

S approach under creep and fat.gue conditions at 650 C.
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N This report is divided largely into three parts, - 1ISDG 4
technique developr nt, creep threshold studies, and fatigue '

o threshold studies. The compact tension specimens were

Inconel 718, and the test temperature was 650 C.

’. ISDG development was conducted in conjunction with

W another research project, "Bench-ark Tests for Life

{ Prediction", sponsored by NASA-Lewis. It was a joint effort
- between General Electric and Louisiana State University.
That test program focussed on the measurement of cyclic
plastic strain at the root of a notch in a specimen
subjected to a tensile/compressive load spectrum. The
results are reported in references 6 and 7; Mr. Mike Ward
made a major contribution as part of his master's program.
The Ph.D. thesis work of Dr. Mike Guillot (8) was also of
major benefit to the ISDG development.

gy
PR A

o

The second phase of the work was application of the ISDG
to the determination of creep threshold values. Mr. J. J.
Shen, a visiting scholar from the Peoples Republic of China
assisted in that work which is reported in reference 9. The
third phase involved determination of fatigue threshold
. values and includes the master's thesis research of Mr. J.
-~ ’ J. Lee.
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THE INTERFEROMETRIC STRAIN/DISFLACEMENT GAGE

The interferoretric strain/displacement gage {(1SDG) 1in
its most recent version is described in this section. There
have been various applications of the ISDG over the years,
and these are described in a summary fashion in reference
10. This part of the report is intended to serve as a
primer on the ISDG.

: Basics of the ISDG
53 A more complete discussion of the optical principles
Jj behind the ISDG is given in reference 11l; only a short

review is given here. Figure 1 is a schematic which will
aid in the explanation.

Two square pyramidal indentations are pressed into the

N surface of the specimen with a Vicker's hardness tester.

L These indents are each small enough ( “25 ,m on a side)

~E: that appreciable aiffraction occurs when they are

NN illuminated with visible radiation. If that radiation is
. coherent and monochromatic such as that from a laser, then

2 the diffracted rays from the two indents overlap and form

interference patterns in space. This is simply the Young's
- Two-S1lit Interference demonstration from elementary optics
A except that it is in reflection, not transmission. The

e governing equation establishing the location of the fringes

{ is

dosin ocoomd,om om0, 4 1, + Ly (+)

- ]

B where "d" is the indent spacing, : is measured from the J
N

incident laser beam, and 1 is the wave length of light.
Figure 2 is a photograph of a pair of indentations across a
fatigue crack. Figure 3 is a photograph of a fringe

s pattern; it is triangular in shape because the reflecting
sides of the indents are triangular.

B ll. ;
f” The underlying idea of the ISDG is that as "d" changes, i
b the angle associated with a fringe of given order, m, also :
- changes. That is, the fringes move in space, and this .
o motion can be recorded and related to the relative )
- displacement between indents. Four fringe patterns are ;
" formed in space, but only the two in a plane which includes b
A the loading axis of the specimen are useda. Motion of these 1
;’ two patterns can occur due to relative daisplacement or to )
o~ rigid-body motion parallel to the loading axis (which 1s :
N inevitable). However, if one averages the motion of the two .
N fringe patterns and takes fringe motion toward the incident X
" d
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Figure 2. Indentations across a fatigue crack.
The spacing is 100 micrometers.
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Figure 3. A photograph of a fringe pattern.

&’

IR I 4
T "o"- ..o ‘.l ‘J

Tt



q CERTEIATRTRTIT AR T ROR AR L e e m T e e

\ beam as positive, the rigid-body part is eliminated. The
o governing equation for relative displacement, "d, is then:

ROAN Amu + Aml A

Ad 2 et R €5)
: 2 51N ‘t“

where Amu and 'ml are relative fringe motions of the upper
and lower patterns, and 't is a fixed observation position.
- ) N The Am are measured as a fraction of the spacing between
S fringes, i.e. m = 1 means a fringe has moved to occupy the
e spacing of an adjacent neighbor. 1In the averaging of

- Equation 5, fringe motion is defined as positive if it is
S toward the incident laser beam. Note that rigid-body motion
Tl which is not parallel to the load axis causes errors not

\ eliminated by Equation 5; fortunately, that motion is small
SRR in most laboratory setups.

S The quantity X /sin « is a calibration factor for the
= measurement. X is 0.633 um for He-Ne laser light, and <. is
e approximately 42° because of the shape of the Vicker's
diamond. Therefore, the calibration constant is
approximately 1 micrometer. If one is to measure smaller
e displacements, then one must measure .~ m with greater
P resolution. The next section describes a minicomputer-based
SN system for real-time measurements with a resolution on the
e order of 0.02 yum.

e Minicomputer-Based System

: The approach to measuring smaller fringe movements is
- to use a servocontrolled scanning mirror and a slit-covered
~oe photomultiplier tube (PMT) to sample the fringe position.

' Figure 4 is a schematic of the system and shows two scanners
. - each controlled by the minicomputer. In addition, the
load applied to the specimen in the electrohydraulic test
Yoo machine is controlled by the minicomputer.

i Figure 5 is an overview of the test system. The
electrohydraulic test machine is by MTS and has a 90

. kilonewton load capacity, but uses a Lebow model 3170 load
AN cell with a capacity of 9 kilonewtons. A locally
constructed resistance furnace surrounds the specimen; it
Ry has quartz windows for the entering laser beam, the exiting
o fringe patterns, and for observation of the specimen during
o a test., It is heated by a Research, Inc. model 646 power
controller in conjunction with an Omega Model 4002

5 temperature controller using a chromel-alumel thermocouple.
PRI Fans are used to cool the load cell and the scanners. The 5
R milliwatt laser is from, Ealing, model 25-0860, and is
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mounted on a fine-thread X-Z stage for easy positioning of
the laser beam on the indents.

The scanner and PMT mounting board is shown in Figure
5; it is mounted on a tripod and an X-Y stage. Figure 6 is
a closeup of one of the scanning mirrors and the PMT
enclosure. The scanners are from General Scanning, Inc. -
model G-100 PDT. They are heated above room temperature
with an electric heating tape; the temperature is measured
with a thermistor. Movement of the mirror as well as
temperature control is effected by a Model CCX0l control
unit, also from General Scanning. The mirror units are
mounted on a finned aluminum conductor which dissipates heat
associated with the galvanometer type drive unit. The front
surface mirror is 7 x 16 mm in size with the long dimension
perpendicular to the fringes. Each mirror unit is mounted
on a microscope stage positioning device (not shown) which
permits movement parallel to and perpendicular to the
fringes., The mirror control unit has an amplitude and
position control; one aligns the fringe pattern by
positioning the mirror in the fringe pattern and then
rotating it to reflect the fringes onto the PMT.

RCA model 4840 PMTs and model PF1042 power supplies are
used. The PMT is side-opening and enclosed in a minibox.
The power supply is the cylindrical box with wires in Figure
6. The aperture to the PMT is covered with an interference
filter and then a mask with a slit approximately 1 mm wide;
these are mounted in an aluminum holder. The white paint on
the mask is useful in viewing the fringes for aligning.

The 13.5 volts DC required by the power supplies is provided
by a Tektronix 501-2 rack-mounted power supply. Output from
the PMTs (nominally - 10 millivolts) is inverted and
amplified by Tektronix model 502 amplifiers. A Gould model
051400 digital storage oscilloscope is used to monitor the
PMT outputs.

Figure 7 is an overview of the minicomputer system.
The basic unit is a DEC MINC minicomputer with 16 channels
A/D, 4 channels D/A, and a VT1l05 graphics terminal. It is
augmented with a DEC RLOl 10-Mbyte disk, LAl120 line printer,
and a Houston Instruments Model DP 101 digital plotter.
Programming is done in FORTRAN IV. The minicomputer and
disk drive are protected by a Topaz model 70306 line surge
protector.

Measurement Strategy

There are basically four parts to a minicomputer
program for a particular experiment:
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Closeup of scanning mirror and PMT
Overview of minicomputer system
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l. A setup part in which the data tfiles are named;
load ranges, time intervals, and other parameters
specified.

2. An initialization part where the fringes are
aligned and spacing and location determinea.

3. The actual test program where load signals are sent
to the test machine and displacement measurements
are made.

4. A displacement measurement subroutine which measures
the fringe motion and converts it into a displace-
ment value; this subroutine is repeatedly called in
part 3.

In this section, part 2 will be discussed briefly and part 4
in some detail.

The initialization part starts with a loop that simply
sweeps the fringes across the slit of the PMT. The loo0p
generates in 256 increments a sawtooth analog output of + 5
volts at a frequency of 13 Hz. The sawtooth signal is
attenuated at the servomirror controller to adjust the angle
of rotation of the mirror. The position adjustment of the
controller is used to center the pattern on the PMT. Figure
8a is a plot of intensity versus angle when the angle of
rotation is large enough to sweep all the fringes that
impinge on the mirror past the slit (the plot was taken from
the storage oscilloscope). While this loop is running, the
mirrors, PMT amplifiers, and mirror controllers are adjusted
to get the desired signal. Figure 8b is an example of a
typical final adjustment - 3 minimums centered in the sweep.

On keyboard command the rest of the initialization
takes place. A single 256 increment sweep generates and
stores a signal like the one in Figure 8b. That data is
processed to determine the location of the central minima,
CHl1 and CH2, and the spacings MSP1 and MSP2 for the two
fringe patterns.

The basic measurement strategy is to follow the center
minimum of Figure 8b as it moves left or right. The mirrors
are rotated only 60 increments (instead of 256), and as the
minimum moves left or right, the mean output voltage is
adjusted so that the next sweep will include the moving
minimum. All this is accomplished with the subroutine SND
described below. Figure 9a is a plot of the PMT output for

I A A SR




N
.
]
o d
3
}

LMY YY)

- LAre _en o A<ath Y Ae-Sam U]
A ) AL e e B A el S R i O A A P A AR DA .

.

Figure 8a - Sweep of entire fringe pattern

]

Figure 8b ~ Attenuated mirror sweep adjusted for test
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one channel when the fringe is moving very little.
Computation of the amount of fringe motion and upcating ot
the mean position takes place during the flat portions at
minimum voltage. Figure 9b is a plot when the fringe is
moving to the left, and Figure 9c is when its moving to the
right. From Figure 9, one sees that each displacement
measurement takes 100 ms with half the time devotea to
scanning and the other half to computing.

Fiqure 10 is a listing of the subroutine SND. NPTS and
NAV were parameters in the origiral version, but they have
been set at 60 and 10 respectively. NPTS is the number of
increments the mirror sweeps. NAV is the number of data
points averaged in a sliding average to smootii out the
fringe intensity prior to locating the minimum. CC is a
constant related to the calibration factor in Equation 5; it
includes the fringe spacings MSPl and MSP2 which are also
constants for a particular setup.

CH1 and CH2 are the locations of the minima before the
sweep was run, and CHIN and CH2N are locations afterwara.
The difference is related to the displacement; see iine 53.
The signs are different on channels 1 and 2 because the
mirrors sweep in the same angular direction.

When the fringe has moved more than one spacing (see
Figure 8b), the subroutine directs the mean position of the
mirror back to the center of the adjacent fringe.
Displacements on the order of 100 micrometers can bec
measured by this strategy. NDSP is the integer value of the
total measured displacement; whereas NDSPO is a temporary
value stored every time either mirror is shifted a complete
fringe. ISH is a counter (-1, 0, +1) indicating whether
channel 1 (ISH = -1) or channel 2 (ISH = +1) has shifted an
entire fringe. The logic of the subroutine is such that
NDSP is computed, the mean position is shifted one fringe
spacing if necessary, and NDSPO is computed for use on the
next scan.

Correction for lLarge Displacement

The minicomputer system measures fringe motion as a
physical movement of the minimum position and divides by the
original spacing to compute 'm. If the spacing is 100
increments of mirror motion, and the minimum moves 5
increments between scans, then ‘m = 0.05., However, the
spacing DOetween fringes changes as the clstance bewween
indentations changes, and it is necessary to correct for
that fact.
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C Xx¥xsxxxx%x%x% subroutine SND XXXXxx3%%

FAGE 001

TTTToOboY T T SUBROUTINE SNDUNPTSyMSPI HSPIYCHIN/CHAN, CHT L, CR2/NAV I CCoaNDSP ¢/ NUS
0002 INTEGER T1+72sCH1,CH2+,CHINSCH2N
0003 INTEGERX4 NUSP e NDSFOrNDS
0004 7 77 DTHENSTION T1(80)vT2(60)-IVI(60),XV2(EGY ~—— ~ 777 = ~7= 77~
00035 ISH=0
0006 258 DO 260 J=1.,NFTS

TTTTUO07 Jr=J" T - T T T
0008 TI(J)=CH1-BX((NPTS/2)-J1)
0009 T2(J)=CH2-B¥((NPTS/2)~J1)

0010 260 CONTINUE

0011 DO 270 J=1,NPTS
0012 CALL AQUT(T1(U)r0s1)
0013 CALL ADOUTIT2TD » I 1D
0014 CALL AINCIVI(I)»0s1)
0015 CALL AIHCIV2(J)rirl)
TTTT0014 2700 T CONTINUE T T T T T T T TS
0017 JS=NPTS/2
0018 CALL AOUT(T1(JS)s0s1)
T 00y T T CALLTAQUTUTICIS Y v 1017
0020 IMPT1=0
0021 INPT2=0
T 0022 “DO 280 KJ=1,NAV TTTTTT T T s e —
0023 IMPTI=IVI(KJ)+INPTL
0024 IMPT2=IV2(KJ)+INHPT2
0025 280 CONTINUE — — =~
0026 IV3=INPT]
0027 IV4=INPT2
N " 0028 T CH1=T1(}1) T T T -
0029 CH2=T2(1)
0030 N9=NFTS-NAV-1
T T 0031 PO 300 KK=29N9 Tt T -
0032 KT=KK+NAV~-1
0033 IV3I=IVI+IVI(KT)-IVI(KT~NAY)
TTTT 0034 T IVA=TV44 IV2(KTY-IV2(KT-NAV) - T T T T
0035 IF(IVI.GE.INMPTL)GO TO 290
0037 IXPTLI=IV3
0038~ — CRIZTI(RKS
0039 290 IF(IVA.GE.INPT2)G0 TO 300
0041 IMNPT2=21V4
0042 CHZ=T2 (KK)
0043 300  CONTINUE
0044 304 IF(ISH)305,308,306
0043~ 305 CHIN=CHKI
0046 NDSPO=NISP-CCK100, X(CHZ~CH2!)
0047 ISH=0 S
0048 GO TO 336 N -7 -
0049 304  CH2N=CH2
0050 NDSFO=NDSP~-CC¥100. X (CHIN- (K1)
TT 0SS T T _ISH=E0T T T T T T -
0052 GO TO 336
0053 308 DSP=((CHIN-CH1)4(CH2-CH2N) }XCCx100.
. 0054 ~ T T NDSSUSFYLS T T T T - D
005% 310  NDSF=NDSPO+NDS
00S6 250  IF((CHIN-CH1).LE.(8%MSP1))GD TO 252
TUSH CHIECRIFB¥ASPI
0019 ISH=~1
00560 G0 To 258 B
— 3681 252 IFC(CAI=CHINY . LE. (B¥H5P1))IGO TO 294
0063 CH1=CH1-BXHSP1
0064 ISH=-1
0035 GO T0 258
0066 254  IF((CH2-CH2N).LE.(8%MSF2))G0 TO 256
0068 CH2=CH2-81XNSF2
0089~ TSH=+T T - "
0070 GO 10 258
0071 256 IF((CH2N-CH2) ,LE. (8XMSF2))G0 TO 236
——0U73 T CHYSCHIFUIMSPT —
0074 1SK=1
0075 G3 1G 258 L
00786338 RETURN Tt T T T o
0077 END
Figure i0. lListiing of the displacement measuring subroutine,
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ml Equation (15) 1is the correction for large displacement and
b is incorporated in the main program by statements like:

seniaehaib il Sen

[ISF2=NISP
DSF3=0SF2/(1-DSF2/00)
IDSF(NQ)=DSF3+.5

Figure 11 is a plot of the load-displacement measured
on compact tension specimen 6-035 at room temperature. That
specimen load had been used for 4 creep experiments with
small displacements, but still had good indentations. The
average final crack length which was determined after the
specimen had been broken apart is 23.08 mm. Indentations
were located at a position 16.73 mm from the load-line.
After some initial nonlinear behavior because of crack
closure, the elastic result is quite straight until almost
100 microns total displacement. One of the fringe patterns
became too fine to resolve with the slit-covered PMT which
caused erroneous results after approximately 90 microns.
The elastic compliance was calculated at the indentations'
location rollowing the procedure of baxena and Hudak (12).
The parameters were a/W = 0.58, x/W = 0.42, E = 203 x 10°
MPa, width B = 10 mm, and W = 40 mm. The calculated
compliance is 1.05 x 10 ° microns/nt; whereas, the measured
compliance for the region between 500 and 2000 pounds (see
Figure 11) is also 1.05 x 10 microns/Nt. This is
certainly a fortuitous agreement, but does indicate that the
measurement system is working correctly.

£ icat E ] DG

The extensive testing in the NASA-sponsored Benchmark
Notch Test program (6) provided sufficient data for
N evaluation of the 1SDG. The following specifications arise
from that work plus the current program.

b

v e .
PR
PSP

Gage Length - 100 micrometers is used in this
work, but it could be reduced to 50 micrometers.
Smaller indentations (approximately 10 micro-
meters square) have been used with a gage length
of 30 micrometers.
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Range - approximately 100 micrometers has been
demonstrated. With finer slits on the PMTs
and a more powerful laser, the range could be

ii extended to 400 micrometers without difficulty.
e Sampling Rate - 11 samples per second. This can be
- speeded up with faster mirrors and computer

AR hardware.

Relative Uncertainty - + 3% with an addicional
uncertainty of +.0.015 micrometer. For example
a measured displacement of 1.0 micrometers would
have an uncertainty of +, .045 micrometers. The +. 3%
is associated with determination of the angle & ,
and the +.0.015 micrometer arises from the effects
of electrical and optical noise on the determinat-
ion of minimum positions. The results in Figure
11 show that this is a very conservative assessment
of the relative uncertainty.

Temperature Range - to 730 C on this superalloy
material. Vapor deposited protective coatings
could be used to extend this range.
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EXPERIMENTAL PROCEDURES by

The material used was Inconel 718, a nickel-based
superalloy widely used in the turbine disks of aircraft jet
engines. It was given a standard heat treatment of 968C for
1 hour, quench, 718C for 8 hours, and air cool. In another
study (6), the elastic modulus at 650C was determined to be
161 x 10 MPa for a similarly treated version of 718. The N
material used in this work was tested in a separate study
(13) at various strain rates, and the modulus at 650C found
to be 164 x 10 MPa at the slowest strain rate of 10- per
second.

The specimens were the standard compact tension
geometry with overall dimensions of 48 mm by 50 mm with a
dimension of w = 40 mm from the load line to the furthest
edge. They were machined to a thickness of 10.0 mm from
12.5 mm thick plate with the notch oriented in the T-L
configuration. All machining was done by Metcut Research
Associates, Inc. of Cincinatti, Ohio. Specimens were
precracked at room temperature to an initial crack length,
a, of 14 mm as measured from the load line.

Before precracking, specimens were mechanically
polished on various grades of silicon carbide paper with the
final polish using 1.0 micron diamond paste on a felt wheel.
After precracking, the specimens were pre-oxidized at 650C
for one hour. It had been learned from earlier work on
similar materials that indents applied after this
preoxidization remain reflective at temperature for long
times. Several (usually 4) experiments were run on each
specimen with precracking at room temperature and a new set
of indents near the crack tip between tests.

Loading Apparatus

All loading was done in the electrohydraulic test
machine under computer control. Special grips of alloy 713C
were purchased for the high temperature tests. A
wedge-shaped section was cut from these grips to permit exit
of the two fringe patterns for indents at the tips of the

shorter cracks. Figure 12 is a photograph of a specimen in
the grips.

Specimens were heated in a locally constructed
resistance furnace which has 3 quartz ports for the incident
laser beam and the two fringe patterns. Two viewing ports
are also included. Figure 5 showed the furnace mounted on
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A the test machire. The load links are quite long, and a fan
1! blowing on the load cell keeps it at ambient temperature. A
Ac thermocouple was pushed in contact with the specimen and
s provided the signal for the temperature controller which
o held the specimen at the test temperature + 2C. It took
- approximately one hour to heat the specimen up and stabilize
. at a temperature of 650C.
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CREEP THRESHOLD MEASUREMENTS

The underlying theme behind this part of the research F
program was to study the use of the ISDG to measure crack
opening displacement under creep conditions. With its high
sensitivity and good long-term stability, the I1SDG should
enable determination of threshold creep values in minimal
time. An earlier study of IN-100, with less sophisticated

. measurements, is reported in reference 14.

Loading Schedule

A separate program, CRTH, was written to apply the load
and make the ISDG measurements. The loading schedule is
shown schematically in Figqure 13. A very small load was
applied to the specimen as it was heated. After the test
temperature was reached, a larger initial load was applied,
but it was still less than half the to-be-applied creep
load. The laser beam was then adjusted to its final
position. At this point, the ISDG was initialized as
described earlier; this took only a couple of minutes. The
final increment of load was applied to reach the creep load.

This rate of loading was the same as used for subsequent
compliance measurements.

proga

Two seconds after the creep load was reached, the first
compliance was automatically taken. The load was dropped at
a linear rate to 445 newtons below the creep load and then
immediately reapplied. Displacement measurements were made
(every 20 seconds except for one 5-hour test) automatically,
and compliance data taken on command from the keyboard.

Each compliance measurement took 50 seconds, and most tests
lasted 30 minutes. Load displacement and time were
displayed on the terminal to permit monitoring of the test.

After a creep test at temperature, the specimen was
precracked at room temperature in preparation for another

test. Four tests could be run on one specimen while staying
in the middle region.

X

.

A ACAOA

v
. efelite N
RIARIANI A

T -
il
PEREN 14

(X0

P4
h‘-.

-
-t
L.




b S S

T TS,

w

o,

T

e

Ak A '\'

i

A

ey AL Aad N

A GAESESEALALNENE G

_—
-

2secC

50 sec

I

TIME

avo’l

Figure 13.

Loading schedule for creep tests.
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Data Presentation

The creep displacement data and compliance data were .
stored in separate files on the 10-Mbyte disk and plotted
after completion of the test. Fiqure 14 shows the results
from test 21092 which was at a high stress intensity factor.
Approximately 2.6 micrometers of creep occurred during this
30 minute test. The vertical "tick" marks indicate when the 4
command compliance measurements were made.

Compliances were also determined after the tests by fitting
a least-squares straight line to each set of
unloading/loading data. Figure 15 is a plot of the 4
compliances of test 21092; there are 20 points for unloading
and 20 for reloading. The fitted straight lines extend past
the 445 newton (100 1lb) compliance load increment so that
the left intercepts may be shown. The rightmost data points
on each compliance correspond to the displacement at the
tick marks in Figure 14. The data analysis program printed
out the slopes, intercepts, and the correlation.
coefficients,

Results

The results of 9 tests are summarized in the following
tables. Plots of creep displacement and compliances are
given in Appendix 1 for all 9 tests.

Table 1 presents the surface crack length measurements
- all from the load line - along with the creep stress
intensity factor (SIF) and total creep displacement. a. is
the initial crack length on the side with the indents, and a ;g
is the location of the indents. The difference gives the
distance of the indents behind the crack tip (r) which is
usually 0.4 mm or less. This gives a ratio of r/a of 0.03
or less. Kobayashi (15) states that the "local region"
wherein linear elastic displacement calculations are valid
is r/a £ 0.05.

Table 2 gives information on the calculated and
measured compliances. The measured ones are simply the
slopes of the straight lines of Figure 15. Calculated
values are obtained using linear elasticity equations; the
linear behavior of Figure 15 verifies this process. The
compliance at a point r, behind the crack tip is given by
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CRACK LENGTHS, .LOADS, AND CREEDP DISPLACEMUNTS

AN FOR THE CREEP TESTS

‘ Test Specimen Initial Indents Initial Surtace Final surtace
- Number Number S Locations Crack Length Crack Length
n .

o | | At a A

'-: MPa-m mn mm mm

u::\

) 10092 6-038 22.0 13.66 14.58 14.74

- 13092  6-038 13.7 16.50 16.84 16.90

~.(‘:

~on 16092  6-038 23.5 21.68 22.04 22.10

\‘."

17092
Y (5 hrs)

13.92 14.32 14.38

o 20092  6-035 16.5 16.70 16.90 17.00
;ﬁf 21092 6-035 22.0 18.72 18.92 19.02

AR 22092 6-035 16.5 22.08 22.14 22.28

o 23092 7-039 19.2 13.58 13.90 13.94

24092 7-039 13.7 16.38 16.64 16.66
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1.05

1.00
1.15

0.72
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Test
Number

10092

13092

16092

17092

20092

21092

22092

23092

26092
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TABLE 2

CALCULATED AND MEASURED COMPLIANCES FOR THE

CREEP TESTS

3

- im
COMPLIANCES 10 L /Nt

calculated measured

Cis Cl LZ C

2.08 1.84 2,16 1.96
1.49 1.88 1.19 -

2.18 2.42 2.35 2.45
1.32 1.64 1.61 1.40
1.06 1.50 1.63 1.40
1.30 1.88 1.80 1.80
0.72 2.12 2.21 2,22
1.25 1.50 1.43 1.51

1.24 1.52 1.44 1.37
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2.54
1.37
1.49
1.89
2.15
1.45

1.43

calculated

Cfs
2.27
1.60
2.48
1.41
1.34
1.60
1.58

1.44

1.31
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where E is the elastic modulus and 1s Poilsson's ratio. W
is the specimen width from the load line, and F 1is the
stress intensity factor variation with a. The compliances

C and C are calculated from the initial and final
ctick lengths a, anda.,. C, C. C,andC,are the
measured compliances with C being the one taken 2 seconds
after reading the creep load.

The measured compliances of Table 2 show a lot of
scatter. They do not increase uniformly with time even when
there is considerable crack growth. Calculated compliances
tend to be smaller than those measured. For example, the
measured compliances of test 16902 change very little, but
there was considerable creep displacement.

In his extensive study of creep in compact tension
specimens of IN-100(1), Donath noted that compliances taken
soon after the creep load was reached usually were smaller
than the initial loading compliance. Table 3 supports this
observation; C, 1is the compliance computed from the last
110 Newtons of initial loading. This is not surprising
because the final portion of the loading leads to nonlinear
deformation around the crack tip, but the compliances taken
after the creep load is reached show linear behavior.

The cracks are oi course not perfectly straight through
the specimen, and Figure 16 is a photograph of specimen
6-035 after it was broken open at room temperature. The
last three tests are clearly visible and show a gentle
curvature with reasonably uniform creep crack growth. The
creep growth, as evidenced by the dark bands, show the
familiar striations perpendicular to the crack front. These :
bands are dark because the fresh material surfaces were 1
exposed to high temperatures; whereas, the intermediate
fatique crack growth for the first test on this specimen is
hard to see because the initial precrack is stained. The
. specimens were precracked; then cleaned¢ with soapy water,
acetone, and methanol successively; these solutions seeped

|
AT
e

Fi into the precrack and staized 1t at high temperature.

e

1 Crack length measurements - both initial and final -
— .

e were made after the specimens were broken open. An X-Y
o

.
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TABLE 3

FIRST COMPLIANCES FOR THE CREFEP TESTS

Test FFinal Loading First Incremental
Number Compliance Compliance - Cl
1077 ym/Nt 1077 um/ne
. 10092 2.60 1.84
13092 2.01 1.88
16092 3.00 2,42
17092 1.75 1.64
22092 1.73 1.50
21092 2.30 1.88
22092 2.43 2.12
23092 1.70 1.50
24092 1.75 1.52
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' Specimen 6-035

) Figure 16. Crack surface after four tests.
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microscope with a resolution of 0.025 nm was used, and
measurements were made at the 2 sides plus 5 intermediate
points. The average values of these initial and final crack
lengths are presented in w1able 4 as a and a . They are of
course larger values than the surface measurements of Table
2. The standard deviation of the 7 measurements was 0.5 mm
or less. _Compliances based on these crack lengths are also
given as C; and C: . These compliances are larger than

. those of Table 2 primarily because r is larger.

Figure 17 is a plot of the crack growth rate versus K
where the growth rate is taken from the data of Table 4,
i.e. based on final average data after the specimen is
broken open. This illustrates the scatter inherent in creep
crack growth experiments. For examples, the two tests at
13.7 MPa-m" were conducted on separate specimens with very
nearly identical initical crack lengths, yet the amount of
creep crack growth was very different.

. .

Since the distance of the indents behind the crack tip
1s much less than the crack length, it is clear that "r" is
most affected by an extension of the crack. The relative
changes in F, , a, and ' in Equation 16 are much smaller.
So, the relative uncertainty in C is approximately.

This means that if one wishes to use compliance changes to
infer crack growth, it is best to make measurements near the
crack tip. But from a practical viewpoint, it also means
that any nonuniform crack growth, "tunneling" ahead of the
crack, or other irregularities in creep crack growth greatly
affect the measurement value of C.

It is believed that local irregqularities contribute to
the scatter in the measured compliances of Table 2 because
the indents are so close to the tip. FEarlier work (14) on
center-cracked panel specimens of IN-100 at 730C with
indentations located near the specimen centerline showed
that the compliances increased uniformly with crack growth.
Those compliance measurements, made far away from the crack
tip, produced much smoother and more sensible results.
Measurements by Macha et al (16) agree very well with
elastic calculations, but they were made on aluminum
specimens with nice, straight crack fronts and no plastic
deformations or creep involved. The excellent agreement of
Figure 11 which was taken at room temperature on specimen

Y ‘n;;ﬁn;xn‘
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TABLE 4

F',_-_ AVERAGE CRACK LENGTHS AND COMPLIANCES FOR
K.~ THE CREEP TESTS

Test Average Crack Compliances !
1!. Numbor Lengths

S

. ‘-. a 1 C . C

mm mm 10 /Nt 10 ”m/Nt

:i- 10092 14.94 15,42 2.28 2.76
MEN

- 13092 17.32 17.44 2.15 2.33
-

r"

16092 22.38 22,70 2,84 3.57
17092 15.08 15.30 2.17 2.40
20092 17.44 17.62 2.03 2.29
21092 19.58 19.98 2.56 3.19
22092 22.96 23.08 3.36 3.64
23092 14.94 15.18 2.39 2,64

24092 17.68 17.86 2.74 2.96
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Figure 17. Average crack growth rate versus K.
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6-035 was obtained tfo: indentations 6.4 nn wel.ra the crack
tip.

It is reasonable to compute the elastic component of
the crack opening displacement by multiplying :ne changes in
compliance computed from crack lengtn measurements py the
creep load. That component should be simply aus to the
crack growth; the rest woulca arise from creep or the
material. Calculations based on surface crace« iength -
measurements do in general yield an opening &4is.iacenent
smaller than the measured . However, caicu.at:ons based
on average crack lengths produce larger than = . This is
another example of the experimental conditions not matching
the linear elastic model - at least near the Crack tip.

Seobdennetucnnbal bk

However, if the primary purpose of a series of tests is
to quickly establish a creep threshold value, that can
easily be done. Figure 18 is a plot of the crack opening
displacement rate divided by the first measurec compliance -
It shows that the creep rate normalized by the specimen
compliance is reasonably linearly related to the magnitude
of the stress intensity factor. Extrapolation to zero crack
growth gives a threshold value of 10.4 MPa-m- which is
consistent with the results from test 17092 at the lowest K
for 5 hours. This is quite a bit lower than the

16 MPa-m ‘ reported by Sadananda and Shahinian (17) for
Alloy 718 at 649C in tests lasting 200 hours. So, by
measuring creep crack opening displacement witn the ISDG and
removing the geometry effects by dividing by the measured
compliance, one can establish a threshold value.

One can also fit a straight line to the data of Figqure
17 and establish a threshold value without any sophisticated
measurements at all. But the normalized ISDG data shows
less scatter and also permit one to evaluate the creep
growth before the specimen is broken open. This is useful
in getting optimal usage from multiple tests on the same
specimen.

conclusions

The ISDG works well for crack opening displacement
measurements on superalloys at high temperature. Figures 14
and 15 show that the data is smooth and that displacements
on the order of 0.02 micrometers are resolved. Furthermore,
the minicomputer - controllied system makes cata acquisition
and subsequent analysis very easy. The realtine display of
crack opening displacement during a Creep experiment irs
especially useful.
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Pig i i
jure 18, Normalized crack opening displacement rate
versus K,
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Incremental compilance meatarenents near the crack tip
are not modelleda well by linea: viasvic fracture mechanics.
The three-dimensional nature ot tne problem as well as
deviations such av curved crack tronte preciude this.
Furthermore¢, 1rregularities in iocCail Crack tip behavior
during creep growth contripute (¢ uscatter in the measured
compliances. 1InCremental Copllan. o measured near the tip
did not prove usetful in either escablishine a threshold
value or inferring the amount ¢f crecp ©rack growth.

Measurencnts of creep CracCk opching displacement
normalized by the first measured incremental compliance did
prove useful in establishing a threshcla stress intensity
factor for creep - it is ~ 10MPa-m - for lnconel 718 at
650C. The advantage of the ISDG is that one knows within a
very few minutes (certainly within a [{ew hours for very low
creep loads) whether creep is occurring. It is much more
sensitive and easy-to-use than other techniques. This
realtime information is useful for eificient planning of
experiments to establish threshold vaiues.
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o FATIGUE THRESHOLD MEASUREMENTS

P
,-
1
— . e e

Just as increasing crack opening displacement
identified creep in the previous section, one would expect
an increasing relative displacement between minimum and
maximum loads to identify fatique crack growth. The ISDG is
. not nearly fast enough to permit fatigue loading for tens of
y thousands of cycles in a reasonable time, so the fatigue

loading was interrupted periodically for an incremental
- displacement measurement.

> Loading Schedule

A program, FATH, was written to fatique load the
specimen at a rate of approximately 20 Hz and periodically
interrupt it for a complete measurement of displacement

- versus load through one cycle. Figure 19 is a schematic of
the FATH loading schedule. An initial single cycle was

N applied without 1SDG measurement in order to "seat" the
specimen in the grips. Then the laser beam was adjusted and '
the initilization subprogram run. Next a single ramp cycle
was run during which ISDG measurements were made. This
single cycle was immediately and automatically followed by a
- sine function signal to fatigque load the specimen ot

e approximately 20 Hz. This loading signal was periodically )
'ﬁ interrupted for a single ramp cycle. Each single ramp cycle

A took 24 seconds.

e

o~ }‘ 'a..'," e " . " -' ..‘

2o

el D B Bl Dl .

- RRRCARE

) Early in this phase of the investigation, only the

- maximum and minimum displacements during the single cycle

- were recorded. Incremental displacement measurements in

N those early experiments showed similar behavior to the more

e complete results reported herein, but they are included in

) this report only in Table 5. There were six preliminary
tests and six complete tests.

Again the specimens were precracked at room temperature
between tests and finally broken open for crack shape
measurements. All precracking and fatigue testing were done
with an R ratio of 0.1.

Data Presentation

. e,
4
e R S et i

All of the various single cycle displacement-load data
were stored in a single file; each sinagie cycle record could

- l.l.l-l.l.l“'.

Q be accessed independently. Figure 20 is ' plot of the

F, incremental displacement data for west 1.083 which was run
DA for 50,000 cycles at AK = 11.0 MPa-m‘ . The lower plot

Xy with circle symbols is the crack opening displacement at the
s
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minimum load; the uUppcs sel 0D CoiC.. ... . .o L+ maximum
load.

This decrease 3n rad

G T Co L ucTen A0 il mlnimum

:jf load was unexpectec; howove. . i wa.o .o . o L wiher tests
:g} which showed crack giowi, oo, o, S e iliiyofest).
NI Nevertheless, to assure Ly (i wer oo . o ooont drift,
;;: immediately after cne tos. wa. con o T, Lo .iuy check

was conducted by runnirou Tuo oo oo .. ¢ .cad
input disconnected from a0 TSl i LA . oL
symbols on the vero a:oo. oo it G ceenwn of
this Stability Chech = Chviv 12 O320¢ 0 aa. coed T The

§ - SN

) triangle symbols in rigure 20 tre & .00 G .7 Locremental
S displacement whicn 1o =¢¢ 0 .07V ese wu. G cLLav. 'Pnis
~. particular test did ioGed. Ho0w Fowlive ool E oW,

o Figure 21 is & pL.o: .1 i Dol v . wEesT
- 11083. Note that the Loginning onu ernl.00 . - wiefnent in
T each case corresponds ¢ oo Vel asry Dot e o L 0% LR
A Figure 20. It is evidehie 720 Ui .7 o ... .. cach

i curve 1is linear - wmeaning tnhHat the SOCCLues Lo Hov0G i a
i linear elastic fashion after a particular ¢rering Load had
;Q: been surpassed. This opening ioad is observea to gecrease
e with cycling in Figure 21, ancd the cownll Lance o . woasuced
s from the upper or lineary portioh inCiwasa. . L0 o bhit of

X hysteresis is observed on the first recoid ¢ = .. .

The opening 1oad can 22 mOre prociae: © ae. .o -6 it a

{}’ straight line is {fitted to iL2» uduper linldoi swi. .o ai3a the

s original data suwbtracted from this fitc2l (.. igure 22
s illustrates this for the lirst recoided ov oo o0 “est 11083,

Ity The original data is plotted as t:iencio .. cwu.. .0 and

i squares (unloading). A least-squares su....:. .i& iS

o fitted to the upper vorvion; these cwe -1 4 ¢ ¢rawn and
> marked with circles, finally, the riciooo wni 1s plotted

N as crosses - the values boing awprorsn.i. ', ooiw 10 the

My upper region. Programs wele wWiitten oo oo o . Cols

a manipulation and to identi’y the coerning 2. a3 ctnat value
“ where the reduced data deviated from zerc v -¢ percent of

e the maximum deviation {(waich OCcurs of Coul -« it zerc load).

,tj Some judgment was required in using thi: opening load

;:A program. The largest portion of the upper poction of the

o curv was used winich wouid give a gshraignt ©.ne coirelation
".i' of 0.99 or better. severa! trials wers o.Lln sag.ired, but
=~ some of the data nad coriclatlons of beotos w.:r 0.9965,

o
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Results

The results of the six complete tests are summarized
and max/min displacement versus cycles are presented in this
section. Selected single cycle plots of lcad versus
displacement and of the corresponding reduced data are
included in Appendix 2. The average crack lengths were
measured after the specimens were broken open.

Table 5 list the specimens, loading, initial average
crack lengths, and average crack growth for all twelve
tests. The results at AK = 16.5 MPa-m * and at / K = 8.8
are consistent, but there is variation in the results at 'K
= 11.0 MPa-m :.

Figure 23 1s a plot of crack growth rate versus stress
intensity factor range. Rates are computed simply from the
data of Table 5, and the results are presented on the usual
log-log plot. The inconsistences in the growth rates at /K
= 11.0, MPa-m-‘are quite evident there.

The surface crack lengths and compliances based on them
are presented in Table 6. The measured compliances for the
first and last cycles are compared with the calculated
values, and again the measured values are higher. Behavior
here is similar to that observed in the creep threshold
experiments.

Detailed information on each of the six complete tests
is given in Figures 24-35. The maximum and minimum crack
opening displacements versus cycles are presented along with
variations in compliances and opening loads. The opening
load ratio is the load at which the crack opens divided
by the maximum load. Information on the precracking load
schedule is also given.
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CRACK LENGTHS, LOADS, AND AVERAGE CRACK GROWTH
FOR THE FATIGUE TESTS

Test Specimen SIF Average Initial Average U-ack Total
Number Number Range Crack Length Growth Cycles
Ak 51 :a xilocycles
MPa—m‘ﬁ mm mm
15073 7-034 16,5 15.28 1.i8 17
03083 7-036 16.5 18.04 0.67 13
08083 7-037 16.5 19.79 0.42 11
21073 7-034 11.0 184.73 0.34 31.5
26073 7-037 11.0 15.61 0.65 48
11083 7-334 il.0 23.84 0.36 50
12083 7-037 11.0 23,40 0.0 80
16083 7-036 11.0 25.06 0.0 60
27073 7-036 8.8 21.29 0.0 100
29073 7-034 3.8 17.97 0.0 100
V9083 7-336 8.8 21.79 0.0 100
17083 7-037 8.8 26.26 0.0 100
TABLE ©

COMPLIANCES FOR THE FATIGUE TESTS

Test Indents Initial Surface Cycle Calculated Measured

Average Crack
Number Location Crack Length Compliance

Compliance Growth

s
a Is ais ca
. =3 -3 .
mm mm kilocycles 10 um/Nt 10 um/Nt mm
08083 18.43 18.60 0 1.16 1.68 0.42
11 2.8 3.50
11083 23.48 23.68 0 1.84 2.20 0.36
NN 50 3.19 4.00
e
_:‘; 12083 22.86 23.00 s} 1.45 2.46 0.00
"y 80 1.45 1.94
5:\ 16083 23.99 24.19 o] 2.07 55 0.00
i‘ 60 2.07 2.29
- 09083 21.67 21.82 o} .29 1.5% 2.00
._-:. 100 1.29 0.30
(SR
-.: 17083 25,29 25.44 ¢] 1.9% 2.00 0.00
:~ ’ 100 .98 1,37
o A€
o~
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Figure 23. Crack yrowth rates for the ratigue
threshold tests.
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TEST NUMBER - 08083

AK (MPa-m?) - 16.5
fi: TOTAL CYCLES (1000) - 10.5

A AVERAGE CRACK GROWTH (mm) - g.42
FINAL ROOM TEMPERATURE PRECRACKING

- L
-t AK (MPa-m*) - 16.5

S CYCLES -~ 5,000

3

[~ CRACK GROWTH (mm) - 0.14

e X - COMPLIANCE ﬁ
- A- OPENING LOAD RATIO (loading)
®- OPENING LOAD RATIO (unloading)

o
L
B
O

- o

o 0.5/ . 1200
— °

Q

.‘l‘.l
VY

1 - |

6 S
X1000 Cyciles

R KL
@)
w

[ NN A
Ty
L

B NI L RR

Figure 25. Information and data for Test 08083.
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TEST NUMBER - 11083
AK (MPa-m%) - 11.0

TOTAL CYCLES (1000) - s5q

AVERAGE CRACK GROWTH (mm) - .36

FINAL ROOM TEMPERATURE PRECRACKING

AK (MPa-m;5

) = 11.0
CYCLES - 65,000

CRACK GROWTH (mm) - 0.25

X - COMPLIANCE
&6 - OPENING LOAD RATIO (loading)
®- OPENING LOAD RATIO (unloading)

1.0F 4.0
X
€ Z
O‘\Q J =
ol /x/ T
0.5 ——8 —b———¢ : %2.0 ‘3

[ 1 | I
20 40
x1000 Cycles

Figure 27. Information and data for Test 11083.
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TEST NUMBER - 12083
AK (MPa—m%) - 11.0
TOTAL CYCLES (1000) - gp
AVERAGE CRACK GROWTH (mm) - 0.0
FINAL ROOM TEMPERATURE PRECRACKING
AK (MPa—m%) - 13.7
CYCLES - 20,000

CRACK GROWTH (mm) - 0.31

X - COMPLIANCE
&6- OPENING LOAD RATIO (loading)
® - OPENING LOAD RATIO (unlocading)

08— —§3.Q

1.0

%p/Pm

0.5

A

20 40 60 80
x 1000 Cycles

Figure 29. Information and data for Test 12083.
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TEST NUMBER - 16083
Y
AK (MPa-m?) - 11.0
TOTAL CYCLES (1000) - 60
AVERAGE CRACK GROWTH (mm) - 0.0
FINAL ROOM TEMPERATURE PRECRACKING
1
AK (MPa-m?) - 13.7
CYCLES - 110,000

CRACK GROWTH (mm) - 1.50

1.0F *- COMPLIANCE
: A- OPENING LOAD RATIO (loading)
®- OPENING LOAD RATIO (unloading)
=
a. Z
< 13.0 £
i N ——
Ol = S
™
0.5} 120 ©
X
O
11.0
_1 | . 1 1 I
20 40 60

x1000 Cycles

Figure 31. Information and data for Test 16003.
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TEST NUMBER - 09083
L
AK (MPa-m?) - 8.8
TOTAL CYCLES (1000) - 80
AVERAGE CRACK GROWTH (mm) - 0.0
FINAL ROOM TEMPERATURE PRECRACKING
Y
AK (MPa-m*) - 13.7
CYCLES - 65,000

CRACK GROWTH (mm) - 0.7

X — COMPLIANCE
A- OPENING LOAD RATIO (loading)
®- OPENING LOAD RATIO (unloading)

4 4

20 40 60 80 100
x1000 Cycles

Figure 33. Information and data for Test 09083.
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TEST NUMBER - 17083

AK (MPa—m5

) - 8.8

TOTAL CYCLES (1000) - 100

AVERAGE CRACK GROWTH (mm) - 0.0
FINAL ROOM TEMPERATURE PRECRACKING

AK (MPa—m%

) - 11.0
CYCLES - 80,000

CRACK GROWTH (mm) - 0.2

X - COMPLIANCE
6~- OPENING LOAD RATIO (loading) .
®- OPENING LOAD RATIO (unloading)

X

<
>
O

e

A 4

20 40 60 80 100
x1000 Cycles

Figure 35. Information and data for Test 17083.
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Table 5 shows inconsistences in the crack growth data
at ANK = 11.0 MPa-m° . Three of the tests showed crack
growth, and two did not. Results at higher and lower Ks
were quite consistent, An examination of the precracking
at room temperature offers an explanation. In those cases
where the final precracking at room temperature was at &

K = 11.0 MPa-m° , there was fatigue crack growth at 650C
for AK = 11.0 MPa-m:, If the room temperature AK was
higher, there was no growth at 650C. It was impractical to
precrack the specimens for the AK = 8.8 MPa-m experiments
at the same value at room temperature; the cracks simply
would not grow. This strong dependence of high temperature
behavior on room temperature precracking must be recognized
in establishing threshold values.

If a crack grew under fatigue loading at 650C, the
crack opening displacement (COD) at minimum load tended to
decrease with cycling, and the difference tended to
increase. Conversely, if the crack did not grow, the COD at
minimum load tended to increase and the difference decrease.
There is no ready explanation for this, but one must
remember that very small displacements are being measured on
the surface. If the crack doesn't grow, it is plausible to
expect the crack surfaces to accumulate an oxide film which
would possibly increase the COD at minimum load. If the
crack grows, the situation is more complicated because the
crack tip is moving away from the indents. This should lead
to an increase in the minimum COD, but it doesn't.

The unexpected variations in absolute values of COD
naturally lead one to question the stability of the
measurement system, but Figure 26 shows the ISDG to be quite
stable. The observed COD variations are apparently real
physical behavior.

Examination of the odd-numbered figures 25-35 shows the
compliance to stay more-or-less constant or decrease if
there is no growth and to increase if there is growth. The
compliances don't agree very well with those predicted (see
Table 6) as was true for the creep experiments. The same
reasons probably apply, namely three-dimensional effects and
lack of perfectly straight crack.

The data recording and analysis procedures make
establishment of the opening load easy. It stays
more-or-less constant whether the crack grows or not.
Unless the opening load ratio is greater than 0.5, there is
no crack growth. Supposedly; then one could ascertain
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whether or not the crack would grow by simply running one
cycle of loading. Note that these results apply to
measurements of COD very near the crack tip; a disferent
ratio would likely be obtained at more remote locations.

Conclusions

The 1ISDG works quite well for fatigue COD measurements.
The automated system with regqular interruptions for single
cycle measurements makes testing quite easy. It .s a very
stable system, and one can decide whether or not a crack
will grow with only a few kilocycles of testing.
Furthermore, the extensive load-COD data can be used to
study crack tip behavior.

The fatique threshold for 1nconel 718 at 650C is
approximately 11 MPa-m * . Establishment of this value is
highly dependent on the precracking procedure at room
temperature.
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SECTTON VI

- COD MEASUREMENTS AWAY FROM TIP

Both the creep and fatigue experiments show

e inconsistent agreement between calculated and measured

A compliances. These differences were attributed to
three-dimensional effects which are very important when COD
e is measured very close to the crack tip. Presumably better

agreement would be obtained if the COD was measured further .
;? away. Two additional experiments were run at a low and a
dfj high AK to examine the effect of measurement location.

Note that as one moves back from the crack tip, the COD
becomes larger, and this limits the response time of the
ISDG. Finer load increments must be taken so that the

fringes do not move too much between scans. Some of the
. single cycles load the specimen to less than the maximum

-

o load in fatigue.

‘::'} 1

v A new specimen, Number 7-032, was precracked at room

e temperature with the final increment of crack growth, 0.45
= mm, being at a AK of 11.0 MPa-m: . Figure 36 is a diagram
- of the crack obtained from measurements after the specimen
o was broken open. The curvature is typical of the cracks in
. the specimens used in the preceding section of fatigue
L threshold measurements. There was no growth at this low AK,
N as expected. The locations of the COD weasurement positions
;Qj are also given as distances behind the surface crack tip on
e side B. Measurements were made at room temperature, Test
:}? 18123, and 650C, Test 19123.

~'_ Figur~ 37 shows the load-displacement at various

g locations oehind the crack tip at room temperature. The

Ao opening load, i.e. the load above which the
N load-displacement becomes linear, is clearly dependent upon
i the measurement positisn. It becomes independent of

2, position far enough away from the tip; this is consistent
i with the results of Macha, et al (18).

ﬁi- Load-displacement plots at two positions at room

ﬁ;{ temperature and 650C are shown at Figure 38, The change in
N slope at high temperature is of course explained by the

N change in elastic modulus. The opening load ratio decreases
‘!3 at high temperature; the reduced stiffness of the

'jbf surrounding specimen material may explain this. It is also
ﬁ& possible that there is some thermal stress relief of the

o residual stresses behind the crack tip. Note that the .

:;ﬁ maximum load at 650C was not up to the AK of 8.8 MPa-m ;
A

o
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these load cycles were taken before the final fatigue
testing at 650C.

It was desired to run a very long test at A K = 8.8
MPa- m‘ in order to verify that there was no crack growth at
this SIF range. Figure 39 shows the minimum and maximum COD
and their difference for 480,000 cycles. That test ran 6
hours and 45 minutes. These CODs were measured at the
position 3.26 mm behind the crack tip and do not show a
decrease in the difference as did the earlier experiments
with measurements closer to the tip. However, the absolute
values of COD did increase with cycling.

Figure 40 plots selected single cycles during test
"9123. There is some sharpening of the "knee" of the curve,
but the slopes and the opening load ratios remain
essentially the same. Figures 39 and 40 show that there
should be no crack growth, and the final examination after
the specimen was broken open confirm that fact.

Table 7 summarizes comparisons between calculated
(following reference 12) and measured compliances. Elastic
moduluses of 213 X 10° MPa and 160 x 10’ MPa were used in
the calculations. There is actually better agreement at
high temperature than at room temperature. However, if one
looks back at Figure 36 and speculates on the 3-D effects
and consequences of slight misalignments in loading, it is
surprising that the agreement is as good as it is. The
perfect agreement of Figure 11 was obtained for COD
measurements 2 mm further back from the tip.

1
Results and Discussion for &K = 16.5 MPa-M~

Specimen 7-032 was then precracked at room temperaturi
with the final increment being 0.36. mm at A = 16.5 MPa-m °.
Figure 41 shows the initial and final cracks and the COD

measurement positions.

These fatigue loads were fairly high, and rapid growth
was expected. The first few loading cycles were of
particular interest, and complete load-displacement
measurements were made for the first 20 cycles. Figure 42
shows the first and twentieth cycles. These were to a load
equivalent to K = 16.5 MPa-m *: , and the first cycle was the
first time the specimen had experienced that maximum load at
650C. There is some increase in the minimum load COD on
the first cycle; this increase becomes smaller as the
specimen is cycled. The CODs of Figure 42 were measured at
the 0.30 mm position behind the surface tip. Earlier
experiments had shown the minimum load COD change on the
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TABLE 7

COMPLIEANCES MEASURED AWAY FROM 'P'HIY CRACK TIDP
Indents Location Comprliance at 200 Complimcee at 6500
. . -2 -
mm behind tip 10 jim, /Nt 10 Hm/Nt
Calculated Measured Calculated Measured

1.26 1.24 1.02 1.66 1.53
2.15 1.48 1.42 1.98 1.98
3. 20 1.78 1.58 2.8 2.37

d4.30 2.04 1.34 2.72 2.80

first cycle, but no difference for later cycles. It appears
that this change occurs fairly early and dies out. It may
indicate that the crack grows (or blunts) more in the first
few cycles than in subsequent ones.

Figure 43 shows the incremental COD .measured at the
4.41 mm position. This loading was started after the
initial 20 cycles, so it re-starts at the minimum load COD
equal to zero., Also, these single cycle measurements did
not load the specimen to the maximum A K. These results are
consistent with earlier ones.

Load-displacement for selected cycles during test 21123
are shown in Figure 44; all measured at the 4.41 mm
position. The change in slope of the upper portion as well
as the decrease in opening load ratio is evident. This
measurement position is far enough behind the crack tip
(originally at 4.41 mm and finally at 6.32 mm) that the
opening load ratio should be independent of position. The
decreasing ratio may be the effect of growing away from the
residual plastic zone left by the room temperature
precracking,

Table 8 compares the measured and calculated
compliances -~ all at 650C ~ for the initial and f.inal
cracks., The agreement isn't as good as for Test 19123, but
note that the load-displacement curves are not as straight
in the upper region. The crack grew 1.91 mm (from an
average initial value of 18.84 mm to a final average of
20.75 mm) in 25,000 cycles. This was a 10% change in crack
length; whereas the measured compliances changed 65% at 4.41
mm and 154% at 1.39 mm. If one were able to divide the
compliancgzchanges into 50 parts (i.e. resolve compliance to
0.05 x 10 m/Nt), then one could resolve increments of
crack growth of 0.04 mm. This resolution is reasonable with
the ISDG.

.
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. TABLE 8
o
o INITTIAL AND FFINAT. COMPLIANCES MEASURED AWAY 4
AN FROM 'THIE CRACK TIP ]
“~ : 4
L ]
A Iudent s Locat ion Initial Compliance Final Compliance d
; o - - !
Ao mm behind tip 10 pm/Nt 107 jim/Nt A
o initially 4
\;, Calculated  Measured Calculuted Measured ('
A
e 1.39 2.20 1.59 3.39 4,04 |
h
o 4.41 3.47 3.76 4.91 6.20 1
' 1
SN 4
X ]
: .
N |

. SECTION VII

»
.
.- oae
.

CONCLUSIONS

»
U T

2 " The ISDG is, quite stable for even long term
[- measurements. There was no drift in a test of 500,000

. cycles lasting 6 hours and 45 minutes. That test, conducted

o at AR = 8.8 MPa-m ?, showed no crack growth, little change ;

, in the single cycle load-displacements, and no change in the 3

\ incremental COD. 4
N

Compliances measured further away from the crack tip
give better agreement with calculated values. 1In other
words, they are a more reliable measure of crack position.
This is true in spite of the fact that COD measurements are
made at distances from the crack tip that are less than

.
o
R
-
R
p
k
4

& one-half of the specimen width and the crack front is

" curved. Since the crack is curved, there is some question

’ as to what the crack length really is.

4

- Even if the compliance measurements don't accurately

= locate the absolute position of the crack, changes in

xN compliance can resolve crack growth increments of 0.04 mm,

.y The ISDG system can do this on an automatic, non-contacting
basis at 650C.
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APPENDIX A

CREEP TEST RESULTS

Creep displacement and compliance results for the 9 creep tests.

See Table 1, page 28, for details on loading, crack lengths, and indentation

locations.
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-, . FATIGUE TEST RESULTS
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Load-displacement plots for selected cycles of the fatigue tests.
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See Table 6, page 46, for details on loading, crack lengths, and
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