
L AD-AI42 656 A NOTE ON THE ACCURACY OF TWO MICROPROCESSORS(U) fI/
NATIONAL PHYSICAL LAB TEODINOTON (ENGLAND) DIV OF
INFORMATION TECHNOLOGY AND COMPUTING B A WICHMANN

UNCLASSI FEB 63 NPL/DITC-18/83 F/G 12/1 NL

EEEEEEEEEEIIEENDIIIIII

1.2

M11 I, P 1 - IL T N f
IIIIILN HLZtl 1U~ti

I

3NPL

Na Ion Physical Laboratory

* LU

ma t.Wa-

84 07 02 076

Crown copyright 1983

ISSN 0262-5369

National Physical Laboratory
Teddington, Middlesex TWIt OLW, UK

Extracts from this report may be reproduced
provided the source is acknowledged

Approved on behalf of Director, NPL, by Mr E L Albasiny,

Superintendent, Division of Information Technology and Computing

rr-

I'I
i

NPL Report DITC 18/83

February 1983

A note on the accuracy of
two microprocessors

by
B P Wichmann

ThL d0 +""" + ,++"+'+ '.+-: approved

NPL Report DITC 18/83

February 1983

NATIONAL PHYSICAL LABORATORY

A note on the accuracy of

two microprocessors

by

B A Wichmann

Division of Information Technology and Computing

Abstract

'An analysis has been performed of the accuracy of the mathematical

functions in the Basic monitor of the ZX81 and BPC microprocessors. The
tests used for this are those that are part of the NPL/University of
Tasmania Pascal validation suite. The results of these tests shows that
even the smallest of microprocessors can be expected to give

mathematically sound values for the standard functions.

400I

'jib' ____

CONTENTS

Introduction 1
The characteristics of the floating point system 2
The arithmetic operations 7
Square root 8
Logarithm 9
Sine and Cosine 11
Exponential 12
Arctangent 14
Read 15
Write 17
Copy 18
The random number generator 18
Summary 19
Acknowledgements 20
References 20

Introduction

The Pascal validation suite contains tests for the accuracy of the

mathematical functions derived from those of Cody and Waite for FORTRAN

[1]1. The Pascal Standard [:21 requires that these functions deliver a

result which is "an approximation to the corresponding mathematical

result". (The Standard gives no other clue on the nature of the

approximation; which could hence be unacceptable for certain

applications.) The language standards for FORTRAN and Basic 1:3,J41 do not

require similar accuracy for these functions (although typically the

same library is involved for a particular machine).

Changes had to be made from the FORTRAN version for the Pascal

validation suite, for instance, to remove the error tests from the

accuracy tests 1:5). This particular change was necessary because a

program containing an error such as evaluating sqrt(-l) can be rejected

by a Pascal compiler before execution. Also, criteria were added to each

test giving a pass/fail indication. The criteria used were based upon

the results listed by Cody and Waite, being such that success was

achievable with a small margin.

The purpose of running these tests in Basic was to see if the

criteria for pass/fail were reasonable for the smallest of the

microprocessor systems. The en'tire Basic system on the ZX81 resides in

an 8K ROM, the floating point arithmetic operations being provided by

software. The floating point package and the mathematical library is

believed to be contained in no more than 2100 bytes [631. Such testing

cannot be undertaken on a regular basis, especially since the

non-standard nature of most Basic systems results in a significant

conversion effort.

The results of the tests are included in each section below. Most of

the tests were successful and the cause of two of the errors in the

unsuccessful tests on the ZX81 was located. Although the results on the

BBC microprocessor were not as good, the author of the package, Ur A C

Norman, has since modified the software to achieve essentially perfect

results. Hence the conclusion is that the Pascal tests are realistic,

even for the smallest of microprocessor systems.

-2-

Only the simplest of tests are included for the floating point

routines themselves (ie the operations , and /). Very thorough

tests are available [7J which have located errors in both hardware and

software floating point units. However, the size of these tests (12000V
lines) makes them inappropriate for Pasic (and even Pascal).

The characteristics of the floating point system

The accuracies of the mathematical functions (such as square root)

are judged in relation to the accuracy of the underlying floating pointfr representation used. The Pascal validation suite test programs each
include a separate copy of a routine MACHAR to determine a small set of

fundamental constants termed "characteristics". (The separate copy is

needed because the Standard does not adequately support separate

compilation of procedures.) The procedure MACHAR is quite complex and

typically accounts for half of the length of code of each test program.

MAHRonce to determine the characteristics, which are then inserted

directly into the other tests as required. This technique would not be

appropriate for testing a variety of hardware without program

modification (the situation for Pascal). Perhaps surprisingly, the two

floating point systems are virtually identical. Pence the results of

running ?'ACHAR are presented together, explaining the differences as

needed.

CHARACTERISTIC DEFINITION and REMARKS

IBETA=2 The radix. A radix of 2 is known to be superior with

respect to accuracy to the higher values used on some

computers. The new IEEF standard [81 uses a binary

radix.

1T=32 The number of binary digits in the floating point

significand.

IRND=1 Floating point (addition) rounds. This characteristic

has a significant impact on the rounding errors

incurred.

-3-

NGRD=O The number of guard digits for multiplication.

MACHEP=-32 The most negative integer such that the computed value

of 1 + 2MAC
HEP is different from unity

IEXP=8 The number of bits for the exponent (deduced from

MINEXP).

MINEXP=-128 The most negative integer such that 2M INE XP is a

positive floating point number. This value implies that

there is no gradual underflow.

MAXEXP=127 The largest integer such that 2MAXEXP is a floating

point number. This value is deduced from that of MINEXP,

to avoid overflow.

EPS=2- 32 (about 2.328E-10)

The smallest integral power of two such that the

computed value of 1+EPS differs from unity

EPSNEG=2- 3 1 (about 4.656E-10, ZX81);

=2-32 (about 2.32E-10, BBC)

The smallest integral power of two such that the

computed value of I-EPSNEG differs from unity

XMIN=2 - 128 (about 2.938E-39)

The smallest integral power of two that does not

underflow.

XMAX = 2127 (about 1.7014E38)

The largest finite representable floating point value.

The physical representation of floating point values takes five bytes.

The first byte is the biased exponent. The first bit of the second byte

is the sign and the reiraining 31 bits are the bottom 31 bits of the

mantissa. The most significant bit of the significand (S) is not stored.

4Ii

Zero is stored as zero in all five bytes. If S is regarded as a fraction

such that

12 <= S < 1,

then the magnitude of the value is

e-128S *2

where e is the unsigned value of the first byte. The only valid value

v having the first byte zero is 0.0.

The Pascal version of M~ACHAR contains a dummy function "1st" to force

the storing of intermediate results. Inclusion of "st" avoids the

otherwise incorrect results that would be obtained in the case of a

computer with an "overlength accumulator". The problm here is that if

the accumulator has superior properties to values stored elsewhere, then

one must ensure that the properties of the stored values are observed.

The superior properties of such an accumulator cannot be relied upon

since in a high level language one does not have control over the

accumulator. (This happened with the previous version of MACHAR when it

was run on the Multics system.) Neither of the systems considered here

has an overlength accumulator - its presence would require an increase

in the size of a software floating point package of the Basic

implementations.

An examination of the physical storage of values is possible by means

of PEEK instructions. The examination is facilitated by placing the

value to be inspected as the first variable MZ whose address is then

available in a fixed place within the monitor. Then to experiment with

values, it is convenient to have the powers of 2 available in an array

since the operator ** will not necessarily deliver the powers exactly.

The value being considered can be read as a string and converted by the

VAL operation so that the text of the expression can be displayed as

well as the resulting bit pattern.

The program for the ZX81 is as follows:I

-5-

PROGRAM TO DISPLAY VALUE IN BINARY ON THE ZX81

10 LET Z=O - Z is the value to be examined

20 DIM P(255) - powers of 2, P(129+I)=2**I

30 LET X=1 - to calculate the negative powers of 2

40 LET Y=1 - to calculate the positive powers of 2

50 LET P(129)=I - = 2 ** 0

60 FOR I=1 TO 126

70 LET X=X/2

80 LET Y=Y*2

90 LET P(129+I)=Y

100 LET P(129-I)=X

110 NEXT I

120 LET P(2)=P(3)/2

130 LET P(1)=P(2)/2

140 LET S=PEEK 16400 + 256*PEEK 16401 - address of Z

150 DIM L.P(32) - string for significand

160 INPUT A$ - main loop in program

170 LET Z=VAL A$

180 GOSUP 300

190 GOTO 160

300 FOR I=2 TO 5 - calculate binary value as .s and Is

310 LET T:PEEK (S+I) - byte of significand

320 FOR J=1 TO 8

330 LET D$(8*I-J-7)="."

340 IF INT(T/2)*2 <> T THEN

LET D$(d*I-J-7)="1 "

350 LET T=INT(T/2)

360 NEXT J

370 NEXT I

380 PRINT A.$; "="; Z; "FXP="; PFEK (S+1) - last value is exponent

390 PRINT D$;

400 RETURN

The stored exponent for P(I) is I and its value is 20*(I-129) for all

the permitted values of I (1..255). With this program, one can see that

dividing 20*(-128) by 2 gives 20*(-128) and in general a value with an

exponent which underflows by just one is set equal to PC1)=2**(-128).

The values given by the routine MACHAR give a characterization of a

-6-

floating point unit. This characterization has the advantage of being

easily determined. An alternative characterization of floating point is

that given by Brown [11. The Brown model is excellent for deducing the

properties of a system but it is very hard to ensure that the paramrter

values of the model are correct. In fact, the obvious parameter values

for the ZX81 do not work because of a defect in the normalization in the

add operation. This defect is easily demonstrated by use of another one,

namely that 0.5 is converted to one bit less than the true value. On the

other hand, dividing 1 by 2 gives the exact result, so

PRINT 1/2-0.5, 0.5-1/2

gives

2-32830614E-10 0

In the Brown model, this defect causes a single bit penalty in

parameters which then become:

Radix=2

Significand digits =31 (=32-1 for penalty)

Exponent maximum = 126

Exponent minimum =-128

Note that this characterization does not cater for rounding. In

consequence, it is rather pessimistic in this case. The above parameters

have not been checked which ideally should be done with [1, but (as

noted above) the work involved in putting this 12,000 line FORTRAN

package on the ZX81 would be prohibitive.

The normalization defect does not occur with the BBC micro. Hence the

characterization of the BBC machine is

Radix = 2

Significand length = 32

Exponent maximum = 126

Exponent minimum = -128

The arithmetic operations

Since Standard Basic does not have an integer data type, it is

important that the infix operations should give integer results for

integer-valued operands when the result, is in range. The Pascal test

suite contains a program to test floating point by use of integer

operands (less than the signif icand length) . Such a test is not

appropriate to Easic. Simple trsts do reveal correct results for +, -,*

and ABS when the results are in range. The Pascal test suite has a

special test for division since this operation is sometimes approximate

for "unusual" hardware. For instance, on the Cray 1, 15/3 does not give

5 exactly because the operation of division is performed as

multiplication by the reciprocal. Since 1/3 is not representable, the

exact answer is not given. This technique would not be acceptable for

Basic; the two microprocessors give the correct result for divisions of

this type.

A significant problem arises with the exponentiation operatior ~
This operation is not nresent in Pascal and in consequence the Cody and

Waite test for the FORTRAN operation is not present in the Pascal

Validation Suite. In fact, X**Y is implemented as EXP(Y*LN(X)) on the

ZX81 which is unsatisfactory for the following reasons. Firstly, X

cannot be negative which is not appropriate if X is a negative integer.

Secondly, integer-valued operands do not always give integer-valued

results when the latter are in range (for example, 3" is not computed

as 9). Thirdly, as Cody and Waite point out (page 84), the accuracy is

not good for results of large or small magnitude. In defence of the

ZX81 , it must be noted that an accurate version for *" is a large and

cumbersome routine (and hence the space it would consume could be more

useful for other purposes). The BBC version of was not tested.

Square root

The square root function is called SQR in Basic, whereas sqr in

Pascal is the square function. The test program of Cody and Waite can

easily be translated into Basic by inserting the constants from MACHAR.

In fact, the main loop reduces to 21 lines of code. The results are

2000 Random values in range 0.5 to 1.0

ZX81 BBC

Maximum loss in binary places =1.60 0.99

RMS loss in binary places =-0.02 0.0

2000 Random values in range 1.0 to 2.0

Maximum loss in binary places = 1.61 0.99

RMS loss in binary places = 0.14 0.0

The negative value for the RMS loss on the first test is caused by an

inadequacy in the algorithm used combined with a very small loss in

accuracy. In this case, results are rounded so that the result is

accurate to less than one place. Such figures are replaced by zeros in

the subsequent tables. All these results pass the criteria used in the

Pascal validation suite. The special value tests were also handled

successfully.

-9-

Logarithm

The natural logarithm function is the same in Pascal and Basic so the

Pascal test could be used directly. Four different tests are involved of

2000 random values. On the first attempt to *-un the test of 2000 random

values very near 1.0, large apparent errors were detected. This was a

false indication due to the coding to subtract 1.0 from the argument.

This coding was written in Pascal (and FORTRAN) as

LET Y z(X - 0.5) - 0.5.

The purpose of the double subtraction is to avoid the loss of the bottom

bit. Unfortunately, 0.5 is not represented exactly on tne ZX81 due to a

defect in the read routine (see Page 6), so a large apparent error was

indicated. Replacing the 0.5 by 1/2 solved the problem. It is not clear

if this change should be made to the Pascal tests, since independent

tests are performed for reading constants (including 0.5). However, an

optimizing compiler could upset this statement, so the logic inserted in

the Pascal version of MACHAR should be added here (i.e. call of the

function "st"; now added to version 3.1 of the Pascal validation suite).

The test results are summarised as follows

ZX81 BBC

2000 values very nearly to 1.0

Maximum loss in binary places =1.P6 19.48

RMS loss in binary places =0.10 14.13

2000 values in range 1/square root(2) . . 15/16

Maximum loss in binary places =2.12 48

RMS loss in binary places =0.54 2.84

2000 values in range square root (0.1) .. 9/10

Maximum loss in binary places =2.74 4.32

RMS loss in binary places =0.77 1.92

2000 values in range 16..2140

Maximum loss in binary places =0.99 0.99

RMS loss in binary places =0.00 0.00

-10-

These results pass the criterion used in the Pascal validation suite,

except for the first test on the BBC machine. The special value tests

were also satisfactory for this machine.

jj

I - 11 -

Sine and Cosine

The sine and cosine functions are the same in FORTRAN, Pascal and

Basic in that they have an argument in radians. The three tests of Cody

and Waite are for SIN in the range 0..PI/2, SIN in the range

6'PI..(6+1/2)*PI and COS in the range 6*PI..T7PI. These three ranges are

those for the usual 2000 random values to which are added special

argument tests.

The special argument tests and the first set of random values passed

the usual criteria. However, of the other two tests, two failed quite

badly on the ZX81 and one on the BBC. All these cases of failure were

due to incorrect range reduction, as could be seen by investigating the

values which gave the least accurate results. The range reduction is

part of the logic of these functions to reduce the argument value to 0

.. PI/2. The error in the range reduction was confirmed in the ZX81 as

follows. Since the value used for PI is stored in the monitor, the range

reduction algorithm can be determined. In fact the range reduction of X

is performed by the equivalent of

LET X = X - 2*PI*INT(X/(2*PI))

The actual value used in the above formula may be PI or PI/2, but this

would make no difference with the radix of 2. The equivalence of the

range reduction to the above was shown by confirming that SIN(X) is

computationally the same as SIN(X - 2*PI*INT(X/(2*Pl))).

The second SIN test has been repeated on the ZX81 with the improved

method of range reduction recommended by Cody and Waite. For this test,

the arguments must be reduced by subtracting 2*PI and 6*PI which is done

as follows.

In the second test where the range reduction involves subtracting 2'PI

from the argument value one performs:

LET X = X - 3217/512 + 2*C,

and in the last test where one must subtract 6*PI one performs.

LET X = X - 9651/512 + 60C.

This approach effectively gives 9 extra bits of precision since the

rational value is computed exactly. The value C is 0.000008909089793.

- 12 -

The results obtained were as follows:

ZX81 BBC

2000 values for SIN in range O..PI/2

Maximum loss in binary places = 1.97 2.00

RMS loss in binary places = 0.27 0.24

2000 values for SIN in range 6*P..6*PI + PI/2

Maximum loss in binary places = 16.82 4.75

RMS loss in binary places = 11.34 0.57

2000 values for COS in range 6*PI..7*PI

Maximum loss in binary places = 15.81 11.91

RMS loss in binary places = 10.41 6.68

The fact that the loss is a consistent one for the last two tests can be

illustrated by plotting the loss against the argument value. The loss is

large when the true value is near zero.

Exponential

The coding of the FORTRAN version of the Cody and Waite test of the

exponential function EXP in Basic is straightforward. Three tests of

2000 random values are performed. The first set of values lies in the

primary range giving a result between 15 and 20. The second set lies in

a large negative argument range and the last in a large positive range.

On the ZX81, only the first test passes the criteria placed upon the

results included in the Pascal version. All the tests passed on the PPC

machine.

Since the usual method of calculating exp involves splitting off the

exponent of the floating point representation, and reducing the range,

it would appear that the range reduction is suspect. Cody and Waite

point out the difficulty in carrying out the range reduction as it is

likely to lead to large relative errors for arguments of large absolute

magnitude.

- 13 -

A program was written for the ZX81 to display graphically the

relative error as a function of the argument value. The sine argument

reduction errors showed a consistent trend but the errors for exp showed

no such consistency. In fact, the cause of the error was the range

reduction since the results were markedly improved by inserting the

followiing range reduction algorithm recommended by Cody and Waite.

400 REM GOSUB 400 CALCULATES E = EXP(X)

410 LET N = INT(X/LN(2) + 1/2

420 LET E = EXP(X - N'355/512 + N*2.129444E-4

430 LET 0 = 2

440 IF N < 0 THEN LET 1/2

450 IF N = 0 THEN RETURN

460 FOR K 1 1 TO APS(N)

470 LET E = * Q

480 NEXT K

490 RETURN

Lines 450-480 could be abbreviated to LET E=E*Q**N if * were itself

calculated by repeated multiplication.

The second and third tests were much improved, see the summary table.

The basis of this range reduction is the same as that for SIN/COS, i.e.

a better approximation to the range size by means of an exact rational

plus a much smaller term.

The results obtained were as follows:

ZX81 BBC

2000 values for EXP in range -0.284 .. 0.346

Maximum loss in binary places = 1.96 1.00

RMS loss in binary places = 0.17 0.00

2000 values for FXP in range -65.1 .. -3.46

Maximum loss in binary places = 5.78 2.67

RMS loss in binary places 4 l.85 1.31

'L-

- 14 -

2000 values for EXP in range 6.93..69.3

Maximum loss in binary places = 5.78 2.77

RMS loss in binary places = 4.85 1.59

Arctangent

This function is called arctan in Pascal but ATN in Basic (although

it is marked as ARCTAN on the key board of the ZX81). The Cody and Waite

tests can be coded in Basic without difficulty. Four sets of 2000 range

argument values are tested. All these tests pass on both machines

according to the criteria used in the Pascal validation suite.

The results obtained were as follows:

ZX81 BBC

2000 values for ATN in range -0.0625..0.0625

Maximum loss in binary places = 1.F5 2.18

RMS loss in binary places = 0.20 0.27

2000 values for ATN in range 0.0625..0.268

Maximum loss in binary places = 2.04 1.97

RMS loss in binary places = 0.31 0.52

2000 values for ATN in range 0.268..0.414

Maximum loss in binary places = 1.91 2.30

RMS loss in binary places = 0.41 0.96

2000 values for ATN in range 0.414..1.0

Maximum loss in binary places 1.89 2.63

RMS loss in binary places 0.23 0.71

- 15 -

Re ad

Cody and W~aite do not consider the reading of decimal constants (in

data or programs). Their omission has been partly filled in the Pascal

validation suite as follows. The exact decimal values of I'2"*(-30) for

I in the range 1..1000 are written to a text file. These values are then

read by the Pascal read procedure, using the same routines as before for

assessing the accuracy. The STH$ and VAL functions of Basic allow this

long Pascal test to be coded much more simply. For the 1000 values, the

maximum relative loss was 2.52 binary places and the root mean square

loss was 1.09 places on the ZX81. The exact value was obtained every

time on the BBC machine.

The problem with the logarithm test showed that the read function was

hardly satisfactory and yet the results obtained above passed the

criteria used in the Pascal validation suite. The success with the tests

of read is surprising since they have failed on two main-frames. The

reason for the results lies in the actual algorithn used and also in the

properties of the floating point system. The algorithm can be determined

for the 7~X81 by writing a similar routine in Basic until a perfect match

in terms of rounding errors is obtained. The following program

demonstrates the logic which works by a simple left to right

accumulation of the value.

- 16-

10 FOR J=1 TO 10

20 LET A$=STR$ (100RND)

30 GOSUB 200

35 LET Y=VAL A$

40 PRINT Y; " "; Y; " "; X-Y

50 NEXT J

60 STOP

200 REM CONVERT A$ TO X

210 LET X=O

220 LET Y=1

230 FOR I1 TO LEN A$

240 IF A$(I)="." THEN GOTO 310

245 IF A$(I)="E" THEN STOP

250 IF Y<1 THEN GOTO 280

260 LET X=10*X+(CODE A$(I)-CODE("O"))

270 GOTO 320

280 LET X:X+Y*(CODE (A$(I))-CODE("0O"))

290 LET Y*Y/10

300 GOTO 320

310 LET Y=1/10

320 NEXT I

330 RETURN

The exponent is handled by multiplying the significand by an integral

power of 10 (or dividing for a negative power). Note that this algorithm

gives the correct result for integers up to the size of the binary

significand, which is essential for Basic.

The rounding errors are incurred on the addition and multiplication

on line 280 and the division on line 290. The rounding error is bounded

because after 10 digits thI' product on line 280 will no longer

contribute to the ium. However, the forward summing is poor because all

the rounding errors on lines 280 and 290 will contribute to the value

for the first 10 significant digits. The rounding ensures that the

result is not biased and the radix of 2 minimises the error. This

algorithm on a hexadecimal machine with truncation (such as the 370)

would be disastrous.

Conversion of the ZX81 program for testing reading to the BBC machine

I I i ,

- 17 -

proved calamitous. The minimal Basic standard does not define enough

string handling routines to program this test conveniently. On the ZX8i,

arrays of characters and strings are identical allowing a simple program

for this test. On the BBC machine, the two are different - indeed one

can have At as an array of characters and another A$ in the same program

as a string! One can index only an array cf characters, and the function

to convert a string to a numeric value works only on a string. In

consequence, the test was coded completely differently on the BBC
machine. It is not clear that any mnethod would work correctly on both

systems.

Write

As with read, Cody and Waite do not consider the conversion of

floating point values to decimal constants. The Pascal validation suite

uses the same approach as for read. The computed values 1*2**(-30) for I

in the range 1 .. 1000 are output to a file using write. The output. is

then read as characters and the resulting value computed with the true

result by subtracting the values in character form. By this means, the

error in the output conversion can he found without rounding error.

Again, the STR$ and VAL functions in Fasic make the use of files

unnecessary. In Pascal, the write output can request 30 decimal digits

so that perfect results are possible. This is not possible with ZX81

(and BBC?) Basic; indeed, the format is always floating point for the

range of values under test. Also, all decimal output is rounded to 8

significant figures (9 on BEC), which is less than the approximately 10

places of the floating point representation. The effect of this choice

is that computations appear to give 8/9 figures (the output format).

Judged in this light, the mathematicl functions appear to be very good.

For instance, executing PRINT SOP(N*N) for small integers N always

results in N being printed. Some calculators adopt this philosophy in

having guard digits that are not displayed.

On the ZX81 machine, the results for the 1000 values gave a maximum

relative error loss of 7.55 binary places and a root mean square loss of

5.36 binary places. Needless to mention, these results fail the criteria

adopted in the Pascal validation suite. The routine is probably

unbiased: 566 values were too small and 4I34 too large. (A chi-squared

test fails at the 0.01 level but the values used are not independent.)

The largest error was just a small amount in excess of a truly rounded

- 18 -

result. Hence the rounding process itself has an inconsequential error.

The additional decimal place on the BBC machine gives results which only

just fail: 4.39 places for the maximum relative error and 2.77 for the

rms error.

The actual algorithm used for write is unknown. Algorithms are

available which would produce perfect results in this test, but they are

expensive in computer time. Interestingly, write (or rather STR$) is one

of the slowest functions on the ZX81.

COPY

The Pascal validation suite contains an additional test of both read

and write. Here 100 values of the usual form are repeatedly copied and

the result of the 50th copy compared with the computed value. If a read

or write routine is biased, then such a test could show a drift, as has

been observed on one system. With the rounding that is performed on STR$

in Basic, thi- test is uninteresting since it gives essentially the same

results as write. All the losses are on the first write and from that

point onwards, read gives the exact converse of write.

The random number generator

The random number generator is not strictly one of the functions

tested, but it was used heavily in the tests. The quality of the random

number generator is not critical. In fact, the generator is very simple

on the ZX81 and is given on Page 34 of the manual. Written in Basic, one

can check it as follows:

10 LET B = RND*65536+1

20 FOR I = 1 TO 20

30 LET B = B'75

40 LET B = B - INT(D/65537)*65537

50 LET X = (B-1)/65536

60 IF X 0 RND THEN PRINT "NE"

70 NEXT I

No output was produced. Hence the values have only the top half of the

significand set, the rest being zero. Fortunately, the tests perform

- 19-

calculations on the generated numbers to calculate the argument value so

that this defect did not invalidate the tests. Of course, the generator

used in the Pascal validation suite could have been used [9]. The BBC

random number generator sets more than the top half of the significand

and has no obvious defects.

Summary

The errors observed with the tests can be summarised as follows,

where MRE is the maximum relative error loss in binary places and RMS is

the corresponding root mean square loss. The values in brackets are

those obtained by the author for the ZX81 using the improved range

reduction or by Dr A C Norman by modification of the BPC monitor. A

failure according to the Pascal validation suite criteria is denoted by

F. This failure occurs when MRE>4 or RMS>2.

ZX81 BBC
Function MRF RMS MRE RMS

SQB 1.60 0.0 0.99 0.0
(0.50 0.0)

1.61 o.14 0.99 0.0
(0.99 0.0)

ATN 1.85 0.20 2.18 0.27
0.25 0.0)

2.04 0.31 1.97 0.52
0.99 0.0)

1.91 0.41 2.30 0.96
2.51 0.55)

1.8q 0.23 2.63 0.71
0.99 0.0)

EXP 1.96 C.17 1.00 0.0
0.99 0.0)

5.78F 4.85F 2.67 1.31
2.84 0.27 2.67 1.48)

5.78F 4.85F 2.77 1.59
2.01 0.18 2.88 1.73)

SIN/COS 1.97 0.27 2.00 0.224
0.0 0.0)

16.82F 11.3 4 F 4.75F 0.57
2.11 0.33 0.0 0.0)
15.F1F 10.41F 11.91F 6.68F

1.92 0.03)

LN 1.86 0.10 19.4PF 14.13F
(0.25 0.0)

2.12 0.54 4.81F 2.84F
0.99 0.0)

2.74 0.77 4.32F 1.92
2.51 0.55)

- 20-

0.99 0.0 0.99 0.0
1.0 0.0)

READ 2.52 1.09 0.0 0.0

WRITE 7.55F 5.36F 4.39F 2.77F
(1.26 0.0)

COPY 7.55F 5.41F 4-39F 2-77F
1.17 0.0)

The totally different pattern of errors shows that the routines are

quite different in spite of using identical representations and both

coming from the Cambridge area. The revised BBC figures will be those

obtained from systems to be released shortly.

Acknowledgements

The author would like to thank Dr A C Norman for the additional BBC

results and Dr M G Cox for carefully reading a draft of this report.

References

I1) Cody, W J and Waite M. 'Software Manual for the elementary

functions' . Prentice-Hall, 1980.

[2) BS6192: 'Specification for computer programming language Pascal'

British Standards Institution. 1982.

£3] American National Standard Programming Language FORTRAN, ANSI

X1. 9-1978.

[14] American National Standard for minimal Pasic, ANSI Y3.60 1978.

£5) Wichmann, P A and Ciechanowicz, Z J. 'Developing the testing

procedures' , in Pascal Compiler Validation, Wiley 1983.

(6) Logan, I, 'Understanding your ZX81 ROM', Melbourne H~ouse, 1981.

[7) Schryer, N L. ' A test of a computer's floating point unit'

Computer Science Technical Report No 89. Pell Laboratories. 19P1.

[8) IEEE. 'A proposed standard for binary floating point arithmetic',

-21 -

ACM Signun Newsletter. October 1979.

[9] Wichmann, B A and Hill, I D. 'An efficient and portable

pseudo-random number generator', Applied Statistics Algorithm

183. Vol 31, No 2, 1982.

[10] Brown, W S. 'A simple but realistic model of floating point

computation'. Computer Science Technical R~eport No. 83. Pell

Laboratories. 1980.

