> g
AD-A142 655 AN INTRODUCTION AND HANDBOOK FOR STANDARD SYNTACTIC
METALANGUAGE (U) NATIONAL PHYSICAL LAB TEDDINGTON
(ENGLAND) DIV OF INFORMATION TECHNOLOGY AND COMPUTING
UNCLASSIFIED R S SCOWEN FEB 83 NPL/DITC-19/83

O
= Iz
|1l e
= L

Iz s e

4

OTIE FILE COPY

T——— v,
s v

84 07 02 078

ey

S

NPL Report DITC :-./83
February 1983

An introduction and handbook
for the
standard syntactic metalanguage

by
R S Scowen !

3 (:) Crown copyright 1981, 1983
ISSN 0262-5369

National Physical Laboratory |
Teddington, Middlesex TW11 OLW, UK

Extracts from this report may be reproduced
provided the source is acknowledged

i Approved on behalf of Director, NPL, by Mr E L Albasiny
i Superintendent, Division of Information Technology and Computing

NPL Report DITC 1'y8%

February 19€3

NATIONAL PHY S ICAL LABOHRATOR

<

An introduction and handbook

r'or the

standard syntactic metalangiage

by

R S Scowen 3

Division of Information Technclogy and Computing

Abstract

British Standard BS 6154 defines a standard syntactic metalanguage. This
report first explains what a metalanguage is and why it is useful; the
rest of the report is a guide and summary of the sta-~dard metalanguage.
Many examples are taken from subjects outside computing, others come
from Fortran or Pascal, two of the commonest programming languages.

Important features of the standard metalanguage are that it can be typed
easily and processed by computers.

This report is based on an earlier one, NPL Report DNACS H47/81, now cut
of print.)

CONTENTS

Introduction
The basic form of a syntax rule
Reading syntax rules
The precedence of operators
Limitations of the metalanguage
Character sets
Examples
1. A few one-line definitions
2. Telephone numbers
3. The Forsyth notation in chess
4, Bibliographic references
5. BS 6154 - syntactic metalanguage
6. BS 6154 - an alternative representation
Writing syntax rules clearly
APPENDIX A - Further details
APPENDIX B - Special sequences for sets and lists

Index

10
11

13
10
15
18
21

26

&

-1 -

AN INTRODUCTION TO THE STANDARD SYNTACTIC METALANGUAGE

Languages enable communication, sometimes between people, sometimes
animals, sometimes computers. The syntax of a language defines precisely
those sequences of words or symbols which are grammatically valid. If
you want to describe or define a language, it is natural to use English
which is easy to write and understand. However there are disadvantages,
for example it is easy to be ambiguous without realizing it. The
subsequent confusion or misunderstanding will increase costs and waste
time; it may even result in disaster.

A better strategy is to define your language using a notation specially
designed for describing the structure or meaning of languages. Any such
notation is called a metalanguage, thus a syntactic metalanguage is a
notation for specifying a syntax (or format) precisely. It should be a
valuable weapon in the armoury of every computer scientist but although
“he concepts are well known to compiler writers and language designers,
Jany different notations are used with the result that some programmers
are unfamiliar with the ideas.

The syntax definition of a language serves three different purposes:
® it names the various parts of the language,

® it shows how to construct sentences of the language that are
syntactically valid, and

® jt also indicates the syntactic structure of any given sentence of
the language.

Note that a syntactic metalanguage is useful not only for the syntax of
a programming or command language, but whenever a formally defined
syntax is required, e.g. the format for references in scientific
reports, or the interface between two programs.

A British Standard (BS6154) defines a standard syntactic metalanguage.
One important feature is that it can be typed on most computer terminals
and processed by computers.

The existence of a British Standard metalanguage makes life much simpler
for project managers and data processing managers when they must specify
documentation standards. Previously, if they specified "Use
Backus-Naur-Form", there would be cries of anguish, "It's primitive"”,
"It's long-winded", or, "My notation is much clearer and shorter". The
result was likely to be argument and vacillation. One team defining a
candidate language for the US Department of Defense spent six months
deciding on a syntactic metalanguage.

Another company has adopted BS 6154 with great success, "Previously
people thought they knew the requirements, now they are certain what is
wanted".

This report is a beginner's guide to the standard metalanguage. Often
the simplest way of understanding a new idea is by studying its
application to something that is already familiar. So most of the
examples define elements of Fortran or Pascal, two of the commonest
programming languages. Each syntax rule names part of the language
(called a non-terminal symbol of the language) and then defines all its
possible forms.

-2 -

THE BASIC FORM OF A SYNTAX RULE

Each syntax rule starts with the name (known formally as a
metaidentifier and pronounced meta-identifier) of the structure being

defined. Then comes = (equals), the definition follows, and the syntax
rule ends with ; (semicolon).

A metaidentifier is one or more words formed with letters and digits,
with the first character being a letter. Sometimes the definition
consists, wholly or partly, of explicit characters which always appear
in the structure being defined, a group of such characters is called a
terminal symbol. They are represented by themselves and enclosed by "
(quotation mark). For example:

| continue statement = "CONTINUE"

;
states that a continue statement is formed by the eight characters:

CONTINUE

Note that a terminal symbol of a language is like an atom that cannot be
split into smaller components of the language.

The metalanguage refers to the characters of a terminal symbol together
L with the enclosing apostrophes as a terminal string.

Alternative definitions

When there are several possible definitions, the alternatives are listed
one after the other and separated by | (vertical line). For example:

digit = non : nin : non : n3n : nyn : n5n : v|6u : n7n : "8n : ngu ;

states that a digit is any one of the ten characters

0123456789

Using symbols that have already been defined

When a metaidentifier occurs after the = (equals) of a syntax rule, it
represents any sequence of symbols defined by a syntax rule that starts
with that metaidentifier. For example:

octal digit = "O" | min | n2n | n3m [owhym |ongn | onge | onge o
digit = octal digit | "8" | mgv ;

states that an octal digit is any one of the eight characters
01234567
and (indirectly) that a digit is any one of the ten characters

0123456789]

A sequence of items

A definition may consist of several terminal strings and metaidentifiers
in a particular order. In this case the symbols are listed in the
correct order and separated from each other by a , (comma). For example:

assignment statement = variable, "=z", expression ; i

states that an assignment statement is a variable followed by = (equals)
followed by an expression. This rule says nothing about the form of a
variable or an expression; other rules to define them will appear in a
complete syntax.

A specific number of items

In Fortran a label at the start of a statement always contains five
characters with each character a digit or blank character, this could be
defined by the rules:

blank = " "

label char = digit | blank ;

label field = label char, label char, label char,
label char, label char ;

A simpler way specifies the exact number of label chars by a preceding
integer and * (asterisk). Thus the third syntax rule can be rewritten:

label field = 5 * label char ;

Brackets group items together

In mathematics (and) (brackets) are used to group items together.
Brackets have a similar meaning in the metalanguage, for example the
previous three rules could be written:

label = 5 * (digit } " ") ;

Precedence

So far the meaning of several symbols in the metalanguage has been
explained without saying whether a syntax rule can contain every sort of
symbol. For example, would

label = 5 ® digit | " " ;

be a valid syntax rule? If so, what does it signify? In fact it is a
valid rule, but means the same as the bracketed rule

label = (5 ® digit) | " "

This is because the British Standard defines ® to have a higher
precedence in the metalanguage than {. This idea of precedence occurs
also in Fortran and Pascal where ® and / have a higher precedence than +
and -. Page 7 contains a complete precedence table for the

metalanguage.

All brackets override the normal precedence. Used wisely, they make
languages easier to understand by reducing the number of syntax rules

-4 -

and shortening the language definition. But too many brackets make
syntax rules complicated and obscure.

An optional item

Many constructions in Fortran have symbols that are optional, for
example the increment in a do-statement need not be specified when its
value is one. Optional symbols are specified by enclosing them

in [and] (square brackets), e.g:

do statement = "DO", label, variable, "=", initial value, ",",
final value, [",", increment] ;

An indefinite number of items

Sometimes there is no logical limit to the length of a structure, for
example a Fortran arithmetic expression can be as long as you like
(although strictly there is a limit because a statement must not have
more than 19 continuation lines). Symbols that are optional or that can
be repeated any number of times are enclosed in { and } (curly
brackets), e.g:

arithmetic expression = [sign], arithmetic primary,
{arithmetic operator, arithmetic primary} ;

states that an arithmetic expression is one or more arithmetic
primaries, any two arithmetic primaries are separated by an arithmetic
operator, and there may be a sign at the start of the arithmetic
expression.

Everything except an exceptional case

Sometimes a definition would be quite simple except for a few special
cases. The metalanguage permits such definitions to be expressed by
giving the general rule, then - (minus sign), then the exceptional
cases, for example:

Fortran 77 continuation line = 5 & m ",
(character - (" " | "0")), 66 * [character] ;

This rule states that a Fortran 77 continuation line starts with 5
blanks, the sixth character must not be a blank or zero, and there must
not be more than 72 (= 5 + 1 + 66) characters altogether.

In Fortran 66, the definition of a continuation line is more
complicated, i.e:

Fortran 66 continuation line = (character - "C"),
4 # character, (character - (™ " | "0")),
66 * [character] ;

This rule states that a continuation line must not start with C, there
must be at least & characters, the sixth character must not be a blank
or zero, and there must not be more than 72 (= 1 + 4 + 1 + 66)
characters altogether.

-5 -

Syntax processors and the need for comments

The metalanguage has been designed so that computer programs can be used
to process the syntax of a language. It is often beneficial if
explanatory remarks can be added to the syntax without affecting the
results of a syntax processor. It is also natural to mention the extra
semantic restrictions that cannot easily be expressed in a syntax. For
reasons such as this the syntactic metalanguage includes a comment
notation. Any text in a comment has no formal effect on the language
defined by a syntax. A comment starts with (% (left parenthesis,
asterisk) and ends with *) (asterisk, right parenthesis), e.g.

integer = digit, {digit}
(* The maximum magnitude of an integer in IBM Fortran IV
on 360/370 computers is 2147483647 (i.e. 2731 - 1) #*) ;
However (¥ or *) in a terminal string stand for themselves and do

not start or end a comment.

One or more repetitions

A shorter way of defining an integer as one or more digits is:
integer = {digit} - empty ;
empty =
Or even more concisely:
integer = {digit}- ;
This definition is equivalent because the general case is zero-or-more

digits and the exceptional invalid case is empty.

Special sequences

It is always difficult to foresee all possible uses for a new notation,
so the syntactic metalanguage includes a method for extending the
notation. In any syntax rule the meaning of any text that starts and
ends with ? (question mark) is not defined by the standard. Such text
is called a special sequence; when this notation is used there should be
an explanation with the syntax of the language telling you how to
interpret it.

More on terminal strings

A terminal symbol can be enclosed by ' (apostrophe) instead of "
(quotation-mark). This allows us to define terminal symbols containing a
quotation-mark.

Note that there must be at least one character between the apostrophes
or quotation marks of a terminal string.

For example, the definition of a terminal symbol in the syntactic
metalanguage is:

terminal string = '"', { character - '"' }. 'm
: nvn’ { character - "' }_, nen ;

4 B ol Al Al e At W 7

-6 -

READING SYNTAX RULES

It is not difficult to translate and read a syntax rule in a rather
strange form of English. Table A gives an equivalent English phrase for
each character in the metalanguage. Unfortunately we cannot forget about
the metalanguage and define our languages using only the equivalent
Fnglish phrases because the English version becomes ambiguous with
complicated syntax rules. And remember, avoiding ambiguity is one of the
reasons for having a formal metalanguage.

1
e e e
metaidentifier i A or an
terminal i The character(s)
; ' (The end of a rule)
! Is

1
]
1
I
1
1
]
]
!
Or ‘
'
i
'
]
1
]
1
1
1

- e

Followed by
Except
Occurrences of
Any number of
Optional

e - — ——————————— - - = - - " - - — -

Examples

The examples are taken from the metalanguage's own definition. Each
syntax rule is followed by an English 'translation'. The words
corresponding to the metalanguage symbols have been written in upper
case so that it is easier to compare the original rule with its
translation. Sometimes the order of words has been altered slightly so
that the translated rule reads better, sometimes, as stated earlier, the
translation is ambiguous.

syntax = syntax rule, {syntax rule} ;
A syntax IS A syntax rule FOLLOWELC RY ANY NUMBER OF A syntax rule.

factor = [integer, "®*"], primary ;
A factor IS AN OPTIONAL integer FCLLOWELC BY #* FOLLOWED BY A primary.

optional sequence = "[", definitions list, "]"
AN optional sequence IS [FOLLOWED BY A definitions list FOLLOWED BY J.

special sequence = "?", {character - "?"}, "?" ;
A special sequence IS ? FOLLOWED BY ANY NUMBER OF A character EXCEPT ?
FOLLOWED BY 2.

-7 -

THE PRECEDENCE OF THE METALANGUAGE OPERATORS

Table B gives the precedence of the various metalanguage opera‘ors; the
higher the symbol in the table, the higher its precedence.

All brackets override the normal precedence.

X
=]
x>
=z
—
-4
(]

Concatenate
Or

Defines

End of rule

|
1
]
'
|
- ' Except
!
1
|
1
|
|
]

i

Example

The Fortran 66 continuation line (already defined on page 4) could have
been defined with fewer brackets.

Fortran 66 continuation line = character - "C",
4 ®* character, character - (" " | "0"),
66 * [character] ;

LIMITATIONS OF THE SYNTACTIC METALANGUAGE

The main restriction of the standard metalanguage is that the language
being defined must be linear, i.e. the symbols in a sentence of the
language can be placed in a line reading from one end to the other. For
example knitting patterns and recipes in cooking are linear languages
but electric circuit diagrams are not.

A further limitation is that the notation is inadequate for defining
complex grammars that also define semantic restrictions on the possible
sequences of symbols. However a way has been left open for the
metalanguage to be suitably extended; further details are beyond the
scope of this beginner's guide.

Naturally, the metalanguage, like most other notations, can be misused.
For example it does not prevent someone from trying to define an
unparsable or ambiguous language.

-8 -

THE CHARACTER SFTS

Syntax rules in the standard metalanguage are written using the standard
ISO 7-bit character set. This is similar to the ASCII character set and
is avajlatle on many computer systems. Syntax rules can alsc be printed
on conventionral office typewriters because alternative characters are
defined fcr those symbels that are unavailable orn some typewriters.
Table C gives all the possible representations for each metalanguage
symbol.

y METALANGUAGE SYMECL ! PCSSIBLE REPRESENTATICNS |

(@)

concatenate symbcel
defining symtol
definition separator symtcl: ; / !)
end comment symbol
end group symbol ;
end opticn symbol |
end repeat symbtol)
except symbol ;
first quote symbol |
repetition symbol !
second aqucte symbol |
t
\
}
1

® =) i
~

special sequence symtol
start comment symbol
start group symbol

start option symbel
start repeat symbol)
terminator symbtol H

- 2 - e - = T - " - . - - = - - -

—_—T e~ e

The characters required for the metalanguage are:
letters digits = , - ® (; 2

or

or / or !

or both [1]

or both { 1}

or " (Both characters are desirable)

re N —— e

1. A few one~line definiticne

space = " "
(® defines a nen-terriral symbel called 'space' tc represent
a space character %)
visible character = character - space
(* Jofines a visihle character to te
any character exoept a space %)
t - no" : "1u : "o naw ! nuvv

dlgl ' |15lv : ne ‘ 1171» : "8" : Ilgll
(® defines a digit to be any of the ten craracters
R o AT Cog *) ;

integer = ldigit}-
(® sefines an in*ever to te ane or rore Jigits %)

g — 1A ! LABalll ¢ "o + "N ! I
vewel o= AT L ME Im oo o

¥ Hdnfines a vowel to be cne of the f1ve charalters

AT T0r %y

2. Telephcre numters

londar telennnore number

"01-", exchange, " ", numter ;
exchange = * ® digit ;

numbher = 4 % digit

2;_JF?AEPF§XPP_PPP§}}99.fOTPTQFPTQiUF_?,Phﬁﬁﬁ,PQ??F}C”
The Forsyth notation provides a simple method of recording any rhess
position. Although a position recorded in this way is nct imreliately
obvicus to a reader, it is much more quickly written than a diagram with
pictures of pieces.

The Forsyth notation describes a chess positinn bty specifving the pieces
on each row. It starts at the top of a diagrar, i.e. Flack's first rank,
and proceeds row by row ending at Black's eighth rark. Fach rew is
described from left to right, i.e from the Cueen's hock file to tne
King's Rook file. A White piece is written as an upper case letter, and
a Rlack plece a lower case letter. The abbreviations are:

K = Kirg, ¢ = Queen, R = Rook, B = Pishop, N = Knight, F = Fawr,.

A number indicate a seguence of empty squares or rows.

SYNTAX
Forsyth chess position = row, { "/", row }, ;
row = One or more empty rows | single row ;

dne Oor meore empty rows

- nln : m1EN : nohn : n32n : o : "y : nERM
single row = [one or more empty squares],
{ chess piece, [one or more empty squares | }- ;

one or more empty squares

- "]n : n2n : n3n : Huu : nsn : "b" : n7n ;
chess piece = black piece | white piece ;
black Dlece = "k'l : HqH : llr.ﬂ : Hbll : "n" : "p"

(* In manuscripts, each letter representing a black piece is
often circled rather than being written in lower case %) ;

White piece = "Kn : "Q" : "RH : npn : nN : npe
EXAMPLFS

(1) The pozsition at the start of a game of chess is:
rnbakbnr / pppppppp / 32 / PPPPPPPP / RNRQKRNR

(2) The position after the moves:
1 P-K4 P-KU 2 R-RY
rnbgkbnr / pppplppp 7/ 8 / Up3 / 2BI1P2R / & / PPPPIPPP / RNBCKINR

(3) The position after the moves:
1 P-K4 P-K4 2 B-R4 P-BY 3 Q-RS N-QB3?? 4 Q-R5 mate
ribgkinr / pppplQrp / 2n5 / 2b1p3 / 2B1P2 / 8 / PPPP1PPP / RNBIKINPR

4. Biblicgraphic reterences

BS £154 refers tc tnree soientitic papers that strongly influenced the
standard.

This example shcwe how the retalanguage can specify the form of
references and trus help ¢ itore maintain a ccnsistent style.

Tre references as printed ir 57 £184 are:

VAR, PLUUEd) . Pevised =rt on the Algorithmic Language ALGLL £C,
Temruter Journal, Janudary, 1083, Vol 5, No. 4 pp 242-367.
1+ akcut the unnecessary diversity of nctatior
LT m ACM, Novemter 1377, vol 2(, Nc¢ '1,

referen2e = authcera, ‘*itle sgurces, point
authors
= [autrer, { .omma, auther }, space, "and", space],
’ ? .

auther, ["(Ed}LT D

author = surname, <«omma, | initial }-

surname = upper cass letter, { 7 space [, upper case letter } ;

initial = uprer case letter, npcint .
title = o2n- or more words, o cemma . "?", space)
sources

= source, [comma, "{also purlished in ", source, "oy
source = ieurnal, date, veclume, [parts ;, [pages] ;

journal = one ~: more italic words, comma :

date = [month, space], year ;

volume = "Vcl", [point |, space, volume nurter, comma ;

parts = "Ne", [point 1., space, integer, (comma . space)
! "parts". space, first part, hyphen, last part j

pages = "pp", space, ¢irst pare, hyphen, last page ;

month = upper case letter, { lower case letter }- ;
year = 4 * digit, comma ;

volume number = bold face integer ;

first part = integer ;

last part = integer ;

first page = integer ;

last page = integer ;

(% Cormon definitions %)

comma = ", ", space ;

hyphen

point CE
space = " " | new line ;
(* lefinitions not given here

bocld face integer

digit

integer

lower case letter

one or more italic words
one Oor mcre words

upper case letter

*)

This example defines the syntux of the standard syntactic metalanguage
using itself. Many of the syntax rules include a comment to explain
their meaniirv: inside 4 ~omment 1 metaidentifier is enclosed in angle
brackets < and * to aveid confusion with similar English words. The
non-terminal syvhcls - letter>, <decimal digit> and <character> are not
defined. The pusiticrn of wrorments> is stated in a comment but not
formally “detfined.

Characters such as spaces and new
syntax cnly when they apredar in a

terminal string.

syntax = syrtax rule, fsyntax rulel
syntax rule = metaildentifier, "z" definitions list, ";
(® A <syntax rule> defines the sequences of symbels represented by
a <retaidentifier> *) .

defiriticns list = singie dfefinition, {"!", single definitiont
(% reparates allers tive Jaingle definiticns» #)
single definition = ‘term, "', term}
(* |, separates successive <terms> #) ;
term = factor, ["-", exception]

(®# A <term> represents any sequence of symbols that is defined
by the (factor> but not defined by the <exception> #*)
exception = fac'or
(# A <factor> may be used as an <exception> if it could be

replaced by a <{factor> ccntaining no <metaidentifiers>)
factor = [integer, "#*"] oprimary
(* The <integer> specifies the number of reretitions of
the <{primary> %) ;
primary = optional sequence | repeated sequence | special sequence
! grouped sequence | metaidentifier | terminal string | H
optioral sequence = "{", definitions list, """
(®# The brackets { and] enclose symbcls which are optional %)
repeated sequence = "{", definitions list, "}"

(® The brackets { and 1t erclose symbols which may be
repeated any number of tirmes *)
grouped sequence = "(", definitions list, ")"
(* The brackets (and) allow any <definiticns list>
to be a <{primary> %) ;
terminal string = '"', character - '"'_ {character - '"'} o'
! wtw_ character - "'", {character - "'"}, n'v
(* A <terminal string> represents the <{characters> between the

quote svmbols " " or ' ' #) .
metaidentifier = letter, {letter | decimal digit}
(®# A <metaidentifier> is the name of a syntactic element of the
langua;e being defined #*)
integer = decimal digit, {decimal digit} ;
special segquence = "?", {character - "?"}, "?7"
(®* The meaning of 1 <special sequence> is not defined in the
standard metalanguage. %) ;
comment = "(#* {comment symboll}, "#)"
(®* A comment is allowed anywhere ontside a <terminal string>,
<metaidentifier>, <integer> or <special sequence> #) ;

comment symbol
= comment ! terminal string | special sequence | character ;

]

iines affect the language defined by a

b

- e e . ek - e . R e

- 14 -

6. The syntactic metalanguage in an alternative representation

SYNTAX = SYNTAX RULE, (: SYNTAX RULE :)
SYNTAX RULE = METAIDENTIFIER, ‘'=', DEFINITIONS LIST, '.'
DEFINITIONS LIST = SINGLE DEFINITION, (: '/', SINGLE DEFINITICN
SINGLE DEFINITION = TERM, (: ',', TERM :)
TERM = FACTOR, (/ '-', EXCEPTION /)
EXCEPTION = FACTOR
FACTOR = (/ INTEGER, '#' /), PRIMARY .
PRIMARY = OPTIONAL SEQUENCE / REPEATED SEQUENCE / SPECIAL SEQUENCE

/ GROUPED SEQUENCE / METAIDENTIFIER / TERMINAL /
OPTIONAL SEQUENCE = '(/', DEFINITIONS LIST, '/)'
REPEATED SEQUENCE = '(:', DEFINITIONS LIST, ':)'
GROUPED SEQUENCE = '(', DEFINITIONS LIST, ')°'
TERMINAL

= "'" CHARACTER - "'", (: CHARACTER - "'" :), "'"

/ '"', CHARACTER - '"', (: CHARACTER - '"' :}), '™
METAIDENTIFIER = LETTER, (: LETTER / DIGIT :)
INTEGER = DIGIT, (: DIGIT :) .
SPECIAL SEQUENCE = '?', (: CHARACTER - '?' :}, '?2'
COMMENT = '(%', (: COMMENT SYMBOL :), '%*)' .
COMMENT SYMBOL = COMMENT / TERMINAL / SPECTAL SEQUENCE / CHARACTER

:)

- 15 -

WRITING SYNTAX RULES CLEARLY

The syntactic metalanguage is only a notation. It does not prevent you
from defining patnological languages or from writing opaque clumsy
definitions. But whatever the language being defined, you can help your
readers to understand it by setting out the rules as clearly as
possible.

Keep rules simple

Do not write rules that are too complicated. If necessary split a
complex rule into several simpler rules.

A clear layout

Spaces, new lines and other non-printing characters outside a terminal
string have no effect on a syntax, so insert them freely to make the
meaning evident.

(1) Start each syntax rule on a new line.

(2) When a syntax rule is too long to fit on a single line, start all
lines after the first with extra spaces.

These first two rules ensure that it is easy to see the extent of
each rule.

(3) Put spaces before and after each metasymbol as follows:

BEFORE METASYMBOLS AFTER
New line

Space = . Space

’ Space

(4) Whenever possible, never start a new line in the middle of a
metaidentifier. When a definition will not fit on one line, break
the definition at a space before a metasymbol which has least depth
of brackets. The essential difference between the following two
Pascal rules is then obvious:

block
= label declaration part,
constant definition part,
type definition part,
variable declaration part,
procedure and function declaration part,
statement part ;
formal parameter section
z value parameter specification
! variable parameter specification
| procedural parameter specification
! functional parameter specification

lI'-'IlIlIIIIllllIllllllllllIllIllllIllIlllllllllllllll!llll-IIlIIIllI!Il'llIl"llll-!ll-l'-I-F-l

- 16 -

Use meaningful metaidentifiers

Metaidentifiers are names given to components of the language, and are
completely arbitrary, for example:

b = 1ldp, cdp, tdp, vdp, pafdp, sp ;

fps = vlps | vrps | prps | fnps ;

could replace the two rules for 'block' and
'formal-parameter-specification’ given above. With abbreviations like
this the whole of Pascal could be defined in a single page, but only
with almost complete loss of clarity.

Place comments sensibly

Put any comments about a rule before the final semicolon so that even a
computer knows which rule the comment is referring to.

Order rules sensibly

The rules for a language can be given in any order, but a language like
Pascal or Fortran has more than a hundred rules, and a reader is helped
if the rules are in some sort of logical order. For example:
(1) Group together the rules for each particular part of the
language.
(2) Follow each metaidentifier with a comment indicating whereabouts
in the language definition that part of the language is defined.
(3) Put all the rules in alphabetical order. A prceram can do this.

Provide a cross-reference index

A cross-reference is another helpful aid in understanding large
languages; it shows where each metaidentifier and terminal symbol in the
language is used in other syntax rules.

A cross-reference index can also be made by a program.

Explain complex languages with syntax diagrams

The standard for Fortran 77 explains the syntax of the language with
syntax diagrams, i.e. each non-terminal symbol is defined by a diagram
looking like a network of railway lines. Any smooth path from start to
finish indicates a valid sequence of symbols forming the non-terminal
symbol. This notation is easy to understand but more difficult to write
and type.

Syntax diagrams are probably most easily prepared by a computer program
that reads syntax rules as data.

Clearly distinguish metaidentifiers in explanatory text

Metaidentifiers are usually one or more English words. The explanation
of a language may be confusing unless the metaidentifiers are clearly
distinguishab : from ordinary English words. Several notatlions are
possible:

(1) Surround metaidentifiers by < and > (angle brackets);

-17 -

(2) Write a hyphen instead of a space between the separate words of

a metaidentifier;
(3) Use a distinctive type font for metaidentifiers;

(4) Underline metaidentifiers.
Take care to define whatever notation you adopt; the standard itself is
silent on the matter.

Logically defined rules

It is sensible if the language definition reflects the structure of the
language, only then can a reader understand it easily.

Rl

T

- 1B -

APPENDIX A - SOMF FURTHER DETAILS

This introduction to the metalanguage has simplified the description by
onitting some details. This appendix describes features which might have
been confusing on a first reading.

Multiple definitions of metaidentifiers

Syntax rules starting with the same metaidentifier provide another
method of making alternative definitions. This is convenient when a
language contains several levels. For example, Fortran 77 has two
levels. At the subset level

logical operator = ".NOT." | ".AND."™ | "CR"
The full language has two additional logical operators:

logical operator = ".EQV." | " . NEQV." ;

Lexical conventions

A language defined by the metalanguage may have lexical rules completely
different from the metalanguage itself. For example in the syntactic
metalanguage a metaidentifier may contain spaces or other gaps to
improve its readability, and a line may be of any length and start with
any number of spaces. However, the metalanguage may be used to define
Fortran statements where each lire has 72 characters and a label
occupies the first 5 characters of a line; or to define Pascal
identifiers where no gaps are allowed in an identifier or integer.

A restriction on exceptions

As stated earlier a metaidentifier can be defined by giving the valid
cases, an exception symbol and then the invalid cases. If the invalid
cases are permitted to be arbitrary, the metalanguage could define
languages which are not context free grammars, including attempts which
lead to Russell-like paradoxes, e.g.

XX = "AA" - xx ;
Is '"AA' an example of xx7?
Such licence is undesirable in a standard and therefore the form of the
exceptional cases is restricted so that definitions can be proved to be
safe.
The exceptional cases must be such that it is possible to define them

without using any metaidentifiers. For example the definition of a

visible-character on page 9 is valid because space could be replaced by
"on"

Special sequences

Special sequences are allowed to be empty.

A pragmatic use for special sequences is to contain text that informally
qualifies the meaning of a syntax rule.

You can shorten the definition of languages containing a large number of
lists by defining that:

ol

- 19 -

? primary : terminal string ?

is equivalent to
(primary, {terminal string, primary})

APPENDIX P defines special sequences to represent lists and arbitrary
permutations.

A note on ambiguous character-strings

Critical readers will have realized that (#*) in the metalanguage is
ambiguous: it can be read both as (*) and (®*), Similar problems arise
with (:) and (/). These problems are overcome by forbidding any such
sequence from appearing in a language definition.

Other syntactic metalanguages

The introduction to this report mentioned that several different
metalanguages have previously been used. The syntax of some of them can
be defined using the British standard metalanguage.

BACKUS NAUR FORM (Algol 60)
BNF syntax = { BNF syntax rule } ;

BNF syntax rule = "<", BNF metaidentifier, ">", "::z"
ENF definitions list

BNF definitions list = BNF single definition,
{ "i", BNF single definition } ;

BNF single definition = { BNF primary }- ;

BNF primary

= "<", BNF metaidentifier, ">",
! BNF terminal string |

’
BNF metaidentifier

= letter, { [space], (letter ! digit) } ; 1
BNF terminal string = { character }- ;
PASCAL (British standard BS 6192)

Pascal syntax = { Pascal syntax rule }- ;

Pascal syntax rule = Pascal metaidentifier,
: . ("=", Pascal definitions list
Pascal extra defining symbol, Pascal alternative definition

), "."

.

Pascal definitions list = Pascal single definition,
{ "™, Pascal single definition } ;

ot R (3

Pascal alternative definition = Pascal definitions list ; f

1

Pascal single definition = (Pascal primary }- ;

A

Pascal primary = Pascal optional sequence

- 20 -

‘ i Pascal repeated sequence | Pascal grouped sequence

| | Pascal metaidentifier | Pascal terminal string | ; 1
Pascal optional sequence = '{', Pascal single def. .ition, ']' ; éi
Pascal repeated sequence = '{', Pascal single definition, '}' ; i]

3

Pascal grouped sequence = '(', Pascal definitions list, ')' ; '1
Pascal metaidentifier = 1letter, { ["-"], letter } ;
Pascal terminal string = '"', { Pascal character }, '™
Pascal extra defining symbol = '>' ;

A final warning

This beginner's guide is not a complete definition of the syntactic
metalanguage; for that you must refer to the British Standard.

APPENDIX b - SPECIAL SEQUENCES FOR SETS AND LISTS

SUMMARY

The Standard syntactic metalanguage (BS 615U4) includes a facility called

'special sequences' for users who wish to extend the metalanguage for
structures and permutations can be defined concisely using the special
sequences.

INTRODUCTION

The designers of the British Standard syntactic metalanguage could not
agree on 1ts extent. Some wanted a small simple metalanguage, others

extension for two-level grammars is suggested in an appendix, and the
1 metalanguage includes "special sequences" whose meaning can be defined

by a user.

metalanguage, "Must I define a list as"

item list = item, { separator, item } ;
and, "How do I specify a set of items that can occur in any order?"

These notes show how special sequences might be used for these
extensions.

The example of Fortran input/output statements given at the end is an
illustration of sets in BS6154.

SYNTAX

(® Additional terminal characters ¥)

end subset symbol = ">"
intersection operator symbol = "#n
field delimiter symbol = ™":" ;
start subset symbol = ™"

union operator symbol = "+"

(* Additional syntax rules for the metalanguage %)

syntax rule = set definition ;

special sequence = list | set ;

; (% Lists %)

1ist = "?", "LIST", field delimiter symbol, 1ist element,
field delimiter symbol, 1list separator, "™?" ;

1ist element = primary - special sequence ;

1ist separator = primary - special sequence ;

special purposes. This self-contained appendix shows how arbitrary list

wanted a more comprehensive notation. A compromise was reached where an

Two possible extensions are suggested by common questions concerning the

(® Sets *,

a

e Tmiter syTmbooL,

Lalimiler svot oL,
set expression, fie.d Jelimiter symb~!

.

set identiflier = meta identifier .

set expre
@

et term = el primary

set separator = primary - special sequenc

LISTS
An arbitrary list:
? LIST : list element : list separator ?

is equivalent £o tae syntactic-primary

3

NOT. - An arbitrary non-empty iist ca

where
empty = 3

A non-empty list can be defined more concisely as:

? LIST : list element : list separator 7-

Examples

abc = "A" : ||B" \| "C"
(® A B C)
abe 1ist = (", ? LIST: abec :?7, ")*
(* () (AY (Aw) (AC) (ABA) (ABC) (
abc comma list = "(", ? LIST: abe : ","
(# (A) (A,B) (A,C) (A,B,A) (A,B,C)

j Al
voIntersection Jperatlir Symtoo, Set prd

list element, { list separator, list element }]

iiuer, Aefining symbol,

get exyression, "Yn

net separator,

set primary = set b
[stardy subset 58i¢
¢ Start K&r.up o cymio., Set expreszion

set element = orimery - spetiail sequence

¥

N

y be represented by:

(?2 LIST : list element : list separator 7 - empty

BBCA) *)
7=, "yn

(B,B,C,A)

- non

; end subset 3ymZ-ol
., end group symbo!

)

A set-definition defines the elements of a set and gives a name to the
set. The elements of the set are defined by the set-expression, and the
name of the set defined by the set-identifier.

A set-expression defines a set that is the union of all the sets defined
by the set-terms forming that set-expression.

A set-term defines a set that is the intersection of all the sets
defined by the set-primaries forming that set-term.

A set-primary that is a set-identitier Jefines a set which is the union
of all sets defined in a set-definition starting with that
set-identifier.

A set-primary that is a set-element defines a set whose sole member is a
sequence of symbols represented by the set-element.

A set-element represents any sequence of symbols represented by the
primary.

A set-primary that is a start-subset-symbol, followed by a
set-expression, foliowed by an end-subset-symbol defines a subset of the
set of symbols defined by the set-expression.

A set-primary that is a start-group-symbol, followed by a
set-expression, foliowed by an end-group-symbol defines the set of
symbols defined by the set-expression.

A special-sequence that is a set represents a sequence of symbols. This
sequence of symbols is a list of subsequences where
(a) there is one-one relationship between the subsequences and the
elements of the set defined by the set-expression, and
(b) every two consecutive subsequences are separated from one
another by any sequence of symbols defined by the set-separator.

Examples

(* Each syntax rule ends with a comment containing examples
of the symbols or sets defined by that rule %)

a = "A" (# A)
b = "B" (® B #) ;
c = "Cc© (# C L -
aorborc = "A™ | T"B" | nC"
(® A B C L B
(® Set definitions #)
a or b or ¢ set definition = ? SETDEF: a or borc ?
(® A B C ®) 5
abc set definition = 7?7 SETDEF: a + b + ¢ ? '
(® ABC ACB BAC BCA CAB CBA LD
abc subset definition = 7 SETDEF: <a + b + o> ?

(®] A AB AC CBA BAC %)

R =

(# Definitions using sets Ly
aorborcaset = ™" 7 SET: aorborc set definition :?, ";"
(® (AY (BY (¢)
abc set = "(", ! UET: abc set definition :?, ")"
(% (ABC) CACB) (BACY (BCAY (CAB) {(CBA) *)
abc subset = "(", ? 3ET: abc subset definition : ?, ™)
(* «) (A} (AB) (AC) (CBA) (BAC ®)
abe commu set = "(", 7 SET: abc set definition : ", 7, ")
(® AVELTY O (ALCL,BY (BLA,C) (B,C,A)
CCLALER L (0L,B, A . .

NOTE

ces to be nested or for a separator
dl-seguence-symbol.

e ‘ F .

It 15 impossib.e or special-sequen
Lo be speditied oo Yoas o gpeant
Tnis restricticn arises tecause
11 the spe~ial-sequence~symbol both opens and closes a
special-sequence, and,
{2) BS 6154 indicates (clauses 4.19 and 4.20) that inside a
special~sequence, first-quote-symbols and second-quote-symbols do
not necessarily have their normal meaning of delimiting
terminal-strings.

In =everal Fortran 77 input-output statements, a set of specifiers may
be given by the programmer. The set of specifiers has the following
properties:
(a) Each apecifier is usually identified by a keyword, tollowed by
equals, followed by an input value or output variable.
(b) The specifier defining the unit-identifier must be specified,
but other specifiers are usually optional.
(c¢) Each specifier is separated from the next by a comma.
(d) When a programmer starts the specification list with the
unit-identifier no keyword is necessary for this specifier.

These requirements are satisfied by the following syntax-rules written
in BS 6154 with the Set extension defined above.

Syntax

(® Nonterminal symbols not defined here:

array element name,
character expression,
integer expr,

label,

unit identifier,
variable name *)

(® SPECIFIERS *)

1]

access specifier "ACCESS"™, ™=", character expression ;
blank specifier = "BLANK", "=", character expressicn ;
error specifier = "ERR", "=", label ;

file specifier "FILE", "=", character expression ;
form specifier "FORM", "="_ character expression ;
iostat specifier

= "IQSTAT", "=", (variable name | array element name) ;

recl specifier = "RECL", "=", integer expr ;
status specifier = "STATUS", "=", character expression ,
unit specifier = "UNIT", "=", unit identifier ;

(* SETS OF SPECIFIERS *)

basic io specifiers
= ? SETDEF: error specifier + iostat specifier 7?7 ;
close specifiers
= 7 SETDEF: basic io specifiers + status specifier ?
open specifiers
= ? SETDEF: basic io specifiers + access specifier
+ blank specifier + file specifier + form specifier
+ recl specifier + status specifier 7 ;

(® INPUT - OUTPUT STATEMENTS *)

1

backspace statement = "BACKSPACE", file positioning specification ;

close statement

= "CLOSE",
"(“’
(unit identifier, [",", ? SET: <close specifiers> now 2.]
' 2 SET: unit specifier + <close specifiers> : "," ?
)y
")"
endfile statement = "MENDFILEY", file positioning specification ;
file positioning specification
= unit identifier
b,
(unit identifier, [",", 7?7 SET: <basic io specifiers> ", 2=
' 2 SET: unit specifier + <basic io specifiers> : "," ?
)y
")ﬂ ;
open statement
= "OPEN",
",
(unit identifier, [",", 7?7 SET: <open specifiers> nr 9~]
' ? SET: unit specifier + <open specifiers> : "," ?
)y
ﬂ)” ;
rewind statement = "REWIND", file positioning specification ;

]

e s et S b

alternatives, 2, 18
angle brackets, 16
apostrophe, &
asterisk, 2

ol cgraphy, format of 11

brackats, 3
argle 'h
curly 4
~verride precedence 3
round A

s3tare 4

Jnaracter set, 8
Jnesy Ta

commi, 3
comments, 5, 1b
curly hrackets, U
equa.s,

exceptiong, 4, 18
orsyth notation, 10
index, cross-reference 16

metaidentifier, 2
right hand side of a syntax rule 2
metalanguage,]
syntactic
minus sign, 4

non-terminal symbol, 1
precedence of metalanguage symbols, 3, 7

question mark, 5
quotation mark, 2

references, format of 11

rules, use meaningful metaidentifiers in syntax rules
when to start a new line in a syntax rule 15
where to put spaces in a syntax rule 15
write syntax rules simply 15
write syntax rules with a clear layout 15
writing comments in a syntax rule 16

semicolon, 2
sequence, optional U
ordered 2 ’
repeated 4, 5
special 5, 18
special sequences, 5, 18
square brackets, 4
symbols, non-terminal 1
precedence of 3, 7

16

M

terminal 2, 5
syntax rules, basic form of 2
order of 16
reading 6
writing 15
terminal symbol, 2, 5
vertical line, 2

CHARACTERS & SYMBOLS

Punctuation characters

) 3
; 2
see (
! 8
? 5
8
Brackets
" 2
! 5
() 3
(= % 5
(N 8
() 8
< > 16
L] 4
{ } 4
Delimiters
- y
. 3
see also (
/ 8

see also (

- 27 -

