
AD-A142 655 A N I NTRODUCTION AND HANDBOOK FOR STANDARD SYNTACTI C /
META LANGADE(U) NATIONAL PHYSICAL LAB TEDDIND ON
ENGLAND)D' V OF IN FORMA ON TECHNOLO0Y AND COM PUIND

UN A SSIFIED R S SCOWEN FEB 63 NP L/ IIC- /83 Fc 5/ S 7F(* A .*o *..m F o**
EEEEEEEEEEEEEEm

1.0 j 2. jj25

3 - .

C*4

National Physical Laborator

84 07 02 078

NFL Report DITC i,/83
February 1983

An introduction and handbook
for the

standard syntactic metalaniguage

by
R~ S ' cowen

D Crown copyright 1981, 1983

ISSN 0262-5369

National Physical Laboratory
Teddington, Middlesex TWIt OLW, UK

Extracts from this report may be reproduced
provided the source is acknowledged

Approved on behalf of Director, NPL, by Mr E L Albasiny
Superintendent, Division of Information Technology and Computing

son

NPL Report DITC ri/'8

February 1983

NATIONAL PHYSICAL LABORATORY [
An introduction and handbook

Vu)r the

standard syntactic metalangjaze

by

R S Scowen

Division of Information Technology and Computing

Abstract

British Standard BS 6154 defines a standard syntactic metalanguage This

report first explains what a metalanguage is and why it is useful; the

rest of the report is a guide and summary of the standard metalanguage.
Many examples are taken from sub jects outside computing, others come

from Fortran or Pascal, two of the commonest programming languages.

Important features of the standard metalanguage are that it can be typed
easily and processed by computers.

This report is based on an earlier, one, NPL Report DNACS 47/81, now Out

of print. T-

I..

CONTENTS

Introduction 1

The basic form of a syntax rule 2

Reading syntax rules 6

The precedence of operators 7

Limitations of the metalanguage 7

Character sets 8

Examples9

1. A few one-line definitions 9
2. Telephone numbers 9
3. The Forsyth notation in chess 10
4i. Bibliographic references 11
5. BS 6154I - syntactic metalanguage 13
6. BS 6154I - an alternative representation 1~4

Writing syntax rules clearly 15

APPENDIX A - Further details 18

APPENDIX B - Special sequences for sets and lists 21

Index 26

AN INTRODUCTION TO THE 3TANDARD SYNTACTIC METALANGUAGE

Languages enable communication, sometimes between people, sometimes
animals, sometimes computers. The syntax of a language defines precisely
those sequences of words or symbols which are grammatically valid. If
you want to describe or define a language, it is natural to use English
which is easy to write and understand. However there are disadvantages,
for example it is easy to be ambiguous without realizing it. The
subsequent confusion or misunderstanding will increase costs and waste
time; it may even result in disaster.

A better strategy is to define your language using a notation specially
designed for describing the structure or meaning of languages. Any such
notation is called a metalanguage, thus a syntactic metalanguage is a
notation for specifying a syntax (or format) precisely. It should be a
valuable weapon in the armoury of every computer scientist but although
'he concepts are well known to compiler writers and language designers,
.iany different notations are used with the result that some programmers
are unfamiliar with the ideas.

The syntax definition of a language serves three different purposes:

*it names the various parts of the language,

*it shows how to construct sentences of the language that are
syntactically valid, and

*it also indicates the syntactic structure of any given sentence of
the language.

Note that a syntactic metalanguage is useful not only for the syntax of
a programming or command language, but whenever a formally defined
syntax is required, e.g. the format for references in scientific
reports, or the interface between two programs.

A British Standard (BS6154) defines a standard syntactic metalanguage.
One important feature is that it can be typed on most computer terminals
and processed by computers.

The existence of a British Standard metalanguage makes life much simpler
for project managers and data processing managers when they must specify
documentation standards. Previously, if they specified "Use
Backus-Naur-Form", there would be cries of anguish, "It's primitive",
"It's long-winded", or, "My notation is much clearer and shorter". The
result was likely to be argument and vacillation. One team defining a
candidate language for the US Department of Defense spent six months
deciding on a syntactic metalanguage.

Another company has adopted BS 6154I with great success, "Previously
people thought they knew the requirements, now they are certain what is
wanted".

This report is a beginner's guide to the standard metalanguage. Often
the simplest way of understanding a new idea is by studying its
application to something that is already familiar. So most of the
examples define elements of Fortran or Pascal, two of the commonest
programming languages. Each syntax rule names part of the language
(called a non-terminal symbol of the language) and then defines all its
possible forms.

-2

THE BASIC FORM OF A SYNTAX RULE

Each syntax rule starts with the name (known formally as a
metaidentifier and pronounced meta-identifier) of the structure being
defined. Then comes = (equals), the definition follows, and the syntax
rule ends with ; (semicolon).

A metaidentifier is one or more words formed with letters and digits,
with the first character being a letter. Sometimes the definition
consists, wholly or partly, of explicit characters which always appear
in the structure being defined, a group of such characters is called a
terminal symbol. They are represented by themselves and enclosed by "

(quotation mark). For example:

continue statement = "CONTINUE"

states that a continue statement is formed by the eight characters:

CONTINUE

Note that a terminal symbol of a language is like an atom that cannot be
split into smaller components of the language.

The metalanguage refers to the characters of a terminal symbol together
with the enclosing apostrophes as a terminal string.

Alternative definitions

When there are several possible definitions, the alternatives are listed

one after the other and separated by 1 (vertical line). For example:

digit = "0" 1 "1" 1 "2" :"3" "4" 1 "5" 1 "6" : "7" 1"8" 1 "9" ;

states that a digit is any one of the ten characters

012 3 4 56789

Using symbols that have already been defined

When a metaidentifier occurs after the = (equals) of a syntax rule, it
represents any sequence of symbols defined by a syntax rule that starts
with that metaidentifier. For example:

octal digit = "0" 1 "1" 1 "2" 1 "3" 1 "4" 1 "5" 1"6" : "7"
digit = octal digit 1 "8" 1 "9" ;

states that an octal digit is any one of the eight characters

0123 4567

and (indirectly) that a digit is any one of the ten characters

012 3 4 56789

II

A sequence of items

A definition may consist of several terminal strings and metaidentifiers
in a particular order. In this case the symbols are listed in the
correct order and separated from each other by a , (comma). For example:

assignment statement =variable, "=", expressionr

states that an assignment statement is a variable followed by = (equals)
followed by an expression. This rule says nothing about the form of a
variable or an expression; other rules to define them will appear in a
complete syntax.

A specific number of items

In Fortran a label at the start of a statement always contains five
characters with each character a digit or blank character, this could be
defined by the rules:

blank = " 11

label char =digit 1blank
label field =label char, label char, label char,

label char, label char;

A simpler way specifies the exact number of label chars by a preceding
integer and * (asterisk). Thus the third syntax rule can be rewritten:

label field =5 * label char

Brackets group items together

In mathematics (and) (brackets) are used to group items together.
Brackets have a similar meaning in the metalanguage, for example the
previous three rules could be written:

label = 5 Cdigit

Precedence

So far the meaning of several symbols in the metalanguage has been
explained without saying whether a syntax rule can contain every sort of
symbol. For example, would

label =5 * digit "

be a valid syntax rule? If so, what does it signify? In fact it is a
valid rule, but means the same as the bracketed rule

label= (5 digit)

This is because the British Standard defines 0to have a higher
precedence in the metalanguage than 1. This idea of precedence occurs
also in Fortran and Pascal where 9 and / have a higher precedence than +e
and -- Page 7 contains a complete precedence table for the
metalanguage.

All brackets override the normal precedence. Used wisely, they make
languages easier to understand by reducing the number of syntax rules

and shortening the language definition. But too many brackets make
syntax rules complicated and obscure.

An optional item

Many constructions in Fortran have symbols that are optional, for
example the increment in a do-statement need not be specified when its
value is one. Optional symbols are specified by enclosing them
in [and I (square brackets), e.g:

do statement ="DO", label, variable, 11=", initial value, ~"
final value, ["1,", increment]

An indefinite number of items

Sometimes there is no logical limit to the length of a structure, for
example a Fortran arithmetic expression can be as long as you like
(although strictly there is a limit because a statement must not have
more than 19 continuation lines). Symbols that are optional or that can
be repeated any number of times are enclosed in [and I (curly
brackets), e.g:

arithmetic expression = [sign], arithmetic primary,
{arithmetic operator, arithmetic primaryl

states that an arithmetic expression is one or more arithmetic
primaries, any two arithmetic primaries are separated by an arithmetic
operator, and there may be a sign at the start of the arithmetic
expression.

Everything except an exceptional case

Sometimes a definition would be quite simple except for a few special
cases. The metalanguage permits such definitions to be expressed by
giving the general rule, then - (minus sign), then the exceptional
cases, for example:

Fortran 77 continuation line =5 "

(character - (" "t 1 "0"1)), 66 *[character]

This rule states that a Fortran 77 continuation line starts with 5
blanks, the sixth character must not be a blank or zero, and there must
not be more than 72 (= 5 + 1 + 66) characters altogether.

In Fortran 66, the definition of a continuation line is more
complicated, i.e:

Fortran 66 continuation line (character - "C"),
i4 0 character, (character- " 0))
66 0 [character]

This rule states that a continuation line must not start with C, there
must be at least 6 characters, the sixth character must not be a blank
or zero, and there must not be more than 72 (=1 + 14 + 1 + 66)
characters altogether.

-5-

Syntax processors and the need for comments

The metalanguage has been designed so that computer programs can be used
to process the syntax of a language. It is often beneficial if
explanatory remarks can be added to the syntax without affecting the
results of a syntax processor. It is also natural to mention the extra
semantic restrictions that cannot easily be expressed in a syntax. For
reasons such as this the syntactic metalanguage includes a comment
notation. Any text in a comment has no formal effect on the language
defined by a syntax. A comment starts with (0 (left parenthesis,
asterisk) and ends with *) (asterisk, right parenthesis), e.g.

integer = digit, fdiigit)
(* The maximum magnitude of an integer in IBM Fortran IV
on 360/370 computers is 211474~8364~7 (i.e. 2-31 - 1) I

However (0 or *) in a terminal string stand for themselves and do
not start or end a comment.

One or more repetitions

A shorter way of defining an integer as one or more digits is:

intever [digitl - empty

empty =

Or even more concisely:

integer {digitl-

This definition is equivalent because the general case is zero-or-more

digits and the exceptional invalid case is empty.

Spe cial se quence s

It is always difficult to foresee all possible uses for a new notation,
so the syntactic metalanguage includes a method for extending the
notation. In any syntax rule the meaning of any text that starts and
ends with ? (question mark) is not defined by the standard. Such text
is called a special sequence; when this notation is used there should be
an explanation with the syntax of the language telling you how to
interpret it.

More on terminal strings

A terminal symbol can be enclosed by I(apostrophe) instead of
(quotation-mark). This allows us to define terminal symbols containing a
quotation-mark.

Note that there must be at least one character between the apostrophes
or quotation marks of a terminal string.

For example, the definition of a terminal symbol in the syntactic
mietalanguage Is:

terminal string '",fcharacter - 'I,'"

I (character- '1-"'

READING SYNTAX RULES

It is not difficult to translate and read a syntax rule in a rather
strange form of English. Table A gives an equivalent English phrase for
each character in the metalanguage. Unfortunately we cannot forget about
the metalanguage and define our languages using only the equivalent
English phrases because the English version becomes ambiguous with
complicated syntax rules. And remem'ber, avoiding ambiguity is one of the
reasons for having a formal metalanguage.

TABLE A -- READING A SYNTAX RULE

METALANGUAGE SYYBCL ENGLISH PHRASE
----------- -------------------------

I metaidentifier A or an
terminal The character(s)..

(The end of a rule)

I Or

I Followed by
- Except
IOccurrences of

I I IAny number of
I J Optional

Examples

The examples are taken from the metalanguage's own definition. Each
syntax rule is followed by an English 'translation'. The words
corresponding to the metalanguage symbols have been written in upper
case so that it is easier to compare the original rule with its
translation. Sometimes the order of words has been altered slightly so
that the translated rule reads better, sometimes, as stated earlier, the
translation is ambiguous.

syntax = syntax rule, [syntax rule)
A syntax IS A syntax rule FOLLOWED PY ANY NUM~BER OF Ad syntax rule.

factor = [integer, 1111 primary;
A factor IS AN OPTIONAL integer FOLLOWED BY *FOLLOWED BY A primary.

optional sequence = "P', definitions list, "I";
AN optional sequence IS [FOLLOWED BY A definitions list FOLLOWED BY 1

special sequence = ?,(character -"",""

A special sequence IS ? FOLLOWED BY ANY NUMBER OF A character EXCEPT ?
FOLLOWED BY ?

-7-

THE PRECEDENCE OF THE METALANGUAGE OPERATORS

Table B gives the precedence of the various metalanguage operators; the
higher the symbol in the table, the higher its precedence.

All brackets override the normal precedence.

TABLE B -- PRECFDENCE OF METALANGUAGE OPERATORS

METALANGUAGE SYMBOL MEANING

* Repeat

- Except

, Concatenate

I i Or

= i Defines

; End of rule

Example

The Fortran 66 continuation line (already defined on page 4) could have
been defined with fewer brackets.

Fortran 66 continuation line character - "C",
4 character, character - (" " :"0"),
66 * [character]

LIMITATIONS OF THE SYNTACTIC METALANGUAGE

The main restriction of the standard metalanguage is that the language
being defined must be linear, i.e. the symbols in a sentence of the
language can be placed in a line reading from one end to the other. For
example knitting patterns and recipes in cooking are linear languages
but electric circuit diagrams are not.

A further limitation is that the notation is inadequate for defining
complex gramwars that also define semantic restrictions on the possible
sequences of symbols. However a way has been left open for the
metalanguage to be suitably extended; further details are beyond the
scope of this beginner's guide.

Naturally, the metalanguage, like most other notations, can be misused.

For example it does not prevent someone from trying to define an
unparsable or ambiguous language.

THE CHARACTER SFTS

Syntax rules in the standard metalanguage are written using the standard
ISO 7-bit character set. This is similar to the ASCII character set and

is available on many computer systems. Syntax rules can also be printed
on conventional office typewriters because alternative characters are
defined for those symbcls that are unavailable or some typewriters.

Table C gives all the possible representations for each metalanguage

symbol.

TAF I.E - THE MFTALANGUAGE CHAFACTER SFTS

YFTALANGUAGE SYI!ECL ?CSSIPLF PEFPESENTATICNS

c-roatena e sr.tcl
defining symtol
definition separator syntcl - /

end comment symbol 4;

end group symbol

end option symbol

end repeat symbol }
except symbol
first quote symbol
repetition symbol *

second aucte symbol
special sequence symbol 7
start comment symbol (I

start group symbol

start option symbol (/
start repeat symbol

terminator symbol

The characters required for the metalanguage are:

letters digits = , * () ?

or

or / or

/ or both]
or both { }

or " (Both characters are desirable)

i'

FXAMP1LES

A f e w ono-I linie I-efi n -1 it r!u

space =z 1
(defines a rc(n-terzira1 symbol called 'space' to represent

a spar e ch aracter *)

,risible character = haracter - space
(9 ncrines a ii ccharac-ter to be

any cratrextept. a space)

(defines a digit, to be a-:iy of the ten characters

i i *tezer z ii

. efineu, a',, irlps~r te -re or coe igits

lie ac I vt' -w~1 to be one of th e fi ye chara-ters

2.ye ecnep no her-F

loio %Ir'hren-her '01-", exchange."" numter

exchAn,7e 4 digit

r. orter=4 ii

- 10 -

3._ _Th e_ Forsyth _notation for record i n_ -a chess Cositicn

The Forsyth notation provides a simple method of recording any "hes:
position. Although a position recorded in this way is not imre iately
obvious to a reader, it is much more quickly written than a diagram with
pictures of pieces.

The Forsyth notation describes a chess position ty specifvin" the jiew'o
on each row. It starts at the top of a diagram, , j r. Fl-k's f ir:, rank,
and proceeds row by row ending at Black's eighth rark. lach r',w 4;
described from left to right, i.e from the Queen's ;ock fie t "

're

King's Rook file. A White piece is written as an upper csfze letter, and
a Flack piece a lower case letter. The abbreviations are:

K z King, C : Queen, R = Rook, F = Dishop, N = Knight, T :iwr.

A number indicate a sequence of empty squares or rcws.

SYNTAX

Forsyth chess psition = row, { '/", row ,

row one or more empty rows single row

Dne or more empty rows
'8 .. 16' '24'' . 32 . .4 0" , .

single row [one or more empty squares],
I chess piece, [one or more empty squares] -;

one or more empty squares
= 1111 11 2" ', " " 1 , "14" Vc, "1" t) ".. .7" •

chess piece = black piece white piece ;

black piece = "k" ', "q" , "r . , b", "n" "p"
(I In manuscripts, each letter representing a black piece is

often circled rather than being written in lower case *)

white piece = "K" "Q" "R" "" "N" "P"

EXAMPLFS

(1) The position at the start of a game of chess is:
rnbqkbnr / pppppppp / 32 / PPPPPPPP / RNPQKFNR

(2) The position after the moves:
I P-K4 P-K4 2 8-B4
rnbqkbnr / pppplppp / 8 / 4p3 / 2B1P3 / 8 / PPPPlPPP / RNBCKINR

(3) The position after the moves:
1 P-K4 P-K! 2 B-4 P-R4 3 Q-R5 N-QB3?? 4 Q-R5 mate
rlbqklnr / pppplQnp / 2n5 / 2b1p3 / 2B1P3 / 8 / PPPP1PPP / RNR1K1NP

LIS 61 ILI refe'z c to 1 papers that strongly infl uenced the
st and an,

This examp!e shcwo h, 1J., anguage can specify the form of'
refer ences and n n p I it r-s m ainta in a consi stent stylIe.

The re f ere noes~ a s pr-~e r are:

F E ~Pv iseA ! ---,t on the Algorithmic LagaeLQ C

.OOFuter :a7-,v 1 t3, Vol 5, No. ~4 pp a~37

c 4!-ut the unnecesSary liversi;ty of nctatior.
f, m7 .C M, N ovem. ,e r V(Vo 2 C, Nc C

1A 7J, * X ELJ PFCF', J. E.L, KC STEPH, C .F. A

-c'anguanwe A>CCXL ,Ac ta
n (Js pulihe in! SV113FLAN

F YNTA X

refereneP au' 1)cr s ~ crc es, point

authors

auhr . imra, a uthr s sp ace, "and", space 1
author, "().

author =surname, comma, I initia:l }

surname unper ca.,-, ' tt-r, space -,upper c2ase(letter
initial =upper case letter, poInt

title .r r rrewrds, Ion "2',M space

sources
-sour ce, --cmma, "),also putlished in ",source , "

source 'ccirna. ae v ue parts I pages1

-journal =ore more italic wards, c o mma
date z[month, space I year;
volume ="Vol' , [po int ~,space , volume number, comma

parts "Nr," , [po in t I space , integer, (comma s pace
"Parts". space,* first par- * hyphen, last part

pages = "pp' , space , first parye, hyphen, last page

month =upper case letter, {liwer case letter 1
year = 4 * digit, comma;
volume number = bold face integer
first part =integer
last part = integer
first page = integer
last page = integer

(O Cc,mn deftnlticnS 0)

commra = *~,,space

hyphen = -

-12-

point =
space = new line

(' Definitions not given here)

bold face integer

digit

integer

lower case letter

one or more italic words

one or mere words

upper case letter

F. S 6194 -- -syntact ic recAlanri~uage

This example 1,ir- ,f -svntSx tf the standard syntactic metalanguage
using itself. !vary V th~e !,yltax ru~t's irciude a comment to explain
their meanii r: inside :i comrrnt -i myetaiidentifier is enclosed in angle
brackets < anA to avcii 1-orfusio,, with similar English words. The
nor.-+erminal srh ltter', 'dt-imal digit) arnd <character) are not
defined. The pstc.o me. s'is sta!ted in a comment but not
formally def ined

Characters such. as apcend new iJnes affect the language defined by a
syntax only when 'thcy apea n te rminal string.

syntax sync ix rc , tsrta rul'l
syntax -'e 11adriir Z11, cef iri4ti4ons ist, ;

(~ A Ksvn ax r"ule> de'>ines te st-quences of symbols represented by
a (met:iierti Vie"'-

defiritirns !ist s lr' finiti~n,{' single definition)

single defiri t.cr tor ' erm)
* I -epar'a-.ec s otermrs) *);

term factor, e.",.x--ptic H
(A <term) represent" ay -ecuenoe of' symbol!s that is defined

by th-e <factor> tbut no' 'iefirnd by the <exception) U

exception = fac'cor
(A <factor> may be us ed as ar. <exception> if it could be

replaced by a <factr> containing no (mnetailentifiers> I

factor = [integer, to" I , primary
(UThe <integer> specifier- the number of repetitions of

the <primary> *);
pri4mary = optional sequence repeated sequence special sequence

grouped seauence metaid-ntifier :terminil string
optioral sequence ci"[i n dc fit ions li st

(* The brackets Kand 1 enclose symbols which are optional U

repeted equece "" ,defin itt ~ns list,
(UThe brackets Iand I ,orioe syimbols which may be

repeated any number of times *);
grouped sequence "(,definiti~nn list,

'~ he brackets (and)allow any (definitions list>
to be .a <primary, '

terminal string z: ' II I haracter - I'll Icharacter - '"'I fill

1,character - " '", { character III,"I,

(A <terminal string> repres-ents the <characters> between the
quote symbols " "or II*

meta identi fier = letter, flettEr decimal digitl
(UA <metaidentifier> is th)e name of a syntactic eletment of the

languaj,7e being defined *);
integer = decimal digit, (decimal digit)
special sequence ="?"1, (charaoter - "?"}l VIt

(0 The mreaning of i (special sequence> is not defined in the
standard metalanguage. #)

comment = "(, comment symbol), 110)19

(0 A comment is allowed anywhere ot'tside a <terminal string>,
<metaidentifier>, <Integer> or <special sequence> 0)

comment symbol
-comment terminal string special sequence character

- 14 -

6. The syntactic metalanguage in an alternative representation

SYNTAX = SYNTAX RULE, (: SYNTAX RULE
SYNTAX RULE = METAIDENTIFIER, '=', DEFINITIONS LIST, '.'

DEFINITIONS LIST SINGLE DEFINITION, (: '/', SINGLE DEFINITION :)
SINGLE DEFINITION = TERM, (: ',', TERM :)
TERM = FACTOR, (/ '-', EXCEPTION /)

EXCEPTION = FACTOR
FACTOR = (/ INTEGER, '' /), PRIMARY

PRIMARY = OPTIONAL SEQUENCE / REPEATED SEQUENCE / SPECIAL SEQUENCE
/ GROUPED SEQUENCE / METAIDENTIFIER / TERMINAL /

OPTIONAL SEQUENCE = '(/', DEFINITIONS LIST, '/)'
REPEATED SEQUENCE = '(:', DEFINITIONS LIST, ':)'

GROUPED SEQUENCE = '(', DEFINITIONS LIST, ')'
TERMINAL

= "'", CHARACTER - "', C: CHARACTER - '" :), "
/ '"', CHARACTER - '"', C: CHARACTER - '"' :), '"'

METAIDENTIFIER = LETTER, C: LETTER / DIGIT :)
INTEGER = DIGIT, (: DIGIT :)
SPECIAL SEQUENCE = ? , (: CHARACTER - ? , :), ? ,

COMMENT = '(*', (: COMMENT SYMBOL :), '*)'
COMMENT SYMBOL COMMENT / TERMINAL / SPECTLL SEQUENCE / CHARACTER

-15-

WRITING SYNTAX RULES CLEARLY

The syntactic metalanguage is only a notation. It does not prevent you
from defining paLtuological languages or from writing opaque clumsy
definitions. But whatever the language being defined, you can help your
readers to understand it by setting out the rules as clearly as
possible.

Keep rules simple

Do not write rules that are too complicated. If necessary split a
complex rule into several simpler rules.

A clear layout

Spaces, new lines and other non-printing characters outside a terminal
string have no effect on a syntax, so insert them freely to make the
meaning evident.

(1) Start each syntax rule on a new line.

(2) When a syntax rule is too long to fit on a single line, start all
lines after the first with extra spaces.

These first two rules ensure that it is easy to see the extent of'

each rule.

(3) Put spaces before and after each metasymbol as follows.

BEFORE METASYMBOLS AFTER

- New line
Space Space

Space

(4) Whenever possible, never start a new line in the middle of a
metaidentifier. When a definition will not fit on one line, break
the definition at a space before a metasymbol which has least depth
of brackets. The essential difference between the following two
Pascal rules is then obvious:

block
label declaration part,

constant definition part,
type definition part,
variable declaration part,
procedure and function declaration part,
statement part;

formal parameter section
value parameter specification

variable parameter specification
procedural parameter specification
Ifunctional parameter specification;

- 16 -

Use meaningful metaidentifiers

Metaidentifiers are names given to components of the language, and are

completely arbitrary, for example:

b ldp, cdp, tdp, vdp, pafdp, sp

fps = vips 1 vrps 1 prps fnps

could replace the two ruies for 'block' and

'formal-parameter-specification' given above. With abbreviations like
this the whole of Pascal could be defined in a single page, but only

with almost complete loss of clarity.

Place comments sensibly

Put any comments about a rule before the final semicolon so that even a

computer knows which rule the comment is referring to.

Order rules sensibly

The rules for a language can be given in any order, but a language like

Pascal or Fortran has more than a hundred rules, and a reader is helped
if the rules are in some sort of logical order. For example:

(1) Group together the rules for each particular part of the

language.
(2) Follow each metaidentifier with a comment indicating whereabouts

in the language definition that part of the language is defined.

(3) Put all the rules in alphabetical order. A prcwram can do this.

Provide a cross-reference index

A cross-reference is another helpful aid in understanding large

languages; it shows where each metaidentifier and terminal symbol 'n the

language is used in other syntax rules.

A cross-reference index can also be made by a program.

Explain complex languages with syntax diagrams

The standard for Fortran 77 explains the syntax of the language with

syntax diagrams, i.e. each non-terminal symbol is defined by a diagram

looking like a network of railway lines. Any smooth path from start to

finish indicates a valid sequence of symbols forming the non-terminal

symbol. This notation is easy to understand but more difficult to write

and type.

Syntax diagrams are probably most easily prepared by a computer program

that reads syntax rules as data.

Clearly distinguish metaidentifiers it, explanatory_ text

Metaidentifiers are usually one or more English words. The explanation

of a language may be confusing unless the metaidentifiers are clearly

distinguishab ! from ordinary English words. Several notations are

possible:J(1) Surround metaidentifiers by < and > (angle brackets);

- 17 -

(2) Write a hyphen instead of a space between the separate words of

a metaidentifier;
(3) Use a distinctive type font for metaidentifiers;
(4) Underline metaidentifiers.

Take care to define whatever notation you adopt; the standard itself is
silent on the matter.

Logically defined rules

It is sensible if the language definition reflects the structure of the
language, only then can a reader understand it easily.

I

APPENDIX A - SOMF FURTHER DETAILS

This introduction to the metalanguage has simplified the description by
omitting some details. This appendix describes features which might have
been confusing on a first reading.

Multiple definitions of metaidentifiers

Syntax rules starting with the same metaidentifier provide another
method of making alternative definitions. This is convenient when a
language contains several levels. For example, Fortran 77 has two
levels. At the subset level

logical operator ".NOT." 1 ".AND." "OR" ;

The full language has two additional logical operators:

logical operator = ".EQV." r1.NEQV."

Lexical conventions

A language defined by the metalanguage may have lexical rules completely
different from the metalanguage itself. For example in the syntactic
metalanguage a metaidentifier may contain spaces or other gaps to
improve its readability, and a line may be of any length and start with
any number of spaces. However, the metalanguage may be used to define
Fortran statements where each line has 72 characters and a label
occupies the first 5 characters of a line; or to define Pascal
identifiers where no gaps are allowed in an identifier or integer.

A restriction on exceptions

As stated earlier a metaidentifier can be defined by giving the valid
cases, an exception symbol and then the invalid cases. If the invalid
cases are permitted to be arbitrary, the metalanguage could define
languages which are not context free grammars, including attempts which
lead to Russell-like paradoxes, e.g.

xx = "AA" - xx ;

Is 'AA' an example of xx?

Such licence is undesirable in a standard and therefore the form of the
exceptional cases is restricted so that definitions can be proved to be
safe.

The exceptional cases must be such that it is possible to define them
without using any metaidentifiers. For example the definition of a
visible-character on page 9 is valid because space could be replaced by

Special sequences

Special sequences are allowed to be empty.

A pragmatic use for special sequences is to contain text that informally
qualifies the meaning of a syntax rule.

You can shorten the definition of languages containing a large number of
lists by defining that:

- 19 -

? primary : terminal string ?

is equivalent to

(primary, [terminal string, primary})

APPENDIX P defines special sequences to represent lists and arbitrary

permutations.

A note on ambiguous character-strings

Critical readers will have realized that (*) in the metalanguage is

ambiguous: it can be read both as (0) and (*). Similar problems arise
with (:) and (M). These problems are overcome by forbidding any such
sequence from appearing in a language definition.

Other syntactic metalanguages

The introduction to this report mentioned that several different

metalanguages have previously been used. The syntax of some of them can

be defined using the British standard metalanguage.

BACKUS NAUR FORM (Algol 60)

PNF syntax = f PNF syntax rule

BNF syntax rule = "<", BNF metaidentifier, ">", "::",

PNF definitions list ;

BNF definitions list = BNF single definition,

1":", BNF single definition I ;

BNF single definition { BNF primary }-

BNF primary
= "<"1 BNF metaidentifier, It>",

BNF terminal string

BNF metaidentifier

= letter, { space 1, (letter digit) ;

BNF terminal string = { character }-

PASCAL (British standard BS 6192)

Pascal syntax = { Pascal syntax rule }-

Pascal syntax rule = Pascal metaidentifier,

"=", Pascal definitions list

Pascal extra defining symbol, Pascal alternative definition
), " .

Pascal definitions list = Pascal single definition,
"", Pascal single definition }

Pascal alternative definition = Pascal definitions list

Pascal single definition = (Pascal primary }-

Pascal primary = Pascal optional sequence

20

Pascal repeated sequence Pascal grouped sequence
Pascal metaidentifier Pascal terminal string , ;

Pascal optional sequence = 'U, Pascal single def. it~on, 'J'

Pascal repeated sequence = '{, Pascal single definition, '1'

Pascal grouped sequence '(, Pascal definitions list, ')'

Pascal metaidentifier letter, { ["-" , letter

Pascal terminal string '"', { Pascal character ,

Pascal extra defining symbol '>'

A final warning

This beginner's guide is not a complete definition of the syntactic
metalanguage; for that you must refer to the Pritish Standard.

-21 -

APPENDIX b SPECIAL SEQUENCES FOR SETS AND LISTS

SUMMARY

The Standard syntactic metalanguage (BS 61514) includes a facility called
'special sequences' for users who Wish to extend the metalanguage for
special purposes. This self-contained appendix shows how arbitrary list
structures and permutations can be defined concisely using the special
sequences.

INTRODUCTION

The designers of the British Standard syntactic metalanguage could not
agree on its c2xtent. Some wanted a small simple metalanguage, others
wanted a more comprehensive notation. A compromise was reached where an
extension for two-level grammars is suggested in an appendix, and the
metalanguage includes "special sequences" whose meaning can be defined
by a user.

Two possible extensions are suggested by common questions concerning the
metalanguage, "Must I define a list as"

item list =item, (separator, item

and, "How do I specify a set of items that can occur in any order?"

These notes show how special sequences might be used for these

extensions.

The example of Fortran input/output statements given at the end is an
illustration of sets in BS6154.

SYNTAX

(4 Additional terminal characters v)

end subset symbol=">;

intersection operator symbol
field delimiter symbol= :
start subset symbol

union operator symbol

(0 Additional syntax rules for the metalanguage 0

syntax rule =set definition;
special sequence =list :set

(0Lists 0)

list "?,"LIST", field delimiter symbol, list element,

field delimiter symbol, list separator, "?"

list element primary - special sequence;

list separator primary - special sequence

(* Set.-"

set dep.;i :,n = e :':.: it =' C!,
4

ir ir .'€,

set = "'"' , I I . r 1 :1 1 6zvsr-

set exp ressis n, fle -, d' er sym-:, :t se arst.', "'I"

set identifier m .nt a :je r i i r,

set expression

set term : e i

-nters,.ction opera& r . .;

set primary se t id.etif er set mer..
star s,. i , set e ! -s -r,, er, subset sym:

star* r"& .ym , set rx yt-ssi n, end group symbol

set elemest = primsry - speal se.uerce

set separator = primary - special sequence

LISTS

An arbitrary list:

? LIST : list element : list separator ?

is equivalent to the syntactic-primary

list element, { list separator, list element }

NOTL. - An arbitrary non-empty list can be represented by:

(? LIST : list element : list separator ? - empty

where
empty

A non-empty list can be defined more concisely as:

? LIST : list element : list separator ?-

Examples

abc "A" ,B" "C"

(' A B C 0)

abc list " "(", ? LIST: abc :?, ")"

(' () (A) (Ab) (AC) (ABA) (ABC) (BBCA) ')

abc comma list = "(", ? LIST: abc : "," ?-, "P

((A) (A,B) (A,C) (A,B,A) (A,B,C) (B,B,C,A) 0)

SETS

A set-definition defines the elements of a set and gives a name to the

set. The elements of the set are defined by the set-expression, and the
name of the set defined by the set-identifier.

A set-expression defines a set that is the union of all the sets defined
by the set-terms forming that set-expression.

A set-term defines a set that is the intersection of all the sets
defined by the set-primaries forming that set-term.

A set-primary that is a set-identifier -ifines s set which is the union

of all sets defined in a set-definilion starting with that

set-identifier.

A set-primary that is a set-element defines a set whose sole member is a

sequence of symbols represented by the set-element.

A set-element represents any sequence of symbols represented by the

primary.

A set-primary that is a start-subset-symbol, followed by a

set-expression, followed by an end-subset-symbol defines a subset of the

set of symbols defined by the set-expression.

A set-primary that is a start-group-symbol, followed by a

set-expression, followed by an end-group-symbol defines the set of

symbols defined by the set-expression.

A special-sequence that is a set represents a sequence of symbols. This

sequence of symbols is a list of subsequences where

(a) there is one-one relationship between the subsequences and the

elements of the set defined by the set-expression, and
(b) every two consecutive subsequences are separated from one

another by any sequence of symbols defined by the set-separator.

Examples

(0 Each syntax rule ends with a comment containing examples

of the symbols or sets defined by that rule *)

a "A" A)

b "B" (* B 0)

c "C" (' C ')

a or b or c "A" ; "B" "C"

C* A B C *)

C'(* Set definitions *)

a or b or c set definition ? SETDEF: a or b or c ?
(t A B C 0)

abc set definition = ? SETDEF: a + b + c 7
(f ABC ACB BAC BCA CAB CBA 6)

abc subset definition = ? SETDEF: <a + b + c> ?
(a 0 A AB AC CBA BAC 0) ;

- 24

(I efinitions using sets 1

a or b or c set =" " E -[': a or b or c set definition :?, "2"
(* (A) (B) C) ;

abc set 1"(", : ",ET: abc set definition :?, ")"
(# AB') ACB) (BAC (BCA) (CAB) (CBA) E)

abc subset " ", ? SE-: abc subset definition ?, ")"
(* i) A) AB) (AC) (CBA) .BAC *

abe comma st, z "'A", '2 SET: abc set definition : ," ,, , ,,
< ,A,B,C) A,C,B) ('B,A,C) (B,C,A)

,C A,} , (2',B,A))

N,Y, TE

It is ioss or sp, i .- sequences to be nested orC for a separator
to be spe.'k -- 4 o 'pe [aL-se.4uernce-symbol.

This rest riction ar:ses teoause
1) the speC' ial-seqdence-ymbol both opens ind closes a

spec ia l-se'iuence, a nd,
(2) BS 6154 indicates (clauses 4.19 and 4.20) that inside a
special-sequence, first-quote-symbols and second-quote-Eymbols do
not necessarily have their normal meaning of delimiting
terminal-strings.

FORTRAN 77 INPUT-OUTPUT STATEMENTS - AN EXAMPLE OF SETS

In several Fortran 77 input-output statements, a set of specifiers may
be given by the programmer. The set of specifiers has the following
properties:

(a) Each specifier is usually identified by a keyword, followed by
equals, followed by an input value or output variable.
(b) The specifier defining the unit-identifier must be specified,
but other specifiers are usually optional.
(c) Each specifier is separated from the next by a comma.
(d) When a programmer starts the specification list with the
unit-identifier no keyword is necessary for this specifier.

These requirements are satisfied by the following syntax-rules written
in BS 6154 with the Set extension defined above.

Syntax

(m Nonterminal symbols not defined here:

array element name,
character expression,
integer expr,
label,
unit identifier,
variable name

- 25 -

(0 SPECIFIERS 0)

access specifier : "ACCESS", "=", character expression

blank specifier = "BLANK", "=", character expression

error specifier = "ERR", "" label ;

file specifier = "FILE", "", character expression

form specifier = "FORM", "", character expression

iostat specifier
= "IOSTAT", "=", (variable name array element name

reel specifier = "RECL", "=", integer expr

status specifier = "STATUS", "=", character expression

unit specifier = "UNIT", "=", unit identifier

(* SETS OF SPECIFIERS *)

basic io specifiers
= ? SETDEF: error specifier + iostat specifier ?

close specifiers
= ? SETDEF: basic io specifiers + status specifier ?

open specifiers
= ? SETDEF: basic io specifiers + access specifier

+ blank specifier + file specifier + form specifier

+ recl specifier + status specifier ?

(0 INPUT - OUTPUT STATEMENTS 0)

backspace statement = "BACKSPACE", file positioning specification

close statement
= "CLOSE",

i, (.,

(unit identifier, ",", 2 SET: <close specifiers> : "," 7-
? SET: unit specifier + <close specifiers> : "," ?

endfile statement = "ENDFILE", file positioning specification

file positioning specification
= unit identifier

(unit identifier, [",", ? SET: <basic io specifiers> : "," ?-]
? SET: unit specifier + <basic io specifiers> : "," ?

")" ;

open statement
= "OPEN",

(unit identifier, [',", ? SET: <open specifiers> : ", ?-

2 SET: unit specifier + <open specifiers> : " ?" ?

in)" ;

rewind statement ="REWIND", file positioning specification;

- 26 -

INDEX

alternatives, 2, 18
angle brackets, 16
a3.ostrophe, 5

format of 11

-r -i,4 precedence 3

" Om m -I ,] ,

comments, 5, 1b
curly brackets, 4

equas,
ex-ept ins, ' , 18

Forsyth notation, 10

index, cross-reference 16

metaidentifier, 2
:n right hand side of a syntax rule 2

metalangjage, I
syntactic i
ir:s sign, L

non-terminal symbol, 1

precedence of metalanguage symbols, 3, 7

question mark, 5
quotation mark, 2

references, format of 11
rules, use meaningful metaidentifiers in syntax rules 16
when to start a new line in a syntax rule 15

where to put spaces in a syntax rule 15
write syntax rules simply 15

write syntax rules with a clear layout 15
writing comments in a syntax rule 16

semicolon, 2
sequence, optional 4

ordered 2
repeated 4, 5

special 5, 18
special sequences, 5, 18
square brackets, 4

symbols, non-terminal 1
precedence of 3, 7

-27 -

terminal 2, 5
syntax rules, basic form of 2

order of 16
reading 6
writing 15

terminal symbol, 2, 5

vertical line. 2

CHARACTEHS & SYMBOLS

Punctuation characters

3

; 2

see

?5

8

Brackets

2

5

() 3
(I *) 5
(/ /) B
(: :) 8

< > 16

[] 4

{ } 4

Delimiters

- 4

* 3
see also

/ 8
see also

I 2

- 2

