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* 015 THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC
by e *
. S 016 ACOUSTIC WAVES
e (]’\ 017 DAVID COLTON?
.\; J/OIB Abstract. The inverse scattering problem we are considering in this paper is to determine the shape of a
:4 ~. 019 sound-soft, bounded, connected obstacle from a knowledge of the time-harmonic incident wave with frequency
nY 020 in the resonant region and the far ficld pattern of the scattered wave. Afier some introductory remarks, we begin
) 021 by describing the method of integral equations and the null-field method for solving the direct scattering
~ 022 probiem. This enables us to define an operator T mapping the boundary of the scattcring obstacle and the
:.‘-: ¥+ on incident ficld onto the far field pattern. The inverse scattering probiem is to invert this operator. In order to do
- 13 024 this, we first must examine the range of T. i.e. to characterize the class of far field patterns, and 10 establish the
| - : . : i - R ;
»wY S 025 existence of T™' on the range of T, i.e. to show the unigueness of the solution to the i werse scatiering problem.
“_-.:, 026 This aralysis shows tnat for a given measvred far field pattern, in general ne solution exists to the inve-se
:."-‘ 4 027 scatiering problem, and if a solution does exist, it does not depend continu.usly on the mzasured data. i e the
‘ 028 problem is improperly posed. This motivates us to consider a lincarized model and to examine various methods
i 029 for studying lincarized improperly posed problems based on the ideas of a priori assumptions and compaciness
NCN 039 arguments. We then consider a simple model problem that focuses on the nonlinear character of the inverse
":\‘ 031 scattering problem and. motivated by our study of the lincarized model. reformulate the inverse scatiering
v 032 problem as a problem in constrained optimization. We conclude by considering the numerical solution of this
LN 033 nonlinear optimization problem.
-
VN 034 “*Approach your problems from the right end and begin with the answers. Then. one day,
035 perhaps you will find the final question.™ from *The Hermit Clad in Crane Feathers™ in The Chinese
0o 036 Maze Murders, by R. Van Gulik.
N . . . .
037 1. Introduction. This paper is devoted to surveying some of the recent developments

A

4

038  associated with the inverse scattering problem for acoustic waves. This problem is perhaps

,r;: 039  the most famous of the inverse and improperly posed problems arising in mathematical

040  physics; indeed, the name itself is “improperly posed™ in the sense that there are

= 041  numerous “inverse scattering problems™ arising in the theory of acoustic wave propaga-
- 042 tion. Hence it is necessary to clarify at the beginning exactly which of these is to be

;‘-:: 043 considered. To get a glimpse of the various types of inverse scattering problems that can
e 044  arise in applications, it is instructive to first briefly consider some typical problems

.. 045  associated with acoustic scatiering. We shall later be more precise concerning the
oy 046  physical derivation and mathematical modeling of both the direct and inverse problem,
) 047 and hence, for the moment, we shall cuntent ourselves with some simple heuristic

J: 048  descriptions. Consider an afcoustic wave propagating in a homogeneous, isotropic
S‘, 049  medium. In the absence of any inhumogencities, the wave will continue to propagate and
Ji 050 nothing of physical interest will happen. However, if there are inhomogencities present,

) 051  then the wave will be “*scatiered™ or diffracted™ and we can express the 1otal field as the

2 052 sum of the original “incident” wave and the “scatiered” wave. The bSehavior of the

053  scattered wave will depend on both the incident wave and the nature of the inhomogene-

by 054  ities in the medium, and this in turn is reflected in the mathematical model, e.g. what is
_:- 055 the incident wave, is the inhomogencous region connected, are the biundaries of the
‘.:: 056 inhomogencous medium bounded or infinite, what type of buoundary conditions are

W 057 appropriate, etc.? The direct probiem is, given this information, 1o find the scattered wave
ety 058  and in particular, its behavior at large distances from the inhomogeneities, i.c. its “far
s 059 field” behavior. The inverse problem takes this answer to the direct scattering problem as
$ 060 its starting point and asks what is the nature of the inhomogeneities which gave rise to
Y 061  sucha far field behavior.
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Dense Sets and Far Field Patterns
in Electromagnetic Wave Propagation
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Rainer Kress
Institut flir Numerische und Angewandte Mathematik
Universitdt Gottingen
Gottingen, West Germany

* The research of this author was supported in part by
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Abstract

3

Is is shown that the electric far field patterns corresponding
to the scattering of entire incident fields by a bounded perfect-
ly cornductinc obstacle are dense in the space of square intearable
tangential vector fields defined on the boundary of the unit sphere
if and only if there does not exist a Maxwell eicenfunction that

is an electromagnetic Herglotz pailr, i.e. a solution {E,H} of Max-

well's equations defined in all of space such that

e lim £+ Jf  (JEG) [2+[H(x) [Ddx < = .
’ X |<r
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Far Field Patterns in Acoustic and ———m———— "

Electromagnetic Scattering Theory

Abstract

A basic task in the investigation of the inverse scattering prohlenm
for time-harmonic acoustic and electromagnetic waves is the study of the
class of far field patterns corresponding to the scattering of entire
incident fields of a given wave number by a bounded obstacle. Indeed
if T denotes the operator mapping the incident field and scattering obstacle
onto the far field pattern, then the inverse scattering problem is to
construct I—l defined on the range of T, and the determination of this range
is nothing more than the description of the class of far fieid patterns.
Unfortunately, little is known concerning this class except for the well
known fact that the far field patterns are entire functions of their
independent (complex) variables for each positive fixed value of the
wave number (73 1), i.e. the range of T is not all of L2(Q) where § is
the unit sphere. We note that this implies that the inverse scattering
problem is an improperly posed problem since the far field patterns are in
practice determined from inexact measurements.

Recently Colton ([ 1] ) and Colton and Kirsch (72} ) have investigated
the case of acoustic scattering and asked the question if the class of far field
patterns corresponding to a fixed scattering obstacle and all entire incident
fields is dense in LZ(Q). The rather surprising answer to this question is
that if the impedance of the scattering obstacle is positive, then the far

2
field patterns are dense in L™ (Q), whereas if the scattering obstacle is

2
sound-soft or sound-hard then the far field patterns are dense in L°(0) if
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Uniqueness Theorems for the Inverse Problem of
Acoustic Scattering
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B. D. Stitvan
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Uniqueness theorems are obtained for the problem of determining the shape of 4
sound-soft or sound-huard obstacle from a knowledge of (1) the far-ficld pattern at a
fixed value of the wave number and a finite number of distinct tincident fields. or (2)
the total scattering cross section for an interval of wave numbers and the inadent
ficld propagating in an arbitrary direction.

1. Introduction

THE INVERSE SCATTERING PROBIFM for acoustic waves forms the busis of a wide
variety of arcas in the enginecring sciences imvolving remote sensing and 1imaging.
and for this reason has been the object of intensive study by scientists tn 4 number of
diverse disciplines. Since around 1970 progress has been particularly rapid, and for a
survey of these recent results we refer the reader to the expository papers by Calton
(1983) und Sleeman (1982). However. in this intensive and prolonged effort there are
at present only a small number of results avatlable on the uniqueness of the solution
to the inverse scattering problem. The purpose of this paper is to add several
additional uniquencss theorems to this sparse collection, our motivation coming
from some recent numerical results of Andreas Kirsch who considers inverse
scattering problems not covered by previcusly known uniqueness theorems and
which in fact secem to exhibit non-uniqueness (Kirsch, 1982) However. before we can
describe our results we must be more precise as to what inverse scattering probiem
we are considering. since the term “inverse scattering problem™ is not umquely
. defined. To this end we consider a plane time-harmonic acoustic wave moving in the
direction a that is scattered by a bounded connected domain D in = which is
assumed to be cither “sound-soft™ or “sound-hird™. Then if we factor out the
periodic dependence on time and denote the total field by wxi v € 2% D the
scattered field by w'(x). and the (positive) wave number by A, we have that

»
o

D)
0 ‘v'ﬁ;- i

o
el

3

3

* The research of this author was supported 10 part by AFOSR Gram 81 0102 and SFRC Grant
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ot 1. INTRODUCTION
3. . R . . N \ - ’
YN The inverse acoustic scattering problem ferims the basis of a
A . . ' . . . . .. .
}x wide range of problems in the enginec ing scione s including {or
N exzmple remote sensing and imaging and consequer.ly has been the
A - object of intensive study in recent years. For an cverview of
‘i
- - - - . 3 - -~
290 recent contributions we cite the expository articles [1] and [6].
‘.;.. . I3 . -
‘.{: Despite this intensive research there are onlv o {ow results
N - -
% . . . .
N concerned with the question of uniqueness of sclutions t the o
LY.
- inverse scattering problem. In this paper we recview known
>’ . )
,: uniqueness results and report on some new devilopments,  Full
e proofs of the new results are to be found in 737,
Before we can adequately describe what ie¢ moant by the inverse 1
A scattering problem it is necessary to rocall semc fundamental E
o notions concerning the direct protlem. To thie ¢nd we consider a i
-.'.. . I3 » . - - . - . )
.-_:. plane time-harmonic acoustic wave rm.oving 1n the direction G that .-
-.‘. -~ :;h
Xns is scattered by a bounded connected domain (the scattering obstacle)
it
" . . R
> D in ]R3 assumed to be either 'sound-soft' or 'sound-hard'. If :
.- +
NG we suppress the assumed harmonic time dependence and denote the
AN
v . 3 . s
.::. total field by u(x), x ¢ R \D , the scattered field by u (x)
’, - T ikx.a s
Ry and the (positive) wave number by k then u(x) =e <°7 4+ u (%),
\ - . i
AN |O.| = 1, must satisfy the following boundary value problem for the
\I ~ -
' Helmholtz equation
4
’ 2 : CINES
N .A3u+ku= in R7\D (r.1)
h . :
-~ u=20 on =D, (iL.n)
¥) or ¢ . o
'>] Moo D I
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The stweng rmawimum principle for hermonic functions is

us:zllc zrrived at -v aprpealing to the mean value thecrem

(c.%. 027, ». 53). It is also cf course puszibl IvoaTteal

Tc the Hoti mai crle ([2]), but using clsdye T .unmere 10

kill flies is generallv viewed as aesthetically unpleasing. In

contrast to the case of harmonic functions, the only proof of tle
strong maximum principle for the heat equation that is knowmn

is to invoke Nirenberg's strong mawximum principle for

equaticns ([2]). As in the case of harmonic ‘unc*icns, It coems
desirable to provide a direct troof of this result withcout havine
to go through the subtle comparison arguments that are emricvec
in the more general case. The purpcse of this ncte Is to troviis
a proof of the strong maximum principle for the heat ecuation
based on a mean value thecrem for soluticns of the heat equaticn

which we derive below. Such an approach provides & straight-
forward and simple proof of the strong rmeximum princinle which

avoids rost of the detailed estimates of the proof of the

maximum principle for more re

rarabelic ecuations.

For the sake of simnlicitv we shall onlv consider the case

o

of the heat equation in three csrnace dimensions.

2
Theorem: Let u(x,t), %", satisfy the heat equation

o>

il

u u

t
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Atstract

We consider analytic scolutions of the heat equation u__+u = u, def ined
3 v .

(e

e
et

in a cylinder and show that any such solution can be cupanled in o serics of
polynomial solutions teo the heat cquation., If we define the indopendent « monlex
variables z and ;'by z =x+iy, z = x-iy, where = and v cre independent complex
variables, it is shown that any rcal-valued analytic solution of the heat
equation is uniquely determined by its values on Z=7 or t=0. Using this result,
and expressing the above mentioned polyvnomial solutions to the heat equation
in terms of lLaguerre polynomials, we obtainscme yenerating functions for
Lagucrre polynomials, as well as connection furmulas between products of

2

. . . 2 2.2
Hermite polynomials and Laguerre polvnomials of argument r~ =x"+y . These

connection formulas generalize a well known result of Feldheim.
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