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April 25, 1984

Dr. Robert N. Buchal
Directorate of Mathematical and

Information Sciences
Air Force Office of Scientific Research

Boiling Air Force Base, DC 20332

Dear Dr. Buchal,

This is my interim report on AFOSR Grant 81-0103 for the period
1 May 1983 to 30 April 1984. Attached are the title pages and abstracts
of the papers written during this period. Invited talks on the inverse
scattering problem have been given at the Oberwolfach Conference on
Scattering Theory, West Germany, and the Technical University of Berlin,
West Germany. This summer invited talks will be given on this topic at
the Conference on Inverse Problems of Acoustic and Elastic Waves at
Cornell University in June, the Conference on the Qualitative Theory of
Differential Equations at the University of Alberta in June, and the

-Conference on the Constructive Methods for the Practical Treatment of
Integral Equations at Oberwolfach, West Germany in June.

Sincerely,

David L. Colton
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0 015 THE INVERSE SCATTERING PROBLEM FOR TIME-HARMONIC
S016 ACOUSTIC WAVESS

017 DAVID COLTONt

r' l8 Abstract. The inverse scattering problem we are considering in this paper is to determine the shape of a
a 019 sound-soft, bounded, connected obstacle from a knowledge of the time-harmonic incident wave with frequency

020 in the resonant region and the far field pattern of the scattered wave. After some introductory remarks, we begin
021 by describing the method of integral equations and the null-field method for solving the direct scattering
022 problem. This enables us to define an operator T mapping the boundary of the scattering obstacle and the

)4- 023 incident field onto the far field pattern. The inverse scattering problem is to invert this operator. In order to do
. 024 this. we first must examine the range of T. i.e. to characterize the class of far field patterns, and to establish the

025 existence of T 'on the range of T. i.e. to show the uniqueness of t,e solution to the i ierse scattering pi oblern.
i'- ' 026 This analysis shows tnat for a giscn measr red far field rattrn. in Feneral no s'lution exists to the inv,! se

027 scattering problem, and if a solution does exist, it does not depend cont;nu.,usls on the m-asured data. i e the
028 problem is improperly posed. This motivates us to consider a linearized model and to examine arious methods
029 for stud)ing linearized improperly posed problems based on the ideas of a priori assumptions and compactness
030 arguments. We then consider a simple model problem that focuses on the nonlinear character of the inscrse
031 scattering problem and. motivated by our study of the linearized model, reformulate the inverse scattering
032 problem as a problem in constrained optimization. We conclude by considering the numerical solution of this
033 nonlinear optimization problem.

034 "Approach your problems from the right end and begin with the answers. Then. one day.

035 perhaps you will find the final question." from "The Hermit Clad in Crane Feathers" in The C'hiesf
036 Ma:e Murders. by R. Van Gulik.

037 1. Introduction. This paper is devoted to surveying some of the recent developments
038 associated with the inverse scattering problem for acoustic waves. This problem is perhaps
039 the most famous of the inverse and improperly posed problems arising in mathematical
040 physics; indeed, the name itself is "improperly posed" in the sense that there are
041 numerous "inverse scattering problems" arising in the theory of acoustic wave propaga-
042 tlion. Hence it is necessar) to clarify at the beginning exactl) which of these is to be
043 considered. To get a glimpse of the various types of inverse scattering problems that can
044 arise in applications, it is instructive to first briefly consider some tpical problems
045 associated with acoustic scattering. We shall later be more precise concerning the
046 physical derivation and mathematical modeling of both the direct and inverse problem,
047 and hence, for the moment, we shall content ourselves with some simple heuristic
048 descriptions. Consider an a~coustic wave propagating in a homogeneous, isotropic
049 medium. In the absence of any inhomogeneities, the wave will continue to propagate and
050 nothing of physical interest will happen. However, if there are inhomogencities present,
051 then the wave will be "scattered" or diffracted" and we can express the total field as the
052 sum of the original "incident" wave and the "scattered" wave. The behavior of the
053 scattered wave will depend on both the incident wave and the nature of the inhomogene-
054 ities in the medium, and this in turn is reflected in the mathematical model, e.g. what is
055 the incident wave, is the inhomogeneous region connected, are the b.'undaries of the
056 inhomogeneous medium bounded or infinite, what t)pe of bKundarv conditions are
057 appropriate, etc.? The direct problem is, given this information, to find the scattered wave
05R and in particular, its behavior at large distances from the inhomogeneities, i.e. its "far
059 field" behavior. The inverse problem takes this answer to the direct scattering problem as
060 its starting point and asks what is the nature of the inhomogeneities which gave rise to
061 such a far field behavior.g,'% *'" ,-.% ,,'"; '"-7,.":.L"- % V; "- - "-""" --- ,--""-'k.';----,-- -. . . . . .
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Dense Sets and Far Field Patterns

in Electromagnetic Wave Propagation
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Abstract

Is is shown that the electric far field patterns corresponding

to the scattering of entire incident fields by a bounded perfect-

ly conducting obstacle are dense in the space of square intearable

tangential vector fields defined on the boundary of the unit sphere

if and only if there does not exist a Maxwell eicenfunction that

is an electromagnetic Herglotz pair, i.e. a solution {E,H} of Max-

well's equations defined in all of space such that

lim fIf (IE(x) 12 + H(x) 12)dx <
r-.* ixI<r

-. '4'';,, , ' ' ,-i,.'.... .. '.?','.% '? .h .? :': - -,-.. ..::""' .: - -,--



'.% ~Far Field Patterns in Acoustic ;jnd. ....

!i Electromagnetic Scattering Theory

Abstract

A basic task in the investigation of the inverse scattering problem

for time-harmonic acoustic and electromagnetic waves is the study of the

class of far field patterns corresponding to the scattering of entire

incident fields of a given wave number by a bounded obstacle. Indeed

if T denotes the operator mapping the incident field and scattering obstacle

onto the far field pattern, then the inverse scattering problem is to

construct T defined on the range of T, and the determination of this range

is nothing more than the description of the class of far fieid patterns.

Unfortunately, little is known concerning this class except for the well

* known fact that the far field patterns are entire functions of their

"-- *.:independent (complex) variables for each positive fixed value of the

wave number (r 3 1 ), i.e. the range of T is not all of L 2(Q) where £ is

the unit sphere. We note that this implies that the inverse scattering

problem is an improperly posed problem since the far field patterns are in

practice determined from inexact measurements.

Recently Colton ( 1 1] ) and Colton and Kirsch ( 21 ) have investigated

the case of acoustic scattering and asked the question if the class of far field

patterns corresponding to a fixed scattering obstacle and all entire incident

fields is dense in L (). The rather surprising answer to this question is

that if the impedance of the scattering obstacle is positive, then the far

field patterns are dense in L2 (9), whereas if the scattering obstacle is

sound-soft or sound-hard then the far field patterns are dense in 1, (£) if

N, "' ,g:°2' € ,,.oo.V ;. L, ...... . ..2 ',,.2 °'- '. .  -"-. ..... ' ... ' . ... .. .. . . . 7', ,;: ''
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Uniqu1eness Theorems for the In~erse ProI)Iem of
AXcoustic Scatttering

DeTparliliw'nI i DA I,, tlls,;cptt) (,,%.Uni( ill (if 1/naart'.

AND)

H. 1). S I I Is

I)epzrl In II (4 II tht malIi( el .'Y hc tl c, ( I*,r 11. 04 l)", d(

D'iutc DD1)I 4H.V

.4 [Received 16 A ugust 1983]

Uniqueness theorems are obtained for the problem of determining the shaipe of a
sound-soft or sound-hard obstacle from a knoss ledge of (I Ithe far-field pattern at a
tised %aluc of the wkase number and a finite number of distinct incident field,. or (2)
the total scattering cross. section for an intcrsal of \%ase numbers and the incidcnit
field propa,-ating in an arbitrar\ direction.

1. Introduction

Ttm iNst:RSF S(.A ItI FRtNG(,R H \i for acoustic wascs forms the basis of a I,% ide
sarietN of areas in the envinecrinu sciences in'oh ino remote secnsitie and iniacing.
and for this reason has been the object of intensive studs b% scientists in a number of
diverse disciplines. Since around 19~70 progress has been particularl\- rapid, and for a

z se of. thsere tislts we refer the reader to the expositor\ papers- by Colton
(1983) and Sleenian I 19X2). 1-lossever. in this, intetmske and prolonged effort there are
at present only a small number of results available on the uniqueness of the solution
to the inverse scattering problem. The purpose of this paiper is to add several
additional uniqueness theorems to this sparse collection, our motivation coming
from some recent numerical results of Andreas Kirsch who considers inserse

.*:~ scattering problems not covered by previouslr known uniqueness theorems and
wshich in fact seem to exhibit non-uniqueness (Kirsch. 1982). Howeser. before kke can

V, describe our results sse Must be more precise as to wshat ins erse scatterinc problemn
.. P?.we are considering. since the term "inserse scattering problem- is not uniquely

defined. To this end we consider a plane tinic-harmonic acoustic wsavc mnosing in the
direction ot that is scattered by a bounded] connected domain D. in 3 s hich is
as,,unwd to be either -stouLnd -soft" or "sound-hard-. Then if s\%e factor out the
periodic dependence on time and denote thc total field b\ wxi. \ z 1). the

* cattercd field by Ox). and the (positivel wNave nunmber b\ k. se hase that

*The rewarch of thi' miilhwr \4a, upp,,rted IV pdrt h% .5F()SR (irani I ()I()' mt: SF R( Grant

.1*5
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Uniqueness of Solutions to thei ],'r -L

Acoustic Sc ttr g r!].

David Colton and B D Sliek_,.-an

1 . INTRODUCTION

The inverse acoustic scattering proble fcri::s the 1asis of a

wide ra~nge of problemns in the enginlee ing ili c]'-,wing for

example remote sensing and imaging and .]has !-en the

object of intensive study in recent years. For n overview of

recent contributions we cite the expository articles 1_1 and !6 .

Despite this intensive research there are only z- f,-w results

Sconcerned with the question of uniqueness of solutions t the

inverse scattering problem. In this paper we review 1known

uniqueness results and report on some new dc' o--et.Full

proofs of the new results are to be found iii r3'.

Before we can adequately descr-ibe wha,:i is ,atby thle inVcr.-e

scattering problem it is necessary to r~cA1l sc.-ac fu:i,7,ane(ntal

notions concerning the direct pro . I um . To t-ir- cnd we consider a

.;plane time-harrmonic ico1ustic Wave .,-,ving iii tihL diic.ction CL~ th1 at

,.iis scattered by a boundeld connected domain (the scattering obs ta3cle )

,D in IR 3  assumed to be either 'sound-soft' or 'sound-hard'. 1f

~~~we suppress the assumed harmonic time dinun and denote the3  

S

;"total field by u(x), x E I \D , the scattered fi-ld by u (x:)
- - i kx : .e 1

Sand the (positive) wave nthmber by k then 1u(x) = e 4 U (x:)

$ a ] ; I, must satisfy the following b ondarv ' 'alu t, p o 1,l:n. for t hie
n sutelmholotz equation

3c stu + k iu = 0 in ,:\ D1.

D vu = 0 on BD Sle..an

or '--- = 0 on D,) ,I.>"
-"-
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-. 0 tc -U

-. j: , cimumr incile for harmonic .unctions is

Us:=.i! a:r-ved at ZV, appealing to the mean value theCI em

(c. . [ ], n. 53). It is also cf course .nszib]_ to . , .

Lc f ...: T. a ".m m "7,r i c'le (12J), but .11Ine -- -  S

kill flies is generally viewed as aestheticallunn.1 r n, P n

contrast to the case of harmonic functions, the only Droof of t.e
.4

* .4 strong maximum Drinciple for the heat equation that is knovc o .

is to invoke Nirenberg's strong maximum princinle for parabolic

equaticns ([2]). As in the case of harmoni- =uric':os

desirable to provide a ,-cect :roof of this resuIt w --tout ha "

to go through the subtle comnarison arguments that are emr .. ,

in the more general case. The pur pose of this note cs o-

a proof of the strong maximum Drinciple for the heat ecuation

based on a mean value theorem for solutions of the heat equaticn

which we derive below. Such an approach orovides a straight-

forward and simple proof of the st-or rcax'i:mum prmnci-le which

avoids most of the detailed estimates of the o.,roof of the

maximum princ inle for more o-eneral r arabc1 0 e(:at (ins.

For the sake of si- 1-!citv we shall only consider the case

of the heat equation in three soace dimensions.

Theorem: Let u(x,t), x-i-, satisfy the heat equation

-, U ut

.. ..,-#- . .4 "•, ".',". !" ",; -. '";2"V2':'¢tI " ,2x'-" l ,2.% . .',°, "_:'".;..- -''<?;. "
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ANALYTIC SOLUTIONS OF THE HEAT EQUATION VND SOIE FORI'LAS F01 IA.,

AND IIERMITE POLYNOMIALS*

b

David C -ton
Department of .ath.::atiral Scit-ncL-s

University of DeLaware

Newark, Delaware

and

Jet 6 i71p
Department of Mlatlhc-atics

Drexel University
Philadelphia, ?ennsylv'ania

'The research of the first author was :pp)urted in p~irt by A':oSR Grant .i -L

and the second author was supported i-i )art by NSF Grant ,CS-S30l842
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* ' A st ract

We consider analytic so]utions of the hat equation u u u d-f i:lc:- V t

in a cylinder and show that any such solut ion can be t.: .. d in . s -r s of

pol.,nomial solutions to the ieat equation. If we (;fji. :. if. 'I. n

variables z and z by z =x+iv, -z = x-iy, where :.: anu vre in.i,.nw. nt <,,I> *-x

variables, it is shown that any real-valued analyt ic solution of Lhe h It

equation is uniquely determined by its values on o=- ur t=O. Using this roult

and exressing the above mentioned polyno:.ial solutions to the heat equation

in terms of Laguerre polynomials, we obtain so-.cc generating functions for

Laguurre polynomials, as well as connection ftr-ulas between products of

2 =x2+2
Rermite polynomials and Laguerre polynomials of argument r x . These

connection formulas generalize a well known result of Feldheim.

: 1
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