
AD-A142 570 WIS IMPLEMENTATION STUDY REPORT VOLUME 3 BACKGROUND I/
INFORMATION(U) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA T H PROBERT 01 OCT 83 IDA-D-51-VOL-3UNCLASSIFIED IDA/HQ-B4-28344 MDAg03-79-C-O018 F/G 17/2 NL

I ElEllEEEllEE
EEEIIEEEIII!EE
EEEEEIIIEIIEI
EIIIEEEEEEEEEE

I ~ j~18

1 0__________ - ~ 111.

- Ijj1I8

fLfj15 111 16111

Copy 8 - of 128 copies

IDA RECORD DOCUMENT D-51

rl-
Lf WIS IMPLEMENTATION STUDY REPORT--
N VOLUME III--

BACKGROUND INFORMATION

Thomas H. Probert, Project Leader

CIA-

___ October 1, 1983

U.

Prepared for

Office of the Under Secretary of Defense for Research and Engineering

A INSTITUTE FOR DEFENSE ANALYSES

IDA Log No. H084-28344

84 06 0 0 4
. " l~l ll .. : : 7 ...8 4 ' -i =

The work reported in this document was conducted under contract
MDA 903 79 C 0018 for the Department of Defense. The publication
of this IDA Record Document does not indicate endorsement by the
Department of Defense, nor should the contents be construed as
reflecting the official position of that agency.

Approved fo ulcRelease; DitiuinUnlimited.

I

SECURITY CLASSIFICATION OF THIS PAGE (Whate. 411 g"red)

READ ISTRUCTIONSREPOT DCUMNTATON AGEBEFORE COMPLETING PORM

1. REOTNMEPRT DOUM.ATO PGEV ACESO N.3RECPT'S CATALOG N4UMBER

f4. TI L E (ed Subtile) S.TYPE OFREPORI I PERIOD Cvn!

WIS Implementation Study Report-- Final -- September 1983
Volume II1--Background information S. PERORMNGi~ ORO. REPORT NUMBER

________________________________IDA Record Document 13-El
7. AUTHOR() 9. CONTR ACT OR GRANT NUMUER~e)

Thomas H. Probert, Project Leader MDA 903 79 C 0018

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJE(CT, TASK(

Institute for Defense Analyses AREA & WORK UNIT NUJMBERS

1801 N. Beauregard Street Task T-4-206
Alexandria, VA 22311
11. CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT DATE

JPM WIS, Director, Technology Directorate October 1, 1983
7798 old Springhouse Road 13. NUMIER OFPAGES

McLean, VA 22102 517___________

14. MONITORING AGEN4CY NAME & AOORESS(lif diffeent from Controlinhg Office) 15. SECURITY CLASS. Cal title report)

DoD-IDA Management office Ucasfe
1801 N. Beauregard Street Ucasfe
Alexandria, VA 22311 150. OECLASSIFICATON/DOWNGr.AOING

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Distribution Unlimited.

17. DISTRIBUTION STATEMENT (of thle ahett entered in Bloci 20, If differentf froi Report)

IC. supPLEMENTARY NOTES

19. KEY WORDS (Continue an revere, aide, If necoosary enud Identify by block nttber)

20. ABSTRACT (Continua.e a-ee" aide If neceaen and idenlify by block nmmiter)

This report is the result of a workshop conducted by the In-
stitute for Defense Analyses to develop the functional specifica-
tions and estimates of implementation effort for foundation building
blocks for Command and Control Systems in WIS. The group concluded
that: 1) the development of a modernized WIS incorporating the
specified foundation technology building blocks can be accomplished

within the time frame proposed, 2) the use of Ada and proposed

Do, , 1473 EW1%ON OF I NOV 65 IS 091OLE1

SEtCURITY CLASSIFICATION OF THIS PAGE ("Net L, :e Entered)

S9CUR#TY CLASSIPCATION OP THIS PAGg(Whm Da Z (W6f.)

20. Continued

information processing standards are appropriate for use in
WIS modernization and are expected to reduce the time re-
quired to implement the full system, and 3) it is critical
to the success of the WIS modernization that major attention
be paid to interface definition and design, system integra-
tion and test, and configuration management of the system
while under development.

$41CUNITY CLASSIFICATIN OF THIS PAGgE'Ihon Dn Reted)

IDA RECORD DOCUMENT D-51

WIS IMPLEMENTATION STUDY REPORT--
VOLUME III--

BACKGROUND INFORMATION

Thomas H. Probert, Project Leader

October 1, 1983

copy

IDA
INSTITUTE FOR DEFENSE ANALYSES

1801 N. Beauregard Street, Alexandria, Virginia 22311

Contract MDA 903 79 C 0018
Task T-4-206

FOREWORD

On June 10, 1983, Dr. Richard DeLauer, Under Secretary of Defense for
Research and Engineering, approved the final draft of Department of Defense
Directive (DoDD) 5000.31, "Computer Programming Language Policy," and
circulated it for coordination. This directive establishes Ada as the single common
high order language for Defense mission-critical applications. The World-Wide
Military Command and Control System (WWMCCS) is specifically identified in
supporting documentation to that directive as a mission-critical computer
application.

In anticipation of final approval of this directive, the WWMCCS Information
System Joint Program Management Office (WIS JPMO) requested the Institute for
Defense Analyses to undertake a project to develop the functional specifications
and estimates of implementation effort for foundation building blocks for
Command and Control Systems. These software capabilities will be used to support
the operation of the WIS and will be developed in Ada.

These eleven key foundation building blocks have been divided into two
groups: near-term areas for which the specified packages will be operational by
January 1986 and mid-term areas for which the specified packages would be
operational by January 1989. Near-term areas are characterized by encompassing
mature technology that is currently embodied in operational systems. Development
of packages for these areas should capitalize on existing software requirement
definitions and design specifications. Mid-term areas are characterized as or near.
the current state of the art and will require significant requirements analysis,
architecture and design specification activities.

The participants in this analysis, specification and planning study were chosen
according to three criteria: they are all recognized experts in respective key
technical areas, they all have had direct implementation experience, and they were
all chosen with regard to broad representation of the technical and commercial
community. Background information for these people can be found in Volume 1l of
this Record Document.

The study was performed in four phases. First, individual experts were
selected for their recognized expertise in each of the foundation areas. One expert
in each area, working independently, was tasked to produce a working paper
describing the state of the art, discussing the technical issues, and venturing
predictions for possible extensions to that state of the art. Each report presents an
overview, a discussion of functional requirements for the system or for a set of
packages for the system, case studies dealing with similar existing systems, analysis
of the information including cost and schedule estimates, and conclusions. In the
mid-term areas the case studies were replaced by discussion of the state of the art,
the state of practice, and forecasts of new products. These reports were collected
and distributed to the larger group of selected experts according to their expertise
as preparation for the cluster workshops. These reports can be found in Volume III
of this report.

iii hC'1""" PAUL &NXB-zNOT F1, j

In the second phase, four "cluster" workshops were conducted to perform
similar analysis for each foundation area. These workshops addressed these
foundation areas grouped according to technical similarity and dependence. Each
cluster workshop used the submitted expert assessment as a baseline and point of
departure. The goal of these cluster workshops was to assess the content of the
reports and make recommendations regarding consistency, bias, level of effort, etc.,
such that the contents of these reports and the workshops could be merged into a
final document.

The third phase entailed the analysis of all the cluster workshop reports in a
meeting of the cluster chairpersons. This was conducted to eliminate areas of
redundancy and assess the effort required to integrate all the foundation areas into
a coherent system description and estimate of total effort. These conclusions can be
found in the Executive Summary, Volume I of this report.

Finally, this Record Document has been prepared by the IDA project
management, cluster chairpersons and Computer and Software Engineering
Division technical staff.

Thomas H. ProbertProject Leader

iv

CONTENTS -- Volume III

Cluster I Papers --

Optimization Techniques and Artificial Intelligence Methodologies --

Titan Systems--

Technology Transfer to the Conventional Force Deployment Problem --

Edison Tse -- 27

Material/Transportation Planning Models--
S.A. Klein -- 33

Databases and Information Management--
Gio Wiederhold -- 75

Database Technology Review and Development Estimates --
Computer Corporation of America -- 155

Test Processing Systems --
Newburyport Computer Associates, Inc. -- 183

Cluster It Papers--

Standards Graphics Packages for Command and Control --
William E. Carlson & Stephen Shelley -- 221

Command Language Design --
Thomas Kaczmarek -- 247

Distributed Software Engineering Control Process--
GTE Network Systems R&D -- 265

Military Message Processing --
INCO, Inc. -- 331

Command Information Management: The Commander's Workstation--
Daniel J. Power -- 351

Cluster III Papers--

Secure Multi-Media Teleconferencing --

Sigma Associates -- 399

WWMCCS Ada Study: Networking --
McQuillan Consulting -- 441

V

Cluster IV Papers

A Plan for Acquiring Aids for Converting Fortran or Cobol to Ada --

William E. Riddle -- 471

A Plan for Acquiring Design Description and Analysis Tools --

William E. Riddle -- 493

vi

CONTENTS -- Volume I

Foreword ii

Executive Summary S-1

CLUSTER I: Structured Information Management and Planning Systems 1

List of Attendees 2

CLUSTER I1: User Interface and Paper Image Management 7

List of Attendees 8

CLUSTER III: Secure Teleconferencing and Networking 15

List of Attendees 16

CLUSTER IV: Conversion Aids, Operating Systems, and Design Description
and Analysis Tools 22

List of Attendees 23

List of IDA Attendees 29

vii

CONTENTS-- Volume II

Anderson, Mr. John W. I

Bail, Dr. William G. 2

Bailey, Ms. Susan J. 5

Brown, Mr. Ralph 0., Jr 7

Buseman, Mr. William R. 9

Bush, Dr. Eric 11

Campbell, Mr. J. Frank 12
Carlson, Mr. William E. 14

Crafts, Mr. Ralph E. is

Cummings, Mr. Clifford I. 18
Dempsey, Mr. James B. 21

Easton, Dr. William B. 22

Evans, Mr. Albert J. 25
Ferrentino, Mr. Andrew B. 26

Fogel, Dr. Lawrence J. 27
Fox, Mr. Joseph M. 29

Graulich, Mr. Mark G. 30

Gurwitz, Mr. Robert F. 35
Harbaugh, Dr. Samuel S. 37
Harrington, Mr. Richard J. 40

Hogan, Mr. Thomas J. 41

Joseph, Dr. Robert E. 43

Kaczmarek, Dr. Thomas S. 45

Klein, Dr. Stanely A. 47

Kramer, Dr. John F. 49

Larsen, Dr. Robert E. 55

Luenberger, Prof. David G. 58
Magliato, Mr. Frank J. 61

McQuillan, Dr. John M. 62
Miller, Mr. Richard H. 63

Power, Dr. Daniel 1. 64

Priven, Mr. Lewis D. 70

ix PA&%W10

Probert, Dr. Thomas H. 71

Riddle, Dr. William E. 76

Ries, Dr. Daniel R. 82

Sapp, Mr. John W. 88

Shelley, Mr. Stephen H. 89

Shrier, Dr. Stefan 94

Slusarczuk, Dr. Marko M.G. 96

Smeaton, Mr. Roger 99

Sykes, Mr. Wendell G. 100

Trocki, Mr. Martin C. 102

Tse, Prof. Edison T.S. 104

Weidner, Mr. Karl J. 106

Wiederhold, Dr. Gio CM. 110

Willis, Mr. Paul A. 120

x

CLUSTER I PAPERS

TECHNICAL REPORT: OPTIMIZATION TECHNIQUES
AND ARTIFICIAL INTELLIGENCE
*METHODOLOGIES

21 September 1983

TITAN SYSTEMS, INC. 6633 Beverly Road, Suite 320, McLman, Virginia 22101 (703) 790-1120

TABLE OF CONTENTS

Page

SECTION 1 OVERVIEW .. .
1.1 Introduction ... 3
1.2 State Spaces and Problem Reduction 4
1.3 Graph Representation

1.4 Search Space ..

1.5 P lanning .. 6
1.6 Al Application .. 6

SECTION 2 FUNCTIONAL REQUIREMENTS7

2.1 Al Application to Material/Transportation Planning 7
2.2 Technical Challenges 8

SECTION 3 OPERATIONAL SYSTEMS AND STUDIES 10

3.1 Automated Decision Aids I0

3.2 Expert Systems .. 12

3.3 Semantic Networks and Frame Architecture 15
3.4 Planning Systems .. 16

3.5 High Level Languages and Interactive Programming 19

SECTION 4 FUNCTIONAL CAPABILITIES REQUIREMENT 21

SECTION 5 FIVE-YEAR SYSTEM ELEMENT AVAILABILITY 22

SECTION 6 DEVELOPMENT PLAN .. 23

SECTION 7 CONCLUSIONS ... 25

2

SECTION 1

OVERVIEW

The purpose of this report is to support an effort by the

Institute for Defense Analysis that is developing estimates of

the cost and scope of component subsystems for the next

generation World Wide Military Command Control System (WWMCCS).

This report will review and summarize optimization techniques and

explore the application of Artificial Intelligence (AI)

methodologies to improve material and transportation planning.

1.1 INTRODUCTION

Problem solving systems can usually be described in terms of

three main components. The first of these is a database which

describes both the current task-domain situation and the goal.

Dependent upon the application, the database can be comprised of

a variety of data structures including maps, lists, property list

structures, and semantic networks. In theorem proving, for

example, the current task-domain situation consists of assertions

representing axioms, lemmas, and theorems already proven; the

goal is an assertion representing the theorem to be proved. In

robot problem solving, a current situation is a world model

consisting of statements describing the physical surroundings of

the robot, and the goal is a description that is to be made true
by a sequence of robot actions.

The second component of problem-solving systems is a set of

operators that are used to manipulate the database. Examples of

typical operators include rules for moving chessmen, rules of

inference for theorem proving and rules for simplifications of

mathematical integration techniques.

The third component of a problem solving system is a control

strategy for determining the sequence of events -- i.e. when and

where to apply a particular operator.

3

In general, the objective is to achieve a goal through

application of a sequence of operators to an initial task-domain

situation. The application of the operators to the database

structures to produce a modified task-domain situation is then

called reasoning forward. Alternatively, reasoning backward

involves the application of an operator to the goal to produce

subgoals and sub-subgoals that are easier to solve. An important

technique involving both forward and backward reasoning is called

means-ends analysis. This involves comparing the current goal

with a current task-domain situation in order to determine the

difference between them. This difference is then used to select

the most suitable operator to reduce the difference.

1.2 STATE SPACES AND PROBLEM REDUCTION

A problem-solving system that uses forward reasoning and

whose operators each work by producing a single new state in the

database is said to represent problems in a state-space

representation.

For backward reasoning, a distinction may be drawn between

two cases. In one, each application of an operator to a problem

yields exactly one new problem, whose size or difficulty is

typically slightly less than that of the previous problem.

Systems of this kind will also be referred to as employing state-

space representations.

The second case occurs when backward reasoning results in a

set of subproblems, each significantly smaller than the original.

A system where backward reasoning changes a single object into a

conjunction of objects is said to employ a problem-reduction

representation.

In addition to the state-space and problem - reduction

approaches, there are a number of other variations of problem

representation. One of these is the game tree which represents a

4

game playing problem in a manner which takes into account the

potential adversary moves.

1.3 GRAPH REPRESENTATION

In either a state-space or problem-reduction representation,

achieving the desired goal can be equated with finding an

appropriate finite sequence of applications of available

operators. In this context, we define search as the methodology

for determining the appropriate operator sequence.

Tree structures are commonly used in implementing control

strategies for the search. In a state-space representation, a

tree may be used to represent the set of problem states produced

by operator applications. In such a representation, the root

node of the tree represents the initial problem situation or

state. Each of the new states that can be produced from this

initial state by the application of just one operator is

represented by a successor node of the root node. Subsequent

operator applications produce successors of these nodes, and so

on. Each operator application is represented by a directed arc

of the tree. More generally, this is represented in a graph

rather than a tree, since there can be numerous paths between

given nodes. For applications involving problem-reduction,

AND/OR graphs provide a means of tracking the subgoals attempted

and the subgoal aggregation to achieve the original goal.

1.4 SEARCH SPACE

The objective of achieving a state that satisfies the goal

condition can now be formulated as the problem of searching a

graph to find a particular node that satisfies the objective

state. The search space consists of all alternative nodes with

paths from the initial state. Many problem domains have an

infinite or near infinite search space. Checkers, for example,

has a search space estimated at 1040.

The critical issue now becomes the amount of time required

to find a suitable solution, given a particular search space.

5

Several graph and tree searching methods have been developed and

they play an important role in the control of problem-solving

processes. Among these are: Blind state-space search; Blind

AND/OR graph search; and Game tree search, including Minimax, and

Alpha-beta pruning procedures.

Of particular interest are those graph-searching methods

that use heuristic knowledge from the problem domain to help

narrow the search. Heuristic search techniques have proven to be

one of the key contributions of AI to efficient problem solving.

A number of heuristic search techniques utilize knowledge to

focus and minimize the search. Among these are: Heuristic

state-space search; Heuristic AND/OR graph search, A*-Optimal and

bidirectional searches.

1.5 PLANNING

An alternative to the problem of limiting search, is to have

the problem-solving system find a better representation

automatically. The STRIPS 1 program made initial advances in this

area by augmenting its initial set of operators by generating

macro-operators, based on problem-solving experience. ABSTRIPS 2

makes further advances by filling in the detailed solution only

after a satisfactory outline of the solution (or plan) has been

found.

1.6 AI APPLICATON

The use of AI search and planning methodologies as described

above have a number of potential applications to the

material/transportation planning process. These will be

discussed further in Section 2.

1Written by Richard Fikes and Nils 'Jilsson at SRI International

(1971)
2Implemented by Earl Sacerdoti (1974)

6

SECTION 2

FUNCTIONAL REQUIREMENT

2.1 AI APPLICATION TO MATERIAL/TRANSPORTATION PLANNING

Table 2-1 lists a number of areas in which AI methodologies

could be applied in a beneficial manner to enhance the

flexibility, efficiency, and utility of several functional

elements required for the implementation of a

material/transportation planning system.

TABLE 2-1

APPLICATION DESCRIPTION PURPOSE

Heuristic Models Provides the capability for utilizing

- Automated Decision Aid the knowledge base of an "expert(s)"
to structure the decision rules. Pro-- Expert Systems vides the capability for human inter-

action to dynamically restructure and
interface with the decision-making
process.

Heuristic Optimization Provides potential for simplified
Techniques alternative to exact optimization

approach in areas such as application
specific models and simulations;
Network model representation.

Data Base Management Capabilities such as relational data
base, semantic networks and frame
architectures afford opportunity to
provide inference data chains;
textually intensive applications have

potential for hierarchical inference
(ZOG, BROWZING)

Generalized Planning Systems Hierarchical, Scripted, and Opportunistic

planning programs to model individual
components and modules of the material/
transportation planning process.

7

2.2 TECHNICAL CHALLENGES

The implementation of a system utilizing the AI tools

previously described has a number of areas of concern which must

be adequately satisfied to achieve a successful operational

capability. These include:

(1) Objective Definition

The definition of the goal and the formulation of the

objective function is necessarily dependent upon a number of

parameters. The commercial sector is most often driven by the

goal of profit maximization. The military, however, may be faced

with a scenario dependent objective. This is not a prohibitive

concern, as always the objective function is multivariate;

however, there is a need to emphasize the subproblem interaction

analysis to assure that any conflicts are resolved.

(2) Knowledge Representation

The need to represent and characterize such factors as

the reasoning strategy for knowledge applications and the

capability for knowledge enhancement and augmentation, require

certain prerequisites:

o a knowledge of the concepts and facts that

constitute the problem domain

o an understanding of the domain problems

o skills at solving problems within the domain

o knowledge acquired through experience in the

domain

In short, an "expert".

(3) Inexact Reasoning

Some problem-solving applications can result in

conclusions that may not be inferrable with certainty. In

addition, the database may have omissions or errors. The use of

judgmental knowledge must be applied in such circumstances. This

capability implies the capacity to: augment operators with

measures reflecting a strength or belief in the inferences they

8

embody and the evidence; utilize an inexact inference procedure

to make use of the measures; and determine thresholds of

acceptability for hypotheses.

(4) User Transparency

The design of the system should be such that it

minimizes the level of expertise required for use. This implies

that there is a natural language interface, a transparency of the

reasoning process, and a method for determining and locating

errors in the knowledge base. This will result in a highly

interactive user interface module that utilizes the results of

all associated and embedded processes in a manner which is

invisible to the user.

(5) User Aided Design

It is important to remember that the formation of an

initial model of domain knowledge and expertise is at present an

empirical process involving extensive exchange between the domain

expert and the knowledge engineer. It is essential that the user

remain involved throughout the entire design and implementation

processes to provide the basic understanding of the overall

requirement.

It is equally important for the system designer to

remain unimpaired by the existing operational and technical

considerations. He must maintain a global perspective and

continually ensure that problem solutions are generic when

possible, and as universal and transportable as feasible.

9

SECTION 3

OPERATIONAL SYSTEMS AND STUDIES

The following represent examples of functioning systems and

research efforts that relate to the study area. These include:

o Automated Decision Aids - are systems that perform

real-time monitoring of internal and external conditions,

optimize planned actions, and cope with unexpected events

according to the rule-based optimization of a set of

alternatives.

o Expert Systems - are referenced in relation to

consultant based systems with optimized resource allocation and

inferential data search.

o Semantic and Frame Architectures - are referenced

with regard to relational data base structures and inference data

access for textually oriented applications.

o Generalized Planning Systems - include examples of

research efforts and systems that model the planning process.

3.1 AUTOMATED DECISION AIDS

Current developmental efforts and existing decision making

systems are addressing the need for a capability to evaluate

alternative actions to accommodate unexpected events while

optimizing the probability of mission success. Moreover, the

system must be capable under time-constrained conditions.

There are ongoing efforts at the Marine Systems Engineering

Laboratory, University of New Hampshire, and Defense Advanced

Research Projects Agency (DARPA) to develop an expert system for

control of an autonomous undersea vehicle. The DARPA effort has

a Mission Control Logic (MCL) that utilizes a valuated state

space, with a partitioned set of operators. The expert system is

modeled after a human expert's comprehension of potential

unpredicted events and a set of rules representing the judgmental

knowledge to be brought to bear on the particular event. As

shown in Figure 3-1, the expert system provides real-time

monitoring of the environment and situation, as well as time

10

FIGURE 3-1

EVIOWIAL rAtAPMrrttS- NIsslow MMUN2CATIOW LIMP

a311KmMAL KAZAADS

DYM.I 1'MLATS

SY~ YS~TEM~

OATASTTI

MISS0N APA-3rS

TIE oul DAMCZ
CWTOOLSflUsr

GEED

constraints. As interruptions to the expected sequence of events

occur, the control system dynamically adjusts by revising the

mission objective and state sequencing.

The MCL has a simulation implemented on a DEC VAX 11/780

computer which requires about 80 Kbytes of memory and is written

in Fortran. The simulation development required three manyears

of effort. Similar systems of comparable magnitude utilize

Adaptive Maneuvering Logic (AML) at Nellis AFB and NASA/Dryden to

perform flight combat simulation.

3.2 EXPERT SYSTEMS

An expert consultant system which has recently been

developed under a government research contract is the

Interrogator System (see Table 3-1). Similar in nature to BATTLE

(a weapon allocation system for the Marine Integrated Fire and

Air Support System (MIFASS)). The system utilizes the AI

techniques in two ways. First, the effectiveness index of the

resources with respect to particular targets is computed and an

allocation tree is constructed for determining allocation plans.

The effectiveness values of each resource are then used to direct

the pruning of the tree and the determination of the optimal

allocation.

In addition, Interrogator makes use of personality traits

and personnel history to posture a potential enemy threat and

courses of action (see Figure 3-2). In this way, the ALBS 2000

gaming module can be linked to test the allocation process.

Interrogator was implemented on a DEC VAX 11/780 and has

been downsized to a Convergent Technologies (8086-based) system.

It is written in PASCAL and requires about 128 Kbytes of memory.

12

TABLE 3-1

INTERROGATOR SYSTEM

o Designed for Use on Convergent Technologies (8086-
based) microprocessor color workstation

- inexpensive, available, proven reliable and rugged
- versatile and easily customized
- high resolution color image, raster and vector

graphics display

0 Special Artificial Intelligence Features

- Brigade S-3 Expert System
- Wargame module simulating AIR LAND BATTLE 2000

concepts
- User control over all engagement rules/doctrinal

logic/scenario/weapons data
- Incorporates NBC environment
- Includes higher levels of command decisions and

abstract concepts
- Personality profiles to construct enemy courses of

action

o Unique Display Modes
- Colored terrain and military symbols
- Customized mission statement, situation

assessment, and maneuver scheme templates
- Personality and enemy vehicle identification photos.
- Historical battle plans and dispositions
- Image generated terrain views (line of sight,

masking, etc.) facilitates map reading

o User Friendly Man-Machine Interface Features

- Easy Menu-Driven Formats
- Special Function Keys
- Touch Screen Overlays
- Natural English Input/Output
- Windowing Capability

13

FIGURE 3-2

END PRODUCT SYSTEM FUNCTIONAL BLOCK DIAaRAM

CRT OPICAL YSICR COLOR COMN PRINT, 9 'PACK
DISPLAY otVICZS PLOTTED TAP

LIANLUAGEM DATA
PIOLIONPNCZEO PRCEOWN:

TEPAT ISTORICAL 1PERSONALIT SITUATION hAP AGE MISIN OOWYC FIRE

. IYBCL LSNU NI dMAr LAOA I MISSION LOGISICN S SJP

01 " PLAY 01193 08145 A A. b LS D EC IO I N U G P A I G

CONTOL LU';' L....PLANI4

3.3 SEMANTIC NETWORKS AND FRAME ARCHITECTURE

Semantic networks have been used for representation of

knowledge since the mid 1960's. Quillian's I 1966 semantic memory

is considered to be the first semantic network with its roots in

Raphael's 1968 SIR 2 and in the work of Reitman. 3

A semantic network can be defined as a labeled, directed

graph in which nodes represent concepts; an arc labeled R going

from node n to node m represents that the concept of n is related

to the concept of m through the relation R.

The notion of concept is not easily defined, but it can be

thought of as anything about which information can be stored

and/or transmitted. Various semantic networks have included as

concepts prototypical individuals, actions, sets, propositions,

facts, beliefs, roles, relations, hypothetical worlds and others.
4

The basic notions of semantic networks include: nodes to

denote objects, concepts, situations; arcs to denote relations

(associations) between nodes; and classification arcs to enable

hierarchical organizations of knowledge and permit property

inheritance.

In general, the reasoning method is a function of the

procedures that manipulate the representation and for inference,

the principle method is matching through:

o comparison of network fragments representing data and

the knowledge base

o heuristics to suggest locations to match

Frames generalize the semantic network by providing a common

data structure, expectations that allow a frame to match itself to

the current situation, and procedural attachments as well as a

variety of other inference techniques.

1Ref. Quillian, W. R., Semantic Information Processing, MIT Press,
2 1968
Ref. Raphael, D., Semantic Information Processing, MIT Press,

1968
3 Ref. Reitman, W. R., Cognition and Thought, Wiley, New York, 1965
4 Ref. Shapiro, S. C., ACM SIGERT Newsletter 63, 1977

15

In summary, the most important features of semantic nets and

frames include:

o an explicit and economical representation of the

struzture and organization of the domain.

o expectations, defaults, restrictions, and contingencies

that direct the reasoning process.

o the procedural attachment that gives frames the event

driven capability of rules.

A number of semantic network architectures have been

implemented. ZOG is an example of a system developed at Carnegie

Mellon University under contract to the Office of Naval Research,

DARPA, and the Air Force Avionics Laboratory. It has been

implemented on the USS Carl Vincent and has as its objective the

provision of an automated library and administrative process.

Another such system is the SNePS semantic network processing

system which is a descendent of MENTAL1 . SNePS is currently

implemented in ALISP and runs interactively on the CDC CYBER 173
2

at the State University of New York at Buffalo.

3.4 PLANNING SYSTEMS

A plan is a hierarchical process that controls the order in

a sequence of operations. Among the benefits of a planning

procedure are reduced search, goal conflict resolution, and error

recovery capabilities. Among the various approaches are

nonhierarchical and hierarchical planning, script-based planning,

and opportunistic planning.

Nonhierarchical planning conforms to the most commonly

understood meaning of planning; namely, a nonhierarchical planner

develops a sequence of problem solving actions to achieve each of

its goals. It may use problem-reduction or means-ends analysis to

reduce the difference between the current state of the world and

iRef. Shapiro 1971, Proceedings of the 2nd International Joint
Conference on Artificial Intelligence, 1971

2Ref. Shapiro, Associative Networks, Academic Press, 1979

16

that state which would exist after problem solving. Examples of

nonhierarchical planners are STRIPS', HACKER 2 and INTERPLAN 3 .

The major disadvantage of a hierarchical planner is its

inability to distinguish between critical actions and less

important details. Thus plans are flawed by interferences

between subgoals and corrections are done by testing alternatives

for interference avoidance. This results in an expanded search

space. In order to achieve a balance between too little and too

many details, hierarchical planning was developed. The method

consists of sketching a plan that is complete but vague, and

refining the vague parts into detailed subplans to result in the

detailed solution. Thus, hierarchical planners use a hierarchy

of abstraction spaces to develop a plan.

One approach to hierarchical planning is the ABSTRIPS

program, an extension of STRIPS. ABSTRIPS determines critical

subgoals and ignores others. By ignoring details, one

effectively reduces the number of subgoals to be accomplished in

any given abstraction space.

Hierarchical planning was implemented in its earliest form

by Newell and Simon (1972) in their GPS model of theorem proving

logic. The GPS approach was slightly different form that of

ABSTRIPS. In ABSTRIPS, a hierarchy of abstraction spaces is

defined by treating some goals as more important than others,

while in GPS there was a single abstraction space defined by

treating one representation of the problem as more general than

others.

Subsequent implementations of the hierarchical planning

approach such as NOAH and MOLGEN 4 are, again, slightly different

from either ABSTRIPS OR GPS. ABSTRIPS abstracted critical goals,

and GPS abstracted a more general representation of an aspect of

its problem space. NOAH abstracts problem-solving operators; it

'Ref. Fikes and Nilsson, Artificial Intelligence, N. J., 19712Ref. Sussman, G. J., A computational model of skill acquisition,
3 American Elsevier, 1975
4Ref. Tate, Austin, Treatise, University of Edinburgh, 1975
Ref. Cohen/Feigenbaum, Handbook of Artificial Intelligence, 1982

plans initially with generalized operators that it later refines

to problem-solving operators given in its problem space. MOLGEN
goes one step further,abstracting both the operators and the

objects in its problem space. In all cases, however,
hierarchical planning involves defining and planning in one or

more abstraction spaces. A plan is first generated in the

highest, most abstract space. This constitutes the skeleton onto

which details are fleshed out in lower abstraction spaces.

Hierarchical planning provides a means of ignoring the details

that obscure or complicate a solution to a problem.

A third approach to planning also makes use of skeleton
plans but, unlike hierarchical planning, these skeletons are

recalled from a store of plans instead of generated. This

approach was adopted in one of the MOLGEN systems. The stored
plans contain the outlines for solving many different kinds of

problems. They range in detail from extremely specific plans for

common problems to very general plans for broad classes of

problems. The planning process proceeds in two steps: First a

skeleton plan is found that is applicable to the given problem

and then the abstract steps in the plan are filled in with

problem-solving operators from the particular problem context.

This instantiation process involves large amounts of domain-

specific knowledge, often working through several levels of

generality until a problem-solving operator is found to

accomplish each skeleton-plan step. If a suitable instantiation

is found for each abstracted step, the plan as a whole will be

successful.

This approach has much in common with that of Schank1

and his colleagues. Their approach to natural-language

understanding is to use stored scripts (and other, more

sophisticated structures) to provide top-down expectations about

the course of a story.
1Ref. Schank, R.C., Scripts, plans, goals, and

understanding, Hillsdale, N. J., 1977

A fourth approach to planning is the Hayes-Roth I model which

is termed opportunistic and is characterized by greater

flexibility than any of the other approaches.

o Communication is accomplished through the blackboard

which contains:

- initial data or goals

- hypotheses (partial solutions) at various levels

of abstraction

- support links between different levels

o Specialists attend to particular areas of the

blackboard to:

- create and modify hypotheses

- record evidential support between levels

- ensure consistency of hypotheses

- focus on promising hypotheses

Specialists are scheduled for activation opportunistically

in that there is no particular order. The resulting asynchrony

of planning decisions that are made only when required gives rise

to the term opportunistic.
Each of the various planning systems must be evaluated for

suitability in terms of the unique requirement. That is,

depending upon the application, one or more of these systems

operating in conjunction may be appropriate. The blackboard

approach functionally represents the use of multiple systems if

individual specialists were application specific and resulted in

the use of multiple planning systems.

3.5 HIGH LEVEL LANGUAGES AND INTERACTIVE PROGRAMMING

The requirement for AI programming to handle knowledge

based data structures such as semantic networks as well as

provide flexible and dynamic control structures and pattern

recognition capability are essential capabilities of an AI

Ref. Hayes-Roth, B., Human planning processes, Rand
Corporation, Santa Monica, California, 1982

19

programming language. LISP, developed by John McCarthy in 1958,

has been the basis for much of the AI programming development.

The key concepts embodied in LISP include:

o Symbolic rather than numeric computations.

o List processing with data represented as linked -

list structures.

o Control structure with aggregation capability to

form more complex functions.

o Recursion as a method describing processes and

problems.

o Representation of LISP programs as linked lists,

the same as data.

The predominance of AI program development has been on DEC

PDP-ls and PDP-20s in LISP, principally INTERLISP and MACLISP.

The former has extensive user facilities resident in the system

while the latter utilizes separate routines and emphasizes speed

and efficiency. Other LISP dialects include SAIL, POP-2, QLISP,

FUZZY, and PROLOG, with higher level languages like MICRO-PLANNER

and CONNIVER implemented in MACLISP. Recently, however, the

emphasis has been on the development of hybrid (computational and

symbolic) language environments such as SETL and ROSS. In

addition, specialized, dedicated LISP machines and relational

DBMS systems such as the Britton-Lee will facilitate the user

involvement in AI programming environments. These capabilities

are fundamental to adaptive software technologies and bode well

for the integration and infusion of expert system applications.

20

SECTION 4

FUNCTIONAL CAPABILITIES REQUIREMENT

Based upon the discussions in Section 3, there are a number

of basic functional capabilities that should be considered and

evaluated for inclusion in the material/transportation planning

system.

The need for a relational DBMS and a LISP-like programming

language has been discussed. These capabilities are essential to

the use of adaptive software technologies and expert systems.

The key is to integrate the operational language, Ada, with the

hybrid and knowledge based sub-system languages. The inclusion

of their capabilities affords the opportunity to implement any or

all of the general system capabilities previously described.

These include the knowledge-based systems:

- Automated Decision Aids

- Expert Systems

- Semantic and Frame Architecture

- Generalized Planning Tools

In addition, there are the obvious elements that fall into

the class of deterministic simulations and models.

21

SECTION 5

FIVE-YEAR SYSTEM ELEMENT AVAILABILITY

The rapid advances anticipated in both hardware and software

for AI application over the next five years will likely result in

a variety of alternatives for implementing the relational DBMS

and LISP-like language environments.

In addition to the cost for this "off-the-shelf" hardware

and software, there are a number of areas that will require

extensive effort if Al techniques are to become an integrated

component of the material/transportation planning system. These

include:

0 The development and implementation of natural

language and Ada-based software interface.

o Operation and system analysis to facilitate

development of system functional and performance

requirements.

0 Research and evaluation of knowledge-based systems

as applied to this application, including decision

aids, semantic network architectures, and expert

systems and planning methodologies.

0 *Development and implementation of knowledge based

adaptive software as appropriate for the

application.

22 j

SECTION 6

DEVELOPMENT PLAN

6.1 REQUIREMENTS ASSESSMENT

In view of the vast amount of research and development

ongoing in the area of AI applications, it is likely that a

number of efforts will provide substantive input in the selection

of various hardware and software technologies suitable for this

application. As a result, there is an initial requirement for a

technology assessment survey.

In addition, there is the obvious need to assess the

capabilities and design of the existing WWMCCS facilities.

The purpose of these efforts will be to:

o Determine baseline functional requirements and

capabilities of existing systems.

o Modify the requirements to provide for reasonable

and desirable capabilities that utilize Al tech-

niques and methodologies to enhance overall system

performance.

o Assess the applicability of existing technology

and determine candidate areas for research and

development.

Subsequent to the above efforts, there will be a review of

the candidate hardware and software components with particular

emphasis on the assessment of the potential benefits, cost and

risk factors. Decisions will be made regarding the

prioritization of various components, and a plan for the

development and implementation of the objective system will be

produced.

6.2 LEVEL OF EFFORT

The activities described above would require initiation two-

five years prior to the scheduled installation date. Five years

with an increasing level of effort is preferable, but two-three

years is possible with intensive efforts. The level of effort if

accomplished over the five-year timeframe would range as follows:

23

Il. F _I III__ _._III_. ..._ _._---_ _---__ _--_

Year 1: 2-4 manyears

Year 2: 2-4 manyears

Year 3: 3-5 manyears

Year 4: 5-7 manyears

Year 5: 5-7 manyears

For the two-year timeframe:

Year 1: 10-12 manyears

Year 2: 12-15 manyears

24

SECTION 7

CONCLUSIONS

The conclusions of this study effort can be summarized as

follows:

o Existing hardware and software technologies will

be useful in solving elements of the problem, but

not readily adaptable as a total system solution.

o A requirements and capabilities analysis is

recommended to assess the existing facilities and

the projected need for enhancements and additions.

o A technology assessment survey is recommended to

evaluate the potential utility for AI applications

and methodologies in the material/transportation

planning

applications.

o It is expected that substantial software

development will be required to supplement the selected AI

technique.. This is particularly true for the requirement to

interface with Ada as the base language.

25

Technology Transfer

,to the

Conventional Force Deployment Problem

Edison Tse
Department of Engineering-Economic Systems
Stanford University
Stanford, CA

27

pa=EINGFAXRM -NTr"O

Technology Transfer to The

Conventional Force Deployment Problem

There are two Automatic Data Processing systems that resemble the

one perceived to be developed for applications in Conventional Force Deploy-

ment (e.g., (1) in force planning and replanning, (2) logistics support plan-

ning and replacing and (3) retrospective analysis of operational data). In

these few pages, we shall briefly describe these systems, their status and

the costs for their development. We shall also briefly comment on transfer-

ring their technology to the conventional force deployment problem. They are

the KNOBS/TEMPLAR for the Tactical Air Control Center (TACC) and the Mission

Planning System for SAC.

KNOBS is an applied research system developed by MITRE for TACC. Its

goal is to support the design of individual strike missions within the air

tasking process. It operates by assisting the user as he completes the

various portions of predefined mission forms which identify the aircraft,

ordnance, communication frequencies, attack times and other factors that

specify a mission against a particular target (an enemy airfield).

For example, if a flight of F-ills is going :o be used against a

SAM defended target, KNOBS will tell the planner if the Fill does not have

the required range, if it cannot get there in the specified time, and if its

ordnance should include ECM. This kind of consistency management is the pri-

mary goal of KNOBS.

KNOBS also provides planning support and autonomous planning facil-

ities. The system is able to suggest alternatives for the resources used in

missions that meet all of the known requirements, it can rank order those

candidates by their appropriateness, and it can complete an entire mission

design if it is given a few critical components. To suggest alternatives,

KNOBS essentially tries all possibilities and rules out the ones which are

29

j,,S.CLDlAG pXA S .T OTFl nA

unreasonable; to plan autonomously the system checks all candidate re-

sources (in a specified order) until it finds the first set that satis-

fies all constraints.

From a technical standpoint, KNOBS is a research prototype

(as opposed to an application system) that has focussed on the develop-

ment of AI technologies in response to the requirements of the mission

planning domain. It demonstrates a way in which constraints, heuristic

rules, inheritance, and automatic deduction mechanisms can be orchestr-

ated together into a single system that effectively produces valid mis-

sion plans.

KNOBS provides a substantial natural language component which

creates a uniform interface to the bulk of the system's facilities. Mo-

difiability is provided by allowing the user to input new rules and

constraints in English in real time during a planning session. The sys-

tem explains its behavior by monitoring the progress of its deduction

mechanisms, and then translating a trace of their actions into English.

In addition, the Natural Language component allows the user to query the

system's knowledge base, and to make new commitments in the process of

completing a mission. To a limited extent, KNOBS is able to carry on a

dialogue with the user as he performs these functions.

TEMPLAR (Tactical Expert Mission Planner) is an advanced de-

velopmant model prototye of KNOBS. It is now under contract development

by Advanced Information and Decision Systems. In this development, in

addition to engineering the capabilities already present in KNOBS for

Offensive Counter Air (OCA), new capabilities that are necessary to pro-

vide a useful tool for a spectrum of tactical air mission planning

30

problems (e.g., interdiction, close air support, defensive counter air)

will be added. Moreover, a better man-machine interface will be devel-

oped in TEMPLAR. Thus one can view TEMPLAR as a successor to KNOBS,

which is moving closer to an operational system.

KNOBS has developed over a period of 5 years at a cost of ap-

proximately 2.5 million. TEMPLAR is estimated to cost around 1.5 million,

and it is estimated that to bring TEMPLAR into operation, an additional

3 to 4 million would be required.

The Strategic Mission Planning System for SAC was developed by

Systems Control, Technology. The system is based on dynamic programming

algorithm, coupled with path optimization, which allows one to determine

the optimal flight path, target and weapons assignment. The joint optimi-

zation can be applied to the case of a single bomber, or cruise missile,

and the resulting flight path and weapons allocations can be incorporated

into the SLOP.

While the basic methodology is based on OR optimization methods,

when the full many weapons to many targets problem is addressed to the sys-

tem, it becomes too large to handle vigorously; heuristic methods are then

introduced to deal with the path optimization problem. The Strategic Plan-

ning System has a good graphic and a front-end user interface which allows

the system to be used interactively. The system is now being developed

for an operational phase. The total development cost from design through

initial operating capability is approximately 7 million, with approximate

breakdown given in table 1.

The basic distinction between the two systems described is

that while Strategic Mission Planning is built on a simple structure and

then is extended to more complex and realistic situations (bottom up),

31

Table 1: Approximate Breakdown of Total Development Cost

systems
KNOBS/TEMPLAR Mission Planning

phase

Design ± 2.5 million ± 400 K

KNOBS

Feasibility ± 800 K

initial TEMPLAR
demo/ test ± 1.5 million ± 2.4 M
bed

Operational (Estimate)
3-4M ± 3.4 M

Total 7.5 million ± 7 million

KNOBS/TEMPLAR is started with the fact that the problem to be dealt with

is too complex to be handled completely analytically, and thus uses arti-

ficial intelligence (AI) as its base to integrate diverse knowledge to

assist in the planning process (top down). For the conventional force

deployment problem, it seems that an approachwhich starts from realizing

complexity while incorporating and exploiting the existing OR models that

had been built to represent our knowledge source would be a promising ap-

proach to the problem.

32

ORI
Silver Spring, Maryland 20910

TECHNICAL AREA REPORT:

MATERIAL/TRANSPORTATION PLANNING MODELS

BY: S. A. KLEIN

15 SEPTEMBER 1983

PREPARED FOR:
SOFTWARE ARCHITECTS AND ENGINEERS, INC.

1401 WILSON BOULEVARD
ARLINGTON, VA 22209

33

ACKNOWLEDGEMENT

The author wishes to acknowledge the contributions of F. Hopkins,
G. Hamilton, B. Buc, and G. Holiday in the preparation of this report.

35 f~k"L=IIQd PAMI BLAMe-40T y71 ,

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT 35

1. OVERVIEW 37

1.1 INTRODUCTION 37

1.2 CONCLUSIONS 38

2. FUNCTIONAL REQUIREMENTS 39

2.1 FACTORS IN MATERIAL/TRANSPORTATION PLANNING 39

2.2 CLASSES OF POTENTIALLY APPLICABLE MODELS/TOOLS 41

2.3 IMPLEMENTATION ISSUES 41

3. EXAMPLES OF FUNCTIONING SYSTEMS 51

3.1 ELECTRIC UTILITY CONTROL CENTERS 52

3.2 TRUCKING APPLICATION 54

3.3 BETHLEHEM STEEL MARINE OPERATIONS PLANNING AND

SCHEDULING SYSTEM (MOPASS) 55

3.4 FORCE ASSESSMENT DEPLOYMENT SIMULATION (FAST) 55

3.5 AVIATION-RELATED MODELS 58

4. EXAMPLES OF FUNCTIONAL SUBSYSTEMS 66

4.1 NAVCOMMSTA RESOURCE ALLOCATION MODEL 66

4.2 E-LOTS 67

4.3 MATHEMATICAL PROGRAMMING SYSTEMS 68

5. SYSTEM ELEMENT AVAILABILITY 70

6. RECOMMENDED INITIAL DEVELOPMENT PLAN 71

REFERENCES 73

36

1. OVERVIEW

1.1 INTRODUCTION

The purpose of this report is to support an effort by the Institute

for Defense Analysis that is developing estimates of the cost and scope of
component subsystems for the next generation World Wide Military Command

Control System (WWMCCS). This report addresses the technical area of

material/transportation planning, which is defined to include "(1) force

planning and replanning (2) logistics support planning and replanning (3)

retrospective analysis of operational data." The objective of this effort is

to "revisit the area of operations research models and heuristic planning

systems to see if some of that technology can be applied to improve military

planning."

The report is organized as follows. Section 1.2 presents the study

conclusions. Section 2 discusses the functions involved in military

material/transportation planning, identifies the classes of models/tools that

may be applicable to support these functions, and outlines some issues that

must be considered in system implementation. Section 3 presents some examples

of functioning systems related to the study area, both military and

commercial/industrial. Section 4 describes some examples of subsystems and

building blocks that may be useful in system development. Section 5 discusses

37

some anticipated types of system elements and their future availability.

Section 6 presents a recommendation for the effort required to prepare a

detailed development plan.

1.2 CONCLUSIONS

The conclusions of the study are as follows:

1. While some commercial off-the-shelf hardware/software may be

useful, the pursuit of commercial sector applications with a

view toward adapting them is not likely to be a fruitful

approach to development of the desired system.

2. Extensive development effort is likely to be needed with

specific orientation toward the intended application. Much of

this effort is probably occurring already under the sponsorship

of a variety of DOD-related organizations. However, these

activities may need to be supplemented or redirected.

3. An initial exploratory requirements analysis (outlined in

Section 6) Js recommended. The effort is focused on obtaining

user views and surveying ongoing related research/development

activities.

38

2. FUNCTIONAL REQUIREMENTS

This section presents an overview of the functional requirements for

a computer system to support military material/transportation planning.

Section 2.1 identifies the areas in which this activity can be supported by
computation. Section 2.2 discusses the classes of models/tools that may be

useful in providing computational support and identifies the areas in which
each model/tool is potentially applicable. Section 2.3 presents some issues

that are critical in implementing a system of this type.

2.1 FACTORS IN MATERIAL/TRANSPORTATION PLANNING

This section describes the scope of the military material/

transportation planning problem and identifies the areas in which

computational support may be useful.

Table 1 lists some of the factors that must be addressed in

material/transportation planning for military operations. The basic driving

factors are force configuration, mission, and geography. These factors result

in a set of support needs and related conditions (e.g., priorities) for the
mission-performing forces. Additional needs (and associated conditions) must

be included to support the supporting forces. The resulting overall support

needs become the transportation system workload.

The performance of the transportation system depends on the available

resources and facilities, and on the constraints imposed by geography,

geopolitics, and the military situation.

39

TABLE 1

FACTORS IN MATERIAL/TRANSPORTATION PLANNING

Force Configuration and Mission

Identification of Support Needs

Consumables

Groceries

Maintenance Items

Water

Ordnance

P-O-L

Spares

Special Items

Support Conditions/Constraints

Initial and Continuing Quantities

Allowable Delay Time

Transportability

Priority

Criticality (Loss Impact)

Resources and Facilities

Personnel

Transport Resources

How Many

Where Are They

What to do About Attrition

Capability and Capacity of Each Type

Facilities

Refueling/Transshipment

Unloading

Warehousing/Storage

Coordination

Intertheater vs Intratheater

Geography and Geopolitics

40

Table 2 shows the areas of consideration in material/transportation

planning supportable by computation.

2.2 CLASSES OF POTENTIALLY APPLICABLE MODELS/TOOLS

Table 3 identifies classes of models/tools potentially applicable to

the areas of military material/transportation planning supportable by

computation. The table briefly describes each model/tool and identifies its
areas of applicability.

2.3 IMPLEMENTATION ISSUES

In implementing a system using the models/tools listed above, there

are some issues that must be considered. These issues represent common

pitfalls to be avoided or characteristics of successful model/tool

applications. These issues include:

I. Availability of Data. About five years ago, an official in

charge of development of a major military C3 system stated

that the biggest problem encountered in using the system was the

lack of data. It turned out that a high percentage of the data

required for the operation of the system (and assumed to exist

by its designers) was not, in fact, being collected.

The algorithm classes identified for potential application have

varying degrees of sensitivity to the quality of the input
data. If poor quality data are available, it is preferable to

choose a less sensitive algorithm. In general, the exact

optimization methods are most sensitive and the statistical and

probability-based models are least sensitive.

41

TABLE 2

CONSIDERATIONS SUPPORTABLE BY COMPUTATION

Calculation of Support Needs (including needs of the support system

itself)

Packing Ships, Planes, etc.

Facility Operations Performance (harbors, airports, warehouses, etc.)

Routing and Flow
Intertheater

Intratheater

Effects of Attrition and Reliability

Integration of the Planning Process

Data Management

Data Collection, Storage, and Query

Raw Data

Previous Cases and Results

Development/Update of Modeling Relationships

42

4-

V) C I 0)C 00 (

4- ~ ~ ~ L- o) (L .m4 001
0 ' -U (. IC4 41.0 in 4

EU1 0~s. QL CC3 U)0-0
>LU - a- r_ w 4

Ou) >v m 143 a-'- -n x
toi 41 4L) CO to) 41(C -W(D4 1.

0 L. -- S- Q OW XCL 0 O
cc o C .4' 00 . . L. - c 4C.

ca- U 4-' ri)-' (1 W- 4 W C 41.L0A-4)0 aL.+
< -.0 0. L Uc4) W U 0 (A -0 w aw ww

cc=t 'U r0'C %-C 3: aL u f)t 0 'a w4
CL U A . CGI 41 C+ o U) -)~ (3 cfl-=

C.. CL -) . a L- > U La4JW

06

Lki

-J0

U))
a) 4; C

- a) S- 4

4- - j4
50vs 41 w(A(MI 0 - t ->

OW4+ L CU) 0 4-'S
41J 4 W 4- w 4

(i 4J 4- - 4 U)- 41

I- C r_ U C (n 0
o ~ " c uj:U
V7 >) C_ 0 C 410- (D 4

C...C) to 41- .4j W 4 10 -0
V) V CL4 0.4) 0 c "o
V) Lii4) 41 . _,g- 41 to

c U) 0.= 00
to LEc ~ 414-) Lii 1=

(** 0
Z 0 0 0 0

Lai.

C..
Lii

C).

S Lai

Lii C

43

I0 0 0w aC

CM (n S t £ 0-I 0 - r
a +j00 U U W 4) u~l 0U-

.- a CL= U- 0 to 44 fo +> ~ ~ ~ ~ -4)CC01 4 , J -

I- r=' = u~ =~~0 0 4X- n C

U) J0 .(.cc = r 0- aS t

4J Ci~ 4-) 4

(7 010) o414 0 '0 x~ ~ o

o -f 4 o. -. r 41 0 41 t.)~ 9

0 =0)C -- 0

I=4 L jC)0 - J =u=

07 0

C1 0

U~4 UL + - 0

4) C 4--

0- 00 to-

C- s- 0- 0j 4n - 0 E .

S- to s . 0 0

C..
41 04* -9..O O ~ -

oA 0 0 ~U s00000

c. u c~~ E n oC~~ CL w -4

o- 0S = S. 10 4-O 41 4J-WS00
u >0~ u0 o0 0 0 0

4), IJ IV 4P- UU - (N)C CC 4-'

IA~~~J o EnU 4- 9 L'0 0
In.0 M-)>)4)CM d '

c-o.,.+ - 4- IV4iC ,- i (A .-- 4 C 4

C'a S 0o - V-0d)>i4

CD 41

IA- 004 CIS-)
4) 0 0 C - .M1

0 s-'- Aj I- 1>,-I S

CD S 0 U r- . - 0 4) 1 J r

V)L) S.. 4J40 >% (
0 V) - 4) IQS 1-- a 0 4

W U-- 0 =S-0

-j 44

CDI

1.

S- S-.. 0 -)0 S-

-0~ ~ ~ o 0c L o rmI ,4-a" 0 -' O -' - -0. 0

) 0) 4-4- 0 =0 o,.a
=~0 to = (4-1 - 0 L
•-'- S.. . -- U - .4 > , u U=m S.- = 0 to .0 1 u (n 4')1 -

_ = I- a) 4-4- 0 L o* .41
S4-U t 0 U .0) (U 41 ' M -4-, V)

0 "o V) "a 0 4 - -E .-
A- u4- 00 M W 0 in U s- w-4

V) ~ Il~l eeu.hW.oO L L 0 - $
- W . Q 4- " .. 4- 0 . -

0' V) I-- X ",- "- a ol W- g- - -C0

--- c . ' .. ,,- K- .4-0)G)-0 G)L.
I , " u -0 "-SE 01" - - 4 Cm _ c- V) -W + 3 .0

o0 - C~-J ~ 4 .fl-- >baCLt

I--.I 0 C-"" i.. -0J'4cw- J 0. a a a

uL,- c" W, .-- .€ go, -"S

LI

01Z, - o)- -uto V)C

•

L - o m (A A -I 0

0. < .- (.- . I- -" S,4--, 0 0 -

CD L.) w 4 ,0 m US U c 0 S- .- LA-, LM LI.-

" u l ' Q. -- 0 EL

.-I - f) ,-" N>c *j = a 1 14-

- j o a - co (D - t C 4-(

. C (M= (,a (

V)m

-LO 000

L.,J

-5

~!

4- 00. 4)

I- = 4- ea.0 to>
o 0 W0

S. 0 CL to 0
Sc (L CLo I- .4-u

o4 - C) 4A-w .-~:0 >
LL 0-~ to c) c I .0
1.1.>1 4I) 0a'- a. 0. >

C) C IA 4nj-'5 ooi o

InK 0,4 : v- = ,

- 0 u~ - L.~ .C f 0

V) I-= C =c 2 -

CD'
Cd) I.-

-4 ..
CD.

a45

39 c"
00 0

4-n 4 -f.. I

ccp 4 to 0 c C- to E -

S 4) t3c M ..+j4- ; .Vo q

O 3LOW o > .

Ida 4 -- ft w: 4- C, C 4:-) . 4 c ",V

= L - 4 t 0~-* EU >w - 0
0EU 4 Q CLn.- u1 4) - o IM

S- 41 (D - . -- 0 C. 4- C04J - w =. 4 t 0 -
0 L.4G = 1 4J(S . - 4 .

4 L .C, > r 4 J EU 4E c

t7* tm 40 4)-- M. -0 u --- -.. a 4, 4;
U .4--'0 *--41 0.- 4 ' 0) -

N) *C 0.- e

S 0~ 10.00

0 4 4-1O 4) X

CD 0. (D 0- C,) ..0 --

- - ~ C C*.. uC> 0. L cS mwm

.a 0" . .- '- . U 0 0.n 0.

4)A- U . 0 U3. -E L'L 4)4 EU
-€ . '- - E.., - EU- 0 0 U .)

o.I_ -- 0 "*14-0..C 0 M ' -4.' -
I_-. ..

"
0.L . S. 0.-L- C" -'U WE0

"
0 C

0 0 0

LAJ

LJ
.4

0 to 0 0 (UO
- C ,4- =

0L 41 'A" .. .- W0

-0 cc W0 E 1C.JS
L- .0 0 to - W
En0En0.E ta -3'-+J 00

Ui -Enq EUL.L - 01 >1 E 4
CL- r1' fG V) E U - - '0

W 4 _U .0 0 C- W- W .
I- - . oC 0 4- J E

V)0 0 (A1 En3 *6 0~ wL
0. -1 UE 0 .- 'E Ua 0 0 MUUUW

I ~ 4 - EU 4J 0 L (U n1 0E

U.. . Xc "c CO a E4 "04- go4- 0.
Co - 00C 4-) 14- EU -E 01)0 0 41'

'0 (3)C .-. 2-j EnCJIA

w V) S to LEU4o0C S L410 LUO0- >4- C
(A Li to N to n 0 EU 3 to -.- - 0
<A V) 4U W63 - 4'01 = 0)

to V)'E~ EOcu c IA Q i M to
CLX41 wC .080 CL x 46 Enw

(A to L.t 1 A4
(AJ

CD .4 -ex

-J 0 L 9=< Z

L Li

Li J

46

V) 3c toL6
Il .04O - WO

.- ~ ~ S .0-1

- =L e w >
L&J * i 4-J 0 M 4-

CA . t~o C r_ 4-
4-~ OUU 4.J 0).4.

>w to >, 4-l J 1-4-Lf 'A
4 a 0..- to0 0 4AU 0

-j.0 S L.to 4 -1 (U d 0

4- toW (U 4 W)
$- >v~ *VE S-= -O

w. ci c 00. 0-,
o) LL I L to 0 Q CL

4. ~0 0 0

V7
-LJ

cm U

o> -

0)4~ S- S- -4

C56 ~ ~ 41C - C 41 r C -
o. ";id Q ut o)C 0 U

..C2 4 o -')50.- L JC L n d,"

a) 4-1 -to t

=iU cid~i >I = .0 v jWS

a--- 0 L 4A~ 41 V) i
Lai04 1 .1 4J 4-~ > C Wc

4- 0Lo- .f 0 WS-s

oo .4- 0.. . >b u 41 d

cc. to W0)- 0 =idi

o ~c I- to04 = 414' d-4~
(A -O L U1l4- S) j to(

V) CC S-u Z w A =c - 04
IALI)0U w c)0) d0) ai'-

*- >A V) S.-d~ = C S- Od
CO tA 0U 5. - 4vI 4) u U

oi a u - a (A-d0-'i didj

*-UL' CLO.O~dd AJ (ACL0 o3cCL-0

-

CD4

0)
Li IA -

CDD IL

5.147

0 - -

C

In4 4to

n W, " cc c O

0I >0 4,)

(A1 - D) , Q 0 -4-
ig 4- o to.- to CL cc

0 4- .0 1..

0".o> L. c 0 0 W'- OA $-,-

41 C 00ULI 0 1 C.- 4 - 1(
LA o .- a)--- 4

cz a),- 0M . 1 =I. I- "(- 41t 4)

- tm C t0t "0 .- -

.0 _ $- .10 oto .00-E.

C.. - (a CL 00 00 toc -
V.) - - (04- -. - S- -. -. CM .- - -

00 oI. C -4- tLCL - o

.. L C S.C0 0

4<~~~ ~ ~ C.) 0-4)4 1 o C
0- 0.I 4- 4U C L

4----

0 0 40

14

I-a E~L Q-U C0 n 13J0
o 0 V) 000 4.) =" ~

u. (U L.4 *n 4). 4O-n 4-a4-
. - a) w V) w 0

CL. 41-~4 =. S4 C t t
S40 0 4- S-C 0 IA

Lii& L.i 0 0 (U~ 414. 41 C0 .

o C0 0' V) '0 0
(L) 42i L) *)(L) a C :3

>)n to4/ +j

C) n0 4-P)1- 0 OAE000

II

C 0oL

C ~ '/ to=.t o =4)4

4/0 4) u u0

V.) .L./ = S --
LLCD EZJ tu u 1 c4 D= oC6g

o) -)- 0 "0ii 1-3
V)o 0. (A 4) 4/
-C 0). S 4 -)0 -/ .

V)) cm/

4ni Lii

0 D CD IL - 0.

(I co V
0L LAi

48

2. Formulation of an Objective Function. In most commercial/

industrial applications of optimization models, the -,<'tive

function is clearly related to profit maximization, the overall

goal of the using organization. In military material/

transportation planning, the objective function may not be so

easily formulated. In a rapid response situation, the military

commander wants to get the job done; he is probably not

interested in minimizing his costs or maximizing some measure of
efficiency. Since the relationship between the mathematical

objective function and the organizational objective is less
clear in the military case, it is likely to become a matter of

controversy. This can present a serious obstacle to the system

development process.

* 3. Sensitivity to Underlying Assumptions. In a manner similar to

their sensitivity to input data quality, the model/tool classes

have varying degrees of sensitivity to their underlying

assumptions. The exact optimization methods tend to be most

sensitive, because they exploit the detailed mathematical

structure of their models to produce solutions.

4. Level of Expertise Required to Operate Model/Tool. Some of the

model/tool classes require extensive expertise to operate the
model/tool and interpret its results. This is particularly true

of the probabilistic simulation models, which require

statistical analysis of several runs to ensure validity of the
results. If the system is intended for use by military command/

staff personnel, it is preferable to design a system

architecture that minimizes the model/tool expertise required of

the user. This suggests an architecture in which the command/

staff personnel interact with a relatively highly aggregated

application-specific model that incorporates data/results from

other models (that require more expertise to operate) and/or has
the other models embedded in a manner that makes their

complexity transparent to the user.

49

5. Choice of Models/Tools. It is best to let the selection of a

model/tool result from a detailed study of the application.

Immersion of the analyst in the application is an essential

prerequisite to this selection. Deciding on a model/tool before

the application is fully understood usually has disappointing

results. However, it is also important for the analyst to avoid

becoming bound by existing operational considerations.

Frequently, the problem posed to the analyst turns out to ue a

symptom of a much broader problem. If a solution to the broader

problem is both technically and politically feasible, it may be

preferable to allow the analyst to focus on solving it.

6. User Involvement. It is very important to involve the users in

the design of the system. This does not mean that the users

should define the system -- they will generally not know what is

technically feasible and potentially beneficial. However, by

having some form of user involvement, the success of the

implementation effort is significantly enhanced.

50

3. EXAMPLES OF FUNCTIONING SYSTEMS

This section presents examples of functioning systems related to the

study area. The examples include both military and commercial/industrial

systems. The examples and their relationships to the system of interest are

as follows:

0 Electric utility control systems - are the computer -

communications systems that perform real-time economic

optimization and security assessment in electric power systems.

These control systems are probably the example most analogous to

the system of interest because of:

- The scope of the application
- The classes of functions/algorithms and real-time

performance requirements
- The size and scope of the research community

contributing to application development

o Commercial trucking and shipping company systems - that are

published examples of business applications of the relevant

methodologies.

o The Force Assessment Deployment Simulation - A system that is

being used to train some of the military commanders who will
eventually use the system being addressed in this paper.

51

o A set of relevant models in the aviation area - that are

currently being used for various purposes.

3.1 ELECTRIC UTILITY CONTROL CENTERS

An electric utility control center is a facility that exercises real-

time control over the generation and transmission (and, in some cases, the

distribution) operations of an individual utility or a group of utilities

(powe pool). The two principal functions of a control center are:

A. Economic optimization of the utility operations, and

B. Assessment of the security of the power system against the

effects of potential failures that could cascade and result in

blackouts.

To perform both of these functions, control center personnel interact

with algorithms that are specialized versions of mathematical programming

techniques. Data to feed these algorithms is collected from remote monitoring

equipment located in substations and generating plants. There are over 150

control centers (existing or planned) around the world. Each center collects

data from up to 300 remote terminal units, each of which may monitor a number

of algorithm-related parameters.

The economic optimization of a utility takes place over a hierarchy

of planning/implementation horizons that rangc from 20 years to 6 seconds.
Table 4 shows the hierarchy of economic optimization functions. These

functions address both the generation of power by the utility for its own

customers and the interchange (purchase or sale) of power with other

utilities. This power interchange may occur under a long-term planned or a

short-term ad hoc arrangement. Included with the economic optimization

functions are algorithms that support utility personnel in the real-time

assessment of short-term interchange proposals.

52

TABLE 4

ELECTRIC UTILITY
ECONOMIC OPTIMIZATION HIERARCHY

OPTIMIZATION TIME
FUNCTION FRAME DESCRIPTION

Facility Planning 10-20 Years Given a long-range demand forecast,
determine the facilities that must be
constructed to ensure adequacy of
generation capacity and reserves.

Maintenance Prepare schedules of maintenance
Scheduling 1 Year operations and hydroelectric generation

Hydro Scheduling that provide adequate reserve capacity
and meet constraints on stream flows.

Production Several Schedule type of generation considering
Scheduling Weeks anticipated demand, relative costs, and

status of hydro reservoirs and fuel
stockpiles.

Unit 8 Hours to Schedule start-up/shutdown of generator
Committment 1 Week units considering availability of

units, relative costs, demand profile,
and spinning reserve requirements.

Economic 10-30 Minutes Given the set of generators currently
Dispatch spinning, determine how the generator

loadings should be adjusted to
accommodate changes in system load.

Generation 1-10 Seconds Adjust the generator loadings to meet
Control the system load in accoroance with the

economic dispatch results.

53

The security assessment algorithms are generally of a larger

computational scale than the economic optimization functions. Security

assessment algorithms are frequently formulated as a nonlinear programming

problem where the objective function is a minimization of an imbalance or

estimation error and the constraints are a version of the alternating current

electric network equations of the power system. Typical networks have

hundreds of nodes.

To perform these'functions, a typical control center will have a dual

or quad configuration of a superminicomputer. For example, a popular machine

in recent system has been the Gould/SEL 32, reputed to be the fastest mini-

computer on the market. Utilities have also shown interest in the Floating

Point systems AP-120B Array Processor.

Development of the algorithms is an ongoing process that has involved

extensive support by individual utilities, control center hardware/software

vendors, universities, government agencies, and government or privately

sponsored research institutes around the world. The combined budgets for

research on these algorithms of the two major U.S. organizations supporting

this research totals about $10-15 million per year. This does not include

private research by vendors and individual utilities, or support in other

countries, many of which have extensive research programs in this area.

3.2 TRUCKING INDUSTRY APPLICATION

Barker, Sharon, and Sen (Reference 1) describe a set of models they

have developed to improve profitability at ANR Freight System, which owns a

number of trucking companies.

The model development effort was initiated because of a severe

capacity problem at a major break-bulk terminal. Management established a

project team with the objective of developing a tool that would assist in the

linehaul planning process. The effort resulted in two models, a Freight Flow

Model for analyzing the "less-than-truck-load" (LTL) operations, and a Minimum

Revenue Model for analyzing the "truck-load" (TL) operations. The models use

54

a combination of mathematical programming and application-specific methods.

Figures 1 and 2 show schematic diagrams of the models.

The development of these models has resulted in increased profits of

$9 million per year to ANR. The effort was the winner of the 1981 Management

Science Achievement Award offered by the College on the Practice of Management

Science of the Institute for Management Sciences.

3.3 BETHLEHEM STEEL MARINE OPERATIONS PLANNING AND SCHEDULING SYSTEM

(MOPASS)

The Bethlehem Steel MOPASS model, described in Reference 2, was

developed to provide a capability for both annual planning and short-term spot

decisionmaking. The model, illustrated in Figure 3, includes:

o A voyage cost estimating module (VOYEST)

o An overall fleet operations planning module (PREEMPT) that uses

an embedded linear programming optimization module

o Single and multiple vessel scheduling modules

o User-oriented information files, management and operations

reports.

The fleet being managed is oriented toward carrying various bulk materials

(e.g. ores) required for Bethlehem's steelmaking operations. Vessels are also

chartered by Bethlehem to and from outside parties. The system has been in

routine daily use for over four years.

3.4 FORCE ASSESSMENT DEPLOYMENT SIMULATION (FAST)

The FAST model is both an application-specific model and a

deterministic simulation. It supports the top-level, integrated planning

function for strategic deployment operations. The model incorporates

data/results derived from more detailed studies and models such as E-LOTS

55

hma, ~um m~ Tma Das

~~ -
b W1q

iL

Osnww

Cmn mi9q d

FIGURE 2. ANR FREIGHT LINES MINIMUM REVENUE
MODEL SCHEMATIC (fro;,. Reference 1)

56

0-AG 65 GU-W3UIL SmEDUUNG MLOEWvaa OSUuN
(vy" (polano

Fro Refrenem)

57n~g

(discussed in Section 4.2). FAST is an outgrowth of an effort at ORI to

develop a microcomputer-based model for use at the U.S. Army War College to

provide senior-level commanders an understanding of strategic deployment

operations and limitations. Table 4 describes the model features.

3.5 AVIATION-RELATED MODELS

This section describes four different hierarchical levels of models

used in the commercial, Federal non-defense and defense sectors that can be

adapted for DoD use and linked to provide estimates of the following factors:

o element configuration to calculate aviation fuel use,

0 fuel requirements by operational characteristics,

o impact of alternative mission specifications within a large

scale operation upon fuel requirements, and

0. impact of alternative technological developments or procurement

procedures upon fuel requirements.

A list of these models and their applications is presented in Table

5. The lowest level of models from the concept of systems optimization are

the element models. These models perform calculations on component

performance and would provide input into the next level or mission models.

The goal of the mission models is to estimate fuel use by individual flights.

These models can optimize fuel use by specifying optimal flight paths. The

optimal flight path information is used as input into the tactical models that
analyze operations that are combinations of individual missions. The long

range models are designed to plan the equipment acquisitions that would

optimize the achievement of the AF goals. Thus, these models require inputs

on energy use from alternative tactical configurations.

58

TABLE 4
FORCE ASSESSMENT DEPLOYMENT SIMULATION (FAST) FEATURES

0 Designed for Use on Osborne Executive* Portable Computer

low cost
accessible
inter-active

0 User Oriented Data Files

100+ force components (variable size, supply, lift reqts)
7+ ship types (variable speed, capacity, load/unload time)
12 ship inventory changes over 60 days (for each type)
2 ship POEs (east and west coast)
10+ aircraft types (variable cargos, capacity)
5+ aircraft inventory changes (for each type)

o User Controlled Scenario Factors

Simulation time (90 day max.)
Change in combat intensity (influences resupply reqts)
Availability of Suez Canal (changes distances when closed)
Theater stockage reqts (level and arrival time)
Variable sea lane distances (for other than S.W. Asia)

0 o Extensive Inter-Active Features

Screen oriented instructions
Direct input of unit deployments by air or sea
Rapid changes to force deployment lists

o Sensitive to Cargo Pipeline Capacities

Air cargo delays vs. ALCE unit arrival
Sea cargo delays vs. COSCOM arrival
Air traffic limited to 4200 tons/day
Air and sea port capacity limits
Direct access to all input data files

*Registered trademark of Osborne Computer Corporation.
The Osborne version is an ORI proprietary system.

59

TABLE 5

ILLUSTRATIVE AVIATION ENERGY MODELS

MODEL TYPE VEHICLE TYPE ORGANIZATION MODEL CLASS

LONG TERM

NASA Aeronautical Aircraft Office of Aeronautics Simulation

Project Evaluation and Space Technology,

System NASA, ORI

MOPASS Vessels Bethlehem Steel Optimization

TACTICAL

NATO TACAIR Aircraft ORI, DOD Simulation

MOPASS Vessels Bethlehem Steel Simulation

MISSION

Eastern Airlines Aircraft Eastern Airlines Simulation

Pratt & Whitney Aircraft Pratt & Whitney Simulation

FAA Aircraft

SIRO Helicopter Army Simulation

ELEMENT

Knapsack Optimization

KONFIG Aircraft NASA/Lewis Simulation

60

3.5.1 Element Models.

The optimization of energy use on an individual aircraft can be

divided into two categories: aircraft performance and aircraft utilization.

Aircraft performance is determined by the engineering characteristics of the

aircraft. The KONFIG model analyzes the energy consumption of alternatively

configured gas turbine aircraft engines. Aircraft utilization can be improved

by increasing the load carried by the aircraft. The Knapsack problem is an

optimization algorithm that maximizes the number of different sized containers

in a storage space. It could be useful for configuring storage in transport

aircraft.

3.5.2 Mission Models.

The mission models are useful for examining the impact of alternative

flight paths upon fuel use. These types of models are used by Pratt and

Whitney to formulate aircraft/engine designs, and Eastern Airlines to maximize

revenue on their route structure. The FAA has installed a mission model on an

Apple microcomputer, with the goal of developing a system that can be used in

real-time in an aircraft.

The Army Aviation Research and Development Command uses the SIRO

family of computer models to estimate mission helicopter performance,
including energy use. The program is composed of two parts. The first

estimates energy use for vertical flight, while the second estimates energy

use for horizontal flight.

61

3.5.3 Tactical Models

Tactical models are very useful for examining energy consumption in

peacetime under alternative simulated combat situations. They provide useful

inputs in the decision making process on locations of fuel supply depots and

optimization of the levels of fuel inventory.

The TACAIR model characteristics are illustrated in Figure 4.

Tactical aircraft play a crucial role in the first 30 days of a NATO/Warsaw

Pact Center Region war. With a fixed NATO tactical aircraft force level,

increasing the number of sorties flown per day by each aircraft may influence

the air superiority and air-to-ground TACAIR campaigns. The cumulative

air-to-ground sorties, in turn, directly affect the land combat campaign.

This effort examines various planning, programming, and policy options to

increase the planned sortie rates and the impact of these increased sortie

rates on the total achieved number of air-to-ground sorties flown. The

cumulative number of air-to-ground sorties is then used to estimate the number
of equivalent armored divisions these sorties can potentially destroy.

3.5.4 Long Range Models.

Long-run models are used to analyze the development, acquisition or

retirement of equipment used in the aviation or vehicle fleet. The MOPASS

model, described in Section 3.3, is used by Bethlehem Steel to optimally plan

vessel deployment and requirements for several years in the future. A risk

analysis program has been developed to assist in determining the variation in

expected return and risk associated with varying the number of vessels in the

fleet. Risk analysis should be incorporated in energy/aviation models.

The NASA Aeronautical Project Evaluation System (NAPES) was developed

to assist NASA in evaluating the benefits and cost of NASA's technology

development plans. The methodological structure of NAPES is presented in the

variable precedence diagram in Figure 5. The variables on the left hand side

of the diagram are exogenous variables, that are used as inputs in the initial
time period of the simulation. Many of these variables become endogenous

62

Scenario *W=WAM mix M 0 Pamc Lava vW;. Cumuative

Inputs e.Aftl Amm iAmmu -Air-to-Ground
-W A&$onCn &!* a Sorties Flown

0 mun~wmArmored Division
- Equivalents

Planning * i.n*.m-r,. AO
Programming, VWi suo"" 5m cA08*1 Destryed

0Akcraft Shatmand Poiicf * Saw. Pt Li"Wi aid Number of AirInputs fPuii@
Supriviy

0 Aircraft
0 Akeaft u'h~r~cV* Akcr4* Vukw2*y

FIGURE 4. OVERVIEW OF TACAIR MODEL USED FOR OSD PA&E

63

after the initial year and are computed internally. The lines connecting the

variables show the relationship of each variable to others in the algorithms

used within the system, i.e., the precedence order of each variable in the

calculations. There are six logical sections of NAPES, indicated in Figure
5: investment requirements, fleet composition, environmental, travel demand,

fuel consumption and airline operations.

The model is capable of performing sensitivity analysis on an

extensive set of variables to determine the importance of the analyses to

variations in the key independent variables of the study, including economic

growth, passenger load factors and fuel prices. Sensitivity analysis is

another technique for evaluating the level of risk in a base case solution.

I

iij

Ic
1 SJ

655

4. EXAMPLES OF FUNCTIONAL SUBYSTEMS

This section provides some selected examples of functional subsystems

that may be used as functional or conceptual building blocks for an overall

military material/transportation planning system. The examples include:

o NAVCOMMSTA Resource Allocation Model - provided as a methodology

example

o The Enhanced Logistics-Over-The-Shore Model (E-LOTS) that is

currently being used to support studies and other models in this

area

o A brief review of the area of mathematical programming systems.

4.1 NAVCOMMSTA RESOURCE ALLOCATION MODEL

The NAVCOMMSTA Resource Allocation Model was the result of a pilot
study to develop and present a mathematical model relating the work performed

by a NAVCOMMSTA to the input resources required, in terms of MILPERS, CIVPERS

ceiling, and dollars. The model consists of a set of empirical equations

based on data from existing reports, and a calculation procedure which has
been translated into a computer program. With the communications and support

tasks to be required of a COMMSTA as inputs to the program, the user can
determine the personnel and budget resources necessary to support those tasks.

66

The model can be regarded as a form of nonlinear input-output

(Leontief) model. The model first calculates the number of personnel required

to support the NAVCOMMSTA communications tasks. The support tasks are then

considered on an iterative basis analogous to the matrix iterative solution

methods required for Leontief models prior to the availability of digital

computers. The iteration resolves the additional support required for the

support system itself.

The model is discussed here as an example of the kind of methodology

that may be useful in computing support requirements for material/

transportation planning.

4.2 E-LOTS

The ORI Enhanced Logistics Over the Shore (E-LOTS) simulation model

is an expected value model of a LOTS or LOTS-type operation, such as a Marine

Amphibious Force (MAF) Assault Follow-on Echelon (AFOE). It begins as ships

arrive off-shore and terminates when the last cargo module has arrived at its

destination. The purpose of the model is to assist in the determination of

the relative effectiveness of alternative resources in the ship-to-shore

movement. In the process of accomplishing this, it also provides progress and

completion time reports.

The model, which is in the "deterministic simulation" class, is a

greatly improved version of a TRANS-HYDRO Study model originally developed by

the Army Logistics Center, Ft. Lee, Virginia. The Army LOTS model was

modified for greater realism, new features were added, capabilities were

enlarged, and improvements for computer efficiency were made by ORI in support

of the Joint Logistics Over the Shore (Joint LOTS) Test and Evaluation Program

during the 1974-80 time-frame.

Subsequently, the model which has only a limited 5-ship capability,

was greatly expanded to its present state now operable with about 35-40 ships

(depending upon types). Cargo modules were expanded to reflect a 35 percent

broader spectrum of pallets, vehicles, and general cargo. New lighterage and

tractor-trailer units were incorporated to reflect large force capabilities

and to represent current resources and operational characteristics.

67

The reporting format focuses on a series of cargo, ship hatchslot,

lighterage, MHE, and tractor-trailer interactions. Ultimately, productivity

in terms of short tons/hr, cubic feet (cube)/hr, and square feet (square)/hr

are reported as model outputs.

Ships are introduced on a scenario controlled basis. On each ship

preselected cargo items are located on various decks and in various hatches as

appropriate. Hatches are opened at predetermined times and closed when

totally emptied; the ship sails when all cargo has been off-loaded. Once all

the ships have been emptied and the cargo is ashore, the run is completed and

a wrap-up report is printed.

The model was originally designed to operate on an IBM 360/65,

requiring 230K bytes of main memory, of which 78K was required for data.

Subsequent expansion and inputs raised the requirement to 240 bytes and

currently the simulation now requires about 250K with about 98K bytes required

for data. The program is written in standard ANSI (x3.4-1966) FORTRAN. On an

IBM 360/65, the execution time as on the order of 1.5-2 minutes or more,
depending upon the size of the run. The model has also been run on a CDC 6600.

Currently, the E-LOTS model is being used on ORI's PRIME 400

computer. On a normal batch run, results have been available overnight;

however, for runs involving 25-35 ships in the same batch mode conditions (low

cost/low priority), a full day or so may be needed because of the size of the

data base and amount of processing and printing.

4.3 MATHEMATICAL PROGRAMMING SYSTEMS

Mathematical programing systems are analogous in several ways to

data base management systems:

0 They are available for most processors as either

manufacturer-supported or third-party software.

o They generally include a number of subsystems such as control

languages, problem specification languages, algorithmic

procedures and report writers.

68

o They vary widely in features, and are generally regarded by

vendors as highly proprietary programs.

o They require significant effort to formulate and implement an

application. In using mathematical programming systems this

effort is further complicated by the need to consider the

mathematical assumptions of the application and of the available

algorithms.

69

5. SYSTEM ELEMENT AVAILABILITY

Development of the material/transportation planning system will

require a combination of:

1. Off-the shelf hardware and software

2. Application-specific tailoring and interfacing of the

off-the-shelf software

3. Application-specific system analysis and software development

4. Application-oriented research and development of mathematical

algorithms and solution methodologies.

The costs and technical challenges of the application-related efforts

(items 2, 3 and 4) are likely to far exceed the costs and technical issues

related to the off-the-shelf system elements. The repertoire of off-the-shelf

hardware and software over the next five years will likely be more than

adequate to satisfy the possible uses of these elements.

70

6. RECOMMENDED INITIAL DEVELOPMENT PLAN

There are probably hundreds of people working for various

agencies/sponsors to develop methods and systems for DOD-related

material/transportation planning. Some of these efforts may be relevant to

the system of interest here; at the same time, there may be gaps in needed

activity.

In order to scope the activities required for development of the

subject system, it is recommended that a survey be conducted examining the

relevant capabilities/design of the present WWMCCS facilities and interviewing

the following personnel:

1. The military command/staff personnel currently performing the

activity that the future system is intended to support.

2. Sponsors of research into improved methodologies for supporting

this activity.

3. Key members of the research/development community currently

working on improved methods.

4. Vendors of potentially useful off-the-shelf hardware/software

identified during the study.

71

Unless a clear requirement emerges for extensive cost minimization,

it is not recommended that this survey address commercial applications.

The purpose of the survey should be to identify:

1. Existing system components and methods that are satisfactory in

their present form. These components and methods should be

considered as candidates for inclusion in the system.

2. Existing system components and methods which should be enhanced

before they are included in a future system. These components

and methods should be considered as candidates for enhancement.

3. Proposed methods that are recognized as useful but are not

currently being used because of implementation problems (e.g.

methods that require too much computing time). These methods

can be considered as candidates for improvement using new

computer technology or better mathematical techniques.

4. Recognized problem areas for which there are no existing

solution methods. These problems can be considered as

candidates for research into solution methods.

5. New ideas that arise during the dialogue between the survey team

members and the interviewed personnel. These ideas can be

considered as candidates for further investigation.

Following the survey, there should be a phase during which the

candidate system components, methods, problem areas, and ideas are evaluated,

prioritized, and assessed for cost and risk. The result of this phase would

be a development plan for the desired system.

It is estimated that this activity could be accomplished by 2-10

people over a 6-12 month period.

72

REFERENCES

1. H. H. Barker, E. M. Sharon, and D. K. Sen, "From Freight Flow and
Cost Patterns to Greater Profitability and Better Service for a Motor
Carrier," Interfaces, Vol. 11, No. 6, December 1981, pp 4-20.

2. K. L. Stott and B. W. Douglas, "A Model-Based Decision Support System
for Planning and Scheduling Ocean-Borne Transportation," Interfaces,
Vol. 11, No. 4, August 1981, pp 1-10.

73

Technical Area Report SOFTWARE for ADA. Software A&E / IDA STUDY

DATABASES and INFORMATION MANAGEMENT

Gio Wiederhold

Computer Science Department

Stanford University

Stanford CA 94305

9 September 1983

1. OVERVIEW

1.1 Description.

1.1.1 Basic definitions and terminology.

A database is a recorded collection of facts organized so that they

can be computer processed.

A database management system is an integrated collection of programs
to make such processing convenient and effective. Database management

systems exist in generalized and application specific forms.

A schema contains meta-data describing the database itself.
A schema is associated with a specific database and used by the database

management system to control and maintain the database.

Tihe combination of data, meta-data, and a database management system
.iill be referred to as a database system. There exist database
syszer, without a formal database management system.

1.1.2 Objective.

The objective of a database is to share data for decision making.

In this sense the database provides a means of communicating information among

75

.i.ED.. PAGE BLNK -NOT Fl""

distant functions and also among functions which are active at different

times. The functions themselves will differ in objective and scope

and will often place conflicting demands on the database.

A very difficult balance to achieve is the tradeoff between

performance and flexibility. A large quantity of data increases the

significance of performance factors. The variety of uses stresses

flexibility. Multi-user operation impacts database integrity. All

these desiderata have to be considered when selecting a database

management approach.

Much data is collected and used for operational administration in a class

of functions supported by routine data processing.

An expectation of database users is that the information held in a database

can also be made available for decision making and planning purposes.

1.1.3 Components.

An operational database system includes data and program components.

The programs tend to be more general, and shared among multiple databases.

Components of the typical database system include:

1. Data representing facts of interest to the enterprise being described.

2. A schema describing the data being stored.

3. Archival and logging data in order to provide audit and recovery

capability. This will protect all information stored currently

or in the past within in the database.

4. Programs which manipulate the database using the schema information.

These programs provide the interface for the programs which update or

retrieve data from the database.

5. Programs which interpret user commands and translate them to

arguments for the programs which manipulate the database.

These programs provide the interface for tne users who update or

retrieve data from the database in an on-line environment.

6. Programs which translate the database descripticn into the internal

schema. These programs are tools for the database administration.

7. Utility programs to maintain the databases.

8. If the database is distributed over multiple machines there will also

76

be programs to schedile query execution over the mutliple machines

and control the conutnication3 which are required.

9. In systems using strtistical or knowledge-based approaches there

will be modules to taw inferences from the meta-data and the data

stored in the datable. The effect is to reduce voluminous

data to a smaller amunt of manageable information.

Different database managegent systems have given different levels of

stress to the nine elementz described above. At times the reason for the

difference in stress is hiatorical; many current database management

systems are generalizatiorn of advanced data-processing packages of

the past. In many instance database management systems reveal the

experience of their writer. No database management system today

satisfies all desiderata, ,hom flexibility to performance.

Dealing with database manafment systems that are not fully adequate for

some task is frustrating fai the users. The database administrator is

typically limited to making changes that the schema provides for.
The actual software currently available for database management systems

is not organized so that good modules from one database management

system can easily be made tu work with modules from another database

management system.

1.1.4 Transactions and Queries.

In discussing databases we must consider how they are used. Three
types of usage can be distinguished:

o databases are manipulated by programs which process
input, output, and database files. These programs

may run in batch or timesharing modes. This use

is where databases mainly generate reports.

o databases are manipulated by users invoking pre-written

transactions from on-line terminals. This use is

common where the database is used to share informtion, as

in airline and banking applications.

o databases are manipulated by users interacting directly

with the database, typically via a query language.

This type of usage is associated with decision making.

We will elaborate the latter two types of use further, because

some of the uniqueness of database requirements derives from them.

77

Transactions.

The dominant usage today of large operational databases is through

transaction programs. Transaction programs are designed so that they

carry out single but complete opr-ations on a database. They are

invoked on-line by a scheduling program in response to simple user

command codes. An on-line transaction typically requests formatted

input from a screen and generates screen output as well as printed

reports when needed.

Transaction programs are written either in a special or an extended

general purpose programming language and execute relatively high-level

operations in order to retrieve or store data into the database.

In these languages data elements are referred to by name rather than

by address. Data elements are often of variable length and the

transaction program is not aware of the detailed physical structure of

the data being worked on. Transaction programs typically are limited

to several thousand lines in length and execution times are a fraction

of a second. These constraints simplify transaction scheduling.

Systems which support tranaaction management often provide integrity
maintance services which assure that, if a transaction cannot be

completed, all effects of partially completed transactions are erased

from the database. This assures, if the transactions themselves behave

correctly, that a database will not be damaged due to failure of

individual transactions.

Query access.

Another mode of operation of a database is direct inquiry via a query

language. Query languages come in many modes. In the simplest mode

the processor interrogates the user in order to construct a query. A

menu is presented on the screen and the user is lead through a

narrow set of choices. On the other extreme are natural language

interfaces where the user is completely unconstrained in the querying.

The processor has to produce cooperative responses to cope with

wrong assumptions about vocabulary, structure, and content of the

database system. In update activities the climate tends to be

oonsiderably more restricted and many databases are only updated by

transaction processes or via batch programs.

1.1.5 Architecture.

The terminology in the area of databases is becoming much more consistent

and well accepted than it was a short time ago. Nevertheless a fair

78

amount of confusion remains when system architecture issues are explained
to outsiders and some fashionable terms are used with little discrimination.

One set of terms, namely relational', hierarchical', functional', and

network' is used to refer both to the architecture of database interfaces

and their implementation.

Interface architecture.

A relational interface indicates that the database can be viewed as

consisting of rectangular tables. The user specifies at query time

operations which relate records in these tables to each other based

only on attribute names and the values found in these tables. The
relational interface is formal and relatively easy to learn. The

basic interface does not provide for update constraints and does riot
provide transitive closure, i.e., looping until a condition is met.

Two forms of the relational interface exist. In the relational

calculus the query is stated ir the form of expression which ranges
over the database. In the relational algebra the result of the query

is specified as a procedure using database operations on the tables of

the database.

The relational calculus is frequently translated into relational

algebra as a step towards query execution. If quantitative parameters

of the database and its attributes are known a considerable

amount of optimization can be performed during this query translation.
Programs which specify queries in the relational algebra can also be

optimized asa whole. Individual steps in the relational algebra

provide less scope for optimization.

The hierarchical interface assumes an underlying model for data that

have hierarchical dependencies among each other. Queries following

this hierarchical structure can be stated simply. Queries which do
not follow the hierarchical structure of the model which was assumed

for the data, can be awkward and often impossible to answer.

A network interface to database assumes a structure that may be

arbitrarily connected. The connection is specified in the schema.

At the simplest level the data required to produce the result for a

query is collected by navigation through the database, one point referring

to other related data points. The navigational process may either be

specifically described by the programmer or may be autsmatically
generated by translation from a higher level language. When there

are multiple candidate connections for a query between some network
nodes the path between there n,des has to be decied. Cfter the choice

is easy arid can be autreated, sometimes it has to be npecified.

79

Functional languages use a specification among the network nodes which

relates these objects in a functional form.

The specification, kept in the schema, can resolve much of the

ambiguity inherent in networks and make translation from higher level

languages to the navigation level much more feasible.

Implementation architecture.

Databases may be centralized or implemented on multiple, distributed

computers. In either case the database at one location can be

characterized by an implementation architecture. The implementation

of databases is often defined in terms which correspond to interface

architecture terms: relational', hierarchical', and network'.

Systems using these implementation technologies are not necessarily

restricted to the interfaces which have corresponding names. Given

our understanding of mapping between these implementation structures
it is possible to provide the relational interface for any of the

implementation structures, given that certain constraints are made and

that information loss during the transformations, which lead to the

alternative implementation structure, is avoided.

A relational implementation typically implies a simple mapping of

data into simple fixed record-length files. When rapid access to some
records is required indexes may be used. If access by any attribute

must be fast then indexes for all attributes must be maintained.

A hierarchical system typically organizes its data physically as a

depth-first-tree in storage. Sometimes only the access structure is
hierarchical, and the data are kept in simple files. Very rapid access

is provided when data is processed in the pre-order' sequence which

matches this layout.

Network databases include cross references from one record entry of

one record type to record entries of other types. These references

may be symbolic, indirect, or direct. Maintenance of cross-references

requires care and incurs costs at update time. Use of references can

be very beneficial when the database is being queried.

Symbolic references are the most flexible and depend on structures

similar to indexes. Indirect references depend on intermediate tables

or hash functions. Direct references provide single step access but

confine the resulting database into an extremely rigid structure.

Sophisticated data structuring and reorganization functions can

mitigate the effect of rigid structuring.

80

Distributed databases.

Databases may be distributed over multiple computers located at

distinct sites. At the communication network level all participating

databases must present a similar interface. Primitives on the level
of relational queries appear well suited for such a communication

protocol. Due to the relatively high cost of communication, data may

be replicated at multiple sites in order to enhance query performance.

Replicated data creates concern for consistency and hence synchronization.

A related issue is the degree of autonomy accorded to the distinct nodes.

The motivation for distribution often includes a desire for autonomy;

however, rules for maintaining consistency among replicated data in

a distributed database may conflict with such autonomy.

Most distributed database systems today have been hand-crafted and

operate on identical or similar computers. Developmental work has

included providing front-ends processes to existing databases in order
to match a shared communication protocol.

1.1.6 Summary.

In summary, when we are dealing with databases we are dealing with

products which have to satisfy multiple objectives and hence often
include compromises, especially in terms of the level of performance

allocated to the distinct objectives.

Database systems support conceptually seperatable functions.
In many systems we can identify perhaps ten such functions.

Most functions have a number of alternative design choices.

Some of the design choices are associated with well-understood

concepts and influence greatly the interface and performance of the

database system.

Most of today's database systems are highly integrated and the modules

which support these functions are not very distinct nor are they

interchangeable. Work in distributed systems is providing an impetus

for greater modularity of database management systems.

1.2 Discussion

1.2.1 Examples

81

The attached appendix (B) lists a large number of operational and

developmental database management systems, and identifies their

principal features. There are still many operational databases
which do not use a database management system, but have been built

using file access programs and semi-systems programs to implement

the functions required for database operations.

The major commercial databases which appear in this appendix have

reached a high level of functionality and reliability. Associated

with that success is an increase in complexity and limitations in

portability. Maintenance cost, both of the database management

systems themselves and of major database applications that use these

systems, tend to be high.

Maintenance is required when there are changes of requirements or

when there are changes of equipment on which the database management

system is operating. Equipment changes may be necessitated by a growth
in quantity or scope of the application.

High levels of performance can be reached in many commercial

database systems when the administrators and users are knowledgeable.

Design tools to configure optimal databases are becoming available

but require information on the expected usage distribution of updates

and queries to the database. Optimization is often limited to either
aggregate optimization or satisfying requirements for individual

performance. These two types of optimization may conflict with each

other.

1,2.2 Performance metrics.

Performance in a database is a question of the balance of the

requested activities, and the capability of the database system

architecture, the database management system, tne system software, and

the system hardware, to respond to these demands. Since compromises

are typical in databases, we do not find t at there is simply one
approach which is best in general.

Database activity.

The variables which determine the activity of the database are

o The size of the database categorized by record type.

o Th- number o' r- ieval requests, categorizod by type,

directed to the database.

82

o The number of update requests, categorized by type,
directed to the database.

The usage of the various types of retrievals and updates typically
has a Zipfian distribution. This means that a relatively small number
of types, say 10% to 20%, account for a large fraction, say 80% to
90%, of database usage. This means that performance prediction for
realistic databases is feasible by concentrating on these high
volume transaction types, although a fair amount of analysis work may

be required.

Database operations.

The controlling variables for the performance of the database are

o The organization of the files in the database.

o The means used for making cross references among files in
the database.

o The performance of the system software.

o The performance of the hardware.

The principal hardware parameters in turn are

o CPU speed, especially the execution rate in
moving data.

o Disk seek-speed.
o Disk rotational latency.
o Disk transfer rate.

o 10 bandwidth limitation.
o Communication bandwidth limitation.

In many current database management system implementations the cost of
executing the required system commands for buffering, resource
allocation, synchronization control is so high that CPU speed is an
important parameter in systems performance. We consider however that
the disk parameters and, in distributed systems, the communication
parameters lead to more fundamental limitations. Current advances in
technology have done more to increase storage capacity than to
increase the performance parameters of disk storage devices.

When the operational system parameters listed above are known,

83

performance metrics for the primitive operations from which queries

and transactions are composed can be estimated.

o Retrieve a single element using random access to disk storage.

o Retrieve a successor element according to a known organization.

o Update an element at a known location.
o Delete an element from a known location.

o Insert an element at an appropriate location.

o Restructure or reorganize database.

The importance of low-cost successor operations must be stressed.
The most interesting information-generating application are not based
on a single element which is retrieved but require a large number of
related elements. Acceptable costs for single element random
retrieval rapidly become unacceptable when multiplied by element

counts of a thousand or more.

Retrieval versus update.

High performance data retrieval is obtained by constructing access

paths into and within the database structure. Access paths are built
by increasing redundancy and by replication of data. There paths
require maintenance to assure consistency and integrity of results.

The basic data update operation is typically less than two times as
expensive as the primitive retrieval operation. Associated with
updates, however, are typically a number of retrieval and secondary

update operations in order to maintain all affected access paths.

The effect is that updates may be a factor 10 more costly than

data fetching operations.

In order to maintain high performance in a database environment which
is frequently updated, periodic reorganizations may take place.

Reorganizations move some of the cost of mnaintaining an adequate

performance level from the time of the individual update operation

to a time which is more suitable. Reorganization frequencies range
from daily to yearly. They may be associated with other periodic

processing functions in the database.

Use of performance metrics.

When the cost of the primitive operations within a database is known,

the performance of transactions on a database can be predicted with
-ngineering accuracy, say within 20%. If many simplifications are

made the predictions may vary by a binary order of magnitude.

Such predictions are still greatly preferable to situations where no

84

attempt to predict performance is made and at times products are

delivered which fail their objective disastrously.

1.2.3 Level of Effort

The level of effort expended to bring current major databases into

operation has often involved tens of man-years. A continuing effort
goes into system maintenance as well, especially as the operational

environment changes and users develop new requirements. Not all

of this effort is necessarily visible in the final product. Lack of
planning, analysis, and experience has made that in many datbase
systems major sections have been rewritten several times. The cost

of rewrites is often high, mainly because no formal interface
specifications have been developed and evaluated prior to

implementation.

The use of a database management system can bring a database system

much more rapidly into operation. Simple applications may be operational
in a week, although major applications will still require major efforts
in order to deal with their data input and result reporting needs.

The effort expended into developing a database management system itself
is least a binary order of magnitude greater than the effort to write

a database system for a specific set of applications. Much effort is
expended by the initial users as well. On the other hand, broad

acceptance of a database management system has a high positive leverage.

Also in the development of a database management system careful

planning and experience can make a major difference. Those database

management systems which have grown incrementally with the
applications appear to need continually Much support. Those database

management systems that were written more in the abstract appear to
need less ongoing development support, but are also more constrained

in growth.

Portability of database systems between computer types has only been

feasible where portability was an initial design goal. Where database

syste:ns have be.n rewritten without conceptual changes
the efforts have been tolerable. One recent such rewrite was the

adaptation of the research and development system at !BM - System R -

written in PL/1, to the co=.cercial version SQL/DS written in t.e IBM
system progra.fming language PL/S. I would guess that this effort

took aoout two times ten man-yars?

It seems reasonable that most modules of a well-specified database

85

management systems can be written within a span of a year by small
teams of two to three people. A database management system may
comprise on the order of ten such modules. As far as I know,
no system made completely out of modular sections exists today in the

commercial environment. Our estimates are based on experience with
modular aspects of research and development systems and we

consider in this estimate those modules that provide support functions
rather than those which comprise a research contribution.

The effort to implement a database management system depends greatly

on the availability of an adequate file system and convenient access

to that file system using the programming language to be employed.
At the same time an adequate file system can be better designed if

database requirements are taken into account.

Many current file systems do not take database management system

requirements into account, are optimized for easy use by programmers,

and provide an unsymmetric and sometimes idiosyncratic interface to
the database management system.

A substantial amount of coding in database management systems is

devoted towards file management, sometimes bypassing facilities
accessible to programmers, At times database management systems
replace existing file access services with other facilities and

sometimes transformation programs are placed between the

database management system and the file management system.

A disadvantage of this dichotomy is that it can be difficult for
database management systems to utilize data stored in file structures

defined independently by programmers and it can be equally difficult
for programmers to safely interact with file structures used by the

database management system. We believe that careful design can avoid
this dichotomy. This opportunity exists today in ADA because, as far

as I know, no packages for advanced file management have been specified.

86

2. FUNCTIONAL REQUIREMENTS.

2.1 Introduction

The functional require>mnts for database management systems can actually
be stated relatively sinply. They are best divided into categories:

o Logical requirements

Here we are concerned with functionality and user interfaces.

o Physical or configuration requirements

Here we are ccncerned with adapatability to

operating systems.

o Performance recexements

Here we are concm-ned with internal functional capabilities

and the flexibility to configure the system to support the

usage patterns.

Related to these requirements are requirements for adequate

o Reliability and backup.
Here we consider the utility services required for database

maintenance.

Tn the modular approach we envisage several levels of requirements

could be supported for each category. For instance, backup
requirements differ greatly for, say, financial transactions versus

signal-data processing. In the latter case, historical data has

often little value and is very voluminous at the same time. We will

discuss issues of level in more detail with the various requirements.

It will be desirable to support th.- same logical, or user, requirements

in each of the categories; although performance may differ so greatly

that in practice some of the logical functions could not be carried

out in a timely fashion if an inappropriate level of implementation
module is used.

2.2 Logical Functional Requirements

For prngramming level access in this category we require the ability to

read, write, and modify single or sets of data elements. The da'-a

elements should map directly into the data tytes provided by the

87

AD-A142 570 WIS IMPLEMENTATION STUDY REPORT VOLUME 3 BACKGROUND 2/
INFORMATIONU) INSTITUTE FOR DEFENSE ANALYSES
ALEXANDRIA VA T H PROBERT 01 OCT 83 IDA-D-S 0-VOL-3

UNCLASSIFIED IDA/HQ-84-28344 MDA9g3-79C-01B F/G 17/2 NL

EIIIIIIIIIIIIl
IEEEEIIEEEEIIE
EIEEIIIEEEEEI
IEEIIEIhEIIEEE
EEEEEEIhIhhIIE
IEEEEIIEEEEEEE

- - 111112.0

M 'CP)& '" RE >QLUTIO)N IfT OiA

source language, here ADA.

A key' specifies an attribute and a value for access. Serial access
uses keys and must be independent of physical sequential order.

We will consider for programming-mode access in this category two

levels:

o Data-processing level

o Database management level

Furthermore, we have to consider at the database management system

support for user query languages.

Associated with all of these operations it a database reference' type

which can be used to recall a position within the database. This

reference data type will be heavily restricted, no conversion or

computational operations would be applicable to it.

2.2.1 Data-processing level

At the data-processing level the users themselves are aware of the

logical mapping of data-elements to records and the placement of
records into files. No schema is interposed between the user

and the access function, although the physical mapping may be

complex.

The statements used by the programmers have three components:

1. a file identifier, established by an OPEN statement.

2. a reference variable, which identifies a current

logical position in the file.

3. a data variable, typically a record stucture.

A language which provides examples of such statexents for file
usage is PL/1. Unfortunately in I ThI's PL/I implementations the

precise semantics of the execution of such statements is affected by

the physical storage types chosen. Such a dependency is not

necessary.

We will illustrate the applicable PL/I statements below, since randm

file access is an essential module within a database system,
although a database management system will not provide these
statements at its functional user interface. We do not find

88

these statements ideal, especially since their action is also
influenced by options given in the OPEN statements for the files. The

option combination DIRECT and UPDATE enables most of the actions.

The need for for KEYFROM is rnot clear versus the simpler form KEY.

The DELETE statement behaves inconsistently, it was modified
in our implementation (PL/ACMEJ to prevent disasters in on-line

operation.

Read file randomly by a single reference attribute:

READ FILE (filename) KEY (key-expression) INTO (variable)

Read file serially according to the reference attribute:

READ FILE (filename) KEYTO (keyvariable) INTO (variable)

Append to the file according to the reference attribute:

WRITE FILE (filename) FROM (variable)

Insert into the file given a reference attribute:

WRITE FILE (filename) KEYFROM (key-expression) FROM (variable)

Update the file given a reference attribute*:
REWRITE FILE (filename) KEY (key-expression) FROM (variable)

Update the file according at the last reference read:

REWRITE FILE (filename) FROM (variable)

Delete a data element from the file given a reference attribute:

DELETE FILE(filename) KEY (key-expression)

Delete the last prior data element read from the file * added

DELETE FILE(filename) RECORD

Delete the entire file

DELETE (ENTIRE) FILE (filename) * ENTIRE added for safety

PL/i Language Record Access Statements

The concept of a next' record has had its basis in the conventional

sequential file organization. In these files however next is a

logical, key-based concept, and next records may appear at arbitrary

physical locations in the file space, especially if the file has been

created or updated with many random insertions and updates. Updates

89

cannot necessarily be rewritten in place when the variables include
variable length structures.

A simple implementation level for such files, restricted to fixed

record sizes, exists on most computer systems, in order to support

requirements posed by COBOL and extended FORTRAN compilers.

These data-processing statements can provide a foundati-n for database

management systems. Effective database management systems and database

systems have been written in PL/1 and, more importantly, ported to DEC

VAX and ALTOS microcomputer equipment when PL/1 compilers for these

machines became available.

2.2.2 Database management level

We emphasize again that the statements shown above are not database

management system statements. For databases we expect to access

individual data elements, selected through a schema, according to

any of multiple atributes (rather than a single key), and access

data frum multiple files,

At this level a set of statements is also needed to maintain the

descriptors in the schema, the meta-data of the database. For most
users the descriptive information is obtained simply by including a
WITH-DATABASE(...)1 statement in the programs.

However, support for a database program management function has to be

provided which assures that

a. Any routines which obtain a schema which has been modified are

automatically recompiled.

b. That programs that use a schema are logged into a control

system in order to provide the possibility of verification

of schema changes.

Automatic management of compiled databases code is a feature of IBM's

system R and SQL/DS system. The alternative is to interpret all

statements which refer to the database. Since database access is

often slow compared to processing times, the cost of interpretation

may be bearable in many situations.

Programs which include database access statements to be compiled may
be processed through a pre-processor which transforms the statements

into calls to the database management system, using the schema

information to select the most appropriate calls. The use of a

90

preprocessor can avoid extending the requirements for an ADA

compiler.

The issue of compiling versus interpretation of a schema is not

an issue of level, but rather an implementation choice. The

specifications for the database management language must be such

that neither compiling nor interpreting schemes are precluded.

The schema language.

The schema language specifies the logical appearance of the database.

A user application needs only to include a reference to the

existing schema. A user's schema is also best restricted to purely
logical aspects, and may be further constrained to a subset, or

subschema of the database.

A simple schema language includes

1. Specification of all logical record types in the database

2. Specification of all attributes in the database. Included

are at least o name, the user's reference

o type, i.e., a refence to a domain

3. The mapping of attributes to record types

4. The constraining connections among attributes in the records

Ideally, at this level only logical constraints are specified. For

instance, selection of some attribute to control physical ordering is

an option of the physical specification.

An example of the major parts of the CODASYL 1978 logical and

physical schema languages is given in Appendix A. We should note

that, as far as I know, only one database management system has

adopted the 1978 specification, and all major current commercial

systems use subsets of the 1972 specification, which mixes

physical and logical requirements.

Relational database management systems have very sparse schema

languages, since these systems have minimal semantics, and rely

on the formulation of the queries to produce correct results.

The most elegant schema language is perhaps that available with

the CII Socrate system, using a PASCAL-like syntax.

91

The schema language itself is best processed through a schema
language compiler. This compiler changes the representation

of the schema from a format that is optimal for human specification
into a representation for rapid decoding at pre-compile or

interpretation time.

Database manipulation language.

Database manipulation statements of distinct database management

systems vary greatly in form or syntax, but some basic features

can be recognized in most of them:

1. The definition of a set of tuples or logical records.
The set may be specified by name, may use set operations

over the components of the database, or be identified by a
dependency from some other database component. Set

membership may be constrained by selection of tuples

satisfying certain conditions.

2. A cursor.
To give access to members of this set within a programming
language which cannot handle sets of arbitrary size, a
cursor is defined. It is manipulated to provide access to
one selected record at a time.

3. Projection of the set or field access.

Specific attributes of the set to be retrieved are
identified; or data elements from the current record can be
manipulated individually.

Although we have described the functions in terms of retrieval,

update of a set may be supported symmetrically. Here however
many restrictions prevail. For instance the set selection is

typically limited to an entitre untransformed set or one tuple

at a time of such a set.

Query languages.

For interactive applications the logical requirements are quite

different. Here we envisage a front-end query compiler which translates
queries using the combination of a generalized query-processing

dictionary and a dictionary which is specific and integral to the
database. The result of the query processor is intermediate language
program which is interpreted by a set of simple programs which operate

92

on the database.

2.3 Physical Functional Requirements

The physical configuration of the database determines to a great

extent the attainable performance of the database. It is, however,

constrained by the logical specification: all logically valid
data combinations aust have a corresponding physical representation.

This function specifies hence the mapping for all record types,

attributes, and connections among those attributes to physical storage.

Also the methods to deal with file growth and physical re-allocations

need to be specified.

Desirable file organizations, creation of indexes to records, or links

between records, hashing transformations, and storage allocation for
growth of the database can be specified here. A minimum requirement

for current databases is the availability of an indexed-sequential

file access method. However, symmetric performance can only be

attained if file methods which provide access by more than one key

are available.

The functional requirements are specified in a portion of the schema
language which may have restricted access. Two approaches are

feasible:

1. Specification of goals;
We may say, for instance, that random access to

record R using attribute A is frequent.

2. Specification of the implementation;

We specify that record R is to be indexed using

attribute A.

The former approach, a goal-oriented specification is uncommon today.
Portability could obviously be enhanced, since database management

systems could take advantage of those physical facilities available

cn the supporting software and hardware systems. In most cases the

database administrator has to translate the implied objectives from
one physical specification into a new physical specification.

The physical specification is concerned with the allocation of logical

programming variables and records to actual physical storage. This

specification also determines the the access path best suited used to

retrieve or update the data.

93

Options to increase performance include

o index creation for certain attributes and attribute

combinations.

o providing ordered storage of records by some attribute.

o providing hashed access to records by some attribute.

o clustering of records having common attribute values.

o implementation of logical connections by pointer

references between records.

o clustering of connected records.

All these choices can be made without affecting the logical correct

operation of a database. The performance differences cannot be hidden

from the user.

Views.

In a multi-user environment it may be necessary to map multiple
overlapping logical descriptions into one integrated description.

The individual user may be limited to his or her original subset,

or some other limited view' of the database.

Fragments.

In advanced versions it should also be possible to do record

partitioning and recombination.

Record partitioning consists of mapping of logical records into

fragments: multiple smaller physical records. Fragments may reside

on distinct devices, including devices of different performance or

also on different processor nodes.

Integration of records can combine distinct records or their fragments,

obtained from partitioning, into larger physical units for economy of

dmacs

access.

Record mapping options of the schema.

We hence see that the schema has to specify several levels of

logical to physical napping.

0 One-to one logical to physical mapping.
All users which acquire record will have access to identical

copies of the entire record.

o Users specific record subsets.

94

Here we view the database records as being integrated from the

requirements of many users; each user's view however is

restricted to those data elements of the record which are

appropriate to the user and as such specified in the user's

subschema.

o Complex logical to physical mapping.

Here the database records are created out of record fragments
which may be distributed over multiple physical records.

Fragments may also be obtained by unpacking them from combined
physical records.

The mapping of logical to physical records is THE primary tool to

control access and performance to databases. Many database

mamagement systems today support only a one-to-one mapping or a

limited one-to-n hierarchical mapping. Those systems, in effect, put

the mapping responsibility on the user.

2.4 Performance Requirements

Performance requirements are specifications at a higher level of

abstraction. They are related to goal-oriented physical specification,

but include quantitatively specific values.

Performance requirements first can be stated as the required response

times for query types and transactions.

Other performance specifications may include bounds on storage

capacity, memory capacity, or functionality of underlying software.

At the current state-of-the-art performance requirements are applied

during the design process in order to make reasonable design decisions,

typically using the physical specifications described above.

Subsequently they are used for acceptance testing of the software.

It is conceivable, but not yet possible, at the current state-of-the-art

to generate the physical specifications automatically from performance

requirements. The architecture of a DBMS should not prohibit such

advances by providing control of physical specifications to users

who are typically only concerned with the performance of their subset

of the database functions.

2.5 Maintenance and reliability services.

An important motivation for the use of database management systems is

95

the comprehensiveness of the support services included in such systems.

The increment of effort from writing a functionally adequate database

system to one that protects its contents in all kinds of adverse

circumstances is major. We cannot ignore this aspect.

The level of backup should be selectable for each of the physically

physically stored data elements in the database.

Options to be considered here

o For transient data, simple copy logging of inputs.

o For audit trails, complete before- and after-image logging.

o Transaction-thread logging for databases with full recovery.

o Transmission of backup data to remote computers in order to

avoid node vulnerability.

The configuration choices to be made here are typically set as

installation parameters. Such parameters could be usefully included

in the schema specification.

Associated with these services are utility packages to effect database
recovery.

2.6 The technical challenge.

2.6.1 The general state.

We find ourselves here at a boundary of technology. There appears to

be an adequate understanding of the problem, and adequate solutions
to all of them. At the same time, we have no acceptable example of
a satisfactory solution to the entire database problem, and we can

expect that better solutions for each of the subproblems will be
forthcoming.

In the terms of this report, it appears unclear whether databases
can be fully integrated into ADA at the 1986 or the 1989 phase.
The demand for data-processing services appears significant, and

a lack of such services will lead, perhaps even before 1986,

to the development of packages which will satisfy specific needs,
but those packages will use a wide variety of file conventions and

formats.

It appears feasible that a complete set of external package

specifications can be developed now, and perhaps primitive

96

implementations be completed for many of the modules. Such an

approach may channel the efforts whoch will undoubtedly be expended in

this area into a stream which will consider consistency as one of its

objectives.

In order to achieve such a growth path we put forward the following

general requirements for ADA package interfaces in the database area.

2.6.2 The schema.

We will first consider the schema. A question here is if the internal

format must be specified to achieve commonality and portability. Our

assumption here that this is not necessary, and that an object-oriented

approach will serve the requirements well.

o Specify a standard and extensible schema language using
ADA-style data typing parameters.

Within the schema separate the logical and physical

specifications.

o Provide the capability to specify performance requirements

even though they may not be automatically processed.

o Provide a language interface specification to create, update,

and store database specifications given in the schema language.

o Specify language facilities so that users can retrieve
information about data stored with a schema.

An expandable schema specification is needed to provide opportunity

for growth. In more advanced schemas we expect to also find

information about the semantics, ownership, and even history of the

data.

2.6.3 File access.

Next we need specifications for primitive operations on files. We
believe we have to be able to support data-processing as well as
database management systems. All records acceptable to ADA should be
acceptable to the data manipulation language and vice versa, given
that the schema definitions are appropriate.

These data-processing statements can use basic facilities from a
schema for record definition. An example, but not a model, for such

97

basic facilities exists in the file definition section of COBOL.

0 Provide record oriented data manipulation statements including

FETCH,

GETNEXT,

INSERT,
APPEND,

DELETE,

UPDATE.

Data types which can be manipulated with these statements should include

not only current ADA primitives, but also

o Variable length strings, according to a standard ADA package

definition.
o Reference, to database elements according to a database

package definition. This datatype can only be moved,

copied, and compared by ADA statements.

The database manipulation processors should use this interface for

all their file access. These statements must be supported by

file accessing programs. There are many choices here, and it is

not neccessary to specify how the access is to be implemented, but

only its functional behavior. We will list some of the choices

as an existence proof.

File access alternatives.

Alternatives to be considered for file access support include

o Multikeyed access using B-tree technology.

o Expandable (linear) hashed access.

o Access methods exploiting optical disk technology.

These variants should remain invisible to the user except in terms of

procedure performance.

2.6.4 The database manipulation language.

The database manipulation statements to be included require more

thought than given here in this initial report. As a basis we can

propose a relational algebra. A relational algebra, in this context,

has the following advantages and disadvantages:

98

1. A: Implementation is simple and unambiguous.

2. A: Some impressive algebra based systems are in operation
on large (Honeywell) and small computers (IBM PC).

3. D: A programmer can create extremely ineffecient programs,

by inadvertently using large intermediate sets.

4. A: A programmer, especially given access to tuple-identifiers,

can create quite optimal programs. For well-understood

applications such programs will outperform automatically

optimized programs.

5. D: Less research has been performed on automatic optimization

of relational algebra programs than on calculus based

systems, although there appear to be no fundamental reasons

for less optimal results.

As an initial proposal we suggest the following functions, to be

combined into programs using extensions of ADA program syntax:

o PROJECT(recordtype BY(attribute-list))

o SELECT(recordtype BY(attribute-value-list))

o JOIN(recordtypel BY(attribute-list), recordtype2 BY(attribute-list)

o UNION(recordtypel, recordtype2)

o INTERSECT(recordtypel, recordtype2)

o DIFFERENCE(recordtypel, recordtype2)

o CROSSPRODUCT(recordtypel, recordtype2)

reference generating and manipulation functions:

o REFERENCES-OF(recordtype)

o UNION(referencesl, references2)

o INTERSECT(referencesl, references2)

o DIFFERENCE(referencesl, references2)

and a set of tuple-attribute retrieving functions:

o TUPLES-OF(references)

o FROM-FIRST-TUPLE(references, attribute)

99

o FRON-LAST-TUPLE (references, attribute)

o FROM-LEXT-TUPLE(references, attribute)

o FROM-PR IOR-TUPLE(references, attribute)

Not included in the list are statements requ.red to support multi-user

operation. Such statements for instance define transactions and set
locks. The ability to identify tuples uniquely by reference can
provide a basis for interference checking.

We envisage these statements to be used by programmers working on
major database systems and within transaction programs. Most

users will not see these statements.

Implementation alternatives.

The database manipulation statements sketched above may be either
interpreted or compiled. In a system oriented towards producticn only
compiled use may be available, while in a system oriented towards nigh
degree of interaction only interpretation may be available.
In general however the choice should be made by the user explicitly

or implicitly.

2.6.7 Query languages.

Direct, on-line users will either interact with these transactions, or
use query languages which generate these statements in response to the

queries. Implementation of a functionally complete relational

calculus system is nearly trivial given these statements. The
automation of the optimization required for high performance
relational calculus systems remains a ciallenge. The ability to
manipulate tuple identifiers or record references makes such an

optimization feasible.

2.6.8 Performance.

The performance of the database system is bound by the capabilities of
he file systems which support it. In our experience database systems

perform between 1.2 to 5 times as slow as programs which are written

for the same applicatiors and which usp file systems directly.

The overhead of the database management system is typically warranted
in terms of reduced cost to bring applications into operational state,

100

reduced cost to maintain the database, and improved reliability.
In some instances, the dominant reason is the possibility of sharing

data among users.

There is no reason why an ADA based database -nagement system should not

perform on the desirable side of this range.

2..6.9 Summary

The technical challenge in bringing a database management systea under
ADA into operation are concentrated in the area of design.
We are confident that an acceptable design, augmented with basic
functional modules, will lead to more sophisticated implementation

efforts at many sites.

In order to achieve acceptability and reliability we assume that a
design has to be highly modular and that over time muliple modules
will be developed to carry out the same function with different bounds

of crformance parameters. Such systems do not exist today although
we can identify systems which have examples of the kind of modules
which we envisage.

101

3. MODULAR CASE STUDIES.

Since we cannot identify any system which is adequately satisfactory

we will consider specific modules as a basis for this report.
We will first consider the candidate modularization. For each module

we expect to find several implementations, although an initial

development will probably be limited to one module of complete

functionality, but low performance.

We will cite with these modules some current examples or relevant

development work. This list is certainly not exhaustive.

3.1 Modules.

A suggested modularization includes four modules (identified as M1
through M4) to manage database resources, two modules which
provide access to the schema for programs and the database

administrator (M5 and M6), three modules (M7, M8, and M9) to carry
out operations requested by the user, and four internal modules

(M10 through M13) which carry out support functions. In certain
environments some of these modules will be null.
A sketch relating such modules, from an earlier presentation, is

attached as Appendix D.

3.1.1 Resource Management Modules.

We see four types of resources which have to be explicitly managed

within a database management system: data, meta-data, transient
memory, and archival storage,

M1. Data files.

A file access system maps access requests, which are stated in terms of

file names and record references or attribute values, to operating

system requests.

We expect that the operating system will provide access to computer

storage canability based on a name and a relative address.
This system will allocate the physical records to blocks in storage,

provide referencing and dereferencing capability to these records, and
provide the capability to trigger other subsystems on request.

For instance the backur maintenance subsystem may require trigger

wnenever a record is changed.

102

A suggested implementation eiample is provided by FLASH, described in

Appendix C. A number of B-tree systems are available in the personal

ccmputer market, these are typically restricted to fixed-length

records and fields.

M2. A schema-table manipulator.

The schema contains the meta data which is the key to the operation

of the database management system involving multiple files.

A schema contains many types of information

o information which is global to the entire database management system

o information which is related to the conceptual relations into which

the database is decomposed,

o information about the files into which the relations are physically

mapped,

o information the logical records which are presented to the users

programming interface,

o information about the physical records which comprise the

database files,

o information about the attributes of the individual data types which

make up the user's records,
o information about the fields and the representation used to store the

data within the database.

Facilities to be provided by the schema-table manipulator include

the retrieval of data descriptions, the update of schema entries, and

triggering of file reorganizations and respond to changes in the

schema entries.

The schema manipulator functions are used by the schema language compiler,

and passively by all other operational components of a database

management system.

Information kept in the schema may itself be stored using the file

access system. Such schema systems are being develcped by

Roussopoulos under a NASA contract, but such techniques are

now used within IBM's system R on large machines and by Pacific

Software's Sequitur as an exaople of a micro-based nystem.

M3. Buffer management subsystem.

An important resource of the database management system are the buffers

which are used to collect and assemble blocks containing data records

in core storage. Buffers are used to collect data for transaction

processing and collect transaction results which can be coffmitted into

103

the database when the entire transaction has been successfully completed.

Effective use of buffers provides rapid access to data which has been

allocated to be stored together and thus permits exploitation of the
locality directives stored in the physical description portion of the

schema. Typically each open file requires a small number of buffers,

say from two to five. Additional buffers can enhance considerably

the performance of a database management system.

Buffer managers can be written at many levels of sophistication.

In a multiuser operation buffer management carries on additional

functions to assure synchronization of requests from muliple users.
If the scope of locks is single records it is neccessary for users

to share buffers when they are sharing files, since otherwise

access conflicts to disk could not be resolved.

Keeping of information in backup buffers can provide older, but

consistent copies of data to users which would otherwise conflict

during simultaneous access to the same data.

Buffer management schemes are included in all multi-file systems.

IBM's CICS and IMS have fairly complex schemes.

M4. Archive resource management.

An important aspect of commercial database systems is the management

of backup files. Backup files may include the following components:

o Before images.

Copies of the data which existed in the stored database before
any modification.

In some concurrency schemes, for instance ADAplex, such before

images are retained actively in order to permit concurrent transactions
to proceed while other transactions are affecting the database.

o After images.

Redundant copies of data stored into the database are written

on backup devices in order to provide direction capability in

case the primary write operation fails.

0 Transaction thread.

In order to provide an audit trail for manual or automatic

correction of errors found in the database either due to

syptem, operator, o" data entry error, a log may be kept of

every record accessed for read or for write during any one

104

transaction.

0 Query text.
Recording of the input to a transaction or a query can provide
the ability to restore a database which had to be recovered

from an earlier copy.

o Response text.
Storage of the response can provide a verification that
earlier output was correct and can provide the backup for a
retransmission if the communication failed without having to
re-enter and re-execute the transaction and possibly
introducing new inconsistencies during replay.

The extent to which backup is required varies greatly from application
to application. In many scientific settings today, such backup
provisions are effectively null. However, in commercial environments
they are typically quite complete and experience has shown that serious
hardware, operational, and programmers' errors can be recovered using
backup facilities.

The backup module may use a file access system for its storage function.
Frequently magnetic tapes are usea for archival storage although in
modern designs, magnetic disks and, we expect soon, optical disks can be

used to serve the archival function.

Examples of backup and recovery modules exist with all major database
systems. Major examples are found within IBM's IMS, Software ag's
ADABAS, and Honeywell IDS II.

3.1.2 Schema access modules.

We now consider the operational modules which are associated with the
schema. In general these modules are hidden from the user.

M5. A schema interpreter.
In order to provide convenient and consistent access for programs and
database administrators which use schemas, a module to interpret the
schema has to be provided. Since we expect a schema to be extendible,
such a module must produce reasonable default outputs when the schema
entries are incomplete.

The schema interpreters can either give access to the schema describing
the entire database or to a subschema which is restricted to

105

information for which a given user is authorized.
We expect that schemas and subschemas will use similar representations

so that a single schema interpreter can serve in either environment.

Examples of schema intepreters exist in all databases. Abrial, et al,
(1970) has documented the schema interpreter for Socratc in detail.

Extendible schema concepts are being developed at VisiCorp for their

VISI ON (TM) system.

M6. Subschema generator.

An optional module associated with a schema based system generates

subschemas defining views for specific users. A subschema generator

uses as input the main schema of the database and generates a

subschema which has the appropriate restrictions and limitations for a

specific user.

Subschemas may also be created to operate on specific nodes of a
distributed network. A node-based subschema will use communication

functions in order to retrieve information from other nodes.
Information obtained from remote nodes may be cached locally in order

to enhance system performance. If operations using cached information

are executed, a verification stamp is transmitted to assure that the

cache entry was still valid.

Interpretive subschemas are used in IBM System R and consist of

data manipulation satetnents which dynamically reformat the database
in order to provide ghe required view. In CODASYL sysLems, subschcmas

are subsets of the logical schema specification, and when included

during the compilation process of database accessing programs,
cause references to database variables excluded from the subschema to

be ignored. In IBM IMS special tables (PCB's) are compiled which limit
programmed access to excluded record segments at execution time.

3.1.3 User accessible modules.

The externally acccsible modules pose the mo:t string2nt specification

needs, since here incomplete specifications can lead to problems

in database portability.

M7. A database manatrement language (JML) interpreter.

TDe ML interpreter i3 cn of th, aiternativoe mcdules which executes
instructions provid.-1 by the ADA programmer. Statements and
parameters given in the DML language are transmitted in a formal way

106

to the interpreter. The interpreter for retrieval:

1. uses a schema in order to locate the data and define an

access path

2. executes instructions to the file access system in order to

retrieve the information

3. transform any representation differences

4. return the results to the user.

Similar steps are executed for data insertion and for data update.

Database management language commands also include statements which

define the beginning and the end of transactions and which define
integrity requirements of the transaction.

Transaction begin and commit statements will also cause actions to be

carried out by the backup module.

Integrity control statements will cause actions to be carried out by

the access locking module.

Database manipulation statements are central to every database

system. Language proposals which are intended to be applicable to

a wide variety of implementations have been published by Date.
An overview of database statements for a relational algebra
is found in the MIT MACAIMS system documentation. Honeywell's

Multics MRDS appears to be a successor to that development.

Both System R and INGRES from UC Berkeley reports include description

of the management of relational calculus statements.

M8. Database manipulation language compiler.
For routine programs which require a higher level of performance,

a preprocessing database manipulation language compiler provides an

alternative to the interpreter. A program which includes database
manipulation statements to be compiled should be indistinguishable

from a program where the statements are used to drive the

interpreter.

An ADA program which contains database manipulation statements is

transformed by the compiler into an ADA program which is expanded

to directly call the lower level subsystem routines which execute
the statements. An important aspect of this transformation is that

now schema information is merged at compile time and does not have to

be accessed during transaction execution time.

The obvious disadvantage is of course that programs, once they have

107

been compiled, will have to be recompiled in response to schema changes.
An adequate programming management environment is required to assure

synchronization of schema changes with the data manipulation programs

that have been compiled.

Preprocessing programs exist for most CODASYL implementations in

COBOL and PL/1 languages, for INTEL/MRI System 2000 in COBOL, PL/1,
and FORTRAN, and for many other systems. The query l?.nguage in

System R is compiled at first use, and automatically recompiled

when schlema changes obsolete the compiled version. Optimization of

relational algebra sequences is performed in IBM Great Britain's

PRTV system and well documented in the reports issued there.

Methods for optimization of programs which access the database are

described by Finkelstein from Stanford and IBM San Jose research.

M9. Query language.

In order to provide convenient direct access to a database management

system o query language is essential. These are the languages
oriented towards flexible request specification on an on-line terminal

and provide support for interactive decision making.

Query languages can come in many flavors from simple interrogative
routines to natural language processing routines. All of these

approaches will depend heavily on semantics stored in the schema.

Interpretation of the requests is the dominant method for handling

query languages.

In a modular system the query processor will translate the queries

first to database manipulation statements. These may then be

interpreted in turn, or, at times, compiled ano immediatly
executed. Typically each query will be regarded as a single

transaction and cause transaction begin and commit statement to be

emitted as well.

The database itself may be accessed in order to correctly understand

the query. We will describe some typical query language below, Dut
do not expect that ADA specifications will be needed at this point

for the external interfaces of these modules.

Interrogative approaches.

An interrogative query system will create and display menus based

on thp contents of the schema from which the user can select the

required data elements. Once a subset of the database is identified

108

key values from the database will be presented f r selection.

Such an approach can also present the data in tatular form on the

screen and permit updates by the execution of screen editing

statements by t >o user.

A powerful example of this style of access is IBM's Query-by-Example

approach. Similar approaches are found in many office systems.

Command style languages.

Many current systems provide direct access to the database using

commands closely modeled on the set of available access statements.
In order to have adequate power these languages must also provide

the ability to collect intermediate results into temporary workspaces.

These languages are typically used by specialists. The interactions
may be noted in scripts in order to make repetitive usage more

convenienent.

The EASYTRIEVE product is an example of a comprehensive language

of this type.

Relational languages.

A relational query interface expects the user to know the layout
of the database in terms of relations and attributes. Many of the

languages are based on the relational calculus. The explicit use of
workspaces can often be avoided. Correctly phrased queries may be

compiled into optimal sequences of data manipulation statements.
The scripts may be kept and perhaps edited for reuse.

SQL of IBM and SEQUEL of INGRES provide such facilities.

Natural languages.

A natural language interface would have a vccabulary which is comprised

out of some operational verbs, the terms in the schema, and the lexical

terms (the key stnings), from the database itself. Such a natural
language query system could be easily ported from application to

application.

Research at the AI center of SRI international has developed tools to
build such interfaces (IDA, LADDER, CLAUS), and the ROBOT system from
AIC has been made available to access the CODASYL style IDMS system.

3.1.4 Internal database modules.

109

The next set of modules are used for internal database support.

M10. Access locking.

In order to assure consistency of responses and integrity of the

database during multiple write operations an archiving module will be

invoked from the other modules at critical junctions. We expect that

users can decide to operate with different levels of consistency.

o Queries might be of a type requiring complete lockout of all
users in order to assure a consistent and unchanging database
during such queries. Such locking will satify the strictest

audit requirements, but severly affect the response of a shared

database for all others.

o Multiple queries may proceed in parallel as safely as with
full lockout if transactions do not interfere with each other.

A locking module to support this type of protection has to note

for each transaction the read and write requests, and avoid conflicts.

Three strategies are available:

1. all requests are prespecified, and those which may conflict

are delayed until they are safe.

2. all requests are pre-executed. When a definite execution

is requested any intervening access is noted, and, if
there was an interfering interaction, the transaction is

forced back into a pre-execution phase.

3. the progress of the transaction is monitored, and if

the access module recognizes a potential conflict it

can cause a delay or an abort of the request.

o Relative consistency can be assured by using a consistent set
of after-images based on the time point that a query was asked.

This permits concurrent operations to continue with the

realization that current changes may occur in the database
which will not be reflected in the answer being obtained by

this query. To support this approach the access locking

module maintains a table of record references matched to

buffer references keyed to a user identification.

All these methods are available. Many simple systems use primitive

lockout approaches, restricting either greatly the flexibility of

transactions or disabling large sections of the database. Systems
using transaction-abort schemes are found in systems which already

have the capbility to recover from errors through logging and recovery

schemes. Honeywell IDS II provides comprehensive facilities of this

110

type. Research at CCA is developing the third approach using parallel

access to older buffers.

M11. Scheduler.

The scheduler has as task to manage the interactions of multiple

requests, multiple users and processes, and multiple devices which
can serve the database in parallel. A scheduler is also closely
related to the access locking module because a scheduler is not free

to rearrange operations into an optimal sequence when this would
conflict with consistency requirements recognized by the access

module.

The scheduler also has to operate closely with the operating system

and would probably be the module most affected in the move of a
database management system from one operating system environment to

another.

The objective of scheduling in transaction management for databases

is different from the objective seen in typical timesharing systems.
In timesharing systems, the objective is to give users equitable

interactive access to the computer's resources. In a transaction

system the data are considered to be the scarce resource and, since
data cannot be used while another user has locked them, the objective
is to give highest priority to the user who currently holds the most
resources or who potentially can release held resources most rapidly.

Letting transaction schedulers operate within a generalized programming

environment can lead to conflicts which can disturb the operation
of other users which operate in a timesharing mode and the

database management itself.

Scheduling for database management systems is not as well understood

as scheduling for timesharing systems. Considerable experience has
been gained in computer systems which are optimized for transaction

handling. Examples of such systems are the Tandem Computer Systems

and perhaps the CICS Systems on IBM commercial computers.

M12. Reorganization module.

As a database is affected by updates over time the intended locality

of data, on which much of its performance characteristics may depend,
can be seriously disturbed. Reorganization is akin to garbage
collection, except that degradation due to a poor storage allocation

tends to affent performance, rather than block computation entirely.

11i

Reorganization should proceed without the 'iier being aware

This is often accomplished by chosing add tines for re.nizaton.

This solution is not adequate in a gener-! ense. To avoid a negative

performance impact when reorganization ia done at active times, it is

desirable that it an be performed for small parts of the database

at a time.

Reorganization has a potential to invalidate cross references within

the database. If cross references are handled indirectly the

reorganization module may be involved automaticalij or manually.
During its operation it may have to temporarily lock portions of the

file access systems and hence restrict user access.

M13. Distributed query support.

In order to support queries to remote computers, an application level

protocol and its supporting programs have to be provided.
We envisage that such a module will remotely execute instructions which

are similar to database management language instructions.

If data paths are frequently tratisversed it may need to create temporary

replicated files using the file access system as a cache on the local

cumputer.

Experiments involving distributed query processing are being performed

at the XEROX PARC lab and at IBM San Jose Research.

3.2 Specific functional capabilities of operational systems.

When we consider operational systems we concentrate still on functions
related to the types of modules that we have presented in Section 3.1,

and their interfaces. It is not clear to what extent these modules
today could be copied and integrated into a successful DBMS.
We indicate with each system the organization and source language

for the implementation. This list could be greatly e'Otended,

appendix B provides a basis.

3.2.1 Separation of Storage and Access System Interface

System-R (IBM (PL/1)

System-R has in RDS a subsystem which provides a formal interface
tetween a simple storage f-erharism and a re!atively simple record

management rystem. The original facilities were of RrS were based on

the experimental Cainbridge Monitor System developed many years ago.

112

The separation of function, which was created this way, has made it

more convenient to implement System-R on distinct IBM operating

systems as VMS, MVS, and the smaller operating systems.

FLASH (Stanford CSD (PASCAL).

The FLASH implementation of a B-tree based file access system has

identified formally the parameters that are required to move a file

access system from operating system to operating system.
Experimental versions of FLASH have been implemented for DEC-20, UNIX,

and IBM computers and are serving as models for microprocessor

implementations.

3.2.2 Separation of access structure and data storage.

ADABAS (software AG,(assembler)

ADABAS has access structures which can be defined in the schema to be

maintained continuously or can be defined within a query to be created
dynamically if needed. The description of these features is

unfortunately very poor, so tht that these facilities are not easily

used by programmers.

SYSTEM 2000 (Intel-MRI (assembler- some FORTRAN))

All access information for the hierarchical structure is kept on

distinct files.

3.2.3 Database performance.

IMS (IBM 370 series 4assembler, PL/S))

Systems which employ refernces among records and control clustering

can provide very high transaction performance, especially where
the usage paatern is known. For instance, TRW is moving its credit

inquiry system which services about 350,000 transactions per day to an

1MS environment.

3.2.4 Subschema management.

IMS (IBM 370 series 4assembler, PL/Sj)

IMS permits definition of logical subschemas which provide completely

different view than the actual database structure implies.

These views are available to users under the name "Logical Databases".

All logical databases and the physical database itself is restricted

to a hierarchical ;,tructure. However, the hierarchical structures do

113

not have to overlap.

SQL/DS (IBM DP)

Subschemas can also be define simiar to query statements, and be

interposed automatically at query execution time.

3.2.5 Access to heterogeneous databases over a network.

Multibase (CCA)

The work on multibase demonstrates that front ends can be built

that link heterogeneous databases together and hence provide one

consistent high level model for distinct implementations.

3.2.6 Natural language query systems.

IDA (SRI international 1Interlispf)
Query systems developed in research environments as LADDER and CLAUS

have shown that natural language access for databases is feasible.

ROBOT (Artificial Intelligence Corporation MAClispJ)

A commercial front-end natural language system, ROBOT, is now being
marketed as a frontend to a network database system (Cullinane IDMS).

3.2.7 Logical to physical mapping.

ORACLE (Oracle Systems)

A number of relational front-ends are now being provided for
nonrelational implementations. The most important example is ORACLE

which uses an internal hierarchical structure.

RIDMS (Cullinet (COBOL?))
Relational frontend processors also are being provided for Cullinane

IDMS, the major network database for large IBM computers, and for
MDBS a network structured system operating on microcomputers.

3.2.8 The ability to combine compiled data manipulation programs.

IDS II (Honeywell (COBOL))
Preprocessors to compile data manipulation programs and make them
independent of the schema at execution time exist for most CODASIL
implementations.

The earliest example of such processors are the IDS systems and a

114

recent example re the SQL/DS preprocessors for COBOL and PL/1.

The latter include facilities for automatic recompilation when

the compile modules are invalidated due to database reorganization.

3.2.9 Schema interpreters

INGRES (RTI (
Interpreters which uses schema to direct the translation of

data manipulation to languages are in common use.

They are part of the INGRES system (UC Berkeley), TOD (Stanford), etc.

3.2.10 Scheduler.

CICS (IBM).
An example of the transaction scheduler operating in a general

programing environment is CICS (IBM). CICS schedules transaction

execution with as objective the minimization of the time taken for

indiviual transactions and thus minimize resource allocation

requirements. The major constraint on CICS operations is the buffer

allocation required to keep multiple transactions active.

3.2.11 Recovery logging.

IMS (IBM 370 series (assembler, PL/S)

The IMS system has demonstrated that long term reliable operation of

databases is feasible while extremely high transaction rates are

being supported. The complexity of the system is unfortunately such

that training of support programmers is difficult and simple

applications are discouraged.

3.3 Operational Databases.

Several hundred database management systoms of widely varying

capabilities are now on the commercial market. For instance, on

microcomputers, the use of database management systems follows in

frequency the use of spread sheet packages and word processors,

at least if games are excluded.

There are several database management systems available for every

major commercial ccmputer currently being manufactured.

We refer to an appendix takon from Appendix B of Wiederhold: Database

Design, 2nd edition, McGraw-Hill for a listing of database management systems.

115

Case Studies

In this section we will mention som, systems which warrant a deeper
analysis. The reason for selecting them are their practical importance

now or their expected relevance in the future.

3.3.1 SQL/DS (IBM System Development Division)

Development:
This system is the first of a family of relational systems from IBM.
The design is largely based on System R developed at IBM Research in
San Jose. The manager of the project doing much of its development
was J.F. King. I believe that the current. manager is Bob Taylor.

Description of system:
SQL/DS is a commercial derivative of a developmental project at IBM
Research. It is a complete database management system and includes
a storage management system which Uses operating system facilities, a
query processor which includes commands for transaction management,
facilities for system backup, preprocessors for PL/1 and COBOL
programs which include SQL/DS statements.

Those statements are not otherwise integrated into the PL/1 or

COBOL programming languages. The SQL/DS statements define result
reiati. ns. The linkage to the programs is via cursors and

shared area to hold the curent record.

Views may be prespecified using SQL/DS statements. The views and

the results from SQL/DS queries are interpreted at query processing

time. The code from an interpretation is saved together with the

actual query to permit reuse or reinterpretation as needed.

The results of a view or query are not neccessarily materialized in a

working file. Commands to move the cursor can cause further database

processing as needed.

Performance and Quality:

No formal specification on performance are currently being provided.

A high degree of optimization of relational queries is part of the

query processing program. However cross references between relations

are always symbolic and all such references are resolved at query time.

Other linkage types have been discussed, but were never implemented.

We do rnot believe that the performance of SQL/DS is such that it is

suitable for very large data-processing type applications.

SQL/DS at this state is a commercial product and we assume that it has

116

a high degree of- reliability.

Development resources:

I can only guess at the size of the development team. It appears that

it was modest, less than ten people. Successor products are still

being announced and developed.

The development environment for SQL/DS included using standard IBM
operating system facilities and the PL/S system implementation language.

The existence of System R provided a very convincing specification of the

system to be implemented.

Use:

SQL/DS has bepn released since early 1982 and I do not know how many
systems have been installed and to what extent it is being used.

3.3.2 IDMS (B.F. Goodrich Company, Cullinet)

Development:
IDMS was originally developed for commercial support within B.F.

Goodrich Company. Subsequently the system was sold to and marketed by
Cullinane Corporation which renamed itself Cullinet Corporation after

adding facilities for distributed databases to IDMS.

Description of System:

IDMS is an implmentation of the CODASYL 1972 specifications with some

extensions to enhance the distinction between logical and physical
schema specifications. Options provided with IDMS include a natural

language frontend, ROBOT, provided by Artificial Intelligence
Corporation, and recently a relational language processor.

Performance:

IDMS transaction programs can use specified linkages between relations

and if written to make good use of these linkages can provide very

high performance. Initial entry points into the database are found
by using hashing techniques. The processing of more general queries

is obviously not quite symmetric.

The performance will depend greatly on whether prespecified links can

be followed. The schema permits specifiction of locality directives

and device alloction.

Use:

IDMS has been in operation for more than ten years now.

It consistently gets very high marks in terms of product quality and

117

reliability. It gets lower marks in terms of flexibility.

Development resources:

A large fraction of Cullinet Corporation is devoted to the development
maintenance and marketing of IDMS. However, most of the current

efforts are in the development of value-added products, query

processors, auditing packages, report generators, and programs for

selected industries.

3.3.3 ORACLE (Oracle Systemslnc.)

Development:

Oracle was developed originally under U.S. Government Contract, and

subsequently commercialized and marketed by Relational Software,
Incorporated, in Menlo Park. This company has been recently renamed

Oracle Systems.

Description:

Oracle is a relational databases and uses the same query language

used by IBM's SQL/DS. It includes additional data types, type and
date, and this being modified to work in a distributed system

environment.

Oracle's design uses a'hierarchical structure so that for the subset

of queries which follow the hierarchy the performance can be very high.

Oracle provides views for users which are limited to access a subset
of the database.

Development resources:
Approximately 20 people are now involved in further development and

technical customer service for Oracle,

Use:
Oracle is operational on DEC PDP-11 and VAX computers.

Implementation for the IBM 360's types are due to be available.

Oracle has been available since 1979. Oracle has been used in a
number of installations with a fair amount of success althiough it is

not as mature as some of the other systems mentioned.

118

4. A DEVELOPMENT PLAN AND AN ANLYSIS OF ITS SUITABILITY.

As discussed earlier, existing database management systems are highly

integrated and the subsystems are not easily severable.

This means that the choice for an ADA environment is to either

1. Select some best database management system and

encapsulate the entire system within ADA

2. Develop the specifications for database support within

ADA and, in order to provide support for these specifications,
implement a set of simple modules which define the component

functions of a database management system.

In this report we favor the latter approach.

We believe that the inclusion of an existing database management

system with an ADA environment will restrict flexibility. We also

believe that the the development of an adequate interface, required

for the first approch will cost nearly as much to provide as as the

programming of a set of simple modules. Once a set of simple modules

has been defined and implemented they can provide a basis for

commercial development of improved systems using replacement modules.

It is highly unlikely that any capsulated database will use file

structures which are compatible with the file structures to be supported

by file system packages under ADA. Unless a decision could be made to

adopt a portable database management system which can operate

identically on the range of machines which we expect ADA to support

the encapsulation approach will be very limited.

4.1 Specification development

The critical portion of a new development path is the definition of

appropriate specifications. In order to permit the required growth

the most critical specification is that of the schema manipulation

module.

It has to be possible to add semantic descriptions to the schema

nearly ad infinitum. Any descriptions which are not used by modules

can be ignored but the meta-data in the schema provides the formal

communication basis for all the cooperating modules. We would like

to see in this sense a capability where additions to the schema can be

119

handled in a manner which is synchronous to the addition of types in

an application program.

4.2 Sample module implementation.

When the specifications are in reasonable shape sample modules.

can be developed. Good sources would of course be institutions

which have developed modules in the specific areas, although
an understanding of ADA and its objectives will also be needed.

The encapsulation of the modules will be severly tested if
implementation is distributed.

4.3 Schedule.

Without a detailed analysis it seems that specifications in the

well-understood data-processing areas can be completed in less than

a year, and that another year would provide functional modules.

In the database management area two years for the specifications and

a year for module development and year for integration seems possible,

perhaps optimistic. A deadline of 1989 seems very schievable however.

5.0 ACKNOWLEDGEMENT

Work on advanced file systems and databases related to these ideas

was performed under sponsorship of NIH Division of Research Resources
from 1965 to 1975. Some notions of modularization were developed in

conjunction with the 1974 IFIP TC-4 meeting in Cargese, France.
They were expanded and reconsidered at a Honeywell International

Workshop on Database Management, Spring Hill Center, Oct. 1980.

Current work in the KBMS project is supported by ARPA.through ONR and
NAVALEX, contract N39-82-C-250. Many students have contributed to

this research. Arthur Keller reviewed the draft and is the author
of Appendix C. Jayne Pickering did the original transcription.

6.0 REFERENCES.

References are not included in this report. The various companies

cited should be contacted for recent manuals, and not all the

relevant information is in the open literature. Many references

120

are included in Wiederhold, Database Design, 2nd ed., McGraw-Hill

1983, and a voluminous bibliography (about 3000 annotated entries)

can be provided on request, or shipped over the ARPAnet.

Appendices

Appendix A CODASYL 1978 Logical and physical schema specifications.

Appendix B .: Database Management Systems (from Wiederhold: Database Design).

Appendix C : Arthur Keller: Indexed File Access for ADA.

Appendix D : A sketch for a candidate database modularization
from Wiederhold: Futures in Database Management,

Honeywell International Database Workshop 1980.

121

13-Sep-83 10:34:27-PDT,297;000000000000
Date: Tue 13 Sep 83 1O:34:27-PDT
From: Gio Wiederhold@SRI-AI.ARPAJ
Subject: Re: DOD Report
To: ARK@SU-AI.ARPA
In-Reply-To: Message from "Arthur Keller 4ARK@SU-SCORE.ARPAJ" of Sun 11 Sep 83 16:56 1w-P

thanks.
1711 include your paper, app B from the book and a fig from Chap.8

13-Sep-83 17:24:55-PDT,1563;000000000001
Return-Path: WIEDERHOLD@SUMEX-AIM.ARPA
Received: from SUMEX-AIM.ARPA by SRI-AI.ARPA with TCP; Tue 13 Sep 83 17:24:49-PDT
Date: Tue 13 Sep 83 17:24:54-PDT
From: Gio Wiederhold WIEDERHOLD@SUMEX-AIM.ARPA

Subject: Gio Wiederhold WIEDERHOLD@SUMEX-AIM.ARPA : Mark Linton linton@Shastal: ref en

To: wiederhold@SRI-AI.ARPA

mov

Mail-From: WIEDERHOLD created at 9-Sep-83 15:46:34
Date: Fri 9 Sep 83 15:46:34-PDT
From: Gio Wiederhold WIEDERHOLD@SUMEX-AIM.ARPA
Subject: Mark Linton 14inton@Shasta : references
To: wiederhold@SUMEX-AIM.ARPA

Received: from Shasta by SUMEX-AIM with Pup; Fri 9 Sep 83 15:37:31-PDT
Date: Fri, 9 Sep 83 15:42 PDT
From: Mark Linton 1inton@Shastai
Subject: references
To: WIEDERHOLD@SUMEX-AIM.ARPA

FYI:

Here are three references about my programming environment - database stuff.
Thought it might come in handy if the subject should come up in your travels.
Each is co-authored with my advisor, Mike Powell.

"A Database Model of Debugging", Proceedings of the ACM SIGSOFT-SIGPLAN
Symposium on High-Level Debugging, in SIGPLAN Notices, Vol. 18, No. 8,
August 1983.

122

"Visual Abstraction in an Interactive Programming Environment",

Proceedings of the SIGPLAN '83: Symposium on Programming Language Issues

in Software Systems, in SIGPLAN Notices, Vol. 18, No. 7, July 1983.

"Database Support for Programming Environments", Proceedings of the

Database Week Special Session on Engineering Design, May 1983.

123

Wiederhold Databases Appendix A

430 Schemas

SCHEMA NAME IS model-schemaname.
i- Within a SCHEMA several areas can be defined .t

AREA NAME IS area-name.

/* and several record types may live uthtn an AREA /
RECORD NAME IS recordtype-name / implements. a relation tabte *

WITHIN ANY AREA
area-name

AREAOF OWNER OF set-name

[KEY key_name IS [{ASCENDING/ DESCENDIN.1] data-in-key

DUPLICATES ARE{ FIRST / LAST / NOT ALLOWED / SYSTEM DEFAULT }

FREQUENCY OF [DIRECT] [SEQUENTIAL1 RETRIEVAL IS HIGH

/. and then the attribute, or aata element, are specified */

levelno data name

[PICTURE .. a COBOL styie format specificatizon /

TYPE BINARY t FIXEDf REAL t

Is DECIMALI IFLOATI ICOMPLEXI number size [frac-sizel
S {BIT / CHARACTER' size [DEPENDING ON variable)

implementcr-name /. ,o, -veiai 1ypes/

[OCCURS{ integer-count , variable count TIMES!

[CONVERSION IS NOT ALLOWED.

CFECK IS [NONULL j

I PROCEDURE procedure name
VALUE [NOT, literal_ [THRU literal2 I

/* Derived data ./

[SOURCE IS some_data_identifier OF OWNER of set name 1]

FRESULT OF PROCEDURE derive procedure ON CHANGE TO

IALL DATA OFTHSRCD

DATA idntifierOF ALL MEMBERS O e

TENANCY OF MEMBER record. name _m -name _m

/, CHANGE OF TENANCY mean. change of hnA-sef mtmership or ownershlp

/. The connections to be implemented in a schema are definea as follous /

SET NAME IS linkset-name /. implement s a connection *'

OWNER IS{record name_o / SYSTEM)

RDER PERkNENT INSERTION FIRST / LAST / NEXT / PRIOR / SYSTEM DEFAULT

ISITEMPORARY! is SORTED (WITHIN RECORD-TYPE

BY DEFINED KEYS [
MEMBER IS recordname_m

[DUPLICATES ARE NOT ALLOWED FOR attribute-kl [,
STRUCTURAL CONSTRAINT IS variable a EQUAL TO variableb [,

C)mitted is aetail of RESULT and SET Also omitted are some ,tze paramrter,,. access,

procedure: ,'ock,, ecape callt, a ucl asz some FREQUENCY ciausrcs for opttmiation arot

SET feature: relevant to data manipulation are ,houn in Fig 9-12 */

Figure 8-g Data Description Language defined by the CODAsYt DOL Committee
(1978) (iu-e- in are optionAl in I :te altern,ties. .ith ;ire rv wpcao ie

124

Wiederhold Databases Appendix A

432 Schemas

STORAGE SCHEMA NAME IS storage-schema-name
FOR schemaname SCHEMA

REPRESENT ALL [EXCEPT] 1 schemarecordname RECORDS

ONLY
AND ALL [ECP]]schema iinkset name SETS

r MAPPING FOR schemarecord-name-y

[If condition] STORAGE RECORD IS storage-record-name_x

STORAGE AREA NAME IS storageareaname
INITIAL SIZE IS integer-1 PAGES
[EXPANDABLE [BY integer_2 PAGES] [TO integer_3 PAGES]]

PAGE SIZE IS integer_4 { CHARACTERS / WORDS }.

/. The clauses below are repeated for each storage record type */

STORAGE RECORD NAME IS storage-record-name-j

LINK TO storagerecordname_2 IS f DIRECT ",.. [.

[RESERVE integer_5 POINTERS]
I INDIRECTJ j

If condition] DENSITY IS n_block STORAGE RECORDS PER btrain PAGES-
PLACEMENT IS

CALC [hash..procedure~name] USING identifier_1,

CLUSTERED VIA SET schema-set-name

[NEAR OWNER storage_recordnameO]

[WITH storage_recordname_3]
SEQUENTIAL { ASCENDING / DESCENDING } identifier_2.

WITHIN storagearea_name [FROM PAGE int_8 THRU int_9].

/. And nou come the actual field definitions */

levelno dataname
[ALIGNMENT IS integer-lO {BITS / CHARACTER / WORDS)]
[EVALUATION IS ON ACCESS [STORAGE [NOT) REQUIRED]

I UPDATE

[FORMAT IS /" a variety of standard or tmplementor defined type,- -/]
[NULL IS {literal-value / COMPACTED}]
[SIZE IS integer-size {BITS / CHARACTER / WORDS)].

/* The clauses below are repeated for each link-set connection in the schema '/

SET schema-set [ALLOCATION IS {STATIC / DYNAMIC }]
POINTER INDEX index-name

FOR I ... RECORD schema-record IS ... TO storage-record .

Thes-e clausees relate the model tODASYL definition of Fig. 9-9 to implementation concept.s
pre.sented in Chaps. 2 to 5. the use of many of the.e clauses is des4cribed :n Sec. 9-5-4
Omitted are ACCESS CONTROL, details of If CONDITION, DENSITY, and data alignment.
Details of SET ... POINTER are given in Fig 9-15.

Figure 8-10 The 1978 CODASYL Data Storage Description Language proposal
(lauo-e in are opt ion;,I. in are alterna ivet. with . are repeatable

125

L_ i I- , , ili ,".

Wiederhold Databases Appendix A

Database Manipulation The statement types to be available for manipuid-
tion of a 1971 CODAS"YL database are given in Table 9-4. Specific formats for
the COBOL language are given in the documentation for COBOL of the CODAY- L
committee. and FORTRAN versions have also been specified

Each executable statement has a numeric code. The number is used when
the manipulation functions of a DBMS are invoked by one of the different host
languages.

Table 9-4 Declarations and Manipulation Commands for a CODASYL Database

/" Obtain access to the relevant portioris of a schema its storage schema. and

tie contents of the databa.e defined by it by invoking a subschema using COBOL -/

DE sub schemaname WITHIN schema-name [, ACCESS CONTROL KEY = xxxx]
LD keep-listname LIMIT IS integer /, to keep currency indzcator., */

Transartion control */
13 READY lock areas as specified in the AREA clause of the schema

01 COMMIT release record locks and reset all currency indicators and

keep_lists4 The .tatements coded 02, 03, 04. 11, 12, 15.

and 16 lock the records and link-set entries accessea.

06 FINISH release locked areas

09 IF . test database status and error condition codes

14 ROLLBACK remove all database changes since READY or COMMIT.

/- Findin ana manipulating records */

05 FIND locate a record

08 GET obtain specified data items or all of the current record.

15 STORE insert a record according to the schema specifications.
1 MODIFY update the current record.

04 ERASE delete the current record
10 KEEP db-cp obtain a currency indicator and place it into a keep-list.

. Aantpulaton of lnk-sets /I

02 CONNECT establish MANUAL link-set membership.

03 DISCONNECT remove a record from link-set membership.

16 RECONNECT move a record from one link-set to another link-set.

I" Other "I

07 FREE db-cp release currency indicator, including any entries kept for

currency indicator db-ep in a keep-list.

12 ORDER sort the members of the current set logically so that they

can be retrieved in a certain order.

USE .. declaration to identif% procedure to be executed when an

exception or error condition occurs and to identify access
control procedures

126

Wieder-hold Da taba ses Appendix A

Sec 9-2 Relational Calculus Implementation 4.57

9-2-1 A Relational Calculus System

We %%ill begin b ' presenting aspect., ol'a language. SQL. used by sePveral implemen-
tat ow of the relational calculus. and will then discuss some features of similar
-wstems as, well as some implementation issues. We focus on retrieval and present
the principal command in Table 9-1. followed by examples of its use.

The SELECT command presents a result table based on attributes from the
(:ata,lbase tables listed in the FROM clause. The WHERE clause restricts the result to
rows rnpeenv certain conditions. Aggregation during selection and other commands
will be touched on later. The notation follows Fig. 8-10

Table 9-1 The Retrieval Command of' SQL DS

SELECTmeans all attributes-*/
attribute-ac .

FROM table-name [tuple-variable] I I

WffERE selection_ exrression

GROUP BY attribute [HAV:NG selection expression],

ORDER BY attribute [DESCending]

T7h rnc:P,' Drzmztni'e component of th, Selec t command is:
attribute /* must be listed in the schema of some FROM table .
attribute-ac i* zs a simple attribute or

an arithmetic exression of attributes and constants. *
/.tuple _variables are pres ented in .See. 9-2-2. *1

Selection-expression ::= /*a boolean expression using attribute- expressions:.
NOT] selection_-expression [NOT) {(AND / OR) selection-expression,
(selection-.expression)

attribute = USER /*use- id. good for checking a VIEW *
attribute.expression

Attribute _expression ::= /*a simple or a complex conditional expression: *

attribute-ac -constant

/- is one of the set > >=) = < <=}*

attribute-ac -rattribute-ac
attribute-ac BETWEEN low-attribute-ac AND bigb-attribute-ac
attribute-ac [NOT) IN (constant-I, . ., constant-n)
attribute 4{- ANY / ALL} (constant-1. constant-n)
attribute IS (NOT) NULL
attribute [NOT) LIKE 'search-string' /~See note in Table 9-~3

I.Attribute-expressions can include other SELECT substatements: .
I.If the subquer?. leads to a single value: .

attribute-ac -:-(SELECT . .. FROM.
I. I th, ..ubquert can lead to a set of values:

attribute-ac [NOT) IN (SELECT .. FROM.
attribute-ac 7{ ANY/ ALL) SELECT . .. FROM

I! I he re.Rult of the subquery is to be quarnified (see Sec 9-2-3) .
[NOT) EXISTS (SELECT . .. FROM.

127

Appendix B

Database Systems

The~ ~en in this list were chosen because of their ubiquity, their historical in-
-e, hvi, potential for experimentation, or their _ignificance for further study.

O tr-ources for references to database and file systems can be obtained from corn-
rtoii a. ohiare catalocs. DATAPRO. Auerbach WCP Quarterly) or from surve~ s

in ~n~~:tr m az.'s fo e~mpi. Rass .CODAz)YL. contains a detailed
:\ ~c1\ RK\ . NIPQ FF5. TDM\IS. tL 1. COBOL, DBIG. IDSm. INIS. and SC-

i V ri_ rNance u, . TAIRS. DIALOG. DATA CE.NTRAL. ORBIT used for
\IEDLINE BASIS1. SPIRES~ LEADER. RECO\. RIQ5. INTREN. and NASIS KIM*7
ur\(eed relationial DB\I>' anti Brodie 8

2 includets 3 survev of relational s,,qtems:
11W! 1 GRES,; \tRD!- MR

5
\OMA-D ORACLE PASCAL R, PRTV. RAPPORT,

z)-z- TE \1 R QBE. RA PID. andi cites a total of 60. Wiederhold'32 includes descriptions
of itiue DBMS~ efforts CODA-SYL76 providet! guidelines for system selection.

prooluces a listing of on-line databases.
The comnmerria! sYstems included beloA varN in price from several hundred

oia.r, Towa to several thousand dollars per month.

Name Developer Computer Type and features
Year location

A CCENT R National Information DEC10/20 Corn DBMS sic rel stq
1981 S-vst Cupertino CA sch

AD AAS goftware ag IBM360/370 Corn DBMAS hlc stq sch
1971 Darmnstadt FRG Siemens drf cip pri rec Atreg0

ADEPT System Dev Corp IBM360-50 Exp DBMS sic nlq CON-
1969 Santa Mornica CA VERSE pri Weissman

6 9

A D% !iNS. \IIT&ADMINS_ inc DEC 11. VAX DBMS sic sch rel

1986 C'ambridge \1A trf NlclnTosni"S

ALPHA IBM Research Pro DBL d~c rel
1971 San Jose CA Codd in Codd

1

689

128

6)90 Database Systems

Na me Developer Computer Type and features

Year location

ANIBASE A mcor Computer Corp DEC 11 (RSTS) Corn DBN1S sch isf

1979 Louisville [KY

AMIGOS Comi-ess Inc IBM360/370 Corn FNMS hic isf

1970 Rockville %ID

APPEL IN' SIS IBM360/ 370 Corn DIMS hic hie drf isf
1974 Paris France Bur 500/ 700

ASI I.NQ Applications Sohw1% IBM360/370 Corn QU.S for DL, I sic

1975 Torrance CA hie stq

ASI ST Applications Soft%%. IBM360/370 Corn QL S sic rpg tbq sch

1969 Torrance CA Unic7O for sqf. isf .If,. TOTAL

Ass.Pl- General Motors IBM360-67 Inst DBMS hlpcPL I
1967 Warren MI rnf gra Dodd66

kL*TON'OTE L niv of Michigan IBM360/370 Exp SATDB\IS sic txt, sch

1969 Ann krboc Nil (\ITS) sqf drf Reitrnan
6 9q

H Eatelle \lem Labs CDC6400 DEC Inst liR- iq bib rTg

1970 Columbus OH 10/20 VAX IBM Fried in Walker'l

370 UNIVAC1100

BE.AT Brookings Inst DEC PDP10 Inst SATDBMIS sic sch sqf

1968 Washingion DC Kidd6

BIS Am Tel &Tei IBM360 Inst DBMNS hic hie sch

1967 Ne'% York NY Benne-
6 7

CA FS [CL Dev DBICMP re) Babb7
9

1976 Stevenage t-K

CASSM\ Univ of Florida Exp DBC\M Su'Q

1975 Gainesiville FL HawthornSl.

CD\IS System Dev Corp IBM360/370 Corn DBMS service sic irq

1969 Santa Monica CA ixf meC TDMIS

CDNMS Digital Eq Corp DEC 11 Corn DBMNS sic hie trf

1974 Mlaynard MiA see MU MPS

CFS Carnegie-Mellon U. DEC LSI-11s Exp DFMS

1980 Pittsburgh PA~

CIA Computer Invest.Adv.Apoie Corn DBMS 1-mel aig

1982 Sewickley PA hId FiASIC) mpg sch isf

COG'NT Comp Sciences Corp 1BNA7090. 370 Corn DPG hlptCOBOL:

1969 Los kngzeles, CA Univ2ClIQO sch hie isf ixf

CONVERSE System Dev Corp IBM360-67 Exp QUS net niq vrf

1967 SZanta Monica CA ANFSQ32 IKelloggtis in SzlCJRi

129

Database Design69

Name Developer Computer Type and features
Year location

CO0;STA R Mlass Gen Hospital DEC PDP15,11 SATB.MVS sic trf(IUMPS)
1978 Boston MA Tandem Barneu 79

CRE ATE Complete Computer DaltaGenera, Corn DPG ixf pri
1975 Sy.s, Horsharn PA

CREATE,3000 CR1 Inc HP 3000 Corn DBMS hic rel stq ixf
1977 Mvountain iew~ CA

CZAR Crown Zellerbach ISM360/370 Inst, QUS hie sch isf
1970 San Francisco CA Palmer 7

5

DATA ANALYZER Program Prod. IBM360/370 Corn IRS sic rpg sch sqf
1971 Nanuet NY Isf

D-\TACATALOC Synergetics ISM370 US.D05 Corn DDICT sic rpg sch isf

1974 Bedford MIA UNIVAC D.MSIIOO IDMS [MIS S2000

D XTACOM6 Aplied Data Res. IBM360/370 Corn DBMS hic sch sqf
1970 Dallas T\ ixf cpr

F) TA (-0\%1P LT ER Comp Corp of km PDPiO DeN DBMS hic hie stq

1971 Cambridge \LA (T E E X) vrf for ARPAnet

ANDataman Ltd ISM360/370 Corn FN\IS' sic rpg sch sqf

1975 Calganv Alberta

DATA\IA\AGER NISP London UK IB1M360/370 Corn DDICT sic rpg sch

1976 Lexington MA- ADABAS [MIS \MARKIN.

SYSTEMI 2000 TOTAL

DNTA NIASTER \Iicrosoft Apole Corn FMS rpg sch sqif

1980 Seattle WA 8080

DATASAAB Saab-Scania AB SAAB D22/D23 Corn DBMS hip(COB3OLi
1974 Linkoping Sweden net sch rnf pri Bubenko

7 5

dBASE 11 Ashton-Tate Z-80 Corn FMS, Join stq rpg

1981 Culver City CA CP/M ixf(l updated)

DBC Ohio State&LUNIVAC Dev DBCNIP sch ixf

1978 Columbus OH Banerjee 7 9
Hawthorn"2

DBNIS Prime Computer Inc Prime Coin DBMS hip net sch
1977 Wellesley Hills MAA stq(IQL) rnf rec pri

DB\IsIo 20 Digital Eq Corp DEC 10120 Corn DBMS hic net(1973)

1973 MIarlboro MAk sch stq(IQL) rnf rec pr)

DBVSI1 Digital Eq Corp DEC 11 Corn DBMS hie net(1973)

1979 Marlboro MA- sch rnf

DB\ISQII Texas Instrument, Ti990 Corn FMIS hielP.ASCAL CO.

1980 .Austin T\ BOL FoRTR,\N), hie-t bq isf

130

692 Database Systemns

Name Developer Computer Type and features
Year location

DBIS 1900 ICL ICL 1903 Corn DBMS hic sch isf
1974 London England pri rec

DBOMP IBM IBM360/ 370 Corn BOMI' net stq
1970 White Plains NY DL/1 files: CFMS for jef

DBS90 Sperry Rand GmbH UnivacqO Corn BO.MP hic(coOoL)
1972 Frank'urt a/M FRG net

DE3 DC IBM White IBM360/ 370 Corn DDICT sic sch rpg

1975 Plains NY IMS)CIMIS for mnanufactuntng)

DIALOG Lockheed Res Corp IBM360 Corn IRS service sic irq
1967 Palo.Al1to CA hie bib W'alker 1

DIRECT Northwestern Univ Pro DBCMP DeWitt 9g

1977 Evanston IL Hawthorn 8 2

D1 5 XA\1 Four Phase Systems 4cihase70 Corn FS for DDBMS
1975 Cunertino CA hlp(COROL) isf ixf

DL I IBM IBM360/370 Corn FNIS hic sch hie sqf
1968 Whjt Plains NY isf drf stq(CICS I

DNI. 5 Auerbach Unwe2c4l8 Corn DBMS sic hie rpg

aiso SC-i 1966 Phiiadelphia PA IBM360/370 sch ixf CODASYL, 1A

D N5S1100. 90 U n ivac UivacllOO Corn DBMS hip(COSOL)
1971 Minneapolis.MN Univac:90 net(1969) rnf rec vie

DNIS170 Control Data Corp Cyber170 Corn DBMS hie sch sqf
1977 Minneapolis MN derived from ("JARS) isf drf

LP'IS 1700 Dedicated Systems Burr 1700 Corn FMS ixf
1975 Chicago IL

D.MS I1 Burroughs B1700 to 7700 Corn DBMS hlpICOBOL,
1972 Pasadena CA ALGOL) net sch sqf isf ixf

cpr rec

DI5 IV bas~ed Honeywell lnf Sys H60 Corn DBMS hlp(COBOL.
on IDS 1972 Phoeni AZ net(1973) rpg rnf rec

DPL also N ational Information DEC10/20 CornDBMS hic(FORTRAN
IPL 1976 Syst. Cupertino CA COBOL) sch isf pri

DYL250 Dylakor Comp Syst 1BM360/370 Corn FMS sic rpg stq sqf
1971 Encino CA isf

EDEN Univ of Washington DEC VAX Exp DFMS obj Jessop in
1982 Seattle WVA Wiederhold:82

E DMAS Control Data Corp CDC6400 CornDBMS hlc(FORTRA N1
1969 Brussels Belgium Cyber - stqsch(A Nqll) isf Nijssen'

131

Database Design 693

Name Developer Computer Type and features
Year location

FACETS was Synergistics IBM 370 Corn DDICT sic rpg
PRISM 1981 Bedford MLA

FOCUS Information Builders IBM 370 Corn QI'S irq rpg;

New York 10001 NY) CMIS.TSO isf.DL, i.IDMS pri

FOR DATA CSIRO CDC Inst DBMIS
1974 Canberra Australia CYBER76 hip(FORTR A, net sch

FORIMIS Nippon Univac UnivaiO0 Dev DBMS
1970 Tokyo Japan hic(FORTRAN. net Lxf ret'

FORTE Burroughs Corp B2500/3500 Corn F\IS hid COBOL isqf
1959 Paoli PA 81700-7700 is

1
' drf ixf rnf Chapin69

FRAMIS Lawrence Liv.Lab. CDC 7600 CRAY Dev DBMS rel aig ftq

1977 Livermore CA DEC VAX(% MIS) rnf(CODASYL,

Gi~t TRW Systems IBM7094,360/ Corn QL'S sic stq scki rec
1967 Redondo Beach CA 370 UnivailO dirf rng Nei~on

6
7

Honey weI16000

C,-IBMI White IBM360/37C Corn Ql*< hic COBOL,
1966 Plains Vi' PL 1' hie stql sch sqf isf

GMuS MITT Sloan School& IBM370 DeN S kTDBN\ISrDec.supp

1975 IBM1 Cambridge \IA (XRM) rel vrf Donovan'
6

iDBP 86 440 Intel-\IRI links to IEEE Corn DBCMiP rel pri ret'
1982 Austin TX 488, ETHERNET

HOPS Technicon Burroughs Exp DBMS hie trf
1975 Haifa Israel 126 Reiter in Kerr 7

ID\I 500 Britton-Lee VAX on TEEE-488 Corn DBC\1.P rei isf.ixf

1981 Los Gatos CA or intlgnt term pri

IDMIS Cullinane Corp IBM360/370 Corn DBMIS hlp(COBOL)

1972 Westwood MAV ICL1902 nlq(ROBOT) rpg

UnIVac70 90 (CULPRIT) netiI973-)
Siemeris4004 sch DDICT drf rec

IDS 1. 11 Honeywell mtf Sys H200 H60. Corn MIS hlp(COBOL)
1962 Phoeniz AZ H6000 net(73) rnf ret' Bachman 66

IDP Honeywell was XDS H66 Corn DBMS hic(COBOL)
EDIS 1978 Los Angeles 4.5 CA Sigma 6.7,9 net rnT txf sch ret'

IFIP also Boeing Computer Co DEC VAX IBM SATDiBMIS for C.ADCM
RIM 1978 (IPAD) Seattle WAA net(l9781 hipkFORTRAN)

IMAGE Hewlett-Packard HP3000. Corn DBMS hie' sch pi stq
1974 Santa Clara CA HP2100 net(2 level drf, rnf)

132

694 Database Systems

Name Developer Computer Type and featvures

Year location

IMARS Computeria Inc DEC POP1O Corn QUS sic stq rpg rec
1971 Braintree MA

IMS.2,'VS IBM IBM360/370 Corn DBMS hie multi-hie
1968 White Plains N Y sch(DL/1) stq rec(-VS)

INFOS Data General DG Nova, Corn FMS hic hie isf
1975 Southboro MA Eclipse ixf stq

INGRES Un.of CA&Relational DEC 11, VAX Dev DBMS sic hIp(C. so.)
1973 Technology. Berkeley (UNIX. VMS) rel stq gra pri Held'

INQUIRE Infodata Systems IBM360/370 Corn IRS hic rpg stq sch
1969 Falls Church VA pri; Dev DDBMS(IQNET)

INTREX Mass Inst. Tech IBM7094. Inst IRS iroj/stq bib ixf
1966 Cambridge MIA IBM360 Walker 7'

Is I later IBM UK Research IBM360/370 Des' DBMS hlp(PLAI rel
PRTV 1971 Peterlee UK alg vie corn stq Todd' 6

ISAM70 Software70 Any FORTRAN Corn FS hlc(FO..TRAN
1974 Anaheim CA sNystem isf

LADDER SRI International DEC PDP1O Exp fIS niq net(DBMS20)
1977 Menlo Park CA Hendrix 5

LEADER Lehigh Univ CDC6400 Inst IRS irq bib ix!

1967, Bethlehem PA Hiliman6g

LEXICON Arthur Anderson IBM360/370, Corn DDICT sic
1976 Chicago IL System 3 IDMS IMS TOTAL

LEXIS Mead Data Central IBM370 Corn IRS service sic
1978 Lexis- New York N-Y legal, economic databases

LUNAR Boit Beranek NewrnanDEC PDP1O Inst IRS nlq self ix!
1972 Cambridge MA TENEX Woods' 3

MADAM MIT MlacAIMS Proj. H6000 Dev DBMS first rel hip
1970 Cambridge MA. (MU LTICS) (PL/1) stq rpg vrf Strnad 7 1

MAGNUM Tymshare DEC PDP1O Corn DBMS sic rei stq sch

1975 Cupertino CA

MARKIV Informatics IBM360/370 Corn FMS sic rpg tbq hie
1967 Canoga Park CA Univac900 isf CODASYL71A

MARS Control Data Corp CDC6400 Corn DBMS hie sch
1969 Sunnyvale CA hlc(FORTRAN) sQqf isf

M DBS Micro Data Base Syst Z80O8080-based Corn DBMS sic stq net sch
1980 Lafayette IN systems on C P /M

133

Database Design 695

Name Developer Computer Type and features
Year location

\IEDLARS also National Lib Med IBM360 Inst SADBM1S sic irq sqf isf
ELHILL 1963 Bethesda MDbib KatterS. alio ORBIT

MICRO-SEED Mickrosoft Z80,8080-based CornDB.MShIC(FORTRAN)
1980 Bellevue WA systems net seb based on SEED

\ IODEL204 Comp Corp of Am IBM360/370 Corn DBMS hic stq sch
1972 Cambridge MA- pif ixf(IFAM I

\IORIS Polytechnico Pro DBMS rel cal sch
1972 Milano Italy stq(COLARD)

Bracchi in Klimbie7
5

MUMPS Mass Gen Hospital DEC PDP15,11 Camn FMS sic hie trf

1966 Boston MA- 8080 so Greenes 6 9

\IRDs based on Honeywell Inf Sy's H6000 L68 Camn DBMS hlpiPL,'j) rel

RDNIS 1978 Mlinneapolis MIN (MULTICS) stq(LINUS) rpg vrf

NOMAD National CSS IBM370-CM-S Camn DBMS slchic hie stq
1975 Norvalk CN sch rpg

NYTIS New York Times IBM360 Inst IRS sic txf Lxf

1970 New York NY Baker'
2

OASIS Stanford Adm DP IBM360/370 Inst SATDBMS
1971 Stanford CA hlc(COBOL) hie irq isr

ORACLE Relational Software DEC VAX, IBM DBMS hlc(COBOL PL!1 C)
1979 Inc.. Menlo Park CA V.M \'S DOS rel stq txf cpr pri vie

OSIRIS Survey Res.Ctr.Univ. 18M360/370 inst SATDB.\MS sch sqf.isf
1973 of Michigan. Ann Arbar rpg Rattenburv' 4

PL US -4 Century Analysis NCR 101 etc Camn FNS hie

1979 Pacheco CA

POLYPHEME 1, N. Polytechnique CII & IBM Exp DDBMS pri

(SIRIUS5) 1977 Grenoble France LeBihanso

RAMIS Mathernatica I8M360/370 Camn DBMS hlc st~q rpg

1967 Princeton NJ

RAP Univ of Toronto Exp DBCMP rel
1975 Toronto Canada Ozkarahan' Hawthorn"

2

RAPPORT Brit Min.Def. k- Any FORTRAN- Cam DBMS hlc stq rpg rec
1978 LOGICA.Ne" York.NY based system

RDF Rand Corp IBM360 Exp MRS sic nlq rel

1967 Santa Monica CA Levien67

RD\1S baq.d on Mass Inst of Tech H6000 Inst DBMS hip rel stq rpg
\1 NDAN1 1971 Cambridge VLA (NIULTICS PL, 1) -,rf Stetiert in Rustiri.74'

134

696 Database Systems

Name Developer Computer Type and features
Year location

REGIS early name: General Motors IBM360-67 Dev DBMS hlp(PL 1 rel
R DMS 1972 W~arren .1 f stq Joyce76

REL Calif Inst of Tech IBM360 Dev IRS niq rel extendible

1969 Pasadena CA Thompson6 9

RELGRAF Adv.Rel.Techn.ine. PRIME Corn [RS stq rel cal vie

1982 Menlo Park CA OS or MPX txt gra sch ixf

RETRIEVE Tymashare XDS940 Corn DBMS service sic stq

1970 Cupertmno CA l-sqf: FMS(IML) for > V

RFM',S Univ of Texas CDC6400 Dev DBMS hie stq sch
1971 Austin TX Hardgraves0

RISS Forest Hosp.& MIT DEC 11 DBMS 1-rel sch rpg sqf
1974 Des Plaines IL McLeod' 5

ROBOT Software Sciences ICL 1906 Corn DBMS sic rpg tnf

1973 Farnborough UK UflivaC9400 Palmer,5

w-i. bas:ed on Bolt Berainek NewmanDEC 11, VAx SATDBNIS sic w-ith PLI

PROPHET 1980 Cambridge MA~ tbq rpg grf sch

A basis for IBM Scientific Center IBM36omodified Exp FMS rel vrf Symonds 6 ,

RM. XRM 1968 Cambridge MA4 370 later RSS(SYSTEM R]

SAS Univ. N. Carolina & IBM360/370 SATDBMS(statistics)

1972 SAS Inst.. Raleigh NC sic stq rpg sqf

SBA uses IBM Research Dev DBMS rel

QBE 1975 Yorktown Heights NY tbq(by example) Zloof, 7

SCORE Programming Meth- Any COBOL Corn FMS hlp(COBOL) hie

1969 ods. .New York NY system tbq sqf isf

SDD-l Comp Corp of Am DEC 10/20 Exp DDBMS sic rel sch

1978 Cambridge, MA DAPLEx Bernsteins 1

SEED InternatIl Data Base DEC 11,10/20 Corn DBMS hlp(COBOL)
1978 Syst., Philadelphia PA IBM370 IIic(FORTRAN) sch

CDC6000 rpg net(1973) rnf

SEQUITUR Pacific Software DEC-l11,VAX Corn DBMS slc.hlc(C) rel

1981 Berkeley CA Z-8000 systems tbq ixf rpg txt

~EAMSiemens S4004 Corn FMS stq rpg sqf isf

1973 Munchen FRG

SHOEBOX MITRE Corp IBM,360 Exp SATDBMS sic txt plf
1970 Bedford M.A stq Glantz70

',lBAS Shipping Res Svc IBM360/370 Corn DBMS net
1974 Oslo Norway& UnivaiOC10 hlp(COBOL) hlc sch

Houston T\ DEC PDPIO Palmer75

135

Database Design 697

Name Developer Computer Type and features
Year location

SIR Scientific Information IBM360/370 Corn IRS stq
1977 Retrieval, Evanston IL CDC 6000,Cyber statinterface sch net pri

SOCR. ATE Unix- of Grenoble. CII IBM360-370 Dexv Corn DBMS sic sch
1970 Louveciennes. France CII IriSAS,80 net stq vrf

SOLID Penn State Unix IBM360-40 Exp DBMS sic ept rec
1967 Universit.% Park PA -67 DeMaine

1
l

SOURCE Telecomputing Ca multiple Corn IRS seriice sic

1979 McLean V'A businees. con.urner info, ads,

S P IR ES; Stanford Univ IBNA360-67. Inst IRS, DBMS fic hie irq
1967 Stanford CA 370-168 bib trf ixf pri Schroeder in

Kerr7'
5

SQL DS IBM IBM370 DBMS hlp(PL I t el stq
1981 San Jose CA (DOS) L'f(VSAN11 pri vie

-T,%IR!- I BM IBM360/370 Corn IRS Aic stq txt sqf
192 ,~itart FRG w!Ith CICS drf isf pri

S\\ -\LLO\\ Mass. Inst. Tech. Exp DFMS obj
1980 Cambridge \MA

YSFCAP--SOGETI I8M360/370, CII Corn IRS sic nlq -qf isf

1970 Paris 15 France iris, Univaciloo

S'tS T EM 1022 Soh-ware House DEC 10/20 Corn DBMS- sichic Lxf
1978 Camnbridge MA timeshared services

SYS,-TEM 2000 or Intei-MRf IBM360/370 Corn D8MS hlpiCoOL
52000, 1970 Austin TX UnivacllOO0 PL, iu hie stq isf

S2K CDC6000 Kroenke'1

SY STEM C Software Clearing NCR Criterion Corn DBMS hic netfl978)
1981 House Cleveland OH sch stq i-nf rec pri

SYS 'TEMI-R IBM Research IBM370 Exp DBMS hipiPL: I relstq

1975 San Jose CA i SEQL EL ivie Astrahan'
6

SYSTE.M.R IBM Research IBM370 Exp DDBMS hip rel sch

1981 San Jose CA VMS stq vie

TDMS S~stem De% Corp IBM360-50 Dei DBM',S sic hie irq sch
1966 Santa Monica CA (Adept) Bleier

6 f
5 CODASxiLTIA

TOD Stanford Univ. 18M360-50 67, Inst SATDBMS hlc(PL 1)

1973 Stanfordl CA & 370 DEC VAX sch irq Kra ixf trnf cpr cip

iTTRI Chicaizo 16 IL Wiederhoid 5

TOOL-IR3 I nix of Tokyo HITAC8800 Inst IRS skc stq bib pri
1974 Tokyo Japan Namanoto75

136

69S Database Systems

Name Developer Computer Type and features
Year location

TOTAL Cincom Inc IBM360/370 Corn DBMS hic sch net

1971 Cincinnati OH Univac 90.V70 (2 level:drf.rnf) DDICT

CDC Cyber Cagan
7 3

also on Siemens4004 Honeywe1l200 NCR Century

TRAMP Univ of Michigan 1BM360-67 Exp DBMS nlq rel Ash6 8

1967 Ann Arbor Ml

UCC TEN University Comp. IBM360/370 Corn DDICT sic rpg sch

1976 Dallas TX IMS IMS

LNIDATA United Computing CDC6400 Corn DBMS hie sch rpg

1970 Kansas City MO gra

VISIFILE Visicorp IBM PC. Apple Corn FMS sic ixf stq

1982 San Jose CA

WOODSTOCK Xerox Research Lab Xerox Altos Dev DFMS Swinehart' 9

1979 Palo Alto CA

ZETA also Univ of Toronto IBM360/370 Exp DBMS hlc(PL 'II rel

TORL'S 1974 Toronto Ontario stq vie drf Tsichritzi

Legend for type and features of database systems

aig relational algebra isf indexed-sequential file
bib bibliographic data ixf indexed files

BOMP bill-of-materials processor net network database organization.

cal relational calculus (year indicates CODASYL standard)
cip ciphering nlq natural language query capabihty
Corn commercial obj object based

cpr compression plf pile file organization
DBCMP database computer pri privacy protection
DBL database language Pro proposed

DBMS database-management system QUS query and update system

DDBMS distributed DBMS rec recovery support
DDICT data dictionary system rel relational database organization
Dev developmental rnf ring or chain file organization

DFMS distributed FMS rpg report generator
DPG database program generator SADBMS single-application DBMS
drf direct or immediate file organization SATDBMS single-application type DBMS

Exp experimental sch schema
FNIS file-management system sic self-contained system

FS file system sqf sequential file organization
gra graphic data support stq statement-oriented query processor
hie hierarchical database organization tbq tabular query processor

hlc host-language system accessed by CALL tnf transposed files
hlp host-language system with preprocessor trf tree-structured files

Inst institutional .(t textual data

irq interrogative query processor vie support for multiple user views
IRS information-retrieval system vrf virtual file support

137

Wiederhold Databases Appendix C

Sept. 1983

Indexed File Access for ADA
AR~muiR N1. KFI,.LPR

Stanford University, Computer Science Dept., Stanford, CA 94305 USA

SUMMARY
A proposed standard, but optional, library package for A DA for random access to files is
defined. Various features are considered for inclusion. The file access features of several
programming languages are compared and a proposed ADJA specification is described.
The specification is compatible with an existing portable file access system, I'LASII, that
has been used with PASC'AL and other languages.

Kk WORSo Indexed sequential ,Multiple indexes Files [SAM Concurrent update Ada

CH Categories. D.3.3, 11.3.2, 11.2.2, H.2.3, E.2, D.4.3, D.3.4, D.4.5

INTRODUCTION TO FILE ACCESS ISSUES
,\crcss% to files is an important, but often neglected, consideration in programming language
design, The specification for ALGOL 60 ignored files completely. In PASCAL, only sequential
fifes ire supported Sornc'other languages (e.g., PL/1) provide a plethora of mutually incom-
p:tttif fife format., for differeint kinds of tile access. Tile file access capabilities or ALGOL 68

aio% ccess by loication, a~s well as sequential access. Tanenibaum 761
I'rotraiimig lainguage de-signers oft en aivoidfed fife access because the issues were not, well

ud erstood Nf them f Fiileatu res, providfed usuallyf,, requ ire cx teis ive support by rUn time routines.
ior i'xamiipfe. siniice p~rogramis noriai fy deaul with fdiata in inter iiaf form at (e.g., binary), rn time

rouit iies iisi.a fly convert between extertial Forniat (e.q., characters) and internal format. In
addit ion. tile muirfyiui g operatilig ssi ems providu various levels of fife system capabilities. If
a1 proi,!ramiiiilg Lftignuige is to be portable, it moust encompass this variety or ignore it. Wvhen
pro-,rmiiluig laigotage designers (rr by includinig too little' functio7nai.y, users are forced to
roii'i If,''%feif ofteii ill rilutitaily incoipatible ways.

It is clear to its i fat a [few higher staindard level of capability should he incliuded in new
;irig~iiiniig aiiiiakes. First, fife access issues are iiow well uiiderstood, as are the needs of

tht t,cr t-n mmnityv. Sei'ond, a basic level orf ilfe access prim1itivyes exists onl all sy stem.-, and
j,,rilhII riiitiiii routlies can be w ritti'n in hiigfher level languages that support desired high

1 -. %H flu u'LSS1JfJhug otify thlese low level prinitives.

I It(avcv ii .1 ial lii's c:ui be coi sidere-d o)11 a scale front sequceti ti a to raido0m1 access One
xt ri' ii, io o ns idc,'r a tile to b~e a st reami of in or iniation. .Stre ouin fifes inay onfy be read or

writni-n siilct iffy. 'rhcye may have sorne structure. F~or example, text fifes are stream files
th ;if ;ur ifivid ifnoto patrs. fines, anid chiaracte'rs (e.g . by control characters), and they are
,tit tabl for printuing. There is a file poiniter thfat keeps track of' where iii the Fife the program
is4 rea'lig fromn. it is only possible to write at. the cml of the fife.

Next on) the scaf, is ac'c'ss by locatin. An add russ is associated witfh components of the
file' 'I'fuir,' are' twuo pitraiinins for ac'cess fy foe :tioui. TIhle first is inl extenmision of seqiti taf

Ari, (rk A,%. p i i--i in part by (ie, Inst itic for teif,nse A iii vses tirdeir VIARIPtA project A-58, 'Ada
I.ei,.Simii'" Dr ii etor 14cht,,iidir, lt'iipali;,aI toialoiir, by the M~tie' of Nnval ttesearrh under

O)roi N uiuv' N000tl it 744 00(23t, 'Oii .i'i No. 1,LL1 P09043103t ittor tfie S-1 Irjcrl, Prif, Gin Wiccferliou,
o,,, Inv, si ,,:air. h) D)AIWtA sinler Conitract MI)Ayt3 77.(Ct0322 for ihe K11hIS project, Prot. G'io
Vi iiu'.Intloiii hivi-tgati,. aunt lv ;% National Sien'ice' Ftinid~tiou Gra'diiate Fellowship.

138

2 ART11111 M. KIAt.I

access. Again there is a file pointer that rceembhers the address Of thle corIpoIenMItI of Lte File
lasit read. The next read request will icrt-i-tnent this pointer to dt-terirw the itext comnponent.
The file pointer may be repositioned to another lile address to cause so hsequier access to start
fromt the new location. The strcamn model asSlllTIC4 that sequential access is mnore frequent than
repositioning. The second access paradigii :Lsstrncs the opiposite. Elach read reques-.t specifies
Lte file address of the component to be read. Here Lte unit of retrieval is important, and it is
usually called a record. Access is simplified if all records are fixed length, since then addresses
can be computed.

Both paradigms for access by location are functionally simlilar for read access, but lead
to differrent programming language structures for their specification. InI the first paradigm,
writing can only occur at the end of the file, while in the second, any component may be
rewritten by a new component of Lte same length. With the access by location model, files are
often created sequentially. Insertions and deletions are not possible with this type of access,
since they require extensive relocation of records, which affects the addres3s information for
record retrieval.

Access by value is third on the scale. Records are the unit of access, and they consist of
fields that contain values. Usually, a unique value is associated with eachi record, and this
value is called the ke~v. For example, in a personnel fie, if the emnployee namei is the key, the
information on a particular employee cart he retrieved by specifying his or fter name. The
structure that supplies the address of a recordl given its kiey is called art intlex. Often the
records are stLoredl in ascenit n g orfer by key, arid t his allows thenm to be read seititit ially.
Such a file is otften called an itndex(,(] seit-iail file or an iSA M llh\ I' file. Rew rites. insertions,
arid dleletiorns are stipported. Since recoirds rray be moved as a result of an insert or deletion,
access by addlress is tusually trot, stupported: access by key retrieves the correct recordl reliably.

1 he concept of a record it portant toi)ndt~exedl access. R~ecordls for a given file Often contain
the same kind of irnformrationt. Irt thle perrsonnel File eXatrtpIe, Lte niamet, add ress. ilepartiriert,
arid salary for ea ich n ep loyee (otuld he stored in a record .. Ai t ri trit e is a tie Id in eachf
record that, is iusedf for a consistent putrpotse. The pecrsoitnu-l le (Itititl Ii tiettte. atlili'ss,
departrment. arid salary attribit es. It is useful tor allow recorrds to ie(aclt~ssel usinig the valuie
of arty On e of several attribhiteis. Fnc ex artmphe, recordls i r n e rso'tll f ile coiti d Ihe acce('d~~i
by narite or ilepart rrert. Secoitufary indexi's are, useto i access recoirdl Ib hrortlf t fit aitcrrial e
atltribtts. 0ulplicatioll of vatlue(s is allowid for s'coiifary initexv' ie ;rriln:iry index rtwist-
fitve a uiq iut' value for each record.

More compthlicatrI structures for file access also exist, These tisually Fail into the caii'u.ory of'
sitpport for tlatab.tses. litwiver. For examti ie it. is oftvni uti f for record., to irro, r'f'err'ict-

vacht other tic 14) r-crirds in oilier filesi. llierarchi~rh andt network daiI~ih;mst' rani 1), implenit'lttt

tflLI wAy. St~ it- t'1' ICCat i aet r bit ra~rily (oiriplex ill :ire Cl, rrt nl!V cor.isii, red bit~utt' t..
ranrge of' the prorainiunn, laniguage ifeiintcr and irnfternetitt'r hut the) art'~ (LI) y td the
raigi' of' a ptrogrammenitr without N it (-n sit liport. l'rov id iii,, a% t'oiiistu'nt atuf portable cross4
rtfnicivng klipaibltty %ittinth le languave woldi prtovitde a tool1 to pcrtnitlp'~anuur ~
Contutct 1iyll tl~.'La' .ii'l rt'liiiliiliiy wit fn m).

Sortie Itavi. adttr(tetf the 1itteltiiti Of i:LtI;IaSV4 III At),\ Hlalf ST. 'Ihvr is iiitoI

disagrtt'urti ahoti t which daIaTI'rOtdt' to use, arid how it stoutlif ht'st bei ittpfeiii clf
We fteel I fiat Tfhe filt actcss 'ii pt propbosedi here, would miakethe t inask oif bldinhIig sitchf a
dhatabast' syst tm li ,guiicaritly easier, onice thin choice wecre niat'. "ont ltt'rnore. 0W1 e aIre ITrally

ahrIIhicatiotis ha t0,Id for the structurd rtlfile, support we piropouse bitt. ton ot, nit d at'ii ete
(databiase svst em.

139

INDEIX["[) FIL.E ACCE.SS FOIL ADA 3

INTRODUCTION TO ISSUES FOR ADA

The question is where to draw the for. % hat to include inita programmrtiing language, such as
ADA. Including too Iii Il reducestliv'usabhility of the lariguagi' and requiires users to reinventf the
w heel each tinme These wheel,; will have difference wheel and axle sizes, precluding portability
to other vehicles lIncludinig too in uch inakes ADA virtually i possible to learn or implement.
Language designers must be careful of creeping featurisro. That means that features should
only be included in a programming language if they are well understood and implcmcntable.
In addition, a feature should till a definite need.

We feel strongly that somic file access should be supported within ADA, and that the
specifications for sucti file support should be at a level which is sutliciently well understood to
be imrplemented uniformly on) all NIDA implementations that process stored data. Indexed
sequential tiles should be supported by ADA implementations. Implementations for very
small or imbedded computers may be able to do without such ile access, but most other
impiernentat~ons will find such support exceedingly useful for applications programming and
essential for data processing (e.g., it is a universal feature in COOItol). It is important that
eachi implementation that provides such support to do so in the same mariner so that programs
requiring indexed sequential files may be transported between these iniplementations. A useful
compromise is toD define a standard, but optional, package for accessing indexed sequential files
in ADA.

The question then becomes what features should be included in this standard package.
Sinmple indexed sequential files can he inriplemenreil using access by relative adldress, but the
user should riot have to interact with the system at such at low level. The standard for ISA M
tiles is access by' key, and the keys are typically uif variable length. A drawback is tie potential
complexity of the required run-time support. Such runitimne support exists, however, on many
systemis mnd is well understood lWiederbold S'3, (rayv 71,4. Funrtiermnore. a port able File access
systemn exists that provides such support aiid is written priimarily iii PASCA L The motivation
for inclusion is that there are many claisses of applications, that reqiuire ranidonm access to
tiles. lDatabase-onieitei programns without randomr access are inconceivable. IMita processing
applications usually require some Ii ing at least asq powerful its IM X M. Iibeildud co~mputer
auppl icati, ius or ii need to nian ipu late large anmou nts of dtat a. 1'hle questioin then becomes
whtei'r iii i i ed sequnen tial fi les ;ire sutffic ienit to suip port iiiost ittabases, and auippticaition
programns.

COMPARISON OF FILE ACCESS CAPABILITIES
OF" SEVERAL LANGUAGES

Tl'lis section is a consideration of t'e language features of several prograiri rg laurguages.
I' s(I.,A CO! t~,andi 1./I will lie considered ais examples of programnuning lamue thL

are widely available and prov ide some tile capabilities.

PASCAL
StarutlaritilkscXt i, lv ten, 71i priiviides oinly sequientiail access to files. All tilt's an' treated ti,
si rc';i ilt's. lit aditi on, text lilvs are supported by funrctioins which aubotial cally cuonvert
between inte'rntal atit external for iiiat. Thelure is also a controversy about how to ito in!terac tivt'

ii put, output it, (hiis framnework ('lark 79, lhron 79L.
Sortie it i pIi tICitat u110is of I AS(A\L alsto sutpptort liiiteid randtorn access to tiles. F~or examinple,

(;tw I'A ,'A . bue 7-1 suip ports a segin errteth tilt', a version of access by lot it ile~s aire
dv i det in to segui en s, all of t he same size, i :n p em ented by disk pages. Opt'rat ionis iuIde

140

4 ARTHUR M. KELLER

repositioning at filIe start o~f an arbitrary segment, cornpletinig the writing of a segment, and
testing whiether the ie(pointer is at tire end of a segment. These features are not uniformly
available aind their use precludes portability to other implemnentations. For example, the DEC
PASCAL fromn Hlamburg does not support these functions Kisicki 761.

ALGOL 68
ALGOL 68 'Tanenbaum 76] considers a fle to be subdivided into pages, lines, and characters.
Normally, access to files is done sequentially using a pointer. However, it is possible to reposi-
tion to any page, line, and character within the file. The effect uf writing after repositioning
the pointer to the middle of the file is not defined. This is because when writing, most tape
drives destroy previously written information. that follows the new location of the pointer,
while disk drives typically retain it.

PL/I

PL/I IBM 21 supports several types of files. There is a distinction between streamn and record
files. Stream files are like PASCAL text files. Record files are declared as using sequential
access or direct (i.e., random) access.

There are several options that a user of a record-oriented, direct file may specify. It may
be keyed (i.e., indexed); that is, records may be accessed by their key. The file may have
one of six file organizations: consecutive. indexed, regnorral(1 3), or X'SAN1. Consecutive files
mlay Only be updated sequentially. Indexed files may be accessed randomly by key and are
implemented using ISAM. There are three types of regional files. A regionial(1) file contains fixed
format records accessed by relative record number; there is rio record key. AX regional(2) file
contains fixed format records with a key that are searched sequentially starting at a specified
relative record number. A regionaJ{J) Mie is the samne as a regionad(2) file except that variable
length records are supported amid a relative disk track number is used instead of a relative
record number. Also supported are VSA M tiles '11M 3],. wiict iare iiicoumpatible with any of
lire previous access methods. Thbere are three categories of VSAM tiles and they permit the
cuns~critive. indexed, and rcgional(1) types of access, respectively. Unfortunately, programs
expect ing ;L VSA M file caninot accept a similar, non-VSAM file instead. In practice, a tile
written using any of tire 6 film access methlods cannot be read by army othier of the six.

(omrceptmally , such dhiversityv is riot necessary and sonic oiltier irrrplenlientatiomis of PL.!I (I)EC
%AX ;Iirot Iif.,ACM 1 have provided commtnir formats. Tihe programi[Tier using files with i'Ll/

prongrams mnurst be corgnizarnt of many restrictions. Files creatt-d through one access imethiod in
somre imiplermintations arc strnuctuired such that they riay rnot be accessed rising another access
miethod. N program, however, can use several tiles, cacti using a different access method.
Iridexeri \ SA %I tiles may have secondary indexes; thrat is, records can be retrieveud based on
one((if ! cvvral values contained in them. For exam pie, information about a ship in a ship
location ile may be accessed by specifying either its name or its location.

Somnic aCCSS Methfodts are irrore efficienit in certain operatioins than others. Regional files
orv nor sum~portedt ty highr level lataiuiages othrer than F11 or rxamrple, Cowfli, suprports
rcrmisnclutivc, irriexent, anrr vsvo \I lis. bitt not regional tiles 111Mt I. Hcigiural tiles are
risnut, trowe~cr, by some proprietary database managemnent packages rising asserribler language
ruiritimies that initerfaLce With filIm OS service routines.

REQUIREMENTS OF FILE ACCESS SUPPORT
Where shouldl ADIA's tile access caprabilities lie on thre scale frorm scrjoeoti:l to random access'

141

IND.E I)FxIILE ACCEISS FOIL ADA

Seuenti al access is cevaly tice inIinim iunii that bhoulhd be supp orted. Acc s h) oC atO on Is

easy to itriipletieiit itiid is required bYtiti pi M:1 iul iili 72 liowi'~vr, &it.i processing

applicationis aill .'.LbasC5 require access by key, Shoiuld eac rtaic favtim .- en
a svsteiii for acci , bv key? Or, rathter, shioulId a standal~rd for acress by key be iielinied and
ittipleiiimet for all programmrers to title?

hitle not all imiplemtientat ions need to inclu de access by key, it is Imnportan t th at thoi se that
dto use Lte saine package as an interface. The initeiit here is to define such a stidard , but
titoilI. pack age to be inicluided in most A I)A impiiletmentitationis

Requiretments for randomi access tA) tiles For A I), re iderived fromt usage ini appllication

p rog rannis and ;Ii database sy stemiis. St reamI ilt i re not1. con si illred. t hey are Lisuiled to
exist ill AD A. Funictiiins required for databases are itsit persci, of Ithosei tieeitii for application
programs, so only databa-ses will be considered in this set-cion. Coinsiideration Of Applicitiloui
progranis will be deferred until tile proposeid language features are specitied.

(,reating a standiard for these features has several benielits. First, Investmtetit in a single,
portable inmplemientation will tremendously reduce costs by mitakintg it on necessary to build
such a system for tiew machines. Second. settling on a standard wilt specify what features
exist Oii the Minimal inmplementationi, allowing for portable progratins usinig these features. The
access capabilities provided by the underlying operating system vary from system to system.
so it is best to only assume the mos basic functions provided oii all systens. A portabtle
tile access systeni has, been writteii that uses only these(conitioniv-avatlable baLsic functions
Idiscussed fort her itt vction 5), and it caii be easily ailapiaul for use witti \DA Allettin SO'.

ic iios& 'tuitierate basic requirettuts for the proposedl package.

1.Access by key shoiultd be supported- A key is a value of any ADPA type to be a;ssociatetl
with the recordto . be retrieved Uise of a symbo lic key iurov ill's *ndepciidence tif storage
fnechtanisms Natoral record strtii ons ofti-10luuvi i-voupolo'n's of Vlci;Ibjt Jetugtfb or
nuimiber, so varii ble leiigtht records sthtild he sopported. ''thi. %oo hi perniit variant records
to be useid ini indexed file's, 'f'lit' user shiotulit access re'cordls symiibolicailly (ii'., by key value).
It is des iral tilt illl abile ti cess recotrd, b lasedi oti %eti's of ii ii of si i r L at tr ibteis.
sio t hat mtit i access pattis imay be(riveued foir eachI r'ctrdt. Arretss by* kv " vi Istead of'
access by locain permiits imultiple access paths Latd variabli It rcrt

2 Ttie untit of retrieval stittuli bie a ctllictioni of rutatei hleil. cidllh a record ('lTuciurreicv

itid uip d iti ciitsiiiir; It oris tire(- t IdI iis(, of t ItIt repiisit iotting, plaritIigits (atccs, liy repiisitioii-
itug ti fi t' tllintcr ii a 'treamiti lIvi) Ai l(Ii its at Itt'tuit si'quci mIul .iccvs (ulticiurretit access

riliri's thai dllat: he lckcd trout ipropfer miticnous mw cess. ']'Ill is tot piis~ile Ill
streamitles, ;Ls ii niot kitowi Ill alVuncV 1oW tiMUCli Of ti ile WC Vll bll rulad lien Il tietle

poititer us rcpo itiliwd 'Thc iltit of' .ui'ess, slI~ould al'o 1to the mitt iof cllticirrl'iii cilutrol,

aiid this is falulfitalteI v tile usc of records Cor 1)1)1 I int uirr'tucs is discli'sllt further Iii

number I .Aiiitt'r u ir utr~it pirolemt with Il i, r(posit oint ji;traiioii is IlII t .uClcLitiuui

tf Lte startling locationi of a ri corit when \ariabl''h'igi l revords ;ire ustuil A pirob.'i
with reutl luics is ticit ;r(trtiils itiust niercssuirul be alliiwt'i r':ot atid % riti' .iriailcs oif

titerctit tyvfii in Ii(saine tilt-. Wlit : at life' cIlitiIis of' rvcurl al if ofut Ia' icsli

rcord peiritii tli,, Ite-chteckiiu [facilities tif \DA Lo rl'ihiri' Iliv iniditt it'~ irritr.

:3. Multiple iiluxel'~ioiuld be ,lippottd. 'This Lilolt s a ret tin til beac-e I ll' ol~li ~tirc tlluti
oilie key. For IS uriple, init ship Ilocationi fili'. a recoird coild lie ret ril'\td I) slitcif , %itrI tlic

11;1114 of' tle Aliip. Its biol ititi. it, couti r y oif rvlgustry , or oftier iduttilifvitig iii flritittii.

Indlexedl seeutial ac~ ess mcut tIlS that alre tiI;lble (dt not itik erISally provuule tiiiltipic
Indexes. For vxaltil, IS \% itovs tiot siuppiirt itulipIt' indc'vs \hiultipbe iiiitl\i'' ss'rl' nth

ini thet tirigmtal iitplei'i(it~tkciin (if 'v s~.\ hut were adided iii later, a ittlr ule-igii atioht

142

ii ARTIUt .M. KELLER

he to incluide inult ipie inidexes it, thie or iginlal design O)n ce indlexed Sequierrt ial access
is provided, tile inicremnrtal programinltg cost of including second~ary inidexes is m-inoir,
while (hie irtcre:Lse in capality is Vreat. To support secondiiary indeixes, additiounal index
anid ri' lireninrg St mc turi's are'reqired. Al in dex es lived to lie uipd atedi when records are
iserti'd, riod i i.A or delieted. Aso, ai i' pi i iter is needed thrat keeps t rack of the last
record accessed and(the index used for thItat access. Th1'is imeants thrat both the key and
indeix mruist, be spi'ciiied to access a record, arid tire, next record mreanis the record with the
next higher value for that index.

.1 Cocuri rre nt arril simulii tane oius access sirou ld he sr uportred. (conisteincy ir tire file cart he
inaitainer in, titre face of eonicurrient udates ',v bikintg of records. 'This can hi' done

by specifyinrrg the r rientiori rto tuif N or r t it(read requt's t. Th le ricordi is thierr locked
when it is read until it is update'd iir ilied, rir the iniirtioui toin odif ' is reneged. Of
course, records may he read without dieclaririg ;i intenition to modoiify, itt Which ca-sW thle

record will hr read when threre are rio coinflict ing locks oiitstanding (.ira-Mlina S2'.
However, thle record may not hie ipilateil t her, as arrothrer user could he updating it. It
is also reason ahle to imrnplemen t non -auiri t reads. w hiich woulId riot ittvol ve any locks; such
access, hrowever, could lead to an inlconisistenlt state of tire lile. Because ADIA supports
ntultit;sk irg (i.e., concitrrent execiution of proccidures), it is importartt to allow muliple
tasks to access the saine file sirmultaneously.

Sonie irriplinirttat-ioirs trlay perrmrit nmuIt iple recorids to lie locked lby tihe sarre access pathi
simuiltarneoursly. Thel(rnmber ofsuch simriiltaneoius reqruists is irrrilernrcitatiiii jei'pe'ii(ient. Th'lis
prerrimits severali records affec ted bv a t rairsactiorn t o he reaid hefo re atny oif thtem iare updated.-
Fu rt i nrore, whei'n recorrds are uipd ateid, thenir locks may he held uinitil tile tr ansac tion is
terrnatedl (e.g ., ;t co~mmlit tiln' Gray' 79, Gray 801).

TIhese reiqu ire rmeints coilId easgily hi' exteitnd ei HIowev er, thre featuiries desc r ibeid ihere are
sinfilie nt to burri ld diatabase sy stemrs (iei'rarchiiical , neitwor k o ir rielit ioil) anid ot her system'rrs
re p1 r iii sophliis Licateil access to large aririiirits of diata. lVir aii sit of reqir riirs trire l]

plejnnnrtiiiir iil hei'oire mrore coimple'x.'I', cx steItice of a IiIl' access systemiii t is a reason-
dble ioirr omn~isie bet weent compr lactneiss aiii power call siggi'sr a ciimpriomrise' of reiiir-enits
andimpliemeinitat ion cost.

ADDITIONAL FUNCTIONS NEEDED

There are siviral fitnc'tioins t hat shoulid be mv~tlablc for recoril-irieritc i'iiles. Fi rsrt, firnct ions
are- neeidi'i that est ablish ai]d iiscorrtirtitle art1 L4-sociatin htier v ;eiri i irimrnial Ili' iariali arid
an opieratimig -svjiile. Rtetrieval support shoiuld iriile th lra c atialitN iof reaiing, a recorid
with a givitn key :iiii reading thi' sucecessoir recorid. Ili aditionr, reposir iorinkoii' il' Wie iollitir
ttit .11.rhrit rar ki'v slilulilb l ilowedu. (';litility iii r;nd~ri' or ule!vI' ui rcericorids shldi

ilsio exist. TheIrri shrioilid be fitrct loris wtiirekN new reviris mliv hei irsit iiid mi Ik idd iiiI'ii
the' tilie or aprpendeiid to the' end of tire firle.

SPECIFiICATIONS

'rhi' spec iicar uris ofr tie iii diviiti m p roceduinre's follow tire, ovrall spec iflicition.

143

INDEXEI) FILE ACCISS FOR ADA 7

generic
type INDEXED-FILE is limited private;

type RECORD-TYPE is private; -- type of record in file
type FIELD DESCRIPTORS is

array (INTEGER range <>) of FIELD-DESCRIPTOR;

type TUPLE-LIST-TYPE is

array (INTEGER range <>) of TUPLE-IDTYPE;

MAX-KEYLENGTH: constant INTEGER - 125; -- implementation defined
MAX-FIELDS: constant INTEGER ;= 128; -- implementation defined
MAXRECORDSIZE. constant INTEGER := 2550; -- implementation defined

package INDEXEDIO is

-- types of frequently used parameters
type MODIFY.INTENTIONTYPE is

(WILL-MODIFY, "- tuple is locked on read until

-- updated or released

-- no one else is allowed access
READ LOCK. -- allow others to read but not

-- to update

WILLNOT MODIFY); -- otherwise

type ACCESS-TYPE is

(DO-INPUT, -- read-only access
DOINSERT. -- inserts only, reads not allowed

DO-UPDATE, -- all kinds of access allowed
DO-CREATE); -- create file, then DOUPDATE

type TUPLEIDTYPE is private;

-- tuple ID for quick access

ty-pe EXCLUSIVE-TYPE is
(EXCLUSIVE, -- no one else may access file

NORMAL, -- any number of readers or I writer
ONE WRITER, -- readers, I writer, or both
SHARED), -- any number of readers and writers

-- types used to specify fields on OPEN
type FIELD_TYPE is

(FIXED-LENGTH, -- field alvays same length

VARIABLE-DELIMITED, -- field always ends with same character

VARIABLELENGTH); -- field preceded by a count byte

144

8 AIITlUR M. KELLER

type FIELD-DESCRIPTOR (FIELD-CLASS: FIELD-TYPE) is

record

INDEX-NUMBER: INTEGER;

-- used to specify which index to search
CLUSTERED-INDEX: BOOLEAN;

-- specifies physical ordering of tuples

UNIQUE-KEYS: BOOLEAN;

-- keys must be unique in file
case FIELD-CLASS is

when FIXED.LENGTH :

FIELD-LENGTH: INTEGER range I..MAXRECORD-SIZE;
when VARIABLE DELIMITED =>

FIELD-DELIVITER: CHARACTER;

when VARIABLE-LENGTH =>

null;

end case;

end record;

-- visible procedures for INDEXEDIO

procedure OPEN -- opens a file for future access

(FILE-ID out INDEXED FILE;

FILE-NAME in STRING;
OPEN-ACCESS in ACCESS-TYPE := DOUPDATE;

OPEN-EXCLUSIVITY: in EXCLUSIVE TYPE := NORMAL;
OPEN FIELDS in FIELD.DESCRIPTORS);

procedure CLOSE -- closes a file releasing access

(FILE ID in INDEXED-FILE;

DELETE BOOLEAN := FALSE);

procedure READ-KEY -- reads a record using a key

(FILEID in INDEXED-FILE;
INDEX-NUMBER in INTEGER range I..MAX-FIELDS;

KEY-EXPRESSION in STRING;

RECORD-VARIABLE : out RECORD TYPE;
MODIFY INTENTION: in MODIFYINTENTIONTYPE := WILLNOTMODIFY;

TUPLEID out TUPLEIDTYPE);

procedure READ-NEXT -- reads the next record for a given index

(FILEID in INDEXED-FILE;

INDEX.NUMBER : out INTEGER range I..MAXFIELDS;

KEYEXPRESSION : out STRING;

RECORD-VARIABLE out RECORD-TYPE;

MODIFY INTENTION: in MODIFY.INTENTIONTYPE := WILL.NOT-MODIFY;

TUPLEID out TUPLEID.TYPE);

procedure READTUPLE -- reads the record given its tuple ID

(FILEID in INDEXEDFILE;

RECORD VARIABLE out RECORD.TYPE;

MODIFY INTENTION: in MODIFY.INTENTION TYPE := WILL NOTMODIFY;

TUPLEID : in TUPLE-rD_TYPE);

145

INDEXED FILE ACCESS FOR ADA 9

procedure UPDATE -- rewrites a previously read record

(FILEID in out INDEXED-FILE;

RECORD-VARIABLE out RECORDTYPE;

TUPLE.ID out TUPLEID.TYPE;

RELEASE-LOCKS in BOOLEAN := TRUE);

procedure DELETE -- deletes a previously read record
(FILE.ID in out INDEXED-FILE;

TUPLE-ID out TUPLEIDTYPE;

RELEASE.LOCKS in BOOLEAN := TRUE);

procedure INSERT -- inserts a new record

(FILE.ID in out INDEXED-FILE;
RECORD-VARIABLE in RECORD TYPE;

RELEASE-LOCKS in BOOLEAN := TRUE);

procedure POINT -- positions a file pointer for READHEXT
(FILEID in INDEXEDFILE;

INDEXNUMBER in INTEGER range I..MAX.FIELDS;
KEY EXPRESSION in STRING);

procedure GETTUPLEIDS -- gets list of tuple IDs for READJTUPLE

(FILE.ID in INDEXED-FILE;

INDEX-NUMBER in INTEGER range I..MAXFIELDS;

KEYEXPRESSION in STRING;

TUPLELIST out TUPLELIST-TYPE;
NUMBER-RETURNED out INTEGER;
START-FROM in INTEGER ;= 1);

procedure RENEGE -- releases locks on record

(FILED in INDEXEDFILE;

TUPLED in TUPLE IDTYPE);

procedure END-TRANSACTION
-- forces all records to stable storage and

-- releases all locks on records
(FILEID in out INDEXED-FILE);

procedure ERROR MESSAGE

-- returns a descriptive error message
(FILEID in INDEXED FILE;
MESSAGE S out STRING);

-- exception handlers

procedure ERROR_MESSAGE -- returns description of last error

(FILEID in INDEXED.FILE;

ERROR.MSG out STRING);

146

to ARThfUl M. KELLER

-list of exceptionslatrdbyodaa

END,.OF-FILE, latradbynddt
NOT-OPEN, -- attempt to do anything but open a unopened file

USE-ERROR, - attempt to perform an unpermitted operation

-eg. write into a file opened for input

RECOD NT.FOND, update without reading first

RECOD-NT-FOND, read record with specific key failed

DUPLCAT-RECRD, duplicate record on some index with unique keys

UNATHOIZE-ACESS--access request not as authorized by open

INTERNAL-ERROR, -- error detected in implementation

OTHER-ERROR: -- unclassified error

exception;

private
-- declarations of private types and data structures

end INDEXED..IO;

DESCRIPTIONS OF THE INDIVIDUAL PROCEDURES

This section and its subsections describes if) detail what the individual procedures of the
INDEXED-IO package do. Ali overview of the implementation appears later.

Tlhe INDEXEDJIO package needs to know what fields have indexes and what their formats
are, For ain old tile, t his information is maintained internally with the tile. However, for a
new tile, this informnationi must be supplied by the creator of the file when it is first openied.
Trhcrefore, the array of type FIELD_ DESCRIPTORS describes these fields to the package. It is
unflortunlate that the package ralinot, use the definition of the record that is being stored in
the tile, but Lte definition is available to the comnpiler at compile timne but the package uses
the in formuationi at run-t ime. A similar problem is faced by anl interactive (debugger; a feature
that would solve both problems is the ability to inquire about the structure of records and
types of variables.

The array of type TUPLE-LIST TYPE is used only in the procedure GET-TUPLE-IDS and is
descrihed there.

Concurrency control requires that records be locked for the stretch Of ltme between readling
and rewriting EFswararn 71, Gray 76). Therefore, when a record is read, the intention L~o rewrite
it Iii ust he dccla red. l'imr t Ierimore, it mnay he i mportan t to be i m iniu ne from fiur tier ch anlges to
lie recordf, and so a request to hioldl a readl-only lock for the record May he issued. The type

MODIFY- NTENTION-TYPE allows the necessary (list inctions.

The type ACCESSTYPE is lised only (luring OPEN and is described there.
Frequent ;tndl repeated access to the samne record in the file may be improved by providing

a quick method for accessing it. In idatabases, such a quick method for accessing involves the
Ilse of a to ph 11) to re re r to thie to phe ofesi red . 'rIi t upliv i) is in depen de nt of the location

of' the record, so it. rebna is valid even this record is chiange'd, or other records ace inisertedl or

dleleteid. It is v it ally impo fi)rtanlt. that the to ple il) neove r lie useod to oh Iai n a di Iterenmt rec ord
than Lte one(originally aissociated with it. This precludes tuplc lI)s for any tile fromt being
reassigned w li a ru'clrd is dvleteul. A flit whimch huIas unudergonie many insertins ando delel illns
will hiave mnany to ple IN~ whIiichI are be in g miiainitai ned as riot referring to any rico rl, hilt. it will
also likelIy be unilalariceif. Reorganization o~f the file will rebalance it, as well Ls reassigning
new tuple IN~ to every record.

147

IN DEXLD FILE ACCE~SS FOR AD)A1

Thc type FIELDDESCRIPTOR is used only in the type FIELD-DESCRIPTORS as3 described
above.

PROCEDURE OPEN
The procedure OPEN is used for establishing an access path to the file. The FILENAME is a
string containing the namne of the tile. This name is operating systemn-dependent, and has
the semantics of NAME in the package INPUTOUTPUT as described in chapter 14 of the ADA
reference manual [DoD 801. In particular, some operating systems may support inclusion of
device, directory, and protection specifications ats part of thle file name specification. The
p;Lranieter OPEN-ACCESS describes the kind of access that the user desires to perform against
the file. Access to the file not in accordance with thle access specified at open time will result
in an error exceptioni, UNAIJTHOR IZED-ACCESS.

File sharing is an important concept in database access. Different transactions often want
to access the same Files simultaneously, but in a controlled manner. Requiring that all such
access be done by one ADA task would create an incredible bottleneck drastically reducing
the efficiency of the system. On the other hand, many efficiencies can he introduced by taking
advantage of the knowledge of the type of sharing to be used. As a result, thle permitted level
of sharing should be specified with the open request.

The permitted level of sharing is described in OPEN-EXCLUSIVITY. The following table details
sharing permitted by dilTerent users. "Y" Means the access combination is allowed; "N" means
it isn't.

_____________ reader writer

0 0
E n En

THEN x e x e

I N IN S I N W S
u o r h u 0 r h

S r I a S r i a
m t I r I i m t r

v a e e V a e e
USe I r d e I r d

readerl Ealusive IN N N N IN N N N
Normal N Y Y Y N N N N

IOneWriter,, N Y Y y N N Y Y
___ sared N y t IN N y Y

writer - xclusive. N N N NI N N N N
I Normal 11 N N N NI N N N N

One Writer N N Y 4 i'N N N N
J Shared-! N N Y Y N (-N

Whef, the file- is creatted, the additional parameter OPEN-FIELDS is itsed t~o describe the liyoii
of the file. A file is considered to consist of records, eachi of which consists of several fields. Trie
fields are contigiiouis and are of various ty pes. A ny field I hat appears ili all records may have an
index as.,oiaLed " itli it. Stich aii inidex permiits searchiing for records with pticilair v-alies
for that fiield. Onte iidex shotuild lie designmateil a~s a clustcred iiidex iminicing tha! records
are to phiysic ally stored ill order Lrcoird inrg to thnat inldex. Th is iminproves tw liwpr or inaiice of
seqiuential access to the lile using tli.Lit idex. C hoosing a clustered index has iio sui rant ic
effec t, liuit it does itinprove pe rformiia iice. It) addnIit ion, any iiidvx' may lie spec ifi lied;s hay ilig
uniqulie keys. When records are inserted or updated, all indexes with unique keys ar' chlecked,
auth if anry duplicates are fouinl the~ reqjuest is aborted.

it woul b1 e pro-ferable if Ltt, programmiler dil inot have to specify tile data type twice; wheii

148

12 AItTIHUR M. KELLER

the data type is declared and to the file access package. This would require tile feature that
generic packages could determine the structure of a structured variable passed to it. Currently,

the only thing that generic packages can do with tile unspecified type is use operators common

to all types supported. In particular, that does not allow a generic package to vary its behavior
based on the implementation of the type passed to it. Such a feature would also permit

interactive debuggers to access the componrents of structured types upon user request. This

concept is explored further elsewhere !Keller 83b).

PROCEDURE CLOSE

The procedure CLOSE terminates an access path to a file. The FILE-ID is no longer valid to

access a file until it is used in an 0FN' request. Other tasks or users having the file open may

continue to access tile file; also any other FILEIDs referring to the same file may continue to

be used.
The file will be deleted if DELETE is true and the file is not opened by any other user, task,

or FILE-ID.

PROCEDURE READ KEY

The procedure READ-KEY is used to read a record from the file having a particular key
(KEY-EXPRESSION) ror the specified index (INDEXNUMBER). If the record is to be modified

or protected froM modification by others, MODIFY INTENTION should be set to the appropriate

value. (See section .1.1.6 (UPDATE) for a description of locking.) Subsequent access to the same

record can be improved by using the returned TUPLEID. The file cursor is set so that the
READ_NEXT procedure will read the next record for that particular index. (See the next section

for a description of the file cursor.) Note that to read every record with a particular key (for

a non-unique index), READKEY should be used to read the first record arid READ-NEXT to read
the others until the key changes; unless the file changes, READ-KEY will return the same record

given thie same key and index. Unsiiccessful READKEY requests will not update the file cursor.

PROCEDURE READ NEXT

The procedure READ-KEY is used to read a the next record from the file for a particular index

number. The key and index number are returned in KEY EXPRESSION and INDEX_NUtMER,

respectively. The parametcrs MODIFY INTENTION and TUPLEID are as in READ-KEY.

There is an lil' cursor associated with each open FILEID. This cursor is set to the key

and index used in READKEY and POINT requests. The cursor is autoniatically incremettcd by
the READ_NEXT procedure to read records that follow according to that index. To read every

record with a particular key (for a roi-unique index), READ - KEY should be used t~o read th,

first record and READ NEXT to read the others until tile key changes. To read every record
starting withi a key prefix, use the POINT procedure to specify the prefix and index nulber,

and then READ-NEXT to read records until the key returned no longer has that prefix.

PROCEDURE READ TUPLE

The READTUPLE procedure is used to read a record with a particular TUPLETD. (andidate

values of TUPLE.ID imi ay he obtained by using the READ KEY or READNEXT proccdur" to obtaini

the tupe I) a-ssociated with a particular record. GET - TUPLE IDS may be used to obtain a

list of tuple Ills associated with all records with a particular key and index number. TFile
paramieter MODIFYINTENTION is as in READ-KEY.

149

INDEXED FILE ACCESS FOR ADA 13

PROCEDURE UPDATE
The procedure UPDATE may be used to replace the record previously read. The TUPLEID is
not changed as a result of the UPDATE request regardless of which indexed field have changed.

The record must have been read specifying MODIFYINTENTION as WILL-MODIFY. That causes
the record to be locked from reading or updating by other users, tasks, or FILE-IDS. If the
record is not to be updated, RENEGE should be used to release the lock so that others may
now access it. The parameter RELEASE LOCKS should be set to true if the record is to be
released for access by others. The record is rL:Iains locked froin changes by other users, tasks,
cr FILEIDs if RELEASE-LOCKS is false, in which case the locks should be released explicitly
by another request, such as UPDATE or RENEGE. An END-TRANSACTION request will release all
outstanding locks to records in the file.

PROCEDURE DELETE
The procedure DELETE may be used to delete a previously read record. The TUPLE ID becomes
invalid for accessing any record; it will not be reused to access another record in this file. See
the previous section for a description of the use of RELEASE-LOCKS.

PROCEDURE INSERT "I
The procedure INSERT is used to insert a new record into the file. The TUPLE.ID is set for
subsequent retrieval of the record. See section "'ROC'I)UlR' UPDATE" for a description of
the use of RELEASE-LOCKS.

PROCEDURE POINT
The procedure POINT sets the file cursor for use in subsequent READNEXT requests. See section
4.1 I (READNEXT) for a description of the file cursor. 'To set the tile cursor so that all records
of the lile will be read, use a null key.

PROCEDURE GETTUPLEIDS
The procedure GETTUPLEIDS is used toobtain a list of tuple ll)s associated with all records
having a particular key and index number. Since this list nay be rather large, START-FROM
may be use(d to obtain the next set of tuple II)s by setting it to one more than the value of
NU14BERRETURNED by the previous request. Of course, this need only be done if the value of
NUMBER RETURNED was the nuimber of elhmentus of TUPLE LIST.

This procedure may be used to retrieve records satisfying a list of constraints. For example,
suppose we want to read all records that have key FO for index I and key BAR for index 2.
We first GETTUPLEIDS for FOB and BAR anid then read using READ.TUPLE All records whose
tuple II)s are in both lists. Note that the list returned is in arbitrary order, so the program
should sort them before comparing the lists.

PROCEDURE RENEGE
h'ie proceitire RENEGE is used to reicase locks ont t particular record. see sction 1.1.6 (UPDATE)

unt'r the dcscritton of RELEASE-LOCKS for a dcsc ription of locking.

PROCEDURE END TRANSACTION
The proccdure END-TRANSACTION is used to release all record lock% after forcing all records to
stable. (e.g., disk) storage.

150

14 AirmuR M. KELLER

PROCEDURE' ERROR _MESSAGE
The procedure ERROR-MESSAGE returns a (lescriptive, System-dependlent error message after an
exception occurs.

INIPLEMENTATION
Definition and implementation of keyed access, record-oriented file support for ADA is greatly
simplified by the existence of a portable file access system, 'LASI Allcirin 80, Keller 83a].
The F LAS II file systemn supports all of the functions described in the prcvious two sections. It is
written in PASCAL, enabling it to run on a variety of machines. Operating systemn-dependent
code is isolated in several routines (currently implemented in DE C Systcrri-20 MACRO, VAX
UNIX C, and IBM 370 assembler) that consist of about 250 lines of codfe; the remainder
of FLASH consists of approximately 7000 lines of PASCAL code. FLASH can be used with
PASCAL, FORTRAN, and INTERtLISI', so no problems arc anticipated using it with ADA.

The FLASH file system uses a Be-tree 'Bayer 72, Comner 79), Knuth 731 implementation. The
unit of transfer is equal to a block, and, for efficiency on virtual storage systems, the block size
is set equal to the page size. Except for a current limit that the record size must be less that the
block size (spanned records have riot yet been implemented), the user of FLASII is not aware
of its parameters. The locking algorithm is designed to allow maximal concurrency (Bayer
77", Guibas 781 when supported by the operating systemn. Reliability is enhanced through the
technique of leaf-first uipdatinig [Schwartz 731. Trhe buffer management strategy uses a mod ificd
leastL-recently-used (iRu) scheduling discipl Ine. 11LASHI must know about t lie formnats of thc
fields of' the record for indexing purposes; as a result, a very flexible record foriiat was definied
anl(is supported.

Few assumptions are miade of the capabilities of the underlying operating systemn. A
directory of files is expected to exist, and the! required funct ions are-: directory management,
open aund close files, allocate a buffer, and read, write, allocate, release, and flush a fle block.
In addition, the ability to lock on symibolic names, (e.g., EN Q and li:4 QI MN 731) is needed
to support shared access. As these functions exist onl most systeii, it is un necessary to write
them. For example, one reason for the large size, of VSA M is that it atenipted to reimplcmnent
most of these functions since the operating system does riot pro~ ide themn in a satisfactory
form.

CONCLUSION
llandoiii access files are an important feature to include in AD)A, if the !aiinav'e is to SupJport
portable data processing appl) iciations. Tille pro posal for rand(oin access We!s des(rifbed prov ides
thre nuriled filIe system catpability. ft Woul (1facilitate the, cons ru tion of daiabase systemsg
and If phC. c1tilil pri g rains thIiat haridle large ano unt o f fata. Tile fi ibfitof an ifli cieni
innplementation is dennonst rated by an existing portable flfe access systemr F LAS II. steelnianl
requires raiidoin access files, and this proposal satisfies these requirenments.

CR EDITS AND AC KNOWLEDGM ENTS
C io We, Ier hold gave conmst rutcti ve critic isi. Vic tor Schlii idcr proivided enciiocirare ien t.

John llIeriiiessy coimminteid oil an early ifraft of' thfiis paper.

REFERtENCES

A)A 1 1I l'riminary AD)A R~efirrenve Manual," sigplan ,oticcs K4 I (Jimre 19)79),

151

INDEXED FILE ACCESS FOR ADA 15

part A.

[ADA 21 "Rtationale for the Design of the ADA Programming Language," Sigplan
Notices 14, 6 (June 1979), part B.

[Allchin 801 J. Allchin, A. M. Keller, and C. Wiederhold, "FLASh: A Language-1nde-
pendent, Portable File Access System," in Proc. [tit. Conf. on Management
of Data, (Santa Monica), ACM SICMOD, May 1980.

[Bayer 721 R. Bayer and C. McCreight, "Organization and Maintenance of large
ordered indexes," Acta rinf. 1, 3 (1972), 173-189.

[Mayer 77[R. Bayer and M. Schkolnick, "Concurrency of operations on 1-trees," Acta
lnf, 9, 1(1977), [-21.

[I3BN 73[Bolt Beranek and Newman, Inc., Tenex jsys manual, Cambridge, MA,
September 1973.

Bron 791 C. Bron and E. Dijkstra, "A Discipline for the Programming of Interactive
1/0 in PASCAL," in Sigpian Notices 14, 12 (December 1979), 59-81.

[Clark 79[R. Clark, "Interactive Input in PASCAL," in Sigplan Notices 12, 2
(February 1979), 9-13.

[Corner 79[D. Corner, "The Ubiquitous B-tree," in Cornput. Surv. 11, 2 (June 1979),
121-137.

[DoD 781 Requirements for High Order Computer Programming Languages:
"Steelman," Dept. of Defense, 1978, 813.

[DoD 801 Reference Manual for the 21IDA Program ming Language, Proposed Standard
Document, United States Department of Defense, July 1980.

[rswaran 761 K. Eswaran, J. Gray, R. Lorie, and 1. Traiger, "On the Notions of
Consistency and Predicate Locks in a Relational Database System," in
Comm. ACM 19, 11, November 1976, pp. 624-634.

(Garcia 821 If. Garcia-Mulina and C. Wiederhold, "Read-Only Transactions in a
Distributed Database,"' ACM Trans. on Database Systems, 7-2, June 1982.

[G ray 76[J. Gray, It. Lonec, C. Potzolu, and 1. Traiger, "Granularity of Locks and
Doegrees of Consistency in a Shared Data Base,"~ in Modelling in Data flase
Managincnt Systems, Nijssen (editor), North Holland, 1976, pp. 365- 394.

jGray 78) J Gray, "Notes on Data Base Operating Systems," in Operating
Systems: An Advanced Course, Bayer, Graham, and Seegrnuller (editors),
Springer-Verlag, 1978, pp. 393-481.

[Cray 79j J. Cray, et al, The Recovery Manager of a Data Management Systemn,
IB.M Research Report ltJ 2623, IBM Research Laboratory, San Jose, CA,
August 1979.

[G ray 80) J1. Gray, A Transaction Mfod(1, IBM Research Report RJ2895, 113M
Research Laboratory, San Jose, CA, August 1980.

jGuibas 78[L.. Cuibas and It. Sedgewick, "A Dichromatic Framework for Balanced
Trees," in Proc. NOt Annual Symnp. on F~oundations of Computer Science,
Ann Arbor, Michi., 1978, 8--21.

[liall 831 1'. [fall, "Adding Database Management to Ada," in ACM SIGMOD

152

16 ARTIIUIt M. KELLER

RiecoUlt, 13,3, April 1983.

[I1M 1] OS/VS Data Management Services Guide, Order No. GC26-3783, IBM,
Armonk, NY.

[IBM 2] OS PL/I Checkout and Optimizing Compilers: Language Reference
Manual, Order No. GC33-0009, IBM, Armonk, NY.

[IBM 3] OS/VS Virtual Storage Access Method (VSAM) planning guide, Order No.
GC26-3799, IBM, Armonk, NY.

[IBM 4] OS/VS Cobol: Language Reference, Order No. I 1BM, Armonk,
NY.

[Jensen 741 K. Jensen and N. Wirth, Pascal user manual and report, Springer-Verlag,

New York, 1974.

[Keller 83a] A NI. Keller, "Implementation of a File With Multiple Indexes Using
B-Trees," in preparation.

[Keller 83b] A. M. Keller, "Making the Symbol Table Useful for Programs at Runtime,"
in preparation.

[Kisicki 76] E. Kisicki and II. Nagel, Pascal for the DEC System-20, Institut fuer
Informatik. lamburg, Germany, 1976.

[Knuth 72] D. Knuth. The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Weslevy, Reading, MA, 1973.

1Knuth 73] D. Knuth, The Art of Computer Programming, Vol. 1: lundamental
Algorithms, Addison-Wesley, Reading, MA, second edition, 1973.

[Schneider 801 V. Schneider, "Proposed Ada 1/O Revision," personal communication.

[Schwartz 73] M. Schwartz, A storage hierarchical addr(,sing space For a computer file
system, Ph. 1). dissertation, Case Wustern Reserve (miversily, Chveland,
Ohio, January 1973. Also Andrew R. Jennlings ('omputation Center, Case
Western Ricserve University, Cleveland, Ohio, Jennings leport 1144.

lTanenbaumi 761 A. Tanenbaum, "A Tutorial on Algol 68," in Comput. Surv. 8, 2 (June
1976), 155 190.

[Wegner 80] I'. Wegner, P'rogranming with ,iDA: .Itn Introduction by .teans of

Graduated Exanph's, Prvntice-Ilall, Inc.. Englewood Cliffs, NJ, 1980.

[Wiederhohl 831 G. Wiederhold, Database Design, Mc(raw Ilill, New York, svond edition,
1983.

153

Wiederhold Databases Appendix D

DIAGRAM OF MODULES

USER-DEFINER USER PROGRAMS QUERY USERS

jINQUIRE ~i~uINTERNAL

DATABASE SUB-
TRANSLATOR ACCESS INTERROGATIVE

MODEL PROCESSOR, PRCEU I
IISCHEMA INTERACTIVE QUERY

INERALINTER-

NATUPAL LANGUAGE

DATA CONCEPTUAL TRANSACTIONS I
ADMIN, SCHEMA PROCESSOR

L.T A 'T -OR] TRANSACTION PROCESSOR

SYST, INTERNAL SCHEMA
MGMT. PROCESSOR

MULTI-ATTRIBUTEL
ACCESS

MIANAGEMENT

DYNAMIC ACCESS

PATH MANAGEMENT

FILE ACCESS SYSTE L OGGER

OS OS LOCKIIG
OS SEGMENTS

154
HWM-

Database Technology Review and Development Estimates

Prepared for
The Institute for Defense Analysis

Prepared by

The Computer Corporation of America
September 14, 1983

1. Overview

Database management provides the technology for managing enormous

amounts of diverse data required for large military operations. The
primary objective of this technology is to provide efficient and reli-
able access to the shared planing, logistics, operations, and intelli-
gence data required for world-wide command and control. The capabili-
ties normally associated with database technology include:

1. Database definition - the capability to define and redefine the logi-
cal and physical data structures independent of any specific applica-
tion program.

2. Database retrieval and update - the capability to retrieve and update
from a shared database.

3. Authorization control - the capability to control which users can
update and retrieve which data.

4. Multiple user updates - the capability to maintain the integrity of
the database while it is being simultaneously updated by multiple
users.

5. Back-up and recovery - the capability to save copies of the database,
to save changes made to the database since the last copy, and to
restore the database in case of system or media crash.

The challenge will be to provide these capabilities with enough flexi-
bility to support dynamically changing mission and performance require-
ments and to intelligently utilize these capabilities to provide selec-
tive access to timely and critical information.

In order to provide the needed flexibility and performance, several
levels of interfaces to the database management technology must be pro-
vided:

155

Database Management Page -1-

- Programming language interface - the data must be accessible via pro-

gramming language (Ada) in order to directly and rapidly access the
data for numerical analysis, simulations, graphics algorithms and
other application programs.

-Query language interfaces - the data must be accessible via a query
language to provide powerful and flexible access to interactive users
for ad-hoc queries.

- Screen oriented interfaces - the data must be accessible through
screen oriented form and menu selection interfaces to provide access
to non-computer specialists and changing personnel.

- Bulk load and unload utilities - these utilities allow data to be

loaded and unloaded between files so it can be rapidly used with
existing programs.

- Report Writer Utilities - these utilities provide for automatic for-
matting of the data for repetitive reports.

- Application generators - these utilities provide for automatic gen-

eration of forms and database actions for frequent and repetitive
database updates and retrievals.

In order to provide an overview of the state of the art of the data-
base technology and produce a development cost estimate for that tech-
nology, we studied the capabilities, interfaces, and architectures of
three commercial Database Management Systems and one prototype system
being developed in Ada. The case studies were conducted for the follow-
ing systems:

1. Model 204 - CCA's commercial system with relational capabilities that

is available on IBM systems.

2. Oracle - a commercially available relational system that runs on 32
b4 mini computers.

3. DBMS-20 - a commercially available DBTG network system.

4. LDM - a prototype system being implemented (95% complete) in Ada by
CCA.

Based on these studies and our general database expertise, we identified
the key performance factors and estimated development levels of effort.

The performarces of different database management systems and techno-

logies is difficult to compare due to the extreme dependence on the
specific applications and computer systems on which the DBMS is run.
The typical metrics used for DBMS performance measurements include:
- number of single record updates per second, and
- retrieval rates for large quantities of data.

Unfortunately those times are extremely dependent on factors such as
the sizes of the databases, the number of indexes on the records being
updated, the complexity of the database query and the class of machine
on which the performance measurements are to be made. The retrieval

156

Database Management Page -2-

rates are extremely difficult to compare since even for one system the
rates can differ by over an order of magnitude depending on the number
of files that had to be accessed to collect the required data.

The single record updates per second can be more directly compared
since factors such as the number of access paths can be controlled.
However, time did not permit the execution of controlled experiments for
a number of different systems. Furthermore, the performance results
that were obtained were for vastly different classes of hardware. The
results obtained were consistent with the general range of update rates
shown in Table 1.

Table I

System Size Update Rates

Personal Computers .5 - I / second
Small mini computers I - 4 / second
Super mini computers 2 - 10 / second

Large mainframe 10 - 25 /second

It is important to understand the range of performance required for a
given set of applications and then to select or design the hardware
required. There are many unfortunate examples of the hardware selection
preceding the applications definition. The result has been that the
required database performance cannot be achieved.

The case studies were very useful, however, for verifying our esti-
mates of the levels of effort required to use and develop database
management for Ada. The levels of effort for different alternatives are
summarized in Table 2.

Table 2

System Prototype Production Elapsed Time
Level of Level of (years)
Effort Effort

(years) (years)

Use Existing DBMS 1.5 - .75
Integrated File System 4 8 17
Full DBMS 12 25 3.0

The first effort would produce an Ada interface to an existing rela-
tional system. This approach assumes the existence of a DBMS on the
target system and interprocess communication capability (IPC) provided
through the Ada runtime system.

The second effort would provide a library of integrated file access
methods which could be incorporated into Ada programs. The integrated
library is required in order to effectively support the authorization,
multi-user, and recovery capabilities.

157

Database Management Page -3-

The final effort would produce a full DBMS in Ada complete with
several access methods, concurrency control, recovery, an Ada applica-
tion program interface, query language processor, report writer, bulk
load utilities, and application generation tools.

In summary, database technology for single processor systems has
reached the state of maturity for the capabilities discussed above and
could be provided in Ada for the WIS system by the 1986 timeframe. For
more advanced multi-processor, multi-media database management support,
a considerable research effort is still required.

2. Functional Requirements

2.1 Introduction

Database management provides the technology for storing, maintaining
and controlling access to enormous amounts of diverse data required for
large military operations. The key functions provided by this technol-
ogy are:

1. Data Representation - the ability to represent and store command and
control information independent of a specific application, user or
program; and

2. Data Manipulation Operations - the ability to reliably perform
specific predefined operations on the shared information.

The still evolving database technology is extremely diversified due to
the different levels of flexibility and power that are provided. At an
extremely simple level, a file system could be used to provide database
management functions; the data representation is in terms of a record
type and the data operations are simple reads and writes. At the other
extreme, a state of the art database management system could support
complex data representations and powerful data manipulation operations.
In general, there is a trade-off between the development costs and the
power and flexibility of the data representations and operations pro-
vided by a database management system. The objective of this section is
to give an overview of data management technology in order to understand
these trade-offs.

In Section 2.2, we describe the general database management functions
that are required independent of representation and operator power of
the Database Management System (DBMS). Then, in Section 2.3 we describe
the levels and alternatives for supporting database management func-
tions. Next, Section 2.4 discusses performance metrics for those func-
tions. Finally, Section 2.5 discusses the key issues that must be
addressed in developing a DBMS for Ada.

158

Database Management Page -4-

2.2 General Database Management Functions

Database Management capabilities and the interfaces through which

ICapabilities

I - Database definition.
I - Retrieve and update (store, modify, and delete) data.
I - Authorization control.
I - Multiple user updates.
I - Back-up and recovery.

IDatabase Interfaces

- Programming language interface.
- Query language interface.
- Screen oriented interfaces.

- Bulk load/unload utility.
- Report writer utility.
- Application generator aids.

Figure 2.1 Database Management Functions

those capabilities are accessed are summarized in Figure 2.1. The capa-

bilities and interfaces are described below.

Capabilities

The Define database capability provides the ability to define the
logical and physical structures of the database independent of any one
program or application. This data independence allows the programs and
applications to evolve in response to changing development and mission
requirements. The logical database definition defines how information
is to be represented in the database. This could include the record
types, data fields, relationships between record types, and integrity
constraints. The separation of these definitions from the programs
allows for record types and fields to be added or deleted from the data-
base definition without changing the programs that do not need to access
or update the additional information. The physical database definition
defines the file organizations and access structures that will be used
to contain the logical records. In a state-of-the-art DBMS, the separa-
tion of the physical definition from the logical definition allows
access methods to be added or deleted in order to improve performance
without changing any of the application programs.

The retrieve and update capabilities are used to retrieve and update
information in the database. State of the art DBMS's allow these opera-
tions to be performed by logically specifying what data is to be
retrieved or updated rather than how the data is to be located. The
user specifies the properties of the data such as keys or values of the
fields; the DBMS then selects and uses any advantageous access paths.
It should also be possible to retrieve and update sets of records with
one command as well as retrieve and update individual records.

159

Database Management Page -5-

The authorization control capability permits a Database Administrator
(DBA) to specify which data can be accessed by which users for which
kinds of operations.

The multiple user capability maintains the consistency of the data-
base while it is being updated by multiple users. The DBMS should
prevent users from reading portions of data which are partially updated
or writing data that another user is reading.

The back-_R and recovery capability is used to recover the database
in cases of software and hardware crashes. The back-up capability
should support the saving of a copy of the database and the changes that
have been made to the database since the copy was made. The recovery
capability should restore the database from the copy and then apply the
changes.

Database Interfaces

A Programming Language Interface allows programs written in high
level programming languages, such as Ada, to retrieve, add, modify and
delete data from the database. The specifications of which records to
retrieve or update can be based on keys or arbitrary properties of the
data, or on a specification of how to find the data in the database.
The programming language interfaces to a state of the art DBMS should
allow both both record at a time and set at a time processing. These
interfaces will be used by application programmers and should thus pro-
vide the most flexibility and power in accessing the databases.

An Interactive Query Language Interface allows users at terminals to
retrieve and update data in the database by specifying the records or
sets of data to be retrieved or updated. These interfaces are generally
used by programmers and experienced database users and still provide
considerable flexibility in manipulating data although less than is nor-
mally possible through the programming language interface.

A Screen Oriented Interface allows a user to select data for
retrieval and update through menu selection and form completion. These
interfaces can be used by casual and ad-hoc users but generally provide
much less power than the other types of interfaces.

A Bulk Load/Unload Utility is used to exchange large quantities of
uniformly structured data between the database and files. The inter-
faces are required for loading large amounts of data from sensors or for
preparing data for input into other programs such as spreadsheets, text
processors, etc.

A Report Writer is used to specify the format of printed or screen
oriented reports and generally provide for automatic headers and
footers, page numeration, and data subtotals and totals.

An Application Generator is used by application programmers to
specify the user interaction and the effects of the user interactions on
the database. The specification usually includes the definition of a
form and menus, where values on the form are to come from (the user or
the database), and the actions that are to take place as the user com-
pletes fields on the form or makes menu selections. The application
generators are designed to provide uniform styles of interfaces to the

160

Database Management Page -6-

users, and greatly reduce the costs of application development and
modification.

In summary, database management technology, incorporates a wide range

of capabilities that are available through a wide range of interfaces.
In the next section, we describe software levels that are required to
support the database functions.

2.3 Architecture Levels and Alternatives

The software architecture layers required to support the database

Interfaces /

I - Programiing languages
- Interactive query languages
- Screen interfaces

SI Report writer
I - Bulk load/unload utility

- Application generators /

\ Semntc Data oel/

I - Entity-relotionshl model I- DAPLEX /

~Class~col Dta M oel /

Re- Relational
- Network

-Hierarchical

IAccess Methods

- Multi-keyed

-Indexedn
- Hierarchical
- Seauential I

I O.S. Level /
I- Files

I~ -1/0

Figure 2.2 Database Management Levels

management technology are shown in Figure 2.2 Each of these areas is
discussed below.

161

Database Management Page -7-

Operating System Requirements

The operating system level is the bottom-most layer of the architec-
ture. This level of DBMS software provides basic file access, buffer
management and interprocess communications services. These services are
similar to the services provided by an operating system but are tailored
specifically to the DBMS. Ideally, most of the services are provided
directly by the underlying operating system and there is very little
DBMS code at this level. The extent to which this can be achieved often
has a large impact on overall DBMS performance. A summary of require-
ments is presented below.

In the area of file access, the requirements are control over the
physical allocation of pages on secondary storage and control over when
and in which order pages are written back to secondary storage. To
improve efficiency, modern operating systems keep a cache of recently
referenced file pages in main memory. Buffer management requirements
are concerned with the way in which pages are replaced in this cache.
In most operatinig systems, a least recently used (LRU) replacement algo-
rithm is used to replace pages when the cache fills up. This type of
replacement algorithm is not well suited for the type of processing done
by a DBMS. A DBMS often knows the likelihood that a page will be re-
accessed. To efficiently utilize the cache, the operating system must
allow the DBMS to pass this knowledge to its buffer manager. The final
requirement is interprocess communication. For security, efficiency and
flexibility reasons, it is desirable to have DBMS applications running
in separate operating system processes from the DBMS. To achieve this,
the operating system must provide an interprocess communications mechan-
ism that is oriented ...-s passing potentially large volumes of data
between the DBMS and the application program.

To achieve machine independence, it would be desirable to make the

above services available through a standard Ada runtime system. Note
that the Ada tasking mechanism, which is a program relative concept,
would not provide the required interprocess communications facility
since the DBMS and its applications would be running as separate Ada
main programs.

Access Methods

An access method is built on top of a host file system and is gen-
erally used to provide update and retrieval access to one type of record
in a file. Given a 'key' or property of a record (or set of records),
the access method typically updates or retrieves the record (or set or
records) with the given property. The most common kind of access methods
are described below.

A sequential access method accesses (retrieves or updates) the
records in a predetermined order. The properties of the records must
specify either the first record or the 'next' record in a sequence. For
fixed length records, the access method may support accessing the 'nth'
record.

A hierarchical access method accesses several record types in a
predetermined hierarchical order. For example, a department record
access would be followed by accessing all of the employees in a depart-
ment. As with a sequential access method, the properties of the record

162

Database Management Page -8-

are positional in nature, i.e. the first department record, the first
employee record for that department, the next employee record, the next
department record, etc.

An indexed access method can be used to access records in the file
with a given key (not necessarily unique) value. An index tree can be
maintained and used to locate the records with a given key value. The
common index access methods such as ISAM and VSAM often support both
indexed and sequential access for a file.

A hashed access method is used to provide rapid random access to a

specific record or set oi records. A hashing function is used to com-
pute a potential disk address for a given key value. The record(s) will
be stored at (or 'near') that address. A hash based access method gen-
erally provides the fastest access method for a single record but does
not efficiently support the sequential retrieval of all of the records.

A Multi-keyed access method provides for the accessing of records
according to the values of more than one key. For example, one could
access employee records by social security number or by date hired.

Multi-keyed access methods are generally implemented by combinations of
the other access methods. In some multi-keyed systems it is possible to
specify primary and secondary indexes.

The access methods above and certain variations have been used to
implement what is sometimes called a File Management System (FMS). An
FMS supports some of the capabilities of a more general DBMS and can be
used by themselves from programming languages and some interactive query

languages. As the FES grows in complexity and power -to support shared
access, they begin to resemble a full DBMS.

Classical Data Models

A state of the art DBMS can be built on top of access methods and
file systems like those described above. The DBMS, however, will typi-
cally support data representations of information contained in multiple

types of records. The data representation power of commercial DBMS's
can normally be described in terms of one of the hierarchical, network
or relational data models. In addition to providing different data
representation and structuring capabilities, current systems often
differ widely in the power of the supported operations. The data
representation and operation capabilities normally associated with the
three classical data models are described below.

The hierarchical data model in fact was originally based on hierarch-
ical access methods which contained multiple types of records arranged
in a predetermined hierarchical order. A full DBMS which supports the
hierarchical data model today may in fact support multiple hierarchies
and use a variety of access methods to implement the hierarchies. Thus
from a data representation point of view, a hierarchy represents a logi-
cal relationship between the record types and not necessarily how those
records are stored on disk.

The network data model was defined by the CODASYL Data Base Task
Group (DBTG). The DBTG model was a generalization of the hierarchical
model in that it allowed a record to be part of more than one hierarchy.
The DBTG network model definition originally included only record at a

163

Database Management Page -9-

time processing commands such as find 'first record' or 'find next'
record operations. A DBMS supporting the DBTG network model could be
built on top of any of the access methods discussed above.

The relational data model was defined as a collection of independent
record types called relations. Fields in these record types are called
attributes. Relationships between different relations can only be
based on field values in the relation. It is the simplicity of the data
structures which has facilitated the development and implementation of
the powerful set of operations generally associated with relational
query languages. The relational data model, like the other two data
models, could be built on top of combinations of the access methods. It
would even be possible to utilize a hierarchical access structure.

While the three data models could be built on top of a library of
access methods, they historically have not been. The DBMS's instead
implement their own access methods in order to have more direct control
over the concurrency, security, and recovery mechanisms.

Semantic Data Models

The next level of database management technology will be provided
through database management systems that support a 'semantic' data
model. A semantic data model generally encapsulates powerful data
representation constructs such as those found in the network model
together with the powerful database operations normally found only in
relational systems.

The best known semantic data model is probably the entity-
relationship model. That model is used to represent information about
objects or entities in an organization and the relationships between
those entities. The relationships that can be specified are more gen-
eral than those that are possible with the DBTG network model.

Currently, commercial systems are being extended to include the power
and flexibility found in what we are calling semantic data models. Com-
mercial DBTG vendors are providing or developing a relational query
capability. Similarly, relational vendors are beginning to support
referential integrity where only the legal field or attribute values of
one relation must match the values of keys in another. Both of these
developments are borrowing heavily on the research and implementation
experience of the alternate database models.

Interface Level

The final level of database management technology is the interface or
applications level. These interfaces described in section 2.2 can be
used to invoke database management functions on operating system files,
file management systems which support one or more access paths, DBMS's
that support one of the classical data models, or one of the semantic
data models of the future. In general, the higher the level of the
interface to the data management functions the easier it should be to
develop, maintain and modify the applications. It should thus be more
cost effective to develop an application using any one of the three
classical data models than if only file systems were used. On the other
hand, the development costs of a general purpose DBMS can be expected to
be much greater than that of a file system. Furthermore there is often

164

Database Management Page -10-

a performance overhead associated with going through several layers of
software.

One of the key design decisions at this layer is how to best make the
powerful database management capabilities available to the different
classes of users. The same level of database operations should be
available through any of the different interfaces. The programming
language interfaces should be able to invoke the full power of the query
languages. Similarly, the report writers and bulk unloaders should be
capable of operating on any subset of data that can be specified through
a screen or interactive query language. It is through the careful
integration of these capabilities that the full power of the DBMS's
becomes most useful. In most current commercial DBMS's the required
integration is lacking.

2.4 Database Performance

The performance that can be expected by a DBMS is extremely difficult
to quantify and predict. The performance is extremely dependent on the
specific application and the computer systems on which the system is
running.

One metric for database performance is in terms of the number of
update operations which can be performed in one second. On the largest
mainframe systems, for the simplest applications, DBMS's have been
reported to achieve 10 to 20 updates per second. For the super-mini
class machines, updates rates have normally been limited to 2 to 8
updates per second. For 16 bit micro processors, these rates are prob-
ably down to I or 2 updates per second. Unfortunately, these times are
for extremely simple updates which update one record based on one access
path. Typically, a minimum of three disk I/O's would be required for
each update. For real applications, factors such as the sizes of the
records, sizes of the databases and the number and types of access paths
will greatly effect the system performance.

Other metrics that have been used for DBMS performance can be based
on the time the DBMS takes to retrieve a 'large' set of records in
response to one command. Unfortunately, this metric is even more appli-
cation dependent and general figures such as records per second are gen-
erally not very meaningful. For a given application, however, values
for this metric could be estimated for different DBMS's.

In general, the performance challenge for an Ada DBMS is to provide
considerable flexibility in choosing and combining access paths so that
the physical database design can be tuned for a given application. Even
with this flexibility the database performance requirements may have to
dictate the class of machine which is suitable for a given application.

165

Database Management Page -II-

2.5 Technical Challenges

In summary, the development of database management technology must

provide for the efficient use of varying levels of capabilities and per-
mit continuing evolution for increased functionality. The key technical
issues that must be addressed for an Ada compatible system are:

1. Supporting data management functions in the Ada environment

2. Accessing those functions through Ada Programs

Each of these issues is discussed in turn.

Database Management for the Ada Environment

There are three basic approaches to providing database functions in

the Ada run time environment. The first approach would be to import one
or more existing database management systems. The advantage of this
approach is that an available and stable DBMS could be made available in
the very near future. However, there are some very important issues
that must be addressed in any such importation. Consider the two ways
in which foreign DBMS software could be introduced into an Ada runtime
environment. The first method results in a tight coupling by using the
Ada pragma "interface" to load the DBMS software together with an Ada
application program. In all commercial Ada implementations that we have
examined to date, this method would fail because of conflicts between
the DBMS software and Ada runtime system software's use of operating
system resources. For example, if the DBMS software is running within

an Ada task any I/O operations done by the r3mS software will most
likely cause the entire Ada program to block because the Ada runtime
task scheduler is unaware that the DBMS software has issued an I/O

request. Perhaps a better method is to loosely couple a foreign DBMS
with an Ada runtime environment. In this method, the DBMS software runs
as an independent operating system process. Ada application programs

communicate with the DBMS by making Interprocess Communication calls
(IPCs) that are supported by the operating system. This method would
require that such an IPC interface be supported by the Ada runtime sys-
tem.

A second approach to providing DBMS capabilities within the Ada run-
time environment would be to develop an integrated DBMS in Ada. This
approach would result in a more portable DBMS and applications that use
the DBMS. However, some of the issues for the imported system still
hold for a DBMS developed in Ada. Because the DBMS software is the
manager of a shared database resource, should it be viewed as an
indepedently executing program or should it be loaded as a common task
with respect to all of the Ada application programs. Implementing the
DBMS in Ada solves the problem of conflicts with the Ada runtime system
(assuming the low level capabilities required by the DBMS are provided
by the Ada runtime system). However, the requirement to provide service
for independently executing application programs would probably dictate
that the DBMS itself run as an independent Ada program. Again, this
would require that the Ada runtime system provide an efficient IPC
mechanism.

166 .

Database Management Page -12-

A third and more general approach would be to build a library of
database management components. The library could include separate
access methods, support for one or more of the data models, separate
utilities, such as bulk loaders, report writers, etc. One advaatage of
this approach is that a subset of components, such as an access method,
could be used by application programs that do not require full DBMS
capabilities. In addition, full DBMS programs that are tailored for
particular environments could be constructed by selecting an appropriate
set of components. The challenges of this approach would be to coordi-
nate the support for multiple users, recovery, authorization, buffer
management and other functions that would be commonly shared in an
integrated DBMS. A key issue that must be addressed is whether these
components can be implemented as Ada generic packages or whether they
must be description driven. If Ada generic packages are used, a DBMS
component would be instantiated for a particular database definition.
The access methods, for example, would be compiled against the specific
record types in the database definition. This approach may offer per-
formance gains at the expense of functionality (i.e. very limited
multi-user capability, fixed size fields and records). If description
driven components are used, a single DBMS component is used for all
database definitions. The access methods, for example, would store data
as streams of bits and would use the record types in the database defin-
ition to interpret this data. Unchecked conversions would be used to
move the data into Ada records defined in the user's application pro-
gram. This approach offers increased flexibility at some performance
cost.

Ada Proaramming Language Interface

In addition to making the database management technology available in
the Ada environment, the relationships between the database languages
and Ada must be addressed. The Ada programming language interface to
the DBMS capabilities can also be provided through several alternative
approaches. First, each Ada program could generate the character string
which composes the DBMS command and send that string to the DBMS. The
advantage of this approach is that it could be used to access any DBMS
that could accept strings of commands from other processes. There are
three main disadvantages to this approach. First, the specific DBMS
syntax is embedded in the data of the application programs. This would
make portability between different DBMS's (even if they supported the
same data model) practically impossible. A second disadvantage would be
that the Ada program would have to use string manipulation and unchecked
conversions to build the syntax of each command. This can be a very
error prone and time consuming process. Finally, this approach would
not allow for any compile time optimization of the database requests.

A second approach would be to develop a Database Package Generator.
The application programmer would use a utility to specify an Ada compa-
tible visible portion and a parameterized database command. The visible
portion would contain Ada record definitions and entry points to intial-
ize the command and to fetch records one at a time from the DBMS. The
database command would embed the parameters passed through the initiali-
zation entry point into a general database language. The utility would
submit the database command to the DBMS for optimization and generate an
Ada package that could be linked into a user Ada program. The Ada pro-
gram would supply the required parameters and invoke the database com-
mand. The Ada package that was generated by the Data Package Generator

167

Database Management Page -13-

Utility would pass the command to the DBMS and buffer the records to be
returned to the user Ada program. That program would retrieve one
record at a time through a fetch record entry point. This approach
could be used to achieve a degree of portability by specifying the data-
base commands in a generic language which could be translated to the
syntaxes of different systems. One disadvantage of this approach is
that the applications programmer must go through two steps to _:,e pro-
grams that access a database. A second disadvantage is that the Ada
program which invokes the generated database package, must invoke the
package entry points in the correct sequence.

These disadvantages motivate the third approach where the database
commands are integrated with the Ada commands. A preprocessor generates
the Ada packages similar to those described above. In addition, the
preprocessor generates the correct Ada program which calls those pack-
ages. This approach is taken by many commercial DBMS's to provide pro-
gramming language access to databases. It is the easiest for the appli-
cation programmer to use, allows optimization of the database operations

at preprocessing time, and allow for the development of alternate
preprocessors to provide portability.

3. Case Studies

As outlined in section 2.3, the database functionality can be pro-
vided at several different levels and through several alternative data
models. Futhermore, it is difficult to estimate the costs of developing
any one of the levels or alternatives since database management system
development is an evolving process and in some sense is never completed.
Historically, many of the existing systems started as research proto-
types and later evolved into commercial products. These and other DBMS
products normally undergo tremendous revisions once they have been
released to both improve performance and add functionality. Thus the
time and level of effort required to develop a given system is not
necessarily a good measure of how long it would take to implement that
same system again.

This section presents case studies of four database management sys-
tems. The systems studied were selected based on the amount of detailed
performance and development data we had available. In fact that was our
primary motivation in selecting two systems that were developed by CCA.
For the other systems, it should also be pointed out that our develop-
ment estimates are based on personal, informal contacts and do not
represent estimates from the vendors themselves. Similarly, the perfor-
mance results are not based on our own benchmarks and should not be used
to make any comparisons or absolute conclusions about the systems per-
formance. Instead, the performance figures are representative of the
types of performance that can be expected on a given class of machine
for a given application. Case studies are included for the following
systems:

1. Model 204 - is CCA's commercial system with relational capabilities
that is available on IBM systems. It has been included because a
detailed estimate of the level of eftort required to reimplement the

system in a high level language has been developed.

168

Database Management Page -14-

2. Oracle - is a commercially available relational system that runs on
32 bit mini computers. It is included since it was one of the first
relational systems and has been ported to a number of different sys-
teros.

3. DBMS-20 - is a commercially available DBTG network system and is

included in order to compare it to the relational systems.

4. LDM - is a prototype system being implemented (95% complete) in Ada
by CCA. It is included because of the relevant Ada experience and
because it provides us with detailed and comparable size estimates
for the various components of a DBMS.

These systems are described below.

169

Database Management Page -15-

Name of System: Model 204.

Developer: Computer Corp. of America, 4 Cambridge Center, Cambridge, MA
02142.

Description of System: Model 204 is a general purpose database manage-
ment system with relational capabilities.

Database Definition: A Model 204 database is made up of one or more
files. Each file consists of a set of fields. Records in the file can
be kept in entry order, sorted, or hashed on a single key field. In
addition a hashed based index on any field can be requested

Retrieval and Update Capabilities: Retrieval and update functions may be
performed on individual records or sets of records. Data selection is
based on field values and correlation of field values.

Authorization Control: Security in Model 204 is password driven.
Authorization can be specified at the levels of login, file, procedure,
record, field, and terminal.

Multi-user Capability: Model 204 is designed to operate as a single,
online nucleus supporting a large number of simultaneous users with true
multi-threading.

Backup and Recovery Capability: A dump/restore utility and a
checkpoint/restart rollback/rollforward utility is provided.

Interfaces: Model 204 supports programming language subroutine call
interfaces for COBOL, FORTRAN, PL/l and assembly language; an interac-
tive query language interface with relational power; screen oriented
application development aids for IBM 3270 type CRT's; a report writer;
and bulk load utilities.

Performance: In ore benchmark study using a dedicated IBM 4341 group I
with 8 megabytes of main memory and running VM/SP, with Release 6.3 of
Model 204 running a VSI guest operating system, the insertion of 500
records, each with 10 indexed fields and 50 non-indexed fields and com-
mitted individually, took 115 seconds. This translates to about 4
updates per second.

Ouality: Model 204 is a production quality DBMS.

Development Team: Model 204 has continually evolved over the last 15
years. Information on its development over this period is not con-
sidered to be a reliable estimate of the effort it would take to develop
Model 204. Instead, we include the estimate of 18 labor years to
rewrite Model 204, without any architectural changes, in a high level
language. Note that this estimate does not include the cost of system
design and documentation.

Development Environment: Model 204 currently consists of some 150,000
IBM 360/370 Assembly language statements comprising some 1500 subrou-
tines in some 70 modules.

End Use: The first Model 204 system was sold to the Defense Department
in 1971. Today, there are approximately 200 installations of Model 204

170

Database Management Page -16-

running Release 6.5. Model 204's diverse applications range from

CAD/CAM applications at McDonnell Douglas, to budgeting applications at

the White House. The size of user organizations range from several
thousand programmers at ATT long lines, to a handful of programmers at

the Boulder Valley Public School System.

Comments: Model 204 is relevant for this study because it is quite

widely used within several Defense Department agencies. Its principal
strengths are its integrated interface and its high level of perfor-
mance. However, Model 204 achieves its high performance only by imple-
menting its own proprietory access methods at the channel program level.
Thus, the system is not easily transportable.

171

Database Management Page -17-

Name of System: Oracle.

Developer: Oracle Corp., 3000 Sand Hill Road, Building 3-180, Menlo
Park, CA 94205.

Description of System: Oracle is the first commercially available rela-
tional database management system. It supports SQL, the relational
language originally developed at IBM Research.

Database Definition: An Oracle database consists of a collection of
relations. Any field or attribute in the relation may be indexed with a
compressed B+ trees (similar to VSAM) index.

Retrieval and Update Capabilities: The data manipulation facilities of
SQL provide complete physical data independence. Retrieval and update
functions may be performed on individual tuples or sets of tuples. Data
selection is based on field values and dynamically defined relationships
(through matching among field values).

Authorization Control: Each relation in an Oracle database is owned by
its creator. Grant and Revoke commands are used for the delegation and
revocation of access privileges to other users.

Multi-user Capability: Oracle supports multiple concurrent batch and
online terminal updates and queries to the database. Concurrent
accesses are synchronized by locking at the relation or physical page
level.

Backup and Recovery Capability: Checkpoint/restart, rollback/rollforward
facilities are provided for recovering from transaction failure, system
failure, and media failure.

Interfaces: Oracle supports a relational query language called SQL. All
SQL facilities can be used directly from a terminal or embedded in pro-
gramming languages like COBOL, FORTRAN, BASIC. In addition to the basic
SQL facilities, an interactive application generation facility and
report writer are supported.

Performance: According to one study using Oracle Release 2.3.1 running
on a dedicated VAX 11/780 with 4 megabytes of main memory, the following
benchmarks were obtained. With 8 concurrent users updating one field in
one tuple of the the same relation based on a unique key field took 8.69
seconds of real time on the average. This translates into about one
update per second. In a similar benchmark with only 4 concurrent users,
about 2 updates per second were possible. Note it has since been
claimed that later versions of Oracle have significantly improved per-
formance. However, the benchmarks still illustrate how factors such as
number of simulataneous users can greatly affect the performance of a
DBMS.

Ouality: Oracle is commercially available. However, the version that
runs on IBM machines is still being operated in beta test mode.

Development Team: According to our sources, the development of the first
releasable version of Oracle took 11.25 labor years over a 2.25 year
period. This included a 5 person assembly language effort for 1.5 years
and a 5 person effort over 9 months to convert and extend the system in

172

Database Management Page -18-

C. For the past 2 to 3 years from 5 to 10 people have been involved
with maintainence and further development. Reports have indicated sig-

nificant performance and functionality improvements over the originally
released version. We thus feel that the originally released version was
closer to what we would call an operational prototype system.

Development Environment: Oracle currently consists of about 2000 modules

totalling some 250,000 lines of C code. It is designed to operate on
almost all machines that support a C compiler. Transporting to a new

operating system environment requires changing about 30 of the modules.
Oracle currently runs on DEC PDP-11 under RSX-IIM+, RSX-lIM, IAS, RSTS,

and UNIX; on DEC VAX-Il under VMS and UNIX; and on IBM 370 series, 3000
series, and 4300 series under VM/CMS and MVS.

End Use: The first Oracle system was installed in June 1979. Today,
there are approximately 250 commercial and government installations.
Typical application areas include finance and accounting, manufacturing,
marketing and sales, and security analysis.

Comments:

Oracle is the most portable relational database system today because

of the wide availability of C compilers.

173

Database Management Page -19-

Name of System: DBMS 10/-20.

Developer: Digital Equipment Corporation, 146 Main Street, Maynard, MA
01754.

Description of System: DBMS 10/-20 are specifically designed to work
within the environment of DECsystem 10/-20 under the TOPS 10/-20 operat-
ing systems. They implement the 1971 CODASYL DBTG network data model.

Database Definition: Each database is made up of a collection of record
types, set types, and areas. Each set consists of an owner record and a
number of member records and represents a one-to-many relationship
between the owner and the members. Depending on access requirements,
embedded pointers to owner, next member, prior member can be maintained.
Multiple access paths to a record are provided by allowing a record to
belong to multiple sets of different types. Records can be placed
within an area by hashing, relative addressing, or close to the owner of
a set occurrence of which it is a member. This is similar to a
hierarchical access method.

Retrieval and Update Capabilities: Retrieval and update functions can be
performed on individual records only. A collection of 17 procedural
verbs are provided for navigation within the network database. These
include operations for opening and closing areas, storing and deleting
records, inserting and removing records to and from a set, and six dif-
ferent forms of finding a desired record.

Authorization Control: This is handled through privacy lock and key
mechanisms.

Multi-user Capability: Mutual interference between transactions is
avoided through locking. Access control statements are included in the
data definition to specify whether a running programming is to lock each
area for the duration of a transaction, or to lock only those pages that
are actually touched by the transaction.

Backup and Recovery Capability: A journal capability is provided to
ensure the integrity of updates. The journal file is used to store
before and after images of transactions in order to support recovery
from both system and media failures.

Interfaces: Application programs can be written in extended COBOL or
FORTRAN. The COBOL compiler is modified to accept the extended COBOL.
A preprocessor is used to translate the extended FORTRAN into pure FOR-
TRAN with embedded procedural calls on the run time system. No report
writer interface, bulk-load interface, or applications generator inter-
face is currently provided. A relational query language interface and a
screen-oriented interface are planned for the near future.

Performance: For a 1-MIP machine, up to 20 single-record update transac-
tions can be performed per second.

Ouality: DBMS 10/-20 are production quality DBMSs.

Develogment Team: The original development of DBMS 10/-20 took about 25
labor years The cost of recoding the system in a high level language is
estimated at about 10 labor years.

174

Database Management Page -20-

Development Environment: The complete system, including both the COBOL
and FORTRAN interfaces, consists of some 175,000 lines of DECsystem
10/-20 macro assembly language statements. These can be broken down
into 2 communications modules (2 subroutines), 10 top-level modules (150

subroutines), 6 utility modules (100 subroutines), 4 kernal modules (50

subroutines), and 4 operating system modules (25 subroutines).

End Use: The first installation of DBMS-10 was delivered July 1973.

Today, there are over 200 installations of DBMS 10/-20.

Coimnents: The basic capabilities of DBMS 10/-20 are representative of

those found in CODASYL DBDG network systems. The performance of DBMS
10/-20, however, is better than the average network systems because sys-
tem services provided by the operating system are fully exploited.

175

Database Management Page -21-

Name.of System: Local Data Manager (LDM).

Developer: Computer Corp. of America, 4 Cambridge Center, Cambridge, MA

02142.

Description: The LDM is a general purpose DBMS that implements the

semantic data model and a data definition and manipulation language
called DAPLEX. This is a prototype system that is being implemented in
Ada for DARPA and the Navy (NAVELEX) under contract number N00039-82-C-
0226.

Database Definition: Logical database definition parallels data type

definition in Ada. All data is strongly typed. A database definition

consists of a collection of record type definitions (called entity
types). Record types may be organized into supertype/subtype hierar-
chies. Fields may be defined to hold a single value or a set of values.
Fields may also be used to define explicit relationships between record

types. An optional physical database definition may be included that
specifies how a database is to be physically stored. Three types of
dynamic file organizations are supported; sequential, random using a
linear hashing technique and ordered using a B*-tree. Secondary indexes

may be defined to provide multi-key access.

Retrieval and Update Capabilities: Retrieval and update functions may be

performed on individual records or sets of records. Data selection is
based on field values or relationships. No user knowledge of the under-
lying physical storage structures is required. The DBMS contains an
optimizer that determines the most efticient way to access the requested
data.

Authorization Control: Access is controlled down to the field level on a
per user basis.

Multi-user Capability: The LDM supports multiple concurrent readers and
updaters of a database. Users enter transactions which consist of one

or more retrieval or update commands. The LDM transaction manager con-

trols the interleaved execution ot these transactions in a manner which
insures database consistency.

Backup and Recovery Capability: Backup and recovery facilities are pro-
vided that guarantee database consistency across both software and
hardware crashes.

Interfaces: An interactive language interface is provided that supports

database definition, authorization, retrieval and update commands. A
bulk load interface is provided to efticiently load large quantities of

formatted data.

Performance: Performance analysis is waiting for a f- -c compiler.

Quality: Prototype system - The system is still under development. An

initial version, implemented in an Ada subset, using an Ada to Pascal
translator, is scheduled for release in March, 1984. A full-Ada version
is scheduled for release in January, 1985.

Development Team: The level of effort required to develop the Ada subset

prototype system is shown in Figure 3.1. A total of 11.25 labor years

176

Database Management Page -22-

is required to produce the prototype. We beleive this is an accurate
estimate as this phase of the project is nearing completion. Although
this prototype implements the majority of the functional requirements of
a modern DBMS only minimal effort has been directed towards testing,
tuning and documentation. Large efforts are normally spent in these

lProject Phase Level of Elapsed Staff
I Effort Time
I (Months) (Months)

]Research/
[High Level Design 30 15 2
IDetailed Design/
lImplementation 105 30 3.5

I Figure 3.1 LDM Prototype Level of Effort Summary

areas for production quality systems.

Figure 3.2 shows the size of the major areas of the system. These
sizes are used in Section 4 to estimate the proportion of time required
for developing the different components of a DBMS. Packages refer to the
number of Ada packages in each area. Code summaries are given for pack-
age specifications and package bodies. These counts refer to source
lines that contain at least part of an Ada statment. Blank lines and
lines containing only Ada comments are not included. Routines refer to
the number of Ada procedures and functions contained in the packages.
The User Interface includes the parser, semantic analyzer, query sim-
plifier, terminal interface, output data formatter and various support
utilities. The Schema Processor includes facilities for database defin-
ition, directory maintenance and directory access. The Logical Data-
base Processor includes query optimization and query processing. The
Physical Database Processor includes the operating system interface,
buffer management, file management, concurrency control, recovery,

I Packages Code Routines
I Spec Body

IPhysical Database 39 5,274 44,102 1,134
I Processor

ILogical Database
I Processor 12 863 19,527 293

ISchema Processor 25 2,311 15,832 387

lUser Interface 94 7,849 47,182 1,721

[Total 170 16,297 126,643 3,535

I Figure 3.2 LDM Prototype Code Summary

177

Database Management Page -23-

record management and access methods. To give a feel for the amount of
code required to implement the access methods supported by the LD?1, a
further breakdown of the Physical Database Processor is presented in

Code Percent of Physical
Database Processor

IAccess Manager
Utilities 12,778 29%

lAccess Managers
Sequential 2,474 6%
B-Tree 5,815 13%
Linear Hashing 3,548 8%

Concurrency control,
IRecovery,
1B ffer Manager,
IFile Manager 11,400 25%

ISemantic Data Model
I specific support 8,087 18%

I Figure 3.3 Physical Database Processor Code Summary

Figure 3.3.

4. Analysis

This section presents an approach for providing near term database
management capabilities within an Ada runtime environment and outlines
capabilities that are expected to be available in the long term. Sec-
tion 4.1 gives an estimate of the cost of quickly providing an iterim
capability by interfacing to an existing (non-Ada) DBMS. Section 4.2
gives an estimate of the cost of implementing a DBMS in Ada. Finally,
Section 4.3 presents recommendations for mid to long term capabilities
that should be considered. Note that no attempt has been made to com-
pare or recommend existing relational systems. The selection of a sys-
tem should be based on the functional and performance requirements of
command and control applications. Such a requirements analysis is beyond
the scope of this report.

4.1 Interm Capability

An interim database management capability can be achieved rapidly
within an Ada runtime environment by importing an existing relational
DBMS. It is recommended that the loosely coupled method, described in
section 2.5, be used to achieve the connection. The recommended user
interface would be the Database Package Generator described in section
2.5. The Ada application programmer would specify a parameterized set
of database operations. The Database Package Generator would then
create an Ada package that contained the calls on the DBMS to implement

178

Database Management Page -24-

those database operations. The estimated cost of this interim capabil-
ity is 1.5 labor years over an elasped time of 9 months. This assumes
an existing DBMS on the target system and interprocess communication
capability (IPC) provided through the Ada runtime system.

4.2 Near Term Capability

The recommended near term capability is an easily reconfigurable
database management system implemented in Ada. This system would be
built out of a library of components. This approach would have several
advantages. First, components (such as access methods) themselves could
be used in application programs that do not require the full power of a
general purpose DBMS. Second, DBMS configurations tailored to specific
applications could be supported by selecting appropriate access methods
or user interfaces. As discussed in section 2.5, one open issue is
which components can be implemented as generic packages and which ones
must be description driven. Our feeling is that this issue will not
have much impact on the overall cost of providing the DBMS capability.
It is unlikely that an existing DBMS can be simply recoded in Ada and
still achieve the desired degree of modularity required to form a good
library of components. A careful design of the interfaces between these
components must be conducted to insure that they can be used alone and
in combination without significant impact on performance. It is our
belief that such an analysis would result in architectural changes to
most systems that would prohibit a simple translation of existing code
into Ada.

The estimated cost of a near term DBMS capability is shown in Figure
4.1. These estimates are based on information obtained from the case
studies and CCA's own experience in implementing database management
systems including implementing a DBMS in Ada. Estimates are given to
reach both the operational prototype and production quality stages. The
PDP subsystem includes low level components simillar to the ones shown
in Figure 3.3. The full system includes several access methods, con-
currency control, recovery, Ada application program interface, query
language processor, report writer, applications generator and bulk
loader.

Prototype Production Elapsed Time
Level of Level of (Years)
Effort Effort
(Years) (Years)

IPDP Subsystem 4 8 1.5

IFull System 12 25 3.0

I Figure 4.1 Cost Estimates for Ada-based DBMS Capability

179

Database Management Page -25-

4.3 Kid and Long Term Capabilities

In order to meet the mid and long term requirements for command and
control, advances in database technology in the following areas will be
required.

Distributed and replicated database capabilities will be required for
performance and survivability. The size of the totality of command and
control information necessitates that the database be distributed across
several processors. Furthermore, critical data should be replicated on
geographically dispersed processors in order to insure that it will be
available when needed. The applications should be built independantly
from the distribution and replication ot the data. The DBMS should pro-
vide for the automatic location of the required data and the consistent
updates of the replicated copies. Otherwise programs would have to be
changed whenever data is moved or copied. There are currently no com-
mercial DBMS's available that provide for automatic distribution and
replication, although several prototypes have been developed. It is
expected that this capability will be available for WWMCCS in the next 3
to 4 years.

Real time DBMS capabilities may be required in order to provide rapid
enough response time. A real-time DBMS system would provide for
separate database definitions, logical retrieval and updates independent
of access paths, authorization, multiple user, back-up and recovery
capabilities for data maintained in main memorey. All of these capabil-
ities would be provided by having programs share portions of main
memory. Existing DBMS's, on the other hand, have not been designed to
manage data in main memory. A research effort would be required to
develop this technology for real-time command and control.

Multiple Media DBMS capabilities would extend DBMS's to store text,
voice, picture, graphics, and geometric data together with formatted
records. Currently, separate systems are used for each of the current
types of data. With this approach, it is often difticult to query the
different types of data. In addition, security, multiple users, and
back-up and recovery capabilities are either not existent with the other
kinds of data or must be separately implemented. Again a research
effort would be required to sufficently develop this capatility for long
range command and control systemr.

Expert System Support capabilities will be required to implement
expert systems on top of large shared databases. Existing expert sys-
tems are built on top of small databases which in many cases are
entirely contained in main memorey. Thus the information used by the
expert systems is generally not directly available in a shared,
separately defined database. Similarly, existing DBMS's do not directly
support the specifications of rules about the data they maintain. The
evaluation of the rules then can not be directly integrated with the
DBMS query optimization and processing. As a result the existing expert
systems technology is not readily extendable to large quantities of
data. Again a research effort would be required to extend database
technology to support and enhance expert systems.

180

i, ,,, =,.

Database Management Page -26-

5. Conclusion

In conclusion, database management technology will play an evolving
role in the development and support of WWMCCS. Database Management Sys-
tems will be used to reliably store critical information, adapt to
changing uses and content of that information, and eventually may pro-
vide real-time, selective and intelligent access to the specific criti-
cal information that is required for a given situation.

The database technology today has reached a state of development so
that an adaptable, single site Database Management System can be
developed in Ada within a 3 year time period with a 25 labor year level
effort. The system could be developed to provide both integrated DBMS
capabilities and to allow the construction of tailored DBMS capabilities
to meet the needs of a given application. The key technical challenges
for that effort will be to integrate those capabilities with the Ada run
time environment and the Ada programming language.

In the interim period it would be possible to develop Ada interfaces
to existing relational DBMS's. It is estimated that this effort would
require a 1.5 labor year effort over a period of 9 months. Again, the
challenges of this effort would be to support the foreign DBMS as a
separately running process and to readily access the data from an Ada
program.

Distributed database management technology is maturing as several
prototype system development efforts are underway. Production quality
systems are expected to be available in 3 to 4 years. The WWMCCS
development should plan to incorporate this technology at that time.

In the long term, a considerable research and development effort

would be required to provide a multi-processor DBMS which supports mul-

tiple types of data including text, image, graphics and voice data and
provides the rapid real-time and expert system responses that could be
effectively used in command and control.

181

TEXT PROCESSING SYSTEHS

Technical Area Report

Prepared by

Newburyport Computer Associates, Inc.

27 Fair Street
Newburyport, Massachusetts 01950

for

INTERMETRICS
Washington Division

4733 Bethesda Ave. Suite 415
Bethesda, Maryland 20814

183

k-DjCNG'I pAGJi ILAMK-NoT Tih

TEXT PROCESSING SYSTEMS
Technical Area Report

1. OVERVIEW

The product under discussion is a text processing system which in its sim-

plest form is a word processor and in its fully-implemented form comprises the

text-based components of a full electronic office system. The most basic sys-

tem would provide full text editing of documents of any size, on-screen for-

matting in real time, and background output to a letter-quality printer. It

would have a fully interactive word processing-style interface. The more ad-

vanced version would support printers with multiple-font and size capability

and typesetters, and would include features such as teleconferencing, elec-

tronic mail, and integrated graphics. It might have a more sophisticated user

interface (for example icons and a mouse) and would allow for rapid context

switching between environments as well as simultaneous viewing of different

types of user files.

In order to distinguish the basic level system from the more advanced sys-

tem, we shall use the term "word processor" to mean a basic-level system, and

"text processor" to mean a more advanced office automation system.

The case studies describe two word processors and a collection of various

aspects of some typesetting projects. The two word processors run on stand-

alone microcomputers under single-user operating systems. One was written for

a European company as a dedicated word processing product in assembly lan-

guage, the other was written in UCSD Pascal in the U.S. as a software package

to run on a manufacturer's machine. The first was designed and largely written

by the authors, the second was completely written by the authors.

The systems which drive typesetters are discussed in order to provide some

basis for the analysis of more advanced features especially as related to lev-

el of effort estimates.

185

k 'iiChiJLG P&A BLAM@-NOT P2 j.0i

L AD-A142 570 WIS IMPLEMENTAlION STUDY REPORT VOLUME 3 BACKGROUND 1
INFORMATIONU) INSTITUTE FOR DEFENSE ANALYSES 3

AEXANDRIAVA TH PROBERT 01 OCT 83 IDA-D51-00-

AEEEEEEE4234 MA9379c hhhEE/ 1/2N
EENIhEEEEE

EEEEEEEEMhEEEE
mEMMMhhEEEEMME

EhMMhEEEMhEEEE
EEEEMhMhhEEMhE

°1.0

- 111112 2urn ~*1.8

v ,1 , I pIN 'Nl

TEXT PROCESSING SYSTEMS
Technical Area Report

Performance Metrics

Performance is critical in word and text processors because of their high-

ly interactive nature. A good word processor has real-time on-screen format-

ting, immediate response, and a sophisticated user interface. In fact, the

main distinction between a true word processor and a text editor lies in the

user interface more than in the functionality, although there certainly are

functional differences as well. Word processors have become ubiquitous not

only because they are vastly more efficent than typewriters but also because

they are easier to use than standard computer text editors. This ease-of-use

is a result of not just the improved style of the user interface but also of

superior performance.

Specific performance goals are as follows:

1. Text should be scrollable in the vertical direction at a level of at

least 10 lines per second.

2. System response times for the following features should be at the level

of a very fast typist (.06 seconds):

Insert character (including wordwrap down to the next line)

Delete character (including wordwrap up from the next line)

3. System response times for the following features should keep up with

the repeat rate of the keyboard (.06 to .10 seconds):

Cursor left, right, up or down

Horizontal scroll of one column

4. System response times for the following features should be perceived as

instantaneous by the user (less than .1 seconds):

Delete word or line

Cursor jumps to anywhere on the screen

186

TEXT PROCESSING SYSTEMS
Technical Area Report

5. System response times for the following features should be less than 1

second:

Reformatting the entire screen (with a 20-line screen this is 20

lines per second, with a full-page screen it is 66 lines per second)

Move or copy blocks of a few lines.

Level of Effort of Implementation

As shown in the case studies, a basic word processor requires about3.25

man-years of development time in a higher-level language, assuming a develop-

ment team consisting of senior level personnel. The assembly language project

described in the case studies required about the same level of effort, and in-

cluded development of a file system to support scrolling in both directions of

the word processing files and a simple dedicated operating system. The two

systems are roughly equivalent in functionality. However, an important differ-

ence between the two systems is the quality of the user interface. The higher-

level language word processor has a vastly superior user intertace, and in ad-

dition supports multiple kinds of terminals and printers.

These experiences show that an elapsed time of 18 months from conception

to product should be assumed as a minimum for a word processor. At least three

months should be allowed for in-house quality assurance and beta testing at

user sites.

The additional effort required for each capability beyond the word proces-

sor stage can be estimated by examining individual projects which implemented

certain of the features that would be included in an advanced text processor.

The following project required 6 man-months of one senior-level person with

extensive experience in that application:

Batch (non-interactive) typesetting hyphenation and justification (format-

187

TEXT PROCESSING SYSTEMS
Technical Area Report

ting) program using an average development environment in assembly lan-

guage on a single-user minicomputer.

The following project required appproximately 2.4 man-years using middle level

people with some experience in the area:

An interactive justification package for a dedicated direct-entry, micro-

based typesetter, without hyphenation. This project was developed in

Assembler using a primitive microcomputer development environment.

The following project required about 10 man-months of one senior person and 3

man-months of one junior-level person:

A three-user micro-based 'word processing' and typesetting system with a

letter-quality printer and a small typesetter online. The effort involved

the development of a simple editor, batch hyphenation and justification,

and typesetter and printer drivers. Development took place on an Intel

8080-based development system in assembly language,

These examples illustrate the difference in development effort between inter-

active and batch systems, the interactive versions costing considerably more

development time. When adding typesetting capability to a word processor, the

environment should be kept interactive.

2. DISCUSSION OF FUNCTIONAL REQUIREMENTS

The functional requirements of a word processor can be divided into the

following major areas: 1) Editing, 2) Formatting, 3) Printing and Pagination

4) Ancillary support functions. Although several of the functions from the

user's viewpoint will overlap two or more areas, most functions fit more logi-

cally into one category than another. Besides, this breakdown turns out to be

a useful one for allocation of development responsibility as well. The minimum

functional requirements for a word processor include the following:

188

TEXT PROCESSING SYSTEMS
Technical Area Report

Editing

The word processor should be able to perform all standard editing op-

erations including insert, delete, move, copy, search and replace, named

saves and restores. Cursor motion should include not only up, down, left,

right, and scrolling vertically and horizontally, but also rapid jumps to

text objects such as words, paragraphs, pages. There should be no arbitra-

ry restrictions on document size or the size of move or save blocks. Files

should be freely scrollable forwards or backwards.

Formatting

The format of the text (line endings) should be continuously updated

during editing, although not to the extent that screen motion becomes so

frequent as to be an annoyance to the user. Centering, right-alignment,

justification, tabs, and indents should be shown on the screen as closely

as possible to the way they will be printed. Some sort of hyphenation aid

should be provided, if not an automatic hyphenation. Attributes such as

bold, underlining, sub- and superscript should also be shown as accurately

as possible. Because output is to a letter-quality printer, the screen

should resemble that printer's output as closely as is feasible. Memory-

mapped screens are usually the best choice for displaying these character-

istics and keeping the formatting changes updated in real time, but termi-

nals can also be used with some restrictions.

Word processors customarily use a format ruler as the vehicle for de-

fining tabs and margins. The ruler should be easily editable. The capabil-

ity of interspersing multiple format changes (rulers) throughout the text

should be available. Formatting should be integrated with editing as much

as possible, and it should definitely not require the execution of a sep-

189

TEXT PROCESSING SY9TEMS
Technical Area Report

arate formatting program. Formatting commands such as center and indent

should be entered in a menu-driven or prompted format, contrary to the

command formats of most text editors with separate formatters and of

almost all typesetting systems.

Formatting is the most critical area because it is both the most dif-

ficult part to implement and simultaneously has strict performance re-

quirements.

Printing and Pagination

Some kind of facility for breaking the text into pages and numbering

of pages is required, along with the ability to define multiple headers

and footers. (Some word processors require the text to be created initial-

ly in pages of a fixed maximum length, but that is generally regarded as

undesirable by today's standards).

If multiple printer types are to be supported it is desirable to have

a general table-driven printer interface. (The same is true of type-

setters). Printing should make maximum use of the capabilities of most

letter-quality printers which include boldface, underlining, sub- and su-

perscript, changeable printing elements, variable line spacing and vari-

able horizontal spacing for justification. Single sheet feeding and chang-

ing of the print element by the operator should be supported in back-

ground.

Ancillary Support Functions

An on-line Help facility has become a standard for word processors

because of the complexity and number of the functions provided. Having a

directory of documents available without leaving the word processor is al-

so extremely desirable.

190

TEXT PROCESSING SYSTEMS
Technical Area Report

A mass mailing package that supports simple data entry of names and

addresses which can be merged into a template letter and printed should be

included a a minimum. Such a package is sometimes expanded to the level of

a small data base with sorting and selection of records.

Features for a more advanced word processor could include footnotes and

references, a spelling checker, an index and table of contents generator, out-

line format capability, programmable editing keys, automatic pagination with

widow avoidance, equation editing, line drawing, proportional characters, col-

umn move operations, column arithmetic, user-definable characters, automatic

hyphenation, boilerplate merge, automatic paper handling, multi-column text,

undo facility, revision control, automatic abstract generation, vertical just-

ification, hanging indents, pre-printed form fill-out.

To take the functionality to the text processor level would require first

level an integration into an office automation system, including an electronic

mail and conferencing capability, integration with the system data base (merg-

ing of data from the data base into word processing files, access of word pro-

cessing files by other programs), and integration with other programs such as

spreadsheets, project scheduling, note and reminder facilities. Support of

full-page screens with characters of multiple sizes and fonts, support of a

laser or high-resolution matrix printer and/or typesetter, integrated graphics

with diagrams and graphs mergable into the text, and multiple overlapping win-

dows could also be included. With the proper operating system environment,

rapid context switching among these programs could be built in. The user

interface could be upgraded with the use of icons and an auxiliary pointing

device such as a mouse a la the Xerox Star and the Apple Lisa.

191

TEXT PROCESSING SYSTEMS
Technical Area Report

Technical Challenges

The single most difficult performance problem is that of keeping the

screen correctly formatted in real-time, especially if it is a full-page

screen and particularly if it is bit-mapped. Proper design of data structures

and fast hardware (CPU and screen) are helpful. More importantly, the number

of characters rewritten to the screen must be reduced to an absolute minimum.

This optimization, which should be built right into the formatter logic, is

particularly essential for bit-mapped screens because of the additional

overhead of the character to bit-map translation. Even using a memory-mapped,

character screen it is an advantage. On the IBM PC version of CrystalWriter,

which uses such a screen, the software optimizes screen character motion. The

result is instantaneous insertion and deletion of multi-line blocks of text.

Such a feature increases editing efficiency enormously.

Driving terminals can have several problems, including non-transparency of

the operating system interface, limited capability especially for attribute

display in the terminal itself, too slow a communication line, and inadequate

performance of the terminal's internal logic.

Word and text processing files contain a great deal of formatting informa-

tion, making them very non-standard at least in their internal format. This

fact has at least two consequences: 1) transfer of text between the word pro-

cessor and other programs is not straightforward, and 2) to save disk space

the files may need to be compressed necessitating special algorithms to trans-

late between disk and screen formats. These translation algorithms can create

as critical a performance issue as screen formatting, in order to meet the

vertical scrolling performance goal stated above.

192

TEXT PROCESSING SYSTEMS
Technical Area Report

Printer interfaces very often have a similar problem to terminal and

screen interfaces, that is, that the operating system intervenes in a manner

that makes it difficult to drive these devices at their lowest level. It is

extemely important that both the screen and the printer be driven at a low

level because of the functional demands of word processing. This requirement

is even more true of most typesetters. Most letter-quality printers, matrix

printers, laser printers and typesetters come internally programmed with

considerable intelligence designed to assist the front-end. It has been our

experience that these device-resident ROM programs are mostly inadequate,

generally poorly documented, often incorrect or inconsistent, and almost never

contain the exact mix of features desired for the particular front-end system

being designed. The solution, short of a custom-programmed device, is to have

access to the device at the lowest possible level.

CASE STUDY 1: Word Processor for Datic Electronica

This product is a dedicated word processor built by Datic Electronica

GmBH, Trier, W. Germany. The hardware was based on the 8080 microprocessor,

32K RAM, memory mapped video, dual 8 inch floppy disks and Daisy wheel print

mechanism. The product was first installed in May 1977 and has been developed

further and made more specialized since then. It is now a recognized leader in

some markets in Germany.

The word processor software featured on-screen formatting, virtual scroll-

ing to disk, horizontal width to 132 columns, unlimited number of format

changes from 12 user-definable formats, integrated mail merge facility, and

background printing. Insert was done by opening the screen at the cursor posi-

tion, allowing the new text to be entered, then reformatting the text below

the cursor. The names, addresses and other text for mass mailings was taken

193

TEXT PROCESSING SYSTEMS
Technical Area Report

from a record list which was attached to the template document and were

referred to by fixed symbols. The merge operation was done during printing and

the text reformatted at the same time. Editing was allowed while printing and

merging were going on.

There was no support for column operations, spelling checking, proportion-

al characters, communications or data base operations. Horizontal scrolling

was done by jumping the screen 52 columns when the cursor reached the edge.

This was necessary since the processor was too slow to support continuous hor-

izontal scrolling.

It was necessary to develop a file system, multitasking monitor and a

software method to share code.

The performance was acceptable. Vertical scrolling was 6 lines per second

and it took about 1 second to close an average screen from insert. At the time

this was viable, however there were requests from users that the scrolling

speed be increaied. In today's market it would be considered a serious compe-

titor in the personal computer word processor market, but not in the dedicated

word processor market. This should be viewed as a minimum system.

During the development of this product, there were organizational and per-

sonnel problems with several programmers being on the project for short peri-

ods. Despite all this, the group worked very hard, averaging over 50 hours per

week throughout the course of the project. The effective team consisted of

three full time experiended designer/programmers and two junior members who

worked on the project about half time. Additionally there was one outside pro-

grammer who developed the file system, and a full time manager. Documentation

for the system was done separately.

194

Fr

TEXT PROCESSING SYSTEMS
Technical Area Report

The development environment was quite primitive. MACRO was used, with all

development done on the target machines. There were several hardware design

problems which in conjunction with slow printers and no software debugger cost

a significant amount of time. From the start of the project there was exten-

sive module debugging done, and despite the lack of tools the final product

was reliable.

CASE STUDY 2: CrystalWriter

This case study is of a word processor developed in Pascal by the authors

at Newburyport Computer Associates, Inc. for Western Digital Corporation's Ad-

vanced Systems Division. The development hardware and the initial target ma-

chine were the same: the Western Digital Microengine, a micro with UCSD Pascal

implemented in microcode. The target printers were both dot matrix and letter-

quality types. Typical hardware configurations included two 8-inch floppy

disks with an optional 10-megabyte Winchester, 128K of memory approximately

26K of which was occupied by the p-system, and one terminal.

The software was designed to be later upgraded to accomodate proportional

characters and bit-mapped screens because the ultimate goal was to generate a

more advanced version for a Western Digital machine with a bit-mapped screen

that was still under development. Although the system was developed to the

point of a market-ready product for the Microengine, Western Digital decided

some months later to stop selling the Microengine hardware. The division at

Western Digital funding the project merged with another company, which did not

choose to pursue development of the ultimate version of the system to run on

the more advanced hardware.

The product was developed over a period of about 18 months by a develop-

ment team of two persons familiar with development of word processors. The to-

195

TEXT PROCESSING SYSTEMS
Technical Area Report

tal development effort for design, code and test was approximately 3.25 man-

years. Quality assurance and development of the documentation were performed

at Western Digital over a period of about 2.5 months by one full-time and one

part-time person.

The development environment consisted of two Microengines with the UCSD

development system, each with two diskettes and a 10M Winchester disk and 128K

of memory. The environment was extremely convenient in all aspects except one:

debugging. The editor and compiler are better than average for a micro envi-

ronment, and give the programmer all of the advantages of a coordinated devel-

opment system. However, we found that the successful debugging of a program of

this level of complexity required special purpose debugging software. Once

those tools were in place, development proceeded smoothly and ra 7 V. A good

symbolic debugger would have saved several man-months of effort.

The development was aided by the availability of the Western rital oper-

ating system support staff on the other end of the phone line. Th. system was

later converted to run on the IBM Personal Computer on which virtually no

technical support is available. The dramatic drop in support level was so sig-

nificant that it resulted in several man-months of wasted effort in the IBM PC

version.

CrystalWriter is a basic word processor. It does not meet all of the

performance goals cited above because of hardware inadequacies, and it is

missing a mail merge facility and horizontal 'scrolling. Its strengths are in

its user interface which is considerably more advanced than the Datic system

described as Case Study 1, in its automatic pagination with widow avoidance,

and in the on-screen formatting and editing capabilities. It is set up to

196

TEXT PROCESSING SYSTEMS
Technical Area Report

drive multiple terminals and printers with minimal additional programming

effort.

The product was installed at one customer site before Western Digital de-

cided to drop the Microengine from its product line.

The performance was not up to standard for the following reasons:

1) The Microengine is a slow machine by today's standards. For example,

ty;ica' operations take approximately six times as long to execute on the

Mlcroengine as on an Intel 8088. There is too small a time window to perform

the more critical algorithms for formatting and scrolling. Most modern

microcomputers are fast enough to keep up with the performance goals, although

not without careful design. A case in point is the IBM PC version of

CrystalWriter. It is written in 8088 assembler with the critical algorithms

optimized for high performance. The scrolling algorithm meets the specified

performance criteria even including a screen to disk format translation, but

there is very little time left over. (The Microengine version does no such

translation and still can only scroll at about 4.5 lines per second).

2) The screen on the Microengine is a terminal on a 19k baud line. The

performance of the on-screen formatting is limited not by the speed of the

transmission line but by the operating system overhead and by the terminal's

own logic. In contrast, the IBM PC version drives the memory-mapped screen di-

rectly and there is no problem whatsoever with keeping the screen updated.

CASE STUDY 3: Typesetting programs

Quadritek Typesetter

This is a direct entry typesetter developed by Itek Corporation,

Rochester, N.Y. The software was done by Bolt Beranek and Newman, Cambridge,

197

TEXT PROCESSING SYSTEMS
Technical Area Report

Ma. The hardware was based on the National Semiconductor PACE microprocessor,

cassette storage, screen and keyboard, and a zoom lens based typesetting mech-

anisp, which was the output device. The first shipments were in September 1976

and by 1980 over 12,000 had been sold.

The Quadritek is included in this report because it used a typesetting

formatter which was designed for an interactive system. The editing was very

limited, but it was not a batch system as most typesetters are. It included

mixed point sizes from 4.5 to 36, 4 fonts each 92 characters, extensive tab

handling, line lengths to 256 characters, all common justification types.

There was no support for graphics, skews, complex indents (other than

single line hanging indents), automatic hyphenation, or page layout. For

normal type, the formatter ran about 300 characters per second, very complex

type slowed it down by a factor of 2 or 3. The original code was used until it

was rewritten for a different CPU in 1981 and was considered a very serious

competitor at that time.

The formatter part of the software was done by two persons full time and

one person about half time. All were moderately experienced and worked full

time but without excessive overtime.

The program was done in Assembly language on a host processor. There was

no software debugger which wasted a significant amount of time. Extensive code

reviews were done and the project was done first as a prototype, then rewrit-

ten and expanded into the final product. The result was very reliable.

Graphics Arts Terminal

This project was to develop a combination word processing and typesetting

system for three users based on a dual-8080 floppy-based system packaged with

shared memory by Terminal Commmunciations, Inc. of Raleigh, N.C. The product

198

TEXT PROCESSING SYSTEMS
Technica2 Area Report

was eventually marketed by Telex as the model 2100. The product was shown at

DRUPA in 1977 and first installed in that year.

The system contains simple word processing and drives an on-line typeset-

ter with limited functionality (four fonts). There is a letter-quality printer

also on-line. The software is comprised of an editor, batch hyphenation and

justification, dedicated typesetter driver, and simple dedicated letter-qual-

ity printer driver.

The development effort took about 13 man-months, using Intel 8080 develop-

ment machines and assembly language, with one senior person full-time, another

senior person for the design only, and a part-time junior programmer. Minor

revisons made to the operating system and file system were performed indepen-

dently.

4. ANALYSIS

Range of Costs and Schedules

The word processor case studies show that a basic word processor consumes

about 3.25 man-years of development time. Adding a typesetter interface, from

the other studies, would seem to add about another 1 to 1.5 man-years. These

numbers are for pure development time and do not include QA or documentation

effort.

The Datic word processor contains about 7200 lines of assembler code, and

uses 28K bytes of memory with a 10K-byte data area. Crystalwriter is about

10,000 Pascal statements, about 100K bytes of code, and 30K bytes of data.

They each took about 3.25 man-years to develop using senior people. The dif-

ference in the code sizes is only partly due to the difference between p-code

and assembler. It is mostly due to the differences in the user interfaces. Not

only does the Pascal system have a menu-driven command interface but it also

199

TEXT PROCESSING SYSTEMS
Technical Area Report

allows free-form insertion of characters. The Datic system (and many others

such as Wang) require the user to open the screen, do the insertion, then

close the screen, at which point the text is reformatted all at once. The de-

cision to use the free-form style of insertion is a significant one because it

imposes a considerable performance burden on the reformatting algorithm, but

the advantages to the ultimate usability of the system are substantial.

The Quadritek typesetter uses 12K bytes of memory, about 6K lines of As-

sembler source, for the code which handles the interactive justification (for-

matting for the typesetter). The Graphic Arts Terminal software uses about 20K

bytes total for the entire application. The batch hyphenation and justifica-

tion program mentioned above ran in 8K bytes of memory.

The differences in level of effort among the typesetting projects is in-

teresting because it points to the fact that batch systems are easier to im-

plement than interactive ones. They require less design, less memory, and less

code. Interactive user interfaces are costlier, but they represent one of the

more significant advancements in recent years especially in personal computer

software.

No particularly extraordinary resources are required for text processing

system development. The target hardware should of course be available for di-

rect testing. The importance of a good debugger cannot be overestimated. The

operating system overhead must be factored in when computing performance con-

straints, and it is also important to make sure that the operating system does

not intrude upon the application's ability to drive the screen, keyboard and

printer to their maximum capability.

200

TEXT PROCESSING SYSTEMS
Technical Area Report

Suggestions for a Development Plan

Hardware Considerations

The level of effort required to develop a word or text processor depends

significant extent on the planned target hardware, not only because of

the software effort involved to drive the devices but also for basic design

and generality issues. For example, if it is desirable to have the capability

of driving many different types of terminals or printers, then general drivers

should be designed and developed in order to ease the burden of adding each

new device. Some performance will probably have to be sacrificed in order to

support the generality - not usually a problem for printers because of their

relatively slow speed, but certainly a problem for terminals.

Crystalwriter includes both a general terminal driver and a general print-

er driver. The development cost premium for these general drivers was approxi-

mately one man-month each. As a result of the general drivers, a new terminal

and a new printer, both different types from the ones used for development,

were brought on-line at a customer site with about one man-week of additional

development effort.

The importance of the screen quality to word and text processing cannot be

overemphasized. Not only should the physical screen and keyboard be of a mod-

ern ergonomic design (tiltable height-adjustable screen, typewriter-style,

quick response keyboard with function keys), but the design of the screen

characters and the phosphor should be such that they do not cause eyestrain.

The IBM PC Monochrome monitor is an example of a good basic screen for text

(25 lines x 80 characters, 9 x14 character matrix, relatively slow green

phosphor). Most terminals are not suitable for extended word processing use.

201

TEXT PROCESSING SYSTEMS
Technical Area Report

From an internal standpoint, the advantages of a memory-mapped screen are

considerable. Not only is it easier to map the internal data structures to the

screen if it is memory-mapped, but the problems of operating system overhead

and terminal overhead disappear. The word/text processor screen should be ca-

pable of displaying all attributes required for the final output. If a type-

setter or multiple-font printer is the output device then a bit-mapped screen

would be a logical choice. For a letter-quality printer, a screen with at

least bold, sub- and superscripts, and underlining should be employed. If spe-

cial characters such as foreign characters or math symbols will be printed,

then the screen should be capable of displaying them. One of the real contri-

butions of word processing is the accuracy of the representation of the print-

ed page on the screen. A well-designed screen character font and a good user

interface are more important, however, than a full-page display.

Any system with a typesetter should also have a proofing device that can

show the typeset line endings because of the slow speed and high cost of using

the typesetter itself for proofing.

Overall Design Considerations

Support for proportional characters and for multiple fonts and sizes, if

it is desired, should be designed in from the beginning. It is difficult to

retrofit later because it is an extra level of complexity to handle variable

width characters in terms of both the screen handling and the internal format-

ting algorithms.

The user interface in general and the command structure in particular are

key in the initial design. Some word processors and all formatters associated

with text editors require the user to embed formatting commands into the text

stream (e.g., .LM 10 sets the left margin to 10). A better approach is to show

202

TEXT PROCESSING SYSTEMS
Technical Area Report

the effect of formatting commands immediately in the text (left edge of the

text changes on the screen and all lines are re-wordwrapped to reflect the new

margins), leaving the commands themselves either completely hidden or display-

able only on user request. Auxiliary aids can be made available to the user

for setting of defaults, editing of format rulers, etc., but for best screen

appearance, these should be independent of the text display.

Menu-driven command interfaces can be tedious, although this problem can

be overcome by providing an expert level. A form fill-in interface with exten-

sive prompting is another alternative. Whatever the style of the command

interface it is important that it be universally applied throughout all com-

mands for consistency. A general command handler will also be easier for de-

velopment in the long run particularly since different people are likely to be

responsible for different commands. A case in point is that in CrystalWriter

we neglected to do this, but in the translated version to 8088 assembler a

general command handler was added, which madd the addition of new commands

both easier and faster.

A primary consideration in the design particularly of an advanced text

processor is to target the type of end user -- technical people will require

mathematical equation editing, outline format, automatic indexing and ab-

stracting, integrated graphics and line drawing capabilities; clerical/secre-

tarial users require a good mail merge facility, integrated reminders, execu-

tive calendars, etc.; legal applications require footnotes, references and

boilerplate handling; economists and statisticians need superior table han-

dling, equation editing, and graph capability.

The file system needs to have the capability of appending blocks to either

end of the file, for scrolling in both directions. Files set up as stacks are

203

TEXT PROCESSING SYSTEMS
Technical Area Report

useful structures for text. The operating system interface should take into

account the performance criteria mentioned above, especially regarding screen

and printer control. Printing should take place in background, which is not a

problem for most operating systems, but an additional requirement for a word

or text processor is a provision for operator intervention to change fonts,

feed paper, etc. Some means of communication between the editing and the back-

ground printing task must be provided for.

5. CONCLUSIONS

The single most important issue in building a word or text processor is

maintaining the performance while providing advanced capabilities and a so-

phisticated user interface. Given a higher-level language, an efficient com-

piler, and powerful system resources, it is tempting to assume that per-

formance will not be an issue. Here are two counter examples:

1) Apple Corporation's LISA Professional Computer. This system which grew

out of the Xerox Star concept has an advanced user interface employing icons

and multiple overlapping windows, and uses a mouse as a pointing device. It

has a bit-mapped screen and is based on a Motorola 68000 with IM of memory. It

reputedly took 200 man-years to develop using a higher level language. The

word processor component of the system (LisaWrite) has been widely criticized

for its poor performance especially in scrolling and character insertion. The

software cannot, for example, keep up with a competent typist.

2) The Syntrex word processor. Built using a Unix-derivative and in the C

language, the software runs on an 8086 processor with 128K RAM minimum.

Syntrex astonished the industry by producing a full-function word processor

within 6 months. The initial release, however, had poor performance. Large

parts of the system were re-written specifically to improve the performance.

204

TEXT PROCESSING SYSTEMS
Technical Area Report

Performance is particularly critical with bit-mapped screens because of

the extra overhead of the character-to-bit translation. Algorithms must be de-

signed such that changes to the screen are minimized, or performance will suf-

fer.

More advanced devices with higher resolutions and more capabilities are

certain to be available in the future and should be taken into consideration

in the design of a text processor. If support of variable-width characters is

contemplated, then it should be incorporated into the design from the outset.

The ability of the data base to handle both data and text files is impor-

tant in any integrated system. The design of the file system and of the sup-

porting operating system and device drivers should take into account the spe-

cial requirements of text processing.

Careful selection of the target hardware is important both from an ergo-

nomic point of view and also in terms of the development effort required to

support it. The quality of the screen and keyboard are essential since it is

through them that the user views the system.

The user interface is critical, and should be worked out early in the de-

sign stages. It could indeed prove to be an advantage from both an implementa-

tion and an end-product quality standpoint to build the rest of an office

automation system around that interface. It is particularly important not to

sacrifice the power of the user interface nor the overall system performance

for advanced capabilities, a common fault of some of the advanced research

projects in text processing. A text processor is no better than a typewriter

if it has sluggish response.

205

* CrystalWriter *

Capsule Description

207

D aG BIA M -NOT -"=

NEWBURYPOIRT EllMPUTEB ASSEIATES
--7 FI TET / 'i'<r: +//

+

(617) 467 94 M <?~~

?eb 23, 12 '2

lill Carlson
Internetrics Corp.
4733 3ethesda Ave. Suite 415

Bethesda, Maryland 20814

Dear Bill,

This is to confirm our telephone conversation autiorizin -
Internetrics to copy and distribute all materials copy'.,rited jy
'ew.buryport Computer Associates, Inc. whicn were subnitte as cart of
the Text Processing Systems Technical Area Peport. This authorization
applies for any purpose connected with the use of that report.

Yours truly,

/,

Ralph 0. Brown Jr.
Vice President

208

0 CrystalWriter ' CAPSULE

CrystalWriter has been designed to be very easy and intuitive to use. It

has its own unique characteristics, however, that may be different from other

word processors and editors you are familiar with. The more important of

tnese are outlined here in this capsule description so that you can get up

and running on CrystalWriter in a minimum amount of time.

For a detailed explanation of all CrystalWriter features, see the User's

Guide. The Getting Started lessons offer a complete tutorial.

1. A NOTE ON THE KEYBOARD

Depending on the type of terminal you are using, certain keys may be local

keys only and therefore not operable in CrystalWriter. On the Ampex Dialogue

80, these include ALL BLACK KEYS. Should you hit one by accident, do a

<CTRL>-v, the Verify function, to rewrite the screen.

Avoid <CTRL>-f, -s, and -p. They can stop output to the terminal. Especial-

ly avoid the <BREAK> key: it causes an immediate exit to the monitor, thereby

destroying all the current text.

2. COMMAND KEY: <ESC>

<ESC> is the access to all commands. It presents a menu of choices of com-

mands, which are selected by one of the characters (case is significant)

highlighted in the menu. Once you select a command, another menu may appear

requiring a second single-character choice. All commands display complete

directions on the top screen lines as they progress.

<ESC> is also used as a command exit and as a command interrupt - to

interrupt certain longer operations in progress, such as search.

<CTRL>-t cancels the current command.

Some commands such as Search and Format Define, present you with a form to

fill out. The cursor arrows move among the labeled fields. Normal editing

keys can be used within the fields.

3. BLOCK COMMANDS

Certain commands ask you to define the scope of the block of text to be

acted upon. The general method is to move the cursor in the forward direction

to just past the desired scope of the action and strike <CR>. <CTRL>-t

(c) Copyright 1982 Newburyport Computer Associates, Inc.

209

0 CrystalWriter 0 CAPSULE

cancels. When a block's scope includes the end-of-document, in some cocinands

the definition is automatically ended for convenience.

Block commands include Format, Indent, Adjust, Attribute, Extract, and

Delete.

4. CURSOR MOTION: <ARROWS> and <HOME>

The four arrow keys move the cursor in the indicated direction, scrolling

the text as necessary when the cursor reaches the top or botttom edge of the

screen. The up and down arrows are used for explicit scrolling if Scroll mode

is enabled with <CTRL>-a. As with all modes in CrystalWriter, striking a mode

key again returns you to the original mode. Current modes in effect are dis-

played on the status (third) line of the screen.

You can flip the cursor travel mode between LOGical (text only - the most

useful), and PHYsical cursor motion (anywhere on screen) with <CTRL>-c.

The <HOME> key is used as a precedent key for express cursor motion. It

presents a menu of choices. <HOME> followed by one of each of the four arrows

jump the cursor to line edges. <HOME> d jumps to end of document. <HOME> D

jumps to top of document.

Other fast jumps - to word, paragraph, screen, etc. are indicated by a

single letter for each, and can be combined together. <HOME> must be struck

again at the end of the sequence. Upper case letters specify backwards

motion, lower case go forwards. All fast cursor motions can be used during

block definition in the Block Commands.

5. FIND

Another way to move quickly to a position in the text (most useful for text

currently ON the screen), is to use <HOME> f to Find forward and <HOME> F to

Find backwards. As you type the string of characters you wish to move to, the

cursor moves to the next occurrence of the string. This is a literal match.

Arrow keys repeat the current Find. Type <HOME> once you get to where you

wanted to go, or it will keep finding. <ESC> aborts the Find underway.

6. SEARCH and REPLACE

Although the Search command will also move the cursor to the next

occurrence of the requested string, Search is most useful as a global Search

and Replace, since it has wildcard, case check, and count capabilities. The

(c) Copyright 1982 Newburyport Computer Associates, Inc.

210

* CrystalWriter * CAP ULE

Searcn and Replace strings are Dotn fully editaole and are saved until they

are cnanged or the end of the editing session is reached. Searcnes can be

interrupted in progress with the <ESC> key.

The Searcn command presents a form to be filled out with four fields:

Repeat limit (number of times to repeat the Searcn- blank defaults to

infinite), Case Check (No ignores case, Yes is case-sensitive), the Searcn

string, and the Replace string. Move from field to field with up and down

arrows. Normal cursor left and right and editing keys can be used within the

fields. The wildcards available for the search string, for numbers, alpha, or

both, are displayed just above it. <ESC> executes tne search from the cursor

position forward. The search stops at the start of the matcned string if it

finds it, otherwise at the end of document.

7. INSERTION

Insert is the default in CrystalWriter: as you type, characters are simply

inserted in the text stream, pushing any existing text forward. There is no

Insert key. To write over (overstrike) existing characters, you can enter

Overstrike mode by typing <CTRL>-o.

All lines of text are wrapped on word boundaries except lines which end
with '<', the end-of-paragraph symbol, inserted with the <CR> key. The <CR>

key is also used to insert blank lines. A warning beep is given at 5 posJ.-

tions before the right margin. Notice that a special underline character is

always present at the very end of the text. This is the end-of-document sym-

bol, beyond which no text can be inserted.

Notice that when editing causes a line to overflow, a whole new line is

opened to accomodate the overflow word. This is done in order to minimize

screen motion; otherwise the rest of the paragraph would be being constantly

readjusted on every word. To force a paragraph to be reformatted, just do

<DOWN-ARROW>'s across the short lines; the text will be wrapped up.

Blocks of text of any size up to complete documents can be inserted at the

cursor via the Restore command: see the description of Move Block.

8. DELETION

Character delete is performed' with the key.

Rubout (back delete) is done with the <PAGE/NEW LINE> key.
Erase word is <CTRL>-e. Words can be erased from any position in the word.

To Delete a block use <ESC> d:

(c) Copyright 1982 Newburyport Computer Associates, Inc.

211

* CrystalWriter * CAPSULE

Define tne scope of the block with cursor forward motion of any type.

Blocks to be deleted can begin and end anywhere on a line. The block is

highlighted as you go. The cursor can be moved backwards to un-define any

portion of the block, and, in fact, the cursor can be moved all the way back

past the original start of block, and then moved forward again. End the block

definition with <CR>. To cancel the command strike <CTRL>-t. Should you

delete a block by accident, you can Un-delete it with <ESC> u.

To wipeout your entire current text, you can use <ESC> *. The current

formats remain. Use with caution! - no second chance is given with Wipeout.

9. UNDERLINE KEY

The underline (over the zero) underlines text as on a typewriter. Large

blocks of text can be underlined with the Attribute command (<ESC> a).

10. HYPHENATION

Striking the hyphen key inserts a hyphen character (minus sign) in the text

as you would expect. This type of hyphen remains until you delete it.

Another type of hyphen, the discretionary hyphen, is inserted by the Hyphen

command (<ESC> -). This command searches the text for lines which are short

enough to allow a partial (hyphenated) word to be brought up from the next

line. On a user response to the correct position for the hyphen, the partial

word is brought up, and the process continues with the remaining lines. The

<ESC> key cancels the command.

A discretionary hyphen is removed if, after editing, it is no longer posi-

tioned at the end of a line. It is recommended that Hyphenation be performed

just before Printing.

11. MOVE or COPY BLOCK

To move a block from one position to another within a document, first

Extract the block using <ESC> e, then move the cursor to the new position and

Restore the block with <ESC> r. Both Extract and Restore ask for a name, but

you can just type <CR>, and the block will be saved in and restored from the

temporary buffer.

To make a copy of a block, follow the same procedure as move block, except

that after the Extract, immediately do a Restore in the same place.

(c) Copyright 1982 Newburyport Computer Associates, Inc.

212

.- MM -- - -

0 CrystalWriter * CAPSULE

Defining trie scope of the block in the Extract command is exactly the same

procedure as in Delete block - move the cursor forward, the block is high-

lighted, strike <CR> to end it. The block is removed and saved in the tempor-

ary buffer, and the remaining text is reformatted. (Occasionally the screen

will be incorrect after a large Extract due to terminal overruns. Execute a

Verify (<CTRL>-v) to repaint the screen and the attributes.)

In the Restore command, the block will be merged into the text in the cur-

rent format. The block is available to be restored again any number of times

(even into a different document) until another Extract to the temporary buf-

fer is performed, which writes over the existing contents.

12. SAVE and RESTORE BLOCK

To Save a block of text as a permanent document, simply do an Extract, giv-

ing the block a name. The block becomes a complete document of its own. If it

is given a '@'-prefixed, single-character name, the block is saved as a tem-

porary file and will be deleted at the end of the editing session.

Any document, whether created from an Extract or from a Close, can be merg-

ed in at the cursor position by using the Restore command and filling in the

document name. The restored text takes on the format of its new environment.

13. FORMATTING

With a few exceptions mostly due to the limitations of the specific termi-

nal you are using, all formatting (centering, indentation, etc.) is shown on

the screen. Points in the text where a format transition occurs are remember-

ed by the system even after the text has been heavily edited. An 'F' is shown

at the extreme left of the first line in the new style.

Formatting changes are specified by commands which allow you to designate

the block of lines to which the change is to be applied. There are three of

these commands: 1) the Format command for explicit change of format, 2) the

Indent command for indents, and 3) the Adjust command for centering, right-
adjustment, left-adjustment and justification of lines.

14. FORMATS

A CrystalWriter format consists of a ruler line (containing tab and margin
settings) and specifications for line spacing, justification type (center,

left, right, or justified), and font. Allowable values for font are 10 (10-

(c) Copyright 1982 Newburyport Computer Associates, Inc.

213

6 CrystalWriter * CAPSULE

pitch) and 12 (12-pitch). If you use 12-pitch, set the margins at the extreme

edges of the screen (columns I and 79) to obtain the full page width.

Up to 20 different numbered formats per document can be defined witn the

Format Define command (<ESC> F). A format can be invoked as often as needed

using the Format command (<ESC> f). The Format Define coraxand presents a form

to be filled out. Move from field to field with the arrow keys and use normal

editing within the fields. Editing within the ruler line is slightly differ-

ent, and is described under Tabs below. To change an existing format, place

its number in both the 'To:' and the 'From:' fields. A warning message will

oe displayed once when you redefine an existing format. The source format

('From:') defaults to the current format number at the cursor, but it can be

changed. The destination format ('To:') defaults to the next format number

available, but it can be changed to any other legal number. Save the new for-

mat by striking <ESC>, or abort the Format Define with <CTRL>-t. A new format

remains defined until you redefine it. The format is not actually used in the

text until a Format command is given with the format's number.

The Format command asks for a format number. The scope of the block to be

reformatted is then defined in the usual manner for block coumands, and lines

are formatted as the cursor is moved down. Strike <CR> to end the command.

The number and contents of the format at the cursor position are always

shown in the format display in the two lines just above the text. Text can be

entered in one format and later changed to a different format, either by

changing to a new format number, or by redefining the existing format. When-

ever an existing format is redefined, the entire document is scanned for ref-

erences to that format, and those sections are re-formatted accordingly.

15. TABS and TABLES

Tabs can be one of four types: right, left, centered, or decimal-aligned,

and can be mixed at will within a format ruler. Tabs can be used informally

to position text to an absolute position in the line as in the closing of a

letter, or to effect a paragraph indent (as in this document), or more

formally to set up an entire table with multiple columns.

Tab stops and margins are set in the Format Define command. When the

command is entered, the cursor will be in the 'From:' field. An up-arrow will

position the cursor in the Ruler line. In the Ruler line, existing tab stops

and margins can be removed with the spacebar or with any delete key. The

cursor can be moved in the horizontal direction. New tabs or margins are set

by typing the character corresponding to the tab type or margin desired on

(c) Copyright 1982 Newburyport Computer Associates, Inc.

214

" - - - | = M' I i i ii ! i. .. .,

0 CrystalWriter 0 CAPSULE

tne new position (t~tab, r=right tab, c=centered tab, azaligned tab, >=left

margin, <=right margin). There can be exactly one left and one right margin,

and up to 20 tab stops per ruler.

The <TAB> key inserts a tab into the text, moving the cursor over to the

next tab position. The text you then type will be aligned according to the

type of that tab. In decimal-aligned tabs, inserting a period anywhere within

the field re-aligns the text so that the period falls on the tab position. To

move the cursor from tab to tab within a table, use the arrows or <HOME> t.

A tab can be deleted with any of the delete keys. Consecutive tabs to the

right are all removed at once and the text moved over.

Note that a tab can be thought of as one elastic space, rather than a

sequence of regular spaces: a tab is inserted or deleted with one keystroke.

Tabbed text is attached to its tab stop and remains so even after it has been

edited or reformatted. If characters are deleted, for example, from a tab

field, the characters in the next field are not moved closer to the deleted

text as they would be if' there were intervening spaces. Instead, the charac-

ters stay lined up to their respective tab stops and the elastic space (tab)

expands to fill the gap. Only insertion and deletion of the tabs themselves,

or a format change, alter the position of the tab fields.

To set up a table, define a format containing the tab stops and margins for

the table, and insert a few blank lines in the text where the table is to go.

Invoke the new format there using the Format (<ESC> f) command. Enter the

text using the <TAB> key to separate the fields.

Existing columns of text can be moved left or right by changing the table

to a new format which has new tab positions defined.

You will occasionally see a tilde appear on the screen: this is the symbol

for a 'bad tab', a tab which has no tab position to go to, either because

there are no more tab positions on the line or because tabbing is illegal on

that type of line (centered or right-adjusted lines).

16. INDENTS

Indents can be thought of as temporary margin changes, and are generally

used to distinguish certain areas of the text from the rest. A paragraph in-

dent, which indents only the first line of a paragraph (as in this document),

is best done with a <TAB> or with spaces.

An indent is defined in terms of one of the tab positions within the

current format, but it is independent of the format in that the indent can

remain in effect across several format changes.

(c) Copyright 1982 Newburyport Computer Associates, Inc.

215

I CrystalWriter * CAPSULE

In tne Indent command (<ESC> i) the indent position is set by moving the

cursor from tab to tab across the ruler using the arrows until the desired

position is reached: the letter 'I' for indent moves with the cursor, marking

the position of the indent. Strike <ESC> to define a right indent in an anal-

ogous manner. <CTRL>-t cancels. <CR> finishes the indent definition and

indents the current line. The indent can be continued for more lines with

cursor dowd or any of the forward jumps. End the block definition one line

past the extent of the indent with <CR>. To move indented text out to the

margin follow the same procedure, setting the indent position on the margin.

New text can be entered indented by setting an indent on a blank line

before typing in the text. If text which is already indented is included

within the scope of an indented block, the indented text will be indented

further by the amount of the defined indent. This relative indenting allows a

block of text with multiple indents, such as an outline, to be moved in or

out as a unit. If indented text is changed to a new format which has differ-

ent tab positions, the text will be indented to the tab position in the new

format which corresponds in number to the indent's original tab position.

17. CENTERING, RIGHT and LEFT ADJUST, JUSTIFICATION

Lines can be centered, left-adjusted, right-adjusted, or justified (even on

both margins on printing), independent of the format in effect. These line

adjustments, performed with the Adjust command (<ESC> j), override the justi-

fication type in the current format for the lines specified. The 'Justify:'

field in line 4 always displays the justification state of the cursor line.

Once the type of adjustment is selected from the menu in the Adjust

command, the block to be adjusted is defined in the same manner as for

indents or formats. One line is automatically adjusted, and more lines can be

adjusted by moving the cursor down. The scope of the block is ended at the

line following the last one with <CR>. New text can be entered in centered,

right-adjusted, etc. by doing an Adjust on a blank line.

18. UNDERLINING, BOLDFACE, SUBSCRIPTS, SUPERSCRIPTS, CASE CHANGES

The Attribute command (<ESC> a) permits making blocks of text bold, under-

lined, double underlined, subscripted, superscripted, lower case, or upper

case by the selection of the appropriate letter from the Attribute command

menu. Both types of underline can be done continuously or on words only. The

'Attr:' field on the status line always displays the current attribute in ef-

(c) Copyright 1982 Newburyport Computer Associates, Inc.

216

* CrystalWriter * CAPS3ULE

feet at the cursor. The block to be attributed is defined with forward cursor

motion of any type. Partial words or lines can be attributed. (The attribute

of the text is changed as the cursor is moved, but the attribute may not be

displayed depending on the limitation of the particular terminal you are us-

ing: for example, all attributes are displayed as underline on the Ampex Dia-

logue 80.) To undo an attribute change, the menu selection letter in tne At-

tribute command is entered in upper case: for example, to erase boldface en-

ter 'B'. The same text can have multiple attributes, but each attribute must

be set individually.

The Mode command (<ESC> m) sets the text entry mode to one of the attri-

butes. All new text entered will be inserted in the new attribute. If the

current text entry mode is attributed, the name of the attribute is shown

just to the right of the word 'TEXT' on the status line. To return to normal

un-attributed entry, strike <ESC> m n.

19. PRINTING and PAGINATING

The font and line spacing values used for printing come from the formats in

the document, although the line spacing can optionally be overriden at print

time: this overrides only the main document spacing, however. To change font

and line spacing values, use the Format Define command and move the cursor to

the appropriate field and edit the value. Line spacing can take the values:

s=single, d=double, t=triple, h= one-and-one-half, q=one-and-one-quarter.

Fonts are either 10-pitch or 12-pitch. Use the Format command to change the

format of the text.

Before printing a document, a header-footer can be set up using the Header

command (<ESC> h). If you want page numbers, or top and bottom page margins

different from the default values (one inch), be sure to define a header-

footer. If there are no header-footers defined, the document will be printed

without page numbers and with one-inch top and bottom margins.

The Header command first asks if you wish to edit the header/footer for

all, first, odd, or even pages, then removes the main document temporarily

from the screen and displays instead the header-footer requested if one al-

ready exists. If not, an empty screen is presented. When you are editing a

header-footer, the word 'HDR' followed by an identification of which header

it is, replaces the word 'TEXT' on the status line. Enter <CR>'s for each

blank line of margin desired at the top and at the bottom of the page. Separ-

ate the top (header) from the bottom (footer) with a Soft or Hard Page Break.

Page breaks are inserted via the Page command - <ESC> g, and are deleted with

(c) Copyright 1982 Newburyport Computer Associates, Inc.

217

a CryatalWriter CAPSULE

any delete key. Text can be placed in thie header and footer using all normal

editing and formatting commands. The Format Define command cannot be executed

during header-footer editing, but all defined formats are available.

The desired position of the page number on the page is specified by insert-

ing a Page Number Variable (via the Page com=and) in the header or footer or

both. It appears as '#' on the screen and can be deleted with any delete key.

It acts like a piece of text, so it can be centered, flushed right, etc.

To return to the main document, use the Close command (<ESC> c). When you

Print (<ESC> p), a series of menus of options for printing and pagination

will be presented. Progress from menu to menu with the spacebar. The options

include parameters for form length, widow and orphan avoidance, page number-

ing, and number of pages to print. The left margin adjustment parameter is

available to offset the left edge of the print image on the page for any rea-

son including alternating odd-even page offsets for special binding require-

ments. There are also switches for paginating without printing (Insert-Page-

Breaks option on, Print option off), manual pagination (Insert-Page-Breaks

option off), saving or not saving the paginated document, and single sheet

feeding. Defaults can be taken for all options.

Print prints the document and, unless manual pagination has been selected,

inserts Soft Page Break lines at every page boundary, which can later be

jumped to using the <HOME> g command. Existing Soft Page Breaks are removed,

but Hard Page Breaks remain. Print can be interrupted with the <ESC> key. A

message is displayed when Print has completed, and editing can then resume.

20. VARIABLES

To insert variables in a template letter for mass mailings, use the

Variable command (<ESC> v), which asks you to name the variable, and then in-

serts it at the cursor position encased in back slashes. To create the

individual letters, open the template letter, and using the jump to variable
(<HOME> v), delete the variable with , and type in the appropriate

value, repeating for each variable. During Print, the letter will be totally

reformatted and repaginated.

21. KEY SAVES

Ten keys can be defined by the user, via the key save command (<ESC> k).

Enter a number 0-9. Now you are in key definition mode, indicated by the word

'KEY' in the status line. All keystrokes (up to 512) now typed, whether

(c) Copyright 1982 Newburyport Computer Associates, Inc.

218

* CrystalWriter 0 CAPSULE

commands or characters, are saved under the numoer requested (0-9). <CTRL>-q

ends the key definition. Keys may call other keys to 5 levels deep. Key

definitions cannot be edited.

The key sequence can then be run by typing <ESC> followed oy the number.

<ESC> interrupts the execution underway. Defined keys are saved across

editing sessions under a file named 'PROGKEY.DATA' on the user disk.

22. IMPORT/EXPORT

Import of .TEXT files to CrystalWriter format is performed via the Restore

command using either the S=Source or T=Text options. The Source option adds

carriage returns to every line and is designed for importing source code.

.TEXT files can be merged into existing documents or brought in by themselves

to an empty screen.

Export of CrystalWriter files to .TEXT format is done with the Print

command- select T for the Output option in the Print (third and final) mend.

This will generate a paginated image in Ascii of your document, with header-

footers, page numbers and form feeds. To generate a straight image without

form feeds and header-footers, make sure all the header-footers have been

cleared out from the document before printing, and set the line spacing value

to single. The converted image will be written to disk as name.TEXT. It will

not be printed.

23. OPEN, CLOSE, and QUIT

The Open command (<ESC> o) retrieves the specified document from disk and

loads its text, header-footers and formats. The document is now available for

editing. Close (<ESC> c) saves the current text under the name you give it,

and renames the old version, if any, to name.gback. The Quit comman (<ESC-

q) is the exit from CrystalWriter. Quit, Just like Open and Print, gives you

a chance to save your text first, if there is any on the screen. To create a

brand new file, enter the text onto a clear screen, then execute the Close

command when you finish.

If there is insufficient contiguous space remaining in the user disk area

to save the entire document, a message will be displayed before the document

is saved. Use Extract to save segments of the document to separate named

files. This problem can usually be avoided by making sure that there is

enough contiguous space on the disk before editing a large document.

c) Copyright 1982 Newburyport Computer Associates, Inc.

219

CLUSTER II PAPERS

STANDARDS GRAPHICS PACKAGES
FOR COMMAND AND CONTROL

Prepared for: Dr. Tom Probert
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, Virginia 22311

Prepared by: William E. Carlson
Director, Washington Division
Intermetrics, Inc.
4733 Bethesda Avenue
Bethesda, Maryland 20814

and
Stephen Shelley
Senior Computer Scientist
Intermetrics, Inc.

733 Concord Avenue
Cambridge, MA 02138

221

i-r4ECD1I PAMl ZANK-NOT TIiJ

STANDNRD GRAPHICS PACKAGES FOR COMMAND AND CONTROL

1.0 OVERVIEW

This paper discusses standard graphics packages which can

facilitate the implementation of comand and control system

software. While the primary focus is on WNMCCS requirements, the

packages discussed would be of great value in most comnand and

control applications.

Two international standards which are achieving widespread

acceptance provide a sound foundation on which to build command and

control graphics capabilities. The proposed ISO/DIS 7942 Graphical

Kernel System (GKS) is a set of basic functions for computer

graphics programming that standardizes an application level

programming interface to a graphics system. A proposed Ada binding

for GKS has already been developed and submitted to ANSI X3.

Complementing the GKS standard is the North American Presentation

Level Protocol (T500-X3L2.1/82-72), which has been designed to allow

the digital conimnication of graphic information over low-bandwidth

channels.

Graphics applications in comnand and control include report

generation and presentation graphics, for decision support,

teleconferencing, mapping and map related analyses. More generally,

graphics software is becoming a tightly integrated part of the user

interface in modern interactive systems such as the XEROX Star and

the Apple Lisa. The best way to maintain a consistent user

interface and vendor independence across all applications will be to

223

k-eaRD1NG PM355Mta _N 7nal7

Page 3

have a set of user interface construction tools based on standard

portable graphics building blocks.

The driving performance requirement will be user acceptability

in the interactive decision support environment. More specifically,

many 1 A+CCS applications will involve relatively simple displays of

graphs, bar charts, pie charts, etc. These applications should be

supported on all terminals, including a variety of very low cost

terminals with minimal intelligence. The software overhead

associated with the generalized device independent interface should

not make the system appear sluggish to the users or significantly

reduce the number of users that can be supported on a particular

mainframe. The ability to transmit these simple graphics over

ordinary phone lines using the NAPLPS protocols will be of great

value.

A good indicator of the high performance state of the art in

graphics technology is the simulation of a day view of an aircraft

landing in three dimensions. An approximate simulation can be

achieved on a terminal costing $150,000 but a realistic simulation

requires a multimillion dollar flight simulator. Such a simulation

places requirements on the graphics hardware and software which are

unlikely to be found in the command level V*WCCS environment.

The most stressing graphics application identified to date in

discussions with the command and control comunity is the "browsing"

problem. Coimanders need to flip quickly through documents looking

for information that is relevent to a decision they are making. It

would often be very difficult for them to say what criteria they are

224

Page 4

using to identify "interesting" information. As more and more of

the information they need becomes most readily available on-line,

they will need to be able to page rapidly through on-line documents,

skimming as little or as much of the information on each page as

they want. The appropriate environment is a bitmapped display

containing a mixture of nultifont text and graphics. The apparent

time to bring up a new page should be one vertical sweep, which is

33 msec. Since it takes at least 100 msec to move 1 Mbit fron the

disk into a display buffer, some hardware trick is needed to achieve

the desired performance. A reasonable solution is a system that has

dual display buffers, fills a display buffer in less than a second,

prefills with the next page in background mode, and can switch

between display buffers during the retrace time.

The remainder of this paper discusses the GKS and NAPLPS

standards, the level of effort to implement those standards, and

likely WWMCCS functional requirements for graphics packages that

extend those standards. The overall conclusion is that it will take

a coordinated family of projects involving a total of 25-50 people

over a 24 month period to explore quickly and thoroughly the range

of graphics alternatives available for the next generation WWMCCS

system, and to produce couplete efficient and stylistically sound

implementations of the required graphics building blocks in Ada.

2.0 DISCUSSION OF FUNCTIONAL REOUIREMENTS

a. Levels of Graphic Output Functionality

225

Page 5

A basic level of graphic output capability provides the ability

to draw lines and polygons. Augmentations provide for circles,

arbitrary curves, area filling, control of color, rotation, scaling,

pan and zoom, and text. In the text area, extended capabilities

include publication quality fonts, user defined fonts, and the

ability to rotate fonts so that text can be displayed at an

arbitrary angle across the screen. Advanced graphics capabilities

provide for the display and transformation of arbitrary image data,

the display of three dimensional objects on a two dimensional plane

using appropriate transformations, and the shading of objects to

enhance the three dimensional image and to simulate shadows and

similar effects.

Displaying moving pictures is more difficult than displaying

graphics which are static. The extreme case of dynamic imaging is

the aircraft landing simulation, which requires the creation of

images that simulate a wide angle camera taking pictures through the

front window of an aircraft as it lands. One reason for using

dynamic graphics is to portray a dynamic situation. A different

reason is in response to user commands. For example, if the user

wants to study a particular segment of a graph, the system might

"zocm" in on that portion of the graph by simulating a magnifying

glass that expands the interesting segment and clips off the rest of

the picture. Similarily, the "pan" operation simulates a TV camera

scanning across a chart or map that is too big to fit on the screen.

226

Page 6

Scaling or rotating a picture is made difficult by the limited

resolution of available display monitors. High quality

photocomposition systems use more than 1000 points per inch to give

the visual impression of continuous lines, whereas a TV monitor

provides only 20-30 points per inch and high quality video display

monitors provide only 80-120 points. The eye can easily detect the

granularity of images at 300 points per inch, so the presentation of

diagonal lines and curves on available display monitors is at best a

crude approximation. Because of this problem, which is called

aliasing, straightforward linear scaling of the points that comprise

a line or shape can produce visually unacceptable results. An

acceptable graphics system must compute the most appropriate

representation of the abstract shape to be presented in terms of the

available display resolution and the available colors.

b. Graphic Input Functionality

Graphics input devices include joysticks, tablets, mice, wands

and the keyboard cursor controls. The basic input function, which

GKS calls the "locator", is to record x-y coordinates. Options are

to select a particular position, and to continuously record the path

of the pointing device as it moves, which GKS calls "stroke", and to

select an object on the screen, which GKS calls "pick". Input

readings can be absolute or relative. There can be one or many

input devices on the system.

Another possibility is direct input of image data, in video,

fax, or digital format. Video data would normally be used in

combination with other input techniques.

227

Page 7

Productivity in creating on-line graphics can be enhanced

greatly with interactive systems that understand what kind of

picture the user is trying to create and allow the user to select

from a menu of reasonable choices. For example, the user might

select from a list of standard graphic formats (say x-y plot, bar

chart, and pie chart) and specify parameters rather than drawing the

desired shape from scratch. As another example, with appropriate

interactive software, curved lines can be drawn by starting with the

end points and then pulling a line connecting them into the desired

shape.

c. Graphics Hardware Environments

At the bottom end of the hardware spectrum, minimal NAPLPS

terminals use standard televisions as the display and provide 256

pixels horizontally by 200 pixels vertically with either four or

eight colors. More capable terminals provide 512 by 512 pixels with

16 colors, and high resolution terminals provide 1024 by 1024 pixels

with as many as 16 million shades of color. Terminals with 2000 by

2000 pixels are projected to be available soon. Raster displays are

rapidly replacing vector displays in all applications, and should be

the basis for the next generation 9WMCCS graphics capabilities.

Three techniques are used to connect the primary applications

program running on the cpu to the graphics output device.

Inexpensive personal computers use part of the processor's memory as

the display buffer, and the processor must create a bit pattern in

the display buffer that corresponds to the desired display. On the

other hand,sophisticated graphics systems have one or more display

228

Page 8

processors that read instruction sequences placed in memory by the

cpu and create the required display. The third choice is to use a

telephone line, or perhaps a higher speed commnications line, to

connect the terminal to the computer. NAPLPS terminals are intended

to operate in this mode.

A special Ada run-time system will be needed to control a

graphics processor. Also, to the extent that the graphics processor

is to be programmed in Ada, another code generator for the Ada

compiler will be required. While there is a significant trend

towards the use of off-the-shelf microprocessors such as the

Motorola 68000 and the Intel 8086 as graphics processors, the

highest performance systems still use specially designed

microprogrammable processors.

3.0 BASIS FOR IMPLEMENTATION EFFORT SIZING

a. GKS

The GKS standard was originated by the West German Standards

Institute in 1978. The draft standard was published in 1982. It

consists of multiple upwards compatible levels. The ANSI X3H3

committee is processing the American version of the standard, which

is compatible with the proposed ISO standard and adds the binding to

specific programming languages. Fortran is dealt with in the

current draft, and a proposed Ada binding has been submitted to the

committee for consideration.

229

Page 9

Harris Corporation, which developed the Ada binding for GKS,

estimates that an implementation of the full standard will be about

12,000 lines of code for the device independent portion and about

2,000 lines per device suppported. There will be a high variance in

the amount of code per device, depending on how closely a device

provides the functions required by GKS.

As a cross check on the Harris estimates, data is available on

a GKS implementation produced by AED in Germany. Their system is

implemented in FORTRAN for VAX ccmputers running the VMS operating

system. They support the Tektronix 4010, 4014, and 4114 terminals.

They also support Calcomp plotters and displays frca Megatek and

Ramtek. Total object code size is 120kbytes, running in a 70kbyte

region. As a point of interest, the binary license costs $5,000 per

cpu supported, and a single system source license is $30,000. This

data is consistent with the Harris estimates given typical expansion

factors from Fortran to machine code.

b. Programner's Hierarchial Interactive Graphics Standard (PHIGS)

PHIGS is a new standard under development to solve various

limitations of GKS. Its requirements state that it must be upward5

compatible from GKS whenever they supply similar functionality.

Major improvements over GKS include support for three-dimensional

graphics, improved capabilities for modifying 2-d and 3-d objects,

and support for rapid dynamic articulation of objects. PHIGS

represents a significant extension of GKS, and when complete will

supply all of the functionality of the ACM SIGGRAPH Core standard

and more.

230

Page 10

Since PHIGS is still in its early stages, it is difficult to

estimate the implementation effort. The cost for a complete

implementation of the SIGGRAPH Core standard gives an indication.

George Washington University has done a conplete implementation of

the Core standard in Fortran. It includes 40,000 lines of code and

400kbytes of object code. Hence, it is nearly four times larger

than the current GKS standard.

We can anticipate that the WWMCCS cormunity will need to extend

GKS along the lines of the Core standard, either maintaining

compliance with the draft PHIGS standard or going its own way if the

PHIGS standard does not evolve quickly enough.

231

Page 11

c. NAPLPS

Partial implementations of NAPLPS are commercially available.

Code in a terminal to present NAPLPS images ranges from about

40kbytes of object code up to 120kbytes, where the larger

implementations are nearly complete. Hence, implementation of

NAPLPS code in a terminal involves about the same level of effort as

a GKS implementation.

As NAPLPS comes to be a significant factor in the commercial

marketplace, chips will be available which implement the standard.

Hence, it will be very easy for terminal suppliers to offer

terminals that implement the full standard, and DoD will be able to

buy terminals at reasonable prices from multiple vendors.

DoD can encourage the convergence of the NAPLPS standard and

the early availabilility of NAPLPS terminals by making available a

conplete model implementation written in Ada.

d. Processing Text on High Resolution Bit Mapped Displays

A variety of systems have been implemented which support high

resolution black and white bit mapped displays. Examples are the

Apollo computer, the Sun workstation, the Xerox Star, and the Apple

Lisa. The experience in the implementation of these systems and the

resulting performance suggest that text is a special case that must

be dealt with explicitly for any application where it will be an

important factor in the use of the terminal.

232

Page 12

Standard terminals have a display controller chip which

implements a standard font, taking a character code as input and

producing the proper image on the screen. In a bit mapped terminal,

the characters must be drawn in the bit mapped memory. The

advantage is that the system builder has total freedom in selecting

the fonts that will be used, allowing the use of publication quality

fonts, proportional spacing, and other techniques for making text on

the screen look like it came out of a book. The disadvantage is

that drawing the characters is a computationally demanding process.

Without hardware support, a significant fraction of the cpu cycles

can be absorbed just painting characters, and result in performance

problems in other parts of the system and/or unacceptably slow

response to the users.

Standard functions have evolved for copying characters from a

font array onto the screen, and for horizorlal and vertical

scrolling of text. These same functions turn out to be equally

useful for scrolling graphic images and for dividing the screen into

independent windows. These functions, called BITBLT and Rasterops,

are subsets of the functionality provided by graphics processors.

Systems such as the Apollo implement these functions in hardware,

providing the desired functionality with no degradation in

performance. It should be noted that these functions involve

extracting bit strings on arbitrary bit boundaries, so they cannot

be implemented efficiently in conventional microprocessors, although

a dedicated microprocessor can meet the demands of all but the most

performance sensitive applications.

233

Page 13

The overall effort to implement BITBLTor Rasterops in software

is not large. These functions are identified specifically in this

report because they should be available in the graphics library, are

likely to be the foundation on top of which a window system is

implemented, and consideration should be given to acquiring a high

end ccmmand and control terminal which provides hardware support for

these functions. An alternative would be to acquire terminals with

display list processors, which can be used to provide equivalent

functionality using different algorithms.

e. GRADS

The GRADS system is a high performance implementation tool for

avionics display systems. A prototype was implemented by

Intermetrics for NADC. It is an example of the kind of high

performance real-time system that is not well supported by general

purpose packages such as GKS.

The target hardware environment consists of an AYK-14 computer

and a special purpose display processor. A typical application

would be the F-18 situation display. The prototype system was used

to create a vertical situation display that was updated completely

20 times per second.

The programmer using GRADS defines a display format and a set

of expressions that relate the display to data produced by an

applications program. Meanwhile, an applications programmer codes

the primary application in CMS-2. The GRADS system generates a set

of CMS-2 procedures which are used to update the display. These

CMS-2 procedures are responsible for updating and managing the

234

Page 14

display program downloaded into the display processor.

The prototype GRADS system was implemented by three programmers

over a 12 month period. The total system consists of 35k lines of

structured Fortran. The host for the GRADS development system is a

CDC-6600. The programmers working on the project were very

experienced in the implementation of graphics systems, and included

one of the key people in the development of the ACM SIGGRAPH Core

standard.

f. C-Compiler for Graphics Processor

Graphics processors are often horizontal microcode machines

with complex and unusual instruction sets. Implementing a standard

graphics package in the assembly language of such a machine is a

painful but finite project. DoD can reasonably expect the terminal

vendor to supply the standard functions. DoD will probably have to

support the integration of graphics peripheral processors with the

run-time system on the host.

If the performance requirements of the applications require a

significant amount 6f custom code to be written to run in the

graphics processor, then attention must be given to the development

environment used to develop that code. GRADS was one approach. An

alternative is to write a compiler for a general purpose language,

targeted for the graphics processor. For example, a C-language

compiler has been built that produces code for one vendor's 56-bit

wide horizontally microprogravmkd graphics processor. One could do

a similar Ada code generator given a sufficiently pressing

requirement. The results with the C-compiler have been impressive.

235

TI

Page 15

For example, a molecular modeling system that creates spheres, does

shading and does hidden surface removal was implemented in 3-4 pages

of C-language code. Performance with the code written in "C" is

adequate; performance with a layered implementation built on top of

GKS would be unacceptable.

g. Presentation Graphics

A common use of graphics is for management presentations. Such

applications should not require custom programming. Instead, a

variety of interactive systems have been implemented which ask the

user the form of the desired presentation aids, the source and

format of the data, and then produce the required graphs and charts.

Quite sophisticated systems have been implemented by a team of 3-4

people over 6-12 months, given a base equivalent to GKS. This level

of effort includes the user documentation and testing to commercial

product standards. In fact, the primary effort is the design of the

user interface and writing the manual, since so little code must be

written on top of GKS to achieve the required functionality.

4.0 ANALYSIS

This section identifies specific projects which should be

undertaken, with suggested levels of efforts. Each project would

produce a result in twelve months. For projects producing a final

production quality product, an additional six months would be needed

for refinement and tuning. The next step in projects which are

exploring alternatives should be decided at the end of the first

twelve month development period.

236

Page 16

a. GKS (Production Product

GKS should be implemented in Ada. Since typical industry

productivity is 2,000 to 3,000 lines per man year, a 5 person team

should be able to do the job in a year. The team should 5e very

experienced, and they should create model code rather than doing the

job as quickly as possible. Also, device drivers should be written

for a variety of different terminal types, including a personal

computer of the IBM PC class, a Tektronix 4114 compatible terminal,

a high performance workstation, a NAPLPS terminal, and a high

resolution color graphics display such as the Ramtek or the

Lexidata. In addition to the basic development team, about one

person will be needed for each class of terminal to do an adequate

job of defining the similarities and differences among terminals in

the class and reflecting that parameterization in the Ada model.

Hence, the total level of effort will approach ten people on this

project.

b. PHIGS (Experimental System)

At least one person should track the PHIGS development. Even

better, a team of 3-4 people should start to implement PHIGS and

participate in the standards activity in order to help the standard

to converge rapidly so it is ready to meet the WW1MCCS needs.

c. NAPLPS (Production Product)

A five person team should easily be able to implement a model

implementation NAPLPS terminal software in a year. They should also

be able to deal with the various classes of terminals in the model

237

Page 17

implementation, since the NAPLPS standard deals explicitly with all

the conversions among terminals.

d. High Performance Graphics (Experimental System)

One or two teams of 3-5 people should work to explore the

limitations of GKS and propose solutions for those command and

control applications for which GKS will have too much overhead. The

GRADS system provides one direction which should be explored.

e. Mixed Text and Graphics Displays With Windows (Experimental

System)

Either one or two teams of 3-5 people should work to define the

primitives that will be used to implement user interfaces on high

resolution bit map displays. The Xerox Star and the Apple Lisa are

two examples of the desired kind of user interface. The WWMCCS

community should have a standard set of packages for iplementing

such an interface. With such a tool kit, standard user interface

conventions can be maintained across applications and at the same

time the WWMCCS system can be vendor independent and able to benetit

from new cost saving and performance enhancing technologies trm the

terminal suppliers.

This required etfort is in addition to) the effort required to

irplement a screen criented text +editr, formatter, and other text

manipulation trnls. The, text prxcessinq requirements are discussed

in a separate technical irea report.

238

Page 18

f. Maps (Experimental System)

Maps are central to command and control in a variety of

contexts. The technology for two and three dimensional mapping is

very advanced. An effort should be initiated to implement in Ada

the key state of the art algorithms for representing, creating,

inputting, transforming, analyzing, displaying, and printing maps.

The initial version of routines should be built on top of GKS, but a

likely result is that additional Ada packages optimized for mapping

will have to be added to the library. This is potentially a very

large effort. A team of 5-10 people would be able to do the basic

design work and implement a few of the most important packages. The

effort can then be expanded after the full GKS implementation is

available and after the strengths and limitations of the Ada

implementation of GKS have been explored.

g. Presentation Graphics (Production Product)

A team of 3-6 people should be tasked to implement an executive

presentation system for creating bar charts, pie charts, simple

graphs, and other reporting formats used in the WWMCCS cominity.

There should be a heavy emphasis on requirements analysis, with a

thorough search to find all the different presentations formats

which must be supported. The system should support transparencies,

color plotters, 35mm slide cameras, and overhead projectors as

output devices. This system will be one of the primary benchmarks

for testing the performance of the GKS and NAPLPS implementations.

239

Page 19

h. Teleconferencing (Experimental System)

1-2 people should begin to plan the use of NAPLPS and the

presentation graphics software in teleconferencing applications.

This will involve the definition and demonstrations of a variety of

scenarios, and provide the foundation for the early implementation

of required W*MCCS teleconferencing capabiltities.

i. Integrated User Interfaces (Experimental System)

Bridging the gap between the system command language, the

graphics and text handling tools, and the applications developer are

the family of tools for assembling the user interfaces of

applications systems. Appendix A discusses the rationale for

separating the user integration tools out as a separate family of

modules. A 3-5 person project is recommended to develop a prototype

system in this area.

5.0 CONCLUSIONS

Graphics will play a key role in the future WW CCS system.

"Glass teletypes", by which we mean 80 character by 24 line CRTs

that are used as if they were teletype terminals printing on paper

at 10cps or 30 cps, are already obsolete. The future system should

incorporate a variety of graphic terminals, ranging from NAPLPS

terminals for the distribution of decision support information over

low bandwidth comunications lines to high resolution color bit

mapped terminals for analyzing geographic data, simulating

operations, and other applications.

240

Page 20

The range of hardware alternatives, and the need for a family

of software packages covering a very broad range of applications,

means that the WIS office nust quickly explore a very large number

of alternatives. Failure to do so could lead to a large number of

incompatible user interfaces in the future WWMCCS environment, and

also seriously comromise vendor independence.

The proposed development program involves the inmmdiate

implementation of existing national and international graphics

standards in Ada, and the simultaneous exploration of a few key

applications as performance benchmarks for the standard packages.

It is likely that the WMCCS community will need generic packages

for the efficient manipulation of documents containing mixed text

and graphics, and for the processing of maps. These special purpose

WWMCCS packages may also suggest specific functional requirements on

some or all of the terminal hardware that will be procured. The

recommended development efforts and experiments are all high

priority critical path items for the WWMCCS program. Ideally, as

many as 50 people organized into about 10 small teams will be

started to work in these areas immediately.

241

Appendix A

A USER TNTEBFACE mATArEMFNT

SYSTEM (rTTMS)

FOR VWMCCS

Current comouter graphics research has indicated that several

benefits will arise from management of a user's dialogue with an

aoplication system as a module separate from the application package

and the graphics output package. Benefits of using a User Interface

Management System (UTMS) include

1. better utilization of hardware interaction capability (less

FusceDtibip tn Least Common Denominator Syndrome),

2. reduced application development costs due to increased use of

man/machine interface prototyping and sharing,

3. increased reliability through use of a common well-eebugged

package, and

4. user interface compatibility across applications.

UImS(s) of various types and styles have been built are being used

In both research and commercial settings. The UTMS proposed in this

paDer, the UTMS/DF (User Tnterface Management System / Data Flow),

is an extension on these systems in that its architecture provides

for both external (TTTMq invokes the application) and internal

(aoplicatlon invokes the UTMS) control in a multi-thread

environment. Multl-process "window" workstations are supported in a

natural manner.

242

The rTTMS/nP software views the user/appl!catio- interface as

streams of data flowing in either direction (application - user, or

"output", user - applioatinn, or commands/input). The ITser

Tnterface Programmer can dofire and control this flow by connecting,

usinw "Pipes", instances of "Mndules" which poviep data

transformations, data routing and selection, peripheral input

(kavhoard, tablet, mouse, etc.), terminal d4splav (A/N text,

graphics), and application software interfaces. The Modules are

selected from ITTMS/PF libraries of "standard" Iodules, or may be

"custom" programmed using Ada. Low level support for the graphic

display and input peripherals is provided by COS functions, or

"escapes" when required. The Modules "fire" or execute whenever

datp is Rvailable nn their input Pipes.

Several basic benefits of using ITTMS tools have been identified

in the literature (and mentioned above). Tnherent in the

recognition of these benefits are the observations that human input

interactinn techniques are not nearly as portable (from a

user-friendly point of view) across display terminal technologies as

image display techniques. The logical input devices supported by

CWS are well adapted for describing the types of interaction data

reauired, but do not directly support the utilization of good

human-machine interaction techniques. For instance, a "Choice"

input for a given application may be more appropriately selected viA

function keys on 1 type of display, while use of a mouse selected

"Pick" to implement a "rhoice" from a displayed menu would be more

natural and comfortable on a different display or in a different

context. Other observations include:

243

1. Interaction technology still proceeds in a trial and error

manner as application/user appropriate mechanisms are

determined; a process better controlled if the interaction

system can be maintained separate from the rest oP the

apolication system for easier prototyping and maintainance.

2. Applications built utilizing internal control of input

(application invokes inDut procedures, sck' as in Ftandard

graphics packages) tend to make "backing out" of a command or

functior relatively difficult..

3. Tnput techniques buried in the "guts" of an aoplication tend to

be difficult to share among other applications, as t'- various

pieces are scattered throughout the software.

In addition to the above general benefits of using a UTVS, the

dats flow approach adopted by the fIlT,/PF provides the followini

additional advantages. UTMS/DF-built systems are by definition

modular with regard to both the application softwareand internally

with regard to other Modules. Side-effects are effectively

eliminated as inter- and intra-lIIMS communication is only via Pipes,

there is no shared memory. The "building block" approach in

developing user interfaces promotes rapid, easy prototypJng of

interfaces and convenient mechanisms for monitoring and tracing the

flow of information through the system. The functionality of the

UTMS/PF is extens4 ble in a standard way -- build new Modules.

Display terminal resource handling for multi-process window SUDport

is provided by a Terminal manager built from T'IMS/PF Modules and

Pipes. The Terminal Manager controls the input/output data by

244

acting as an initial "filter" on ill input peripherals and the final

output filter for display output.

lI1MS(s) are rapidly being accepted as a required component and

tool for developing interactive, application systems. User

Interface Management Systems of varying degrees of sophistication

are being developed and used in several research settings including

George Washington University, the University of Toronto, and Arizona

State 'niversity. Use of UTMS technology during system development

is being pursued at TPW and Boeing Computer Services Company. The

use of data flow technology is reflected in the UNIY pipe mechanism

and more specifically in signal processing applications software.

The Evans and Sutherland PS-300 graphics system completely relies on

a data flow model for the programming of local peripheral handling

and graphics transformations.

245

Command Language Desi'k>-

Thomas Kaczmarek
USC/Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292

14 September 1983

247

PAiIECDIG PAMI &~A -NOT FILM

Overview of Command Language Component

This report outlines a package of components to be written in Ada that will provide a

command language interface for command and control systems. This package of

components should be useful in building interfaces to a system executive or to individual

applications programs.

Command and control languages have matured in recent years. Significant trends

inciude:

1. control abstractions that have been found useful in programming languages
(iteration, conditional execution, etc) have been assimilated into command
languages,

2. graphical and two-dimensional languages (icons, menus and forms) have
emerged as alternatives to conventional character string based languages,

3. the command language interpreter has become a service that is accessible from
application programs,

4. *, command language is considered to be the language of the dialog between
the computer and the human--including both commands and responses.

These trends should be included in the product.

Brief description of product

The functionality of the package is divided into six major areas.

1. Form support

2. Menu support

3. Icon and advanced graphics support

4. Command-string support

5. Error message service

6. Keyboard input services

249

i-CDJd PAGE 3LANK-NOT 11 AM

2

Form support

The paradigm of form filling has gained wide acceptance, especially in applications with

very heavy data entry requirements. The value of this interactive technique has also been

demonstrated in low bandwidth data collection for control applications. In this kind of

application, the major advantage of the approach is that it aids the infrequent or unfamiliar

user by prompting for parameter values. It is important to also emphasize the utility of a

forms package for the presentation of information as well as the collection of it. The forms

package should become the principal vehicle for presenting the computer's side of the

interactive dialog.

Requirements for forms support include:

- a form description language that specifies things such as the placement of text
in a two-dimensional screen, graphic attributes of the text, protection
information for the fields of the form, etc,

- a form compiler or interpreter to directly or indirectly produce actual displays at
the user's terminal, and

-a form interaction editor that allows the use to navigate around a form with
cursor controls and to enter and correct data entries.

The forms package should exhibit a number of important features. It should contain an

integral multi-level help system. The help system can be built using the forms package itself

as the methodology for the presentation of help. Forms should be parameterized to allow an

efficient technique for the application programmer to pass information to forms and to

receive updated results. Forms should be scrollable and support multiple virtual screens.

Finally the forms package should be written to be device independent and to make use of

information stored in a terminal-capabilities file to convert device independent graphic

commands into device specific ones.

250

3

Menu support

Menus are another interactive technique that have gained great popularity. They provide

the user with a clear depiction of alternatives.

The major requirements for menu support are a menu description language and run-time

support. The menu description language should support the description of structured

dialogs. That is. the description of the menu should include a specification of what the

system should do next for any menu selection. The next action may be the presentation of

another menu or the execution of an arbitrary routine. The run-time support should allow

the user to back-up through a sequence of menu selections or to look-ahead.

The entire menu package could be embedded into the forms package. This would allow

them to share help facilities, device independent properties, and graphic capabilities.

Icon and advanced graphics support

Modern bit-map and color capabilities can be of valuable assistance in the presentation of

information. High powered workstations should be part of the future planning for command

and control systems. Support must exist for constructirg bit-map displays of forms, menus,

icons, and text in various fonts. This portion of the product must interact with the forms and

menu packages making use of the device independent nature of those components.

251

4

Command-string support

Although there have been numerous advances to command languages that have led to

alternate command specification paradigms, there still is a place for the more conventional

command-string style of command specification. The major advantages of command strings

are efficient entry of commands for experienced users and the ability to execute stored

command procedures.

Command procedures should be parameterized and contain conventional control

abstractions. The syntax of the command language should be compatible with the syntax of

the dominant development language, Ada, The command procedures should also include

support for exception handling. Functional combination has proven to be valuable in certain

situations. Pipes and filters from the Unix environment demonstrate the acceptance of this

facility. Functional combination should be provided using a more conventional notation--the

syntax of Ada function composition.

Since application programmers may choose to implement a command-string interface,

language description and parsing facilities could be made available on a system wide basis.

This requires a language definition capability and run-time support.

Error message system

In order to encourage uniformity in the method of presenting errors throughout the

system, a error message facility should be constructed. This facility should not only provide

a storehouse for messages and routines for displaying them in a standard format, but also,

implement standard procedures for reacting to errors and continuing from them.

252

Keyboard input services

There are a number of techniques related to keyboard entry that should be provided in the

product. These are spelling correction, name completion, and input buffer editing.

A general facility to correct spelling errors should be available. Since most command

situations involve a very limited vocabulary, this facility can be cheaply added to the System

and greatly improve the user interface to command and control applications.

A name completion facility is also quite useful in the design of user interfaces. With such a

facility, the user strikes a name-completion key after typing the first several characters of the

vocabulary item. If the characters typed to that point are a sufficient prefix for a unique

vocabulary item, the system will complete the item. The limited vocabularies associated with

command and control make this technique relatively inexpensive and efficient.

Efficient use of these techniques requires that the system be able to limit the possible

vocabulary alternatives at any point in the parsing of the input string. This has implications

on the parsing routine used. The name completion and spelling correction facilities should

be available in conjunction with the forms package to allow their use during interaction with

forms.

The product should supply a character string editor that uniformly handles all keyboard

input. This editor needs to have only limited capability because it will be assumed to be

editing a single line of text. Capabilities should include, deleting the previous character,

deleting the previous word, and deleting the whole line. More advanced features like cursor

control and insertion could be added. This component should be device independent and

use the terminal-capabilities file to derive device specific commands to perform editing.

253

6

Conclusion

The facilities 0escribec in this report are the result of examining the capabilities of a

nimber of systems. These include, DECs FMS iorms package, The UNIX operating system.

VisiOn, Apple Lisa. various XEROX scftware prodicts (Star. SmalltalK. Interlisp-D) and the

TOPS-20 operating system.

The functional requirements for the forms package is heavily influenced by the FMS

package developed by Digital Equipment Corporation. Research efforts at USC/Information

Science Institute and Carnegie Mellon University have also been influential. These efforts all

indicate that the development of such a tool is a reasonable goal to pursue in the time frame

recommended for this product.

Menus have occupied a significant position in several XEROX software products.

XEROX's use of menus has had tremendous impact on subsequent designs. The menu

package requirements have been derived from studying the FMS package, the XEROX

products, and several research efforts. The Promise and ZOG systems and work on a menu

package done at General Motors Research have provided insight into this component.

Command-string support requirements were derived from studying Unix and a number of

other operating system command and control languages. The main lesson learned with

respect to command-string languages during the past several years is the importance of

control structures in command procedures.

XEROX has been the dominate force in building advanced graphic systems for use with

bit-map displays. Smalltalk, Interisp-D, Star, and Mesa have all relied heavily on this

technology and exploited it slightly different ways. The Apple Lisa and Visi On from Visicorp

254

7

have been greatly influenced by XEROX's pioneering work. All of these systems have

influenced the functional requirements for this aspect of the product.

The keyboard entry services have been derived mainly from the TOPS.20 operating system

and Interlisp but some of the functionality is certainly available in other products and has

been studied in research efforts.

Level of effort

In sizing the effort to produce the command language component of the product, the

forms and menu components have been treated together. This integration produces a man-

power savings and should produce a superior result. Taken together, the menu and forms

efforts should represent about 10 man-years of effort. Much of the design in this area can

be gathered from studying existing systems.

The advanced graphics support represents the greatest technical challenge. Only a very

few such systems have been built yet. The effort to provide this service is in the 10 man-year

range. This is predicated on the package being integrated with a device independent

form/menu package. Although there aren't many such systems in existence, a few of them

are well documented and this should help greatly in the design of such a system. The Visi

On package, for example, is well defined so that external software vendors can integrate

arbitrary software products into the Visi On environment.

The command-string support is also about a 10 man-year. This is an area where there is

abundant experience waiting to be tapped.

The error message and error handling system requires a relatively minor level of effort. It

is roughly a 2 to 3 man-year project.

255

8

The keyboard interface component of the system is also a relatively minor task and all

three aspects should collectively take about 3 to 4 man-years.

Discussion of functional requirements

This section will present some more details on the functional requirements of the various

components of the command and control services. It will suggest some possible

alternatives and attempt to point out possible trouble areas.

There are two main concerns in specifying the requirements for this product. One is the

need to use the components to produce user interfaces that are friendly and helpful. The

second is to make access to the facilities simpler for the applications programmer. The

concerns expressed in the following generally fall into one of these two categories.

An important consideration in the design of these components is the trade off between

consistency across applications and flexibility of the components. Increased generality and

flexibility in the packages will result in application programs that have very unique and

distinctive interfaces. Restricting the generality will result in more uniform interfaces

throughout all applications. Too much restriction, however, will result in difficulties for the

applications programmers.

A help facility must be part of the design of all the major components of the product. The

forms package should include an integral help package. This allows the user to press a help

button on the keyboard at any point in the interaction with the form. The system response to

the help should be in several levels starting with a very brief, one-line description of what is

required. If the user is not satisfied, a second press of the help key should give a more

complete description of what is expected. The one-line help should appear in some

designated prompt area on the user's screen. The more complete help can be implemented

256

9

by specifying a help-form. This allows the forms package to be its own help system.

The forms package should also allow parameterization of forms. These parameters would

be used to pass data between an application and a form. Many existing forms packages do

not support this feature and the result is a significant burden on the applications

programmer. For output, in existing systems, the programmer must first display the form

without any data. convert the data to text, and then direct the forms package to display the

text in the appropriate fields of the form. For input, the programmer must first display the

blank form, ask the forms package for input, receive a character string, determine which

field it came from, and convert it from text to its internal representation. A possible technical

advance could be achieved by making the parameters of forms typed using the Ada data

typing mechanism.

Scrolling is an important feature to include in the forms package. Frequently all the data to

be presented does not conveniently fit on a single screen. The applications programmer

must be given some support to make scrolling a relatively easy task.

Since it is probably infeasible to require all users of the system to subscribe to the use of a

single type of terminal/workstation, the forms package should be constructed to be device

independent. A terminal.capabilities file should exist to allow the package to convert

generic graphic commands into device specific commands.

Another useful feature that should be considered for inclusion in the forms package is

support for multiple virtual screens. This is an invaluable aid to the user who needs to

manually coordinate information.

In the interest of making menus easy to use there are two pitfalls to avoid:

257

10

1. deeply nested control trees are difficult to maneuver in, and

2. experienced users frequently are frustrated by the need to go through many
menus when a simple commana might suffice.

Nonetheless, menus are a valuaoie tool for structuring command and control cf

applications. The design of the menu package can be used to minimize the abuse of menus.

A menu system with all the power of Promise or ZOG will probably result in menu interfaces

that overload the end-users capability to handle them. Restriction of the dialog description

capabilities of the menu system can be used to insure the generation of realistic dialogs.

There are two basic techniques for menu interaction. The first could be called the

numbered-option approach. Each item of the menu is identified by some unique character,

usually a number, that is entered by the user to make a selection. The second approach

could be termed the positional approach. Here the user positions a cursor at the menu item

and strikes some key or button to indicate the selection. This second approach typically

involves using a pointing device on advanced terminal/workstations, and cursor controls on

more conventional terminals. Either approach is acceptable. The first approach is

somewhat simpler to implement and may be easier to interact with. Thought should be given

to designing the system with both and placing the choice of which technique to use in the

device dependent part of the menu package. For dumb terminals, the numbered-option

approach would be used. For advanced work stations, the positional approach would be

employed.

The advanced graphics component called for in this report is similar to window packages

that are now emerging in several products. Many people are predicting that this type of

interface will dominate all future command and control interaction. Although it represents

258

11

the greatest challenge and risk, the potential rewards are clear. This style of interaction

greatly enhances the learnability of systems and the productivity of users Beca&se it is a

substantial effort and risk, the development plan might have to call for its introduction into

the system shortly after the end of the near-term project goal.

Important features of the advanced graphics component are multrple (and possibly

overlapping) windows, several predefined fcnts, bit-map imaging caoabilities, integrated

menus (including pop-up menus), and functionality to support shaping, positioning, and

other window management operations. Provision for the use of color is important for future

growth of the product.

Case studies

Rather than give detailed studies of all the systems that influenced this report, in depth

reports will be given for only two major systems. Less specific treatment will be given for

systems that are either more conventional or have less influence on the product.

Unfortunately, hard data about lines of code, project team size, and level of effort is not

readily available for some commercial products. In these cases, level of effort estimates are

based on personal experience with similar systems.

FMS

The FMS package distributed by Digital Equipment Corporation is a fairly complete forms

package which cleanly interfaces to any of the programming languages supported in the

VAX/VMS environment and the PDP-11/RSX environment. It consists of a description

language, an editor, a library utility, and run-time support.

The form description language, which is part of the newest release of this package. can be

used to construct forms by specifying layout and graphic properties. In the past, the forms

259

i-

12

editor had to be used in conjunction with a VT100 series terminal to describe a form. The

editor is still available and is a useful tool for users with a VT100. The library system

provides a method for organizing and collecting forms. It also provides utility functions such

as copying, deleting, etc. The run-time support is achieved by linking the application

program to a small set of system supplied functions. These functions request the display of

a form, direct data to be displayed in a particular field of a form. collect data from a form, etc.

The FMS system allows control of the graphics capabilities of the VT100 (and VT52) series

of terminals (e.g., inverse video, high-lighting, and blinking) and with the recent upgrade it

can now support the advanced graphics features of the VT100 family (e.g., double width and

double height characters). The package has an integral help facility which uses the forms

package itself to implement multiple-level help. FMS allows the applications programmer to

define protection for fields of a form including specifying a "supervisory mode". The

package also handles the definition of default values. The run-time support includes cursor

control, automatic field advance, both insertion and replacement mode of keyboard entry

and the ability to toggle between them. Scrolling is also supported by the FMS package as is

some limited restriction of possible input values (numeric, alphabetic, or alphanumeric).

The recent enhancements include attaching routines to fields of a form that process

keyboard inputs directly. In the past the applications program was responsible for explicitly

fielding all keyboard input.

FMS has been a product of DEC for several years and it was significantly upgraded with a

new release this summer. The system is available for two DEC products, the PDP-1 1 under

the RSX operating system and VAX under the VMS operating system.

The size of the effort and development team characteristics are unknown. Experience with

260

13

similar systems indicate that it was probably a 10 man-year effort to develop this system.

Performance enhancements and recent extensions to the system make actual level of effort

estimates very difficult to construct.

Visi On

Visi On is one of two recently introduced products that bring advanced graphical

interfaces and workstations into the office. It follows the introduction of similar interfaces in

several XEROX products. The Visi On package is an attempt to supply just the sort of tool

that this study is focused on. The idea behind Visi On is to supply a standard set of

interaction techniques that applications will be built upon. Visi On was developed under the

direction of William Coleman at Visicorp.

Visi On represents an extensive package of interface techniques. It include forms, menus,

windows, and even some aids for memory management for personal computers. It includes

a help system and tools for building interfaces to applications. Standardized window

manipulation routines are supplied to the end user in such a way that the applications

programmer need not worry about them. Thus the user can move a window from one place

to another with no intervention by the application program, A major design goal of Visi On is

to supply a consistent interface to a number of applications.

Visi On graphics capabilities include multiple overlapping windows. Support exists for

controlling graphic properties of windows. An important feature of the product is a what you

see is what you get style of editor for interacting with the display.

This system should be a rich source of design ideas both in terms of the interface it

supports and the tools it supplies to help define a particular interface.

261

14

Visi On was developed over a two and a half year time frame. The first year was spent

defining what the standard interface should look like, discovering what basic capabilities to

put into the system, and defining the system architecture. A prototyping team of five people

built the first version over a three month period. The development phase for the system

lasted about a year and a half and represents about 20 man-years of effort. The actual

figure is somewhat difficult to attain because of time spent on the development of specific

applications, memory management techniques, etc. Most of the system was written in C ana

it resides in about 128K bytes of memory.

Other systems

The two previous case studies dealt with the more complex elements of the product. FMS

serves as an integrated menu/forms system and Visi On is all of that plus advanced

graphics. The functional requirements for command-string support, error message

facilities, and keyboard services are a synthesis of ideas from several systems. A full case

study of each is inappropriate since in most cases only some features of a large system have

been used. Fortunately, the technology is much better understood in these more

conventional areas and details of the case studies are probably less interesting anyway.

Systems such as Unix and TOPS-20 can be used to provide guidelines about the more

conventional aspects of the command language component. The Unix system represents

many man years of tuning and refinement of a particular design. The Unix Shell currently

represents almost thirteen thousand lines of C code and resides in about eighty thousand

bytes of a VAX. The total effort put into the Shell is a somewhat meaningless statistic in this

context. Based on the size of the Unix Shell and experience with other systems such as

TOPS.20, the man-power requirement to produce the command-string support, the error

message handler, and the keyboard input services, is probably around 15 man-years.

262

15

Analysis

All of the estimates given for level of effort have included time for design and specification

of the system as well as development, debugging, and testing. They do not include any

extensive amount of performance tuning or anything beyond initial development.

As was mentioned earlier, the most challenging aspect of the project will be the advanced

graphics interface support. This is one area where performance tuning may be critical.

There is significant overhead involved in operations involving bit-map displays, especially in

the use of proportionately spaced fonts. The quality of the development team in this area is

important. The team must have sensitivity to user interface issues as well as some

experience building a similar product. Nearly everyone who has built such an interface has

seen the wisdom of hiring someone with experience from XEROX.

The development of the form/menu/advanced graphics support systems must be

managed in an integrated way. Coordination between these packages is critical. The

design of all three must be carried out in synchrony. To the extent that the keyboard entry

package and error message components must be integrated with these other packages,

their development must also be synchronized. It may be a requirement that all of these

components be developed within a single organization.

263

16

Conclusions

It is important that the product pay close attention to the recent trends in interface design

and support them in a complete command and control language design. Control languages

are no longer simple one-dimensional strings with only one-way communication. They now

include two-dimensional character-based and graphics-based interaction techniques. This

report pays attention to the three dominate paradigms for command and control:

conventional command strings, forms, and menus. In addition, it attempts to include more

advanced and highly graphical realizations of forms and menus.

It is important that the product pay attention to the needs of the end user as well as the

application programmer. This means that the product must include provision for design

tools for interfaces. The functionality of the components must be clearly defined and

provide enough functionality to take much of the burden of interface design off the

shoulders of the applications programmer. The product must also provide for the needs of

the end user. Help facilities must be an integral part of the design. Tools must be designed

to encourage good interface design. They must provide assistance in areas such as

remembering names and spelling. Known techniques for enhancing the user interface

(multiple windows, scrolling, etc.) must be supported in the product.

The product will be divided into six major areas: forms, menus, advanced graphics,

command strings, error message services, and keyboard entry assistance. All of these

areas require close coordination. The greatest technical challenge lies in the area of the

advanced graphic interface. Special talent may have to be recruited to insure a successful

completion of this component. The total level of effort needed to design, develop, and test

the package is roughly 40 man-years.

264

-- ------

DISTRIBUTED SOFTWARE ENGINEERING CONTROL PROCESS

TASK 2 ANALYSIS AND FUNCTIONAL DESCRIPTION

SOFTWARE ENGINEERING ANALYSIS

CONTRACT NO. MDA 903-83-C-0202

to
WIS JPM

Technology Directorate
Washington D.C. 20330

29 JULY 1983

from
GTE Network Systems R&D
2500 West Utopia Road

Phoenix, Arizona 85027

265

PART I

ADA COMM4AND L7ANGLAGE CONCEPTS

DRAFT

(To be included in SEA)

August 5, 1983 - 08:51:46
AR/GSN

267

i-tC wilkG PA mJ aLA wn-NoT nTI

DISCLAIMER

This is a draft copy of one section of the Software
Engineering Analysis concept paper. It depends, to
some extent, on the context of the entire SEA paper.
As a stand-alone document, there may be some confusion
that is clarified by the SEA itself. The primary pur-
pose of this concept paper is for preliminary feedback
on the basic concepts for an Ada command language

268

CONTENTS

PART I -- Ada Command Language Concepts

Chapter page

1. ADA COM.AND LANGUAGE 271

Requirements for a Command Language273
General requirements for a Command Language . .273
Requirements for a Command Language Interpreter277
Analysis of Ada as a Command Language282

Command Language Requirements Met by Ada . .283
Command Language Requirements Not Met by Ada285
Modifications to A.NSI/MIL STD for the Ada

Command Language286
Analysis of an Ada Command Language interpreter286

Ada Command Language Model 290
Simple Commands 290
Sequancing Commands 292
Command Procedures 293
Command Packages 295
Command Tasks297

Command Language Interpreter Model 300
Interpreter Model 302

Commands and Command Procedures302
Interface Information303
Executable Forms 304
Input/Output307

Configuration Management Model 309
Interactive Interface Model 309

Modifications to Ada 309
Helps 310
Prompting 310
Interrupt Handling310
Programmable Function Keys311
Menu Interface311

DC? Menu Model 312
Helps312
Tutorials312
Command Menus313
Data Menus 313
Table Menus313

Ada Command Language Session Model 314
Session Initiation 314
Command Entry316
Command Procedure Entry 318

269

Session Closure319
Svecial Features................319

Programmable Function Keys (PF Keys) ... 319
Parameter Prompting 320
Help Services 321

System and Application Functions 323
Glossary 325

270

Chapter 1

ADA COMMAND LANGUAGE

This section of the software engineering analysis provides
the background for selection of the command language used
for the DCP. The selection consists of two major parts:

" An analysis of the requirements for a command language
(CL) and command language interpreter (CLI).

" A set of models to illustrate the concepts behind the
components of the DCP user interface, which are:

- Ada as a command language.

- An Ada command language interpreter.

- A user session illustrating the use of Ada and the
role of the interpreter.

- A menu system model, which allows a high-level inter-
face with the Ada command language and the DC? sys-
tem.

The Ada command language (ACL) and Ada command language in-
terpreter (ACLI) define the use of Ada as a command language
and the concepts behind a command language interpreter. Ta-
bles I and 2 list the objectives of the sections reviewing
the requirements and models for the DCP user interface, be-
fore beginning the detailed review of the points.

271

TABLE 1

Objectives of the Command Language Models

ACL Model CL Mode!

1) Identifies the Ada language 1) Defines features that a language
features that can be used must have to be usid as a CL.
in a command language.

2) Defines how the Ada language 2) Defines how language features
features will be used. may De usec.

31 Defines a conceptual model 3; Defines the concepts -f how a
of the use of Ada language language is u~iiizec 'y a user.
features by the user.

TABLE 2

Objectives of the Command Language interpreter Models

ACLI Model CL: Model

1) Defines how the DCP ACLI will 1) Defines how a CLI uses the CL

use Ada to interface with to interface with the system.
the VAX and other systems.

2) Defines features that the 2) Defines functions that belong
ACLI will offer that are to the CLI and are outside
not part of Ada. of the CL.

272

---- -- - -

1.1 REQUIREMENTS FOR A COMMAND LANGUAGE

Requirements for a command language(CL) involve both the
language definition and the design of the command language
interpreter(CLI). This section presents:

" A review of the requirements for a language that is

used as a command language

* General reauirements for a command language interpreter

* An analysis of the use of Ada as a command language

" The use of Ada by a command language interpreter

The requirements section results in a list of requirements

for the command language and interpreter that are later used
in the description of the Ada command language, command lan-
guage interpreter, session and menu system models.

I.1i General requirements for a Commana Language

The general requirements for a command language are listed
in table 3. This set of requirements results in a language
that supports a user interface with an operating system and
application programs. Each major requirement is detailed
below.

Uniform Interface

A command language (CL) is the interface between a user and

the underlying operating system. The user of a system mani-
pulates objects. schedules tasks and collects information
using a command language in much the same fashion that a
program performs the same functions. The CL should oe sim-
ple to use and not require significant new learning on the
part of the user. The CL should also provide a uniform in-
terface to the ustr such that the user's perception of t'.
system is consistent, whether the user is creating program
source code or communicating with the system via the command
language. Uniformity reinforces the user's view of a sys-
tem, as constrasted with presenting diverse languages to the
user.

Ease of Use

A command tanguage should make it easy for the user to in-
struct tne system. The language definition should allow for

2
273I

TABLE 3

General Requirements for a Command Language

" Present a Uniform User interface

" Be Easy to Use

* Support Probiem Solving

* Support an Object-orientea view of the system

" Support multiple versions of commanas and
selection of such versions

" Be rehostable, i.e. avoid computer-system
dependencies

an easy, abbreviated interface, although much of the support
provided to the user is an attribute of the command language
interpreter and not of the language itself. As an example,
some command language interpreters will accept an unambigu-
ous truncation of an identifier and substitute the entire
:dentifier. The language definition does not support the
truncation, which is solely a function of the command lan-
guage interpreter. The CL user support should reduce the
amount of information that the user must manually enter to
the system by providing:

* Default parameters

" Shorthand (i.e. aliases)

* Canned command procedures

* User-created command procedures

* Access to Menus a command

Relating commands to their functions is indirectly supported
by a command language by allowing meaningful identifiers to
be created. Command procedures, which allow a complex se-
quence of commands to be invoked with a single name, also
provide brevity in communication with the system.

274

Object Oriented

Traditional command languages have presented the user with a
monolithic structure of commands, normally organized only
within a CL reference manual. The system has been viewed as

a single object with a large set of diverse operations ap-
plied to it. This is the degenerative case of data abstrac-
tion. A system is actually a collection of objects. Opera-
tions within the system may be grouped by the objects they

act upon. This grouping of operations and objects is equi-
valent to data abstraction, the object becoming abstracted
and the operations becoming the only means to access the ob-
ject. Modern language concepts can directly describe this
view of data abstraction. The advantages of viewing a sys-

tem as a collection of objects include:

* A more understandable system structure

* A clearer understanding of the system and its compo-
nents

" Improved readability of the command language source
that implements objects and operations

Command languages should similarly support creating the lo-
gic for controlling system functions as an object-oriented

activity. Objects, such as files, directories and databas-
es, are easily manipulated when viewed in this manner. A
command language should reinforce a user's view of the sys-
tem as a collection of objects, which have a set of opera-
tions that may be applied to them.

Problem Solving

The user of a system needs a command language that supports
problem solving and expressing solutions to problems, using
operating system services and application programs. The
command language must support these qualities by allowing
invocation of functions and analysis of the results of ac-
tions within the system. The language definition should in-
clude control constructs and variables that may be used in
control constructs. The solution to a problem should be ex-
pressed in a concise manner within the language. Since a
command language must support problem solving and expressing
solutions, it should incorporate programming language fea-
tures. These features include conditional branching, loop-
ing, argument handling, variables, string manipulation, ex-
pressions and exception handling, among others. The
difference between a programming language and a command lan-

guage should be minimized. When the same language is used
for both programming activities and system interaction, the
difference between programs and commands diminishes.

275

Organizational Structure

The command language definition should support the organiza-
tional structure of the users of a system. This implies
support, within the language, of the ability to select a
command in a user's environment that may be redundantly
named with other commands. Normal programming language
scoping is not sufficient to allow several versions of a
command to be named the same and still select the version
requested by the user. Supporting an organizational struc-
ture allows a single copy of a command to be placed in a li-
brary system, as opposed to each user or group of users re-
plicating the commanc in their own libraries. Section 1.3
on the command language interpreter expands this concept.

Rehosting

Rehosting of a command language implies that it be indepen-
dent from any specific operating system. Concepts unique to
a specific command language or operating system present
problems to a truly rehostable command language. Examples
such a the UNIX piping or full-duplex communication refer to
specific features that may be difficult to emulate or create
on different computer systems.

Summary

Command languages must provide expressive power for an ex-
perienced user solving complex problems by using the system
functions. At the same time a command language must be easy
for occasional users to use and must provide many means to
abbreviate the amount of information that a user must enter.

The command language should reinforce the concepts of ob-
ject-oriented actions between the user and the system and
should offer a consistent interface, preferably by using a
single language to solve programming and system problems.

The organization of the users should be supported by the
language and the language should be host-system independent,
allowing a single user interface to exist regardless of the
particular computer system.

276

1.1.2 Requirements for a Command Language Interpreter

This section states the requirements for a general user in-
terface that are within the domain of the command language
interpreter and are not part of the command language defini-
tion. A command language interpreter(CLI) is the program
that accepts a statement in a command language, interprets
the statement and effects a result in the operating system.
As such, it offers many features to the user of a system
that are . t part of the language definition for a command
language. A CLI is used to interpret both interactive and
batch commands. The requirements for a CLI are listed in
table 4.

Reduction of Keystrokes

Many of the features that a CLI implements are also partial-
ly offered by the command language definition. An example
is the reduction of information that a user must enter. The
CL definition may allow synonyms (as in Ada's renames
clause), while the CLI may allow an unambiguous abbreviation
to be expanded to the full name. The CLI may also reduce
the number of keystrokes necessary by automatically complet-
ing some syntactic details, such as allowing spaces between
parameters (by creating commas in place of the spaces). .kn
important aspect of such actions by a CLI is that, to the
user, the commands entered appear to be in a different lan-
guage. This fosters confusion, since the language written
in canned command procedures appears to be different from
the abbreviated form allowed in interactive communication
with the system.

Error Recovery

The CLI is responsible for error recovery. Error recovery
should be designed to reduce the portion of the erroneous
command that the user must reenter. Reentering a single par-
ameter, name or value, or assumptions made by the CLI to
correct the error (e.g. missing closing parenthesis) should
be part of the error recovery. Error reporting is used by
the error recovery and should be tailored to the experience
level of the user and the mode of entry (i.e. line-by-line
or full screen).

Promoting

Prompting is a function provided by the CLI. Prompting com-
pletes the command text by inserting information from the
user. The CLI must be able to associate prompting with spe-
cific points in the command language definition, such as

277

TABLE 4

General Requirements for a Command Language

Interpreter

• Reduce the keystrokes required

for command entry

* Provide excellent error recovery

* Provide prompting for
missing or erroneous information

* Provide helps

* Provide environments for retaining
information relevant to commands

* Allow definition of user experience level

* Allow mode of entry to be determined

* Provide programmable function keys

* Provide an interrupt function

* Provide access to a menu system

* Allow both compilation and interpretation

of command procedures

* Allow background and foreground execution

of commands

e Provide searching for versions of commands
not allowed within the command language definition

* Provide security and access control

to commands and system objects

* Offer the features of the CLI to
programs (e.g. prompting).

after the command name, after the opening parenthesis of the

278

parameter list, after a parameter name, etc. The CLI must
also be able to display standard and custom prompting infor-
mation for each break point, allowing the possibility that a
prompt for a specific parameter value could display a useful
default.

Multiple Environments

The CLI should provide several environments for retaining
information relevant to the command language. This informa-
tion typically consists of default parameter values, defini-
tions of the experience level of the user and preferred
methods of system usage (prompting, etc.) as well as termi-
nal characteristics. The environments should be defined as
system-wide. user-specific and session-specific. The user-
specific environment should retain information between ses-
sions, while the session environment should be discarded
upon logging off the system.

User Exoerience Level

The experience level of the user should be defined in the
user and session environments. The experience level should
qualify the interaction with the CLI, as in the areas of
prompting and helps. Furthermore, the experience level
should be modifiable on an individual command basis, allow-
ing an experienced user to revert to an inexperience level
for a new command.

Mode of Entry

The CLI should be aware of the mode of entry, whether the
command is arriving from a full screen terminal or line-by-
line terminal, e.g. hard copy. Mode of entry should also
denote whether the command is interactive or batch and will
qualify the actions of the CLI.

Programmable Function Keys

The CLI should provide for programmable function (PF) keys.
which allow single key entry of commands or any other infor-
mation that could be entered via the keyboard. The values
represented by the PF keys should be stored in the system,

permanent user or session environments. The session envi-
ronment allows reassignment of PF keys that revert to their
permanent assignments after end of session.

Helps

279

The CLI should provide helps on a command, parameter list,
parameter name and parameter value basis. Helps should be
tailored to the experience level of the user and to mode of
entry (line-by-line or full screen).

Access to a Menu System

The CLI should provide for access to a full screen menu sys-
tem. The menu system is a separate facility of a user in-
terface and not part of the CLI. The CLI should allow invo-
cation of the menu system and offer the facilities of the
CLI to the menu system (e.g. prompting, helps. etc.).

Compilation and Interpretation of Command Procedures

Command procedures have traditionally been handled interpre-
tively, usually because a command language was viewed as a
high level means of referencing operating system functions
and not as a programming language. When a common language
is used as both the command language and the programming
language, the difference between interpretation and compila-
tion is minimized. The only difference between compilation
and interpretation is in the execution time of the command
procedure. Compilation and interpretation must be inter-
changable and guarantee the same results for the command.

Background and Foreground Execution

Operating systems have traditionally provided two modes of
execution for commands: foreground and background. Back-
ground has, in many cases, involved using a completely
different language from foreground communication with the
system. When a common command language is used for both
background and foreground jobs, the difference between the

two modes is minimized. The differences between foreground
and background execution of a command are:

0 Background tasks have a lower priority than foreground,
foreground implies that a user is waiting for the re-
sults of the command.

* Background and foreground tasks differ in the actions
taken by the CLI when errors or prompting occur. Back-
ground tasks normally abort when user-supplied informa-
tion is needed, however, they could be suspended if the
user is logged on to the system while information is
obtained from the user.

Organizational Structure

280

~rrr -

The organizational structure of the users must be supported
by both the command language and the interpreter. Section
1.1.1 reviewed the requirement placed on the CL definition
for this feature. The CLI must support searching for ver-
sions of commands that would not be possible within the CL
definition. Multiple versions of commands typically are re-
solved by specifying a set of command libraries in a prede-
fined order. The first command found is the one used by the
CLI. This is different from the rules of scope that a com-
mand language may embody. Scoping does not allow for redun-
dant names within the same scope, a feature that is neces-
sary for multiple version of commands. The CLI must provide
some mechanism for allowing an organization to specify the
command libraries shared between users and projects. Pro-
viding a mechanism to search for commands does not, in it-
self, provide security or limit access to commands, as ex-
plained below.

Security and Access Control

Security to the system that interfaces with the CLI is pro-

vided by the CLI placing access controls on each command and
system object. Users of the system have access rights de-
fined that are used to verify the validity for each command
and object referenced. The CLI should provide for this fea-
ture and also provide a reporting mechanism for violations
to the system security. Access control should be hierarchi-
cal, which states that if a user is authorized to reference
objects or operations at a given level, all operations and
objects which require lower level access rights are automat-
ically available to the user. Note that while a command may
be visible to a user, through the search order provided by
the CLI, it may still be unaccessable due to the security
level of the user and the command.

CLI Features as Program Services

The standard features of a command language interpreter,
which include error checking, error reporting, prompting and
helps, should not be restricted to the CLI but should also
be made available to programs and command procedures. This
implies that the routines needed to perform error checking
(e.g. semantic checking) and those needed to report and dis-
play the errors (e.g. error log) are also available to ap-
plication programs that may choose to report errors in the
same manner as the CLI.

Summary

281

The command language interpreter completes the user inter-
face for a system by embellishing a command language with
features outside of the CL definition. These include error
recovery, prompting, helps and PF keys. The CLI allows user
communication outside of the CL definition by providing an
access to a menu system. The CLI provides for multiple per-
manent and temporary environments and for definition of user
and terminal characteristics. Additionally, the CLI pro-
vides non-language features that include a choice of compil-
ing or interpreting commands, a choice of command execution
priority (background or foreground) and an organization to
command versions, augmented by access controls to each com-
mand and system object. Finally, the CLI permits powerful
application programs to be developed by offering its servic-
es as linkable, callable subroutines.

1.1.3 Analysis of Ada as a Command Languaze

This section evaluates Ada as a command language and identi-
!ies areas where Ada clearly supports the command language
requirements discussed in section 1.1. and where Ada has
deficiencies with respect to command languages. A brief ov-
erview of Ada's position in programming and command language
is given, followed by two sections on Ada's ability and in-
ability to satisfy the requirements for a command language.

A New Generation of Command Lanauages

Command languages have paralleled the development of pro-
gramming languages. IBM's OS JCL parallels assembler lan-
guage, requiring the user to be intimately familiar with
system details. The IBM TSO interactive command language
resembles Fortran, allowing primitive control constructs and
global data. Burrough's work flow language allows block
structure similar to Algol's. Current command languages
have yet to incorporate many features of modern programming
languages.

The newest programming languages are characterized by their
ability to express data abstraction and allow object-orient-
ed design. The emphasis is on defining the objects to be
manipulated by the program, rather that emphasizing the
statements that implement the manipulation of objects. Ada
promotes this ideal, which is abscent in older programming
languages, through the concepts of packages and private
data. Operations on objects are conveniently collected
within the same package as the object. Ada, as a language,
allows the command languages to progress to the same level
as modern programming languages. This, in turn, allows a
user of a computer system to solve system problems by apply-
ing object-oriented design techniques.

282

1.1.3.1 Command Language Requirements Met by Ada

Ada's satisfaction of the requirements for a command lan-
guage listed in section 1.1.1 are listed in table 5.

TAPLE 5

Ada's Fulfillment of Command Language Requirements

General CL Requirement Ada's Realization

Present Uniform Interface Command Language is same as
programming language

Be Easy to Use Permits renames, default pazameters
and other ease-of-use constructs

Support Problem Solving Supports complex problem solving
including tasking, data abstraction

and other difficult problems

Support Object-oriented Directly, through the use of
Viewpoint packages that contain private data

types and associated operations

Support Multiple Versions Indirectly, through normal rules
of a Command of scope, implies that different

versions are always in different

scopes

Support Rehosting of CL Directly, through the separation
of independent specifications and

dependent bodies for packages and
tasks.

Uniform Environment

283

Using Ada as a command language satisfies the requirements
for a uniform user interface with the system, since the lan-
guage for program development and system communication are
the same. Programming language features that are a require-
ment for a command language, such as a:gument handling,

etc., are all satisfied by Ada, since Ada is first and fore-
most a programming language. Using Ada as the CL reduces
the amount of learning that a user must undergo since the
command language is the same as the programming language
that is used.

Ease of Use

Ada supports an easy to use command language by aiowing ce-
fault parameter values, synonyms for commanc procedures.
user-written command procedures and full expression of con-
trol constructs to direct the sequence of actions withi a
command procedure.

Problem Solving

Ada, as a programming language, naturally supports problem
solving and expressing solutions to problems. Ada does more
in this area than traditional programming languages. since
it reinforces solving problems by analysis of the objects
within the problem. Ada also directly supports data ab-

straction through packages and private data types. As a
command language, Ada offers more solutions to solving prob-
lems than present command languages, which often are res-
trictive even in basic areas such as control constructs.

Compilation and Interpretation of Command Procedures

The issue of interpretation vs. compilation and the distinc-
tion between program and command source are minimized by us-
ing the same language for program and command development.

Rehosting

Ada directly supports independence from the host operating
system for a command language by allowing the OS-specific
portions of the command language to be localized in Ada
packages. This allows recoding of the system-specific code
to be easily identified, and supports a static interface to
the rest of the command language.

284

1.1.3.2 Command Language Requirements Not Met by Ada

TABLE 6

Command Language Requirements not Fulfilled by Ada

General CL Ada's Restriction
Requirement

Ease of Use Ada syntax and semantics must be
followed, unambiguous abbreviations
of Ada names not supported. extra
keystrokes needed for parenthesis
around parameter, semicolon for
command termination, declaration of
new object before use. other
features assumed by some command
languages.

Support Multiple Cannot support multiple versions

Versions of a Command (i.e. same name and parameters) in
the same scope.

While Ada satisfies almost all requirements of a command
language that are in the domain of the language itself, it
provides only a static solution to the problem of command
languages. The DCP command language must offer a dynamic
solution to the problem of a user interface. Table 6 sum-
marizes some of the features of a command language not sup-
port by Ada, and to which solutions may need to be offered
by the command language interpreter, if these features are
determined to be of more importance than using ANSI/MIL STD
Ada as a command language.

The issues of dynamic typing versus static typing and dynam-
ic elaboration versus Ada's imposed ordering impact the de-
finition of Ada as used for an interactive command language.
Ada, as a command language, is impacted in the areas of un-
defined objects, changing the environment of a user session
and other nuances of an interactive command langauge. As an

285

.

example, creation of new files (without prior declaration of
the file) is a common feature of many command languages.
Ada, strictly interpreted, requires the explicit declaration
of the file prior to an operation. The DCP CL must support
a program (i.e. the Ada procedure that is the user session)
changing dynamically. This conflicts with some basic con-
cepts in Ada, notably the placement of variable declara-
tions, initiation of tasks, placement of exception handling
and session termination. These issues must be addressed in
using Ada as a command language.

1.-.3.3 Modifications to ANSI/MIL STD for the Ada Commanc
Language

TABLE 7

Modifications to the MIL STD Ada for Use as a Cmd Lang

none as of this issue

1.1.4 Analysis of an Ada Command Language tnteroreter

The Aa Command La.iguage Interpreter (ACLI) must support the
requirements for a general command language interpreter out-
lined in section 1.1.2 while using a subset of standard Ada.
Extensions to Ada The ACLI will fulfill the requirements
stated in section 1.1.2, with the following clarifying
points:

Note that this section describes only the ACLI, two related
user-interface systems (the menu system and the Ada Prepro-
cessor) are described in separate models and are distinct
from the ACLI. The ACLI provides for interpretation of com-
mands and procedures thAt conform to standard Ada, the Ada
preprocessor provides a:. abbreviated, simplistic interactive
interface to the user and generates correct Ada. The menu
system, when interacting with the ACLI, also generates cor-
rect Ada. The ACLI is concerned with the ACLI system envi-

286

AD-A142 570 WIS IMPLEMENTATION STUDY REPORT VOLUME 3 BACKGROUNDINFORMATIONU) INSTIUTE FOR DEFENSE ANALYSES
L ALEXANDRIAVA TH PROBER O 1OC 3 DAD5VOL

UNLASFED IDAIHQ-84-28344 MDA8O3-79 C DO 8 F /G 17/ 2

-6

II'I1 .4 18

ronment, the interpretation and execution of commands and
the synchronization of system responses to the user. Menu
systems are dealt with in section 1.4. The Aca preprocessor
model is in section &secpre..

Error Recovery

The ACLI will support error recovery by applying an inter-
pretive technique that is sufficient to make both assump-
tions about as many missing syntactic details as possible
and to attempt a recovery by inserting new information from
the user. An example of insertion of syntactic elements is
adding missing commas between parameters, terminating par-
enthesis for a parameter list, etc. Error recovery must be
able to introduce new information, supplied by the user when
prompted, into the original command and attempt a successfui
parse of the command. Error recovery must therefore func-
tion in an interactive mode and be sufficient to operate in
batch mode without additional input.

Promoting

Prompting requires that the ACLI be capable of associating
points within the command language definition where prompt-
ing is supported. These points should include, at a mini-
mum, prompting for parameter lists, individual parameters,
parameter values and confirmation of certain critical com-
mands prior to invocation (e.g. delete file). Prompting
must interface with a database that supplies the command-u-
nique information to be displayed to the user, e.g. the name
of an individual parameter. Prompting must also allow the
user to get help on the specific problem discovered in or
associated with the input. This implies that prompting for
a single parameter name would reduce to help for only that
parameter, if the user requests help instead of supplying
the parameter.

Helps

The ACLI must also provide access to helps for commands.
Helps should be offered either as line-by-line descriptions
or as a full screen display of the same listing, possibly
reformatted to take advantage of the full screen capabili-
ties. Helps have several forms:

• A help command that displays all, or part of, a de-
scription for a single command

* A help that briefly presents specific information for a
component of a command (e.g. parameter)

287

* A tutorial describing a system accessed by one or more
commands.

Part of the function of the ACLI is to provide access to
helps and tutorials in a predetermined fashion. Helps
should be able to be traversed, with each lower level of
help providing more detailed information. A table of con-
tents and index for a set of helps relating to a command
should be available, as an alternative method to traversal
for recalling helps. The help facilities should be invoca-
ble through either commands or a special programmable func-
tion key.

Programmable Function Kevs

Programmable function (PF) keys allow a user to invoke a a
system function by pressing a single key. Programmable
function keys should allow any key on the terminal keyboard

to be defined as a function.

A default set of functions should be assigned to the termi-
nal keys by the ACLI, yet be modifiable by the user. It may
be advantageous for the ACLI to require that a set of re-
quired functions always be present (i.e. assigned to some
key), such as the help PF key, yet allow redefinition of
these functions to different keys.

Programmable function keys should be capable of representing
any string of characters that may be entered from the key-
board, without regard to whether they are correct Ada com-
mands. PF keys may be used for program data, concatenated
Ada commands, parameter names and/or values, etc. Non-prin-
table characters, such as line feed and carriage return
should also be representable within the character string for
a PF key.

A mechanism must be present to allow interpretation cf nor-
mal keys as program function keys. The translation of the
physical terminal input to logical PF key should be buffered
from the ACLI through the use of a rehostable I/O package
that defines all program function keys in high level lan-
guage terms.

Programmable function key definitions, like most other envi-
ronmental data, should be kept on a session, user and system
basis. It should be left to the user to save the redefini-
tions of PF keys in either the user's permanent profile or
leave the definitions to be discarded at the end of the ses-
sion.

Compilation vs Interpretation

288

The ACLI is principally responsible for minimizing the dif-
ference between compilation and interpretation of command
procedures. By supporting more than only an interpretive
form of a command procedure, the ACLI permits executable
load modules to be referenced in the same manner that inter-
pretive modules are referenced. Thus, to the user, the dif-

ference between executing a compiled command procedure and
interpreting a command procedure are transparent. The user
will only notice the increase in response time for executing
a compiled command procedure. The ACLI's support of com-
piled and interpreted command procedures results :n the re-
quirement that it handle multiple forms of executable mo-
dules.

Organizational Structure

The organizational structure of users within the system is
supported by the ACLI through a mechanism for selecting ver-
sions of commands. Versioning of commands is outside the
scope of the command language definition, The ACLI supports
versioning by interfacing with a configuration management

tool that allows the proper version of a command to be used.
The definition of "proper version" is a function of the pro-

ject management that defines the groups of users of the DCP
system. The ACLI provides the possibility of allowing
different versions to be referenced by different users.

Security and Access Control

Security and access control are managed by the ACLI. Secur-
ity should relate a user's capabilities granted within the
system to commands and system objects. This implies that

each command and object in the system will have a security
level attached to it, while every user has a level of access

associated with himself.

289

- _ /a~

1.2 ADA COMMAND LANGUAGE MODEL

The DCP will use Ada as a command language to provide a uni-
form portable user environment across the various DCP hosts.
The use of Ada both as a command and implementation language
reduces the number of languages that must be understood by
the DCP user. Ada is particularly well suited as a command
language because of its packaging and abstraction capabili-
ties.

A model is used to explain the use of Ada as a command lan-

guage. A model is a representation of a system, using anal-
ogies to help visualize the system. A model is useful for
understanding a system at a conceptual level and for verify-
ing the postulates about the system prior to a functional
description of the system.

This section describes what is means to use Ada as a command
language without regard to how the command language inter-
preter is implemented. This command language model is im-
portant in that it defines the user view of the DC? command
language interface. The model will drive the functional de-
scription of the Ada Command Language Interpreter (ACLI).

This section presents only the model of the Ada command lan-
u2age. Models for the Ada command language interpreter and
for a user session are presented in sections 1.3 and 1:5 re-
spectively. The collection of the three models fully de-
scribes the use of Ada as a command language within the DCP

system.

1.2.1 Simale Commands

Ada, as a command language, is the primary user interface to
the DCP. As such. it must allow simple operations to be
performed easily and efficiently without the overhead and
complexity needed to support sophisticated operations. In
the simplest case, a command is a single line invocation of
a system function or user application.

Figure I gives an example of simple user commands to invoke
standard system utilities. The Ada commands are simply
procedure calls to system utility functions or to user de-
fined programs. Arguments used by the utilities are passed
as normal Ada parameters. The use of Ada as a total pro-
gramming environment is reinforced through the idea that the
user is an Ada procedure, or task, active in the system.
The user's procedure defines a session with the system and
may invoke other procedures. The invocable procedures are

all viewed (as an interface) as Ada command procedures, al-
though the actual executable object may be a program, com-
mand procedure or system function.

290

Ada allows invocation of system functions by entering a sim-

ple Ada statement. Arguments to system functions are han-

dled in a straight forward manner as parameters, implying

the ability to define arguments by name and type.

In the Ada command language, there are no assumed defaults

for any parameters, unlike some command languages such as
UNIX which provide implicit defaults for pipelining. Ada
requires that all default values be stated in the Ada source

declaring the parameters. Coding standards will be neces-
sary if command procedures need to share the same default
parameters. By convention, a default parameter value may be
assigned to parameters within Ada command procedures, re-
sulting in a uniform default environment to the user.

An important area of departure from strict Ada semantics oc-

curs for parameter values that are not defined at time of
invocation of a function, but rather are returned values

from the function itself. This is illustrated in figure 1,
where the copy function could be defined as creating the
"TO FILE" if it does not already exist. T:is implies that

the value for the parameter would not exist as an object
when the copy function is invoked. The significant differ-

ence between instantiating an object (through an Ada decla-
ration) and typing the name of the object should be noted.
In figure i, the name is simply typed and no instantiation
has been done using an Ada statement. A strict interpreta-
tion of Ada could not support the semantics of such a func-
tion. If undefined objects (such as the file in figure 1)
are allowed, the command language interpreter will need to

support the semantics, since the Ada language cannot.

291

-- Following are standard file utilities

COPY(FROM FILE, TO FILE);
DELETE(FIZE);
RENAME (OLDFILE,NEWFILE):

tetc.]

-- The following command runs an
-- application program which reads data from the

'DATAFILE' and produce results in the 'RESULTFILE'.

ANALYZE(DATAFILE, RESULTFILE);

-- The following invocation of ANALYZE would write the
results to the terminal.

ANALYZE(DATAFILE):

Figure 1: Examples of simple operations - Ada procedures

1.2.2 Sequencing Commands

More complex examples can be created by sequencing calls to
commands. Control of the sequence may be done by the user
through the use of Ada control structures or the creation of
data variables. In figure 2, a file function "EMPTYFILE"
is used to query the contents of a file created by a previ-
ous step. Commands may be entered individually or sequenced
through the use of normal programming constructs. Ada al-
lows a consistent, simple interface between the user and the
system and requires that the user be knowledgable in only
one language.

292

ANALYZE(DATAFILE,RESULTFILE);
if not EMPTY FILE(RESULTFILE) then

PRINTOFF(RESULTFILE);

end if:

-- The 'RESULTFILE' is printed only if

-- it is not empty.

Figure 2: Example of an Application Function

1.2.3 Command Procedures

It is often desirable to perform a sequence of commands in
an abbreviated manner. Sequences of commands may be created
and stored for future invocation, as a group. In the ACL,
these groups of commands are simply Ada procedures, Ada
procedures and command procedures are equivalent. In the
ACL, invoking a command (or command procedure) is equivalent
to calling an Ada program. Command procedures can be de-
fined to allow a user to reuse a sequence of commands. The

command procedure allows the programmer to present the ap-
plication user with a much simpler interface. Ada proce-

dures allow several capabilities desirable when creating a
sequence of commands:

* Commands may be grouped and invoked with a single name
(the command procedure name).

* Arguments can be passed to the command procedure (in
the form of parameters).

* Information may be retained during the execution of the
command procedure, normally to control the sequencing
of commands (in the form of local variables). Varia-
bles, in the ACL, have properties of scope that permit
great flexibility in a command language. The outer
most scope is that of the ACLI, which contains prede-
fined variables shared by all users of the ACL. An in-
ner scope is defined by the Ada procedure that is the
user's session. Variables within this scope have a
lifetime of the session. Command procedures created
within the session may have their own variables, pro-
viding scope that has a lifetime only during execution

of the command.

293

* Other command procedures, commands or programs may be
used from sets of operations granted to the user, e.g.
file operations, (through the WITH and USE statements).

* Interrupts during the execution of a sequence of com-
mands may be easily handled (using the Exception state-
ment). Interrupts follow the Ada rules of propogation.
Command procedures are nested, with the outermost
procedure being the ACLI itself. Within the user's
session procedure, many command procedures may be acti-
vated. Interrupts are handled by aborting the active
command procedure, upward, until one is found that spe-
cifically handles the interrupt. The ACLI handles all
interrupts, allowing an abort message to be displayed
if the interrupt has not already been handled. As de-
fined in the Ada language reference manual, handling of
an interrupt disables the interrupt handling mechanism.

" Command procedures maybe used to launch concurrent
tasks, such as a background compilation step, (through
the use of Ada tasking). All tasks are launched under
the user's session task, resulting in the requirement
that the ACLI handle background tasks still executing
when the user's session task is ended in an orderly
fashion. Tasks may rendezvous, allowing the possibili-
ty of background tasks requesting input from the user's
session task through a rendezvous point. Complica-
tions, such as the user not being logged on and there-
fore unable to rendezvous, must be handled by the com-
mand language interpreter.

The use of command procedures is illustrated in figure 3.
The command procedure necessary for an operation is illus-
trated.

Command procedures permit complex interactions to the system
to be created and referenced in an abbreviated manner. Con-
trol is granted to the user through the use of several Ada
constructs, including variables and types local to a command
procedure.

294

L :--"~-

I

with TERMINAL IO: use TERMINAL IO;
procedure LIST-DIRECTORY (ROOT-: in DIRECTORY) IS

-- This command procedure will list a specified directory. The
root determines which directory is listed.

I. N : INTEGER;

begin

N :- NUMBERENTRIES(DIRECTORY):

if N <> 0 then
DISPLAYW'DIRECTORY LISTING'):

for I :- 1 to N
loop
DISPLAY('> '.GET ENTRY(DIRECTORY,I)):

end loop;
else

DISPLAY('DIRECTORY EMPTY'):
end if;

end LISTDIRECTORY;

Figure 3: Example of a Command Procedure

1o2.4 Command Packages

The packaging of command procedures allows logical grouping
of functions to be expressed using the Ada package con-
struct.

Command procedures are normally grouped by functional area,
as frequently seen in command language reference manuals.
This is a natural occurence of the fact that commands act
upon objects in the system. For example, commands that
copy, delete and create files all deal with a file object.
To the user, this provides a simple and convenient means of
understanding the interaction with the system.

Ada supports this natural grouping of operations through the
package concept. In Ada, a package provides a means of
grouping several operations together and presenting them to
the user. A "file package" may fully define all of the op-
erations that a user may perform on files in the system.
Ada packages do more than simply group operations, they also
allow two important concepts:

295

* Ada packages define, in a concise manner, the object
that the user is manipulating. For example, in a file
package, not only are a list of file operations given
to the user, but the fact that all of these operations
act upon a file object is clearly stated in the Ada
Package construct.

* Ada packages allow use of common (global to the pack-
age) information. This includes variables, types and
constants. Thus, a file package could easily define a
"file name" type that all operations within the package
could reference. The information in a package also has
the capability of being available to the user of the
package or hidden within the body of the package. This
allows packages to describe more than operations: ob-
jects and descriptions relevant to objects may alsc be
described.

in the DCP system. packages may be viewed as belonging to
one of three classes:

* System Packages

System packages provide standard operations on standard
objects within the system. These are typically files,
directories, time and date, etc. It should be noted
that in the ACL. no DCP svstem functions are orede-
fined. The ACL provides a framework for aefining pack-
ages. This framework allows independence from the host
system and defines a high level description of the sys-
tem interfaces.

* User Packages

User packages describe a user of the ACLI system. This
description includes security information, allowable
functions and other customized information. The user
himself may modify a portion of this package to create
abbreviations for commands, new command procedures and
any other capabilities made possible through the use of
an Ada package. Ada packages provide a convenient
method for describing a user to the system.

* Other User Packages.

The ACL supports the organizational structure of the
users of a system through the USE and WITH statements.
These statements allow selecting specific packages of
commands, either explicitly (e.g. package.command) or
implicitly (with the USE statement).

296

1.2.5 Command Tasks

Definition

A task is one of Ada's three primary program units, the oth-
er two being subprograms and packages. Packages have been
previously discussed and are used primarily for organizing
source and concisely expressing data abstraction. Subpro-
grams are equivalent to procedures and have also been re-
viewed.

Concurrency

Tasks are used to express concurrency among a number of ac-
tivities. In an operating system, concurrent activities
consist of the users logged on to the system and certain
system-resident tasks, shared by all users (e.g. time of
day). A task is simply an entity that operates in parallel
with other program units. Within this context, a user ses-
sion is viewed as an activity and therefore a task. Thus.
user tasks operate in parallel with other user tasks and
system-resident tasks.

Review of Task Features

Ada's definition of tasks provides for severai features
relevant to a user's session with a system:

* Tasks may communicate with each other, via messages.

* Tasks may define multiple entry points for other tasks
to invoke.

* Each entry point has an implicit queue associated with
it, providing an automatic mechanism for output spool-
ing, even multi-level output spooling.

* Tasks, not being separately compilable, must be enc-
losed in packages or subprograms. This is ideal for
packaging all users of a system under a single "sys-
temusers" package. Packaging provides a convenient
means for documenting the users of a system and allows
shared data to be concisely declared. Other implica-
tions of this type of packaging are recompilLng the
ACLI to add new users to the system and viewing each
user as a dormant task in the ACLI, ready to rendezvous
with any task operating a terminal (permitting multiple
logons by a single user).

297

* Tasks may rendezvous, providing an automatic means of
synchronization between concurrent tasks.

* Ada tasks provide for "families of entities", tasks
which are indexed by some value and are, in effect, an
array of similar tasks.

* Tasks may be instantiated dynamically, allowing one
task to spawn several other tasks.

* Tasks may choose to be suspended by either a busy wait,
which uses processor time and resources, or by a sleep-
ing wait, which suspends a processor without using re-
sources.

* Tasks may instigate a delay, and choose to abort an at-
tempted rendezvous after the delay has been met.

Having briefly summarized some of the features of Ada task-
ing, an examination of how tasks fit within the Ada command
language model follows below.

Within the command language, users will be considered to be
tasks. This provides for viewing the user as a concurrent
activity within the system. Entry points within the user
task will be defined to accept output from system services
and applications that the user invokes. Multiple entry
points will probably be found to be useful by allowing the
user to have more immediate access to system responses than
to output generated by application programs. Tasking allows
output directed to the user to be queued until the user task
is active and rendezvouses with the entry point queuing the
output.

The user task will be a task type, defined by the ACL and
instantiated once per user. A single instantiation still
permits multiple logons, since a logon is considered to be a
terminal task rendezvousing with the user task. The instan-
tiation will be within a single package declaring all of the
user tasks possible for a system. The ACLI use of the user
task is explained in section 1.3 and is not a concern for
the command language model.

Figure 4 gives a sample of what the user task type might
look like. Figure 5 shows a hypothetical system user pack-
age that contains a set of valid users for the system.

The user tasks may enqueue output from application programs
while the user is either entering new commands or accepting
output from another application.

298

I

TASK TYPE user task IS
ENTRY response(msg : IN sysresponse)

ENTRY output msg IN outputtype)

ENTRY communication (msg : IN inputtype)
END user-task;

Figure 4: User Task Type for the ACt

PACKAGE system users IS

first user user task:
second user user task;

'ast user user tasK;
END system users;
PACKAGE BODY system users IS

TASK BODY first user IS
ACCEPT output(msg : IN outputtype) DO
END output;

ACCEPT response(msg : IN sysresponse) X
END response:

ACCEPT communication(msg IN input -ype! DC
EKJ communication;

END f..rst user;

END system users;

Figure 5: Sample System Users Package

299

1.3 COMMAND LANGUAGE INTERPRETER MODEL

The ACLI model consists of three main parts:

0 An interpreter that interprets complete, correct Ada
source and executes (directly or indirectly) the system
functions referenced in commands.

* A configuration management interface that allows selec-
tion of versions of commands, permitting comr ids to be
tailored to a group of users.

0 An interactive part that completes Ada text from incom-
piete user input. The interactive part provides for
prompting, abbreviations to components of Ada state-
ments (e.g. abbreviated names, and al! other modifica-
tions to the Ada language definition tha enhance an in-
teractive user interface.

The relationship between the interpreter, interactive Inter-
face, configuration management and supporting tools (helps.
prompting, menus) is illustrated in figure 6.

300

/Batch

ntacevee Inter- - Management - omad

Tr.itraepreter procedure

Host non-Ada
IHelp -, system -, load

functions module

Prompt

SMenus

'~Notet

contains builtin DCP functions

Figure 6: ACLI System Model

301

1.3.1 Interoreter Model

The interpreter portion of the ACLI interprets Ada source
code, invokes DCP system functions and provides the services
of the ACLI for supporting an Ada command environment. The
interpreter will accept only syntactically and semantically

correct Ada code. The code may arrive from either an inter-
active user or in batch mode. The ACLI provides for compre-
hensive error detection and reporting, but not recovery.

Error recovery is provided in the interactive mode by the

interactive interface component of the ACLI.

The functions of the interpreter portion of the ACLI in-

clude:

* Translation of Ada statements to invoke commands anc
command procedures, to define objects and perform other
actions necessary for problem solving.

0 Provide for communication between tasks within the DC?

system.

0 Provide an interface between the user and the DCP sys-
tem, via the user's input device (terminal or batch job
output).

* Provide an interface to a configuration management sys-

tem that will allow selection of versions of commands.

o Provide an interface to a menu system.

1.3.1.1 Commands and Command Procedures

The definition and executable form of operations referenced
by a user is accessible by the ACLI. Referencing an opera-
tion results in two basic types of information being made
available to the ACLI: interface information and executable
form of the function.

The ACLI can be used to invoke functions written in Ada as
well as other languages. This is made possible by describ-
ing the function in Ada, as an interface specification. The
executable form of the function can be created by non-Ada

compilers. Attaching an Ada interface to such software pro-
vides a consistent interface for all functions to the the
ACLI. The executable form may be a load module or a command
procedure in some intermediate form.

When the ACLI is invoked with the name of a function, it can
verify the function's existence and semantic correctness of

the parameters. Parameters are verified by name and by the

302

type of the parameter value. Semantic checking results in
the function interface conforming, by function n~me, parame-
ter name and type of parameter value, to the Ada specifica-
tion for the function. The ACLI then executes the function
in one of a number of ways, as discussed below.

Figure 7 illustrates the relationship between commands and
programs in the DCP. Executable load modules for user-writ-
ten programs are produced by compiling Ada source through an
Ada compiler. The load module is stored in the library.
The program is not invocable using the command language un-
til an ACL interface has been written. The interface is the
Ada specification for the procedure. The ACLI frontend pro-
cesses the interface specification and produces a form that

is understandable by the ACLI backend. This form is stored

in the library. Upon invocation of the program, the ACLI
backend references the interface information and passes con-

trol to a loader for loading and executing the load module.

APPLICATION I ACLI compiled" I

SPECIFICATION - ---------- interface -

(ada source) (frontend) specification

LIBRAY

APPLICATION COMPILER compiled

-- ada-- sI load module
(ada source) - (ada comp)

Figure 7: Specification of a User Function

1.3.1.2 Interface Information

Every system function supported by the ACLI has an Ada in-
terface specification to which the command invocations must

conform. This specification states useful information for

303

the ACLI giving the function name. the parameter names and
types and the type of the returned values (for the func-
tion). These interface specifications are defined in Ada
packages that group operations with similar functional prop-

erties.

1.3.1.3 Executable Forms

Once the ACLI verifies the interface information, it exe-

cutes the function. Executing the function may involve ret-
rieving an intermediate representation of the command proce-
dure (precompiled Ada command language source) and
interpreting the statements within the procedure. If the
function is a compilea program, a load module will need to
be retrieved and executed. A third method of execution is
for the ACLI t, call, directly, a resident host system func-

tion. These three forms of executable objects are described
in the following points.

S Command Procedures

Command procedures that have not been compiled will
exist in interpretable form and be executed by the ACLI
backend directly interpreting their intermediate form.
This implies that the command procedure was written in
Ada, pre-compiled by the ACLI frontend to create an in-
termediate form and stored for reference by the ACLI
backend.

In figure 8, the steps performed by the ACLI when exe-
cuting an interpretable command are illustrated. The
user enters a command, which is verified by the ACLI
backend by referencing the command interface specifica-
tion. The backend detects that this command is in an
interpretable form part of the interface specifica-

tion) and retrieves the form from the library. It in-
terprets the command and diplays the results with a

system response to the user.

* Load Modules

If the command references an executable load module.

the ACLI will pass control to a loader, after verifying
the existence of the function and checking the parame-
ters, using the interface information. The ACLI can
verify the semantics of the interface, passing the par-

ameter values and name of the load module to the load-
er. Further checking on the part of the loader is host
system dependent. Actual execution of the function is
handled by the loader, which returns control to the
ACLI at the end of execution.

304

I

USER
STEP I1 - -- - -

(enters

command)

ACLI LIBRARY interface
- --- ---- specification

STEP 2 (backend)

(command o.k.)

ACLI j LIBRARY command
------ ------- procedure

STEP 3 (backend)
(internal form)

(system response)

USER

STEP 4 (views
response)

Figure 8: Execution of a Command Procedure

In figure 9, the ACLI interprets a command and detects
that the command is in the executable format of a load
module. The creation of the load module and the source
language is not shown in the figure. After verifica-
tion that the command is correct, the ACLI passes con-
trol to the system loader, with the name of the load
module. The loader loads the load module executes the
module and returns control to the ACLI. The ACLI fin-
ishes by displaying a system response message to user.

305

USER
STEP 1 - -- - -

(enters
command)

*ACLI LIBRARY interface
STEP ------------ specification

* (backend)

(command o.k.)

LOADER LIBRARY load
STEP 3 ------ ----- module

(system-
dependent)

(eturns control to the ACLI
after execution)

STEP ACL---
i (backend)

(system response)

USER
STEP5 -----

(views

response)

Figure 9: Execution of a Compiled Program

306

0 System Functions

As an optimization, the ACLI backend will contain

some DCP system functions and a means of directly call-
ing other DCP and host system functions without ret-
rieving either a load module or a an interpretable
form. This allows immediate execution of DCP and host

system functions that are resident during interpreta-
tion of a command. The DCP system functions that are
part of the ACLI will be subroutines, compiled with the
ACLI and therefore part of the ACLI task. The ACLI
will still need to verify the function interface using
the library system.

As illustrated in figure 10, the ACLI both verifies the

existence of the command and executes the :ommand by
referencing code within its own task. The system func-

tion exists either as a subroutine or may be called di-
rectly as a system-resident utility.

1.3.1.4 Input/Output

Input and output between the user and the system is cont-
rolled either directly by the ACLI or by the screen manager.
In cases where the terminal does not support a full screen

interface, the screen manager simply passes 1/0 to the sys-

tem-standard I/0 package.

Use of a screen manager provides for a virtual interface to
the ACLI and allows the screen functions to be separated
from the ACLI itself.

I/O always reduces to communication with a standard I/O
package that provides for direct and sequential I/O to sys-
tem ports (e.g. terminals).

Screen Manager

The screen manager buffers I/O between the standard I/O
package and the ACLI or application program. Buffering al-
lows for the possibility of an individual screen per activi-
ty (or task) in the system. Thus, if the user has initiated
several concurrent foreground tasks, each would communicate
with a different logical screen. The screen manager would

allow the user to select and dimension logical screens unto

the single physical screen that is present in the terminal.

Output Entry Point

307

USER

S(enters
command)

I

ACLI LIBRARY SYSTEM
-- -- - -- - - - - FUNCTION

,(backend) -U-C-IO-

S(interface)

(finds the command as part of its own
task, executes the command directly
and displays a response to the user'.

USER

(views
response)

Figure 10: Execution of a System Function

Within the user task, an standard entry point termed
"output" will be provided as a repository for all output
generated by application programs. This is differentiated
from the entry point termed "response", which allows system
responses to arrive at a different queue from application
output. The use of Ada entry points within tasks will be
utilized to provide buffering and separation of types of in-
put and output.

Response Entry Point

The response entry point provides for acceptance of DCP sys-
tem response messages only. Response messages are queued at
this entry point.

308

1.3.2 Configuration Management Model

1.3.3 Interactive Interface Model

The interactive interface portion of the ACLI provides an
interface between the interpreter (which accepts only cor-
rect Ada) and the interactive user. The interactive inter-
face is not used in batch mode and provides:

* Modifying the user's input text to create correct Ada.

* Access to helps, prompts and menus; all of which are
unavailable in batch mode.

" Syntax checking, since the interactive interface
creates syntactically correct Ada.

* Entry points for communication with the interpreter to
intercept semantic errors and attempt excellent error

recovery.

The Ada source that the interactive interface creates is ac-

cessible by the user, allowing further editing, copying and
printing of the source. The user may choose to use the in-

teractive interface as an abbreviated way of cerating Ada
text. The interactive interface is conceptually a tool to

ease creation of Ada text. It could be implemented as a
syntax-directed editor, a collection of smaller user inter-
face tools or in any manner that satisfies the concept of
creating complete Ada text from a user-friendly interface.

1.3.3.1 Modifications to Ada

Handling of Ada Statements

The ACLI provides for the dynamic model of the Ada command
language. A major part of this dynamic model allows the
ACLI to insert Ada statements in the proper order within the
user's task. Statements arrive chronologically from the
user but may need to be placed either at the beginning of
the user task, before the body of the task (begin block) or
at the end of the task (e.g. exceptions). The ACLI provides
for this by conceptually placing the statements in the prop-
er order, as defined by Ada. Deletion of statements
('UNUSE", exceptions, declarations. etc.) is also permitted
by the ACLI. This is permitted for the interactive mode of
command entry only.

Syntax Enhancements

309

Other modifications to Ada include allowing a truncated,
unambiguous name (for a function or parameter name), to be
entered by the user and completed by the interactive inter-
face. The interface will also supply innocous syntactic de-
tails such as enclosing parenthesis around parameter lists,
commas between parameters and other syntax that may be safe-
ly assumed.

1.3.3.2 Helps

The interactive interface provides access to helps. either
as a help command or through a help function key, which may
be pressed at any point during command entry. The help tha:
is selected will be determined by the context of the command
when the key is pressed. The help command presents the user
with complete or condensed information about a command.

The help key function is an integral part of the ACLI and
does not have text associated with it, as do the other pro-
grammable function keys. Both help and interrupt keys re-
quest their functions without the necessity of interpreting
text as an ACL command.

1.3.3.3 ?rompting

Prompting will be provided for whenever text is entered that
may be completed by prompting the user for additional infor-
mation. Prompting may request entry of a list of parame-
ters, a particular parameter or a particular parameter va-
lue. Prompting will also allow successive prompting of
parameters, until the parameter list is complete. This will
allow the user to choose prompting, in order to get a list
of parameters and their default values, which may be entered
or changed by the user.

1.3.3.4 Interrupt Handling

Interrupt handling must be provided for:

" Interrupting entry of the current command.

* Interrupting execution of the current command.

* Successive interrupting of queued commands.

" Fail-safe interrupt, which clears all user tasks and
resets the user to an initial point of interaction with
the ACLI. point

310

Interrupt handling will be provided, as is help, with an in
terrupt command(s) and keys. The interrupt key will be an
implicit function, with no text associated with it.

1.3.3.5 Programmable Function Keys

The interactive interface will interpret programmable func-
tion keys to text. The text may represent Ada commands or
any valid character string.

Some programmable function keys will result in direct action
by the interactive interface, while others wil be passec
along to either programs, the ACLI interpreter part or other
processes.

1.3.3.6 Menu Interface

The interactive interface will provide access to a menu sys-
tem. Access will be via a command to the interface and will
result in the interface invoking the menu system as a normal
DCP system function (via the interpreter),

311

1.4 DCP MENU MODEL

The DCP system provides a menu interface to the ACLI. The
menu interface allows Ada commands and program data to be
entered via menus and displays menus containing system res-
ponses, helps, prompts and program data. The functions of
the menu system allow command and data entry via a full
screen by:

* Allowing system responses and other output to be dis-
played in a full screen.

* Permiting definition of menu frames for designers of
helps, prompts, commands and programs.

o Providing the services of the menu system to Ada pro-
grams, as compilable entities.

1.4.1 Helps

The menu system provides full screen helps, using either :he
same helps that are used in line by line mode or customized
helps for the full screen.

1.4.2 Tutorials

The menu system will provide access to a tutorial system.
The tutorials will provide default services of:

" Displaying a table of contents for the tutorial

" Displaying an index for the tutorial

* Traversing the tutorial, to display successively more
detailed information for the user

Tutorials differ from help by providing an on-line users
guide that is browsable. Helps, on the other hand, are de-
signed to provide concise, easiLy understood information for
completing the command.

312

I

1.4.3 Command Menus

Command menus are created by the designers of Ada commands
and command procedures. Command menus display a command

name and list of parameter names and allow entry of the par-
ameter values.

1.4.4 Data Menus

Data menus allow entry/display of an arbitrary screen full
of data. Data menus are useful for communication between

the user and programs.

1.4.5 Table Menus

Table menus allow entry/display of data between the user and
a program, with builtin functions provided by the menu sys-
tem. These functions include scrolling, selection of indi-
vidual elements of the tables and other services.

313

1.5 ADA COMMAND LANGUAGE SESSION MODEL

1.5.1 Session Initiation

When Ada is used as a command language the user operates
within the system as an Ada task from which system functions
can be invoked. Initiating a session results in the ACLI
rendezvousing with the a user task. The Ada source for the
task is prefaced by appropiate WITH and USE statements to
grant (to the user) functions, objects and abstract data
types as defined by the system.

The use of Ada as both a command language and a programming
language presents a uniform syntax to the user of the sys-
tem. While this uniformity reduces the number of languages
that a user must know, it increases the number of keystrokes
needed to enter a command, since the command must conform to
Ada syntax. Enclosing parameters in parenthesis. terminat-
ing a command with a semicolon and other details of the com-
mand language syntax are necessary to conform to Ada. The
Ada preprocessor may be used in interactive mode to complete
many of these syntactic details.

Figure 11 illustrates the initial sequence of a user ses-
sion. Lines beginning with ">" indicate a user-supplied in-
put to the system, lines preceded by ":" indicate a system
response and lines preceded by "@" indicate commands issued
by the system to the ACLI and not seen by the user.

Several items should be noted from the figure:

* The system has a single package that contains a task
for each valid user of the system. The package, in
figure 11, is named "logon".

DISCLAIMER

The session module contains some specific examples
that may change after implementation. These examples
are included solely to clarify the model and are sub-
ject to change in the final product.

314

> logon.userid;

fuserid is a task in the "logon"
package, referencing the task
activates it)

(the userid task is an instantiating
of a user task type package. This
package includes the following
statements, among others ...

@ WITH system_ env: USE system_ env:
@ WITH userid_env; USE userid_env:

(the system responds by activating
the task and displaying the message:

logon proceeding

Figure 11: Sample Session Initialization

* Logging a user on consists of the ACLI activating the
task. The task itself is an instantiation of a generic
task type. This task type contains all default WITH
and USE statements, as well as an invocation of a
procedure named after the user identification. The
user procedure is invoked, which performs further cus-
tomized commands prior to returning control to the
ACLI.

* The first command that the user enters is actually the
first statement of the user's Ada procedure. The user,
executing under his Ada procedure, may alter statements
that appear anywhere in the Ada procedure. WITH and
USE statements may be changed to alter the user's envi-
ronment. This will allow the user to select functions
from different packages.

315

1.5.2 Command Entry

After initiating a session, the user is free to enter any
command granted by the list of packages (WITH/USE clauses)
preceding the user's (session) task. In figure 11, the sys-
tem env and user env packages were accessible to the user,
along with all of the operations contained in those packag-
es.

Figure 12 shows some sample commands that the user might en-
ter. The conventions for ">", ":" and "@" follow those in
figure 11. The symbol "-" indicates a prompt for data input
directly to a program and "#" indicates a display directry
from a program.

> display(date.time);
: January 11, 1983 10:20.33
> line editor.edit(temp.data):

top -f data
= change 10 'a' 'b'
I0 A line with b in it

end save

Figure 12: Sample System Interaction

In figure 12, the user's first command is a request to dis-
play the date and time. The ACLI invokes the "display" op-
eration in the "date and time" package. Note that this as-
sumes uniqueness of the name "display" and also that the
"date and time" package is assumed to be contained in the
"system_env" package referenced in figure 11 as a header to
the user's session procedure (i.e. the "WITH systemenv"
clause). The date and time package responds with a line
showing the date and time.

The user then invokes edit, in the example using an explicit
package qualification, illustrating the possibility of
switching between packages in the system. The "line editor"
package is assumed to be included in the "system env" pack-
age but without a "USE" statement. This allows a default
editor (e.g. screen editor) to be granted to the user while
still having other editors available. The flexibility af-
forded in Ada with packages and access to packages (via the

316

II

WITH and USE statements) may be exploited to create a system
or user package that contains more than the directly acces-
sible operations.

The line editor takes control of the screen after invocation

and issues the message "top of data". The user inputs a
line editor command "change 10 ... ". Note that this is ac-

tually data to the line editor and need not conform to Ada
syntax.

Finally, a return to the Ada environment is made with the
data "end save", terminating the line editor operation and
resulting in a prompt by the ACLI.

It should be noted that figure 12 is an example illustrating
full qualification of a command and making assumptions about
the form of commands to the editor. Figure 13 snows the
same transaction in interactive mode, which allows abbrevi-

ated names and other techniques to save keystrokes. The
correct Ada that the interactive interface generates is
shown along side of the user input. The number of keys-

trokes saved is apparent.

USER INPUT GENERATED ADA
• ti time; (name abbreviatedl
: 1/11/83 10:20.33

> ed temp edit(temp.data);
[name abbreviated,

data set qualifier
assumed)

1 10
c /a/b/

10 A line with b in it
= end

Figure 13: Sample Abbreviated System Interaction

II
~317I

1.5.3 Command Procedure Entry

The user may create command procedures. Command procedures
are created using an editor, precompiled using the ACLI
frontend and interpreted using the ACLI backend. Command
procedures are invoked (after precompilation) by entering
the name of the command.

• edit(temp.cmd);
[a screen is displayed)

= procedure MY COMMAND is
= A VAR : FILETYPE;
= begin

CREATE(A VAR);
= [more operations follow]
= end MY COMMAND;

the procedure is saved and
edit is exitted I

> acli(input - temp.cmd;
> spec = temp.spec;
> load -> temp.int);
: no errors were detected
: interface specification in "temp.spec"
: interpretable code in "temp.int"
• mycommand;

Figure 14: Sample User-Defined Command Procedure

In figure 14, the user enters the full screen editor (note
that the unqualified name "edit" is sufficient, since a "USE
screen-editor" statement is assumed to be contained in the
system env package). A command procedure is then created
and saved. Next, the ACLI frontend is invoked to create an
interpretable code module form of the command procedure and
to create an interface entry for the command procedure. The
user may then invoke the command procedure by simply enter-
ing the name of the command. The scope of the command is
local to the user's session, since it was created under the
session package. The user would have the option of promot-
ing the command procedure definition to the permanent scope
of the user's environment, by invoking an ACLI function.

318

1.5.4 Session Closure

At the end of a session with the system, the user ends the
session by simply ending his currently active Ada proceu-
dres. Entering "end USER ID;" effectively completes the
procedure body, and thus the user session. As a conveni-

ence, the ACLI will optionally confirm that the user intend-

ed to end the session. The user could choose to create a
"logoff" command proceudres that would have the "end

USERID;" appended as the last statement. Figure 15 illus-

trates both methods for ending a user session.

> end USERID;
: confirm session end
> OK;

Figure 15: Sample Session Closure

logoff;
@ procedure LOGOFF is

@ begin
@ print(USERLOG):
@ end LOGOFF;
@ end USERID:

Figure 16: Sample Session Closure with a Command Procedure

1.5.5 Special Features

1.5.5.1 Programmable Function Keys (PF Keys)

The ACLI accepts input from programmable function keys. The

keys may represent text or imply a help or interrupt func-
tion.

II
!

319

1.5.5.2 Parameter Prompting

The ACLI will prompt for missing and/or incorrect parame-
ters. Prompting is offered at several levels to accommodate
experienced and novice users. Prompting may be explicitly
changed on a command basis, allowing a user who is experi-
enced with a set of commands to revert to a novice level for
unfamiliar commands.

Prompting can be supplied on a full-screen or line-by-line
basis, allowing terminals that are not VDT's to be used by
the DCP. Programs that are invoked by the ACLI may issue
prompts to the user, thus prompting may originate from both
the ACLI and the functions it invokes. Prompting may be
suppressed by changing the user's environment -suppressing
prompting for all commands) or by requesting prompting/no-
prompting on a command basis.

Prompting will be implemented as an Ada package, allowing
the use of the prompting functions to be made available by
any program that uses the prompt package.

> edit;

ACLI PROMPT MENU

Parameter Value

data set name >

ACLI PROMPT MENU

Parameter Value

data set name > temp.data

the user is now under edit

for the data set "temp.data"

Figure 17: Sample Parameter Prompting by Menu

320

I

>edit;
S"edit" requires the parameter "dsname"

Figure 18: Sample Parameter Prompting without Menus

In figure 17, the user enters a command to invoke the edi-
tor. The editor requires a single parameter, causing the
ACLI to display a standard full screen prompt with a list of
the names of the parameters needed. The next screen shows
the value, as entered by the user. After this screen, the
editor is invoked by the ACLI with the single parameter.

Figure 18 shows the same action with and experienced user.
The definition of experienced or novice user is retained in
the user profile but may be changed on a command basis.

1 5.5.3 Help Services

The ACLI allows helps on much the same basis as prompting.
Helps may be full screen or line-by-line. Helps may be sup-
pressed on a user environment or command basis.

The ACLI organizes helps hierarchically, allowing a user to
find progressively more detailed information. Helps may be
traversed in a known fashion, including displaying a table
of contents or index to a set of helps. Helps may be used
to either explain the syntax/semantics of a command or as
tutorials. Helps may also be related to components of a
command. This allows help to be applied to a single parame-
ter, or the parameter list, or any other command component
that is useful.

The ACLI will display full screen helps for users that re-
qiest the service. Help is requested either by invoking the
"help" function or, more commonly, by pressing a help key.
The help key may be pressed anytime and will be interpreted
contextually by the ACLI. For example, pressing the help
key after the "->" symbol for assignment of a value to a
parameter will result in the information about the parameter
type, allowing the user to decide which value should be en-
tered. Pressing the help key after the "(", at the start of
a parameter list, will cause a help explaining the parameter
list, with names and values. Help, like parameter prompt-
ing, may be tailored by the user on a command or permanent
user environment basis.

I
321I

> edit(
(the help key is pressed}

ACLI HELP MENU

The "edit" function takes a
single required parameter and
several, optional, parameters.

PARAMETER TYPE ALLOWED
NAME VALUES

dsname filetype
mode edit mode SCREEN/LINE

> dsname -> temo.data):
the editor is invoked)

Figure 19: Sample Full Screen Help Menu

> edit((the help key is pressed)

enter the parameter "dsname" (file_type)
and any of the following optional parameters:

mode (edit mode)
> dsname -> temp.data):

the editor is invoked)

Figure 20: Sample Line-by-Line Help Menu

In figure 19, the user enters a command to invoke the
editor. The editor requires a single parameter. The user
presses the help key after typing the opening parenthesis
for the parameter list. The ACLI responds by presenting a
help frame with a list of all parameters that the "edit"
function accepts. The user may then refresh the screen and
complete the command, entering the parameter by name.

322

I
1.5.6 System and Apolication Functions

The previous sections have explained the concepts behind
command languages and interpreters and have presented sever-
al models for the Ada command language, interpreter, menu
system and session. This section briefly presents some of
the concepts implied in the command language model regarding
the functions that the ACLI invokes.

In the ACLI model, each function referenced in a user com-
mand related to either:

" A system function that was directly invocable by the
ACLI and required only an Ada specificati-'n to allow
the ACLI to check the interface prior to directly call-
ing the function.

* A load module that also had an Ada specification and
allowed the ACLI to check the interface prior to invok-
ing the loader to load and execute the function.

* A function that was internal to the ACLI and is, in ef-
fect, a subroutine. This type is the only type of DC?
function that does not require an external Ada specifi-
cation, since the specification is an :ntegral part of
the ACLI.

This section is concerned with the Ada specifications and
bodies that must be created to allow the ACLI the ability to
check a function's interface prior to executing the function
(directly or indirectly).

The specifications will either relate to a body that is com-
piled Ada source, a load module that has been created in
another language or a system function that is part of the
host operating system. Specifications will be grouped in
Ada packages, to express the relationship between the func-
tions represented by the specifications.

Two main packages will exist: system and applications. The
system package will contain all canned command procedures,
commands and system functions that are an integral part of
the ACLI subsystem. The application package will contain
all other command procedures, commands and system functions
that compose the DCP system.

The contents of the system package are listed in table 8,
those already known for the application package are in table
9. Both of these lists are included in this concept paper
to give an idea of the types of functions that may be ex-
pected to be invocable via the ACLI. Neither list is com-
plete, and will in fact, form a dynamically alterable part
of the DC?, as new functions are created and integrated into
the DCP.

I ~323

....I . .. , -. . -- _ . n ! _ -

TABLE 8

Typical Functions in the System Package

TABLE 9

Typical Functions in the Application Package

324

I

1.6 GLOSSARY

ACL The Ada Command Language. Ada,

used as a command language inter-
face between a user kor program)
and the host operating system.

ACLI The Ada Command Language Interpret-
er. The system-resident program

that accepts commands in the Ada
language and interprets them to in-

voke system functions, control se-
quencing of commands and other fea-

tures of the ACL.

ACL System The Ada Command Language
Interpreter system consists of the
major functions within the DCP that
provide the interface between the
host operating system and the user
of the DCP. The ACL system is re-

hostable to a variety of computer
systems.

Batch Mode Batch mode is a method of having

the command language interpreter
execute a command without a user

being interactively involved with

the execution of the command.

Command An Ada procedure. A command is in-
voked by simply entering the name

of the command. A command is de-
fined by precompiling Ada source
through the ACLI frontend.

Command Package A collection of Ada commands, types

and variables, normally supporting
a single type of object and opera-
tions upon it. A command package
describes both a new type of object
in the system and a set of opera-
tions for the object.

Command Procedure The Ada procedure defining a se-
quence of actions, inciuding invok-
ing other command procedures, that
may be invoked as a unit through
entering the name of the command
procedure.

Data Abstraction The descriptiun of data in abstract

terms. Describing data, without

325

revealing the specifics about it,
results in a conceptual understand-

ing of the data. The specifics are
handled by operations granted to
the user of the data. Data ab-
straction allows localization of
knowledge about data (and objects)
and improves conceptualization of a
system.

DCP System The DCP system includes all of the
software supporting the Distributed
software engineering Control Pro-
cess PDC?). The DCP system in-
cludes the ACL system, a database
system, a library system and vari-
ous other support systems and
tools, all of which are packaged as
the DC? system.

Environment The user environment, also called
the profile (c.!.).

Executable Form The executable form of a system
function allows the function to be
activated in the system. An execu-
table form is either a load module
or an intermediate representation
of ACL source, understandable by
the ACLI.

Function An invocable action within the sy-
tem. A function is the same as an
operation (c.f.).

Host System The host system is the computer
system that stores and executes the
software of the DCP system. Many
hosts may execute the DCP system,
which is designed to be host-system
independent.

Instantiation The physical manifestation of a
data abstraction. An instantiation
allocates space within the system
for an object of the type described
in a data abstraction.

Interface Information, understood by the
ACLI, that describes a system func-
tion. The interface is expressed
as an Ada specification for a com-
mand procedure or command package.

326

Object An entity within the system. An
object is understood by reading the

data abstraction for the object and
by examining the operations afford-

ed for the object.

Operation A system function that is invocable
through the ACLI. An operation may
be viewed as an action that may be
applied to an object, or data ab-
straction.

Package A collection of information (opera-
tions, types, variables, constants)
reiating to a single object.

Profile User information kept between ses-
sions. The profile is used to re-
tain synonyms, parameter default
values and other information that
the user has control over and needs
kept between sessions with the sys-
tem.

Session The dialogue between a user and the
system. A session is defined as a
sequence of commands and interac-
tions with the system and its func-
tions, beginning with a sign-on se-

quence and terminating with a

sign-off sequence.

Specification The Ada source that describes a
command procedure in terms of name.

parameters and types or a command
package in similar terms.

Task An activated operation within the

system. A task may be a user ses-
sion, a background job or a fore-
ground job. Tasks are activated
Ada procedures.

WITH The Ada statement that allows all

visible information within a pack-
age to be referenced within another

package or procedure. WITH is used
in the Ada command language to re-

ference a package of commands, nor-
mally prefacing a user task. The
WITH statement allows a command to

be referenced, without it the com-
mand is undefined.

I
327I

USE The Ada statement that allows
unqualified referencing to informa-
tion made visible by a WITH state-
ment (c.f.). The USE statement al-
lows a command to be referenced
without qualifying it with the name
of the package.

328

I
I

LIST OF FIGURES

Figure payge

1. Examples of simple operations - Ada procedures . 22

2. Example of an Application Function 23

3. Example of a Command Procedure 25

4. User Task Type for the ACL 29

5. Sample System Users Package 29

7. Specification of a User Function 33

8. Execution of a Command Procedure 35

9. Execution of a Compiled Program 36

10. Execution of a System Function 38

11. Sample Session initialization 45

12. Sample System Interaction 46

13. Sample Abbreviated System Interaction 47

14. Sample User-Defined Command Procedure 48

15. Sample Session Closure 49

16. Sample Session Closure with a Command Procedure 49

17. Sample Parameter Prompting by Menu 50

18. Sample Parameter Prompting without Menus 51

19. Sample Full Screen Help Menu 52

20. Sample Line-by-Line Help Menu 52

I
I
I
I

- r l l

LIST OF TABLES

Table page

1. Objectives of the Command Language Models 2

2. Objectives of the Command Language Interpreter Models 2

3. General Requirements for a Command Language

4. General Requirements for a Comma.id Language
Interpreter 8

5. Ada's Fulfillment of Command Language Requirements .

6. Command Language Requirements not Fulfilled by Ada 15

7. Mocifications to the MIL STD Ada for Use as a Cmd
Lang16

8. Typical Functions in the System Package 54

9. Typical Functions in the Application Package 54

330

MILITARY MESSAGE PO ING

SECTON 1. OVERVIEW

The MAXI system was conceived and developed for the Air Force

Intelligence Service (AFIS) Directorate of Intelligence Data Management

(IND). The overall objective of the MAXI system is to provide a modular

software suite to provide for the reliable reception and transmission of

military message traffic as well as the applications necessary to

disseminate, review, and coordinate messages within a local site. The

MAXI system provides individual military sites of the intelligence

cmnunity with a universal and standard set of procedures and software

that is very reliable, and flexible in its configuration.

Early efforts at system integration were directed at establishing

message preparation and transmission capabilities in the MAXI system.

With these capabilities, a user can create and transmit messages to any

destination serviced by thp AUTYDIN communications network.

Message dissemination to individuals, organizations, or functional

divisions is performed through the Message Support System (MSS). MSS

disseminates messages automatically without the need for human

intervention. This is done with user-prepared message "profiles." The

profiles are in essence, simple statements which tell the system that

when certain words or phases appear in a message, it is to be routed to

disseminees specified in the message profile.

MAXI now stands as the central component of AFIS's Ccommon User's

Baseline for the Intelligence Community (CUBIC). In this role, MAXI

provides the CUBIC program and its users with the architectural framework

331

and baseline message handling capabilities for a system that can

acccmnodate current and future technological advances. @XI may be used

in the role of a stand-alone system, a communications link between

systems, or as a front-end processor for other data processing systems.

MAXI currently provides message dissemination, message review,

message preparation and transmission, message retrieval, temporary work

storage facilities, terminal-to-terminal ocmmunications, report storage

and generation, and interfaces to AMPE, LDMX, IDHSC II, and other

external interfaces.

MAXI is the DCMIIS standard AMS and is currently operational at

numerous sites both within the CCNUM and overseas. Additionally, it is a

prime candidate for early inclusion into the WIS software library.

332

SBCTIN 2. FUN rIONAL REQJIREMENTS

The functional responsibility of the current MAXI software is to aid

analysts and/or action officers in the efficient performance of their

mission in a message communications environment. To this end, the

software either performs or provides the user the ability to perform the

following functions:

Camtand Entry

Text Editing

Data Queuing

Message Storage

Profiled Message Dissemination

Message Review

Message Retrieval

Work File Support

Message Generation, Coordination, and Transmission

Remote System Access

Analyst-to-Analyst Communications

Coumunications Support for other Applications System.

Each of these functional areas is discussed in the following

paragraps.

2.1 Command Entry. Operations available to the user are presented in an

easy to understand format on display menus. The main branch menu lists

all main functions of the system. Each main entry, when selected,

presents one or more unique sub-branch menus depending on what

subfunction is being performed. Also, any caumand requiring parameter

333

input, such as Work File interaction or printer selection, can be

executed without parameters to receive a displayed list of the applicable

values. All commands presented on the menus appear in both the

three-character mnemonic format as well as being spelled out completely.

The most often used oummands are also selectable via function key. This

feature is provided to reduce the number of input errors and to give the

user positive identification of the available functions. Using the aids

presented, the user may select one of three command entry mechanisms:

light-pen (if available), typed-entry, or function key.

The typed-entry mechanism requires the user to actually type the

comuand mnemonic on the command line and then execute it. When a

function key is pressed the command line is bypassed altogether and the

command is executed without delay. Selection of a command not valid to

the current function results in a "bad command" error message being

displayed. The terminal also provides a positive indication of when it

is ready to process the next command, reducing the number of wasted

keystrokes. The flexibility and positive feedback features of the user

interface makes MXI the most user-friendly system available.

2.2 Text Editing. The functions provided by MAXI for text manipulation

are performed within the terminal microcode. These functions include:

Screen-to-Screen Move and Copy

Character-By-Character Insertin

Character and Word Deletion

Upper and Lower Case

334

Highlight

Automatic Reparagraphing

Screen Clearing

Cursor Positioning.

Two display modes are also provided: an unprotected free text mode

allows data to be entered anywhere on the screen, while a protected form

mode allows data to be entered only in specified fields.

2.3 Data Queuing. In order to provide the user with the most

flexibility in the performance of his functions, it is necessary to

buffer him from the high rate of speed of data transfer. For example, if

each message sent to a particular user were simply flashed to the screen

and displayed there until the next message arrived, the user would be

unable to review the messages fast enough to keep up. To this end a set

of user queues has been designed to hold data until the user is ready to

deal with it. Several of these queues are maintained for each user

subarea defined in the system, each of which serves an independent

functional purpose.

2.3.1 Message Review Queue. The message review queue is the holding

queue for incoming message traffic. Messages on this queue are ordered

chronologically by time of receipt within precedence (i.e., messages of

the same precedence are grouped together with the highest precedence

traffic first on the queue and the lowest precedence last).

2.3.2 INIrRACOt Queue. The INTrACU4 Queue is separate and unique from

the Message Queue and is designed to hold analyst-to-analyst traffic in

chronological order within one of the two precedence categories (Routine

335

and Priority) associated with this type of traffic.

2.3.3 Work File Response Queue. The Work File Response Queue is

designed to hold the Work File items retrieved in one retrieval

operation. No precedence is assigned to such items, so the queue is

structured simply on a first-in, first-out basis, determined by the order

in which Work File items are found to satisfy the retrieval criteria

specified in the retrieval query.

2.3.4 Pending Action Queue. The Pending Action Queue is a complex data

structure designed to hold the responses to a message file retrieval

query. Multiple query responses may be hold on the queue with each

response having up to one hundred messages.

2.3.5 Hold Queue. The Hold Queue is a temporary holding area for work

in progress. This queue is terminal, rather than subarea, related and is

organized in a last-in, first-out sequence. This structure is analogous

to a stack of papers on a desk, where the last item placed on the stack

is the first item removed.

2.4 Message Storage. Incoming messages are stored in the master message

file. This file is organized into physical segments or "day files" for

efficient use of disk space and for convenient reallocaticn of the oldest

used space for new traffic (the day file purge process). The

configuration of the message file my be tailored at each site, the

requirement being to provide a minimum of thirty days of traffic stored

on line regardless of daily traffic volume or average message size. Each

message on the file is stored with associated records containing

information concerning which subareas received a copy of the message and

336

what subject codes were assigned to it in the dissemination process.

2.5 Profiled Dissemination. The Profiled Dissemination function

provides a mechanism by which each user specifies what subset of the

incoming message traffic he desires to receive. The user-generated

"profiles" are compiled into a machine-readable Odictionaky" which

controls the dissemination process. Incoming messages are scanned for

the presence of any of the user-specified keywords or phrases. Once all

key items have been located, a cumpare is performed against the logical

relationships defined in each profile. A match results in dissemination

of the message to each of the subarea queues, and assignment of each

subject code specified on the matching profile or profiles.

2.6 Message Review. The Message Review function provides the user with

the ability to view message traffic queued to his station. Messages on

this queue are organized in chronological order of receipt within

precedence with FLASH or CRITIC messages causing an audible and visible

alarm to be presented to the user. The queue can be easily manipulated

in a forward or backward step fashion as well as by large positional

jumps. Messages can be deleted from the queue individually or in groups.

Group deletions, or purges, remove a user-specified number of oldest

messages on the queue regardless of precedence. The system also provides

for temporary distractions, allowing the user to leave the review

function and return to it later without losing his place. Messages on

the queue may be rerouted to other subarea queues and can have additional

subject codes assigned for use in later retrievals. Messages displayed

for review may be modified and/or stored or printed for personal use, but

337

it should be noted that the message file copy will remain in its original

form; no modifications to this copy being allowed.

2.7 Message Retrieval. The Message Retrieval function provides the user

with the capability to retrieve a single message or a group of messages

from the master message file, by using a single parameter or a

combination of retrieval parameters. These parameters include the

message's originator, date-time group (DTG), Station Serial Number (SSN),

and any subject index terms or disseminees derived from the profile

keywords. Specific messages can be retrieved via DIMG only, DTG and

originator, DIG and SSN, or DTG, originator, and SSN. Groups of messages

may be retrieved by a range of DIGs in combination with originator and/or

subject index codes and/or disseminee codes. Subject index terms can be

specified in logical (AND, OR, BUT NOT) relationships with other subject

index terms or disseminee codes to select the exact subset of messages

desired. Naturally, the more specific the search parameters specified,

the smaller the number of message satisfying the criteria. Retrievals

are validated prior to execution to prevent time-consuming searches for

non-existent subject or disseminee terms.

2.8 Work File Support. The Work File capability provides the user with

an indexed storage area in which he can save information of interest.

One Work File is provided for each subarea defined in the system. When

storing a display item in a Work File, one or more user-defined titles

can be assigned to the item. In this case the item may be later

retrieved using either title. Alternatively, multiple items may be

stored under the same title. Additionally, each item is assigned a

338

I~i t I i I I " I l i l I IIII I I II II Iil i t' :-'- : -" --: " :

storage date-time group. A single date-time group or a range of

date-time groups may be specified as retrieval parameters, in which case

all items whose storage times fall into the specified range or match the

single. specified date-time group will be returned to the user's Response

Queue. Currently, the Work File Subsystem is capable of storing up to

2048 items under 256 different index titles, allowing an average of eight

items per title. Work Files are also "protected" to three levels:

o Read only

o Read/Write

o No Access.

These privileges are established by the system manager and may be revised

at any time. The Work File subsystem is also provided with a full backup

and recovery capability.

2.9 Message Generation and Transmission. The message generation and

transmission function allows the system user to generate a message for

transmission with a minimum of knowledge of specific network protocols.

Using easily completed forms the user first builds the message header,

assigning precedence and security values, then cumpletes the addressee

portion of the message, providing Routing Indicators and/or Plain

Language Addresses (PIA) or Address Indicator Groups (AIG). Finally, he

completes the text of the message in free text mode. This process

provides the greatest flexibility, allowing use of previously completed

forms for each phase of mesage oonstruction. Use of free text nude for

message text generation allows full use of the text editing features of

the terminal. Once the message has been generated, a mechanism has been

339

provided to prevent the originator from transmitting the message without

the explicit approval of a "releasing authority", an individual assigned

to determine that the message is of the proper security classification

and that it is otherwise ready for release.

On approval, the message is transferred electronically to the

network interface software for transmission, where it is converted to

line format according to the protocol requirements of the network.

2.10 Remote System Access. Remote System Access is a general capability

designed to provide the user with access to other remotely located

systems. Standard MAXI terminal support software is used to connect to a

local (resident in the MAXI configuration) service program. A

communications link is established, providing the user with a terminal

interface to the selected system as if he were locally connected to it.

This capability provides for remote analyst-to-analyst cmunications and

ancillary data base access.

2.11 Performance Characteristics. Overall system performance

characteristics covers the availability, reliability, responsiveness and

throughput rates as they concern the functional operation of the system.

Response time is defined as the time between a specific stimulus and

the completion of the associated required response. Response times

currently mandated and being accomplished by the MAX! system include:

o Queue commands 4 seconds

o Message cmmands 1 second

o Terminal commands 1 secxd

o Analyst-to-Analyst 2 seconds

340

Message processing speed is dependent upon the specific priority of

the given message being processed. Messages of la.4er priority have their

processing suspended when a message of higher priority is received. The

time required to pwocess FIASH messages received from external system to

the point where they are ready to display during times of peak system

loading does not exceed 15 seconds.

Throughput rate is defined as the average throughput ortainaole

during time of peak system loading. ;hen utilizing automatic input

channels (AMPE, CSP, etc.) MAXI currently meets the original design

requirement of 500 AUTrCIN transmitted (2000-40,000 characters) messages

per hour. In a peak system loading condition, MAXI frequently exceeds

200 outgoing AUTODIN messages per hour. Current operational message

volumes supported vary between 800-2500 messages per day.

I

341

I
I

SB=ICN 3. CASE STUDY

NAM CIF SYSTEM: Modular Architecture for the Exchange of
Intelligence MAXI)

SP(CNSCRING AGENCY: Air Force Intelligence Service (AFIS),
under an Executive Agreement with the
Defense Intelligence Agency (DIA)

DEVEL OCT ONTRACT'C: INC), Incorporated
C3I/AWS Department
8260 Greensboro Drive
McLean, Virginia 22102
Attn: Mr. Dick May

DESCRIPTICN CF SYSTEI: A generic overview of the system is
provided in Section 2, Functional
Requirements. MAXI has been mandated by
DIA as the Department of Defense
Intelligence Information System (DODIIS)
standard automated message processing
system. As such it serves as the
foundation for the AFIS-managed Common User
Baseline for the Intelligence Community
(CUBIC). Additicnal information regarding
system attributes and performance may be
obtained by contacting AFIS directly.

QUALITY OF SYSTEM: MAXI is currently an operational system at
14 intelligence sites and 2 command and
control sites throughout the world.

DEVELPMENT ISSUES: The current MAXI system is the culmination
of years of experience in the development
of automated message processing systems.
MAXI has its roots in the original National
Military Intelligence Center (NMIC) message
processing system; as well as the PAOCXJ
Data Handling System (PDSC) originally
developed for PACM Headquarters. The MAXI
system originated as a melding of the most
promising features of these two preceding
systens and has been designed and developed
as a modular software system in order to
adapt to the technical evolution required
by today's command and ontrol environment.
MAXI currently utilizes MACRO-11 as the
source language of choice and resides on
the AN/GYQ-21(V) as the intelligence
community hardware architecture suite.

342

END USE: MAXI was initially fielded at Headquarters,
Military Airlift Ccumand in March of lq81.
Currently the MAXI system is in operational
use at the following sites:

1. HQ MC, Scott AFB, ILL, MAR 81

2. HQ ESC, Kelly AFB, TX, JAN 82

3. HQ USAFE, Ramstein AFB, GE, AUG 81

4. 497th RTC, Shierstein, GE, FEB 83

5. T C, Bglin AFB, FL, FEB 82

6. AFArTC, Lawry AFB, CO, JUL 81

7. HQ TAC, Langley AFB, VA, DEC 82

8. HQ ADCC , NOC , Colo. Springs, CO, JUN 83

9. HQ PACAF, Hickam AFB, HI, JUN 83

10. HQ REDCCI/J2, MacDill AFE, FL, MAY 83

11. HQ REDCtVJ3, MacDill AFB, FL, AUG 83

12. FICaEULA, Norfolk, VA, JUL 83

13. HQ USAMEUR, Heidelberg, GE, JAN 83

14. HQ USAFE/OSC, Ramstein AFB, GE, SEP 82

15. HQ USAFE/IFC, Boerfink, GE, JUN 83

*1 16. AFIS/IND, Bolling AFB, D.C., AMP 83

New MAXI installations expected to be
accxmplished during FY 1984 include:

HQ SSOUTHCOM, Panama

KISS, Korea

Alaskan Air Ccmand, Alaska

USCERICO, MacDill AFB, FL

SHAPE Headquarters, Belgium

343

Army Operatimrs Center, Pentagcn

71tITA, Ft. Hood, TX

344

SETICN 4. ANALYSIS

The cost of this conversion effort has been derived using a

structured software life-cycle analysis. The overall approach to this

analysis relies on the following assumptions:

o Conversion to Ada is essentially a development task

o Ada compilers and language system will be available
and provided for the effort.

o No major functional redesign of the current MaXI
capabilities is required.

The software life-cycle analysis comprises six subtasks that are

organized and performed linearly but incorporate necessary feed-back

loops to provide the requisite checks on quality. These subtasks, as

depicted in Figure 4-1, are:

o System Requirements Definition

o System Architecture Definition

o Detailed Design

o Code/Unit Test

o Integration Testing

o System Testing - Acceptance

Since the MAXI functions and requirements are well-known and

Sentodied in an operational system, this subtask is unnecessary in this

effort. However, Ada mandates a software architectural redefinition for

these requirements. Furthermore a cadre of trained Ada software

engineers is required to perform the conversion.

Figure 4-2 presents a GN*TT chart that lays out these subtasks and

their milestones. On the chart, the system architecture and detailed

345

inn

AA

11 LU

a 09-6

Im mw2

9 SM
=~- ufiw S

3- IU~IJ =J W
%A 0= IUIJ SM

La ua
_ I a p-

igM M
L6 M - I

SM.. u-L..

346

"4

Go

emn0

CC

"34

design suotasks have been owbined under a omon heading. A relatively

small core of software engineers will spearhead the architecture

conversion while the remainder of the development team is rigorously

trained in Ada. This core will then head the various component

developments identified by the Ada architecture. Implicit in the

estimates are the support personnel needed for documentation,

configuration mangement, and quality assurance testing. The man-nonths

estimates by subtask are the following:

SUBTASK ESTIMATE IN MN-MONTHS

Ada Training 72

Architecture Redefinition 25

Detailed Design 96

Code/Unit Test 119

Integration Testing 72

System Testing/Acceptance 48

348

SECTICN 5. O3ONCLUSIONS

The MAXI automated message handling system is the culmination of

more than seven years of research, development, implementation, and

enhancement. A direct result of the transfer of technology from the NMIC

and PDSC systems, HMXI is currently operaticnal at sixteen sites both

within the CCN4S and overseas. It is the standard single processor AMS

for DoD's Coumon Users Baseline for the Intelligence Community, and is a

prime candidate for early inclusion in the WIS/CUS software library.

349

.il

COMMAND INFORMATION MANAGEMENT:

THE COMMANDER'S WORKSTATION*

Daniel J. Power

* I want to thank Carol Pokodner for her help, ideas and encourgement.

Also, I want to thank the people at Apple, Masscomp, Mesa Technology and
Xerox, especially Eva McGhee and Frank Shap, for their assistance and ideas.
John Sapp, Software A&E, has encouraged me and helped me meet my deadline.

September 16, 1983

copyright (c) D. Power, 1983

351 PAU .

Cctober 28, 1983

Dr. Tom Probert
Institute for Defense Analysis
1801 N. Beaureqard St.
Alexandria, VA 22311

Oear Dr. Probert:

The Institute for Defense Analysis (IDA) has my permission to reproduce
mty paper "Information Management: The Commander's Workstation" for any uses
in conjuaction with the WIS project.

Sincerely,

el J. ower

352

OVERVIEW

What is a Commander's Workstation (CWS)? CWS is envisioned as an

integrated hardware/software computer product that provides military officers

with powerful capabilities for performing their jobs. CWS should be a

stand-alone machine that has easy-to-use, pointer-controlled software, a large

memory, high resolution graphics, and sophisticated voice and data links to

other CWS, external data bases, and analog devices. The integrated CWS

software command environment should provide the following general

capabilities: screen-oriented document processing, data base query, automatic

message routing, a schedule and reminder system, access to maps, books,

papers, graphics and map processing, automatic data capture and transfer to

update data bases, logistics management and ordering, and

encryption/decryption capability for voice and data. Specialized capabilities

should also be available in CWS to support those commanders that require them

including: planning tools, planning checklists, project management,

simulations, optimization programs for military mission assignment, and

military unit readiness, personnel and status monitoring.

A Commander's Workstation can be produced with current and expected

short-term enhancements to hardware and software technology. Apple Computer,

Data General, Masscomp and Xerox, in particular, have systems in various

stages of development and distribution that can provide many of the needed

hardware and software capabilities. Peripheral manufacturers and third-party

vendors can supply additional hardware and software requirements. Developing

a field version of CWS may require a sizeable investment, but vendors are

developing many portable machines for business executives.

353

2

Developing and testing CWS will require more than 150 person-years of

effort and will cost more than $16 million dollars (in current 1983 dollars),

but CWS development costs are minimal when compared to the cost of

implementing the concept throughout DoD. Some may argue that ultimately only

a few thousand machines will be needed, but I agree with Druzhinin and

Kontorov (1972), Soviet military technology experts, that CWS must be

universally distributed in the military chain-of-command to realize the

following benefits: improved operational capabilities; faster and more

accurate planning for strategy and tactics; and reliable and effective

command, communication and control.

If military and political leaders are willing to make a strong commitment

to the project and if adequate resources are provided, it is in my opinion

that it is feasible to develop CWS by April 1987 and 60,000 to 100,000 CWS can

be operational by January 1, 1989.

354

3

INTRODUCTION

This paper explains and evaluates a product called a Commander's

Workstation (CWS). First, two scenarios about the product as it will be used

are developed. Second, technical specifications for the product are

provided. Third, capabilities of currently operational hardware and software

are reviewed. Fourth, the potential availability of key product capabilities

during the next five years is briefly discusssed. Finally, costs, schedules,

and a possible development plan are summarized. The conclusion of the paper

is that WWMCCS can achieve significant improvements in defense planning;

improved logistics support; and perhaps most importantly more effective

command, communication and control capabilities if a commander's workstation

is developed and implemented throughout the military chain-of-command.

SCENARIOS OF CWS IN USE

Two scenarios are presented below that describe the use of a Commander's

Workstation in 1989. I developed the first scenario and the second is based

by Druzhinin and Kontorov (1972), Soviet military technology experts. Chapter

14 of Druzhinin and Kontorov's book is included as Appendix I. Chapter 14

contains the scenario and proposes three expert systems that may be feasible

to implement on the workstation by 1989.

355

4

Scenario I

General Smith arrives at his office at 0730. He walks to his command

workstation and places his thumb on the identification recognition unit. The

recognition unit moves the system from standby to a full activation status.

The speech synthesis unit, used in the workstation, responds, "Good morning,

General Smith." General Smith glances at the terminal display and notes that

all of his waiting messages are status two or three, which are lower level

priority messages. He also notes the operations monitoring code of the system

is green indicating the troops under his command meet general readiness

requirements and no major deviations have been detected from his readiness

standards.

After having a cup of coffee, General Smith sits down at the workstation

and uses his hand controller to indicate he wants the main menu. The menu is

displayed on the screen and Smith selects the news headline file.

The news headline file contains information about major world, national

and military eve-its that have occurred since he last scanned the file. The

information is automatically stored and updated at his workstation. Smith

quickly scans the headline briefing file and notes certain information he

wants to store for possible later reference. To save a briefing he positions

his hand controller at the reference number and pushes the controller button

to store the information in an indexed storage file.

356

5

After reviewing the headline briefings, Smith returns to the main menu and

uses the hand controller to bring up the current messages file. He reviews

messages that have been received overnight. As he encounters a message he

feels needs a response, he moves his controller to the top of the screen and

activates the "message response" block. He pushes a button and overlaid on

the screen is a separate work area that contains a memo form. Smith uses his

right hand and the executive keyboard to indicate the name of the person to

receive the response and the message. He moves the hand control pointer to

the top of the screen, to the "send message" box, and pushes the button on his

hand controller, to automatically route the message to the person. The

message is stored and cross-referenced with the original message. Smith

normally keeps records of his messages in active storage for two weeks and the

system automatically moves those messages to permanent long-term storage to

maintain an archive of his command activities.

After reviewing his messages and sending out responses where needed, Smith

returns to the main menu and pushes the "status" menu selection. Displayed on

the screen is the status report of the units under his direct command. Smith

can move the pointer, using the hand controller, to a specific military unit,

and request additional status information about that unit. As he reviews the

status of units under his command, Smith is able to again send messageb

either telemail messages or voice messages, using the built-in

telecommunications system at his workstation. Smith usually requests written

reports from subordinate commanders, but sometimes speaks with them personally.

357

6

Following the status review, Smith notes that the status light at the

bottom of his screen is flashing red, indicating an important message is about

to interrupt his use of the terminal. Almost immediately after the status

light flashed, the terminal cleared and a message was displayed indicating he

was urgently needed at a command briefing. Smith returned to the main menu

and moved his pointer to the "standby position" command and the workstation

changed mode. Smith left to attend the command briefing.

When he returned, he again used his thumb print as an identifier and again

noted no important messages were waiting and the status of units was green.

Smith called up the main menu and requested the planning program. Smith

had been contemplating a war games exercise for units in his command. He

decided the project management program should be used to prepare activities

and a plan for the military exercises. Smith also used a modelling program to

attempt to simulate possible outcomes of the exercises, given the current

status of units under his command. This simulation enabled him to assign

units to opposing sides to ensure that each side was about equal in

capabilities. After preparing the activities, assignments, time schedule,

running the simulation and indicating which units would be on the two opposing

sides, he prepared a directive. The directive included an activities list

with responsibilities and time deadlines and assignments to the red and blue

teams for the exercise.

Smith reviewed this document in the "editing" mode, added comments in

appropriate places and determined that the information should be reviewed by

three of his subordinates. He moved the hand controller to the top of the

screen and activated the "message transmittal" mode and a second screen

appeared in the lower right hand corner. Smith indicated the three

subordinates that were to receive his message and then typed "current document"

358

7

as the contents of the message. Smith moved his pointer to the "transmit box"

at the top of the screen, pushed the button on the hand controller and the

message was automatically sent to the three subordinates. Smith quickly moved

the pointer to "save", and the plans for the military exercise were stored so

that he could review and update them as needed.

Smith decided he could best spend his time after lunch reviewing some

military periodicals and returned to the main menu to activate the data

retrieval mode. He typed in the topics he was interested in and indicated he

wanted articles that appeared in the previous two months. As the search was

occurring Smith returned to the main menu and used the "logistics support"

module to order three terrain maps of his command region and a new uniform

from the central supply office. When the terminal display indicated, in the

lower left hand corner, that his search was complete, Smith returned to the

main menu. He positioned the pointer over "data retrieval" and the screen had

a list of articles in the topic areas he requested. Smith moved the pointer

over the articles, scanning the titles. He noted one title which appeared

especially interesting and when he pushed the button on his hand controller,

the article appeared on his screen. He scanned the abstract and decided the

article seemed quite appropriate to his needs. Smith read the article on the

screen and decided after reading it that he wanted to keep it in his files for

easy reference during a meeting with subordinates later in the week. He moved

the pointer to the top of the screen, pressed the control at the "save" block,

and then moved the pointer to the "remind" block. A window appeared on the

screen and the system queried "WHEN DO YOU WANT TO BE REMINDED ABOUT THIS

DOCUMENT?" Smith typed in 1400, Friday, 9/14/83. The system responded

359

8

"REMINDER NOTED" and the window closed. Smith returned to the article list

and scanned a few other articles, saving some, rejecting most of them. When

finished, he returned to the main menu.

Near the end of the work day, Smith requested the "message" mode and sent

a message to two subordinates located at his headquarters unit requesting that

they come to his office in fifteen minutes for a briefing. The subordinates

acknowledged receipt of the memos. While waiting for his subordinates, he

worked on routine matters at the workstation. He reviewed and corrected a

draft of a document he had dictated at his workstation that his secretary

entered and transmitted back to his workstation.

Fifteen minutes later, the subordinates knocked on his door and he greeted

them. They entered and Smith pushed a button on his console that switched the

display from the workstation monitor to a large-screen monitor on the wall in

his office. Smith walked over to one of the five chairs around the screen and

sat down and took the hand controller in his left hand. A keyboard was

attached to a movable arm at his right hand. Smith explained the purpose of

the briefing and retrieved the planning documents he saved earlier and

displayed them on the screen. He and his subordinates discussed his plans for

the upcoming military exercises. As they discussed them, Smith entered the

changes in the display. They retrieved maps of the terrain from laser disk

storage and noted the potential effects on the exercise. After 45 minutes of

reviewing the plans and terrain for the military exercises, Smith adjourned

the meeting, saved the new plans, and routed copies of the plans to each

subordinate. Smith then returned to the main menu and selected the "standby"

icon closing the workstation down and went home after a long day at the office.

360

I

9

Scenario II

Major Jones arrives at a new assignment and, after becoming familiar with

his deputies and closest associates, he sits at the Commander's Workstation to

conduct a situation analysis. Following thumb print identification, he uses

his hand controller to select maps displaying grouping of forces in the

immediate area of combat operations, first in small scale: the enemy, our

forces, and neighbors; and then changing to a larger scale and other displays;

the enemy disposition of troops and fighting strength finally zooming in on

enemy strong points and weapons placements. He next requests with the pointer

quantitative data on the makeup of enemy units, characteristics of their

military equipment, military experience, and morale of their troops, as well

as lists and combat characteristics of the command staff. He prints any

information needed. If there are no data on certain questions, these

questions are directed using the "memo" mode to the intelligence branch for

the collection of additional information.

Major Jones then undertakes initial familiarization with his own troops.

Using the workstation and interaction with his closest aids, he becomes

familiar with the disposition, makeup of troops, weapons, equipment, data on

combat capability, combat readiness, morale of personnel, and the combat and

psychological characteristics of commanders directly subordinate to him.

Again using the "memo" mode for unanswered questions, he requests information

from subordinates and staff sections. Descriptions of present and future

missions are displayed. Then the commander may review previous events. If

necessary, the course of combat actions in a given region can be reconstructed

361

10

on the screen (in convenient time scales). Proposed, but unimplemented

decisions are noted. This phase of interaction with the work station ends in

familiarization with current combat orders and instructions, logistics,

updates and contact with subordinate commanders of various ranks and

neighboring units (automatic communication-and data display are used here).

The next step is to analyze the theater of military operations (terrain).

Photographs of various battle areas and the surrounding sectors are displayed

on the screen. By changing the scale using the hand controller, the commander

can acquire the most informative representation of the data, which are

simultaneously supplemented with digital data and text. The commander and his

aides analyze the terrain, weather situation, and geophysical conditions,

using an interactive query system. The subordinates, in turn, direct the

commander's attention to details which they think are important. The mission

assigned to the troops is shown on large-scale stereoprojections of the

terrain.

This phase is concluded by using simulation and planning programs to

consider possible variations of combat actions, logistics, preparatory

measures and their organization. The purpose is to concentrate on those

questions which arose in the commander's mind as a result of his initial

impression. Some of the tasks supported by the work station are specific in

character: prepare mathematical data, evaluate the effectiveness of certain

measures and actions. Other tasks are-more general: assist in proposing

solutions for problems and subproblems, assist in forecasting the situation,

assist in evaluating the enemy's intentions. An expert program helps the

commander with questions such as: "What is the probability that the enemy

362

11

will attack at sector A within the next 2 days?" The system may answer

approximately as follows: "For the next 2 days the enemy may concentrate such

and such forces in sector A; the effectiveness of attack is such and such, the

probability of attack is such and suc'i."

Having formulated the questions and designated the time frame that he

wants for answers, the commander may visit his troops for on the spot

familiarization with the situation. In this stage of the operation the work

stations of subordinate commanders can be used.

In the next step, the major returns to his command post with new ideas and

impressions, and begins to make decisions. But first he listens to

subordinates and discusses the answers from the expert system. He uses the

workstation to collect additional information relative to the situation, state

of enemy troops and his own troops. Then he formulates his initial ideas on

military tactics. The major transmits his proposal to headquarters, including

overall objective of the forthcoming battle. At his workstation, he can

recruit supervisory staff replacements from the field. He makes suggestions

that are fed into the computer for evaluation and transmission to headquarters.

The next step may be characterized as the discussion stage between the

major, staff and support services using encrypted voice communication. Using

the document processor, reports are prepared; an expert system evaluates the

proposals made during the "brainstorming," analyzes them, separates the

constructive ideas and uses them for suggesting alternatives. Key personnel

formulate their own ideas and proposal, and feed them into the expert system

for combined analysis and aggregation.

Finally, military tactics are authorized at appropriate levels and command

directives are automatically sent to workstations.

363

12

Other Scenarios

These two scenarios only begin to describe the uses and applications of

CWS. Scenarios for all of the services, all command levels and major

anticipated events, e.g., a new assignment, routine management, .should be

constructed. Scenerios help evalute the capabilities of the CWS before large

investments have been made in design and development. Also, scenarios can

provide guidance to designers.

FUNCTIONAL REQUIREMENTS FOR COMMANDER'S WORKSTATION

The Commander's Workstation (CWS) must have the power and flexibillty to

serve military commanders at all levels in the command structure and it must

have capabilities for supporting planning, logistics, and command,

communication and control in four types of situations. The four situations

include:

1. Routine administrative and operational management

2. Crisis management and planning

3. Conflict situation management and planning for:

a.limited conventional warfare
b.global conventional warfare
c.limited nuclear warfare
d.global nuclear warfare

4. Post global nuclear warfare management and planning

364

13

The commander's workstation must have software capabilities to support the

following generic management tasks:

1. military planning, both strategic and tactical

2. organizing military units

3. delegating tasks and responsibilities

4. monitoring and directing the actions of subordinates

5. staffing military units, including planning, readiness, personnel
transfers, skills inventories

6. searching for information

7. routine decision making

Both the hardware and software for CWS must be carefully chosen to ensure

modularity, expandibility, user friendliness, and reliability.

Required Hardware

The following hardware and software requirements seem necessary to provide

the capabilities in the scenarios and meet requirements in the four military

situations for supporting the seven management tasks:

1. a machine with a minimum of a 32 bit main microprocessor; separate CPUs
for screen output, multiple input channels, and memory management;

clock, a minimum of 1.5 megabytes of RAM, 500K ROM; printer and
communications buffers; with expansion slots; and easy upgrade of
components to incorporate new hardware and software capabilities.

365

14

2. thumb-print recognition unit

3. a 35 megabyte hard disk

4. an easy-to-use keyboard for non-typists

5. built-in speaker phone and speech recording

6. a "mouse" or pointer control device

7. 25" diagonal display with high resolution bitmap capability and fast
refresh rate, 132 column display capability

8. 160 cps printer with graphics

9. modem

10. back-up power supply

366

15

Optional Hardware

In some command offices, enhanced capabilities should be available. The

following capabilities facilitate group meetings, information search, field

command, and intelligence:

1. read/write laser disc storage

2. 5 ft. projection of flat display screen

3. voice synthesis and recognition

4. bubble memory storage

5. compact field unit with bubble memory, flexible membrane keyboard and
flat. screen display

6. 40 ips plotter

7. video imaging input camera

8. digital/analog converters

9. laser printer

10. portable power supply

11. double-sided, quad-density, floppy disk drive (should be in limited
use to main information security)

Software

A complete specification of software for specific command situations is

not possible at this time, but at a minimum the following is needed:

1. an integrated software environment manager, captures all data
descriptors and is transparent to the user, uses graphics symbols with
mouse or keyboard control

367

16

2. sophisticated office management software, e.g. screen-oriented
document processing, communications, file management, schedule and
reminder system, data base query system, spelling checker

3. graphics software management system, with retrieve, modify, rotate,
create, combine with text, zoom, roam

4. planning tools, planning checklists, project management, simulation of
military situations, optimization of air craft, ships, military units
(cf., Pazzani, 1983), statistical analysis, budgeting

5. voice message management and storage

6. automatic data capture and transfer software

7. military readiness, personnel and status monitoring software, with

user control of readiness measures and standards for units and
capabilities

8. logistics management and ordering systems

9. encryption/decryption software for voice and data

CAPABILITIES OF OPERATIONAL SYSTEMS

In this section, operational workstations of four manufactures are brielfy

reviewed. The four manufactures are: Apple, Data General, Masscomp, and

Xerox.

Apple Computer has an advanced workstation called Lisa priced at $0000.

This product does not currently meet the hardware specifications for CWS, but

the software environment is state-of-the-art. Lisa is very easy to use and

novices can learn the system quickly. Lisa is an integrated software

environment with advanced office automation tools. The graphics are

excellent, but higher pixel density is needed. The system can be, and most

certainly will be, expanded and enhanced. Lisa has seven major software

components that could be used in CWS, including a project management program.

368I

17

Software development tools will be available for Lisa. Pascal, Cobol and

Fortran are currently available and other languages should be available in 6-9

months. Capabilities for developing expert systems are not currently

available.

Data General is introducing an advanced workstation, GW/4000, priced at

$80,000. GW/4000 is a more powerful machine than Lisa, but it does not

currently meet all hardware requirements. Word processing and communications

are currently available, but the machine seems intended for data processing.

I have not used this machine nor seen it in operation, but the product

specifications suggest Data Geheral may be able to bid on this project.

Masscomp is a small, entrepreneurial company that is introducing an

advanced workstation priced at $14,000. On paper this machine comes closest

to the hardware requirements for CWS. The machine has a 10MHZ 32-bit VLSI

processor with a 4K byte cache. The system uses a UNIX operating system and

has high-resolution graphics. The current software is limited, but icons and

a mouse are used. I have spoken with sales representatives of Masscomp and

seen the Graphics Cluster workstation. This product definitely has potential

and further evaluation is needed.

Xerox is the orginator of advanced workstations that use icons. Two

products are potential starting points for the CWS, the Xerox 8010 "Star", and

Xerox 1108. These two machines are very powerful and sophisticated. The 8010

is priced at about $14,000 and meets the reqirements for an advanced office

automation environment, including software. The 1108, priced at about $26,000

is an advanced artificial intelligence (AI) machine. A machine that combines

369

18

the capabilities of these two machines (with technological updates) may meet

the requirements for CWS better than any other system reviewed. Xerox is in a

position to provide many powerful AI and software development tools if they

aid this project to develop CWS.

Systems produced by PERQ, Teletype Corporation Hewlett-Packard (H-P 9000)

and Santa Barbara Development Labs should also be reviewed and evaluated.

ANALYSIS OF SUBSYSTEMS

1. Large screens. The projection TV technology is improving and many

vendors have products. The projection systems are still large and bulky, but

miniaturization is occuring. Flat screens may fill the need for large display

screens. Costs will run from $2000-$20,000.

2. Laser disk storage. Matsushita Electrical Industrial Co., Ltd. has

announced an erasable optical disk. The disk has a capacity of about 1,000

Mbytes. The systems should be available in 1985 for about $35,000.

3. Voice synthesis and recognition. Software and hardware advances are

occuring rapidly. Texas Intrustrments will soon be releasing an advanced

system.

4. Bubble memory storage. The technology is available for field units and

it will be improved despite the exit of some vendors from this product area.

370

19

5. Field unit. Engineering work and technological developments are

needed, but a unit can be available in 1986-87. A separate project will be

needed to develop this through an OEM, etc.,

6. Plotter. Many plotters are currently available and speeds will

increase.

7. Video imaging input camera. Some large input centers will be needed to

create laser disks and route images to workstations. Also, some hand-held

units will be needed. A number of systems are currdntly available, including

systems from Digithurst, Micron Technology and AUDRE, Inc.

8. Laser printer. Xerox and Quality Micro Systems and other vendors have

laser printers. Speeds should be in excess of 120 pages per minute by 1985.

9. 25" diagonal display. TEK has a 25" diagonal display with 4096 x

1096 points addressable, refresh 537 m/s. These displays should fall in price

in the next 2 years.

10. Thumb-print recognition unit. NSA will probably need to do R&D to

create this product.

11. Keyboard for non-typists. Prototypes need to be built for field

testing. Cost for development and testing of approximately $500,000.

371

20

12. Software. Both the Apple and Xerox systems have important software

components for CWS. Data base management systems can provide a starting point

for other capabilities. A sophisticated software development environment will

be necessary to keep costs down and both Apple and Xerox are able to make

these environments available for this type of project. On the Xerox 1108

InterLisp-D, Smalltalk and Loops are powerful tools for developing thu expert

systems capabilities needed in CWS. Many vendors will be developing software

for UNIX, Apple Lisa (Pascal), and Xerox environments. Portability of

software should not be a major problem. Licensing arrangements will need to

be negotiated early in the project.

Five-Year Forecast

The above 2 sections clearly indicate the technology for CWS will be

available. Also, market factors indicate that the costs of hardware and

software will be affordable. Briefly, if we examine Xerox, Apple and

Masscomp's competitive positions we note that each company has many incentives

to advance development of executive workstations.

First, Xerox is now heavily dependent on paper copier technology for sales

and profits, but office automation and laser printers are making that

technology obsolete. The Xerox AIS and laser printers are technologically

state-of-the-art and it is likely management will recognize the threats and

opportunities and move cash and other resources from copiers to marketing and

developing executive workstations.

372

21

Second, Apple is promoting Lisa as a machine that is unique and far

superior to other personal computers. They need to push and develop the

technology to ensure corporate survial.

Finally, Masscomp has all of the advantages of a new company in a

high-tech area: fast decision making, development, and enhancements. And all

of the problems of establishing a reputation and competing with Apple and

Xerox for the large potential market of executive workstations.

I expect a very competitive business environment for executive

workstations with bold, efficient, imaginative management teams winning large

initial market shares. IBM will likely enter the market within 2 years dnd

the initial innovators will need to be well-established prior to that change.

WWMCCS will benefit from this business environment because many development

costs will be spread-out over business users.

Suggested Project Plan

Designing and developing a Commander's Workstation will not be an easy

task . Management of a work group of 20 - 50 people, at various locations

around the U.S. will be crucial to success. Finding "bright" graduate

students will be necessary to hold down costs. A systematic plan and design

methodology are indispensible. The experience of and advice researchers in

the Decision Support Systems (cf., Sprague and Carlson, 1982; Bonczek,

Hoisapple and Whinston, 1981) and Expert Systems (Hayes-Roth, 1983); also work

by Charniak, McDermott, Pazzani, Schank areas will be invaluable in managing

the CWS project and designing and developing new tools. Table present a plan

and cost estimates.

373

22

Phases I and II in the plan (Table 1) could overlap in time to some

extent. The activities under each phase are however interdependent and

coordination is necessary. I do not believe that CWS can be developed

successfully without the descriptive field studies in Phase I and extensive

involvement of military personnel in all phases.

The initial commitment to the project must be from the very highest levels

in DoD. These officer who make the commitment and their successors need to be

directly involved in monitoring the project and they need to try early

prototypes of CWS.

374

23

TABLE 1

ANALYSIS OF DEVELOPMENT ACTIVITIES, SCHEDULE AND COSTS

ACTIVITIES LABOR START L, T, H COSTS*

PHASE I: Preliminary Study $ 457,500

1. Prepare Detailed Project 60 pd 1/1/84 30,000
Plan

2. Establish project
advisory and evaluation
group - 6 years duration 360 pd 1/1/84 200,000

3. Field studies describing
commander activities 150 pd 3/1/84 200,000

4. Prepare additional
scenarios 40 pd 6/1/84 20,000

5. Assess Phase I, revise
Phase II plans 15 pd 7/1/84 7,500

PHASE II: Evaluation and Design $ 452,000

1. Purchase and evaluate current

hardware and software that has
some of needed capabilities 180 pd 8/1/84 370,000

2. Design new software
capabilities, prepare screens,
flowcharts 1 py 8/1/84 60,000

3. Evaluate designs 30 pd 11/1/84 15,000

4. Revise plans-Phase III 15 pd 12/1/84 7,500

PHASE III: Prototyping $3,365,000

1. Develop 10 prototypes of
hardware systems using
1984 technology 100 pd 1/1/85 1,700,000

2. Develop software prototypes
for various command
situations and tasks 20 py 1/1/85 1,200,000

3. User testing of 250 pd 6/1/85 200,000

prototypes

4. Refine prototypes 3 py 9/1/85 250,000

5. Evaluation of Phase III,

revise Phase IV plans 30 pd 12/1/85 15,000

375

24

TABLE 1 (CON'T)

ANALYSIS OF DEVELOPMENT ACTIVITIES, SCHEDULE AND COSTS

ACTIVITIES LABOR START L, T, H COSTS*

PHASE IV: Field Testing $7,440,000

1. Develop actual hardware
prototypes for various

command situations 600 pd 1/1/86 1,400,000

2. Final software development
and integration with external
systems, networks, etc. 35 py 4/1/86 3,000,000

3. Final debugging, documentation,
evaluation, etc. 35 py 10/1/86 3,000,000

4. Evaluation of Phase IV 45 pd 4/1/87 40,000

PHASE V: System Implementation $2.25 billion

1. Competitive bidding IbO pd 5/1/87 100,000

2. Purchase 60,000-100,000
systems and needed optional
equipment 8/1/87 1.5 billion

3. Systems installation 10/1/87 500 million

4. User and technician training 1/1/87 250 million

pd - person days

py - person years

L, T, H total cost estimates includes hardware, travel and direct labor,

but it does not include overhead which is estimated at 50% of the L, T, H cost
figure. In my cost estimates, I am assuming some graduate students and
post-doctoral researchers will be working on projects. Their time is not
reflected in labor estimates, but it is included in the cost estimates. The
costs of military personnel for their participation in all phases of the
project are not estimated. Cost estimates for this project are in constant
1983 dollars. Cost and times indicated are based on a management system which
minimizes bureaucratic delays. It may be possible to begin the project prior
to 1/1/84. Also, adding personnel and greater reliance on high priced
specialists may reduce project times, but increase costs.

376

25

Conclusions

In this paper I have attempted to provide a concrete image of a

Commander's Workstation (CWS) and indicate its potential to improve military

effectiveness and efficiency, especially in the realm of command,

communications and control. In a recent paper (Power, 1983), I explored the

impact of information management on organizations. Many of the issues raised

in that paper are relevant in evaluating CWS (the paper is in Appendix II).

The analysis of technical requirements and current products indicates that

it is feasible and practical to develop and have operational Commander's

Workstations in approximately 60,000 command.offices by January 1, 1989. The

cost of hardware, software training and R&D should be approximately $2 billion

dollars (in current dollars). This amount initially seems very high, but

given that when CWS is operational it can improve our military effectiveness

and potentially reduce clerical and staff costs by 25% per year (cf.,

Friedricks and Shaff, 1983), the product can not be dismissed as a luxury.

Also, the long-standing Soviet interest in computerized command, communication

and control systems raises the specter that they will exploit Western

technological developments in this area before U.S. defense planners and

politicians recognize the military advantage that has been lost.

377

26

REFERENCES

Bidwell, Shelford, World War 3, Prentice-Hall, Inc., Englewood Cliffs,

N.J., 1978

Bonczek, Robert H., Holsapple, Clyde W., and Whinston, Andrew B.,

Foundations of Decision Support Systems, Academic Press, Inc., New

York, 1981.

Druzhinin, V.V. and Kontorov, D.S., Concept, Algorithm, Decision

(A Soviet View), Superintendent of Documents, U.S. Government Printing

Office, Washington, D.C., 1972.

Friedrichs, Guenter and Schaff, Adam, Micro-Eiectronics and Society,

Mentor Books, 1983.

Hayes-Roth, F. Building Expert Systems. 1983.

Pazzani, Michael J., "Interactive Script Instantiation", Proceedings of

The National Conference on Artificial Intelligence, The American

Association for Artifical Intelligence, 1983.

Power, D. J., "The Inpact of Information Management on the Organization:

Two Scenarios. MIS Quarterly, September 1983.

Sprague Jr., Ralph H. and Carlson, Eric D., Building Effective Decision

Support Systems, Prentice-Hall Inc., Englewood Cliffs, N.J., 1982.

Thierauf, Robert J., Systems Analysis and Design of Real-Time Management

Information Systems, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

Thierauf, Robert J., Decision Support Systems for Planning and Control,

Prentice-Hall Inc., Englewood Cliffs, N.J., 1983

Williams, F., The Communications Revolution, (rev Ed.) Mentor Books,

New York, 1983.

378

APPENDIX I

Druzhinin, V. V., Kontorov, D. S.
Concept, Algorithm, Decision (A Soviet View)
Superintendent of Documents
U. S. Government Printing Office
Washington, D. C., 20402
1 972

Chapter 14. Automation Complex

I /b,~.~./j> A I ' ,/ ' fit,l awl '110 i 111 .w 't- ift , a a.

C /) I ,~l/ ,- I R, Iuo tt,/I- itb -f/ I itc t l t,' I' , ' 1

1.Ottlitie of Tefchtnology

\611 fill, (IitIcr ICNctliedCt I'cink. (cr-uii IlIcti('ttN 111b\ NeCtcl t he

kilttttt cN'LIrCif11 til iiLiN \%ill he ,iitcicdl. ind ncw tmictiin %%ill

Ct~'~ We ~ t ic ccxfcii ill life IIC If lthiite i lc IItS ..- ttd ()Ill\

111111 IIIIN p ft i ' \cA ll II0 \ I . exiuti me I li t e htltn1 UITattd k " I 'k.

IIIiI II I I t t'I .I ii l I %C N ,I :I d Ie! o , cA c N.WI It lIc c t I . ; keI c 11 11 it!

ko Itt iiclilhl Ic tellc .11)(1 i'ictit 'INo lIc .h .iiil I'iit I mk n,'nn t I I'n

ol h c11i lm it de:NI .Itt11 tuLtIierl,tkc htil fmtIItawal t Cm l he I h:ullit ownI

It ::11;1 tl' fl N\ S itd itlrtcl ti',ol).1. ttil hI lie 1 ti lt tit he h co if

NClttt ti t lhffi oitu. iiNltl iiNtt niiei fl iill Ir'ilc \ Ct ilclil. (lilt iphotco."

37911 1 l ete.te CIAM (II-

1-2

dat tin combat capability, combat e Idne) O1Lnea-11Moi 1,1.1)1k It th
pers~onnel, and the combah.i pi li i anad psYch ih t I ca I eha. iICiI Ct (i
commanders directly subordinate ito him. SoneIc othde ILesion,01S for '.s ich

there are no data are directed it) subordinate troops anid tad! scto1N
for clarification. Formulation and description of the pleseisti :itd the
future missions of higher heasdquarters are dispkased Oni the irticati~rs
Then the commander may' become familiar with pre'.ionits events It' nc-
essary, the course of conibat actions in a ,icii rcitin can hie rec.in-
structed on the sercen (nil conlveienit timec scaile Prti'.Ckl, hilt I'illi
p1l~li.iet dtleisioiis, .11'. littekI I IsI lihis iii t1i'llitlis , Id III l~ihi
Zillion with current combat ordeis aind iilstruetii' Itiictje iild oii'ld
with subordinate commanders oft various ranks and ne100hboline2 uitsi
(automatic communication and data displas'. are used hes e)

The next step is to analyze the theater of ilitar\ opeiatfons (lei -

rain). Phototgraphs of various battle areas and the sit iildin Ill! etolsM
arc displayed by stercoscrcen Bv changing the scale and oehitnn.
the conmmiander can acquire the most in ftoirimat ive ictpi Cciiit itn I if t lie
data, which are simultaneously supplemented with divital daita and te xt
The commander and hlis aidecs antas-ic tile tell ill. wceitliki sittiatitili

geophysica etind itions., using hi~ghly nflsiiliatis L lilells il id ictiol lic
asks qLICStiOhIS and receives ans\%es [he ntiii-t Ili til II. icic
the cotinindci\ attention to details which tihc think ait. IMPO1 tlnlt

1 hie 11111111i01 assigned to tile ltt ip' is stittwli till 1i l' tt sICIVOifl tI)IC

tions of the terrain.
This phase is concluded by posine' a1 11in1111i tit kilmislltli.lie Ow ssei

to which require a computer comple.v I hesc tjtivstitn, Ils isicilk Is Ct iri
possible variations of conhat act it is. ii-L- sties. prkep:1alil\ II. lll -ilesalt
their organiza tion. The purpolse is, to Concentrlate iil thoste L IlIclSll 0111,11net
arose in the comimandcr\s mind as ai result tit Ilis iiiiat: iliieslll
Somec of the points are specifie Ii eh.ir:irer preCp;ime iIllhenIt I1Cal
data. evaluate the etfectiveness (if eiiaiil ille;asties aId leclions 0111li.1
points; ire miore general prtipt: sotlioils fir prtliiis :hid situ)
ploblells. Iirecisi tile situiatloi. evlute the OW ell' C1 W in1tentWl Ii ,I)
tlke ittisi cncra I polints must h1C distiniel'. Ioiliiilitit \Nitu spt-lli.
Ililitailln . Ill ,i LIt~ililative s(1Itte iln it \osit s111..'ti iiSn

limos itt a 14i1trosl Iiiiiilictt plollenl. .6h'i a Iiicil .tii1d 11l1 I1

tutu'. iclative toi certain faicto; there diliih litt be qiiestNnlus s1:tl ;IS
"What doeN thle lent\, intend to do. INstead. askI "Wit 1s tile pI toil

bility that the enemyi \%ill attack at sectoir A..\ 'it diin thelet 2d\ts
Uhe jaoswevr may Ie approstiiatl ais iboliss s"For ile nesxt 111v. h
enems nmay concentrate suich and suich forces inl sector V thOic 1,cn\,i-
Ile-s of attack is, suich aund such, thek pitihabilits ti attack, Is siiehi .iltd 11i11

I ivingti rniliated the (question1s and des1itmated~k 111 ttIiic 11i:1 Il \\Jlits
lie iht 11L. i mhll~lie n' i hi, fti s px fI' onl theC spol 1;11i61.l1i1

380

/;Ii I n i l i t Il si lt i i n I this o.t fie lte oper ;itioii lte ;iilfItIt:I tIC
s\ sills tit tihl ~iItittC ItIitsI art e .

III ilh, le.\t step. ti0e coi iandcr returns to his commiand pttst % sith

tic% idci' uand imi prssions. and begins to make decision,,. But first he
liiils tO) 11111 dISisss tile ails,%es to (icstiofls pieviiousls asked fini-

eludIg nie% q~uestions [hmi t osc doirmgI his visit it) the troops). Ile makes
his initial itoritation decision relative it) the situiation. state of cnnit
troos and his sint n ops. O)il the basis of the in format inn dec isio

IML1h is pjissed on it) the subordinates) and mission. assigited fly the
sei i coinitiandtic. lit l'orrimlates his initial ideas of ant opetr;ItnAi
deei'ion1 Ilk he eti))l;Iiitlel brliels leadquaier on the overall objecitive(of
the tor hetmi ing ha ttlec anrd conducts discussion. Automat ed syvst ems mnak e
it litssile lo) tecruat a supervisory stafl from thie field. Fhe StwLecstiolls
arc ted into the computer for evaluiation and utilization by headquarters
and services for thle preparation tif their proposals.

The next step may be eharacterized as the discussion stage between
thfe commander, stafl and services. Background reports are prepared-,
the computer evaluates the proposals made during the "brainstorm."
analszcs them, Separates the constructive ideas and uses them for pre-
paring, alternatives of a decision. Kev' personnel formulate their own
ideasN Mid proposal, and letdJ thenm into the computer for subsequent
combinied analysis.

I hie motst important step is decision making. It may begin with an
examination of alternative decisions of the computer, which are dis-
played automatically for review. Each alternative is accompanied by a
list of Positive and negative features. and effectiveness evaluation. Dis-
cussion of the alternatives includes indication of weak spots, alteration
of limitations and(input of additional data into the program. The discus-
sion is conducited with the aid of highly informative means of inter-
action. and the D)RS records new proposals. As a result, some of thle
alternatives arc discarded, some are improved, and new alternatives are
developed. The discussion continues until only one alternative is left.
which is approved, or else the commander selects one of the alternatives.
alters and improves it (using the automated complex) until he considers
it to be the best one.

The decision is swrit on it headquarters for detailing. One aspect
of detailing consists in mathematical modeling of the forthcoming
battle as a whole, of its elements and individual logistical aspects. Model-
inig makes it possible to consider the influence of random and secondary
factors, thait escape the hield of view during general examination, and
also to evaluate the effectiveness of the designated measure.

We have examined one rather arbitrary version of the decision making
process. All other areas of technology should implement the principle
of allowing commanders and operators to spend the maximum time and
effort for creative work and direct command of troonps. Otherwise, it

381

1-4

is impossible to implement the directive of the Minister of Defense.
Marshal of the Soviet Union A. A. Grechko:

"The commanders and headquarters at all levels will creatively solve
problems of combat readiness, and concentrate their attention on the
most important and long-term trends on which depend our superiority

over a probable enemy. Their thoughts and efforts should he focused on
the search for new capabilities and alternatives for continuously increas-
ing the fighting power of the Armed Forces."'

2. The Consultant [Konsul'tant]

As seen from the material presented above, the information functions
of the commander and staff play a great role in decision making. The
collection, selection, systematization. interpretation and presentation of
data require a great deal of time and cffort. These are consultative func-
tions and they can be automated. An electronic consultant, depending
on the organizational level, may have dilTerent dimensions. Judging by
known foreign models, a rather large DRS can be housed in one rack
with a desk of ordinary dimensions and may encompass transcription
and operational reports. A useful DRS with low information capacity is
easily made portable (in a field pack). A small DRS. containing an
electronic scratch-pad memory, retrieval computer with display and push-
button programmed control, is quite adequate for current operational
wo-A and may become a reliable "constant companion of the commander
The small DRS should be connected periodically to a large one (directly
or through a communication channel). It is essential that the com-
mander personally (and not through delegated persons) usc his own
DRS, change programs and monitor the informatitnal completeness of
his consultant, treating it as a personal weapon, as a means of expanding
his own memory and sensory organs. Only in this case can it be effective.
Other key personnel may have their own small DRS of tile same design,
but with professionally oriented information.

DRS, like people, should interact with themselves and with people in
order to understand each other and continually renew their information
resources. DRS are easily made to "forget" (much easier than man)
unnecessary data. They readily receive new dila, hut continuous nmons-
ioring of this process is required.

A considerable advantage of the electronic consultant is the fact that
it can be entrusted without danger with random thoughts. instantaneous
ideas and considerations that appear promising; it does not dist'ri or
torget them, does not confuse the address and stores them until thcy
can be developed. used or discarded. The consultative function of the

1, A (;recLhLo. VNi sirt.:)e miri, i oni 'v' atfi A nmmini:,nai (On G i;ai dint! mtiP.

;inl the Buiding of Conmuni,, i %tocow. Vmocnidait 1(07 p ';9

382

1-5

aLutomated complex should emibraice all aspects of activity. Whcn we
speak of an automated complex we do not simply mean the DRS alone.
We are talking about the entire set of automated systems that support
military organizations. Ilonly the commander has a DRS there is little
to be gained: all isolated island o(automation is nothing more than
;;n cxotic entourage in the complex technical equipment of an armly.

The strcneth) of automnation lies in the complex, the systems approach,
and in interaction and mutual informnation. The memory of DRS is lim-
ited, retgarlcss of the level of microminiaturization. both technically and
in termns of content, since this memory is made up by the people who
usec the D)RS. Bunt life is always deeper and more complex than1 Can he
foreseen, especially by one man. In judging collective activity wve cestah-
lished that the development of complex problems requires a collegial
'4 ruCIOUre. [his, conclusion is ailso valid in relation to automated s%,stens:
a ssem oif comipatible and constanitly interacting DRS is very lffective.

I lie consnultiiC funictions of tlie D)RS Should not be. limjited to ref-
CIrence 1111tiOitS. The computer of the DRS should be used for doing
c;I let tatii ins Selated 14 tlie display of information and evalIu at ion of
elfctliveness. [1hle volume of operations which can be carried out in this
reg~ardf by the rctrievat computer of a small DRS is low, but the
requirements here are correspondingly limited. The position of the elec-
tronic consultant in the decision making system is illustrated in Figure 72.
Here thc operators are released front reference work and calculations.
this increases their creative capab'ities.

II

A it

4 -

Fivure 72. Diagram of an electronic consuttant: I-reception. processing.
and presentation of data on the enemy and operational conditions: A-
reconnaissance operators: 2-reception, processing, and presentation of
data on friendty forces; 6--operators: 3-dispay of combined information
on the situation; C-situation anatysis and preparation of atternative deci
sions operator: 4-effectiveness anatyzers and comparison of alternatives.
K-commander.

383

AD-A142 570 WIS IMPLEMENTATION STUDY REPORT VOLUME 3 BACKGROUND
NFORMATIONU) INSTITUTE FOR DEFENSE ANALYSES 5

ALEXANDRIAVA TH PROBERT 01OCT 83 IDA-D51 VOL-3

UNLSSE E E EAHQ8 -234h E E E E E EE008 /G1/2 NL

11111I .0 t 2 2
111112.

1111 111 1.8
1111IL25~ 11- ii

MiCp Htkw iL ; MAI ON IELS HK

1-6

TIhis% plan is based on the utilization of automatic data collection and
dispilay systems by operators. Interaction between the operators is based

oil evaluation and inmprovement of tlic decision alternativcs dcvvloped by
thecni. [lfie mnain operaional functtion of the compljuter is to cvaluate the
elfectiveness of thc alternatives. It is assumed that reconnaissance data
and data about our troops will be processed by diiIc rent operators. I lhe
combined information ahout the situation is formed on the bai~s ofl da
selected and appropriately processed by the operators and the contputcr
]IbIs info rmationi is used by the operator who prepares ileetsii1 ti ltC nA-
tives. '[he commander may not only correct the decision alternatives.
hut also teed into the computer other altertiativcN which w ill be cvalu-
ated. Thus the DRS not only Lives information, but also develops nicw%
information (estimates).

It is often necessary in military practice to evaluate many alternatives.
each of which may be describcd in sufficient detail, but in vicw of the
very- detail of description it is neccessary to resort to unwieldy calculations
in order to arrive at an evaluation. Such a "rash of alternatives," when
-alternative after alternative was proposed .. and after heated discussion
was thrown out,"' is described by Marshal of the Soviet I nion A A.
Grcchko. During the Great Patriotic War, one could not dectermnine
whether or not various alternatives wereL ''unrealistic, both tront a iiii-
tarv, theoretical, as well as a practical. point of e.* I here-k \%k I 111

emoioeb calcuilations thmi could he done11 onily h% ti[liliils itte11 nis .1ii0
they% Were nlot Lood Cnoui2h for inakinue tlclnitivc comielmiiotis It tooka
great deal ol time, effort and valualble talent1 onl the part of liuI rank ing
nitiliar chitck to arrive ait such contelusions. *1 fe electronic coitsiilt;iitt

l ouR' eliminates these worries, but just as important. it l'idsthe
foundation for thoroueh examination of plants of action. eail situla

tio n analyvsis, determi nat ion of obstacles and ways of ove rconmin" themi.

3. The Assistant [Pomoshchnik)

[he electronic consultant does not perform decision prepui';iiou tune-
tions, let alone decision makine functions. InI order ito help the corn-
mander and his stall in the performance of these Ititittions. it is nrcecssal
to develop a compuiter section and meain,, of interatctionm het\%cen thle
automated complex and the corresponding control links. Ifihen the elec-
tronic assistant will be capable oif independently working out proposals
and justifying them. The decision to adopt or not to adopt these pro-
posals is the responsibility of the commander or other key. personnel.
Proposals may pertain primarily to information decisions. Control of the
parameters of the infoirmatioin decisain prepa ramt ii 1)r p Wri ii Iinpu Potf

A A, (irecliku. Jiis, z14 A, 111t.1111L 10th OW s~,i
5
io~ i'Ci/t,

167. p. 242.

384

1-7

\'%Ci!'hl o wilikJtL11 h(it %alioll, ',q l.c, l ilotll.N o i f llallorn, li6ltr1.111ois, tIC I

is the responsibility of ile operator, hut all data processing and evaltia-
tion of the rcliabilit\ of dcciioi alternatives are entrusted to the clec-
tronic assistata nl. IProl,,als in also pertain to organizalional and ope ra-
tiOllal dc.isiOnlS, bill we May 'splak here only of certain fragments., and
not of complete decision altcriiativcs. The altcrnatives of operational
Mid ote;llli,:iial dcisiolls Oas %%cll as the makill of iinliliathon
decisions w ith consideration (f the computer alternatives and their
julilicatlioi,,) ire developed I the opicrators. "fhe efcclicncs cvalua-
tion and optimization are performed by the automatcd complx.

The pro wanis and data of the "assistant," to a grcater extent than of
the "consultant," are individualizcd and specialized in accordance with
the personal features of key personnel, character of the groups, and
general arrangements made within a given group. The "assistant" requires
more continuous combat evaluation, supplementing of programs. revision
of old data, and continuous direct interaction. Cooperation between peo-
pie and machines, just as bctween people at headquarters, is essential.

The development of automation is aimed at the reassignment of in-
formation, computation and evaluation problems to computers. If an
electronic assistant is available, the commander and the operators may
direct almost all of their efforts into the creative channel since they have
all the necessary data for this purpose and are not distracted by second-
ary problems.

The position of the electronic assistant in the decision preparation
scheme is illustrated in Figure 73. The electronic assistant is assigned
additional functions of working out information decisions and optimi-
zation. The aIterliatives of operational and organizational decisions are
prepared by the operators. They control the actions of the electronic
systems and can actively intervene in their work; the extent and the
result of this intervention are recorded and are made known to the com-
iiandcr in order that he can know exactly what aspects of the situation
were contributed by the operators. Through electronic systems, the com-
nmiader may inlhence the work of the operators, suggest ideas to them
and cooperate with them in any project. Reliability evaluation, along
with clectivcncss evaluation, is not the concluding, but an intermediate
result of the work, the guiding factor and stimulus for improvement of
the dccisi nn. I'lic funetionala structtre oIf combat cvaluation is cunlin it-
Otis here, i.e.. the operators theoretically can work without the aid of the
computer (if they have the know-how). But the advisability of an
aclionI. then reliability cvailition or etlectivness evaltuation will indicate
information or operator II proposes an infeasible or irrational alternative
actions, then reliability evaluation or cliectivencss evaluation will indicate
this. ('oiitrol is not ahsolwc; not all errors are detected sinice the pro ' vran

ndnes lot i;,Irailtee covcnac. of all (lccisNi ,ls %%hich nill is capiahlc of

thinking ill. lBut continuous improvement of the programs should mini-

385

1-8

mize such cases. In this regard creative thought should be developed in
consideration not only of the features and characteristics of subordinate
key personnel and groups (to which we are all accustomed), but also in
consideration of the features of the electronic assistant. The utilization of
thc electronic assistant does not merely simplify and facilitate work, but
also enriches it with new qualities and possibilities. Alternative decisions
'ire developed 6V people (except for information decisions, whcrc this is
not nmandaitory), but their evaluation (and consequlently their quantitative
justification) and the improvemntl th1at ean i e achieved n Ihin the :11c
work of the logic employed, are entrusted to the computer. I he , stcmn
Cannot operaIte independently (without operators); its functional ,trilc-
ture is fragmented.

It should be recalled that an automated complex embraces not one
command post, but rather a System of interconnected command posts
in this regard, the structure illustrated in Figure 73 should be relaited
to other analogous structures. An informational connection is required
here, and not an operational one: compared with the "consul tan t," the
"assistant" should have not only larger computers, hut also permanent
line,, of communication with the corresponding transmission caipacity
and high reliahilit y. This does not mecan that it is useless or impossible

3 4,

1, rre 73 Diafrrarn of an electronic a-sistnt I -ii~ion my 2 hvi+

'runt of informnational cdecicion on o rrrv 1 -(it.i mi! ft-i'Mv 1- ,
developmenort of an informnationiat decisiriri ghotil trwnrhy fov', ';--Optflmn
.'ation. 6--presentation of data: 7.--riaritlity u'varlrrtin P- off-tivoei

--valogitrui A, B-operators, K-corrrianirtr

386

1-9

to automate only one or at few command posts (and not all at oncce).
I lowcvcr. the fuill ceet can be achieved only through a computer comn-

l\k l1L;III-Se %ke ire co nceriiel 11ot oMNi and no(SO Much with the
coliveniliCe lC 1 operlitioii a ;St ili th1C quantitative evaluation of all idea
;iiid thet essnceIk (If al deeiSii i this cain yield thle vreatest benefit if the

cItio I doll, In ll itec11eec lIiikN because it is imipossiblle toI

perform the entire volume of work in one (even higher) link. I he
loiwer-level liinks of tile control symten cani he cquipped later with Sys-
temns that convert the -consultants" into -assistants"; the reequipping
process may' take a long~ time. But after it is completed the "assistant"
oif the higher-level link may he used in the entire system of inter-
connected commnand posts T his is desirable since it enriches computer
pri (erams afld encotirages intel action. The automnated complex is con-
slt meted by the hierarchical princile. and all the operational information
circulates inl this structure. I his ensures the pireservation and total utili-
zationl of the dataI. 'Ihe st ructure should he hi'hlk reliable and viable.

oinhininu the -consult ant" and -assistanit" in one complex icivcs the
opci tiols tItIlim, lor clear thinkingu ilttr having requested information

and iisi lojlet thek C0ouipiiieiS stitli %%ork.

.1 li lect :1.011L assistant Lgises complete analyses and accurate ev~ilu-

Ariafx 'IS 01ist he eSpeCIall Jet iled and thorough when new forms
Il'll0 I ss ieu %te;ipiwlis aedephwedt uinder

C1oIidiiioiis \Iit c\ilawon ill onill already-available Alternatives Is nlot
niUMh li IICC it is, tircessor to llnd %sa pots. and it) aid ill thle de-

tc rilliualtioin It the dirctions of future creative search. Analyzing the
Novorossivsk IfTLeNive operation durinig the Great Patriotic War. Mar-
shal of the Soviet U~nion A. A. Grechko emphasizes the joint ground and
naval operations. Trhis operation may be regarded ats a complex situa-
tion. I lere is how A. A. (Irechko describes this situation:

*'Ilailks to thle accurate artillery fire, it was possible to destroy the
enemny's ceinccring, fortifications. Powerful artillery bombardment made
it possi1)le to laud forces in the port of Novorossiysk quickly and with-
out t'reat losses.

"ihe intellig'ent combination oif the elements of surprise (with respect
i imriie, !oe.Itioii and exiteut of !lhe front of the landing forces) and the

illicant im it t h it t e if a new met hod of mivedpoyeto
iorlieiocs aigii lit eoIustal inlstaillat inns amid fortificalt is Stuinned tle
ellen',. scatteredI his forces andl prevented him from quickly org:inizing
a Stiont. eouuitcraictionl at all pointis.

Ilie Niiiriissiysk oftcensive operation had scveral important features.
rli. thle ilseisiiin of thle forces of thle I 8th army of Tsemeskaya Blay.
limited access roads and directions, and the small areas of the initial
regions dictated the choice of the direct ions of thie main and Supporting

387

I-10

strikes. Thcse same circumstances inlluence.d the composition of forces
and equipment required for carrying out the operation."' The Novo-
rossiysk operation verified the fact that all branches of services may be
used in moderately rugged mountains and large cities.

No less characteristic in this regard was thc activity of the coin-
manders of the individual groups that carried out the combined opera-
tional mission, but which were located in tactical isolation. rhe leader-
ship of such groups required the ultimate utilization of creative ahilities.
Analyzing a similar complex situation, Marshal of the Soviet Union
A. A. Grechko wrote: " . . The army commander (he is speaking of
the actions of the 56(h Army in 19J43-V. 1). and 0). K.). on 17 Sep-
temhcr ordered the troops, pursuing tile retreating enemny, to orgainize
attack groups in the main directions. Their mission included: penetrate
the enemy's defense it his intermediate positions and hy wedging into the
rear, cut the enemy's escape route -and destroy him ,nit by unit. "The army
commander, taking advantage of thle fact that the enemy did not have

continuous front, ordered mobile detachments and machine gun groups

atig pnicin he nem's efeseandpavngthe way for the advance

In situations of this type the electronic assistant may be an indis-
1,ensablc Ilicans of creative interaction afllonL' commanders and of opera-
tional cooperation among them under conditions of an uncertain situa-
tion, dispersal and surprise,

4. The Comnrade-In-Arms [Soratnik]

The electronic asststant is not capable (if iridcpendentl%1 proposing (let
alone making) operational and organizational decisions. F7i'ure 74
shows an automated complex which performs the entire sequence of
decision preparation decision makine functions under the continuious con-
trol and with the participation of thle operators who can use the coin-
puter results in any stage. feed in new idis or1 corretions, hutl who wre
not required ito participate inl (fie develoiusent it'4 the compntpel dccsi i.

Thle dialeran shows three chainels two resolvingQ and one teachbing~
One of the resolving channels is anl automatic compuiter chaninel. and the
othei is ai "heuristic" operator channel. 'rhe computer channel analxies
the input information and infornmation decisions. preparcs alternatives of
operational (ortganizational) decisions, select% criteria, evaluiates effective-
ness, and optimizes a decision.

The operator channel performs the very samne functions. Crossedl inter-

A A G.rechko, Wrh, Kwl iA in mk uof t he Cmam'i, 1. %S,:m V Scfl/

388

I-ll

2 2
S

,C II

S CCL

LiL

Figure 74. Diagram of an electronic cOmrade-in-arms: 1-input data; 2-prepa-
ration of informational decision; 3-preparation of alternatives of operational
(organizational) decisions; 4-evaluation of effectiveness; 5--display of de-
(.sioii 6-oritriander; 7-preparation of problem: 8-preparation of .n
put data. 9-ana!ysis of results; 10-recommendations on teaching

action is provided between the resolving channels: the output of each unit
is connected to the next unit, both of its own and of the next channel.
The operators can use all means of automation for consultation and
assistancc, but the decisions are worked out manually. The final decision
is made by the commander in consideration of. or oii the basis of. the
results produced by both channels: "'willful actions" in the computer
chatnel arc replaced 11Y "lthreshol aciot," comtparison of the iiiliput
values with the thresholds or of several values. The thresholds arc estab-
lished a head of lilte, but their values may change. depending on fthe
results of the operation of the operator channel. Consequently. the com-
puter channel carries out a willful action, formulated ahead of time or
during the operating process. The teaching channel is designed for build-
ing a thesaurus in the channels and for training them in problems of
increasing complexity. The teaching problems should consider new
achievements in military science, the requirements of practice and the
future. Teaching includes the formulation of such problems, analysis of
solutions, disclosure of deficiencies, development of instructions to the
combat tcam at the command post, and introduction of changes in pro-
gram. The operators of the second channel cannot be given this function:
performing the analogous function, they inevitably would insist on their
ideology and methodology, alter the computer channel to their liking and
eventually iransform it into their own pale copy. The special group. as-
signed to teach the system. will teach and improve itself, discover new.

389

1-12

often unexpected results, find the reasons for their appearance and think
up new problems.

The three-channel structure ensures the independence of formalized
(traditional), and intuitive (creative) methods of decision preparation
and teaching. The basic concept is to ensure, in any case, a timely work-
able decision, and if an original, creative decision is worked out, to con-
sider it also. The combined analysis of the decisions worked out by the
two channels can stimulate a more effective decision which the com-
mander proposes. The teaching group is very important. Its role consits
not only in the continuous correcting of programs and training oper-
ators, but also in the implementation of a certain operational ideology.
organization of improvement, cooperation and mutual stimulation of
the algorithmic and heuristic channels.

The main advantages of the system are mutual stimulation of the
channels and mutual control. The operator can propose the most im-
probable. decision without risk of consequence: everything is subjected
to at least a double check. Competition between tle channels and the
presence of different alternatives suggest new ideas to the operators. The
interaction of the channels reduces the decision preparation time. The
automated complex, embracing the entire system of command posts, d)cs
not have to contain electronic comrades-in-arms in all links. Perhaps at
a certain stage it will be necessary to have "consultants" in some (obvi-
ously low level) links of control, "assistants" in higher-level links, and
"comrades-in-arms" in the highest and most important links. The use of
"comrades-in-arms" in lower-level links at the present stage of develop-
ment of technology is fraught with enormous problems in the design,
adjustment and improvement of a multiconnected system that includes
people; a system which must operate in a stressful situation with an
acute shortage of time. These, however, are temporary problems.

With high information communication channels, the electronic com-
rade-in-arms may service (at least through the computer channel) lower-
level organizations, Therefore, the automated complex as a whole expands
its its comrade-in-arms functions to all organizations, in spite of the
fact that the technical equipment of the lower-level control links may
remain at a lower level for a long period of time. It is difficult to predict
the future competence of the electronic comradc-in-arms and hom reat
an influence it will have. It is clear, hovccr, thmr ;i \orkitbi . dccisl,,
is always ensured, and that the crc;i,. cncric, f Zh, ¢omi.inder ji!
his staff will be liberated to the m.silnum ,xtent from tch,,,.'ecil
functions. Teaching and self-tcachim, of the "comrade-in-:rm,." c.p:in-
sion of its thesaurus and pn'erami %%ill bc accompamied h ., ncr.d mi-
provement of means of automation and d&cihpm,-ni of ,, nt

390

APPENDIX II II-i

Impact of Information Management

The Impact of Most organizations do not have sophisticated
information systems despite optimistic predic-

Information tions about integrated management information
systems (MIS). relational databases, and the

Management on the growth of data administration [6, 18. 20) Many
predictions about the growth of informationOrganization: management may have been overly optimistic,

Two Scenarios but not necessarily wrong. Improved manage-
ment of organizational information may yet revolu-
tionize organizations. Through continuing
advances in hardwaie and software development.
the means are now available to implement
extremely sophisticated information systems

By: Daniel J. Power Therefore, managers must contemplate the con-
sequences of expanding information manage-
ment activities [22].

This article examines changes in organizational
decision making that may result from innovations
in information management. Information manage-
ment is used here as a broad term that includes
data management and data dissemination
activities in all parts of the organization. While the
terms information and data management are
sometimes used interchangeably, most users of
information management assume that data are
shared by different organizational units, that an
overall view of the organization's data needs
exists, that data are controlled and synchronized.
and that redundancy is minimized 15, 10, 14, 15,

Abstract 19. 211.

A concept called information management has been Organizational decision making includes important
discussed for many years by computer and manage- individual and group activities of problem iden-
ment scentists. hoeemntng this concept may revoku- tification, information search, evaluation/choice.
toniz, organizations and have a profound effect on and the implementation of actions (3, 17).
organizationael decision making. Since the technology Organizational decision making activities occur n
needed to implement sophisticated information systems
is now avaiable. managers need to address the poten" a structure of managerial roles and responsibilities
ht* impact of this innovation on thei organizations. This 1161. Following Anthony this structure can be

article presents two scenarios that may help managers conceptualized as having three primary levels -
to anticipate the effect of Information management on strategic, managerial, and operational 121.
organzationR decisin making.

Two alternative scenarios are presented to pro-
Keywords: information management, organization yoke both managers and researchers to more

design. decision making closely examine the consequences to organiza-
ACM Categories: H.4.0. J.1. K.6.1. K.7.1 tional decision making of attempts to better

manage information. Focusing on organizational
decision making is important because, as the
scenarios demonstrate, decision activities and

The wAthoI wishes to acknow ethep cowwfi of Babaa structures may be altered radically by changes inAmnnhhong, Anne Far. AIan Mewie. Judy Sohum, und WnAomiro A J ,e miei Jau Comin ,a information management. The scenarios present
twiijil wggeatio- *Awg an wo"M preeosMion snored contrasting views of how sophisticated informa-
v the Center for Iovtiocn. Unw rty of Mayld tion systems can be implemented. In Scenario 1,

MIS Quarterly/September 1983 13

391

11-2

W(i i sit llniklq 11,0 0tihht ali t lll irnibiquity about how database tchnolo(;v i i,.
tiiril tht-;i' n it IiAtwlillv ,Allofd is coitr ' flact r in information manaqPment will ,,/I'

10 i ill h)riIaii,:,i.lh r t ri' ' 1, ii ft a iristance
,

Fobinson sti(i(t sI. tl it l ia i
0 i i iili tf ir I.Ircfv III w;o inl or(lanizatiors sn so) itriairii: ttiat r' I

",1 1 l, , . f, , =t I, i ilbih 'l ll ,!-- Il, I h'l!'I 'In d st)'I. l l o lq V~lhl ,-) I h t IlI

(I{. f . . I f y~ I,'~ / . '< ' l t/ I t tI p I . e\ l]) Il 121I

ifi I r l oi tl I' I t I , Iorst l r at o ,hatI rO pll t i.t ? :)' I, ' I-
itll~lthlt I -llfllll IIH I Iel. dote jt*;d.!lI , f a , 'fII I

iit. jh 'i toward intoriali ri It. ., ,

hIl.. lit l i ly .111 IIiiriII(A hi as Itoward morst likely toward itformatin I I Ini irs.

cvrmrr 1 t because it iS riltl dId as a projected well Leavilt and Whislef long a(jo rrais.od

state ot the-aft description Thae* managers in that possibility that the introduction of inforniatii

situation rely heavily oal computer oriented tech technology would drastically reduce the numbe.

niques to manage information One must, of middle managers (131 Blumenthal 14
however, be cautious in concluding that the Dearder 171, and Ackolf I11 attacked what they

description in Scenario I is best in all situations called the exaggerated claims made by promoters
The Scenario I outcomes are probably desirable of management information systems Both ot

only in certain types of organizations. For exam- these factors, change in technology and
pie, a more centralized, integrated information managers' responses, remain difficult to evaluate
system may be feasible and effective when the and account for in a forecast The first factor sug
divisions of an organization have similar products gests an optimistic forecast, while the second
or services. suggests a pessimistic one.

Scenarios can also help managers evaluate the
benefits and costs of proposed information
innovations. They may as well provide longer lead

Using Scenarios to times for planning and for shifting physical and

Understand the Impact of human resources to alternative uses.

Information Management
State Scenarios "posit what the world or relevant The two information
context will be like a number of years from the management scenarios
present, without describing at the same time how
the world 'gets to be that way' Process The two scenarios take place in a hypothetical

scenarios, in contrast, specify the sequence or multi-division conglomerate. Although the

chain of events that lead up to a particular future scenarios deal with a profit-making organization,

state" 191. many parallels can be drawn with other
bureaucratic organizations 111 . In both scenanos

Both process issues and future states can be managers have the goal of implementing informa-
used to help analysts and managers deal with tion management. Controllable factors such as
details and dynamics that are otherwise easily resistance to change and the knowledge of users
avoided. Such scenarios can illuminate the are assumed to be facilitative rather than
interaction of multiple variables. they can present inhibiting. Each scenario moves from 1983 to
issues forcefully by simplifying the model of the 1989-1990 at which point a "snap-shot" of
organization or system. and they can aid in the organizational decision making activities is
consideration of alternative outcomes 112]. presented. In both scenarios, the different

implementations of information management can
Scenarios are useful because information be seen to have had a significant impact on
technology and managerial attitudes are changing organizational decision processes and
so rapidly that it is difficult to predict the direction structures 181.
and magnitude of changes an organizational deci-
sion processes and structures based on trends Four technological and administrative variables
One reason that such prediction is difficult is the related to information management are examined

14 MIS QuarterlyiSeptember 1983

392

11-3

Ilmipaict of /ti)flotiabon Maniot(efTiit

in the two scenarios power of the data staff and plaillned the ntelr fatioi of dt;it (,o,(.ithio

administrator (high low). sophistication and en ,ind storage
tralization of the database (hightlow). sophistica-
ton of data entry and output (high low). and
systems control (hightlow) Table 1 summarizes gathering and storage standards tor the ont.-

the assumptions about each of these varibles for C)pany I 1984 the ltla it 4(v .x.)tl

the two scenarios In many ways the two when duplication of data was t-v,iiiet ti

scenarios represent extreme, but plausible states actions were taken tu eliminate redundancy, At

for organizations in 1990 Such a focus can often approximately the same time the orgimizatio mcjr

present issues more forcefully and distinctly chased a new da1tabase manijteiert 0,zt.ii.

(DBMS) with pow m I ttiilational Gnarac te l i
Also the company gwratly Suppleirlint-d ,i hi, m

Scenario 1 ..toriloe ca[d..itl ,it t1It 'iritrAt COfntjiitm('f cei ltt-

In 1983 the XYZ Company, a conglomerate. Beginning in late 1984 the company addec more
began to reorganize and plan for the introduction mini and micro-computers and created a
of information management activities The first distributed processing network with a large cen-
step was the appointment of a data administrator. tralized memory capability In the next step most
The person selected for the job had control over data collection was put online Also, more
alt information resources of the company, e.g., automatic sensors and recording devices were
access to historical files, creation and control of used, especially for production and sales Finally.
new information; and most people at XYZ knew in the fifth step many decision tasks were
the administrator had a major role in making all routinized and programmed. Routine decision
company decisions. This individual assembled a making programs were developed to interface

Table 1. Summary of Two Scenarios:
Information Management Variables

Variable Ranges

Variables Scenario I Scenario 2

Data administrator A "strong" administrator at A "weak" administrator, cam-
executive VP level, with mittee coordination, many
separate budget. managers have DP budgets.

Database High level of control, Low level of control,
Management conceptual integration, data redundancy, little integration of

independence, e.g., relational data, many databases.
database.

Data Entry/Output Company wide procedures, A variety of procedures, some
-online and sensor entry, online and some paper forms
graphics, work-stations, requiring batch entry.
projection TV. emphasis on reports, much

staff intervention required.

System Control Central control and standards. Separate, autonomous
networking, data sharing in systems, no uniform
system. procedures, no data sharing in

computer system

MIS Quarter/ySeptember 1983 15

393

11-4

ir'U. , I I l , Mrrit,(, r f4 ,r tlt, r ifI, I

.vhthe OBM. Ais;; managers were trained to through the titles or summaries of the relevar'

i.e tho d;ita;ibas
, By 1989 the fifth step was items During the screening each member has !tr-

o (mplo,,'.d opportunity to stop and display and request mc,"

detailed information The information
A-, a result in 1989 the three member,; of the preselected, but the officers also often sear

rfhi'e ot the President (OP) of the company meet for. read. and discuss other materials aboir 'r,
,it kl' r. d i r t ;ior The Office of company's external environment it wi.,.i.

Ilis, Ptr.,it ii i(tldi 5 ttie pri;cihnt the vice assessment meetings They may spend as mi,
pir si i ert for iformatfiin mid financial analysis, as five hours per week reviewing informat;r
mid th vice president for products arid sources and discussing the changing environ
marketing The vice president for information and ment of the company
financial inalysis controls all information

resources of the corporation Following the status analysis and the analysis of
environmental information, OP members make an

At this weekly meeting the presidents usual pro- assessment of long-run trends that may create
cedure is to review all exceptions from the weekly threats or opportunities given the firm's strengths
status reports For example. production excep- and weaknesses. At monthly and quarterly
tlions are evaluated for divisions with production meetings assessment files are re-evaluated to

overruns or shortages greater than t00o of determine if an additional information search by

established targets The procedure for evaluating the planning staff should be conducted. Also at
weekly exceptions usually includes a quick the monthly and quarterly meetings the officors

.earch of the management database to see it any use decision aiding programs to selet 1at

rilu'v,t r i h . wire til -it II iII ox jiliatory gathering procedures, to develop decision rn,
-tort is foirun for aI dis(,repars'y the execuitive and to structure their decision makinq
' irI[,iiif v I. iI',I.Illy tl;i,lIf ('iii It,' d1iphluI 'ij' ri- iI

i Ih.. frlnit of th, iiinuterenmtv, rioom imnd the three Many other decision makers in XYZ also wi,- ,/,f,

Ohi .r,'. ,li:kiv ,('mi it fioi ir y Ilil rt;mit iriform;i pany databases For example division oft; l.r.

lviii Usually some follow ijp activities are store information and search the 1nteqratf-!

iiti(tiod fr)r exceptions ever f Itf ere is already databases to find out about new programs -
r'-l.v;iit i1oriiloi ii the iuiriiihirlllent database activities taking place in other divisions if maf.rr.i

h t;mi(i rd i rocedure., is to i ruurklt the division is authorized and cleared The division mana(:,u-

,0ft iur to iden;titfy any information in the database often use the information in databases as part o'
1, 4ioti to the excentton and to provide additional simulation and forecasting programs for prolm

iirm .niition That regi rest is tr;i nsmittd ising the tion marketing and personnel Also member-
of('Iihi; o iii t1ystiiii ti'f'ri.il 11h4 ufivisioi ultli((r their operating unit staff often access th.

rtmirii illy rtsponds very ,lquicKly with i short databases
tehariml memo noting documnti numbers or
ririrory li;ition identifiers, The memno is stored Plant and service managers use a database io,

*n i current messages file by division and topic the daily planning of schedules. evaluatinq

The division officer also is responsible for the absenteeism and tardiness problems and check

accuracy and completeness of information stored mg on inventories and orders For plant and

in local databases and the management database service managers. most of the clerical and intor-

All division exception reports are handled in this matron recording activities are handled

way automatically and recorded in a local database
that is linked to the management database For

Followin a review of exception reports, the three example, when time clocks directly record infor
exectiives usually do ;I smiri;h of external matron into a database. that information ,;

databases and Information in the manaqement immediately available to managers on an excep
database to (ienitiy any recetnt chanujus that tion basis to help enforce disciplinary policies or

might be relevant to the company In preparation to handle other discrepancies that may be noted

for these meetings detailed searches of external by management control computer programs
databases have already been conducted by the Many decisions of the plant and service managers
planning staff and that informatuon is in the are very routmilzed Programs provide exception

management database The officers quickly run reports, help in scheduling, and in handling inven-

16 MIS Quarterly September 1983

394

11-5

Impact of Inlormahon Management

tory management. Plant and service managers planning staff underline any potential exceptions
have significant time to actually observe activities. The staff prepares a list of status exceptions for
talk with employees, and check on maintenance the president who then tries to assess what each
crews. exception means, and requests more information

from division officers if the problem seems
Most of the accounting and finance activities are

serious The CEO also usually makes notes on
also routinized. Cost accountants and financial t he lis oep o sndin the notes ls

planners report to the vice president for informa- bac to theping staff, whe tack of

tion and financial analysis as well as to division back to the planning staffa who keep track of

managers. Many sales functions are automated, psil xetosi h lnigdtbs h
manaers May slesfuncion ar auomaed, planning staff also searches for trends and enters

but salespeople in divisions continue to service prsints commes io te lanning

customers and they occasionally enter orders. tae prior to the e s nt
database prior to the next weekly assessment

The president works closely with corporate
Scenario 2 specialists in finance, marketing personnel

In 1983 the XYZ Company began to plan for the operations, and information systems, and has

introduction of information management in the many contacts with group and division managers

organization. The first step was creation of an The planning staff is very active, but most of their

information management committee. This commit- work is involved in tabulating reports from the divi-

tee included technical people and division sions and keeping the planning database current

managers. All information projects were reviewed At the weekly assessment, the president likes to
by the committee. The division managers con- determine what is "going on in the world, taking
tinued to decide what resources would be used account of information in key newspapers and
for data processing projects and had to information received from a clipping service At
specifically propose each project. In 1983, the the weekly assessment the planning staff usually
committee published a project booklet and presents five or six folders of clippings The presi-
developed guidelines for uniform data collection dent scans these articles. sometimes assinc; ior

Then, this material was disseminated to all division more details or follow-up from the planrhnq <st
managers and systems designers and asking the piannino 1,1aft to keep trii.k A Af I

In late 1984. the company upgraded hardware potential threats to the company OU! I .ir

and software in some divisions Two advanced basis the tile ut piossrl Itir-trat .iu ;,; ,

DBMS with a hierarchical structure and a simple tunities lo the ccrnpany s, reviewea by t,!h'

query language were purchased Then, divisions and advisors on the olurming taft Tr,, (U .r

were permitted to create and revise databases least once ,i year and Luiually thr-,' r'

and some divisions chose to do so The corporate conversatihon it tti, Y.w s

planning staff also developed a planning database Information ri .t ,,ion .. ,iliep*, ., -,-

irlrq Micro i.orpulers in 1986 Also in 1 t.lit6 llt, iii *lilru-", rlfty Ii Iil. .r, .r.I.

t. il irilin stal went completely online loi dati but the CEO really does lot tiiv i-ti '
tilry and each staff member used a teriiinill lhil inloriliili At t- liVij,iiiii h i ,. .

iequlilarly In 1986. some division ranagers pur ,]Oi offiter his a.cces, to I dill I , it- ,t,,;'

(tibved sophisticated distributed processing th'y (o rnot iAl ive liri.: iii-,', i ti l
.4luiprnent ind ,iutomated some data collection sy';.hni E.li(, divi',ir ofticir tidii, .1 It,' ..

The next step was an attempt to provide unitorm nrid suppor t'itat tfhat (:,i o,i) ni(l .

mariagement reports Each division supplied rcUiests lot rt)urtS III i diy or it-, , '. 'i, -

riformation regularly to the central planning staff s 11 a rn)m iqi , use (iiun t. it it, .- .

F ndly the central planning staff developed frequently to crieck on tie ttus t ,;u, it,

._xception report programs in 1988 Some mantlernent control ptolai ., ,.
r

written to Identlry eUccC0tiOnS oSi;MJ lhV JAI
As a result, in 1989. the president (CEO) of XYZ but the diisemnitnaon of these proqr;. ,i .

Company scans weekly status reports from each -ions is limtetd P.r t ul the r e,n-, e r ti ,

daision The CEO tries to identify any excepton, ,tivion', havc it, ' til l,r t i tiitiri-,', ', I

V1,it JCCUrred during the week Members of tfhe i-, tiftiull lot i fti, ir iki ir J, .'Iri. ,ir, J I-

__,___ 395 Qi,'t O t 7

395

II-6

Impact of Information Management

a program that can easily be used by another for most of the plants and service centers the
division database is sufficient. Some of the databases

designed by XYZ's various divisions are more effi.
XYZ has a division manager sharing system" and cent and flexible than others The most effective
every month division managers contribute nf or. can be tailored to meet the needs of different
mation about activities in their division Some units within a given division and yet allow for the
managers store that information in a database sharing of information among different units
Then. if in the future they need more information,

they get on the phone and talk to the manager in The decision structure at all three management
the other division and request more details levels is still very traditional as it was in 1983

Also. most Qrganizational information is
At the operating level, the plant and service distributed by verbal and written media, rather
managers are somewhat involved in scheduling than computer systems.

and planning, but most of those activities are
handled by computer programs Problems with
the quality of the data (from nonstandard pro- Analysis of the scenarios
cedures) usually require that managers recheck
all the major decisions made by programs and In both scenarios, the implementation of an nfor
sometm--s. verity information used by the pro mation management system led to many changes
gr;ims Some of the operating units have better in XYZ (see Table 2) But the most dramatic
ritormation coilecion procedi'is than others changes developed in Scenario 1 Decision mak
since some units continue to use people to enter ing responsibilities and organizational design
data and others have data collected automatically were drastically altered. For example, a vice
by recording and sensing devices Employees in president for information and financial analysis
most units follow multiple data handling steps to joined the company's president and the vice
get the information into computer databases In president for production and marketing to create

each division the databases at the plant and an Office of the President Also. in Scenario 1.
service level are usually quite standardized. and strategic decision making was more systematic

Table 2. Summary of Possible Consequences

Scenario 1 Scenario 2

M r,, '-/sjimaliin. d morn c.ollatorative More information at the strategic level may
,I, , m.ikinio it ;ritoji(hevol slow decision making

lhfor(ilni-,;ifion of decision making Division officers make more operating
r-,i)OVit"ilities at all levels decisions

(Groitf,f ioritrol if stratogic level over Some division officers have greater control

operiting level over operating level

More programmed decision making Some programmed decision making at
delegated to computer operating level using databases.

Information sharing is facilitated Little sharing of information between
divisions.

Increased span of control is possible More staff people needed to process
because of the reduction of number of increased information.
decision makers and support staff

18 MIS Quarterly September 1983

~~~~~396 '-'...



rr-7

Impact of Information Management

and collaborative, and programmed decision mak- would not be as great. In addition, there might be
ing was much more prevalent at all levels of the opportunity costs and threats to organizational
organization than in Scenario 2. XYZ company sui. z' if other organizations realize Scenario 1
required fewer decision makers and fewer levels of outcomes and benefits
decision making in Scenario 1 than in Scenario 2.
In Scenario 2, a large addition was made to the What would be the benefits of Scenario 2? The

decision support staff at strategic, managerial, organization would gain any benefits of decen-

and operating levels. tralized decision making in a structured hierarchy
Managers would have more information and

In both scenarios, the organizational control possibly more control over operations The evolu-
system was altered, but in Scenario 1 the Office tionary nature of the changes and the slower

ot the President exercised more direct control pace of change would probably be easier for
over the division and operating level than in many organization members to accept Top

Scenario 2. The quality, timeliness, and amount of managers would not have to work with com-
information increased in both scenarios, but in puters, familiar media would be used to transmit
Scenario 1, XYZ company provided managers information. The organization may have a more
with numerous automated aids for information *human" climate Profits might be improved as a

retrieval, display, storage, and decision making. result.

What would be the costs of implementing the

information management system described in Summary and Conclusions
Scenario 1 ? Large direct costs for hardware and
software would be incurred. Because the task of The analysis of the costs and benefits does not

creating an integrated information system would clearly favor either scenario, and many managers

be novel, some waste would occur, e.g., some might conclude that they should position their

inappropriate equipment probably would be pur- organizations somewhere between these two

chased and programs would need to be revised Such an approach toward implementing intorma-

to incorporate new features. The indirect costs tion management may actually be worse than

might also be very high. Eventually, middle moving toward the extremes The organization

management and staff positions would be lost. might incur significantly higher costs without

Division officers might lose prestige and many of necessarily realizing the advantages of either

the training experiences they now have in decen- scenario. On the other hand, a middle course may

tralized organizations would not be possible give the organization the flexibility and experience

Much retraining of personnel at all levels would be needed in the 1 990s to move in the direction that

necessary. Some coercion and turnover of is ultimately proven to be most successful

employees would likely occur and the individuals Organizations with similar products and services

involved might be harmed. in their divisions may find greater benefits under
Scenario I since an integrated information

The benefits of Scenario 1 would be primarily management system would be easier to design
indirect, intangible, and difficult to document. and implement But a conglomerate in which
They could be derived from better and more managers at the strategic level avoid direct

timely information which would have great value in involvement in operations might be better off with
a turbulent environment. The group decision pro- a decentralized system like the one described in
cess and structured strategic planning in Scenario 2.
Scenario 1 may improve decisions and plans.
Overall operating costs might be lowered and pro- Thus, scenarios such as these do not lead to

fits increased. Some individuals both inside and clear cut solutions Rather they may serve to
outside the company would benefit, particularly identify and to refine issues that must be dealt
those associated with computerized information with for instance, is designation of a strong data
systems administrator the major factor influencing the out-

come in Scenario 1? Is the change to group deci-
The same variety of hardware and software costs sion making necessary or desrable9 What other
as those incurred under Scenario 1 would be scenarios are plausible? What is the most likely
expected for Scenario 2, but their magnitude one? The future will always be unknown, but

MIS Quarterly, September 1983 19

397



TI-8

Impact of Information Management

thinking about alternative futures and the issues ment in the 1980's." Harvard Business
that they raise may increase the likelihood that a Review, Volume 36. Number 6, November
desirable future will be realized December 1958, pp. 41-48.

[141 Lewis. C.J. "Understanding Database and
Data Base," Journal of Systems Manage-

References ment. Volume 28, Number 9, 1977,
pp. 36-42,

ill Ackoff. R L. "Management Misinfor- 1151 Martin, J Computer Data-Base Organiza-
mation Systems." Management Science. tion, Prentice Hall, Inc.. Englewood Cliffs
Volume 14, Number 4, 1967. New Jersey, 1977
pp B- 145.8-156. [161 Mintzberg, H. Fhe Structuring of Organita

(21 Anthony. R N Planning and Control tions, Prentice-HalI Inc., Englewood, New
Systems. A Framework for Analysis, Jersey. 1979.
Graduate School of Business Administra- 1171 Mintzberg, H., Raisinghani. D . and
tion, Harvard University, Boston. Theoret. A. "The Structure of Unstruc
Massachusetts, 1965. lured' Decision Processes," Administrative

131 Bass. B M Organizational Decision Making. Science Quarterly, Volume 21, Number 2
Richard 0 Irwin. Inc, Homewood, Illinois, June 1976. pp 246-275
1983 (181 Nolan, R.L. "Computer Data Bases The

14J Blumenthal. S C "Breaking the Chain of Future is Now," Harvard Business Review
Command," in Management Systems. Volume 51, Number 5, September
Schoderbeck, P. ed., John Wiley and October 1973, pp 98-114.
Sons, New York, New York, 1967, 1191 Reside, K.D. and Seiter, T.J "The
pp 102-107 Evolution of an Integrated Data Base"

151 Curtice. R M "Data Independence in Data Detamatlon. Volume 20. Number 9.
Base Systems," Datamation, Volume 21, September 1974, pp. 57-60
Number 4, April 1975. pp 65-71 [201 Robinson. S.L. "Computer Data Bases

16[ Davis, G B Management Information The Future is Tomorrow," Computer-
Systems Conceptual Foundations, Struc- world, Volume 12, Number 38, September
lure and Development. McGraw-Hill Book 1978a. pp. 31-32.
Company, New York, New York. 1974 121) Robinson, S.L. "'Future Shock'Seen Com-

[71 Dearden. J. "Myth of Real-Time ing in Data Base Use," Computerworld.
Management Information," Harvard Volume 12, Number 42, October 16.
Business Review, Volume 44, Number 3, 1978b, pp. 36. 38.
May-June 1966, pp 123-132 1221 Rockart, J.F., Ball, L., and Bullen, C V

[81 Ein-Dor, P and Segev, E "Organizational "Future Role of the Information Systems
Context and MIS Structure: Some Empirical Executive," MIS Quarterly, Special Issue
Evidence," MIS Quarterly, Volume 6. 1982, pp. 1-14.
Number 3, September 1982, pp 55-67

191 Hirschhorm, L 'Scenario Writing A
Developmental Approach,' American Plan- About the Author
ning Association Journal. Volume 46.
Number 2. April 1980, pp. 172-183. Daniel J. Power (Ph.D., University of Wisconsin-

[10) Huhn, G E "The Data Base in a Critical On- Madison) is an Assistant Professor of Manage-
Line Business Environment," Datamation, ment at the University of Maryland. Power is a
Volume 20, Number 9. September 1974, coordinator of the Strategy and Planning
pp 52-56. Research Group and he is affiNated with the

(111 Inbar, M Routine Decision Making: The Center for Innovation and the Center for Automa-
Future of Bureaucracy, Sage Publications, lion Research at the University of Maryland His
Beverly Hills, California, 1979 research interests Include corporate auquisition

112) Kahn, H. and Weiner, A J The Year 2000, decision processes, computerized management
Macmillan, New York, New York, 1967 decision aids. forecasting and planning tools, and

1131 Leavitt. H J and Whisler, T L "Manage- individual decision behavior.

20 MIS QuarterIyISeptember 1983

298



CLUSTER III PAPERS



SECURE MULTI-MEDIA TELECONFERENCING

A STUDY FOR

SOFTWARE ARCHITECTURE & ENGINEERING, INC.

Sigma Associates

September 15, 1983

399



SECURE MULTI-MEDIA CONFERENCING

OVERVIEW

Teleconferencing - two or more locations communicating via electronic

and/or image producing facilities - runs a spectrum from the simplest audio

teleconference to the function-rich interactive motion video systems.

Multi-media systems integrate voice, video, facsimile and computer-

interactive modes of communication. This study will focus on two forms of

teleconferencing, specifically that of audio teleconferencing and motion

interactive video teleconferencing.

Virtually all audio conferencing is done over voice grade (2700 Hz)

transmission facilities. Video conferencing, however, requires high

bandwidth (up to 6 Mhz). This study will focus on the equipment and systems

associated with these teleconferencing systems, will specify the

transmission requirements, but will fundamentally assume that those

required transmission facilities will be provided by DCA. The equipment

discussed is that which is basically considered to be off-the-shelf in the

mid term time period (1989).

For the purposes of this report, the discussions of audio

conferencing and motion video conferencing will be treated separately,

each with its own product description, functional requirements, and

operational capabilities.

401

kX=.D1NG paL MAKNT IJ



2

AUDIO CONFERENCING

Audio conferencing is nearly as old as the telephone and is today the

most widely used form of teleconferencing. Audio conferences account for

more than 90% of the conferences held via electronic media; anytime three

or more people at two or more locations confer over the telephone, an

audio conference is held. Even though the telephone was developed

basically as a two-party communications device, not intended for group

communications, individuals can still participate in an audio conference

through an ordinary telephone. More elaborate conferences involving

groups gathered in conference rooms or conferences between multiple

locations require specialized equipment considerably more complex than the

basic telephone.

This report will examine the full range of audio conferencing

equipment and services in general use today, including the very basic

three-party connections made over standard telephone instruments to the

more sophisticated multi-party multi-location conferences using state-of-

the-art equipment and specially designed conference facilities. For the

purposes of this report, the following categories of audio conferencing

apply:

0 Conference Call - Basic. This type of audio conference is made

among three or more parties using a standard telephone over the

Public Switched Network (PSN) using the conferencing capabilities

of the telephone instrument, PBX, Centrex, or telephone company

conference operator. No specialized equipment is required.

402



3

o Conference Call - Enhanced. This level of audio conference is

set up in precisely the same manner as the basic conference call

between two or more locations with the exception that

specialized equipment is used at the conference locations to

allow a "hands-free" operation or to permit more than one person

to participate in the conference at a given location. This

specialized equipment is nothing more than a microphone (or

multiple microphones) used for voice pickup and a loudspeaker to

amplify and broadcast the incoming speech.

o Group Conferencing. A conference held between two or more

locations, with at least one location being a conference room

designed to accommodate several conferees is termed a Group

Conference. Highly specialized equipment is required to

maintain audio quality; in addition, stringent design

considerations apply to the development of the conference room

to avoid or eliminate undesirable acoustical properties.

o Audio-Graphic Conference. This rapidly growing category of

audio conferencing involves the use of visual information to

enhance the audio conference. Electronic blackboards, facsimile

machines, and slow scan video units are used to transmit

graphics between conference locations. A highly advanced form

of audio-graphic conferencing is audio-graphic with database

augmentation, whereby data is actually manipulated before

transmission or projection. Data base augmentation provides a

means to play out "what-if" scenarios with the presentation

material.

403



4

Any of the above categories of audio conferencing can become a subset

of any other category. For example, a group audio conference with graphic

augmentation can involve participant locations using basic or enhanced

conference capabilities. All categories of audio conferencing, including

audio graphic with slow-scan video, can use standard voice grade facilities

on the Public Switched Network or can use private line facilities, either

switched or non-switched. The use of wider (than voice grade) bandwidth is

not only unnecessary, but also undesirable as the added frequency response

can over-emphasize the poor acoustical properties of most conference

facilities.

Examples of each category of audio conferencing cited in this section

are described following:

Conference Call - Basic

The most rudimentary form of teleconferencing is also the most widely

used due to its pure simplicity and ease of use. To initiate a basic

conference call, a user simply adds many conferees to the telephone

connection as is desired or technically possible through one of the

following methods:.

o Instrument conferences, where multiple lines can be accessed

from within the telephone set.

o System conference, where the telephone system (key, PBX, or

Centrex) sets up the conference on commands issued by the user

from the telephone set.

o Operator conference, where the telephone system or telephone

company sets up the conference.

404



5

Typically, a basic conference call is limited to between three and

six conferees depending on the capabilities of the particular system used

to set up the conference. Audio quality rapidly degrades beyond a six-

party conference due to distortion caused by signal attenuation noise

accumulation, and circuit imbalance. A basic conference call is further

limited in that only one person per telephone set location can participate

in the conference.

Conference Call - Enhanced

This improved form of audio conference adds microphones and

loudspeakers to the conference connection, thus allowing several persons

in the same general area as the conference equipment to participate in the

conference. The most common example of enhanced conference equipment is

the Bell 4A Speakerphone, although there are many similar units on the

market from a variety of manufacturers. In addition, many portable units

are available that can be easily carried to convenient sites, thereby

greatly increasing the utility of this type of conference. Call set up

for the enhanced conference call is exactly as in the basic conference, and

has the same limitations on the number of conference connections.

The enhanced conference call has an additional limitation in the

number of persons that can use a single speakerphone. Generally, the

speaker should be within two or three feet of the voice pickup: a

"rainbarrel" effect becomes quite pronounced as the distance from speaker

to microphone is increased. To eliminate feedback, singing, and far-end

talker echo inherent in a two wire Public Switched Network connection, many

405



6

speakerphone systems use a voice-switched gate, allowing only one

conference location to speak at once, effectively making the circuit half

duplex. In early conferencing systems, interrupting the speaker was

difficult because as long as the speaker was talking, the speaker's

receiver was cut off. If someone wished to interrupt the speaker, that

person would have to wait for a pause in the speaking in order to

interrupt. State-of-the-art equipment available today uses logic gates

that can quickly switch back and forth between transmit and receive paths

to allow a more natural conversation to take place.

Group Conferencing

A teleconference involving from 6 to 30 people in medium to large-

sized conference rooms at two or more locations fits this category of audio

conference. Whenever conferences extend beyond the private office and into

"conference rooms", special design practices must be employed for both the

conference room equipment and the conference room. This type of conference

setup generally use multiple microphones of a significantly higher quality

than those used in small conference setups. By using an array of

microphones strategically located throughout the conference room, each

speaker is assured of being within a reasonable distance from the voice

pickup. The number of microphones and the location of speaker and

microphone can be optimized for the characteristics of the particular

conference room. Some svstems cluster the microphones about a vertical

line central to the majority of speakers. These types of microphones

provide satisfactory voice pickup at distances up to twelve feet from the

speaker; high power amplifiers drive speakers placed on the conference

table or about the room, or mounted in the ceiling.

406



7

The most sophisticated conference room equipment developed

specifically for group conferences is the "conference bridge" used to

interconnect the transmission circuits from each conference location. The

most advanced of these conference bridges are "active" bridges in that the

bridge automatically compensates for circuit imbalance and loss on

each line of conference. Circuit noise that limits most audio conferences

to six connections is minimized in a conference bridge by the use of a

voice-switched circuit which attenuates the receive path (to the bridge)

of an inactive (non-talking) connection. Similarly, at the conference

bridge location, the transmit path is cut off when no one is talking in

order to prevent conference room background noise from being introduced to

the connection. State-of-the-art conference bridges used today can

accommodate up to 28 connections.

Call set-up procedures for group conferences are identical to those

used for basic and enhanced conference calls; group conferences using

conference bridges often use a conference attendant to establish the

conference connections. In addition to attendant operation, conference

bridges are usually equipped with a "Meet-Me" feature allowing individual

conferees to dial into the conference at a predetermined time. The

conference bridge will answer the call and add the caller to the conference

connection, usually with a warning tone to alert the participants to the

presence of another conferee.

Where basic and enhanced audio conference arrangements were quite

easy to implement, group conference arrangements require a significantly

greater level of effort to implement in order to maintain acceptable audio

quality. At a minimum, group conferences imply the use of a conference

facility specifically designed for teleconferencing. In a dedicated

407



8

conference room, the conferencing equipment is usually installed out of

the view of the conferees. All equipment is fine-tuned to meet the

particular operating characteristics of the conference room; often, some

acoustical treatment is applied to the room to improve the acoustical

properties of the room. Ideally, the teleconferencing room should be

located in the building interior where it is relatively isolated from

outside noises but should not be located near the core where building

equipment such as elevators, HVAC systems, and plumbing could cause

electrical or audible conference interference.

The conference room should be sized primarily to meet the needs of

the conference participants; a medium-sized conference room of 350 square

feet will accomodate fifteen conferees comfortably. The dimensional

proportions of the conference room and the makeup and placement of the

materials used in the conference room must be chosen with careful regard

to standard acoustic engineering practices. As the room size grows, so

do the acoustical problems; these problems can be maintained at an

acceptable level if the conference groups are kept at a reasonable size

and if considerable care is taken in the design of the room.

408



9

Audio-Graphic Conferencing

This category of audio conferencing is the newest and most rapidly

growing form of teleconferencing. Basically an enhancement to the group

conference, audio-graphic conferencing uses visual information to enhance

the conference. This visual information is distinguished by the type of

graphics that can be transmitted and are categorized as follows:

o Facsimile. The transmission of previously prepared documents,

whether typewritten or drawn, is known as facsimile. Anything

that can be shown on a sheet of paper can be transmitted via

facsimile; this information can be used to greatly enhance the

utility of an audio conference.

o Telewriting. Telewriting is the instantaneous transmission of

hand-drawn information, such as graphics, figures, sketches, etc.

The equipment at the transmitting end typically resembles a

stylus or a blackboard that is specially designed to convert

hand-drawn text to a signal suitable for transmission over

ordinary telephone lines. The receiving end uses a video monitor

to display the transmitted text.

o Slow-scan video. Any image that can be picked up by television

camera can be transmitted over telephone lines to a distant video

monitor. People, graphics, engineering drawings, etc., can all

be used to enhance a video conference. At the receiving end a

still image is presented that is reconstructed approximately

every 30 seconds.

409



10

All audio-graphic conferencing can be done over ordinary voice-grade

telephone lines using either the Public Switched Network or private line

facilities. Call set up for the audio portion of the conference is exactly

as in the other categories of audio conferencing. The graphics portion of

the conference is set up according to the unique characteristics of the

terminal device. For example, a slow-scan video camera can be

"conferenced" to multiple video receivers in the same manner as the audio

connection, including the use of a conference bridge. However, the camera

is often manipulated during the video transmission to, for example, focus

on a particular person or object or to provide a panoramic view of the

conference table. Facsimile machines have their own individual operating

characteristics as do telewriters.

Since audio-graphic conferencing is usually an enhancement to group

conferencing, it requires the highest level of effort to implement. All

of the effort needed to implement a group conference is required; in

addition, extra connections must be established for the graphic equipment

and provisions must be made for the placement of this equipment.

If data base augmentation is to be included in an audio-graphic

conference, then some means of data base access and data manipulation must

be provided. A mini-computer at the conference control location is

usually the means for both data base access and data manipulation.

410



Discussion of Functional Requirements

The functional requirements for audio conferencing range from the

need to add input from a third party for decision making to the "shirt

sleeve" operating meeting described in the video conferencing section of

this report. Following are some areas of the major functional

requirements of audio conferencing:

o Ad-hoc conferencing - The spontaneous need to add one or more

additional parties to a two party conversation to cousult,

confer, or inform.

o Planning meetings - A form of project management conducted over

the telephone to kick-off a new project, review existing project

status, or to develop strategies and action plans.

o Task force meetings - Basically a subset of project management,

task force meetings can take place through audio conferencing.

With the addition of graphics, this type of meeting can be highly

productive and can minimize the expenses and non-productive

associated with travel to task force meetings.

o Education and training - One of the most widely used

applications for audio conferencing, education and training

programs can be effectively carried out through any level of

audio conferencing other than the basic three party conference

call. A lecture can be extended to a remote location via two

way audio or can be enhanced with "electronic blackboards" and

slow scan video.

411

-- -" II.. . . ] I ... .. h - -- " -



12

Options/Levels/Variants

All of the basic levels of audio conferencing have been described in

the previous section; however, the single most significant option is an

audio conferencing system is that of transmission facility selection.

Unlike video conferencing which requires dedicated facilities associated

with a single network, audio conferencing has a number of variants. The

transmission facility options are as follows:

o Public Switched Networks

o Private Switched Networks

o Dedicated Private Line, Non-Switched

o Dedicated Private Line, Switched

The most convenient and universal method of conducting an audio

conference is over the Public Switched Network. Literally any public

telephone in the world can be used as a conference terminal. Because the

network is two-wire at the terminal ends, circuit balance must be

carefully maintained to avoid singing, echo, and other forms of feedback

distortion.

Private Switched Networks such as CCSA, EPSCS, ETN, and AUTOVON offer

yet another option for the audio conference. Further, many of these

private networks have the capability to interconnect with the Public

Switched Network, allowing a greater degree of flexibility to the

conference. Some private switched networks such as EPSCS and AUTOVON are

four-wire end-to-end, avoiding some of the balance and speaker protocol

problems associated with two-wire connections.

412



13

Non-switched dedicated private lines are used between conference

center locations where the traffic volumes are sufficiently high as to

justify the use of a dedicated facility, and where the conference points

are predetermined and static. The most basic of these would be a two-

point voice grade private line between two conference locations.

Multi-point dedicated private lines used for audio conferencing exist today

between as many as 150 locations, each location equipped with its own

"push-to-talk" handset and loudspeaker. The conference network is

basically an "open-line", with speaker protocol being the only determinant

as to who is allowed to speak and when. Dedicated private lines can be

configured as four-wire end-to-end to improve transmission characteristics.

Switched dedicated private lines are often used for audio conference

networks where traffic volume is high and where the conference locations

are fixed, but vary from conference to conference. As many as 100

locations can be on the network, but conferences are usually limited to

about six locations. Anyone wishing to initiate a conference simply

checks the line for availability then dials the station code(s) of the

locations to be conferenced.

Any of the four transmission facility options can be used with any

category of audio conference; moreover, transmission facility options can

be intermixed among themselves and among intermixed categories of audio

conferencing. For example, a group conference call can be established

using the facilities of both the Public Switched Network and a private

network with access to the public network. As a conference call becomes

more complex in its architecture, maintaining quality becomes more of a

problem.

413



14

Private line facilities offer a somewhat higher level of security and

survivability than does the public network. Private lines can be routed

over specially designated facilities to, for example, avoid certain routes

or types of facilities such as microwave and satellite. Private line

facilities generally perform at a higher level than public facilities;

they can literally be "fined-tuned" to meet the particular requirements of

the conference network.

Technical Challenges

Basic audio conferencing is a mature technology and as such has been

fairly well developed; the primary technical challenges for audio

conferencing lie in the areas of improved conference bridges and enhanced

graphics capabilities. Voice compression is not an issue when voice is

transmitted over analog facilities; however, as digital transmission

becomes more common, it will be necessary to further reduce the digital

bandwidth required for accurate voice reproduction. Current encoding

schemes allow adequate quality voice to be transmitted at 32 Kbps (for

comparison, an ordinary high quality voice grade facility has a maximum

transmission rate of 9.6 Kbps). More advanced encoding techniques promise

to further reduce the digital bandwidth required. This is perhaps the

greatest technical challenge for audio conferencing: the digital

transmission of voice at voice grade data rates.

414



15

Capabilities of Operational Audio-Conference Systems

The University of Wisconsin-Extension: Educational Telephone Network.

The University of Wisconsin-Extension is perhaps one of the most

prolific users and promoters of audio conferencing. Over 200 sites in

the state of Wisconsin are equipped with portable audio conferencing

units. Course instructors can remain on campus or can conduct classes

from virtually any convenient location; students attend class at the

nearest public facility equipped with the conferencing unit.

NASA Audio Conferencing System.

The initial requirement for the NASA system grew out of the space

program when geographically dispersed contractors and NASA locations

had a need to communicate in working sessions on the Apollo project.

Many locations were equipped with telecopiers for the tranmsission of

printed and graphic material. The NASA audio conferencing system is

still being regularly used for committee meetings and for project

coordination.

Human Services Development Institute: "Northern Network".

The Human Services Development Institute at the University of Southern

Maine in cooperation with the Maine Bureau of Rehabilitation

established a switched dedicated private line audio conference network

serving twenty vocational rehabilitation offices in Maine and New

Hampshire. The conference network was set up to provide

rehabilitation services to handicapped clients; the impetus for the

network was to avoid the difficult travel in the rural areas of Maine

and New Hampshire. The experimental program proved to be highly

successful and is still in continuous use today.

415



16

Capabilities of Subsystems

The major subsystems of a fully developed audio-grpahic conferencing

system are:

o Telewriters

o Facsimile machines

o Slow-scan video units

The capabilities of slow scan video units are covered in the video

conferencing section of this report; following is a discussion of

telewriter and facsimile machines.

Telewriting is the instantaneous transmission of hand-drawn graphics

such as pie charts, circuit schematics, mathematical equations, and

chemical formulas. These images are transmitted to the receiving end over

ordinary voice grade telephone facilities, either public or private,

switched or non-switched. At the receiving end the graphics are displayed

on video monitors or on hard copy. The graphic information is produced by

"writing" on an electrically sensitive surface which converts the hand

drawn text into a digital signal, which is then encoded into a format

suitable for transmission over the appropriate facility.

The earliest form of telewriting were the graphics tablets used in

department stores, warehouses, and parts depots by order takers to enter a

customer order onto a tablet and simultaneously transmit the written order

to the order filler. Possibly the most widely known telewriter today is

Bell's Gemini 100 Electronic Blackboard. This "blackboard" allows a

speaker to write, using ordinary dustless chalk, on a "normal" blackboard

surface. Each point on the blackboard surface is represented by x and v

coordinates; by touching the surface with the chalks an encoder sends the

416



17

x and y coordinates of that point to the remote unit. The remote unit

encodes the information and illuminates the appropriate points or lines on

the TV monitor that correspond to the hand-drawn graphic.

Facsimile systems are used to relay virtually anything that can be

shown on a single piece of paper to distant sites over ordinary telephone

facilities or private lines. The printed information is converted into

electric signals through a scanner. This signal is then transmitted to

the distant end and reconstructed into a printed page.

Facsimile machines are classed into the following categories:

o Group I - Facsimile machine which operate at four to six minutes/

page and use FM analog modulation.

o Group II - Facsimile machines which operate at one two to three

minutes/page using AN analog modulation.

o Group III - Facsimile machines which operate at one minute or

less per page and use digital techniques to enhance the speed.

o Group IV - Facsimile machines which are classified as high speed

digital and high resolution, transmitting at approximately 56

Kbps.

For audio graphic conferencing over standard voice grade facilities,

only Groups I, 1I, and III devices are used; however, full-motion video

teleconferencing facilities are often designed with the capability for

Group IV facsimile.

Five Year Forecast

The forecast for audio conferencing system is much the same as it has

been for the past two decades; equipment and facilities will continue to

be readily available for all levels of audio conferencing for the

forseeable future.

417



18

Analysis

The key system elements for audio conferencing are:

o Transmission facilities

o Audio terminals

o Bridging devices

o Graphic terminals

Transmission facilities are as easy to obtain as telephone service

and cost the same. Private line facilities can be obtained in 18 working

days from most common carriers; AT&T, is normally used as the benchmark

for price comparisons. A 500 mile voice grade private line from AT&T is

$700.00/month between two points. Costs for a multi-point line switched

network vary widely depending on level of sophistication required and

geographic dispersion. Lead time to procure a large multi-point network

could be as much as six to nine months. Following are some purchase

prices for other major system components:

Audio terminals $300 - $1,800

Bridging devices $1,200 - $22,000

Facsimile machines

Analog $3,000 - $5,000

Digital $6,000 - $19,000

Electronic Blackboard $9,000 - $12,000

Video Camera $1,100 - $2,000

Baseband monitor $600 - $800

418



19

MOTION INTERACTIVE VIDEO TELECONFERENCING

Until the last few years, the idea of using electronic means of

conducting business meetings such as the recurring shirt sleeve sessions

in which managers and professionals spend so much of the business day, was

not generally accepted and implemented except in a very few organizations.

The ability to save travel expense and the time of the individuals involved

in that travel for the purposes of a meeting, were not sufficient to

offset the break in practice and in culture that resulted. However, in the

last several years, many more organizations have begun to install and

utilize teleconferencing systems since the experience of those initial

pioneers has proven that there are many benefits to such a system, all

summarized in that generic category of increased personal productivity, but

resulting from:

o Shorter meetings

o Better preparation

o Faster decisions

o Better cooperation

o Greater meeting effectiveness

A number of surveys of business users, including that by Hansel &

Green of Satellite Business Systems, support these results. The

organizations surveyed cited benefits not only from the productivity of

their individual members, but from a more decisive environment, one based

on more and better communications, and with such overall results as faster

introduction of new products, quicker reaction to an unplanned event,

better decissions, and the overall effectiveness of the organization.

419



20

Conclusion

The multi-media motion video teleconferencing system consists of

a carefully designed meeting room, the various cameras, projectors, and

viewers of the information both at the local and remote sites, a high

quality audio system, the communicatons interfaces including the codec, a

control console to manage the various subsystems, the means to transmit

data or copies of material in addition to that which is being communicated

via video, and the transmission media. This study addresses those elements

of the system up to and including the interface with the transmission

media.

The current utilization of these systems is limited to eight or nine

large commercial organizations and two major communications vendors. The

experience is fairly recent, starting in the early 1980's, but has been

proven extremely beneficial for those using this system. There is

currently underway a major increase in the number of organizations planning

to implement such systems.

The typical performance expected of these systems is one of providing

for a normal shirt sleeve operating meeting environment typical of that

conducted by the organization involved, but with the meeting participants

divided among two or more rooms geographically separated. All equipment

must be able to support a real time interactive environment. The system

operation must be non-obtrusive; the operation must be natural and not

studio-like so as not to detract from the effectiveness of this

communications medium.

420



21

While there are a wide range of alternatives to the design of the

rooms involved and the equipment being employed there is a minimum basic

complement of equipment which currently costs approximately $200,000-

$300,000 per room. The room construction, of course, is a function of the

type of meeting conducted, and the level of comfort and atmosphere desired

by the using organization. The implementation of a teleconferencing

network requires a minimum of 12 to 15 months for a reasonabllv paced

program of room and system design and implementation and establishment of

the associated transmission network. Some level of dedicated staffing is

required at each room location to ensure the proper maintenance and

operation of the conference room; vendors will provide maintenance support.

There is also the requirement for some central network control system with

the associated equipment and staffing. The in-house resources to implement

such a system are not estimated here but are a function of the specific

process within the user organization. Timelines for decision making

relative to the implementation activities are also not estimated since this

again is a function of the process of the organization involved and the

priority associated with this program.

421



22

Discussion of Functional Requirements

In the most general sense, the overall functional requirement is that

of creating a typical shirt sleeve operating meeting environment currently

being utilized by the organization involved. For practical purposes this

generally involves a meeting of six to eight participants (those seated at

the conference table and actively participating in the meeting). With a

similar number at the remote location, this provides the ability to have a

meeting of 14 to 16 active participants, generally at the limit for a

reasonable meeting. In addition, there can be other support personnel

present in the meeting rooms who are available to provide information or

views.

Other major considerations involve the ability to provide:

o A view of the speaker or presentor.

o A view of the other participating meeting room(s), showing all

participants.

o The ability to focus on the individual speaker at the conference

table.

o Other normal meeting support typical of that organization

including slides, vu-graphs, flip charts, and blackboards.

o A means to obtain and interact with ad hoc material such as

back-up presentation material.

o The ability to interact with the presented material (i.e.,

marking up a vu-graph, creating a hand written chart on a flip

chart or blackboard, etc.).

o Access to background data in a local or remote data base.

o The ability to access other staff personnel not in the meeting

room.

422



23

The various pictures of participants and information being presented

and discussed must be clear and large enough to be easily read. Where

motion is involved, it must be natural and without blur. Color is

important, particularly for pictures of the presentor and the meeting

participants, to provide a natural environment. Voice must be of a high

fidelity and in sync with the picture. Any support material being

developed and introduced into the meeting must be available with a 10 to 20

second response, which is the time that would normally be required to

change a slide in a meeting, to look for a back-up piece of information,

etc. The room supporting equipment and the operations must not be studio-

like and the operation of the various elements of the equipment must be

non-obtrusive. The control system must be extremely easy to learn and to

use; it must not detract from the substantive aspects of the meeting

itself. Provisions should be made for the presentor to also view, via

monoitor, the participants in the distant location so that eye-to-eye

contact can be maintained by the presentor who is generally standing at the

front of the meeting room.

In addition to these general requirements, the WWMCCS environment also

dictates security and survivability considerations. A teleconferencing

room can be developed in a secure mode. The transmission can and should be

encrypted. Relative to survivability, normal requirements existing for the

application involved for the survivability of room and equipment can be

factored in. Survivability of the transmission network can be considered

via redundant transmission paths, but this can be extremely difficult and

expensive with the high bandwidths involved in a motion video

teleconferencing system.

423



24

The ability to operate in a degraded mode would be a dramatic drop

back to a voice grade type of operation. With careful planning, this

degraded mode can, in essence, become that of the audio graphic

teleconferencing approach described earlier in this report.

Options/Levels/Variants

There are several opportunities to reduce the level of functions

described above with the attendant reduction in equipment costs as well as

the extent and cost of transmission capacity. These involve operating at

less than the current 1.544 Mbps required for transmission of a quality

full motion image. For instance, it is possible to operate at 896 or 768

Kbps which provides a color image but which introduces blurring where there

is fast motion by the individual such as walking, arm movement, etc. There

is also the opportunity to operate in black and white, but again this would

detract from the basic premise of a "natural setting". Audio can be less

than high fidelity and transmitted via normal voice grade lines, but would

be subject to a degradation in the voice aspect of the teleconference (the

true cornerstone of any teleconferencing system is the audio portion).

In all cases, the above would be somewhat counter to the investment

committed to for a motion video teleconference, which implies a commitment

to a real time on-site natural meeting environment.

There are a number of alternatives to augment the basic requirements

discussed, including:

0 An additional TV camera, the associated monitor, and the

additional transmission capacity can be added to provide a

"continuous presence" aspect of the teleconferencing svstem.

AETNA has included such a capability in their system and finds

that it is highly desirable in maintaining the natural meeting

environment. The extra camera, the extra equipment for

424



25

monitoring and the extra high bandwidth transmission path are the

price for this enhancement. However, an approach has recently

been developed which involves the transmission of only the

middle portion of each picture (the motion part). If effective,

this would hold the transmission bandwidth requirement to that

of a single video channel.

o Stereo voice can be added to improve the sound quality as well

provide a spatial presence. Equipment and additional

transmission capacity are the considerations.

o The facsimile unit and overhead graphics camera considered basic

to the system can be replaced with a high resolution scanning and

display system. This system is assembled of hardware from high

speed facsimile and high resolution video technologies operating

at speeds approximating 448 Kbps. They can provide a new image

within five seconds at the remote location, operating in

monochrome. This approach to improved graphics has been used in

very few systems. An alternative has been recently made

available in the form of a codec feature which allows graphic

transmission on the video channel during a short video interrupt

period.

o Rather than using TV monitors (19 or 25 inch), a large display

screen (4x4 feet or larger) with the equipment for expanding the

image can be added. This is a positive enhancement where

utilized today. High resolution screens using up to 1024

scanning lines provide higher picture quality, with the attendant

higher costs.

o The integration of an access to local and remote data bases with

graphics generation and display equipment can be added.

425



26

o Interactive graphics such as an interactive over head graphics

package, can provide additional natural meeting room

capabilities.

o A codec to operate at still frame operation (56 Kps) can also be

added to provide operations in a degraded mode if the high

bandwidth links are lost. This would also support applications

which do not require the full motion capability and as such the

transmission costs for those meetings can be reduced.

" In addition to the point-to-point, two room type of operation

described above, a multiple location teleconferencing system can

be implemented with its attendant complexity and cost. The full

interactive multipoint-to-multipoint type of video teleconference

requires a replication of equipment and a significant and

possibly unacceptable amount of transmission capacity. There is

a requirement to develop the software necessary to operate the

meeting on a decentralized control basis. This has been

estimated at $750,000 to $1,000,000. In a less structured mode,

a three way conference has been run in the AT&T PMS environment.

This requires a replication of equipment and multiple

transmission paths. One alternative which has been investigated

is the use of a point-to-"shifting point" type of configuration

where at any point in time one location is broadcast to all

others, but only two of the locations are interacting in a video

mode. The pair of interacting nodes can be changed during the

teleconference. This requires the use of a satellite

transmission facility which has the ability to re-__ -ate

bandwidth among the nodes.

426



27

The W1%'CCS environment also requires international communications.

With the high bandwidths invclved, this may involve a double hop via

satellite. This is achieveable technically without degradation to the

image, but requires the tolerence with the approximate one second delay for

the double round trip via satellite. This has been set up and demonstrated

by Satellite Business Systems in San Francisco to Chicago to London

teleconference. A similar hook up to Tokyo is planned later this year.

It is found that with the simple acceptance of "be polite and wait" - twice

as long as you are accustomed to waiting on an international phone call -

the meeting can be held satisfactorily with all of the benefits of the full

motion video conference.

Performance

In summary, the performance of a motion video conferencing system

requires a high fidelity full motion camera and monitor system. While the

normal 525 line TV monitor is appropriate for the people images, quality

graphics dictate a higher resolution transmission display system.

Allstate, in their video conferencing system, utilize a Rapicom developed

system operating at 1024 lines, projected on to a 5 foot screen.

Audio must be clear and two way such that participants at both

locations can both speak and hear simultaneously so that speaker

interruption can occur naturally. Conferees must be able to walk around

the room and hear and be heard from anywhere within that room.

The setting of the room and the operation of the equipment and the

control console must be unobtrusive and easy to learn and operate.

Where new information is being introduced in the form of presentation

material, it must be available in a normal time span of 10 to 20 seconds.

427



28

Technical Challenges

There are four primary areas of technical challenge. The first is

that of the room design and equipment selection. Experience is being

gained daily with the existing systems which today are basically limited to

those operational systems utilized by Aetna, Allstate, American General,

Citicorp, DEC, Arco, ISA, Liberty Mutual, Procter and Gamble and AT&T/PMS.

Selection of the proper equipment and, more importantly, the integration of

this equipment into a system is critical.

The second area of technical challenge is to continue the current trend

in codecs of reducing the transmission speed required to transmit a high

quality video image. This capability was only reduced from 3 Mbps to 1.5

Mbps within the last several years. Quality video transmission @ 896 and

768 Kbps is just being introduced. R&D continues in this area and will

result in continued improvements over the next five years.

The third area of technical challenge involves that of effecting some

level of standards for transmission interface and codec speeds. While work

is currently being done to reduce the transmission speeds of the full

motion video codecs, the vendors in general will offer their equipments at

non-standard speeds such as 448, 512, 768, or 896 Kbps. Standardization

among rooms, and the ability to interface with standard transmission media

will be a challenge.

The last challenge is that associated with the control system. The

teleconferencing rooms today, both full motion and freeze frame type of

operations, require the utilization of some sort of control system and

panel. Much progress has been made in this system, but there is still

development work required to improve the ability of the system to be truly

nonobtrusive and extremely simple to learn and operate.

428



29

Capabilities of Operational Systems and Subsystems

The following discussion of operating systems is a composite of those

teleconferencing systems currently in operation. The room and system

designs generally reflect the feedback from extensive trials by a number of

these organizations. As an example, Aetna Life Insurance started with a

pilot test involving a four room configuration in two locations, ten miles

apart, in Hartford and Windsor Locks CT. During the two year period of

test and experimentation from March of 1981 through February 1982,

approximately 30,000 people utilized this full motion teleconferencing

capability in approximately 5,000 different meetings.

The major components of a full motion viedo teleconferencing facility

are as follows (all equipment is not required; use of some mutually

excludes others):

o Participant camera - the images of participants are generated by

a color camera at the front of the room. This camera is mounted

on a motor driven platform and is equipped with a zoom lens.

When a button on the control console (corresponding to a seat

position) is depressed, the camera will automaticallv rotate and

zoom to a preprogrammed position by command from the control

console or by audio pickup (a very difficult problem). There are

six to eight of these preprogrammed positions which can be easily

changed.

o Camera for the presentor - this is comparable to the participant

camera but does not require the programmable pan.

o Remote participant monitor - a stmia.lJ TV monitor (probably

25") which displays the video images (presenter, meeting

participants, presentation material, etc.) being transmitted from

the distant location.

429



30

" Remote participant display projector - a video projector located

in the equipment room would display the distant conferees on a

large (4 or 5' square) screen. This would allow all participants

in the meeting to more clearly observe the received image and

have a sense of a more natural environment than that provided by

a TV monitor.

" Large presentation material such as flip charts - large charts

(30"x40") could be displayed on a stand located at one corner of

the room. Presentations could then be viewed by all meeting

room participants. The camera for the presentor, located at the

opposite corner of the room with a motorized platform and lens

controlled by a local conferee, would pick up flip chart and

presentor.

o Transparencies or slide material - page size transparent foils

prepared for an overhead projector can be displayed both locally

and picked up via the presentor and presentation material camera

for transmission and displayed at the distant location.

" A video monitor displaying the distant conference room could be

colocated with this camera to assist the presentor in maintaining

eye contact with the distant conferees.

o Facsimile system - page size hand outs can be transmitted to the

distant conference room with a high quality, medium speed (20-60

seconds per page) facsimile machine located in the equipment

room.

430



31

0 Audio system - a high quality audio system is required with the

speakers and microphones being the only visible portions of the

system. A significant amount of equipment to provide mixing,

switching, testing, cancelling, amplification, and the

communications interface is contained in a nearby equipment room.

This system is full duplex allowing both parties to speak and

hear simultaneously. Sensitive microphones and high acoustical

room treatment allows participants to move about the room when

speaking and clearly be heard at the distant location.

o Transmission and interfaces - the primary communications

interface unit is a video motion coder/decoder (codec). The

basis components of the codec are a coder for outbound signals, a

decoder for inbound signals and a power supply. In terms of

video conferencing, the codec accepts a user's normal television

signals in analog form and codes them into a digital signal for

transmission. This is currently, in most installations, done at

L.544 Mbps. This codec can simultaneously receive a digital data

signal from the remote site and decode it into an analog

television signal to be seen at the local site during the

teleconference. Encryption is available with these units.

0 Audio system interface - the audio system interface and

communications network connection could be included with the

video codec for 2 point conferencing. However, multi-point

conferences require separate codes and network connections since

the audio and video must be independent. Mono or high quality

audio requires a 56 Kbps network connection. A stereo high

cuality system would require a 112 Kpbs network connection. For

added security, an encryption unit can also be added to this data

connection.

431



32

o Conference controller - generally custom designed for the

specific requirements of the using organization, a control

console is currently required for operation of the various system

elements, such as camera switching, zoom, and focus, seat

selection for particant camera movement, audio volume adjustment,

control of the hard copy functions, etc. Operational experience

and the resultant improvements in room and system design are

reducing the requirement for, or scope of, the controller.

o Computer for system control - unless included in the control

console itself, a mini-computer or some other available computer

capacity will be required to support the control console and

testing functions. This computer capacity can also be provided

by the computer associated with the network control function

required for a multi-location network.

o Beyond the minimum requirement for a facsimile type of

capability, many conferences require the distribution and displav

of hardcopy information such as memoranda, charts, graphics,

drawings, statistical or financial information, etc. One

approach is the high speed systems which are available which can

scan, transmit, display, and reproduce a document in less than 10

seconds. Generally located as an inset to the conference table,

these systems require a transmission bandwidth of 56 Kbps to as

high as 448 Kbps. There is of course a tradeoff between response

tine and bandwidth for such a system. Recent advances in codec

design also provide the capability for video graphics -

transmitting this material over the video channel during a brief

video interrupt.

432



33

o If a high quality graphic system is involved, there is generally

a requirement to have a higher than normal quality display. In

these systems a 1024 scan line screen and display provides the

high visual clarity required for this type of information.

Allstate uses such a system in its teleconferencing network.

Five Year Forecast

In general, all of these systems and subsystems required for a full

motion video teleconferencing capability currently exist. In addition to

the hardware and software involved, the emergence in the last few years of

systems integrators and turn-key vendors for these systems is an important

element of capability for the effective implementation of these systems.

The major areas of change in cost and/or performance over the next

five years will be associated with the motion codec and the conference

controller. Codecs will continue to be developed with the ability to

transmit quality motion video at transmission rates lower than the 1.544 Mb

being utilized today. Compression Labs and NEC are two of the primary

vendors who are currently working on full motion codecs to operate at the

896, 768, and 512 Kbps transmission rates. Since these codecs are

basically computer technology and software, their cost will decline due to

the cost performance improvement trends for all digitally based products.

Increasing volume of production will also reduce codec prices.

The requirement for the conference controller is being reduced as

room and system designs are changed to reflect operational experience.

Where still required, the conference controllers will also benefit from the

cost performance improvements typical of digitally based products. More

important, this element of a teleconferencing system will continue to

433



34

become easier to learn and operate in a non-obtrusive manner. Better human

engineering, continued improvement in the understanding of the controller

requirements

for a teleconferencing based meeting, and the introduction of the non-data

processing type of features showing up in other office type equipment such

as touch screens, use of icons, soft function keys, etc. will continue to

improve these systems. Recent work by a number of vendors including

M/A-COM and DDI have brought these types of features into the control

system.

ANALYSIS

The current costs of the various elements of the system are summarized

in Table 1.

The primary system elements which will decrease in cost in the five

year period considered for this study are the motion codec, and the svstem

controller. It is reasonable to expect these units to be priced at

approximately 50% of their current levels five years from now. The higher

speed, high resolution document or image transfer subsvstems which have

only recently been introduced, will also decrease in cost as production

volume increases, but not bv the same degree.

The implementation of a teleconferencing qvstem recuires approximatel'

12-18 months, in addition to that time required for the development of

specifications and selection of vendors involved. The construction of the

room and installation of the teleconferencing equipment can be shortened to

9-12 months, but the Introduction of the high bandwidth transmission

capacity requires a more reason.ihle planning horizon of 12-15 months.

434



35

TABLE I

COST OF 'MOTION VIDEOCONFERENCING EQUIPMENT

Participant TV Camera $20-$25,000

Presentation Camera $10-$15,000

Audio $20-$25 ,000

TV Graphics Camera $5-$7,000

TV Monitors $2-$4 ,000

Large Screen Projectors $12-$15,000

Control Console S20-$35 ,000

Switching & Test Equipment $15.-$20,000

Facsimile (20-60 Seconds) $10-$15,000

High Resolution System $80-SIOO,000

Motion Codec $150-$180,000

Interactive Tablet $30-$50 ,00O

Minicomputer $20-$40 ,000

1. Not all elements would be utilized in any one system or room.

2. A "basic package" would be approximately $200-$300,000.

3. There are other potential equipments which may be required to meet

the specific user requirements.

435



36

Suggestions for a Development Plan

The recommended development plan is one that would he based upon a

pilot program involving two sites. Such a system could be implemented

within the continental United States with either satellite based or AT&T

provided TI transmission capacity. The recommended development plan is as

follows:

o A six month period for data gathering and analysis would involve

discussions with those organizations such as Aetna, Allstate,

Arco, ISA, and SBS on the development of their systems, the

design of their rooms and their usage experience. Review of

existing rooms and demonstrations can be arranged. In the case

of Arco, which just recently started operations, this effort

should include meetings with the critical organizations which

supported the development of its implementation plan including

the Annenberg School, Richard Burn Associates, and the Institute

for the Future. Annenberg students had an extensive interview

program with Arco managers and professionals. Burn Associates

developed the implementation strategy including the publicity

campaign and training within Arco. Institute for the Future

worked on room design considerations and implementation issues.

Discussions should also be held with organizations which are

currently close to implementing major motion video conferencing

systems. J.C. Penney and the May department stores are in their

initial program development phase. Hercules is developing a plan

to migrate from its existing system and extensive experience with

slow scan teleconferencing to the implementation of a motion

teleconferencing system. This phase would require 4-6 months.

436



37

o The development of detailed requirements for the room and the

operational systems and for development of the appropriate

procurement documentation would then be undertaken. The

requirements will generally focus in two areas, that of the room

layout and the associated equipment, and the specific user

peculiar requirements for the control console. A period of 3-4

months for this activity should be planned.

0 The selection of a systems integrator or turn-key vendor is key

to the successful implementation of a video teleconferencing

system. Rather than selection of individual equipment by the

procuring agency (WWMCCS or its designated procurement

authority), the key selection is that of the systems vendor. The

selection of that vendor, the procurement of equipment,

construction of the room, training of WWMCCS users, and the test

and acceptance of the room and transmission systems would require

12-18 months.

0 A use and evaluation period is then recommended of approximately

9-12 months. The experience with the utilization of these two

rooms in the WWMCCS environment and in support of the specific

WMCCS decision and meeting support process, would be the basis

for modification if any to the previously defined system, and the

basis for implementation of additional teleconferencing sites.

0 If the requirement were established for a multi-location

interactive motion teleconference, a software development would

have to be initiated. This can be undertaken in parallel with

the above (with the attendant risk of a change requirement) or

initiated after the start of the pilot program (with the

attendant protraction in overall schedule).

437



38

CONCLUSIONS

In both of the teleconferencing scenarios discussed in this study, the

various equi.. Dents are available and operational today. There is user

experience that has been gained and has been factored into the equipment

and systems involved, and in the design of the teleconferencing rooms.

Insofar as audio conferencing is concerned, the following is

concluded:

o Audio conferencing systems are in wide use today and audio

conferencing is the most universally available, and

accepted, form of teleconferencing.

o Audio conferencing components are readily available at

competitive prices and will continue to be for the

forseeable future.

o The most rapid growth in audio conferencing will be in the

area of audio-graphics

o Audio conferencing is the most logical degradation point

for a fully developed motion video conferencing system.

Relative to the full motion video teleconferencing capability, the

following is concluded:

o These systems are operational today and are found to be improving

the timeliness and quality of communications and decision making.

o These systems are being accepted as a communications and decision

making media by many organizations and the current environment is

one in which there is an accelerating rate of the number of

organizations which are planning to implement such systems.

438



39

o The types of applications and the forms of the information involved

should not be untypical of many of the meeting requirements of

WWCCS (development of plans, joint reviewing of presentation or

electronically generated material, (-c.).

o The increasing utilization planned for these systems will further

improve the overall systems. In those areas of equipment

which are digitally based , the increased volume production will

result in decreased costs.

0 The future areas of technical challenge and improvements in cost

performance are associated with the codec and the controller

which are both digital systems and software based. Multi

location capability (a software development) may have to be

undertaken if not already developed in the meantime.

o The specific requirements of the government associated with

security and survivability can generally be accommodated with

proper planning and system implementation and with the acceptable

level of operation in a degraded mode.

o A program development initiated in early 1984 with the

intermediate step of a two node pilot test, would result in a

reasonably paced program resulting in the implementation of a

multi-node network by the early 1989 time period.

439



WWMCCS ADA STUDY: NETWORKING

Prepared for

INSTITlUTE FOR DEFENSE~ ANALYSIS

by

MCQUILLAN CONSULTING

September 13, 1983

441

k-,tEC~DlG PAMZ BLUMK-NOT 71 4



WWMCCS ADA Study NETWORKING

Table of Contents

1. Overview 443

2. Discussion of Functional Requirements 447

3. Case Studies 450

4. Analysis 459

5. Alternatives to TCP 462

6. Conclusions 468

MeQuillan Consulting
442



WWMCCS ADA Study NETWOcJ..LNG

1 Overview

This report presents findings on the implementation of the DoD standard network

protocols, using the DoD standard higher level language ADA. In the course of

preparing this report, several implementations of these protocols were researched.

Case studies are included to provide a hard, concrete basis for estimating the

resources required for future protocol implementations.

The software systems we are concerned with here are several:

TCP Transmission Control Protocol. Provides reliable, sequenced,
byte-stream virtual circuits. It features checksums, sequence
numbering of all data, retransmissions for reliability, reliable
connection establishment and clearing, a window-oriented flow
control mechanism, and a mechanism for marking data as
urgent.

IP Internetwork Protocol. Provides TCP with addressing and
internetworking capabilities. IP is a datagram protocol that
does not guarantee r~iiable or ordered delivery. Addressing is
based on a 32-bit address, part of which identifies the host
itself. It provides for fragmentation of message by gateways
as they are routed through networks with different message
sizes, the fragments are then collected and reassembled by
the destination host IP module.

TELNET Teletype Network Protocol. User TELNET gives the user a
remote terminal capability by taking the characters from the
local input device and sending them to the foreign host, and
returning characters from the foreign host to the local output
device (typically a terminal). Server TELNET acts as a
pseudo-Teletype, with incoming network messages providing
TTY input, and TTY output being sent to the network.

SMTP Simple Mail Transfer Protocol. Provides for the transfer of
electronic messages from one user's "mailbox" to those of the
recipients.

McQuillan Consulting
443



WWMCCS ADA Study NETWORKING

FTP File Transfer Protocol. Allows a user to move files from one
computer system to another.

TCP and IP are network transport functions, while TELNET, SMTP, and FTP may

be considered applications-level or user functions. The two groups are treated

separately below.

The key case studies reported on here include:

- The BBN C-30 TAC: TCP and IP, written in assembly language

- The BBN HP3000: TCP, IP, TELNET, and user FTP, written in SPL

- The BBN VAX UNIX: all protocols, written in C

The typical performance measure applied to network protocol implementations is

the maximum throughput level that can be sustained over a given network, in

bits/second. Many factors contribute to the actual measured value, including the

speed of the network and the test computer. The quality of the software

implementation of the protocol can have a major bearing on the network

throughput, with a finely-tuned system supporting two or three times the traffic

load of a less advanced system, on a comparable set of equipment. Performance

may differ by as much as an order of magnitude between computers of roughly

comparable price and raw CPU performance, given different hardware and software

architectures.

Based on our review of a number of cases, only a few of which are discussed in

detail here, we conclude that the implementation effort that has been required in

the ARPANET community for these systems is as follows:

McQuillan Consulting

444



WWMCCS ADA Study NETWORKING

TCP, IP 18 man months

TELNET, FTP, SMTP 12 man months

We would estimate a similar amount of effort would be required for future

implementations programmed in ADA, given the same set of environmental

conditions (see below for details). The use of ADA is seen as neither increasing

nor decreasing significantly the amount of time required to develop an operational

protocol implementation.

The estimates are based on the following important assumptions, some of which

may not hold for some protocol implementations in the WWMCCS environment:

- Programmers experienced in ADA and the target computer

- Programmers with network experience, and familiarity with the DoD protocols

- A model protocol implementation for another computer to use as a guide

- Protocol testing tools such as traffic generators, echoes, and discarding

destinations, which follow the appropriate protocols correctly.

- A requirement for informal research-oriented documentation only, as opposed

to formal military-specification documentation

- No security considerations such as working in a trusted software environment,

or carrying out a verification procedure

- Flexible operating systems, such as UNIX and VMS, with powerful tools for

interprocess comnmunications

McQuillan Consulting



WWMCCS ADA Study NETWORKING

- Very high-caliber programmers (top 5% in the field) working with the support

of other excellent programmers "in the community", with extensive network

protocol experience

We speculate that if any of the above factors is adverse, it could easily double the

effort required to implement a protocol. If several of the factors are adverse

(e.g., an inexperienced programming team worKing with a difficult operating system

in a secure programming environment with stringent documentation standards), the

actual effort required would be significantly greater than our basic estimate. It

would not be surprising that some implementations might require ten times the

effort we are suggesting, under compound adverse programming conditions.

Perhaps more significant than the effort required to implement these protocols is

the manpower required to support, maintain, and enhance them. We estimate that

1 to 2 full-time programmers or the equivalent are needed to support each version

of TCP/IP running on a different computer or operating system. Note that this

estimate is also predicated on a favorable conditions with regard to the

documentation, security, operating system, programming staff, etc. A level of

effort of 2 programmers is probably sufficient to deal with up to 100 installations

of exactly the same type.

McQuillan Consulting
446



WWMCCS ADA Study NETWORKING

2 Discussion of Functional Requirements

The functional requirements for the DoD protocols are documented in working notes

and official specifications available from the Network Information Center at SRI

International. In addition, there is a continuing on-line newsletter called the

TCP-IP Digest which disseminates information within the community of interest.

One of the key insights that has emerged from this experience is that the protocol

implementer must, like the protocol designer, make design choices so as to tailor

the implementation to users' needs and performance requirements. In a given

network, it is possible for the well-implemented "wrong" protocol to out-perform

the poorly-implemented "right" choice.

Because the DoD protocols are standards, any implementations that conform to the

TCP/IP standards will be able to communicate with each other, but perhaps not

optimally. It has been common to bring a protocol into service quickly by using

the best available initial implementation, leaving for later the tailoring of a better

solution. Often this later work involves extensions in functionality or improvements

in performance.

Protocol developers have found a three-way tradeoff between

1. Funcnality The user's capabilities.

2. Com~tr p Efficiency in processing and memory use.

MeQuillan Consulting
447



WWMCCS ADA Study NETWORKING

3. Network p Efficiency in circuit bandwidth and other network

resources.

These three goals are somewhat in conflict, presenting the implementer with a

three-way tradeoff, because each implementer, with a limited budget and schedule,

must choose which goal to emphasize. A typical example is the choice between

adding one more user feature (eg., monitoring and fault-isolation diagnostics) vs.

improving the performance of the existing features. Performance might be

improved by adding more buffers (because data must be held in memory until an

acknowledgement is received) or by speeding up the processing logic. The former

optimizes network performance at the expense of host computer resources. In the

latter case, computer performance is optimized. We discuss each of the three

factors in greater detail below.

Functionality. The typical experience in implementing TCP and IP, and the

recommended course of action, is to begin with a subset of the functionality, and

then add advanced features. Basic TCP features include connection management,

packet logic, checksums, sequence numbers, basic error control and flow control.

Advanced features include adaptive retransmission, TCP options, and improved error

control and flow control strategies. Basic IP mechanisms are simple addressing and

checksums. Advanced features are aspects such as fragmentation and reassembly,

multi-homing, and option handling, and true internetwork gateway addressing.

Computer performance. Performance analysis should be used to determine which

sections of code are most frequently invoked. Per-packet overhead can be reduced

by the efficient coding of such routines as checksums and byte-swapping (possibly

in assembly language). Processor interrupts can be minimized by increasing 1/O

McQuillan Consulting
448



WWMCCS ADA Study NETWORKING

buffer size, and general performance can be increased by replacing subroutine calls

with in-line code, and optimizing frequent code paths.

Network performance. An important technique here is to minimize the number of

packets necessary to transfer a given amount of data. Because of TCPs lattitude

in packetization, error control and flow control strategies, this factor can vary

widely between systems and within a particular implementation, based on network

conditions. Refined transmission strategies are not necessary to adhere to the

standard, but they can be very important to overall costs. The best solutions have

been based on adaptive retransmission algorithms, which delay transmission until

enough data has been gathered for an efficient transmission, and avoid unnecessary

flow control or error control activity.

McQuillan Consulting
449 i



WWMCCS ADA Study NETWORKING

Case Studies

In choosing the case studies to report on here, we researched the the TCP/IP

implementations that are presently operational on the ARPANET. Investigation

revealed that the vast majority of the systems fall into a relatively small number

of classes:

1. The BBN VAX UNIX implementation, and the Berkeley VAX UNIX and BBN

C/70 UNIX systems, both of which were derived from the BBN VAX UNIX

system. Various other PDP-11 systems are derived from either the BBN or

Berkeley systems. Over 75 installations.

2. The BBN TAC system. Over 50 installations.

3. The BBN TOPS-20 system. Over 25 installations.

Other operational systems include those for the HP3000, the PDP-11 under

RSX11M, Univac 1100, the IBM MVS, and MULTICS. We know of no

implementations written in ADA, or in PASCAL.

We have chosen to report on three case studies below, the BBN TAC and VAX

UNIX systems because of their widespread operational status, and the HP3000

because it was written in a higher level language somewhat comparable to PL/I or

ADA.

McQuillan Consulting
450



WWMCCS ADA Study NETWORKING

Name Q SIta BBN C-30 TAC

Dlopr Mr. Robert Hinden, BBN (617) 497-3757

Dcri tion QL Syfrem The Terminal Access Controller (TAC) is a user TELNET

host that supports TCP/IP and NCP host-to-host protocols. It runs in 32K H-316

and 64K C/30 computers. It supports up to 63 terminal ports, and connects to a

network via an 1822 host interface. The TAC TCP/IP conforms with RFC791 and

RFC793 specifications with the following exceptions:

1. IP options are accepted but ignored.

2. All TCP options except maximum segment size are not accepted.

3. Precedence, security, etc. are ignored.

The TAC also supports Packet core, TAC Monitoring, Internet Control Message

Protocol (ICMP), and a subset of the Gateway-Gateway protocols. For more

information on the TAC's design, see IEN-166. All major features have been

implemented except Class B and C addressing, IP reassembly, and TCP Urgent

handling. These will be done in the near future.

P.erforminc The TAC is designed for high performance in the sense of supporting

a large number of low-speed terminal devices simultaneously. This protocol

implementation can support up to 63 terminals at a mix of speeds (typically 300,

1200, and 9600 bits/second).

Qualty This is a fully operational system, in daily use by thousands of users. It is

an extremely reliable utility service on the ARPANET and related networks. It has

MeQuillan Consulting

451



WWMCCS ADA Study NETWORKING

been in operation since mid-1982.

Dlopmnt Team The software was developed by two programmers full-time over

the course of 12 months, but they were also building an NCP for the same

computer, which they estimate to have required about half of their effort. Thus

the TCP/IP work is estimated to have taken 12 man months over 12 months. The

system was up and running in 6 months, and into operation in the field in 12

months. An additional 6 months were spent in tuning and reengineering the

system. In total, approximately 18 man months were spent developing a fully

operational TCP/IP package.

Devlom en Environmnt The system was written in assembly language using a

cross-assembler on the DEC TOPS-20 operating system. A number of tools have

been developed for this purpose over the years at BBN, including debuggers, and

source control facilities.

End Qs There are 55 TACs installed in various DoD networks around the world.

These are fully operational systems supported entirely by BBN.

Comments This implementation demonstrates that programming in assembly

language is not a barrier to the development of a reliable, efficient, fully

operational TCP system. In fact, it is doubtful if programming this system in ADA

would have made any improvement in the final product, or the cost to develop it.

McQuillan Consulting

452

4



WWMCCS ADA Study NETWORKING

Name oL S BBN HP3000

D Jack Sax, BBN (617) 497-3867

Dofriptign QL S.yte The HP3000 TCP code runs under the MPE IV operating

system as a special high priority process. It is not a part of the operating system

kernel because MPE IV has no kernel. The protocol process includes TCP, IP, 1822

and a new protocol called HDH which allows 1822 messages to be sent over HDLC

links. The protocol process has about 8k bytes of code and at least 20k bytes of

data depending on the number of buffers allocated. The TCP code is believed to

support all features except rubber EOL. The IP code currently supports fragment

reassembly but not fragmentation. In addition provisions have been made to allow

the IP layer to accept and act on routing and source quench messages. These

features will be added sometime this summer. Security and precedence are

currently ignored. In addition to TCP, the HP3000 has user and server TELNET as

well as user FTP. A server FTP may be added later. A complete description of

the implementation software can be found in IEN-167. For further information see

BBN Repcvt 4856 (January 1982).

erforman The performance of the system is very poor. With the optimal

packaging of data into messages, only 20 Kbs of data can be supported in a

self-loop test, under FTP or under TCP alone. Much of this inefficiency is in the

HP operating system, which is very slow in all I/O operations. In particular, all

network /0 flows through a device driver for the front end which treats the front

end as a half duplex device. Many complex software routines are invoked for each

transaction, with the result that the TCP software is most often waiting for the

device driver to complete. A rough estimate is that this implementation would be

MeQuillan Consulting

453



WWMCCS ADA Study NETWORKING

capable of supporting 35 Kbs if the device driver were not a constraint.

Quality This implementation is too slow and too preliminary to be considered more

than a beta test site release at this point.

flopmenI Team The software was developed by a team of two people over a

period of one and a half years. One person worked on the protocol issues, and the

other on the issues related to the HP3000. The team had to learn the HP3000, the

programming language, and the protocols. A total of 3 man years were required

for the project. Most of the effort, perhaps 80%, was required for TCP and IP. By

contrast, TELNET and FTP are almost trivial. In addition, the FTP implementation

borrows much of the TELNET code. It is estimated that the effort might have

been reduced to the range of 2 to 2.5 man years with a better development

environment (see below) and better initial familiarity with the hardware, software,

and protocols.

D Environment The software was written in a higher-level language

called SPL, somewhat similar to PL/I. The development environment was

extremely limited. Apart from the compiler, there were no software tools at all,

not even a debugger. Debugging by means of print statements probably added as

much as 20% to the overall development time, as compared to state-of-the-art

tools.

End Use It was originally intended that the system be installed at the ARPA

office, but contractual difficulties and a change in the version of the HP operating

system have delayed installation. There are no operational installations at

present.

McQuillan Consulting

454



WWMCCS ADA Study NETWORKING

Comments This implementation was included as a case study because it was

developed in a higher level language somewhat akin to PASCAL or PL/I, and thus

represents a point of comparison with future implementations in ADA. This

experience suggests that performance can be very adversely affected by operating

system constraints and programming language limitations. It also shows the cost of

implementing with a team that lacks sufficient relevant experience for the task.

This cost is two-fold: implementation time and expense, and inefficiencies in

run-time operations.

McQuillan Consulting



WWMCCS ADA Study NETWORKING

Name Q S BBN VAX UNIX

Dxvlger Mr. Robert Gurwitz, BBN (617) 491-1850

Decoripioaf BBN has developed an implementation of TCP/IP for DEC's

VAX(TM) family of processors, that runs under the Berkeley 4.1BSD version of

UNIX(TM). The development effort was funded by DARPA. Some important

features of the BBN VAX TCP/IP are that it runs in the UNIX kernel for enhanced

performance, it is a complete implementation of the TCP and IP protocols, and

provides facilities for direct user access to the IP and underlying network

protocols. The IP module supports checksums, option interpretation, fragmentation

and reassembly, extended internet address support, gateway communication with

ICMP, and support of multi-homing (multiple interfaces and addresses on the same

or different networks). The TCP supports checksums, sequencing, the ability to

pass options through to the IP level, and advanced windowing and adaptive

retransmission algorithms. Support is also provided for the User Datagram Protocol

(UDP). In addition to the TCP/IP software for the VAX, BBN has developed

implementations of the TELNET Virtual Terminal Protocol, File Transfer Protocol

(FTP), and Simple Mail Transfer Protocol (SMTP), for use with TCP. These

protocols are operated as user level programs. Also provided are network

programming support tools, such as network name/address manipulation libraries,

status, tracing, and debugging tools.

Note: An earlier, unrelated TCP/IP implementation was developed to
run as a user process in version 6 UNIX, with modifications obtained
from BBN for network access. This implementation, of a much lower
quality, was completed in 6 man months. It also had much lower
performance. IP reassembles fragments into datagrams, but has no
separate IP user interface. TCP supports user and server TELNET,
echo, discard, internet SMTP mail, and FTP. ICMP generates replies
to Echo Requests, and sends Source-Quench when reassembly buffers

MeQuillan Consulting

456



WWMCCS ADA Study NETWORKING

are full. The system runs on PDP-11/70s and PDP-11/45s running
UNIX version 6, with BBN IPC additions. The software was written in
C, requiring 25K instruction space, 20K data space. It supports 10
connections (including "listeners"). Unimplemented protocol features
include: TCP - Discards out-of-order segments (work in progress to
utilize out-of-order segments). IP - Does not handle some options and
ICMP messages. See BBN Report No. 4295

P Port to port throughput on the same IMP has been measured at

120-130 Kbs, running through the TCP software, but no higher level protocols, and

discarding all data. Over a 10 Mbs Ethernet LAN, throughput was measured at 400

Kbs. The Berkeley version of the software, with further performance tuning, runs

at 800 Kbs over the same network and the same computer (a DEC VAX 750).

Quali This package has been completely operational since April 1982. The TCP/IP

and higher level protocol software are now available direct from BBN. The

software is distributed on a tape, containing the sources and binaries for a 4.1BSD

UNIX kernel containing the network modifications and the sources and binaries for

the higher level protocols and support software. Documentation is provided in the

form of a set of UNIX manual pages for the network access device, user programs,

and libraries. In addition, a detailed installation document is provided. Device

drivers are supplied for the ACC LH/DH-11 IMP interface, the Proteon Associates

PRONET Local Network Interface, the ACC IF-I IMP interface, and the Interlan

10MB Ethernet interface.

Devloment Team R. Gurwitz was responsible for almost all of the network

protocol software of this project (TCP and IP) as his only project for a period of

18 months. The first 12 months were spent in design, programming, integration,

and testing. The final 6 months were spent in tuning and refinement of the

implementation. The higher level protocols (TELNET, FTP, and SMTP) were ported

MeQuillan Consulting

457



WWMCCS ADA Study NETWORKING

from previous implementations in 6 man months, and tuned and refined for another

6 man months.

De om Eironment The system was developed in C in the UNIX

environment. It was implemented internal to the UNIX kernel, which necessitated

work on the C debugger to make it function correctly in the kernel. The only

significant development tool employed was the RCS system from Purdue for source

code control. Some VAX instruction coding was necessary in assembler language.

TCP measurement tools such as a message generator, an echo process, and a

message discarding facility were of key importance in testing.

End Use Development began in earnest in September 1980. A first working version

was ready in March 1981. First releases were made to beta test sites in November

1981, and the system was operational in April 1982. There are presently 78

UNIX-based TCP systems operational on the ARPANET, 12 of which are BBN

C/70s, 21 are PDP-11s, and the balance, 45, are VAXs. Nearly all of these

installations can be traced back to the BBN VAX UNIX implementation. BBN

presently supports the system with a level of effort equivalent to 1.5 to 2 full

time programmers. They keep the implementation up to date, help users

ARPANET-wide, deal with usage-sensitive problems, etc.

Comments This is generally considered to be the premier TCP/IP implementation,

both in terms of quality and popularity (as measured by number of installations and

derived systems). Much of its success can be traced to the design decision to

place the software inside the UNIX kernel for enhanced performance.

McQuillan Consulting
458

. . . 'B . .. .- -- - --



WWMCCS ADA Study NETWORKING

4LAnnalyi

It is our conclusion that the time required to implement these protocols on various

computers and operating systems does not depend very much on the choice of

programming language. In fact, the three systems described above were

programmed at about the same time by three groups of programmers, in different

languages, on very different computers, and they each took about 1.5 years of

effort to complete TCP and IP and another year of effort for the higher level

protocols. This is quite a striking result.

This suggests that the development time was much more strongly affected by the

programming style at BBN: small teams of extremely talented individuals, with

ready access to other experts around the ARPANET community.

t is also worth mentioning that most of the individuals who we spoke with

concerning the implementation of these protocols in ADA were quite negative in

their reaction. This includes the most of the programmers of the systems

described above, as well as other individuals knowledgeable about implementations

on other computers (IBM, Univac, etc.). The consensus seemed to be a distrust of

ADA as a large, complex programming language not suitable for high-performance

communications software. ADA was seen as more suited to development of

applications which run in user space, rather than operating system or kernel

software.

There was also some consensus that the choice of programming language would

McQuillan Consulting
459



WWMCCS ADA Study NETWORKING

have a major effect on performance. By and large, the implementations with the

best performance have been written hi lower level languages for operating system

or kernel environments. Those written in higher level languages as applications

programs had very poor performance. This suggests that it may be advisable to

design a special protocol-handling kernel in ADA for WIN.

An example of this kind of implementation is the work done at UCLA for the IBM

operating system MVS. Bob Braden of UCLA, a very experienced protocol system

designer, built his own access method in EXCP using IBM service calls. This is

equivalent to, and runs in parallel with, the IBM standard VTAM access method. In

user space, he wrote a primitive operating system or kernel called MOS to support

process management, queues, memory management, etc. This in turn supports the

DoD protocols. This particular implementation, while not a high-performance

system, is perhaps the only reasonable way to approach the MVS operating system.

If such a kernel could be written in ADA, and made to be a part of the operating

system of the target computers (i.e., given.permanent space in memory, priority

with the scheduler, efficient inter-process communication, etc.) then the final

implementations might represent a good compromise between high performance and

good portability.

A related recommendation is that implementations in which much of the protocol

software is installed in a front end device are probably to be avoided. It has been

our observation and experience that such implementations are suitable only for

simple single-user terminals. For major computers serving many users and

processes, it seems essential to do much or most of the protocol work in the main

computer.

McQuillan Consulting
460



WWMCCS ADA Study NETWORKING

These two conclusions are borne out by the relatively unsuccessful experience in

attempting to port the earlier ARPANET protocol NCP from TENEX and UNIX,

where it worked well as operating system code in the main computers, to

Honeywell GCOS computers, where it did not work well as user code on a system

with a large front end.

McQulllan Consulting

461



WWMCCS ADA Study NETWORKING

5 Alternatives to TCP

This report would be incomplete if it did not address the broader question of

alternatives to the DoD standard protocol set - TCP, IP, TELNET, SMTP, and

FTP. It is the author's understanding that the WWMCCS Program Office has made

a decision to go forward with the implementation of these protocols in ADA. It is

not our purpose here to question that decision, but rather to present some of the

advantages and disadvantages of the DoD protocols (which we will refer to as

"TCP" for brevity).

Our overall finding is that the choice of TCP represents a difficult tradeoff in

several rather different dimensions. It is certainly a feasible approach, but one

that has some serious drawbacks. On the other hand, the other alternatives seem

to have significant drawbacks themselves.

Of all of the functional capabilities of the TCP protocol family, by far the most

important (and a unique feature of TCP/IP) is its capability to provide for

internetwork communication. This means that two host computers on different

networks can establish a communications link, possibly passing through several

intermediate and dissimilar networks, which provides for error-free high-performance

data transmission.

Given the requirement for true internetwork communication, what are the

alternatives? At present, and for the last five years or so, three schools of

thought have been popular:

McQuillan Consulting
462



WWMCCS ADA Study NETWORKING

"L All networks re te same This is the point of view of the PTTs (telephone

carriers), which are usually national monopolies. These groups developed the X.25

standard as the interface for connecting hosts to networks, and for defining a

"virtual circuit" through the network. The X.75 standard provides for end-to-end

virtual circuits passing through two or more X.25 networks. This is internetworking

in the eyes of this community. In some respects they are right. More than

twenty countries around the world support public X.25 data communications

networks interlinked by the X.75 standard. The X.121 standard provides for the

numbering of networks and hosts, much as the international telephone system of

country codes and area codes has been standardized.

Of course, this standard is not a complete solution. Non-X.25 networks are not

included in any direct way. Private networks, local nc;tworks, and other "special

cases" must be made to appear like an X.25 host to be supported.

It is also important to point out that X.25 is a fairly low-level standard. Much

has been made of the ISO 7-level reference model for Open System

Interconnection:

Physical Layer Transmits raw bits over a communications channel

Data Link Layer Transmits data frames sequentially, processes acknowledgement
frames

Network Layer Accepts messages from the host, transmits packets into the
network

Transport Layer Manages communications from source host to destination host

Session Layer Establishes end-to-end connections

Presentation Layer Provides services such as conversion, compression, encryption

Application Layer User-specific protocols

Mcquilian Consulting

463

Mcula Cosltn



WWMCCS ADA Study NETWORKING

X.25 is seen as a level-3 standard in this model. There is very little international

agreement as yet on the higher levels of protocol. Some encouraging progress is

being made on the standardization of electronic mail. This application is a good

example of the effort required to develop workable international standards. The

message format standard spells out which fields must be present in an electronic

message, and which are optional. It also defines their exact syntax and

semantics. Standards are also required for naming and addressing (the "envelope"

for the message), and for the message handling protocol. This work must be

repeated in several other areas as well (file transfer, remote job entry, graphics,

etc.) before this set of protocols can be considered complete.

"2 A llnetworks ar imilar. The second point of view is advocated by IBM and

other computer manufacturers, who have developed their own network

architectures. IBM's Systems Network Architecture (SNA) is the most prominent

example. It is by far the most widely installed network in the world today, with

over 10,000 IBM host computer systems connected to thousands of SNA

installations. The number is doubling every two years.

Other manufacturers have developed competing architectures, such as Digital

Equipment's Digital Network Architecture (DNA), and similar offerings from

Burroughs, Honeywell, Univac, etc. Recently, there has been a trend towards the

development of compatible hardware and software for interconnection of these

vendors' equipment with IBM SNA networks. Also, there are now several dozen

vendors of protocol converters of various types, to permit the connection of

non-SNA terminals and computers to SNA networks.

Finally, in the last year, IBM has changed its stance significantly on the philosophy

McQuillan Consulting
464



WWMCCS ADA Study NETWORKING

behind SNA. Originally, SNA was a "closed" network, available only to IBM

customers. BM recently published many of the protocol specifications for SNA to

facilitate third-party interconnection. The firm has also announced its support of a

wide variety of communications alternatives, including the use of X.25 packet

switching networks. This does not mean that SNA is "compatible with" or "the

same as" X.25, but it does mean that an organization with an SNA private network

can make use of X.25 public data network links as virtual circuits, much as they

would use physical circuits. One of the continuing problems with SNA and the ISO

model is that there is no simple correspondence between the SNA protocol levels

and the 7 ISO levels.

Slnetworks are di rnt. The third point of view is that held by the

designers of the DoD standard protocols, which will we term TCP for short. This

is also the view of the academic and research community, who feel that it is

essential to develop a protocol family with explicit internetwork capability.

Antag. TCP has two characteristics which set it apart from X.25 and SNA:

First, it permits the construction of a composite network using a variety of

different technologies (satellite, radio, local area network, etc.). Second, the TCP

virtual circuit remains intact when components of the internetwork fail. Given the

existence of multiple paths between two users, the composite network will switch

paths as necessary to maintain connectivity. In the X.25/X.75 approach, failures

will break the virtual circuit, and alternate paths are initiated only by establishing

another connection.

The capability for true internetworking may be important to WWMCCS for several

reasons. The architecture for WIS, as we understand it, is inherently a

McQuillan Consulting
465



WWMCCS ADA Study NETWORKING

multi-network structure. The DDN architecture is basically an internet comprising

the ARPANET, the MILNET, and the C3INET. Finally, it is important to note that

the IPLI, presently the only secure gateway, processes only IP datagrams, thus

requiring TCP/IP.

TCP's other advantages include the fact that it is operationally proven, is mature

at this time, and supports a wide range of user-level protocols. But the major

advantage of TCP is that it is independent of hardware vendor. This gives DoD

the opportunity to write the software first, and procure hardware later, at more

favorable price/performance levels. It also makes it possible to switch to better

hardware at any time in the future.

Disladvanta.gs However, TCP does have its drawbacks. It is an expensive

protocol to operate. It uses a great deal of host computer resources, especially on

more traditional operating systems ll-suited for high levels of interprocess

communications. It is also inefficient in network resources, using very long TCP/IP

headers on all packets, even very short interactive traffic. (This may not be that

important if future interactive traffic tends to stay local, and pass over high-speed

LANs, but it is certainly a concern at present). There is no question that TCP is

overkill on X.25 subnetworks, which may dominate in the long run.

Another issue is that TCP is essentially a creature of DoD. It remains to be seen

if any other body of users will embrace it. As a result, vendor support for the

protocol set is likely to be weak. We have heard that IBM, Univac, and some

others are working on TCP, but not as supported products. This means that DoD

will probably have to bear the almost the entire cost burden of development,

enhancement, maintenance, and support of the TCP protocol family on as many

McQuillan Consulting
466



WWMCCS ADA Study NETWORKING

computer systems as necessary.

A final drawback which is potentially more serious is the fact that we have no

operational experience to proove that TCP written in ADA can indeed be ported

from computer to computer, reult in a highqai , implementation. Most

people familiar with the subject would grant that an ADA implementation is

portable in the sense that it could be made to work on another computer. But

there are serious reservations in the protocol community about tle performance of

the resulting system. The TCP implementations reported on here have utterly

different philosophies and architectures. The fact that the TCP algorithms are

written in a portable language is only half the battle. More experience here would

be extremely valuable.

McQuillan Consulting
467



WWMCCS ADA Study NETWORKING

There are several strategic issues to be addressed in considering the development

of many implementations of the DoD protocols in ADA:

1. The use of ADA facilitates computer independence and portability. There

are serious computer and network performance questions to be answered, i.e.,

do ported ADA implementations perform well? do implementations written

in user space as opposed to operating systems kernels perform well?

2. The functionality and performance of TCP, etc. depend very much on the

computer and network architecture. What is the WIS architecture, and

where will TCP reside?

3. Phased implementation is advised. How will the implementations be phased?

What is essential for early implementation?

4. Careful tradeoffs between functionality, computer performance, and network

performance are essential. What guidance will the WWMCCS management

provide to implementers?

5. There is also a basic tradeoff between the upfront cost to develop the

software and the ongoing costs involved in maintaining it, and paying for the

computer and network resources consumed. What guidance will the

WWMCCS management provide here to implementers?

MeQuillan Consulting
468



WWMCCS ADA Study NETWORKING

The choice of ADA as the implementation language for TCP, IP, TELNET, SMTP,

and FTP is a difficult one. Indeed, the choice of this protocol set itself has

advantages and disadvantages. We cannot comment on the suitability of the

approach as a whole without the perspective of the WWMCCS management. We do

offer a professional opinion on the risks involved.

It is the conclusion of this study that the major risk in the use of ADA for TCP,

etc. is not in the time and cost of initial software implementation. That cost is

determined much more by other factors such as staff quality and experience,

requirements for documentation and security, and the quality of the operating

system and network tools. The key risk is that the implementations will have

unacceptably high computer and network operating costs. We regard this as a

serious risk and recommend detailed benchmark studies be carried out to assess the

cost penalty of a ported ADA system as compared with a "native" system on

several common WWMCCS computers. It is only with this kind of hard data that

an informed decision can be made on the tradeoff between the computer

independence offered by ADA/TCP and the costs involved in gaining that

independence.

McQuillan Consulting
469



CLUSTER IV PAPERS



I

::-.)Ct/9 £ I.,tvL.,ber I" " "

software d' -i gn .. analysis. inc.

167C) Deatar Mountain Drive
Boulder, Colorado 8OC0

034ci9 4,92

A Plan for Acquiring
Aids for
Converting Fortran or Cobol to Ada

William E. Riddle

ABSTRACT:

We propose z two-year plan for developing the capab]i1t/ to conert

Fortran or Cobol programs into Ada programs. This plan ia based or,

the consideration of two existing capabilities for the con ,ersion o

one hicgh-l evel programming language into another.

This plan was produced as part of a study. performed for the WWrICCS
Program Office, to define software and system level building bloc Vs
for command and control systems.

0 Copyright. software design & anatlysis, inc. 1987. All rights
reserved.

471

hecJ. M PAM .... . fl



software design & analysis
1670 beivt mountai-n d'uive, bou~deA, coto~'udo 80303

IDA~

_ V DA- ce (AJW CCS

6ef ay L, -u 4-e. .' Was -

472



II

1.Ov t--r v 1 e v.JI
1. . ir ie f D j-Escr p t orI

Conversion Aid,. are tools that assist in the translaLion of pro-

ra ins in one hi cqp -1 evel progreai ng 1 anguage. call ed the source

larIuaoe, into proqranms in another hi oh-level proramf-mi ro lan0ULCae.

called the tarQet 1,,rigu& e. The aids ideally perform this trar slFtion

-fully automiatically. but several technical problems usUall,/ reSLlt in

the aids performi rq only the bul k of the tranlation. with hLt(an

interaction or involvement needed to complete the translation.

This study is Loncerned with conversion aids vhere the t-r net

lannuane is Adit. 1the source languaes- of interest are rr inw a , cr--

tran and Cobol because of the larne amount of e;:istinq cr-,nJ 1o n the'ie

lanouages within thy command and control communit,.

The task of conversion is usual ly brolen into three ste-pS z- s

i cted i n Fi ure I.

I
I
I
I

1
I Ada is a registered trademark of the Department of De+ense Ada

Joint Program Office.

4
473

|I



!SOLUPCE TF

LANGUAGE E INITIAL TFTFA:\lSFORM1ATI r4

VE, SIrON I f'ANSLATION INTERMEDIATE
LA(ZNGUA~GE
VEF<S I ON~'

F I NAL J

TRAISLAT ION

j TARGET

LANGUAGE
VERS I OlN

Figure 1: General Organization of Conversions Aids

The first step involves the initiatl processing of the proiram i thie

sOurce 1 anguage to produce an intermedi ate Ianguaqe version. Thi s

initial translation is done with respect to a librar y of pre-ccded

segments of target lanquage descriptions that have been foreseen 6s

tvpic4l1l u,-ed in the conversion process. The second step involves

massagi ng this intermediate lanquage version. through the use Ot vi-

ouz transformers, to i iprove the Quality" of the end result. The third

step involves the production of the final tar-aet laIr.ciage versio from

the intermediate language ,,ersion.

Conv/er-sion aids are organized into this sequence of processing

steps in order to isolate the generally simple task of obtaining some.

albeit primitive, translation from the much more difficult tas: of

getting a good translation. The initial translation can handle the

task- of providing a primitive understanding of the source version and

prepare what is. in essence. a rough translation. The transformation

474



Con a, s on Aid- - E 'i clcd

step czn tune tth, rc uah trans] ati on in rlrjUs wav to rcrea-e

either thi- performritc:e or the readability' of the rEIU] tino Laracet ver-

si on.

An important cnneral cha-racterisstic of a conversion a3 d is the

unit af in format ii in in the source lanfua(e that it. worts on. Whil e

the conversion aid Could operate on an input description as an es:en-

tially monolithic wjhole, it is generall/ better to have it recognlze

some meaningful substructure within the description. Usual.y this Is

a program unit such as a Subroutine, function or common block.. Mot

only does this tend to keep the performance of the conversion higher.

but it also tends to produce more malleable initial translations.

This will be discussed further below.

I.2. E;:amples Studied

Two e'famples of existinq conversion capabili ty we-e Studied. Une

is the work done in conjunction with the Interacti ye Bath Ipprovenent

System (IBIS) project at the University of Bath in Enaland and the

other is a M.Sc. project done in Australia at the UnivErsit,- of

Tasmania.

The general goal of the IBIS pro-iect is to promide a fac Iit I

supporti ng the interacti ve, user-dri yen improvement o0 pr oarsimis,

specifically Ada programs. This means that there is a heavy emphasis

on the transformation of programs such as is needed in conversion

aids. Apparently this project grew out of earlier and continuing wor.

on conversion aids and it is utilizing the previous thin:ing about

transformations needed in conversion. The aeneral obiective of the

4
475I



(-"if '°','°: ,Or on ii : -- 4 - 4 F F.'j_'cIi1

Cor, /,r- i on r,.qmEr, t of th IBI31S pro 3 ect is to pro/ de z fci 1 ity for

£ornverti r, 4 lrc an 1 y)ne oF a number of soir(- I EngL(6Qges t.o an/ one of

.: number of target I ,ncLaCes. The primar,/ focus to date, ho -jever. has

bFeen on the corver,-. on of Fortr,:-n to A'da. The Fortran to Ada conver-

si on aid that is b( ing built has the general Structure ci ien above --

in fact. thi,:i strucI ure is taken +rom the Ii terEture on the Bath

conversion aid. Further, the project uses the Diana interamediate

1 anquage. The cCfIvL-rsion tool as it stands now is able to produce a,

ifnitial translation, perform some simple transforr .ations. and prepare

the final translatii:,n. Several simplifying assumptions have been made

and a few technica] problems deferred -- these Ere discussed laiter --

but the Bath convers ion aid seems to provide both a proo+ of concept

and a coriceptLal and technical basis on which to prnC5ress.

The project at the University of Tasmonia focused on the problems

associated with trYing to discover structure in cor-,.ertjng Fortren

programs into Pas-al prograirs. The system that was prCoduccd is 1n c t

e'teni ,,e enough or of high enough qualit,i to he cf direct Li-e'. Blut

it demonstrates the possibility of dozng at leest orrmirtivye tructur e

determination so that the target ver sion appropratel,, useS the con-

trol struCturing con tructs of modern an.;u,-:les _uch as Fa,--(--l o:r A dm.

While this capability is not necessaril\, required, it does tend to

provide target versions that are more maintainable (because they are

more understandable) and that provide higher performance 'because the

control logic is not programmed out a primitive way) ,and the.--.e charac-

teristics can be important as explained below.

476



cnri . _ .in i'pi - 5W E fiddle

7 .. -er-f or rr._,r-,c c.

The major perf,,rrnce mea.ilure is the speed of the c-jn.-Er_-si on ai d,

in 1i nes of sour-rc, 1 anguaqe processed per mi nite (Ipm). c-th of the

casc-s Ftudi cI repor I on th ordtr o0 801 1pm for the conver- E: on Pro-

cessi ng ... th e a'. I ual rate for the'. Oath cotversi on aid is about h-1 f

this rate bfEcaue Q0 the overhead i ritroduced by the Di ana rterf ace

clIeckinriq a factor vj.j ch the Bath pec, ple feel can be reduced.

Thus. conversion can be expected to be a length:,'.* resource-

consuming process. The initial translation can nenerally be done ir,

time that is proportional to the length c,4: the source description

being anal ized. But the transformational processing c,=4n require tME

that is e*:ponential ly proportional to the 1 encth of the source

description, and there is not much hope of speeding this uO due to the

nature of the processing that must be done.

Another performance measure that can be Used for con,,ersi nn cai ds

Is the speed of the target version relative to the so,,urrce ,ersior,

(with the speed measures appropriately adiuwEted to refect the speeds

of the machines on which these two versions run). No such fi auresE

were reported for the Eath conversion aid. but. it I.-4 rI F .- , pted that

the Pascal code produced by the Tasmania processor ran slightly slower

than the original Fortran version. It should also be pointed out. as

reported elsewhere, that the e,:perience has been that autom- '.ic

conversi on generally produces code that runs faster than hand-

converted code. E,_actly what relative performance is needed depends

on many factors; for e,,ample. the converted code may still provide

acceptable response time even though it runs slower. So the

4
477



I: c i '.r t. ' . d -i L4 E F. d 1

- -C 1 ' J Ct Or of r quLl r-m-.r-ts for th is aspect of por fcrnMarce j 3o,1 h '

dkrP-.Ir'dcnt on the app Iic cti on ,re a for the conve.-rted code ard ceinnot bE

easIly sl peC:ifjid in absolute terms.

1.4. Level of Effort to Implement

Decause of the research nature of the two e::ampiles studied. it is

hard t: p redi ct the level of effort required to produce acceptable 

prodIUction-qual ity versions. The data reported by the projects Su-

gest that a bottom line figure for the design and implementation of an

initial translation jnd simple transformation capability (that skirts

4ome techni cal i eSues) is about one person year with another person

,Vear needed for testing. O)n the other hand. the people at the Bnth

preiect have estimated that to produCe a Cobol to Ada converEion ai

that provides reasonably sophisticated transformational processinc

would requi re about .(: person years over an 18 month period at a cost

cf aboUL $5M. This seems to be more than is needed arid the true

required effort is probably somewhere in between but close to the hiah

end for any degree of sophistication --- a reasonable plan rCqL(iirrc,

abCut 2T person years to aet both a Fortran-to-Ada and a Cobol-to-Aca

capability is detailed in Section 4.

2. Description of Functional Requiremernts

What is required of a conversion aid depends on the end-use of

the target version. On the one hand, the purpose of conversion could

be to merely obtain a runnable version that will not itself be used a

basis for evolution of the software system. On the other hand. one

may want to obtain a version that will be used for system enhancement

478



I rc , ',r'. -4 'i d .- 7 ,. E F1 id ci ,e

E rid nai riten nn,-. cfh requ iremerits for pr oduc3 nO e.'vo] vab 1e co)dE &rei

o~b'.'cl ~' y morie '~tr qcnt.

Wi thout the i nI nt to use the conver ted program as a basis for

s "- tet evc Iution, t.lp requirements are:

-- the conver si or, aid ShoUl d accept and produce versions that

adhere t E 0 ine set of :,tandards for the scurce and target
1 arnqtiacges

the convel sion aid should be :ble to conpl etel v automati-
cal 1 y prJduce a target ver-si on that is runnable ,:i t h
"minimal" human massaging: the c:urrent state of the art and
the desire for reasonable conversion aid performance prohi-
bit requir-ing "no human mas ag; we must at least be
willing to a&ceVt the situation in whicoh the conversion aid
produces a iarget version that produces compiler error me --
sages to dr,-,w our attentior- to Si tuatlons -hich could not be
handled automatica 1. ,

the conversion aid should handle machine dependenci tv

inserting appropriate code into the target version wherever
possible,

-- the conversion aid should process Source .,ersicins on
natural program unit bais (e.g.. on a subroutine basis),

-- the conversion aid should produce tarOet ersions that per-
form acceptably this requirement must be enUnciated mcire
e:actly for the different types of command and control
software: the con vert,= i on aid hou I d probabl v pro.LOe
interactive transformational pr :cessina for performance
enhancement so that. the human user can direct and guide
i mprovement of the target ver ion with respect to its per-
formance, and

-- the conversion aid Should a] low the easy incorporation 0
new transformations so that the overall system is e:,tensible
as new desires are disco,,'ered and new technoloav s

developed.I
For the production of target versions that can be used as a basis

for evolution. there is an additional requirement: the conversion aid

should produce readable, understandable code. This basically means

that the conversion aid should produce well-structured code that

479I



+ c,p r *-,ti ly - he -on!:tI' uCt.'- of the tai-qt L Cl U:' . Fro'i, inor

thi C)-hbi h 1 ty II n (-oat Iv C2 y af+ -c:t the p erform ince o t ,e c C,,cr--

si ,n aid end i nvolkj nci thi s requi rement must be done onl y in con c:nc-

ti Or, wl th a car f LI Asessm-ent of the per+ormance reou ired as we1 1 - s

C,, ,_-,l asQ-es:mer t o+ whFether or not the capabi 1 1ty is requi red.

2. 1. General Case

With the structure given above, it is possible to first acquire a

basic capability and then enhance it as the need arises and the tech-

nology permits. The aenera. case can therefore be considered to be

b&Feline =,'stem that:

-- has both standard Fortran or stanua-d C 8Sol a sourCe

languaqes (it will probably be necessary to accept both For-
tran 66 and FortraF 77).

has standard Ada as the target languaoe.

handles. correctIl, all aspects of the source I ancu6es it-
the provi so that it can produce taraet beraons th.t cen-
orate compiler error messages to indicate co nstr-uctS ar,0
sittuations that it cannot efficiently handdle.

-- provides transformational aldz fc:r asssist1na an G 71c vIIrC
compiler error messacles in the target versions and imTDrcvro
the performance of the target version. and

-- provides the ability to easily incorporate ne" transforma-
tions, perhaps providing tools to assist in this process.

2.2. Variants

The variations that are possible stem from the possibility of

adding transformations that assist the user in prepar.nq hiOh(or)

quality target versions. An obvious variation is one in which the

transformations are provided to produce well-structured target ver-

sions. Other variations could include transformations that: p-oduce

480



h AD-A142 570 W15 [MPLEMENTATION STU0Y REPORT VOLUME 3 BACKGROUNO 6/&
INFORMATION(U) INSTITUTE FOR DEFENSE ANALYSES

D ALEXANDRIA VA T H PROBERT 01 OCT 83 IDA-D-51-VO L-3
UNCASSIFIED IDA/H Q -84-28344 MDAg3-79 - N8 F8/G 17/2 NL

IIIIIIIIINI
IIIIIIIIIItI



HH ~ 1.8

ICIUI1 LSLLO I'L'~ CHART-



Lonvtet Eicfl (,id,-. E F', E. dd. c

-ode adhLr 1 ricl to -'m c: Codi igc standard, prcdLtCe ccdet that ir.cl ud ,s theI
.sourcr- code as com,,tI s in th-Lf target versJ on. etc.

I 2. .. Per f ormanrce.

Thc basj c. gerLral case can be e':pected to perform linearI / with

the leniith of the -ir-c-e descripti .on being processed. The transforma-

tiosr can generally he e.:pected to recruire e::ponential time.

It seems reasoa,abIe t ez:pect that target versions will perfor

about as well as th(- source versions, modulo differences in the speads

of the machines on which these different versions run. It does not

seem reasonable to expect the target version to perform signi4cantl,,

better. For most apolication-. it wo)uld seem tI-t !Eionific; nt degra-

dation, say by a factor of two, in the performance of the target ver-

sion will be unacceptable.

2.4. Technical Challenges

For the basic version of the system one technical challenge seems

to be handling i nput,' output. The nigh dependence of this part of

language on the machine tax:es the currently developed techniqueS for

conve-rsion. Meetina this chal lenge cer tainl ' does not reours

advances in technology; it rather requires hard, innovati ve wcr I On

how to efficiently accomplish the needed processing.

The other technical challenge that will be encountered in produc-

ing the basic conversion aid lies in finding efficient ways to process

intermodule interaction. It was suggested above that the basic system

handle Source descriptions on a program unit basis. This means that

481



c, r '(.r i , , C(- ( - ", L Fi dcil e

i lit (AcLIule ir , iors wil 11 have to be handl ed by (re-s .. nI transfer

or that the A d c(., 1l.r-'s capab ]ites w111 have to . relicd utpon to

sort Out SitLatioCjE th-at are typicalIy hi.ndled by likraqe editors for

Fortran. Fjiurincl 0ut how.j to appropri ately utilize the compiler's

capabi 1 i t i e, r-d tIe message passi ng concept under1 yi rig the Ada

I angttage i ] I be di ffi cult. Some relief is obtained by having the

basic sstem do som,.thing reasonably acceptable and then pro/icling, is

Enhancements to the basic system, the transf+ormations that can be used

to improve the taras-t code. This would allow the basic system to be

acquired in a reasonable period of time and not be delayed by failures

to successfully address this technical challenge but it merel v di s-

places the challence and does not eliminate it.

Further technical challenges lie in providing the sophisticated

transformations that will lead to high-quality target versions- These

seem to be algorithm compl e.:i ty problems rather than alcrithm

de.-elopment problems.

1.I. Interactiive Bath Improvement System

I .1. Developer

School o-f Mathematics

University of Bath

Claverton Down

Bath BA2 7AY

Engl and

Technical Contacts: John Slape 011 44 225 61244 , 20

Peter Wallis 011 44 225 61244 ': 222

482



L(_,r;,'i . i:,l, A ck: - 11 -- W E bx2.Jd~e

1 . De :'zripti ci, r::4, s, 't cT

The overal 1 intent of the Interacti ve Dath ImprovErent S/ ,sten

(IBIS) project i E tc, provide an interact. ve faci1ity for the improve-

mert of Ada proyrau, As part of this project. work has beer done on

a conversion aid that translates both Fortran 66 and Fortrn 77 into

Ada. The conversitr. €;id does not handle all 1eaal Fortran code -- thE

Cases that it does not handle are relatively min-or with the c_:cEptLor

that it does not handle forma:ted or ur-Iformated input/OUtput. a m1a r

impact on its utilit,/.

The conversior, aid is structured as depicted in Fig ure 1 and Uses

Diana as the intermediate langLuaqe. The initial translation 1is a

Sine-by-i ne conversi on of Fortran into a Di.ana tree representati on of

the Ada target version. This initial translation is done in a single

pass. keeping its efficiency relatively high. The transformation pro-

cessing is fairly simple at this time. The final tran1ation is done

by a "pretty printer" that constructs well-foiriated Ada cooe ror a

Diana representation.

The conversion aid produces almost runnable Ada code. In those

cases were the trans14.t i on cannot be aUtomti cal I , dorne f sormet 1 me( s

because of technolocical feasibility but primarily because oi the

one-pass nature of the initial translation), the tarcet version will

generate error messages at compile time, so the system can be categcor-

ized as one that either succeeds or announces that it has -failed. One

case in which this is necessary is the handling of Fortran e.:tended-

range do-loops for which the generated code will reference labels from

outside their scopes. Another is in checking the rule in Ada that a

483



CLI tr i flfI i'g -F: Li I r d i -

f u r t ic. i cnro t m,,d.± f, i ts parameters. Tie r0 utI tir i ] cO-c t reC't

(ie (: an be CM r I-C"_- t IJ uS i na t ran f+c)rnAti ons ; d tM r-'C tV 11 , rcr,

H .pe the pu rforf- IrIa C? of the conversi on aid wi thin real-o .

7. 1.7. Fer f+ or? ,ac E.-

The Bath con v 3 on aid pr ocE:5-e source descriptions at C oi0kt

i nes per mir,ute of cpu time. About haElf of this proce--sil, is-

needed for transfer of information through the Diana interface and the

project members zro attacting this problem and hold out some reason-

able hope for- reducing this time. Thus the effective processin speed

of the conversicon aid is about 80C. 1pm.

7. 1.4. L0U aIi.."

The system is a proof-of-concept prototvpe.

L.1.5. Development Team

The systen as it stands now is about qc0 lrinerS c+ F asczai cc -.

No information .a z-ailable about how miany people vct¢ed o.'er wrhat

period of time to produce this code.

-. 1.6. Development Environment

Evidently.. no special tools other than normal opei-ating system-

level tools and the Pascal language processor were used. The system

was developed on a Hone,/well Multics system but such a sy'stem does not

provide extensive support for software development other than those

aids found in traditional operating systems.

484



1 ,,, L,. f ln ,'-,L .I,. - -. w- F ~ ,!

n!
-. .1. 7. End l.J .

At the momc.nt the Systen. runs salely on a HorEpvwel l Mul t i s s-

te1r. LbLt work is already planned to bring the system up on a Ferq work

station. The s,/sto:m has- evi dent 1, not been di -tributed to other

install Itions.

-. 1.8. Caomments

Thi s is a s,'stem developed as part o+ an on-going research pro-

ject. Thus it provides ideas. techniques, a reduction in design time.

and a proof of concept but it does not provide either a usable s/5tem

or usable piece parts.

While there is a standard definition of the Diana intermediate

language, several differina implementations have arisen becauEe of the

perception that an implementation of the standard will adversely

affect compIation time. Thus the reasonable hope that basino a sy-

tem on Diana will lead to reduction of effort because of the possibil-

ity of "borrowi ng parts of the system from others ma'y not be reai-

1izod.

-. l.a?. F: ferences

J. K. Slape and F. J. L. Wallis. Conversion of Fortran to

Ada Using an Intermediate Tree Represent ati on. Tech.
Report, School of Math.. University oi Bath. Auguet I78d.

.2. Tasmanian Conversion Aid

3.2.1. Developer

R. A. Freak

Department of Information Science

485



C , cm. -1 ij,. -- 4 -- W L f.ida.:-

"he Urijv.roit' of Tasmr.nia
GPO L'uj:: 252C Hbart

AuLEtra 1 i a

Curreri Contact: A. H. J. Sale '11 61 2 20C) 27.74

.2.:. Descr~ption of System

This system wa,, developed by Frc-kl as part of an M1. Sc. theEi s

pro ject at the University of Tasmania. The +OCLIS of the sy /stem is cr,

technIoueS for prodk- ng well-structured translation when convertina

from one high-level programming language to another, in this case from

Fortran to Pascal. The system is a research tool that is incomplete.

has some remaining errors and is not robust.

The system shows the feasibilit, of discovering structure in Cde

that does not have the structuring cnstructs of a modern programmiLng

1 anuae. It Sl5o s hows that such processinq is e>xpensive because C,

the graph searching nature of the algorithmns. Ar,d it shows. th lt the

percormance of these algorithms depends on whether or nct the Zsource4

descriotiori itself is of high qual.L t/, structure-wise -- badlv oroat-

iz-:d code just cannot be converted to good t..roet cc-di- that u_-s -r,

ava.Ilaole structurinq constructs.

The s,.'stem works at the Fortran subroutine Ievel nd di scovers

(in a reasonably high-quality pieCe of sour-e des7riptlor): Stru-

tured control flow, block nesting, structure within comimon blocks that

can be realized in Pascal records, and the structutre within e::res-

sions needed to produce equivalent Pascal expressions.

486



-. [ Er :C)r, r- I

E:per 1 murital &e Cof the svstem Shows that i t procE sses about 9 (-) 0

1ines r, F Source (Iescription per cpu niinute. Because of the e.:ponen-

tial nature of the processing that must be done. it seems Un 1 1i:elV

that this L.an be improved significantly.

2..4. Dial ity

This is a proo- -of-concept research-oriented _ystem.

2.5. Development Team

No information was available as to the person ,ear effort or ti,,e

s pan needed to produce the system. It cmr-,sEsts -f )4+ ,lQ line : ,:,+

Algol code.

2.6. De-veloprnent Environment

The s,,,stem was programmed in Burroughs -700(' A]ol. presumably

with no more than the level of development support availlacle in a

traditional operating system.

".2.7. End Use

There has been some distribution of the system but with Fo Up-

port provided.

.2.8. Comments

This system Provides ideas. algorithms. a reduction in desian

time, and a proof of the feasibility of producing well-structur-ed ta.ir-

get descriptions. It does not offer a usable system or usable piece

487



k '. i r i or, i-' d. - ,-. - _ F' d I E.

p,?;- t t:

?:. . f . ,f.r e c-s

R. A. Frc-.,l A Fortran to Pascal Translator. Soft vizre

Przictice .,nd Eperie-nce. Vol 11. 1981). 717-7:2.

4. An al vsi1 s

The possibility of providing a tool for con;,-ertifng Fortran or

Cobol tc,- Ada is cer-tain. Arid the tool can be of relatively hiah ner-

formance as long as the sophisticated processing needed to provide

advanced capabilittes is relegated to optionally invoked portions of

the system. This cr. be acc.orrplisted bv adopting the EtrLkCtLAre ai ve

in FiCIure 1.

Diana is an obvious choice for the intermedia-te revresentatjion

especially wJhen the conversion tool is going to be part o4 an environ-

ment supporting the develomment of Ada-based -oftw.,' s,-tems. lhe

auCimented tree structure us ed in the Di ana 1,stem r . i de a i r I

hicrh dpgree of flC%.bilt,' for organizing the ir, fc:,r-,E-ati on recded f cr

conversion and oroanizin the tr ans + or-ver s that are iOlved in

con,.er ion.

The processi na needed to p :r°+orm quai t. -entanci nq tr c-=n o r,--

tions can be resource intensive. The need for these tratns-formations

should be carefull1y determined before an investment is made in acqu]ir--

ing them and using them. The approach embodied in Figure 1 pro,.3des

the ability to incrementally, enhance a base system as the need for,

additional capabilities is identified. This aspect of the syste-m

should be e,:ploited by delaving the addition of sophisticated

488



-17-- 11

tr ,rm ti:.r'Er :h s , 1 b e znd thur, or-d a1 1 I r tr ILC r,; the

t r I" f'l o rfP- " -" n I'z t..- qf-'

A poF--ible :e-qu&'nce and schLdUlle of activities for acquirino For-

tran ncl Cobol to Aria conversizn aids as cgiven In FiacurE 2.

34 35

- - - -- -- - - - - - -

develop a basic Fortran-to-Ada conversion aid

-----

develop a basic Cobol-to-Ada ccnversi on aid

to-st the conversion ain s

- ----- - - - *
de,'elop advanced transformers

Figure 2: Conversion Aid Activities and Schedule

The maor activeities are two parallel efforts to develop Fortr:n--to-

A zda and Cobol-to-Ada conversion aids. There will ob ,ious , yv E - uo

deal c.f svnei-i sm ro_sible between these two pro icots znc the,,- t tEJ

t ightly coordinated.

During the initi1al half--year c-f these projects, a definitiva

specification of the intermediate lanQuage must be developed. f

Diana is adopted, as sugaested above, then this time is n euded to

identi fy the Diana version to use and develop any specialized Diana-

related tools pertinent to the conversion task.) This initial defini-

tion sub-activity is needed not only to help coordinate the two basic

489



c, i r ,i ,J s - 18- wE fi d ic 

r ,L'Ct_ t- ut itl o to provi de a b:,se frr t. h P R ara k acti vI t V S tar .-

n(I II m d-,,e.7,r 1904. thzit is ori ented toward d o]-,upI rn d a&ncd C,

trE. n(orm.r s. The deilay of this latter activity is needcd bEc-=ut Cf

the need to do+ ine the i ntermc-di atc I anQUae but al :o becLISe i f tt e

r, eE.d to determine e, tly hat vi 1 be in tI-he basi convers c,n ai ds

befor e laurchinqi the dc.eelopment of advanced transformers. The iI r-]

rti vi tv i ri thi s rougjh plan is to tkest -he conversi on Ai d0' ar, d 1zhe

;-d.'anced transforTer s during, the last half of 1c"15. This wi ll be pri -

mari1I,, for certification but it will also serve to uncover any perfo-r-

mance problems so that they can be corrected before, or s;,on after.

Lhe conversion aids are put into service.

The e1+ort required and apnrcL ari.te for thee t1i tIes -

estimated to be:

develop Fortran-to-Ada conversion aid 5 person vears

develop Cobol-to-Ada conversion aid 5 person ,,ars

deve] op advanced transformers 7 person years

te=t the rconversion aids L. perc,r, /ears

TOCTAL '- per-.on veers

5. ConClusiors

The cznclusions of this irvestigation of conversion aids =re:

-- the feasibility of developing Fortran and Cobol to Ld

conversion tools has been demonstrated and the Ecquisition

of these aids is primarily a systems enaineering task

490



Cc..1 ~~ fjr. t, 1t -7: a

I the ovte shouldi We truLLt:r e-rd in Fi cIri 1 m. thatt

pu~v b I e t 0 f I t. prnvi de a basic c uapcb 1 3 tvi srd ther-

enha~nce it as deemed ncsayand desi rz.bi e

t he ar cu iit i o f t he C L: ner!:1 on a i Is c an b ca omplic 5h C-:

bef ore JanuArv 1 986 with an e.~pend1 ture (:j -b(DUt -. per son

,oars at a cost of appror;imaTtC?1 , T-. CM1 oEN the nen:t L W:

i f th conve ri aids are to P-roduce 1,erSi enE thai. c i-n t. C

used as the basis +or syste(. evoci uti on then the perc r flune

o-f the base sv~stem may be so-er 1. dECI-adeci 'nC the Mi io ct

r-eLA1 r ed fr c ltir wil I cl-. ucsir to-- 7sifl'C

-the techni cal challIengies ire j7:1t E Iver en acut

devel opinr a sul.tnd. e-f+'.ci art,*~;i1-ni erB s,.-7teq

th~in the ad. 3cm fn . the tIeC.r-c'tI cal bes~r tn .ri c

1 491



[', M I'> ec..-.erDer- . 2

,so+ tware des , , anal .,'si s. c.

10t70-- 5ear IcUrtain D i,

Boulder, Col orado 8,)-4-

30' 499 4782

A Plan for ACquilri'nQ

Design Description and Analysis Tools

William E. Riodie

ASS TRACT:

We propose a four-vear plan for acquirina the caoabil.,t to cescribe

and anal Vze designs of concurrent, Ada-based svszems. [he I an s

eased on putting a basic capability in place within two years and -hen

enhancing it with more powerful behavior analysis capabilities aE the

need and the technoloy permit. The plan results from the 0t;v o

h ree c: I sting carabilities, two of which use finite state mo_cellir-o
. - tne basis for their analysis capabilities.

0 -c,:.cm:. ~t'.Jar:- 1e. n 5, -- (7 -.-

493

kAECBD1Ij pA& L( -NOT nIAXEM)



software design & analysis
1670 beaA mountai-n dx-tve, bou.LdvL, coZo~'tado 80303

IDA~

'Decy ll

a

494



SOver v i ew

1.1. Brief Description

Prior to the implementation of a software system in some program-

ming language, the system must be defined and designed. Definition

involves the preparation of a specification for the system. stating

the requirements on its functionality and Derformance. Design

involves the preparation of a structure for the system as a set of

modules (architectural design) and a specification of each module's

data storage and manipulation activities (detailed design).

Design description and analysis tools support the architectural

and detailed design activities. Underlying a set of such tools is a

design language in which designers can describe:

-- a system's hierarchical decomposition into modules,

-- a module's interface through which other modules can invok1e
the facilities provided by the module.

-- the desired interactions among the modules at some level in

the hierarchy, and

-- the data storage and manipulation aspects of each module.

Descriptions in the design language are models of the ultimate s'stem

that specify the details of the system's modularity but are only rOuor

blueprints of the modules themselves. The basic reason or desI n

wcdels is to decompose the overall system's reCuirenients intc r :-

.nents on tre narts of the system.

The tools_ themselves aid in answerina OLIO.t1 Ons aCCuLt t. I : i --

t t, o-,: the desi qn. The bas.-c Question Ls: if the ,nodules zp-

as rroscrited. 'Ili the over-aiI s'stem _ati, - r=ouiY-menc" "

495



Design Tools - E Ricile

tools aid addressina this question by helpino aesioners assess the

completeness of the design at each level of decomocsition and the con-

sistency between the descriptions of the design at different ievels.

To facilitate this consistency checking. each module is usual' .'

described twice. One description, called the module's e::ternal

description, specifies those properties pertinent to the module's use.

The second description, the module's internal description. soeci4ies

implementation aspects such as how the module should be composed out

of lower-level modules and how it should use these modules to provide

the services advertised to its users by the external description.

Design description and analysis tools assist in:

-- preparing these dual descriptions,

-- checking their completeness with respect to methodological

rules concerning what must be specified at various points

during design, and

-- determining the consistency between the dual descriptions of

each module.

A particularly effective approach to giving a module's internal

description is by preparing an operational model in some oseudo-

programming language. Such a model gives the details pertinent to

understanding how the module controls the use of the facilities pro-

,ided by lower-level modules. With such models, consistency anai.siB

can pIo0ress b/ analvzing the model, usino ei ther mulation 3r ar-a-

1 -tit z te niques° to determine the behavior that it will e>: niit a,-n

then c,:he.zk,]nq thi', derived behavioral information aoainst :hat

in th;e e cernal descripticn about the module's beha,,jDr*.

0 Consistsncv checking Is most LuSLaly u1-eC -M cthc he,,cr-

r-narcterls -s. in the ;emaincer , this oace-. ,e use ;-n* !-rrs
cznsistencv chieci i," anc "behavioral anal,,sis" as c.\fnrCnvmCu_=.

496

" . . . . '. . . I I I' " . . ...Il ~ ll - ' , . . . ' ' ' " -" --



eign Tools - - W E R2ddle

A design description and analysis tool set consists, therefore.

of:

-- a design language,

-- description analyzers that help assure that the form of the
description is appropriate and adheres to any rules that
might be imposed about how designs should be descrined.

-- completeness analyzers that help assure that guidelines con-
cerning the process of developing a design description are
followed, and

-- consistency analyzers that help assure that the behavior 0;
the modules will be suitable and that the overall system
will meet its functional and performance requirements (as
long as the modules are correctly implemented).

1.2. Examples Studied

Design description and analysis tool sets differ primarily with

respect to the power of their consistency checking capabilities. The

major visible effect of this difference is the nature of the design

language. Tools sets that provide a natural language as the design

language do not provide consistency checkers. On the other hand.

tools sets based on a formally defined notation usually include mower-

ful consistency checking analyzers.

Three example tools sets, which span the consistencv chec!::ing

spectrum. were studied. As an example of the low-end of the spectrum.

the Bvron* program development system was e:amirea. Bvron 1r va es

i i inua st.i c ex tansi ons to the Ada** programminq I angua :e f or ths

description of both internal and external aspects of noduleq. T '

4. ,vrin is a trademark of IntermetriCs. Inc.

*1. Pda is A trademark of the Department of Defense. Ada Jin. F-Croo a.:

497



Design Tools - 4 - W E Riddle

extensions are primarily free-form natural-language text organizeo

into key-worded segments that specify different aspects Such as pre-

conditions upon invoking a module, post-conditions resulting from

module invocation. invariants preserved over module invocation. and

the algorithm used in implementing a module. Byron does not provide

extensive completeness or consistency analysis caoabilities. Despite

its relati °e primitiveness. Byron does provide signLficant support for

design and demonstrates that a fairly modest investment can reap a

fairly high payoff.

As an example of a design description and analysis tool set that

has an intermediate level of power, the tools being developed in the

Software Design Techniques (SDT) project at New Mexico Institute were

examined. This is a research project focusing on consistency analysis

tools that employ finite state analysis techniques. The SDT desian

notation permits the modelling of a software system's design in terms

of a hierarchy of finite-state machine models of the system's modules.

The consistency analysis tools can be used to determine all of the

state changes effected by a module's operational model as well as to

compare these state changes to those specified in a module's e'xternal

description.

We consider the SDT tools to be of intermediate power sin.e th,

consistency checl::ing that they perform is inex,-act. In anal,,zinq a

rndule's internal description, the SDT tools will cev'eiop a descri;-

t on of al I of the module' s possible beh~avor, ttut the der

teha-ioral description jill also include some behaviors that .,re M C:

ossisle. 1sT-- "conserat e estimate" Of the actLai s-air -eLL:B

498



Desizn Tools - 5 - A E Riddle

from from the desire to keep the performance o the analyzers fairly

high by having them do an imprecise anal,,sis. Since the result is not

exact, it must be interpreted by the designers to come to a definitive

assessment as to what the behavior is and whether it is acceptable.

The Hierarchical Development Methodology (HDM) was considered as

an example of the relatively high-powered end of the spectrum of 0os-

sible design description and analysis tool sets. HDM also has a fin-

ite state conceptual basis. but uses formal verification technology as

the basis for consistency checking. HDM is more powerful than SDT in

the sense that HDM performs an exact assessment that results in a

definite assessment. As a result. HDM's analysis is considerably more

complex and its value must be measured by a benefit/pain ratio where

the "pain" factor reflects both the resources required to use the

tools and the training needed to learn to use them effectivelv.

I... Performance Issues

Design description and analysis tools can be provided as either

batch or interactive tools -- Byron is a batch syistem. whereas SDT and

HDM provide interactive facilities. For batch, measures !i.e the

number of lines of description processed per minute are approoriate

And for interactive use., response time is the appropriate measure.

These are essentiall,' the same measure and reflect the cmmpie: it, ,J

the processing being performed.

The tpe cf analy'sis done b, SDT and HDM is essential]',; e,:pcnen-

tial, proportional in time to the description's lenqt:n. 3iCnitI-

cant_1,, less Comptatinnallv comple,: aloorithms 0o not -eem s-oln.

499



Design Tools -6 - W E RidCce

so the effective use of these tools requires that a system oe well

modularized not only with respect to system structuring prinuiplaes but

also with respect to the concerns of analysis effectiveness.

Thus. the issue of design description and analysis tool perfor-

mance is more an issue of artful, experienced usage than inherent per-

formance characteristics of the tools themselves. More comments atout

this are made below.

1.4. Level of Effort to Implement

The level of effort estimates for the three tool sets e;amined

vary widely: I10-15 person years over a year-and-a-half for Bvron.

three person years over a year-and-a-half for SDT, and an indeter

minate effort (probably in excess of 30 person years over eight years)

for HDM. The variance reflects the differing nature of the projects

producing these systems more than the inherent difficulty of moving

higher in the spectrum of power.

If one assumes that the underlying technology is well-develooed,

and therefore little research or requirements modification will be

necessar', then one can reasonably estimate that movinc to the SDT

level of power will require about the same effort as obtainino thie

Br-n level of power and that mc,ina to the HDM le,,el frc 'me h SD

I -'el wii ruire a acut ore-and-a-half to two times that amount,

ef+crt. These estimates include design and cocldnq and assue t , e

Df a sc,.-twjare engineerina enircnment such as LUni;,* ,r Interlis:.

, Jn:is a ~ tr aemar o& del I Labor.ator-s.

500



Desigrn Tools - 7 - W E riddle

Z. Discussion of Functional Requirements

A set of desian description and analysis tools provides a nota-

tion for stating design-level information, tools for analyzing com-

pleteness and consistency, and a conceptual basis that integrates the

notation and the analyzers.

For design description and analysis tool sets use+ul in develop-

ing Ada-based systems., the requirements for the conceptual basis are:

-- it must be compatible with Ada's conceptual basis. namely
that a system is composed of asynchronously operating
modules that interact by message transmission,

-- it must allow the description of a system at a higher level
of abstraction than that provided by Ada itself, and

-- it must allow expression of design-level characteristics
such as modular structure, module interfaces, and module
interactions.

Thus the conceptual basis must be more abstract than Ada's and be

oriented toward the description of a system's organization and its

behavior.

The design description notation must capture this conceptual

basis in a usable form that permits automated analysis. The specific

requirements are:

-- it must allow the specification of a module from two roints
0-f iew: a use-oriented view and an implementat;.n -'ew:
this is necessary so that a module can be de3cribed eithIer
with or without attention to its imolementatior ,et-ail.

-- It shoLuld utilize Ada's constructs and s%,nta: .,,henear
desi rable and possible: in determinina oesirabilitv. att:zr-
tlon should be given to whether a siilar or- identlca nora-
tion for design will confuFe the distinctii:n rezween
design and an implementation.

501



Desiqrn Focl - - W E Rddle

-- it should allow the description of implementat:on details in
an abstraczt form so that only the oetail- pertinent tr.
design issues need be e'pressed. and

-- it should allow the rigorous analysis of design descrip-
tions; this means that the notation should oe as formal (but
easily usable) as possible.

The notation assists in capturing design-level information arci

the analyzers must assist in, answering questions ,bout a design. The

analyzers' specific requirements are:

-- they must automate the analysis process as much as possible
but recognize the human users' superior capabilities to ccpe
with uncertain or ill-defined information; thus fully
automatic analysis is not necessarily an aim, and

-- they must allow the anal ysis of:

-- descriptional characteristics: syntax, standard for-
mats, absence of circular definitions, etc..

-- organizational characteristics: correct use of inter-
faces (i.e., correct number and type ot arguments).
legal references to shared objects. etc., and

-- behavioral characteristics: suitable interactions
among modules, appropriate performance characteristics,
etc.

2.1I. General Case

A minimal design description and analysis tool set should include

a syntax checker and a pretty-printer for the notation. The nctatiLn

cCuld be an augmentation of the Ada language so that Ada itself ::mJc3

used in e,pressing design-level information. D', t -i ti : ,

aj 1 -,redeo. howe\,er, is a notation that is comwctible Ercu', ,

the Ad. language that an imrlementation-leel intormatrtar that :i:2t

i, -; des: r c=-:.ch 3s an aloorithm's cc , trol 1 z i t

a Ier Ied f-om a design 0escri~t.~n.

502



Desicin Tools - 9 - W E Riddle

Additional tools that should be provided in the general case are:

-- analyzers that check Ada inter-module interface rules such
as type correspondence,

-- analyzers that check inter-module coupling such as deliverv
of required objects.

-- analyzers that check the consistency between internal anC
external descriptions, at the very least in those cases
where the analysis can be done bv simple "inspection" (e.g.,
checking that an internal structure can lead to modifving
those objects which the module's external description says
it might modify),

-- static and dynamic analyzers for any pseudo-programmina
parts of a design description, and

-- report generators for retrieving and presenting simple forms
of design documentation.

2.2. Levels

Many levels of power and sophistication are possible, depending

on the extent to which behavioral analysis is automated. At one end

of the spectrum would be simulation-style support for essentiallv

manual analysis of the behavioral consistency between internal and

external descriptions. In this case. procedural models of a module's

internal operation would be "executed" using a simulator and the

results compared. by the designers, with the effect that the mcdule's

operation is supposed to exhibit as specified in the external descrip-

tion. At the other end of the spectrum is fully automatic certifica-

tion that the model of a module's internal cperation orcouces all Zf

and only the behavior specified by the module's e;:ternal descripticn.

One can move from the simulation-based m-nd of thi soectr_,; t.Z

LtS automatic certification-oriented end in .several steps. ;.ir=t. Dre

can add tools that aid in the comparison Zt the imul. t or- rs .

503



Desian Tools - IC - W i

with the eiternal specification. Second. one can ado static analsis

tools that aid the analvsls of the module's operational model. Thiro.

one can provide analyzers that determine conservative estimates Cf the

beha.xors described by a model. Finally, one can add analyzers tnat

derive enact descriptions of all possible behaviors. For these last

two augmentations, one Could also provide aids for comparino the

derived behavior descriptions with the behavior descriptions apoearino

in a module's external description. The first three of these st ePs

are fairly simple, but the fourth one is rather difficult.

2.7. Performance

For most of the tools mentioned above. processing time is essen-

tially linear with the length of a description. For the reasonablv

sized modules typically found in a well-modularized system, therefore.

performance will be quite acceptable.

Behavior analysis techniques can, however, e,:hibit lengtny

response times because of time complexitv problems. Of course, when

one realizes the extent of processing that is being ask-ed for and the

potential value of the resLIlt. then one should be accepting oF lengt n

response time. Using batch rather than interactive tools for beha, ior

an,--,l,,sis will make this response time more palatable. And sufficiert

training wii1 help designers use the tols in artful (a-,d ec.:rom I.

The net result is. therefore. that we c:n e': er-t ac-ect-mt- -

. ne :ks ,_-. as We ;estr t our attent io tL rasic too, -- -

on ;;D: -2 o [! c ower . E t;-l,'n I,, Vn r_- Io- i l a i- -r. C3

504

-- - .. i I I . . .. iii iii i . .. . . .- .. . ..... .



Design Tools - E - W E Fdd ls

require extensive user training and a careful evaluation of the trade-

off between needs and performance.

2.4. Technical Challenges

Producing the base system and the extended capabilities up

through conservative behavioral analysis does not involve any techni-

cal challenges. All the requisite techniques are well-researchEd and

prototype versions have been prepared and experimentally used. The

technical challenges exist with respect to obtaining powerful

behavioral analysis capabilities that perform acceptably well. Unfor-

tunately. these challenges are all the more severe for behavioral

anal /sis of concurrent systems.

Case Studies

3.1. Byron Program Development Tool Set

. .I. Developer

Intermetrics. Inc.
777 Concord Avenue
Cambridge, Massachusetts 021 8

Technical Contact: Mike Gordon 617 66l 1340 ;t 2480
Marketing Contact: John Pates 617 661 1040

7.1.2. Description of System

The Byron tool set provides the capabilitv of describing detailec

designs ard implementations of program units. analy-zinq these descrio-

tions for completeness and simple consistency properties. and oener-,t-

ing a ,aretv of documentation reports.

B,,ron's language is an ex:tended versinr ct rSI-stan darz Ad&

505



Design ocs - i - E Fidde

The e':tensions augment Ada's inherent speciication capatilit, ar,

allow design-relatea information to be e;pressed on a prograr un:1

basis. The extensions currentlY proi de the abi I: t-, :o 2escri be: a n

overview of a proqram unit: the error -iessages rOduced and e2 c-eE -

tions raised by a program unit; the assumptions made bv a prograin

unit about how it will be invoked and the visible effect of invo ,r~g

the program unit (i.e.. the program unit's pre- and post-coritions. .

the changes made by a program unit to variables and other ob.ects in

its environment: invariant characterist,.cs of types: the algorithm

used by a program unit; performance issues and considerations; and

miscellaneous notes concernina a program unit. For the most mart,

information is expressed in natural language -- a Byron descriptior

looks, at first glance, to be a well-commented, albeit perhaps

abstract, description.

One of the two major Byron tools is an analyzer which: checks

for syntactically correct descriptions: enforces Ada's strong type-

checking rules; checks the consistency of type definitions amono

separately compilable modules; builds intermediate language ,Diana)

descriptions of program units; and checks for legal use of the 3.ron

descrlption extensions. In effect, the analyzer enforces a hierarchi-

cal decomposition methodology since a user must snecif',' what deejzc-

men t hase he/she s in whenever the Byron anal ,,zer - r'; ec - ':-a

anal zsr checo s for specific descripti 'e items denzendiroq on tne :h<a.

The Lther major Byron tool is a Ciocumentati on enerat ,r. ,-- S

t:cl Lvses the .ntermediate languaCe recresentatie n ad a docLEJe-t

.O>l, orocJkce a r3port. p tempia-e zr Ct .. _c :a

506



Design Tcol_ - - E Fidcle

defined b,,, MIL-STD-49'1 is included and other templates have been

prepared for producing type and data dictionaries, progr am unit

descriptions. and project status reports.

... Performance

Byron is a batch system. rhe analyzer typically processes l1-2f(

lines per minute running on an IBM 703- within a 1.5 megabvte reQLon.

The documentation generator typically produces VK. lines per minute.

Both these figures are dependent on the relative mi'- of Byron direc-

tives to Ada commands and the typical situation in this regard i=,

unfortunately, not known.

1.4. Quality

Byron is a fully operational, production-quality system.

. 1.5. Development Team

It is estimated that the Byron tools required 10-15 oerson years

of effort over a one-and-a-half year period of time. Byron uses the

front end of the Intermetrics Ada compiler but these effort estimates

do not include work on the front end. These effort estimates reflect

design, implementation, and testing activities.

-1.6. Development Environment

The Byron tools (other than the Ada compiler trcnt-eni iere or:-

gramned in Pascal usinc PWB rIunning on a PDF 11,7.

507

.. ~~~~~~~. ....... ....... ,--.. .- ,............ 2



Design Tools - 14 - W E Rioie

7.1.7. End Use

The first installation of the Byron tool set is McCurrina nQw

-'September 1983) on an IBM .7O at GTE Strategic Systems. A version

for the DEC VAX is scheduled for availabilitv in the first cuartar OT

1984. Normal industrial style and level of support ano maintenance

are provided.

.1.8. Comments

More extensive analysis capabilities would be possible if the

added description capabilities were more formal in nature. For exam-

pie, the algorithm description text, which is currently now a natural

language description, could be a formally defined PDL thereby allowing

cross-reference and data flow analysis such as provided by the PDL's

marketed by Softool and others. Rather than pursue this direction for

enhancing the Byron tool set capabilities, more consideration is beinc

given to adding capabilities which utilize the information alreadyi

determined by the Ada compiler front-end -- data flow analysis of tne

Ada program text is one such capability. Consideration is also being

given to checking the consistency of design level information against

implementation level information- for example, checking that the cooe

an actually raise the exceptions as indication in the externa1

-. er_ I ca t Ion.

'While the Bvron tool set's capabilities are fa-irl s-.rai ti c,;--

ward and th-eir ,alLie depends heavily or their e;:er enceo use. nL

tzol set does seem to be fairly valuable -- Intermetrics QULOt-c-s F,

_ire of 4C'. reduction in documentation costs. F.Lrtner, t-.oa ,ssior oi

508



Desicn Tools - 15 - W E Fiddle

Bvron admits e-:tensive qrowth to more powerful capab.lities. particu-

larlv through the introduction of formalized desion description capa-

bilities and associated analyzers.

3.1.9. References

Ada PDL Developers. Ada Letters. Vol. 1I. No. b. May/June 198-.

Michael Gordon. The Byron Program Development Languaqe. Journal
of Pascal and Ada. May/June 1983.

3.2. Software Design Techniques Tools Set

3.2.1. Developer

Computer Science Department
New Mexico Institute

Socorro, New Mexico 87801

Contact: Allan M. Stavely 505 835 5127

2.2. Description of System

The Software Design Techniques (SDT) research group is developing

a set of integrated tools for analyzing the logical properties of a

concurrent system's design. The common conceptual basis for all of

these tools is finite state modelling: states are used to describe

characteristics of a system's modules, state sets are used to

describe the characteristics of a system itself. and state transitions

are used to non-procedurally describe the effect of invoking a module.

The SOT tools allow the formal mooellinq Zf software e- "zne

.;bstract le,,els of description characteritic of architectural dein.

Each modUle at an',/ level in the hierarchy is described as a f I -C

State machine havina observable states ano o+terina in,.eao1e cera-

zior;s which change the state, with the possible effects cf each coera-

tion described in terms of the state transition it causes.

509



Desi. n Tool_ - lo - w E 'L n e

module's enternal description provides a use-crienteo descriptior al in

to the e ,ter~nal description of an abstract data type or the specitci.-a-

tion of an Ada package.

The decomposition of a svstem is described Dv providinQ interral

descriptions for the modules. An internal description speci ies

implementation-oriented aspects in terms of the ccmposition of a

module out of (lower-level) modules and the algorithms controlling tne

operation ot these internal modules needed to effect the operations

described as available in the module's e>xternal description. The con-

trol algorithms are modelled in a pseudo-programming language.

The descriptional capabilities support a top-down eaboraticr,

approach to design. The use of operational models provides the often

absent capability to analytically check each elaboration for suItabil-

ity

The SDT tools include:

-- a parser that checks the synta: and builds a tree-structured
intermediate representation,

-- an unparser that prepares a well-formated descripticn from
its tree-structUred intermediate representation.

-- a module selector that extracts from the description of an
entire system the description of those parts pertinent tc
the anal,,iss of a specified module.

-- a finite state analyzer that determines the stat? chance
caused by a control alporithm model, and

-- an event tracer that determi nes whether or not a soec ,! "O
sequence of activity is possible or not.

Thee tools all ow the designer to answer the Questi, :n: I s: mou

-. ?ral irmnpmertation-or ienled description zonsi tert 41ith

510



Deiqn Tools - 17 - W E Fiddle

external, use-oriented descripti on? This, in turn, al lows the

designer to graduallv elaborate the details of a system's design WLth

a check, at each step of elaboration, that the ireviouslj specitIeO

and certified properties of the system are preserved.

2.. Performance

As with any analysis of system behavior, the SDT tools are Sut-

ject to time and space complexity problems. Non-determinism in tne

models, which can arise either by having non-deterministic transitions

or in the modelling of communication within concurrent svstems. can

cause the time for analysis to grow exponentially with the size o+ the

model being analyzed. Careful, disciplined use of the SDT notation

and analyzers can help to keep analysis time and space requirements

within reasonable bounds.

:.2.4. Quality

The SDT tools are available in prototype form.

S.2..5. Development Team

Four people, each working quarter to half time. have worked on

the SDT tools over a one-and-a-half year period -- at the outside, an

egfort of three person ,ears. Their activities concerned 1e , and

codinq; requirements definition is not included in this _ffcr esti-

,n a" e.

.2. . Development Environment

the 'SDT tools were procrammed in Pascal under tche Uri Cer:ZinI

511



Design Tools - 1 - W E RIo;le

s,'stem i-Unninq on a IAX 75u.

-.2.7. End Use

The SDT tools were first available in earlv-l?3 on tne ,'' 75,,

Since then, they have been ported (with about one person-month ,_t

effort) to a DEC-20 running the TOFS-20 operatina sstem. Miost

recently, they have been distributed, but not vet installed on. = ,Ax

7S0 with Unix at the University of Massachusetts. Normal uni ,ersit-

style support is provided.

The use of the tools has been primarily for evaluation e.xercises.

About 30 people have completed six design exercises each and provide

an evaluation of the usability and value of the tools.

L2. 8. Comments

The SDT tools are prototypical and work needs to be done on their

user interface and their efficiency before production-quality versions

would be available.

The capabilities that they provide, however, are important since

they allow designers to animate their desians and obtain valuabl

insight into how a system's modules interact. Appropriate and et~ec-

y1".e use of the capabilities provided by" the SDT trol, wi1.

e'aliati'.e ue on real development orolects.

.'. :eferences

Allan M. S ta%,,elv. A2nnu-al Proaress Peport. Ana LA ,- ;s is T l

D,i zn-Le',el Assessment of Software S/steTs. CoIMpute- Ec.en,
Oept.. New Me!z.c:o inst.. 73eptember 1'4-72.

512



Design Tools - 1 - W E Riacle

Allan M. Stavely. Introduction to the F'roject and the Prctotpe
Tools. Computer Science Dept., New Mexico Inst.. March 197.

Hierarchical Development Methodolcgv

3..I. Developer

SRI. International
Menlo Park. California 94025

Contact: Karl Levitt 415 326 4172

2. Description of System

The Hierarchical Development Methodology (HDM) is an integrated

set of languages, tools, concepts and guidelines to aid in develooing

and verifying large, real-world software systems. In general concept

and philosophy., HDM is very similar to SDT. The underlying conceptual

basis is finite state machines. A system is described as a hierarchi-

cal decomposition of modules, each conceived as a finite state machine

and each described by both an external and an internal descripticn.

Analysis tools allow the checking of the consistency of these two

descriptions and can be used to support the reasoned hierarchical ela-

boration of a system's design.

The HDM analyzers utilize formal verification technology. A

module's descriptions are analyzed to formulate theorems and the zrocf

of these theorems constit--ttes a demonstration that the descrlptlcns

are consistent. The appropriate and effecti e Use C+ z+ t _i -&Ch c-

course oemands a fairly high level C computer siece tra inc .

The HOM tools include:

513



..esicn Tools -U-W~01

-- specification checkers that analyze the syntax of -1esc.riQ-

tions and perform simple, static analysis of ccrsistenc,

among module specifications,

-- verifiers that prove the consistency between a modLea
internal description (modelled in either Modula or 'ascal:
and its external description, and

-- a multi-level security verifier that uses the HDII sec: ica-
tion and analysis capabilities to prove that the intormatior,
flow among modules adheres to security restrictions.

None of these tools incorporates the capability to analyze zcncuIrrent

systems since the technology for the formal verificatin, of con-

currency is not yet mature.

Performance

HDM is an interactive system. Response time, the appropriate

measure for such a system, is generally acceptable with very few

instances of debilitating delay. Of course. formal verification is

subject to time complexity problems and the delays can be long because

of this. But, using HDM in an artful way can frequently keep these

delays within acceptable limits.

-. 7.4. Dual i ty

HDM is a transferable, productlon-quality system.

7.7.5. Development Team

The HDM project started in the early lv O's and thrUhCL:t t e

,oerL d since then has been both a research and de,,el comert o t.

it As extrenely difficult to separate out the e t -ort 40uireQU Czr

defining. desianinr and implementing the HDM tools as ocsed to t:-e

e fort needed to research and deve. Iop the techoo .n.eani

514



Design Tool - 21 - W E Riddle

affcrt estimates were not obtained.

_-._-.6. Levelopment Environment

The Current version of HDM was programmed using tne lnteriip-i,

system. Extensive tool support was therefore available for the pro-

gramming task.

'..7. End Use

The tools described above were implemented over the period trom

the mid-1970'2 to the early-1980's. They are installed at SRI. Inter-

national, and available for external use through the Arpanet. A pro-

ject is just now beginning to re-design and re-implement the system in

Maclisp for installation at an e>ternal site.

6 a. Comments

It is not necessarily a good idea to provide verification tech-

nology directly to practitioners because its effective and appropriate

use demands e;:tensive training and experience. While practitioners

will always have to prepare the information needed for verification.

it is perhaps best to provide special, designer-oriented languaoes ior

this task and then have a central service organization. with trainea

zersonrel 4ho translate the designer-prepared descriptions a CneF:-

sA.. perf rm the analysis. and interpret the results %r the

d e si z;,r er

I- also not clear hoy quic;.lv veritication technclo'.. w:

Cle t1 3 handl the more dIffIC lkIt situations, I ie c:,.nc urrenc.. t-ai

mrse in .cderr, proaramming lanr,uaqes such as ;da. ho ze4 .n.i r

515



Design Tools -W E Ri ,e

Ada was affected by the desire to perform formal verification. Out t:e

technolcgv must be considerably improved before full formal /eritica-

tion of typical Ada-based systems can be accomplished.

-.9. References

B. A. Silverberg. An Overview of the SRI Hierarchical Develo--
ment Methodology. In Software Engineering Environments -e.
Hunke. North-Holland. 1981.

4. Analvsis

The state of progress in developinq design description and

analysis tools is such that we can reasonably expect, in the near tc

medium term. to acquire a tool set that:

-- is based on a language which:

-- is compatible with Ada, and

-- allows the formal description of desian-level informa-
tion,

-- provides e.tensive description analvsis capabilities,
including syntax analysis, pretty printing, and report gen-
eration.

-- provides extensive completeness analysis, and

-- provides a medium-level of consistency analysis.

We can expect to provide consistency analysis that either per~or-is

simple checiKs not requiring the derivation of behavior descrition'n or

:.eforms a conservative behavior analvsls such as that d C. Se T.

We a-r.nn ot, in the near or medium term, exoect to pro&Lde :nisto:-c,

,-an'.asis for Ada-related desi gns that are based or an e': act _r. Z I

:+ berie' or such a, done bv HDM.

rhe three case studies suogest that there 1i-_- n-1 t_- i r Ct- t:

clan or +irst acaui- ing a ba$sic sat C' deslLr de":t-ctcr- r,:

516



Design Tools - - W E R-_:die

analysis tools and then maturing the tool set with q radual IV mere

powerful consistency checkina capabilities. The initial tool set cAn

be based on a design language that is essentially an augmentation if

Ada with key-worded natural language descriptions of desian-le,.ei

characteristics. The descriptional and completeness analysis capabil-

ities provided by the basic tool set can be extended fairly easilv by

working at the macroscopic level and processing a key-worded seoment

as a unit rather than processing the information within the segment.

Consistency checking capabilities can be added in parallel by formal-

izing the notations used within a description segment and providing

analyzers for these formal descriptions.

Finite state modelling is a reasonable basis for extending the

consistency checking capabilities. It is compatible with Ada's con-

ceptual basis. Ada could be used as the basis for operational models,

opening the possibility of using Ada-based simulation as a first con-

sistency analysis capability. More extensive analysis could be pro-

vided by then incorporating the SDT analysis techniques. Finally. in

the long term, the HDM techniques could be added to provide the capa--

bility to employ formal verification in design analysis.

Figure 1 charts a set of activities which follow this approach.

The first step is to acquire Byron. The second activitv iS tz enhance

Dvron with additional descripticnal and completeness anal,,zers as well

as a simulation-based consistency checkina capabiliLtY. Th m thLrc

activite,. o,erlapping the second. is to re-implement the DT ccrn-

siStenc-, checi:nq capabilities in the ccnte: t Cf Add an n B rLn. Th,

i' al actlvitv i E tz inaorporate the HDM capati 1ties b,, 1i,-st =.'crt-

517



Desin T2ols - 4 - W E Ridrile

ing the HDM specification capabilities, in the first half y'ear" o thi a

activity. and then absorbing HDM's Current capabtiitv to forma.1 I

analyze non-concurrent systems.

94 95 86 87 88
j -- a-- j -- o-- j -- a-- j -- 0--i] -- a--j -- o- .... a -- j -- o-....-a------

acquire Byron

enhance Byron's descriptional and completeness analysis
capabilities

*------------------------
incorporate SDT's consistency analysis capabilities

--------------------------------------*
incorporate HDM's capabilities

Figure 1: Activities for AcquLiring Design Description
and Analysis Tool Sets

The efforts that can be reasonably expected for these activities

are:

acquire Byron I person month $ 5I.f)(0*
enhance Byron 6 person years 750. 000
incorporate SDT I person years 1,625.uOO
incorporate HDM - person ,ears 2.875. '

TOTALS 42.08 person years 5,5, , I.

5. ConcluSi ons

The conclusions of this investioation of desion descrirti:r anrl

anal ,sis tool s sets are:

0 Thl=- -fi re I.ICIUdes the B'vrzn 0Ur.7hzse ori~e

518



Design Tools - E Riddle

-- a basic capability can be obtained by purchasing and enhanc-

ing Byron: this will require about 6 months and aoout. $8351,.

-- the enhancement of Byron can include an Aca-based siMulation

facility so that operational models of a system's modules

can be analyzed for their consistency with external descrip-

tions of the modules' intended behaviors by simul ation-

assisted "manual" analysis.

-- the enhanced Byron system will provide a basis for extending

the consistency checking capabilities of the system.

-- finite state modelling and analysis can be used as the Oasis

for this extension,

-- the SDT finite state modelling and (conservative) behavioral

analysis capabilities can be incorporated before Januaryv

198 6 at a cost of about $1625K. and

-- the system can also include the HDM formal verification-

based analysis capabilities but these cannot be in place by

January 1986:

-- the HDM formal specification capabilities can be i.n

place by the beginning of 1?8 and this AC'ul a

design descriptions to include formal de-initi,_-ns oF

module's e>xternallv visible behavior.

-- the formal verification techniques wOul, fe in C2. C

about two ','ears later. and

519



Desian Tools 'FF4 a I Fole

-it is not pr-esentlv clear n~ow well the icr-rnalsm -

cation and verification techniOQles can handle 'r-z

concepts, particularly conCUrrency.

520


