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On the Dsign of a PipalineJ/Systoli2 Ftnite Elenent Systen

2<-. ABSTRACT

A parallel finite elenent system is su~gestei based on the idea of pipe-

lining the conputations corresponding to the diff.=rent finite elenents. Th3

systolic architecture is usei extensively in the desi3n to satisfy a regular and

smooth flow of data in the pipe. Also a node nunbering algorithm is developed

in order to allow for the application of a frontal technique in the solution of

i the linear system of equations resulting fron the analysis.
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1.* Introduction

In the past few years, many researchers have considered the use of some

type of parallel processing in finite element analysis. For instance, Noor and

al studied algorithms for performing the analysis on the CDC Star-100 (see e.g.

(10) ). Along the same line, Kamel and al [7) studied the usefulness of array

processors, combined with mini computers, in finite element conputations. Also,

the use of multiprocessors in the solution of partial differential equations

were studied (see e.g.4] ). However, different experiments showed that gen-

..'- eral multiprocessors are not expected to give satisfactory gain in the process-

ing speed since the times for communication and data transfer doninate the run-

ning time (see e.g. [12) ).

The most significant attempt in this area is the design of the finite ele-

ment machine at ICASE [5]. In this project, a microprocessor is assigned toI"
each node in the finite element grid. Each processor is connected to its eight

immediate neighbors, and all the processors in the systems are connected through

a global bus. This machine, however, has some limitations that result from the

direct correspondence between processors and nodes. In general, it is most

suitable if the interconnectioni between its processors follow the same pattern

as the finite element grid.

A loser study of the different steps in linear finite element analysis

shows that the computations may be divide into separate phases, where each

phase depends only on the preceding phase. Hence the data can be transferred

from phase to phase in a pipelineJ fashion. The computation within each phase

is also well structured and mostly canpute bound, which nakes it a suita'ale can-

didate for systolic architectures.

. .o *--
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In this paper, we suggest possible configurations for a finite eleient

system that are based on the idea of pipelining the computations associated with 6

the different elements in a finite element grid. Such systen may be independent

of the donain of any particular problen and of the number of elenents in the -

-rid that covers this domain. Our principal aLn is to show that the

. pipeline/systolic idea may be a valid candidate for parallel finite elenent sys-

tens rather than to describe a 'ready to inplement' or an optinal design for

such a system, whatever may be meant by optimal.

The concept of systolic operations has been used extensively in the design

to achieve a regular and smooth flow of data within each functional unit in the

system. For the precise specification of the inputs and the outputs of the dif-

* ferent units, we use the notation of the systolic model presented in [9]. The

basic idea of the model is to associate with each conmunication link in a sys-

tolic network a data sequence comprising the data items that appeared on this

link at consecutive time units. Accordingly, the computations perforned by any

cell in the network are expressed in terns of operators on sequences. The model

is quite general and may be used for the specification and formal verification

of systolic computations, as well as for their sinulation. Hare, we only intro-

duce some basic definitions that will be used in the following sections.

Dita sequences: A data sequence is a mapping from the set of positive integers

to the set R =R u {6}, wnere R is the set of real number and 6 is 3 spacial

syabol called the "don't care" element. Each conmunication link in a systolic

network is given a label of the form yi and a data saquance n is associatd

with that link, that is the greek letter n corresponding to y is usel. The
-E

interpretation of n is such that its tth element, ni(t) , is the data item that

*gs ~ ~ , * .. * *** ** ***** * .* * * . - -. . - -. -. . . . . . *3**** ...
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appeared on the link yl at tine t, with n(t) 6 indcating that W _ do not zare

I about the particular value at that ti'ne.

Sequence operators: 'a introduce informally the following sequence oprators:

1) The shift operator which inserts r 6-elements at the beginning of its

operand. For exanple if n a 2,a3.., then 2n = 6, ,al a2, 3 3..

r
2) rhe spread operator e which inserts r 6-elements between every tw suaces-

sive elements of its operand. For example, on a ,6,a 2 ,,a 3 ,6,...
3k

s3 The piping operator Pk has n operands and concatenates the first k elements°•n

of each of its operands to forma one long sequence. For example, if =

i o 
3

bl,b 2 ,b 3 ,b 4 ,..., then P2 (,n) b 1 ,b , b 3 , ,a 2 ,3 3 ,6,.... The abbrevia-

k ek 1 ition P Ce) is used for Pk(r ,... ).i ~e: 1 ,uIg

de next specify the class of problems that may be solve using our

pipetined/systolic system.

2. Problem spacification.
.".

The class of boundary value problems considere here is specified by a

- variational formulation of the following generic form:

Given a H lbert space a bilinear operator s and a correspond-

in% functional on k, find the function * £ ,)/such that

for all veox C1)

S""We restrict ourselves to proble4s on a two dimensional domain Q, ani we

' assuue that ind have the general forms:
* .'

*5e
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2 2 .

rO t=9

e -V) f v dx dy +(2.b)

ere a, =a,r r,f=3,1, 2 and f are problen dependent functions, D anJ D

are the differential operators -L and respectively, D is the identity

operator and v and are line integrals over the boundary 3Q of Q. Tae forns

of and Tdepend on the boundary conditions and are not essential to the

purpos, of our discussion. We also assume that Q is covered by a finite element

grid that contains m elements of the sane type. Each elenent e, 1se:n, is

ee ee
characterized by its geometric support Q, by k nodes on Q locatel at (x ,y)

i 1 , ... ,k, and by some basis function associated with each node.

The nodes in the grid may be labeled by tither a local or a global schene.

In a local scheme, each node in a certain element e is identified by a pair

(e,i) for soae i, 1<isk. On the other hand, a global scheme assigns a unique

integer J, 1<J5 n, to each node, where n is the total number of nodes in the

grid. The relation between the local label (e,i) of a node and its 3lobal labelN

j is defined by soae mapping glob:[1,nJx[1,c]E[1,n], -aere jglob(e,i).

Accordingly, we may define for each element e the boolean matrix M of order

kxn such that Me (i,j)=1 if glob(e,i)=j, and Me(i,j)=3 otherwise.

Given a grid that covers Q, standard techniques nay be applied ta compute

the finite element discretization of (1). Moreover, an isoparametric transfor- J

mation may be used to map each element Q into a fixed element a on so.e 2-

dimensionaL space (C,y), and a numeric quadrature may be applied to evaluate

the integral over Q. Let q be the degree of the quadrature formula and denote

................_ .4
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• - . by (x ,y )¢ and w the quadrature points ani weights, respectively.

" If the coefficients a r , 1, 2 and the load f area pi ace-Ais con-

stant functions equal to a and , respectively, on each al-nent Qe it is

well known that an approximate solution of (1) may be obtained as the solution

of the linear system of equations

H j: b (3)

where

1) u is the n-dimensional vector thac contains the values of the approximate

solution of (1) at the n nodes of the grid.

2) 1 is an nxn banded, symmetric, positive definite stiffness matrix. In order

to generate H, we first compute a kxk elemental matrix H- for each elenent a.

. The entries H, i=1,...,k, j--1,...,i of H are given by

He,= e ; w deteCx ,y ) Dr ,) Dx 9(X Y (4)i'j a r,' g l 9 9 r(g Y g 9

where i( D,), i1 ,... ,k are the basis functions associated with the standard

element Q, and dete is the determinant of the mapping .. Each elemental

matrix He that corresponds to a boundary element is then modified by the addi-

eU
- tion of a sparse matrix S that is computel fron the terni in (2.a). The

"-4 ' resulting elemental matrices, H%=Ie+Se, e1 ,..., are finally asse.mbled into

the global matrix H accor ing to H = [ Ze W

• " • 1) b is an n-dimensional global vector generataJ by first computing tne elenen-

. tal vectors be from

°J. *
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Similar to the elemental. matrices, each b corresponding to a boundary element

e e
- -is modified by the addition of a vector s and the resulting vectors,b

z 1 . ,m are then assembled into b accord ing to b 11 eT

e=.1

In the previous discussion, it was assumed that *is a real-valuad func-

tion. It should be notea, however, that the same formulas are valid for func-

tions with d>1 degrees of freedom. in this case ar and f are dxd matrices

and d-dimensional vectors, respectively, 'and the entries of the Me matrices are

dxd unit matrices and zero matrices instead of ones ani zeroes, respectively.

In the remainder of this paper, we will briefly describe the organization

- -*of a complete pipelined/systolia finite element System for the above class of

. problems. By its very nature, any systoliac or pipLined system needs to be mon-

.itore by a host computer. In our system, the host is assumed to be a general

purpose computer that contains the data base for the problem and constitutes the

Sonly means of comunication between the user and the system. It is responsible

for sutting, initiating and feeding the systoli pipe with the appropriate data

as Well as collecting the outputs.

The configuration of the entire system depends on the method used for the

solution of the linear system of equations (3), naely, a direct or an iterative

method. We will consider Systems with different types of solvers separately.

However, we start by discussing a functional unit that should be inlude in any

" finite element system, namely a unit for the generation of elemental arrays.

purpse o~pterthatconain th daa bae fr te poblm an costiute t4
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Th3. e generation of elemental arrays.

The systen proposed for the generation of the elemental arrays is conposad

of six functional units. These units, denoted in FL3ure 1 by N,..., N6, are

implenented usiln systolic co-sponents anJ are connected in a cascade such that

the output of one unit is the input to the next unit. In order to coapute the

• -- elemental arrays corresponding to a certain elanent e, the system should be sup-

. plied by 1) the values of the coefficients ar re=,,1, 2 nd the load f on

S." element e, and 2) the coordinates of the k nodes (x Yi , i1 , ... ,k.

,

aNi N2z N37~ N4' R46

LMI P1  NS

O"q.4 k- ,q*4

Figure 1 - Pipelined generation of the elemental arra-s

- In addition to the above data that are dependent on the specific element

7 . being processed, the system should also be supplied with the values of the basis

7:.. functions i i:1 ,...,k, and their derivatives a* /ax and *1/ay at the qui-

drature points (x y) , %1, ... ,. These values are independent of any par-

Sticular elenent and hence may be preloaded into the local nenory L1 of the sys-

"- tea and used repeatedly during the coaputation.

* The precise specification of each conputational unit and a formal verifi-

cation of its operation is given in details in £3]. Here, we only present a

-.- ,*.*.*w.**... ..-:
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brief description of the function of each unit.

The unit Ni is composed of 2qj 'multiply/add' systoli: cells. Its function 6

is to colaputa the elements of the Jacobian of the isoparanetric transfornation

Q Q. The coordinates of the k nodes of a certain element a are suppliei to

Ni through the input links Z and anJ the values of TiOF ,)

a~ x ~ and al;(7 aF)/3 are supplied fran the local -nenory L41.
9 76

The exact specification of the inputs on z 1,1 and z2,1 is

"2  2 and a I-"'" 1 1 = n 2, 1 =

where for t.k, (t)=ye and e t)=x 3 , and for t>k, le (t)e (t)=6. That is,

the x-coorinates of the k nodes are supplied to the system on zl, 1' starting

- . at tine one and separated from each other by two tine units. Sinilarly, the y-/I

i coordinates are supplied on z I starting at tine two and sep3rateJ fron each

other by tw: tLe units.

The computed Jacobian and the basis functions are then passed to N2 wlich

is also conposed of 2q 'multiply/add' cells. Its task is to conpute the valuas
,..

of (g)- Dr (xg Y r= 3 ,1,2, i=1,...,c and g:1,...,. These values are

e
. then passed to N3 4hich conputas the deterninant let of the transfornation and

the valuss of VrCg)= g ty r(g)

The unit N4 is conposed of 3kq 'multiply/add' cells connected as a qx
.1%€I"-

rectangular array. It receives the values of r (g) and V (g) fro,n N3, and

coaputes the integrals that appear in equation (4), nanely

*41-

-. '. ," % %'. .% .'._%_'. '~~~~~~~~~~~~~........... ..- -.... . . ..-.. . " .... ....... -...- ,"-. ' ' . ,j
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,- __ V (g) v (g), i,j=1,...,(, r,-j 1, 2,

Tae final step in the generation of R is ths Aultiptization of e3ch
L 2,"

integral by the corresponding coefficient arf and the conput3tion of the Sum

2, e,r,t
H - a r a, j

This step is perfor-nel by N5 which gets ye r ,Ne e
"fron N4 in receives a froi

the host on the input links ps s:, 1,2. In order to ensure that each coeffi-

cient .eets the corresponding integral at the right time, the inputs should be

supplied according to

"q+3k49 e.. T = a sa (3)
s s

._ere, for tae3, ,CA withG) denotin3 the nodulo 3 addition.

The elements of the symmetric aatrix H are produced on k output links,

namely zu , u=O, ... ,c-1 (see Fig 1) More precisely, the elements of the

th eU off diagonal of H appear on z after 5u4q,3'c 16 ti:ne units from the,'- u ,q+4

.- initiation of the operation of the system, separated frol each other by two tine

units. This is formally describei by

.' . 6u +q+ 3k +1 6' ' {U~+'4 =8- UU U=O, ... ,14-1. 9a
u q+ 4 u

where ": Htetu if t!k-u

6~i f t> k-i.

The function of N6 is the generation of the elemental load vectors. It• .4 i

I44

_. ' .

II'I I~" :*-.: - - .: - :-I --. * .. -- -lI
I " ".- *** *** .* * * *I . * . .*..*' . ... .. * . . . . . . .I. .
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..
receives the values of V (g) froii N4 ani the load f efroan the host on the input

link r 9, and produces the eleinents of be on the output link zk i+,4 accord-

-'- ing to

gq4 9k.l 6 0 2 e(9. b)• .4
-- J k,,1+4 = q9+6e k(.)

where, for t:k, (1 t)=b, and for t>k, u t)=5.
t k

In sunmary, equations (9.e/b) indicate that the system completes the coa-

putation of one elemental matrix and vector in 12K+q+16 ti-ne units, 4nere a tine
a°r om l i l / ~ l o

unit is basically the time required to perforn either a 'multiply/aid' or a

'divide' operation, whichever is larger. Although this is 3 noticeable speed up

over the serial execution of the operations involved in the computation, the

system suggested here has two other inportant merits, namely

1) The smooth novement of data such that each data ite. arrives at the proper

cell wfen it is needed. This eliminates any delay in execution due to compli-

cated interprocess communication or slow memory fetch.

2) The ability to pipeline the computation corresponding to the different ele-

ments on the system. Xore specifically, if the input data for the different

elements are pipelined at the rate of the data for one elenent every 3k ti.ne

units, then the results will be produced at the same rate of one elamental

matrix/vector every 3k time units. This pipelining of data -nay be described

farmally in terms of the piping operator of Section 1. Namely, if the inputs

are described by
S3,.-= ( 2

:1,1 e= 1 ,n

"Kar°, 3e- ,.4 2  el

.7 C2, 1 Pezi Ce .,a

:-: .. -..

. .... = q + 3 1K + g 9 3 kX ( 2 , .
"s:! P" 1 ,,m ( a ) s= 3, 1 , 2
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then it may be proved formally that the output of the system is des~rioed by

6u+q+ 3k+ 15 p3k 2 -aru A+ ,4" e= ( .,a, ..,e e e

where Ce -e and ju are as in (5), (3) and (9).

Although the tera 'efficiency' is not precisely defined for systolic net-

- works, we may roughly estimate the utilization of such networks by calculating

the ratio U of the average number of cycles during weich each cell in the system

is doing useful work to the total number of cycles needed to conplete the execu-

" - tion. For the six networks Nl,...,N6, it may be shown that U is larger than

50%. This neans that we are using, on the average, acre than half of our

. resources, vtich is a relatively high utilization in parallel coaputation.

4 . The effect of bounlary conditions.

The next step in the analysis is the modifi-ation of the entries of the

. ". elemental arrays He and be , where necessary, to account for the boundary condi-

tions. Was consider here two types of modifications, namely

1) bdlifications needed to force the solution to zaro at some specified nodes of

the grid. %bre specifically, in order to force the solution to zero at a cer-

tain node r, was may set b e0, He,=0, j=1,...,k, j9i, and Ha= 1 , for each a

th
and i satisfyin3 glob(e,i):r. This is equivalent with the replacement the r

equation in the linear system (3) by u r= and thus guarantees that the solu-

tion is zero at node r.

2) Mbdifiaations that results from the so called "essential boundary conii-

tions" . As nentioned earlier, this type of conditions nay be accounted for by

e e e
d the addition of a sparsa matrix S! and vector s= to He and be resptctively.

..... .. . _. -.. . . .. .. ...-*~ . .. . ..... ~ *. . . . ..• **..... ...... ....... . . ,_.,_-/
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-e -e
Also, each entry in the modified arrays H and b should be associated

with the corresponding global labels in preparation for the asseably stage.

-ee
and each bi should be associateJ with glob(e,i).

1
0q*4 1

k.q*4

N8L2 8

Z~q,6 ""qe

Figure 2 - Addition of the effect of boundary coflditions.

The unit labeled N7 in figure 2 is responsible for the first modification.

It is connected to N5 and N6 and receives fron them the elenents of He ani b-,

a:I, ... ,, respectively. It also receives frox the host 1) the k global labels

glob(e,i) , i=1 , ... ,k of the nodes in each elanent e, and 2) for each node (e,i)

a single bit that is set to one only if the solution at (e,i) is to be forced to

zero. This infornation is supplied on the input links so and s1 accordin3 to

at q+3k l 6 p3A< (a 2 Y e"=
= e=l, 1 )1 i=,

where the elements of yi are described, for t!k, by

y (t) globCe,t)

if the solution at node (e,t) is forced to zero

0 otherwise

The unit N8 is responsible for the addition of the correction arrays S

and s to the eleaental iatrices H and b . However, because m ost of the

'U

o •.
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* - arrays se and s8 e= 1 ,...m are zero arrays, and if non zero, they aontain only

*R few non zero entries, the addition of spacial hardware for the computation of

these non zero entries cannot be justified. More appropriately, these few

"- 7- entries may be computed by the host and preloadeJ into a local memory (L42), and

some logic may be built into N8 to retrieve these entries wnen the corresponinj

entries of the elemental arrays are received fron N7. Detailed implementations

for N7 and N8 are given in [3].

*5. Systems that employ direct solvers

"- In Figure 3, we show a block diagran of a complete system that uses an LU

" decomposition for solving (3). It consists of the host and four functional

units. The unit labeled GEN is the generator of the elemental arrays as

described in some detail in sections 3 and 1. The output of GEN is then

directed into the unit labeled ASSFAB. Its function is to assenble the global

arrays H and b. Ihe third unit, FACT, receives H and b fron ASSE48 anJ sinul-

. taneously performs the LU factorization and produces the solution y of Lyzb.

r| Finally, the unit BACK solves the triangular system Uucy by back substitution.

-GEN

.HOST

JDATA BASE ASSEMB

%FACT

',,-:" 1,,:BACK

Figure 3 - A system that employs a direct solver.

In order to simplify the disOussion, we consider only the assenbly of H
th_ e i t

and w denote by 'R the row of the symmetric matrix H and by hi the i

m'

'U " -, . . . . . . . . .. . * *.
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row of the symmetric global matrix H. da 3aso note that ASSE4B receives fron

GEN the elemental matrices H1,...,H , pipelined in the given order. The rows

within each matrix H are pipelined in the orier h,...,. ,. This order is
1

deterained by the local labels given to the nodes of the grid.

The labels e--l, ... ,m given to the elenents of the grid are of particular

interest to us. If the element labels satisfy the property that any element e,

1!a<m, contains at least one node that does not belong to any element

,...,a-1 , then we call such a labeling scheme a proper elenent labeling. The

importance of proper element labeling will be apparent later.

-eEach element H is received by ASSE4B accompanied by the global labels
i ,

glob(e,i) and glob(e,j) that specify the position at which it should be accumu-

lateJ in H. More precisely, assuming that a band storage scheme is used for H,

ASSEMB accumulates Hi, in row glob(e,i) of H, and in the off-diagonal position

Iglob(e,i) - glob(e,j)j.

The assembled rows of H are then passed to FACT that proceeds with the LU

factorization. Here, a frontal technique is naturally used to achieve two

important goals: 1) ro allow FACT and ASSE4B to execute in parallel, 2) To

minimize the storage requirement of ASSEIB.

In order to be more specific, we introduce some terninology. DJring the

assemably process, a row hi is sail to be active fro, the ioment of the appear-

anae of a row h with glob(e,j)=i, that is from the time when its assanbly

actually starts. On the other hand, h is called a ready row Lmmediately after
%

v4 '31

v:. .-:..?.;:-, -,._- **, .,,;.,,, ...-'-: ? . -,-W . .. * .,. .. -.- .- -.-. ... .,, .-. ....-.. . . -. .- -. .... .- . . ." - --
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,:. -.- the accumulation of the last row with %lob(r,6-i, that is after its assembly

! has been completed. In other words, a certain row of H is partially assenbleJ

when it is active but not yet ready. Oce ready, a row nay be passed froka

ASSEIB to FACT and its stora3e in ASSEB nay be released.

.owever, in all the known paraLlel schenes for the direct solution of

..ui= b, the rows of H have to be processed in a saquential order, waich :means that

the ready rows of H should be produaed by ASSE4B In sequntial order. For-

tunately, we mzay satisfy this restriction by assijninj appropri3tely global

labels to the nodes. The following node numbering algorithm takes this restric-

- tion into consi1eration.

ALGi:

Given a proper element labeling for the finite elements and a corresponding

local.numbering of the nodes, obtain the global numbering by giving the

.- . nodes sequential numbers in the following order:

1) FOR j:1, DO glob(1,J) = j

2) FOR 9=2,...,m DO

FOR i=1,...,k DO IF node (e,i) is already numbered THEN skip

.: ELSE increase j by one and set glob(e,i)=j.

Now, assume that the nodes are numbered by ALG1 in that the bandwidth of

the matrix resulting fromi this particular nuberin3 is 23+1. Then it may be

proved [3] that, during the ass.ably process, the rows of H becone active in a

pur el y sesquential order. Moreover, whenever a certain row i of H Is active then

the rows up to 1-3-1 are ready ani may be processed by the solver.

*Definition: If, at a specific time durin3 the assembly of H, a certain row I,

- . 1:i~n is active, then the rows 1,..,t-3-1 are called B ready rows of H.

i, .;e P A , - ¢ % .. ;' . .... ; ,.,-,- , . . ., . .... . ., . . .. .... . ., .-. ,, ... . . -

°4 I .. • o . - - ° " " o ' ' ° o - . , " . - , " . . . . " - " . , . -
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From the above discussion, it follows that Bready rows are also reJy

rows, and that the rows of H becoiie B ready in a purely saquantial orler. dow-

ever, a given row nay be ready oefore it becomes B ready. Being pessinisti:, wa

will pass only B_ready rows from ASSE4B to FACT, axcept of course the last rows

n-B, ... ,n that nay be passed to FACT only after the asse3.bly of H Is completed.

In addition to satisfying the two goals stated earlier, the above rule for

• .-"the interaction between ASSE1-B and FACT allows ASSEAB to determine automati2ally

the instant at which a row is ready to be passed to FACT. This eliminates the

preprocessing step that is usually needed in frontal techniques to determine the

instant at which a certain row is ready. More precisely, ASSEIB nay keep a flag

"BMAX" that indicates that any row hi, i BMAX is Bready (and hence ready).

This flag should be updated whenever a row he with glob(e,j)-8-1>BMAX Is

received .

We now return to ALGI. Although this algorithm provides a good numbering

scheme from the point of view of processing the assembly and the solution

processes in parallel, we still have to ensure that it does not result in a

large bandwidth B. For this we note that ALGI is a two step algorithm; First,

the elements are labeled, and then the nodes within the elements are numbered.

- To our knowledge, Fenves and Law (3] were the first to suggest a two step

numbering schame. They reported experimental results which show that if the

Cithill-ckae C2] algorithm is used to number the elements in a two step algo-

ritra, then the baniwilth of the resultinj matrix is comparable with the best .-

known algorithm for sinimiztng the bandwidth. Here, in the application of the

Cthill-lokee algorithm, two elements are considered neighbors if they share a

ooiamon boundary. ds examined many strange shapes of neshes and in only rare

e. oases did the applization of the OWthill-'lckae algorithm for numbering the
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.. eleuents result in a non proper element labeling. Moreover, in all these rare

cases, a proper labeling W3s easily obtained by changing the starting elenent.
The existence and construction of a proper element labeling sche.me for a given

mesh is still a question that needs to be answered.

bP3ssible lpleaentations for ISSUB and FACT.

*:' It is clear that ASSE48 has to handle large amount of data at high rates,

" which necessitates the distribution of its task on a number of processors, each

- being responsible for the assembly of the elements in one or .more diagonals of

H. We consider here the extreme case where we have B+1 processor/menory units

-'" th
M 0, P ... ,B with PNw responsible for the assembly of the w off-diagonal of

H. A communication network, C04'4, is needed to distribute the data received by

ASSE4B to the appropriate processor. Namely, when an element H is received,

I ,j

M accompanied with glob(e,i) and glob(e,j), CQ4H should direct these data to P4w,

where wfIglob(e,i)-glob(e,j) I . It may be i.mplenentei as a binary tree network,

where each node is a switch that uses the appropriate bit of w to decide whether

to pass the information to its left or right successor.

In the implementation suggested in (3], the process executed by each P4w

is driven by two interrupts, nanely input and output interrupts. The input

interrupt takes place when new data (typically H, and glob(e,i)) are received

from CQ4!. As a result, Hi is accumulated in the position v=globCel) of the

diagonal stared in P?4,d and the flag BMAX is set to max{3,14AX,v-3-1 I.Upo n

reception of all the elemental arrays, BMAX is set to n to inicate that any row

I :1 in H nay then be passed to FACT. On the other hand, the output interrupt is of

a lowr priority and tak3s place when the output port connected to FACT Is ready
.,,%i -'

.. ' I

%°
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to receive new Jata. A counter "consune W" may be us d to ke!ep track of the

next element that should be produced. However, if this elenent is in a row that I

is not yet Brealy then Pi1 would have to wait until consunei w s BMAX 3ni than

pass the element to FACT.

One difficulty arises from the distribution of the assembly prc less on the

-. .

B+1 PAI' s, namely that upon receipt of a certain rowh, the entries of this row

are distributed to the few P1' s that are responsible for their accunulation.

-- Hance, only these few R4' s will detect the arrival of hi and update accorJingly

their copy of the variable aXAX. The copies of BMAX in the other R4' s will not

be updated unless we provide for some sort of intarprocess conmuniation. In

order to solve this problem, we may store MIAX in a global location shareJ by

all PV's. bwever, since RO receives the diagonal element of every row arriv-

in3 at ASSEMB, it seens natural to have only P.10 ipdate BMAX. Another solution

is to use a message passing technique where the updateJ valu3 of M AX is passed

fra P0 to P41 to P12, ... , and so on.

ith the above Implementation of ASSEIB, FACT should have enough computing

power to process the ready rows of H at the high rate at which they ,nay 6e pro-

duced by ASSEIB. This powar may be obtained from a very high speed array pro-

cessor that nay becoae available in the future as a result of advances in VLSI

and optical communication technologies. However, with the current technology,

the most suitable candidates for the LIplementation of FACT are systolic arrays.

Many systolic networks have been suggested in the literature for the LU

decomposition of positive definite banded matrices (e.g. (51 ), and specifically

for symmetric matrices C1, 81. They all require that the elements of the matrix

bWt: be supplied diagonal-.ise, which is comapatible with the above structure of (.

• - ~2iei ~ .:- -- ;~~-~A~. - *--*- *-.**-. -'-.-.



-19-

ASSV B. However, any i.oplementation of FACT 'nay not be synchroniz3J by a global

clock, namely because the rate at which ASSEB produces the B reaJy rows of H is

not constant due to the nature of the asse.nbly process. Hence, a salf-tined

'. -.* technique [11] should be used for the interaction between ASSEIB anJ FACT ind

for the synchronization of the operation of FACT.

In order to study the utilization of FACT in this self-tined environment,

we define r to be the rate at which FACT would consume the ready rows of H if

they were always available when needed. This rate for the networks describei in

[1,6,81 is one row of H every 3 tLe units, that is r =1/3. 4-% also defineca

pr (t) to be the rate at whiah ASSE4B produes the BreaJy rows of H at any par-

J : i '" titular time t. For the Loplementations of (ZN 3nJ ASSEAB JisOusseJ here, it

may be shown that, at any ti'me t, rp(t)1 /3 row/ti.me unit. This means that the

Bready rows of H will be consumed by FACT as soon as they are produced by

ASSE4B. This result has the following tplications:

7 1) The storage in each P4w should be large enough to store only B 1 tlenents of

*th
the w off-diagonal of H at a time.

-. 2) The generation and asse.mbly of H form the bottle neck of the entire system.*h-*..

This is a clear indication that we- should not concentrate our effort on finling

,,4 . faster parallel solvers for linear systemas and neglect the problea of generating

H and b fast enough to feed these fast solvers.

) Although FACT is self-tined, we4 may accurately estimate the time at which it

.. will complete its task. For example, if the systolio network in (3] is used for

FACT, than it may be shown that the decaposition will be completed one time

uit after FACT receives the last row of H. Moreover, the last B rows of H are

made available to FACT Just after ASS.'B receives its last input at time

- 3k*.gk.q*1 6. Since FACT is aole to conswue these B rows in 33 ti.ne units, we

I ,. ' .. . . , , , , + , ,. - , , . .• . . . . . ,, . . . . . . . . .. . . . . . ' .. . . . . .
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-., may conclude that it will terminate its execution at time 3k.n+9<+33+q.17 Z

-.. 3 (kn 3).

Finally, we discuss the last unit in Figure 3. This unit, BACK, ptrforns

the back substitution step. Although its task is simple, BACK cannot start its

computation before the last row of L and the last element of y are available.

. Hence, a temporary storage, TEMP, -ust be proviJed for storing the elements of L

and y upon their generation until FACT terminates its execution. Note that the

systolic network for back substitution described in [6] may be used for BACK.

This needs 21 time units to execute, and hence the entire analysis will be com-

-." pleted in approximately 3(kn+3)+2n time units, whiah is a considerable spaed up

over the time for serially executing the O(n ) operations involved in the

analysis.

Although the system described above profits from all apparent concurren-

*: cies in the analysis, it has a serious disadvantage, namely the dependency of

its architecture on the bandwidth B of the matrix H. In order to be able to use

a system designed for a certain bandwidth B for a problem with a larger

. bandwidth, we should be able to partition the computation appropriately to allow

its execution on the existing hardware. This partitioning seems to be non-
-. 1

trivial for systolic LU decomposition networks due to their complex communica-

tion patterns. More research is needed on systolic or alternate architectures

P . for the direct solutions of linear systems if we desire to have a system that is

.* indepenlent of the bandwidth B.

6. stms that a iterative solvers.

Direct solution schemes for the linear system (3) do not take advantage of

the fact that H is highly sparse, thus missinj a potential for savings in both

bn
co,~'.* - -

* . 4



storage and execution tI~ne. For this reason, it is sonetiInes benefizci3 to us3

iterative sche-nes for the solution of (3) despite their obvious diSaivantages,

~ namely, the absence of a good criterion for chosin& the initial point ani the

possilole divergence or slow convier~ence of the iteration.

-HOST GIN

DATA BASE

IL

Figur 4 -A sytem hat mplos anitertivsovr

oFisulve to ths sysem that invovs atherative Hsonlyvnther.ttino

~ its product with a certain vector. This product mzay be forned using the

uriasse'blei elemental arrays, thereby elimiinating the need for the irregular

asse-ubly stage. More specifically, the product of H with any vector p .nay be

ra com put ed fr om

Hp m eT- e m eT- a
Hp 1 e=4H1 1 H .

This multiplication schemne is attractive in our case because the pa3rtial pro-

-ge e
Sducts p for ezl m m. , ay be pipelined at the sane rate at which the

arrays H- 3re generated.

.. In Figure 4, we show 3 block diaran of a systolic syste-n that em-ploys

iterative solvers. It is composed of the host ani two systolic functional

units; namely GEN for the generation of the elemiental arrays and MULr for the

matrix/vector multiplication. In this syst*em, the host is mnore involvedJ in the

4J
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computation than in the systen that enploys direct solvers. In feet, tha hist I
is a general purpose computer that executes a sequentiaL finite element progran

and uses the systolic units GEN and MUiLr as high speei devices to p-rfora so:ae

compute-bound operations in the progran.

The block labeled STORE in Figure 4 is a storage device usd to store the --

elemental arrays in order to use then in successive iteration steps. However,
.4

if the speed of STORE is such that it cannot provide MULr with the elemental -

arrays at the required high rate, then STORE nay be eliminated from the system,

and GEN may be used to regenerate the elemental arrays in each step of the

iteration. This idea of regenerating the elemental arrays is more attractive if

a multigriJ technique is used for the solution of Hajb. In that case, the ,

regeneration of the elemental arrays becomes an essential operation. Note that "

the architectures of GEN and MULT neither depend on the specific grid that cover

the domain of the problem nor on the bandwiJth of the resulting matrix H.

Hence, the matrices corresponding to the different grids nay be generated from

GEN without any system reconfiguration. 11
Finally, we note that only limited speed up mnay be obtained by using the

pipelined iJea with iterative solvers. This is namely due to the fact that suc- j
cessive steps in commonly used iterative solvers cannot be pipelined. For exam-

ple, in the conjugate gradient method, a new step cannot be initiated before the

termination of a dot product that depends on the previous iterate. It sems an[

that the success of a pipelined/iterative finite element system is largely -.

dependent on the availability of an iterative solution sche.ne in weich succes-

sive steps may be pipelined.

'

-I --

'
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-. Conclusion.

Pipalininj is a straight forward approach for processin3 a certain compu-

tation in parallel on sone hardware that is not dependent on the size of the

.. problen to be solved. In this paper, wa discussd pipeline solutions to linear

finite element problems. In order to maxinize the benefits fro.n a pipelined

system, the execution time of the different staies in the pipe should be approx-

.-. imately equal. This may be accomplished by including in each functional unit in

the pipe an amount of hardware proportional to the computation performed by that

unit. Unfortunately, in the case of complex computations as that involved in

finite element analysis, this means that the architecture of eah unit may

depend on some paraneters of the given problem. For instance, the LU factoriza-

tion unit depends on the bandwidth B of the stiffness matrix and the array Zen-

eration units depend on the number of nodes k in each finite element. conse-

* H quently, a system desi3ned for a certain B and k cannot be usaJ far problems

with B'>B or k'>k.

These restrictions on B and k result fran the use of systolic networksr with very simple types of cells for the majority of the functional units in the

pipe. This has the advantage of achieving a smooth and regular flow of data in

the system, thus increasing its execution speed. However, a system that is

independent of B and k may be obtained if we allow for more flexible cells and,

accordingly, partition the computation within each unit such that each cell is

assigned to a larger share of the computation. The execution tine of the dif-

ferent units in the modified systn should be kept approximately equal. de did

not discuss such a decoPosition in this paper.

* ' The common problem of conmunicating data at a high rate to and fro.n sys-

I - toli arrays are not present in the system suggested here. Namely, data are
V....
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supplied to the first unit in the pipe at a rate of 3, 10 Items every 3 tine

units, and results are collected fron the last unit at an average rate of B/3

item every 3 time units. The coanmunication between the other pipe-jnits do not

require any intervention froa the host that controls the entire operation.

Finally, we hope that this work will lead to more research for the further

exploration of the idea of pipelining finite element computations.
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