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1.1 Purposes

The purposes of this paper are to:

(I) define and characterize the relations between supervisory

control and computer decision aids (expert systems), particularly

with respect to the human operator's mental model and

computer-based models of the controlled process or environment

which miqht be incorporated in the decision aid or in an automatic

controller,

(2) pose some salient paradigms for analysis and experimentation

in regard to the above system relations, and

(3) report on some preliminary experimental results.

1.2 Fundamental relations

The exposition to satisfy purpose (I) above may best begin by a

sequence of diagrams (Figs. 1-6) and definitions of terms (see glossary) at

end of report.

Figure 1 shows the time-honored man-machine system in its simplest

form, consisting of: (I) a human operator; (2) a controled process which,

together with given o.bjectives (goals, instructions, utilities) define the

task of the operator. Vrom displays he receives sensory feedback and he

takes motor actions through controls with his hands, feet or voice. The

symbol MM is the operator's internalized mental model of the task which lies

outside him.

In Figure 2 a key new element is added: (3), a decision aid which

is a question-answerer, advice-giver and which helps the operator decide what

to do. The decision aid can be computer-based, taking the form of an expert

system, or it can be a second human operator (or team of same). The symbol CM

is a computerized model of the controlled process internalized within the

decision aid.
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Figure 1. Simple man-machine system
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Figure 2. Decision-aided man-machine system
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The controlled process may be simple manual skill (e.g., an olympic

athletic event, where a human decision-aid takes the form of a coach standing

nearby shouting advice or giving hand signals) or may itself embody a

computer and/or automation. If the latter (e.g. an aircraft) it will likely

involve a computerized internal model CM of the logic and/or differential

equations (transfer function) of the controlled process and environmental

forces. The latter is sometimes called a Kalman filter, estimator or

observer and is an inherent part of a so-called optimal controller or modern

control system.

A computer-based decision aid necessarily also embodies some form

of internal model of the salient characteristics of the controlled process.

Such systems have initially been implemented for important but

non-time-stressed decision-making such as medical diagnosis/therapy,

geological prospecting, or configuring of computer systems. These are not

supervisory control systems as we will define them. Now there are plans for

such decision aids to be implemented in supervisory control systems such as

nuclear power plants and computer-aided gas well blowout systems, where

time-stress, human safety and risk of capital are concurrent.

The artificial intelligence community often refers to a computer-based

decision aid as an "expert system" and its internal model a "knowledge

representation". The latter may encode knowledge about the world in various

forms such as input-output equations or "if - then" relationships called

"9production rules" or just "productions". An even more general way of

storing such knowledge is a "frame" wherein declarative facts, parameters,

descriptors and semantic-networks and pointers to relevant information are

stored in addition to strictly if-then or procedural representations.

Using the usual symbolism of the control engineer we designate control,

command or efferent variables as U, and measured state, feedback or afferent

variables as Y. X are the true (but knowable only experimentally) state

variables of the controlled process. U' is the subset of U available to the

decision aid, while Y' is the set of state variable measurements available

to the decision aid. (Both Y and Y' can have elements not common to the

3



other.) Q are questions asked by the human of the decision aid, and A are

answers or advice given.

Note that the operator's displays and hand-foot-voice controls are no

longer explicitly specified in the diagram. Both Q and U require some form

of controls, and both A and Y some form of displays. Indeed the displays

and controls for these two types of interaction between the human and the

machine can be combined. The human engineering of the displays and controls

per se is best decided in context and will not be dealt with in this paper.

Figure 3 illustrates what is meant by supervisory control, exclusive of

the decision aid. In 3a a computer is imposed between human operator and

controlled process, with a supervision of the high level control loop closed

by Uth and Yh through the human operator and the computer. A lower level

control loop is closed by U and Y through the controlled process. Noter r
that the latter is now defined to exclude the computer. Note also that

exogeneous input variables called "objectives" (goals) and "environmental

objects or forces" are added to complete the diagram.

Figure 3b shows the computer to be segmented into an executive or

supervisory or human-interactive computer and one or many low-level or

task-interactive computers. Often the latter is the case - such as where a

single station coordinates many automatic subsystems. The former is

multiplexed in time and space to the latter, as indicated schematically.

Between the two types of computers is typically a spatial and temporal gap in

the form of communications bandwidth constraints or time delay. This may be

due to physical constraints on telecommunications or to multiplexing. Now we

have a clean physical separation between the high-level human-interactive

subsystem (HIS) and low-level task-interactive subsystem (TIS). The

human-computer interaction within the HIS is in human-oriented language and

is for the purpose of helping the human supervisor (1)plan, (2)teach (give

commands) to the TIS, (3) monitor its automatic-execution of what is asked,

(4)discover when it fails or completes its task, (5)intervene in emergencies

or to assume manual control or reprogram the TIS, and (6)learn from

accumulated experience. The one (or more likely many) TIS may be considered

to be closely-watched and frequently reprogrammed robots. Examples of

4



objectives

HUMAN F HUMAN
OPERATOR OPERATOR

"COMUTER UMNINTERACTIVEUC, I to• -.CO PU E

rONTROLLEIPROCESS M
TnnSo IbNTERACTIjVET,U, Y, Ie COMPUTER

or fortes |

(a) one control computer
nvironmental object

ror forces

(b) two control computers

Figure 3. Supervisory control

~4A-



supervisory control are discussed more fully elsewhere (Sheridan,1982;

Sheridan,1983).

Figure 4 shows that the functions of the high-level, supervisory,

human-interactive computer can be divided into two parts, one to deal with

command-giving by the human and "coordination of the troops" (the TIS), the

second concerned with advice-giving and decision-aiding as was illustrated in

Figure 2. Again note the presence of "internal models" in both parts, as

discussed above.

By analogy to human organizations the decision-aid (expert system)

functions as a policy or research staff, and the control-coordination

functions as a production or command staff. The decision-aid also

corresponds to those parts of the mammalian nervous system which support

situation-assessing and cognitive contemplation, while the controller

corresponds to those parts which support sensory-motor skill. It bh.comes

clear that pure sensory function supports both of these, and indeed there are
"chief-of-staff" or "executive coordination" functions uf mediation of time

and resources between them. The separation of physical elenents between

these functions is not clean in the animal or in the human organization or in

the computer.

If the question-answer-advice-giver is another human we might just as

well put him/her in the same position on the diagram as in the computer

version, Figure 4. However if this second human is a full-fledged team

member, also able to access the computer-based decision aid and also entitled

to give commands, we have the much more complex situation diagrammed in

Figure 5. This might be called a simplest model of the elements of a

multi-person co~amnd and control system.

Figure 6 adds one new element - a human experimenter who observes and in

some sense controls the whole (res.; (T the! ryrtem. In this case the

experimenter is not both observing the state-variables of the controlled

process and Ithrough his internal model of the controlled process, estimating

other state variables, as was the case with the internal model in the

computer. In this case the experimenter-observer is a researcher/engineer
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who may first observe real supervisory control systems with built-in

computerized decision aiding, who then sets up new experimental situations or

simulations of known actual situations to do controlled experiments and build

conceptual models of salient relationships. The mental model in the head of

this observer is a model of the behavior of a system consisting of the human

operator, the controlled process and the decision aid.

I and my colleagues in the present research are this observer. What we

hypothesize and conclude and write in papers like this one emerge from that

observer role and the mental models which develop in our heads. As indicated

by (unlabeled) arrows, in such an experiment we can set the controlled task,

giving it any degree of sophistication (including a computerized model

(observer, estimator) which allows it to control automatically to a

corresponding performance which we can determine). We can also set the

decision aid, again including a computerized model (knowledge representation)

of any quality or correspondence with reality. Finally we can set the human

operator, by selection, training and instructions. Obviously there are many

degrees of freedom for us to adjust - to determine a range of qualities of

performance.

In the next section to follow we discuss internal models, what it means

for an internal model to have knowledge, and how to characterize the

correspondence of knowledge to truth or to the knowledge of anrther internal

model, be it human or computer. In the third section we consider some of the

most important research problems with regard to mental models of the human

operator in relation to his supervisory control functions. In the fourth

section we consider computer models and decision aiding (expert systems) in

this supervisory control context. Here Aome relationships between mental and

computer-based models are examined.

2. INTERNAL MODELS, KNOWLEDGE AND CALIBRATION

2.1 What is an internal model?

An internal model .s a representation within a ciraputer or

(hypothetically) within a human operator of assertions about the world.
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These assertions can be about tangible objects or about events, past, present

or predicted future. They can be representations of systemic relations

between elements coded as pictures or diagrams or tables, or values of

isolated variables, or relationships between variables, such as "if - then"

production rules (or simply "productions"), or can be input-output

differential or difference equations. In the present context we assume the

mental models are restricted to (1) the controlled process, (2) environmental

objects or forces which must be rearranged or otherwise controlled (if not

considered part of the controlled process) and (3) given objectives (goods

and bads, benefits of various kinds of performance, costs or limits on uses

of various resources).

2.2 Knowledge

Knowledge is the representation of belief or expectation that certain

states of the world are true and certain cther states of the world are not

true. More knowledge is a more refined or more specific representation of

what is believed true and what is believed not true, i.e.,there is greater

knowledge when there are more categories of what is believed not true.

In general any object or event or state of the world can be

characterized in many dimensions of space,time, force, color or other

attributes. For simplicity, assume there are only two dimensions x and y,

each with only two levels. Then the state space has four categories, as

shown in Figure 7a.

If an internal model represents x2 y1 as the believed truth (and

therefore the other three states as what is believed not the truth), then the

amount of knowledge can be characterized by any function of the degree of

specificity or concentration (Cooke, Mendel and Thijs, 1984). The most

common measure is the reduction in entropy (confusion) in going from no

expectation (all states are equally probable) to the given expectation. In

this case where the given expectation has no uncertainty at all we have:

(entropy of no expectation) minus (entropy of given expectation) =

log 2 4 - log 2 1 = 2-0 = 2 bits

7
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If each of x and y is specified to four levels, so that there are 16 possible

states (Fig. 7b), representing the truth as x3 Y2 would constitute log 2 16 - 4

bits of knowledge. If there is some expectation (probability) of several

different states (as in Fig 7c) then, more generally, the knowledge K is

K 1 pipj log2  _ - 1 iog 2 [ =

(entropy of no expectation) minus (entropy of given expectation) =

1 1 1
loc2 16 - 2 2 log2 2 4 4 log2

4 +4 blog2 4) = 2.5 bits

Note that the information measure is only a function of expectation over

different possible states, and is not related to the meaning of the

alternative states (combinations of attributes). Below more will be said

about meaning.

2.3 Correspondence of knowledge representations to each other:

calibration

Note also that the above definition of knowledge says nothing about

whether an internal model's representation of the believed truth is in fact

true, or whether one internal model's representation corresponds to another

such representation. To "know" in the sense we use it is "to act with

certainty" about the world or to "have specific ideas". We all know people

and machines that "act with certainty" or "have specific ideas" which are

wrong, either because they don't agree with the world or because they don't

agree with our own ideasl

Therefore, in addition to the notion of "knowledge" for a given internal

model it is necessary to have the notion of "calibration", the correspondence

8



between the representation of knowledge in one model of the world internal to

a person or computer and another representation of knowledge, (where the

second is either the truth or it is the knowledge represented within a second

person or computer).

Calibration of knowledge may be defined by the conventional chi-square

statistic, where p(xiY.) Wpij is the probability density or expectation of

the mental or computer model being calibrated and q(xiyj) = qij is the

reference expectation:

C = Z [ (P q PI

This is really a "miscalibration" measure.

It may also be defined by the relative entropy (Cooke, Mendel and Thijs,

1984):

C = Z7 (a.. loa aij/Pi)iji "13

Note that in either case when pi. = 0 for any qij finite the measure

goes to infinity - which makes sense when it is realized that if a prior

gives zero credibility to any hypothesis then no amount of evidence-can force

Bayesian updating to modify that zero.

Note also that in contrast to the above definition "calibration of

knowledge" or "correspondence" could also mean accuracy (simple attribute

distance between corresponding states), precision (standard deviation of the

distribution of difference measures around their mean), Pearson-product

moment correlation, and so on.

2.4 Correspondence of mean.i gs within a single internal model: fuzzy

sets



Knowledge was defined above in relation to a person's or computer's

probability density of expectation over states of the world defined by one or

more attributes (Figure 8a). In that case the meanings of those different

states were assumed to be clearly distinguishable from one other. That is,

there was no uncertainty in the mind of the human operator or the memory

address of the computer other than which of them was believed to be true.

The degree of certainty is in the strength of belief or expectation of

existence where the truth itself is not observable. In fact only one state

is or will ever be true, and that fact is clear to all concerned.

There is another type of uncertainty not in expectation of existence,

but in meaning or identification. This is where information is coded or

represented in the mind or computer memory in such a way that a term or

symbol or concept can have shades or degrees of meaning among different

states (objects or events within a set).

First let us consider unambiguous or distinct designation of sets.

Suppose for a one-dimensional set X the term "small" is designated to

represent the set including states xI and x , and exclude x3 , x4 and x5. In

this case we can represent membership graphically by Figure 8b, where

membership in the set "small" is I for x = 1, 2 and is 0 elsewhere. "Small"

means both x=l and x=2 for sure and not the others for sure. Then the set

"large" might mean x3P x4, x 5 (and not xI and x 2).

Now let the membership function be continuous between 0 and 1, and let

"small" clearly and strongly and appropriately mean xI, less clearly and

strongly and appropriately x2, and so on until x5 , for which "small" is

clearly inappropriate. This is called a "fuzzy membership function" and

"small" is called a "fuzzy set". Expectation or confidence about the

existence of any x is not considered here. Once the relative strengths of

meaning are specified those meanings exist for certain, whatever the value of

membership, over the whole fuzzy set.

It is clear that two or more fuzzy sets can be defined over any set of

attribute states (Figure 8d).

10
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The theory of fuzzy sets has been developed by Zadeh (1965) and others

because of the need to make these theoretical distinctions between

expectation of existence and meaning and to be able to combine and manipulate

assertions couched in fuzzy language, which is evidently what people do.

There are various calculi (procedures for combining statements) which have

been developed for this purpose. The most popular simply assumes that the

membership m of any particular value or state of world attribute x in a

representation combining two fuzzy sets inclusively, e.g. "small or medium",

is the greater or stronger or most true of the two component memberships at

that x:

mslUs2 W - max [Msl(W. ms2(W)

Similarly the membership in an exclusive combination (e.g. "small and

medium") is the lesser or weaker or least true of the two component

memberships at that -^

msl ns2(W)- min[msl(X, ms2(X)

From many such statements, presumably couched in fuzzy terms because

that is the way people think about the world, e.g., "When size is large or

medium, and speed is fast, do -", a "state action matrix" can be built up.

This in effect specifies a precise response (or conclusion) u for every

possible input (state), x.y., as in Figure 9.

Note that the state action matrix is a summary of the implications of

the set of fuzzy statements (based on the particular combinatorial calculus

used). If a human operator communicates a number of fuzzy assertions to a

computer and the computer derives the state action matrix the latter becomes

the computer's internal model of knowledge as provided from that operator.

And a display of the state action matrix to that human operator becomes

feedback as to what the computer understood (can conclude) from what the

human operator asserted. It also indicates the strength or relative truth

corresponding to each u (in a sense the computer's degree of confidence that

that u is appropriate for the given state). Seeing this feedback display the

human operator can offer more assertions bearing on regions of the state

11
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space where m is weak, i.e., where the computer is not confident what a

particular circumstance x.y. implies about what to do u..

3. MENTAL MODELS

3.1 Is "mental" admissible?

Behavioral scientists have always approached the subject of "how humans

think" with trepidation. Early in this century, indeed, logical positivism

and the methodology of "operationism" acclaimed by Bridgeman (1928) and other

physicists so indimidated psychologists and reinforced the "behaviorists"

that for a psychologist to purport to be studying "thinking" was to ask for

ostracism from the scientific elite. Today computer technology has

encouraged study of both artificial intelligence and cognitive science. It

is now acceptable to speculate about thinking. However it is still as

difficult as ever to establish generalizable models based on controlled

experiments. There remain physiologists and "hard" behavioral scientists who

eschew all that is "mental".

As an engineer-psychologist who respects this conservative, hard-line

experimental operationism I nevertheless feel (after Descartes I suppose)

that my consciousness is real and verbal report is legitimate evidence of

same. So is choice behavior when the question is couched in semantically

acceptable terms. Based on such behavioral responses a psychophysics of

mental models seems tractable.

Assuming that "mental is admissible", five problems emerge for the

operator which amount to five key mental activities of supervisory control:

(1) discovering how things work, (2) determining what is wanted, (3) mental

manipulation of fuzzy ideas or "chunks" (4) combining evidence with

confidence, and (5) deciding what to do. These are discussed first as

problems for the supervisory operator which in turn become problems of the

cognitive researcher. In subsequent sections they are discussed as problems

for the designer of computerized decision aids.

3.2 Discovering how things work

(2-.



DeKleer and Seely-Brown (1982) in their studies of how humans understand

simple electro-mechanical devices, distinguishes three kinds of mental

activities: "device topology" (definition of elements, and structuring of

connections between elements in terms of variables), "envisioning"

(development of a qualitative simulation of what causes what and is

constrained by ý4iat) and "running" (testing of the simulation). They make

the point that a successful simulation must be "consistent" (a variable

cannot be caused to have two different values), be "corresponding" (agree

with empirical facts) and be "robust" (apply to a wide range of situations).

Presumably at the start structure and function are disparate, and then are

correlated in the testing and iterative development of the simulation.

In considering how things work (or how they don't work) Rouse (1980) has,

pointed out the tendency of human subjects in fault searching tasks to seek

confirming evidence for fault hypotheses but pay little attention to

disconfirming evidence which may be just as useful in discriminating. This

would suggest that people also may neglect or not know how to use evidence of

what doesn't function or what the structure is not.

Rusmussen (1981), again concerned primarily with fault detection, has

made a useful distinction between "topographic" and "symptomatic" search.

Topographic search is systematically observing over a whole set of given

items to find one or more items which stand out as being different by some

given criterion. Symptomatic search means searching through a whole set of

symptoms or patterns or criteria to find one which matches the observation on

a given item. Both strategies may apply to search for cause of a given

consequence, search for structural connexity, search for a plausible

explanation or search for a fault.

In the present context of supervisory control the search for

cause-consequence, connexity and explanation is applied to the controlled

process. Without understanding how that process works presumably one can

control only by making actual trials and errors. With understanding one can

run mental experiments, "simulations" in DeKleer's terminology, make

predictions and determine what control is likely to work before commiting to

a single actual trial. In this manner one can readily discover polarity and

13



sensitivity of effect, order of integration, or essential nonlinearities.

Along with understanding of the endogenous input-output characteristics

of controlled processes is understanding of the exogenous properties of the

external forcing functions and constraints - disturbances, obstacles, time

and resource limits, etc.

Later some experimental paradigms are presented for studying how

subjects-use computer aiding to discover how things work and how best to

control them.

3.3 Determining what is wanted

In order to do mathematical optimization the analyst customarily

presupposes an objective function which specifies which performances or

states of the system under consideration are good and which are bad and what

is the precise tradeoff between achieving different levels of different

objectives or "goods". The constraints on resources, combined with the

physical laws governing the behavior of the controlled process generally

prevent the process from achieving the highest level of every objective; some

compromise must be made. The question is what compromise is best, and the

analyst can (usually) determine this, or at least come close, by simultaneous

solution of the given objective equations and the given process equations.

With real people and real controlled processes to talk of optimal

control is mostly nonsense. A precise objective function is seldom if ever

available. Real human operators have a sense of what is better and what is

worse relative to situations they have thought about. To be posed in

rapid-fire succession with a large number of hypothetical situations

(combinations of attributes) which are far from what they think they want is

very difficult for people to respond to. This is especially true if these

situations are cast in the form of lotteries as required by multi-attribute

utility theory, e.g., "would you rather have a lottery consisting of 0.7

probability of 'ki and 0.3 probability of x2 or would you prefer an even

chance of x3 vs x4 ?" For these reasons, many multi-attribute utility

measuring techniques, though theoretically rigorous, are empirical disasters.
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A somewhat different approach is proposed by March and Simon (1958) who

call it "satisficing". The idea is to discover the neighborhood of

achievable state space with which a person (judge) is satisfied that he can't

do very much better. And the idea is to avoid having to compare states which

are unrealistic (undesired or unachievable).

It is clear in any case that the supervisory controller does have a

significant problem in determining what he most wants from the bewildering

array of what he can have, and in pondering this choice typically doesn't

even know what is achievable and what is not. (This will be dealt with

further in the next section).

A different aspect of the human operator determining what is wanted is

the mediation between determining what he himself wants and what some

outsider (the boss, the co-worker, the regulation), wants. Insofar as there

is good calibration on what is wanted by several different entities (a notion

yet to be developed) there should be a "confidence" (see Section 3.5) to go

ahead.

3.4 Mental manipulations of fuzzy chunks

Miller (1956), in his researches on immediate memory has made convincing

the idea that humans recode detailed information in coarser pieces called
"chunks", and that this chunking can be hierarchically recursive (fleas have

little fleas, etc). Ordinary experience strongly suggests that such chunks

are fuzzy, i.e., that certain concepts or mnemonics have a stronger meaning

or elicit stronger association or recall for some attribute states then for

others.

With respect to knowledge, one can always test how precise is a

subject's expectation over specified unambiguous states of the world.

However if the only way a subject can encode that expectation is to use fuzzy

sets which spread over a large number of states, then that subject cannot

discriminate very well. The greatest achievable concentration of expectation

(over the given states, not over the fuzzy sets) is where there is no

chunking and no fuzziness. (Wisdom may be expressed in simple terms - a few
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chunks arranged in a pithy but fuzzy statement. But if those chunks or fuzzy

terms do not permit discrimination with respect to what they don't mean, then

surely theze is no wisdom).

A person's knowledge may be stated in expectation of terms that we would

normally call fuzzy (e.g., 0.7 expectation of small, 0.3 expectation of

large) and another person's knowledge may be similarly stated (e.g. 0.6

expectation of small, 0.4 expectation of large). Calibration of one person's

knowledge against that of the other is straightforward if the (fuzzy) terms

are the only ones that are used - with no need to worry about how fuzzy

memberships spread over some set of attribute states. However when one is

interested in calibration with respect to attribute states and the "large"

and "small" fuzzy membership functions of the two persons differ as well as

their expectations of large and small, then the calibration problem is more

interesting. This real life problem is only suggested here; no solution has

been developed, but we are giving thought to it.

3.5 Combining evidence and confidence

It is known that people are conservative decision-makers in using

evidence they have available to update their subjective expectations

(Phillips, Hayes and Edwards, i966). In many ways they hedge their

judgements toward the mean, toward "no expectation" or the "maximum entropy

position". This would be ivrational were their sensing, memory and data

processing noise-free. It makes sense, however, if viewed as rationality

embedded in self-noisiness, or as lack of calibration of one's knowledge or

good-bad criteria with those of another signifiant entity (human or computer

or true state of the world).

After many empirical trials one usually can be subjectively confident

that a coin is fair, i.e., 50-50. After no trials at all one may expect

heads and tails on a 50-50 basis but with no confidence. After 9 heads and

one tail the empirical knowledge suggests 9 to 1, but the confidence limits

on the probability militate in the direction of the 5 to 5, and awareness of

self-noisiness may militate still further in that direction.
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The best decision-maker will know when to have confidence (when to

predict his own success or predict that his empirical knowledge will yield

the best result) and when to hedge the expectation toward the mean because of

* assumed internal noise or entropy or poor sample. Figure 10 suggests a way

of analyzing a person's skill at doing this, using a conventional relative

operating characteristic (ROC) curve of signal detection theory. In this

case, one asks the decision-maker to predict his own success ("S"). One then

cross-plots the probability of predicting success given actual success (S)

vs. probability of prediciting success given actual failure (F). The upper

left hand corner is perfection, the diagonal is the line of guessing, and the

curve shown is typical of where subjects might lie on average. Most

important, the lower-left to upper-right direction corresponds with

the decision-maker's general confidence in himself (i.e., to predict his own

success). Note that degree of true success is an orthogonal direction on the

graph to degree of confidence. This use of signal detection theory is

another idea we intend to pursue further.

3.6 Deciding what to do

If one knows how things (the controlled process, the forcing functions,

the obstacles, the resources) work, if one is satisfied as to what is wanted

(and satisfied with the consistency of what different authorities want), if

one has coded (chunked) at a proper level and not in a different way than

another significant person or computer, if one is properly atuned as to when

to accept the evidence and when to hedge toward the no-confidence (entropic)

position, then one is ready to decide what to do.

In complex supervisory control systems these factors may require more

mental capacity than a human supervisor has, and a decision-aid is likely to

"be of help.

.4. COMPUTER MODELS AND DECISION AIDING

4.1 Two types of computer models

In section 1 the idea was introduced that models of external reality can
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be represented inside the computer. Two types of such models were identified

as appropriate to supervisory control: (1) model of a dynamic process which

serves to "observe" or estimate state variables which are inconvenient to

measure, from which automatic control is implemented; (2) a model of a

process which, together with a user interface, provides a human operator

advice and responds usefully to queries he makes.

Figure 11 diagrams the first type as is used in linear control systems.

Because this use of internal models is well known, and its operation at the

automatic (task interactive computer) level of supervisory control is

straightforward and well documented, we do not concern ourselves further with

it in this report. We are more interested in exploring the uses and abuses

of the second type of computer model and how it interacts with the human

operator's mental model. These days this latter type of computer use is

called an "expert system". More generally we have called it a "decision aid".

4.2 Expert systems: general needs

The knowledge base component of an expert system (Figure 12, Gevarter,

1982) is usually thought of as a set of "if-then" production rules. Possibly

separate from this general store of rules may be a model of the system

status, candidate hypotheses, or conclusions reached thus far about the

present reality. A human expert may input rules; also, data from the ongoing

process may be input to the system status model. In an executive position

over these elements may be a rule interpreter and whAtever else is needed to

provide an interface with a human user. (Whether the system status model is

separate from the general store of rules depends on the type of model, in

conventional equation-based simulations they are integrated).

Expert systems can operate top-down (deductively), i.e., deduce detailed

statements from abstract knowledge of how thngs work. They can also operate

bottom-up (inferentially). They can be driven by events (what is the meaning

of what just occurred?) or by cumulative data (what does it all mean?) or by

expected results or goals (how can we get there and how near are we getting?)

Both Feigenbaum (1980) and Buchanan (1981) have commented on the
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"bottleneck" of acquiring knowledge from a human expert, on the need for

steering the expert to provide the right kind of information, on working with

multiple experts, and on making expert systems user-friendly. Bonissone

(1979) has discussed sources of uncertainty in expert systems as: (1)

unreliability of information in the knowledge base; (2) imprecision of

language in the rules; and (3) incomplete information. He suggests

representing uncertainty as a fuzzy interval, with the degree of necessity as

a lower bound and degree of possibility (usually associated with the fuzzy

membership function) as an upper bound.

4.3 Expert systems for supervisory control

It is clear that expert systems can be useful to help the supervisory

controller with the key mental activities described in Section 3.1: (1)

discovering how things work; (2) determining what is wanted,(3) manipulation

of fuzzy ideas or "chunks"; (4) combining evidence with confidence; and (5)

deciding what to do.

The first of these is a fundamental problem of both artificial

intelligence and cognitive psychology, and we hope to pursue it later in our

research. The second problem is seen as particularly relevant for

supervisory control, is one we are now experimenting with, and will be

discussed in Section 4.4. We have explored the third problem experimentally

in the context of failure detection, and a summary of that work is provided

in Section 4.5. The fourth problem is one we are considering pursuing with

respect to expert systems, but it will not be discussed beyond what was said

already in Section 3.4. Some experiments are in progress in the fifth area,

particularly with regard to graphic machine aids for dynamic problems, and

these are described in Section 4.6.

4.4 Expert systems to help the operator decide what he wants

Wierzbicki and colleagues (1982) have devised a simple computer aid to

implement "satisficing", which may be described as follows (Figure 13).

Consider a multiattribute space. For purposes of simplicity Figure 9 shows a

space of only two attributes x and y. The computer is given the complete set
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of constraining equations, which might be absolute limits which can be

tolerated (e~g., on time, money, force, energy) or may be tradeoffs between

these variables imposed by the laws of nature for the particular controlled

process and/or environment. This means that a particular region of state

space is unachievable (shown shaded). Initially, however, the computer has

no knowledge of what the human user wants or how he would order the

achievable states on a good-bad scale. (Nor, indeed, does the user usually

know explicitly what is wanted; if he did he could make an immediate choice

of what he likes best from what is available to him).

The satisficing procedure starts with the user selecting some reasonable

"aspiration" state that he might like to achieve, and indicating which

directions of the attributes he would consider an improvement if he could

have them and roughly how important those attributes are relative to each

other. From this information the computer can determine which is the "best"

point on the boundary of what is achievable based on the aspiration point

provided and the good-bad gradient relative to this aspiration. This

"satisfacing point" may be better or worse than the aspiration state.

The user, having discovered one satisficing state that can be achieved

(that presumably is in the neighborhood of what he wants) may then wish to

pose a few other aspiration states which differ by some attributes. He may

think, for example, "well, if I can't have as much of x as I'd like maybe at

a different y I can achieve more of x" or "if I can do better than expected

relative to that compromise let me try another combination and maybe I can do

even better still". In this way few or many alternatives can be explored

until he is fully satisfied (satisficiedi). Never in the process is he posed

with comparing states which seem unrealistic (undesired or unachievable) and

never is he confronted with weighing hypothetial probabilities of

consequences.

James Roseborough (1984) is developing a flexible computer-graphic

system to provide this capability in a dynamic context (Wierzbicki's
demonstration was with a static problem). This will serve as an experimental

apparatus for studying how supervisory controllers might interact with such a

decision aid to explore options and to clarify what they want. The
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particular example problem Roseborough has chosen is that of maneuvering a

large vehicle into a terminal location, where the following attributes of

performance must be traded off: (1) time to complete the task; (2) energy

expenditure; (3) deviation from an ideal path (to avoid obstacles); (4)

deviation from an ideal final location. To determine these dependent

variables for different ship trajectories some complex nonlinear equations

must be solved. The emphasis, however, is on discovering what facilitates

human decision of what is wanted.

4.5 Experiments toward the end of an expert system for failure

detection using fuzzy sets

Now we come to the use of fuzzy sets, an area in which a master's thesis

of Frank Laritz has been completed (1983). That thesis is summarized here;

the complete document is available.

Laritz had five subjects repeatedly adjust two "inputs" A and B to a

"black box" to any value between 10 and 100, set a "failure mode" to any one

of four available settings including "no failure", and observe two "outputs"

C and D. The contents of the black box were not revealed. The subjects' task

was to correlate inputs and outputs with failure modes and from this infer

rules by which to assert whether and in what mode the black box had "failed"

as a function of the two inputs and two outputs.

Actually the black box was a simple resistor network as shown in Figure

14 in which one of the resistors 1,2,3,4 was selectively opened (or none

was).

After each subject had completed a number of trials (they were all

* really learning trials) he was asked to formulate rules in terms of

easy-to-remember descriptors for the four variables like "low", "medium" and

"high". Using these descriptors he was to generate rules such as:

"when A is low and B is medium or high and C is high and D is medium or

high, the failure is mode 2".
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There could be any number of such (fuzzy) descriptors and any number of

such rules, and the subjects were free to form;at them in tables or however

they wished. They could also combine variables in forms such as C/D and C-D.

The subjects were also asked to produce functions of each descriptor

(fuzzy set) defining what they "meant". Each function specified "membership" M

or "truth" as a function of the values of the corresponding variable

(in the range 10-100). Two of the five subjects observed the black box

behavior first, then devised the rules, and lastly devised membership

functions. The others chose to invent terms and define the membership

functions first.

As an example Figure 15 lists the rules given by one subject (JR) and

Figure 16 presents his membership functions. Note that certain regions of

A,B and D-C were (apparantly inte-tionally) not covered by his membership

functions (and rules). For contrast the membership functions of a second

subject DM are also shown (Figure 17).

For each subject independently the experimenter derived the state-action

matrix (failure mode as a function of input and output numerical values)

using the conventioanl "max.r" for "OR" and "minm" for "AND". He then

proceeded to evaluate each resulting expert system not only against single

complete failures (the basis on which the subjects made up their rules) but

also on multiple complete failures and single partial failures (5% changes

rather than 100% changes in resistance). For a given set of inputs and

outputs each subject's expert system yielded a "truth value" for each failure

mode for each combination of A,B,C,D. A simple procedure is to assert

failure for that mode having the greatest truth value greater than some

threshold and no failure for truth less than that threshold. Laritz used

"this as one decision criterion (which he called the "most true" criterion)

but also counted the number of times M for each mode exceeded 0.5 (the "times

.true" criterion), and the sum of truth values for each mode ("truth

summation" criterion). Figure 18 summarizes the rather impressive success of

subject JR's expert system, and for comparison Figure 19 summarizes that of

subject DM. The performances of the other fuzzy expert systems lay somewhere

in between.



(1,1) If A is high and 3 is low and D is significant17
greater than C, then the system is in failure mode I.

(2,1) If A is high and B !s low and C is significantly
greater than D, then the system is in failure moda 2.

(3,1) If A is low ,and :3 is high and D is signifi ̀,-an2.ýy
greater than Z, then the system is in failur mde 3.•

(4,1,) Tf A is low and 3 is high and C is s-gnifi-an-y
greater than D, then the system is in failure mode 4.

15,•) "f A is n' 'h and 6 is high and D is slightly
greater than C, then the system is in failure mo e 0.

Figure 15. Fuzzy decision rules inferred by subject JR
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Figure 16. Membership functions devised by subject JR
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TEST 1: SINGLE COMPLETE FAILURE

ACTUAL FAILURE IDENTIFIED FAILURE

MOST-TRUE TIMES-TRUE TRUTH-SUMMATION

1 1 1 1

2 2 2 2
3 3 3 3
4 4 4 4
0 0 0 0

SCORE: 5/5 5/5 5/5

TEST 2: MULTIPLE COMPLETE FAILURES

ACTUAL FAILURES IDENTIFIED FAILURE

MOST-TRUE TLMES-TRUE TRUTH-SUMATION

1,3 3 3 1
,4 1,4 .. i '

2.3 2,3 3 3
2,4 2,4 2 2

SCORE: 4/4 4/4 4/4

TEST 3: SINGLE PARTIAL FAILURE

ACTUAL FAILURE IDENTIFIED FAILURE

MOST-TRUE TLMES-TRUE TRUTH-SUATION

1 1 (55%) 1 (50o,) 1 (55%)
2 2 (75%) 2 (70%) 2 (55%)
3 3 (70%) 3 (70%) 3 (65.%)
4 4 (80%) 4 (73%) 4 (65%)

SCORE: 4/4 4/4 4/4

TOTAL SCORE: 13/13 13/13 13/13

* - INCORRECT DECISION

Figure 18. Results of applying JR's expert system



TEST 1: SINGLE COKPLETE FAILURE

ACTUAL FAILURE IDENTIFIED FAILURE

HOST-TRUE TI.MES-TRUE TRUTH-SUMMATION

2 * 1,2 2 2
3 * 1,3 I * I1
4 * 1,4 44
0 0 0 0

SCORE: 2/5 4/5 4/5

TrEST 2: MU~LTIPLE COMPLETE FAILURES

ACTUAL FAILURES IDENTIFIED FAILURE

MOST-TRUE TIMIES-TRUE TRUTHi-S UXMAT ION

1,3 1,3 1 1
1,4 *1,4,0 1 1
2.3 *2,3,4,0 2 2
2,14 2 2 2

SCORE: 2/4 4/4 4/4

TEST 3: ~SINGLF PARTIAL FAILURE

ACTUAL FAILURE IDENTIFIED FAILURE

MOST-TRUE TIXES-TRUE TRU:TH-SLMATI0N

11 (80%) 1 (53%) 1 (50%.)
2 *4 *1

3 3 (70%) 3 (65%) 3 (60%)
4*14 4 (30%)

SCORE: 2/4 3/4 2/4

TOTAL SCORE: 6/13 11/13 10/13

*-INCORRECT DECISION

Figure 19. Results of applying DH's expert system



From this part of the experiment Larritz concluded:

1. The method of observing trends, then formulating rules, and then

defining fuzzy values captures more of the human's ingenuity and

pattern recognition ability and provides a better expert failure

detection system than the method or creating fuzzy values, then

gathering data, and then deducing rules.

2. If the second method is used, it is best to put the membership functions

for the fuzzy values on paper at the outset so that there will be no

loss of information later.

3. Expert systems using non-fuzzy values require perfect failure rules.

When the rules are not perfect, the expert system does not perform

well.

4. Although not explicitly defined for this purpose in the investigation,

the fuzzy expert systems did remarkably well in detecting and locating

multiple and partial failures. This means that fuzzy methods have some

robustness.

5. The decision method cdn-be chosen to suit the strength and tightness of

the rules. Stronger rules require less margin for error.

6. Expert systems which have approximately the same number of rules for

each failure mode perform better than those with an uneven distribution

As a second experiment Laritz used himself as a subject on a black box

resistor network that was much more complex (sufficiently so that he had no

advantage over a subject who did not know what was inside). Again there were

two adjustable inputs and two resulting outputs but this time eight failure

modes. Laritz first experimented and observed, then derived his rules

(Figure 20), then defined his membership functions, and finally derived his

expert system on the same basis as before. His results showed that his

expert system worked perfectly on complete failures but faltered on multiple
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complete failures and partial failures (Figure 21). Further attempts to

refine his decision rules showed little gain in discrimlnabililty.

These preliminary experiments with a small number of subject strongly

suggest that a fuzzy expert failure identification system, given relatively

little knowledge from persons who are "expert" in the behavior of a

sufficiently simple system under complete failures, can perform well in such

identifications. But when the system is complex and failures are multiple or

partial and the expert's knowledge is not derived on the basis of

experiencing such failures, such an expert system cannot be expected to

perform very well.

4.6 Experiments in graphic decision-aids for dynamic trajectory planning

The purpose of these experiments, being done by Leon Charny (1984), is to

explore the relative allocations of decision-making to human and computer in the

process of deciding what to do. The computer in this case is assumed to have at

least some of the constraint information, some of the relative worth information,

some search-and-compare capability, and be able to communicate with the human

user in some common terms. At the same time it seems reasonable to expect the

human to know some things and do some searching not shared by the computer.

We have chosen a "simplest possible" form of representing a dynamic decision

problem - both conceptually, to help ourselves as researchers to abstract,

understand and generalize - and in the form of a graphic display to make the task

clear for our experimental subjects. The experimental task (Figure 22) is to

choose, at each of a succession-of time steps, a single response. *The initial

constraint is that responses adjacent in time must also be adjacent with respect

to the response scale (could be magnitude, spatial location, etc.); in other

words the response is continuous (apart from the discrete reticulation of the

time and response scales). Other constraints may be adoed such as obstacles,

local acceleration, limits, etc.

In first informal experiments, Charny assigned semi-random numbers to all

response states (every combination of response level and time step),
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TEST 1: SINGLE COMPLETE FAILURE

ACTUAL FAILURE IDENTIFIED FAILURE-

MOST-TRUE TLMES-TRUE TRUTH-SUXb'tATION

IL L 1
2 2 2 2

3 3 3 3
4 4 4 4

5 5 5 5

6 6 6 6
7 7 7 7

8 8 8 8

0 0 0 o

SCORE: 9/9 9/9 9/9

r-TST 2: .4LTIPLE COMPLETE FAILURES

ACTUAL FAILURES IDENTIFIrED FA:LU'R-z

MOST-TRUE TLMES-TRUE TRUTH-SU.LMATION

1,2 2 2 2
1,3 1 1 1

0 1.," 1 1 1

1,5 1 * 1,7 1

SL,6 1 I I
0) 1,7 * 5 f 5 f 5
e 1,3 8 8 8

2,3 2 2 2
2,4 .4 4 4

S~o2,3 *4 *~3

..6 6 6 6
x v 2,7 7 7 2

0 2,8 2f 1,2 *
0S 3,4 4 4 4

S4 3.3 5 3 5
3,6 6 6 3

SA 3,7 7 7 7
Su3,8 8 8 8

to 4,5 *7 *7 *7
c 4,6 6 6 6

4.7 *5 *5 *3
e 4 ,8 * 6 * 6 * 6

56 *01 *

"-4 5,7 * 0 f 0 f '

4a-0 5,8 *2 '0
0 6,7 *4 *8
S6,8 6 6 6

Z 7,8 *4 * 4 L

SCORE.: L8/28 16/28 18/28

TEST 3: SINGLE PARTIAL FALL!.E

c'J ACTUAL FAILURE IDENTIFIED FAILURE

:IOST-TR'z TrTZS-TRUE TRUT:I-S UVITWON

L 1 (553) 1 (55%*) * 2
2 2 (65%) 2 (657) 2 (25z)
3 3 (60%) 3 (60%) * 2
4 3 *3 2
5 "2 *2
6 ~ 8 a
7 *4 *4
8 8 (55%) 6 (55Z,) * 2

SCORE: 4/8 418 L/8

TOTAL SCORE: 31/45 29/45 28/45

* INCORRECT DECISION
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implying the reward for transversing that state. These rewards were

cumulative, and the goal was simply to amass the greatest possible cumulative

reward. In these first experiments the computer display simply brighted at

various state points as a function of incremental reward, and our (initially

skeptical) hypothesis was that the operator, having such a nice qualitative

analog display, could visually identify the best or near best paths with

ease. This proved not well founded.

Next experiments had the operator spotting points or regions of state

space intermittently, then having the computer use a "greedy algorithm",

simply taking the most lucrative next step as it went along to connect the

intermittent points chosen by the operator. This did not work so well

either.

What worked much better was to have the human specify intermittent

points ("I think the path should go through here") again while looking at the

state-by-state brightness displays, then have the computer do a dynamic

program solution for intervening points. This is much easier and faster for

the computer than to do a dynamic program for the whole trajectory, since by

human selections of intermittent points large regions of state space may be

eliminated from computer consideration. This is because of the constraint

that at adjacent time steps the states must be adjacent, which limits the

computer search to a very small number (e.g., 32 in the simplest case of one

attribute dimension as compared to N 2).

Because the above problem is extremely simple for the computer, even as

the state space is made slightly larger or two dimensional, we may obtain

a resource cost measure (e.g., computer time) for each trajectory. In order

to explore what might be more typical in a more complex application we could

require the operator in our experiments to make some tradeoff between the

cost of his own time and that of the computer's time - in addition to trying

to maximize his cumulative reward from the game.

Clearly if the computer were asked to do dynamic programs connecting

every other human-selected point then it is possible that a different

trajectory might be obtained, and the earlier combined man-machine result
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would be inferior to a fully machine-determined result. So far this has not

been the case; instead the experiments served to verify that the human

hunches were correct. In any case when the machine doesn't know about

certain constraints or because of inordinate amounts of dynamic programming

or if time is simply too costly to use over the whole state space the

computer cannot be trusted to make more global verifications of the human's

intuition.

We are also interested in what happens when the human operator may then

review what the computer decided was best. He may find that it has done

something suprising that was foolish or did not respect a constraint that he,

the operator, had been expecting it to respect. By iterating the procedure

once or twice one might see significant refinements.
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GLOSSARY

CALIBRATION - the degree to which the expectations of one person or machine

correspond to those of another person or machine.

COMPUTER MODEL - a computerized representation of the state or configuration

of the controlled process or environment, used either as part of an automatic

controller (estimator, observer) or as part of an expert system (knowledge

representation).

COMPUTER ESTIMATOR, OBSERVER - a computer model which, when calibrated to

make some state variables correspond to the actual controlled process,

provides an estimation of other state variables which are difficult to

measure in the actual controlled process.

CONTROL DECISION - judgement by a human operator or a machine about what

actions to take to make the controlled process improve with respect to the

objective function, given the task constraints.

CONTROLLED PROCESS - a machine and/or natural system which a human operator

and/or another machine forces to conform to a given criterion.

DECISION AID - a computer or other device which provides useful information

to a human operator in making worth, constraint or control decisions

DYNAM5C - changing with time.

ENVIRONMENTAL OBJECTS/FORCES - objects and forces in the environment of the

controlled process which affect its behavior.

EXPERT SYSTEM - a computer-based decision aid programmed with assertions

obtained from a human expert in relevant subject matter to answer questions

posed by a naive person.

FRAME - a general device for storing knowledge including production rules,



declarative facts, parameters, descriptors, semantic networks and pointers to

other frames.

FUZZY SET - a set of objects or events (attribute states) which can be

referred to by the same term which vary in their strength of meaning

(membership, truth) with that term.

HUMAN INTERACTIVE COMPUTER - a computer or part of a computer designed to

communicate with a human operator to interpret his commands or to answer his

questions.

HUMAN INTERACTIVE SYSTEM - that part of a supervisory control system

consisting of a human operator, a human interactive computer, displays and

hand-controls.

HUMAN OPERATOR - a person who intentionally interacts with a machine in order

to produce a result.

INTERNAL MODEL - a mental representation of relevant information in the mind

of a human operator, or a computer representation of relevant information.

KNOWLEDGE - (a) coded information representing some characteristics of an

object or event; (b) the degree to which an expectation for some classes of

events is greater than that for others; (c) formally p p. log p./c or
i

"relative negentropy".

MAN-MACHINE SYSTEM - a system in which a person interacts with a machine to

produce an observable result.

MEMBERSHIP FUNCTION - the quantitative specification of the relative

strength of meaning (membership, truth) of various objects or events

(attribute states) associated with a given term.

MENTAL MODEL - a hypothetical mental representation of the state or

configuration of the controlled process and/or environment.
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MULTIPLEX - to alternately connect a communication channel to different

information sources and/or sinks.

OBJECTIVE FUNCTION - a scalar function of significant performance variables

which defines overall goodness (worth, utility) and scales tradeoffs for

relative goodness among all significant combinations of states of performance

variables.

OPTIMIZE - to maximize an objective function

PRODUCTION RULE - a statement that if certain events are true then other

events will occur.

SATISFICE - to achieve a marginally achievable level of performance judged to

be satisfactory.

STATE - a particular configuration of an object or event, defined by the

concurrent value of each of its variables or attributes.

STATE ACTION MATRIX - the specification of what action or response to make

for each state of a system.

SUPERVISORY CONTROL - a situation wherein a person interprets what is

happening with the aid of a computer and specifies subgoals to a computer

which automatically strives to implement those subgoals.

SYMPTOMATIC SEARCH - systematic test of an object or event-again-st a-number

of criteria to determine which criteria, if any, are met.

TASK - in a supervisory control system, all elements exterior to the

referenced element or set of elements. The human operator's task is to

satisfy the objectives by acting on the human interactive computer,

controlled process and environment, insofar as these elements exist. The

task of the human interactive system is to control the task interactive

system, while the task of the latter is to accomodate the former.



TASK INTERACTIVE COMPUTER - that part of a supervisory control system

consisting of a task interactive computer, a controlled process and

associated actuators and sensors.

TASK CONSTRAINTS (PROCESS CONSTRAINTS, or just CONSTRAINTS) - rules that

govern the way the controlled process must behave, including "laws of nature"

and limits on resources such as time, energy, memory and money.

TASK INTERACTIVE SYSTEM - that part of a supervisory control system

consisting of a controlled process, a task interactive computer, and

associated artificial sensors and actuators.

TEAM DECISION MAKING - interaction of two or more persons with each other

and/or with a machine to make a decision.

TOPOGRAPHIC SEARCH - systematic comparison of all objects or events in a set

to look for those which stand out by some criterion.

UTILITY DECISION - judgement by a human operator of the relative goodness,

worth or utility of some object or event, experienced in reality or specified

as a hypothesis in terms of a combination of states of performance

variables.



TEST 1: SINGLE COKPLETY FAILURE

ACTUAL FAILURZ IDENTIFIED FAILURE

MOST-TRUE TLHES-TRUZ TRUTH-SUX.MATION

2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
0 0 0 o

SCORE: 9/9 9/9 9/9

TEST 2: 4ULTIPLE COMPLETE FAILURES

ACTUAL FAILURES IDENTIFIED FAILURE

MOST-TRUE TLAES-TRLE TRL'T.-SUMMAT:ON

1,2 2 2 2
, I I I

1,1,7 11,5 7* ,7
1 1,,, " * 5 * 5

1,3 8 8 8
2,3 2 2 2
2,4 4

7.5* "4 * -3

2.6 6 6 6
2,7 7 7 .1
2,8 2 * 1,2 *
3,4 4 4 4
3.3 5 5 5
3,6 6 6 3
3,7 7 7 7
3,8 8 8 54,5 * 7 7 * 7
4,6 6 6 64,7 *5 *5 *3
4,8 *6 '6 *656 *1I1

57 0 * 0 *t
5.8 "2 t0 *2
6,7 * 48
6,8 6 6' 6
7,8 *4 *4 *1

SCORE: 18/28 16/28 18/28

TEST 3: SINGLE PARTIAL FAILURE

ACTUAL FAILUIRE IDENTIFIED FAILURE

HOST-TRY-" T'ES-TRUE RUT:[-s2TION

1 (55%) 1 (55.) * 2
2 2 (65%) 2 (657) 2 (25%)
3 3 (601) 3 (60%) * 2
4 *3 3 "2
5 '2 *2 *
6 '8 8
7 *4 *4
8 3 (53:) 8 (53:) * 2

SCORE: 4/8 4/8

TOTAIL SCORE: 31/45 29/45 28/45

• * INCORRECT DECISION

Figure 21. Results of applying Larritz' expert system tofailures of complex resistor network

24-0-



DISTRIBUTION LIST

Engineering Psychology Group Commanding Officer
Office of Naval Research Naval Health Research Center

Code 442EP San Diego, CA 92152
800 N. Quincy St.
Arlington, VA 22217 (3 cys.)

CDR. Paul Girard Dr. Robert Blanchard
Code 250 Navy Personnel Research and
Office of Naval Research Development Center
Code 442EP Command and Support Systems
800 N. Quincy St. San Diego, CA 92152
Arlington, VA 22217 (3 cys.)

Physiology Program Mr. Jeffrey Grossman
Office of Naval Research Human Factors Branch
Code 441NP Code 3152
800 North Quincy Street Naval Weapons Center
Arlington, VA 22217 China Lake, CA 93555

Manpower, Personnel & Training Human Factors Engineering Branch
Programs Code 4023

Code 270 Pacific Missile Test Center
Office of Naval Research Point Mugu, CA 93042
800 North Quincy Street
Arlington, VA 22217 Dr. W. Moroney

Human Factors Section
Information Sciences Division Systems Engineering Test
Code 433 Directorate
Office of Naval Research U.S. Naval Air Test Center
800 North Quincy Street Patuxent River, MD 20670
Arlington, VA 22217

Dr. Harry Crisp
Special Assistant for Marine Corps Code N 51

Matters Combat Systems Department
Code 100M Naval Surface Weapons Center
Office of Naval Research Dahlgren, VA 22448
800 North Quincy Street
Arlington, VA 22217 Dr. Edgar M. Johnson

Technical Director
CDR James Offutt, Officer-in-Charge U.S. Army Research Institute
ONR Detachment 5001 Eisenhower Avenue
1030 East Green Street Alexandria, VA 22333
Pasadena, CA 91106

Technical Director
Director U.S. Army Human Engineering Labs
Naval Research Laboratory Aberdeen Proving Ground, MD 21005
Technical Information Division
Code 2627 Director, Organizations and
Washington, D.C. 20375 Systems Research Laboratory

U.S. Army Research Institute
Naval Training Equipment Center 5001 Eisenhower Avenue
ATTN: Technical Library Alexandria, VA 22333
Orlando, FL 32813



Dr. Robert G. Smith U.S. Air Force Office of Scientific

Office of the Chief of Naval Research
Operations, OP987H Life Sciences Directorate, NL

Personnel Logistics Plans Bolling Air Force Base
Washington, D.C. 20350 Washington, D.C. 20332

Human Factors Department Dr. Daniel Kahneman
Code N-71 University of British Columbia
Naval Training Equipment Center Department of Psychology
Orlando, FL 32813 Vancouver, BC V6T iW5

Canada

Defense Technical Information Dr. M. D. Montemerlo
Center Human Factors & Simulation

Cameron Station, Bldg. 5q Technology, RTE-6
Alexandria, VA 22314 (12 copies) NASA HQS

Washington, D.C. 20546
Dr. Clinton Kelly
Defense Advanced Research Dr. Amos Tversky

Projects Agency Department of Psychology
1400 Wilson Blvd. Stanford University
Arlington, VA 22209 Stanford, CA 94305

Dr. Gary Poock Dr. T. B. Sheridan
Operations Research Department Dept. of Mechanical Engineering
Naval Postgraduate School Massachusetts Institute of Technology
Monterey, CA 93940 Cambridge, MA 02139

Mr. H. Talkington Dr. Paul E. Lehner
Engineering & Computer Science PAR Technology Corp.
Code 09 P.O. Box 2005
Naval Ocean Systems Center Reston, VA 22090
San Diego, CA 92152

Dr. L. Chmura Dr. Stanley Deutsch
Naval Research Laboratory NAS-National Research Council(COHF)
Code 7592 2101 Constitution Avenue, N.W.
Computer Sciences & Systems Washington, D.C. 20418
Washington, D.C. 20375

Dr. Amos Freedy
CDR C. Hutchins Perceptronics, Inc.
Code 55 6271 Variel Avenue
Naval Postgraduate School Woodland Hills, CA 91364
Monterey, CA 93940

CDR Tom Jones Dr. James H. Howard, Jr.
Naval Air Systems Command Department of Psychology
Human Factors Programs Catholic University
NAVAIR 330J Washingotn, D.C. 20064
Washington, D.C. 20361

Dr. Christopher Wickens
Mr. Philip Andrews Department of Psychology
Naval Sea Systems Command University of Illinois
NAVSEA 61R Urbana, IL 61801
Washington, D.C. 20362



Dr. Edward R. Jones
Larry Olmstead Chief, Human Factors Engineering

Naval Surface Weapons Center McDonnell-Douglas Astronautics Co.
NSWC/DL St. Louis Division
Code N-32 Box 516
Dahlgren, VA 22448 St. Louis, MO 63166

Capt. Robert Biersner Dr. Lola Lopes
Naval Medical R&D Command Information Sciences Division

Code 44 Department of Psyc'":ýIogy
Naval Medical Center University of Wisconsit.
Bethesda, MD 20014 Madison, WI 53706

Dr. George Moeller Mr.Joseph G. Wohl
Human Factors Engineering Branch Alphatech, Inc.
Submarine-Medical Research Lab 3 New England Executive Park
Naval Submarine Base Burlington, MA 01803
Groton, CT 06340

Dr. Marvin Cohen Dr. Hillel Einhorn
Decision Science Consortium, Inc. Graduate School of Business
Suite 721 University of Chicago
7700 Leesburg Pike 1101 E. 58th St.
Falls Church, VA 22043 Chicago, IL 60637

Dr. John Payne
Graduate School of Business
Administration

Duke University
Durham, NC 27706

Dr. William B. Rouse
School of Industrial and Systems
Engineering

Georgia Institute of Techndlogy
Atlanta, GA 30332

Dr. Richard Pew
BOlt Beranek & Newman, Inc.
50 Moulton Street
Cambridge, MA 02238


