AD-A142 515 PARALLELISM IN MANIPULATOR DYNAMICS REVISION{U)
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
. INTELLIGENCE LAB R H LATHROP DEC 83 AIl-TR-754-REV
UNCLASSIFIED NOOQ14-80-C-0505 F/G 6/

HiEENEEEENEEE
EEEEEENEEEEEEE
EEEEENEEEEEEEE
EEEENNEEEENEEE
EENEEEEEEENEED
HNNEEEEEEEEEEE
ENEERENEEENEEN

N\

T TRy

““'0 ::‘;u;:;
SN I

I
g I

fiee
< e

%ww

MICROCOPY RESOLUTION 1E5T CHART
NATIONAL RUREAU OF STANDARES e &

. . e ;

arallelism in
- Manipulator
- Dynamics

P . IV L o Bl g

B R LT PN I
e 11g i

sy

PP A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

! REPORT NUMBER 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALNG NUMBER

AI-TR-754 D-AlY .2_5,;

4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD CCVERED

Parallelism in Manipulator Dynamics technical report

6. PERFORMING ORG. REPORT NUMBER

7. AUTHORC(s) 8. CONTRACY OR GRANT NUMBERTs)

N00014-80-C-0505
Richard H. Lathrop

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Artificial Intelligence Laboratory
545 Technology Square
Cambridge, Massachusetts 02139

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Advanced Research Projects Agency December 1982

1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington, Virginia 22209 109
14. MONITORING AGENCY NAME & ADORESS(If ditferent from Controlling Office) 15. SECURITY CL ASS. (o!f this teport)
Office of Naval Research UNCLASSIFIED
Information Systems
Arl ington, V|rgin|a 222]7 15a. ?g&éé&tIEF!CATION/ DOWNGRADING
16. DISTRIBUTION STATEMENT (of thia Report) -»:-Y.' ~‘
—'.,“
Distribution of this document is unlimited. & T

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

18. SUPPLEMENTARY NOTES

None

19. KEY WOQRDS (Continue on reverse aide if necessary and identily by block number)

robots parallel processing
robotics pipeline processing
industrial robots large scale integration
cybernetics

20. ABSTRACT (Continue on reverse eide If necesaary and identify by dlock number)

This paper addresses the problem of efficiently computing the motor torques

required to drive a lower-pair kinematic chain (e.g., a typical manipulator

arm in free motion, or a mechanical leg in the swing phase) given the desired

trajectory;i.e., the Inverse Dynamics problem. It investigates the high degree

of parallelism inherent in the computations, and presents two "mathematically

exact" formulationsespecially suited to high-speed, highly parallel implementa-

tions using special-purpose hardware or VLSI devices. In principle, the (cont.
on

DD 35", 1473 eoimion oF 1 nov 68 1s oBsOLETE UNCLASSIFIED batck)
S/N 0:02-014~-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

et ettt A

iy o

Block 20 cont.

formulation should permit the calculations to run at a speed bounded only

by 1/0. The first presented is a parallel version of the recent linear Newton-
Euler recursive algorithm. The time cost is also linear in the number of
joints, but the real-time coefficicnts are reduced by almost two orders of
magnitude. The second formulation reports a new parallel algorithm which shows
that it is possible to improve upon the linear time dependencey. The real

time required to perform the calculations increases only as the [logs] of the
number of joints. Either formulation is susceptible to a systolic pipelined
architecture in which complete sets of joint torques emerge at successive
intervals of four floating-point operations. Hardware requirements necessary
to support the algorithm are considered and found not to be excessive, and

a VLSI implementation architecutre is suggested. We indicate possible appli-
cations to incorporating dynamical considerations into trajectory planning,
e.g. it may be possible to build an on-line trajectory optimizer.

T ——
iy Czxdes
sivizor

|
i
i

PARALLELISM IN MANIPULATOR DYNAMICS
by

RICHARD HHAROLD LATHROP

ABSTRACT

This paper addresses the problem of efficiently computing the motor torques required to
drive a lower-pair kinematic chain (e.g., a typical manipulator arm in free motion, or a
mechanical leg in the swing phase) given the desired trajectory; i.e., the Inverse Dynamics
problem. It investigates the high degree of parallelism inherent in the computations, and
presents two “‘mathematically exact’ formulations especially suited to high-speed, highly
parallel implementations using special-purpose hardware or VLSI devices. In principle, the
tormulations should permit the calculations to run at a speed bounded only by 170. The
first presented is a parallel version of the recent linear Newton-Euler recursive algorithm.
The time cost is also linear in the number of joints, but the real-time coefficients are
reduced by almost two orders of magnitude. The second formulation reports a new parallel
algorithm which shows that it is possible to improve upon the linear time dependency. The
real time required to perform the calculations increases only as the [log,] of the number
of joints. Either formulation is susceptible to a systolic pipelined architecture in which
complete sets of joint torques emerge at successive intervals of four floating-point operations.
Hardware requirements necessary to support the algorithm are considered and found not to
be excessive, and a VLSI implementation architecture is suggested. We indicate possible
applications to incorporating dynamical considerations into trajectory planning, e.g. it may
be possible to build an on-line trajectory optimizer,, .

This report is a revision of a thesis submitted to M.I.T. in partial fulfillment of the requirements
for the degrees Master of Science and Electrical Engineer.

Thesis Supervisor: Marvin Minsky

Title: Donner Professor of Science

© 1983 by Richard H. Lathrop and M.L.T.
The author hereby grants to M.I.T. permission to reproduce and to distribute copies of this
document in whole or in part.

Keywords: Robots, Robotics, Industrial Robots, Cybernetics, Parallel Processing, Pipeline
Processing, Large Scale Integration

4

i To my Parents —
|
)
+
N ; and to All who have
i
Taught me nf Life
{
!
f

[y
-

L

v
-y

-

Acknowledgements

) 1 would like to thank all of the many people who have helped in so many ways with this effort
— either through sharing technical expertise, ideas, and critiques; or by lending personal support,
encouragement, and perspective.

Gratitude to those personally important is best personally expressed; but it is fitting to here ac-
knowledge my tremendous intellectual debt to those who have contributed to my scientific, technical,
: and professional development. It would be impossible to list these many people in so short a space;
{ those who have contributed most immediately and directly to this document are cited here, without
; prejudice to many other important influences.

Primary thanks are due to my thesis advisor, Marvin Minsky, for first exposing me to issues of
parallelism in Artificial Intelligence, for having interesting ideas about it, and for supervising the
rescarch which originally led to the formulations described within these pages. Exposure to his
insights has influenced me greatly and will doubtless continue to do so. John Hollerbach and Mike
Brady read earlier drafts of this work, and | am very much indebted to them for many valuable
suggestions on these and other issues. Their advice and encouragement was very important to my
! pursuit of this research. In particular, the patient urging and good counsel of John Hollerbach
' was indispensable and greatly appreciated; these pages reflect many of his helpful suggestions.
i Bob Giansiracusa was instrumental in spurring my carly interest in the field, and in many long
' conversations has explored possible connections with a number of different areas. Jon Allen first
! taught me, and taught me well, about VLSI; a domain which gives substance to many otherwise
speculative notions of parallelism. Thanks also to Bill Barrett and Bob Rogers for a stimulating

farum and many ronsing diecussions on how hest to capture the potential of VLEI by evpreesing

complexity concisely.

1 would also like to thank the M.I.T. Artificial Intelligence Laboratory for providing superb com-
(puting resources and an environment which is intellectually stimulating, and the National Science
Foundation for providing support through a Graduate Fellowship.

4 This report is a revision of a thesis submitted to M.I.T. in partial fulfillment of the requirements
' of the degrees Electrical Engineer and Maater of Science. It describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support for the laboratory’s
artificial intelligence research is provided in part by the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research contract N00014-80-C-0505. Personal support

for the author was provided by a Graduate Fellowship from the National Science Foundation.

. 3

L VRS,

Table of Contents

O. Overview
Table O.1: Comparison of Dynamics Formulations
I Introduction
Table I.1: Linear Recursive Newton-Euler Formulation
I Notation

Iv.

\'/}

Figure Il.1: Notation of Manipulator Parameters

Parallelism WithinaNode

Table lll.1: Relative Time of Linear Data Dependencies
Table II1.2: Timing of Newton-Euler Recursion
Figure Ill.1: Linear Recursive Graph Structure

Figure (i.2: Non-Systoiic Pipelined Process, n =4

Figura 111 2: Systolic Pinglined Process, m — 4
Parallelism Exploiting Logarithmic Recursion
Table IV.1: Logarithmic Recursive Formulations
Figure IV.1: Serial Vs. Paralle! Multiplication

Figure IV.2: Logarithmic Recursive Graph Structure (Backward Only Shown . . .

Optimized Logarithmic Recursion

Table V.1: Relative Time of Logarithmic Data Dependencies

Implementation Considerations e e e

Figure V1.2: Logarithmic Recursive Graph Structure (Both Recursions Shown) . . 65

Figure V1.3: WSI Communication Structure of Logarithmic Recursion 66
Figure V1.4: Regularly Extensible Logarithmic Recursive Graph 67
Figure VI.5: Datapath Chip Structure 68
VII. ARobot Chip o o e e e e 69
Table Vil.1: Primitive Module Operation Sequencing 80
Figure Vil.1: Primitive Module Block Diagram, 81
Figure Vil.2: Vector Ari.thmetic Modular Processor (VAMP) 82
Figure VI1.3: VAMP Control Registers 83
Figure Vil.4: Mostly-Local Bus (MLB) 84
Figure VIL5: Limited Automatic Errar-Correction 85
Vill. Suggestions For Future Extensions 86
Figure Viit.1: Fall-Through Memory Shift Register a
IX. Conclusions 92
References L. e e e e e e a3
Appendix A: Derivation of the Linear Time Offsetsand C 97

Appendix B: Derivation of the Logarithmic Recursive Formulae
Appendix C: Derivation of the Logarithmic Time Offsets and ¢

Appendix D: Unification of Logarithmic a == b and a 7# b Cases

0
!

e ———

T —vre >

1
1)
.
L

0. OVERVIEW

The Inverse Dynamics problem consists (loosely) of computing the motor torques necessary
to drive a mechanical manipulator through a specified motion: given that you know where it
should go. compute what you have to do to get it to go there. Recently, efficient recursive
formulations have been developed using both Newton-Euler and Lagrangian dynamics
[16](29]. These have reduced the number of additions and muitiplications (for n joints)
from an J(n') dependency (see Table O.1) to one linear in the number of joints, C(n).

requiring
(150n - 48) Mults - (131n - 48) Addns {Newton-Euler)

multiphcations (M uits) and additions (Addns) when performed serially.

This paper investigates the high degree of paralielism inherent in the calculations. and
presents two formulations especially suited to inghly parallel implementations using special-
purpose hardware or VLS! devices. Table O.1 shows the improvement over serial implemen-
tations. (Note that this reflects the algorithmically indicated cost. as in Hollerbach[16]: see
the discussion at the beginning of Section L1l.)

The first formulation is again linear in the number of joints. but reduces the real-time

coefficients by almost two orders of magnitude to
(2n =+ 3) Mults — (6n + 7} Addns (Newton-Euler)

The second formulation shows that by exploiting a novel parallel algorithm developed
below. the time required to perform the calculations increases only as C(log(n)). The time

dependencies are
(2Nog,(n + 1)] -+ 5) Mults + (6]log,(n + 1)] + 10) Addns (Newton-Euler)

Either formulation is susceptible to a systolic pipelined architecture. We show below
that the basic time cycle of the algorithm is 1 Muit + 3 Addns. Thus, after the first complete
set of joint torques had emerged from the pipeline, successive sets would appear at intervals

6

of four floating-point operations (4 Flo};s). This yields the ability to rapidly and efficiently
evaluate a large number of alternatives.

Section | contains a brief introduction to the problem and review of previous work in
the area.

Section Il explains in detail the notation used in this paper . It is essentially an adaptation
of the notation used by Hollerbach[16] and Luh et al.[29], which in turn derives from the
Denavit-Hartenberg[10] convention for lower-pair linkages through Uicker[43] and Kahn[19].
The reader already broadly familiar with this notation should at least review Table 1.1 where

the notation is summarized.

-

Section Il explicates the first approach considered. yielding an J(n) formuiation with
greatly reduced coefficients. Luh et al.[29] give the recursive form of the Newton-Euler
formulation as shown in Table I.1. Many of the computations associated with any given
joint (node) may proceed concurrently. For example. the computations of the variables
« (denoted by (*) in Table I.1) and & (*"*) do not interact (given that «w ., and & _,
have already been computed) and hence may be performed at the same time by different
sub-processors. Additionally, difterent sub-expressions of the same variable may often
be computed concurrently by different sub-processors. Finally. by locally pipelining the
recursive variables additional speed may be gained; e.g.. the computation of, may be
started before the computation of «. has finished. (See Tables .1 and 1il.2). Essentially,
this formulation arises from trying to compute as much as possible as early as possible, and

still remains within a basic linear structure.

Section IV shows the derivation of an C(log(n)) time dynamics formulation. This arises
from restructuring the fundamental framework within which computation proceeds, together
with a corresponding revision to the recursive equations. The linear recursive algorithm is,
conceptually, a formalism for beginning at the manipulator base and propagating desired
motion outward fink by link to the tip, then propagating tip environmental forces and torques
back inward link by link to the base (determining the needed joint motor torques along the
way). (See Figure il1.1). In contrast, the logarithmic recursive algorithm is a mechanism for
recursively propagating desired motion (or, forces and torques) between any two adjacent

groups of links. Conceptually speaking, the propagation ot desired motion from base to tip
7

e .

Y . A

E
|
!
|

.. N S oA

is accomplished by grouping together adjacent links on the first step to form (n/2) groups
of two links each, then on each succeeding step grouping adjacent pairs of groups together
until after [log.(n)] steps there is one group encompassing all links (actually, the intermediate
groups are also formed). 1t is analogous to summing n numbers in [log.(n)} steps by adding
together first adjacent pairs, then adjacent pairs of pairs, and so forth. (See Figures V.1
and IV.2).

A synthesis of the two approaches is presented in Section V. The techniques of Section
Il for exploiting parallelism within a node are applied to the C(log(n)) time structure of
Section 1V, yielding an J(log(n)) formulation with reduced coefficients.

Ultimately the algorithm must be expressed in hardware, and Section VI addresses
a ftew words to potential implementations. The principle thrust of this paper lies in the
analytic formulations above, and we will consider hardware only to the exte- . -howing
that physical implementations are reasonable and feasible. We consider the *al number
of processors. buffering of intermediate results. and internal communication, only to the

extent of showing that the requirements are reasonable.

Construction of suitable hardware using today's technology argues for a special-purpose
VLSI chip. and Section VI presents one architecture suitable for this purpose. A primitive
module consisting of two multipliers. one adder. and some registers is sufficient to support
all of the computation required. Several such primitive modules may then be assembled,
together with a suitable control structure, to produce a matrix-vector arithmetic module.
These may then be connected into a network corresponding to the communication structure
of the algorithm, and each module programmed by the host computer to execute the
operation and communication sequencing necessary to implement the algorithm (or for that
matter, any other high-speed straight-line matrix-vector computation).

Finally, Section Vi will very briefly aliude to, without discussing in depth, a few possible
extensions to this work. The ability to efficiently pipeline implies that a number of considered
variations on the same basic manipulator trajectory could be explored in parallel, and the
one having the most satisfactory dynamical characteristics for actual execution chosen from
among that set. It may even be possible to build an on-line “optimizing trajectory compiler"”

in which the desired motion (trajectory) for the next several time periods is pre-planned,

RATIE PR~ ¥

-~ -

i

B, R

e g it e BT TE T T et e S - 2

the motor torques automatically generated, and the time sequence inspected slightly before
the manipulator has actually arrived at the trajectory points, thereby incorporating some
dynamical cansiderations into trajectory planning. Poggio has a result indicating that neural
structures could perform an arithmetic multiplication in about a millisecond, which implies
that in principle it would be possibie to compute the Inverse Dynamics in approximately real

time using a suitable neural structure. We close with a few remarks concerning generalization

of the Z(log(n)) embedding to other recursive algorithms.

. i MW A o

Table Q.1 — Comparison of Dynamics Formulations®

- (adapted from Hollerbach{16])
§ 0O.1a — Comparison of Time Dependencies
Method Multiplications Additions
Uicker/Kahn 324n! + 8640 -+ 1714n? | 250 + 664n° + 1294n?
(original Lagrangian) +534n — 128 +424n-— 96
i Waters 1064n2 + 6204n — 512 82n? + 514n — 384
3 }L (partially recursive)
. Hollerbach 830n -- 592 675n — 464
(4x4 Lagrangian)
Hollerbach 412n — 277 320n — 201
; (3x3 Lagrangian)
| Luh, Walker, Paul 150n — 48 131n — 48
(Newton-Euler)
; : Horn, Raibert 2n* + n* n' 4+ n* 4+ 2n
: {table look-up)
: Luh, Lin 5Tn - 18 50n — 18
i
: i (scheduled parallel N.E.) {estimated — see tezt} {estimated — see tezt)
o Lathroo 2n + 3 fn 4 7
| (linear parallel N.E.)
Lathrop 2logy(n + 1)T+ 5 6/logy(n + 1)1 + 10 |
[(logarithmic parallel N.E.)
Lathrop 1 3
‘ (systolic pipeline) (successive — see text) (successive — see text) J‘
| ;

* This table reflects the algorithmically indicated cost for the fully general 6-link rotary manipulator,
B as in Hollerbach{16]. By considering special cases, introducing configuration or workspace assump-
'.« ‘ tions, or tailoring the computation, additional reductions are possible. See the discussion at the

t beginning of Section III. i

10

——
R kS R

z
¢
!

Table 0.1 — Comparison of Dynamics Formulations*®
(adapted from Hollerbach[16])

O.1b — Comparison for n = 6
Method Multiplications Additions
g Uicker/Kahn 66, 271 51,548
(original Lagrangian)
Waters 7,051 5,652
(partially recursive)
" Hollerbach 4,388 3,586
; (4x4 Lagrangian)
—— - — et e e e ——— —— e e e e
' Hollerbach 2,195 1,719
(3x3 Lagrangian)
|~ Luh, Walker, Paul 852 738
(Newton-Euler)
~ Horn, Raibert 468 264
n (table look-up)
} Luh, Lin 323 280
1 | (scheduled parallel N.E.) (estimated) (estimated)
1
{ Lathrop 15 43
: HimAne mne AllAL AL E A
‘lll "ot PMIMII\-I C‘-h--'
Lathrop 11 28
(logarithmic parallel N.E.)
, Lathrop 1 3
| (systolic pipeline) (successive) (successive)
E i
A j ¥
: {
g * Thas table reflects the algorithmically indicated cost for the fully general 6-link rotary manipulator,
as 1n Hollerbach[16]. By consdering special cases, introducing configuration or workspace assump- A
1
tions, or tavloring the computation, additional reductions are possible. See the discussion at the
-t
! beginning of Section III. ¢

11

T T ks e

EPT T OPLN e -']. ~

e

Lo ey m X

1. INTRODUCTION

In active articulated mechanisms, including both artificial and biological systems, the
parameters which one typically can directly control are the forces (in transfational joints,
sometimes called prismatic) and torques (rotational joints, sometimes called revolute) applied
by the actuators to the joints. Unfortunately, the parameters in which one is frequently
interested are the linear and rotational accelerations (hence also, velocities and positions).
This gives rise to two dual problems; both highly com_plex and non-linear, and both desirable
to calculate in real time.

The Direct {or Integral) Dynamics problem is to compute the mapping = from a set
of applied joint forces and torqués (r,. arising from stimulation of the actuators) into the

resulting linear and rotational joint motions (accelerations g,):
2:{r}— {4}

Computing such a mapping is equivalent to simuiating the motion of the mechanism under
the applied actuator effects. In this case one knows what one does to the thing, and wishes
to find out where it will go in response.

The Inverse Dynamics problem is to compute the inverse of the above mapping; given

the accelerations desired. find the forces/torques necessary:
D—l"{él} b {‘r'}'

Given that one knows where one wants the thing to go, what does one have to do to make
it go there? This is the guestion that the Inverse Dynamics seeks 10 answer. “Where one
wants it to go" is the desired trajectory, the manipulator configuration as a function of
time. The configuration may be completely specified by the joint positions, so the trajectory
may be given by stating each joint pasition as a function of time (i.e., ¢(t), where ¢ is an
n-dimensional vector giving the actual positions g, of the n joints). These functions are
assumed to be twice time-differentiable to provide joint velocities and accelerations (¢(¢),
(e)).

The question is usually posed by giving the joint positions and velocities (g{to). §(to))
which describe the state of the manipulator at a given point in time (say, t;), together with

12

the joint accelerations which are desiréd at that point {4§(t,)). The answer expected is the
n motor torques (the n-dimensional vector 7(ty) giving the motor torques 7,(t,) at each joint
i) which, if applied to the manipulator at that point in its state-space, would induce the
desired accelerations. Typically one measures ¢ and ¢, while g is supplied by a higher-level
planning and control module. Position and velocity are the time integrals of acceleration, so
acceleration control suffices, at least in a “mathematically exact’ sense. There are a host of
practical problems which insure that the model and the reality it models never quite match,
and which we shall relegate to feedback. For control purposes the formalism provides a
good first approximation to the "‘inverse plant”. which is close enough to render feedback

correction feasible.

Computing the motor tbrques 15 quite complicated, however, due to the high degree
at non-linearity inherent in rigid-body rotational mechanics. The torques supplied must
compensate for the inertia of the manipulator, gravitational force. the Coriolis and centrifugal
forces. and viscous friction at the joints. Viscous frictional forces often depend only on g,
and ¢ at joint 1 hence they are susceptible to relatively simple correction and will therefore
be ignored. All of the other terms vary in a non-linear fashion depending on the manipuiator
configuration at a given point in time: additionally. the Coriolis and centrifugal forces also

depend on all pairwise products (¢.9.. 1 < 1,7 < n} of joint velocities.

lhis comphcated computation has until recently posed a bottleneck in on-line con-
trol of manipulators, and much effort has been expended in devising more time-efficient
methods. Typical resonant frequencies of many mechanical manipulators is around 10H z,
so the computation must be repeated at about 604 = or faster{29). Uicker[43} and Kahn[19]
derived an early formulation for an n-link manipulator based on the Lagrange equations.
This had an O(n') time complexity and required 7.9 seconds on a PDP 11/45 to com-
pute the torques for just one point in the trajectory[28). This was too slow for on-line
control. Efforts to improve this time have either explored other computational algorithms
[44].[45],[35].[30],[29].[16], made simplitying assumptions [4],[35], or substituted table look-
up for computation [38),{1],[2].

Since only the Coriolis and centritugal terms involve pairwise products of all joint

velocities, a common simplification is to just ignore them. Unfortunately this works well only
13

M‘."&‘ ~Sa. &

at low velocities where the product terms are small. During fast motion the Coriolis and
centrifugal terms may dominate the computation [29] to such an extent that attempts to
control the errors by feedback require excessive corrective torques[38].

Table look-up is in principle the fastest method of obtaining the necessary torques.
if one could index a table of size O(n*) using the 3n values of (g, 4.. §,, 1 < 7 < n),
all computation could be replaced by memory references. This extreme was explored by
Albus[1].[2]. Raibert[37] reduced the table size by proposing a table indexed by position
and velocity (with acceleration handied separately), and this was further refined by Raibert
and Horn[38] to a table indexed only by position. Nonetheless for fine enough division of
the table dimensions the size required remains enormous, filling the table and interpolating
between stored values present p.roblems, and the table is valid only for one particular load
(e.g.. mass of object grasped)[16].

Two other formulations, not reflected in Table O.1 because particularized to special
cases and hence not directly comparable, deserve mention. Kane and Levinson[20] discuss
a formalism (Kane's Dynamics. originally developed for compiex spacecraft control) based on
generalized coordinates and velocities similar to the Lagrangian approach. The dynamical
parameters can be represented explicitly so as to exploit simplifications arising from
manipulator configuration or workspace constraints. though the computational complexity
therefore reflects both configuration and workspace assumptions. They analyze the Stantord
arm under the assumption that the workspace never requires the second joint to approach
8, = 0° or 8, = 180° (due to numerical instabilities there). Hollerbach and Saharf18] present
a method of merging the inverse kinematics with the inverse dynamics, particularized to the
case of a robot with a spherical wrist. Many of the kinematic parameters generated in the
inverse kinematics are needed in the inverse dynamics, and additional savings arise from
the simplification of assuming a spherical wrist. Other special cases are discussed in the
beginning of Section Iil.

The most successful formulations of the general inverse dynamics involve recursive
algorithms. Waters[44] first presented an O(n?) partial recursive form of the Lagrange
equations, which was made fully linear recursive by Hollerbach[16). Hollerbach also contains
an overview of contrasting approaches to the inverse dynamics problem, to which the

14

interested reader is referred for further details. Orin et al.[34] first presented a linear
recursive form of the Newton-Euler equations, which was refined by Luh et al.[29).

We have considered both the Newton-Euler and the Lagrangian formulations, in the
form presented by Luh et al.[29] and Hollerbach[16]. Silver[40] has shown them to be
fundamentally equivalent, differing mainly in that the representation of angular velocity in

-y

the Newton-Euler equations is more efficient. Reflecting this, the parallel formulations for
both formalisms are found to require approximately equal parallel time to compute, but the
Lagrangian formulation would require substantially more hardware to implement. This paper
will thus present only the Newton-Euler results. Complete details for the Lagrangian case

may be found in Lathrop{25).

The underlying intuition in both cases is the following. The motion (by which we will
generally mean: position. velocity, and acceleration) of the manipulator base is assumed
known. as is the motion of each individual joint. By beginning at the base and accounting
for the (known, desired) joint motion at each joint, the motion of each successive link may
be cascaded recursively from the base of the manipulator to the tip. Since the forces
and torques applied by the environment to the last manipulator link (the tip, workhead, or
end-effector) are known or measured. and the motion of the last link is known, the force

or torque at the last joint necessary to drive the last link through its desired motion may

be calculated directly from free-body rotational mechanics. This in turn allows calculation

of the forces and torques transmitted across the last joint to the next inboard neighbor

link, which in turn allows calculation of the next but last force or torque from rotational

l mechanics. Continuing in toward the base in this fashion, and accounting for the forces

- and torques passed across each joint, the force or torque necessary at each joint to drive
each iink through its desired motion may be calculated in linear time. The required motor g

force or torque at each joint is then the component of force or torque along or about the

joint axis. Thus in linear time. the motor torques needed to support a desired motion may i
be computed.

E A number of practical attempts have been made to relieve the host computer of some

_ ! . of the computational burden associated with manipulator controf. The principle idea is that

machine management should be performed outside the main computer (CPU). A common

‘W 15

—— e

TR

¥
¢ ;
']
i

strategy is to use a single microprocessor to control the robot, and the host to control the

controller, e.g. {11),[13], and [23]. This paper will not consider these further because the

parallelism achieved is minimal, and they do not address arm dynamics.

Most attempts to apply parallel processing to manipulator control have involved using
microprocessors to servo individual joints, and have not attempted to include dynamical
considerations. Typically, this involves the microprocessor as the active element in a joint
control feedback loop with sensors to monitor the error (usually of joint position). Also,
the individual joint servos for each joint axis are usually under the control of a master
micropracessor, which coordinates their actions with commands from the host. In fact,
usually the servo microprocessors will not communicate with each other directly at all. Shin

and Malin[39] discuss one control strategy for this general approach.

Acting under this general paradigm, Cook et al.[9] discuss a configuration of seven
68000s and a programmable logic controller, designed for welding underwater pipelines.
Kuo[24] describes an arm mounted on a mobile platform, having one microprocessor per
motor and based on an AIM-65 system. Rafauli et al.[36] control a modified Unimate 2000,
using one Intel 8748 to servo each axis based on positional feedback and a master composed
of an iSBC 86/12A combined with an iSBC 337. Gupta[14] advocates several advantages
of the MKE8000 for similar applications. A single-board controller for a pneumatic drive
arm. using one microprocessor at each axis with feedback from air pressure and speed
as well as position, is presented by Goshorn[12]. Carlisle[8)] additionally dedicates several
microprocessors to sub-tasks such as sensor monitoring or 170, though his interest feans
somewhat more to computer numerically controlled machines. Distributed manipulator
control schemes for servo-manipulators used in nuclear reactor maintenance are described
by Besant[5] and Martin et al.[31]. The OSU Hexapod (an 18-degree-of-freedom, motor-driven
walking machine) is controlled by an experimental multiprocessor consisting of five LSI-11s
[21]. These are reconfigurable so that tree, star. and loop structures can be simuiated. This
multiprocessor has also been used for real-time optimization of leg tip forces, a task which
is not strictly parallel in nature.

Mudge and co-workers in several papers outline a scheme whereby the general purpose

computer incorporates attached special-purpose processors for real-time numerically inten-
16

sive computations. The special processor proposed is a single chip implementation, which

would interpolate between set points from the host and compute the correction torques for

each joint of the robot arm, replacing their current PUMA control scheme of one LSI-11/02
and six 6503s [26]. Though this particular application ignores dynamic coupling between
? joints, another paper (33] proposes a scheme to unify Resolved Motion, Gross Motion, and
Fine Motion, based on the Newton-Euler formalism, suitable for implementation in real-time
on their processor. The processor (called by them NP, the Numerical Processor) is described
[32] as lying between Floating Point Systems’ AP120B (a high performance numerically
p oriented attached processor) and the Intel 8087 (a single chip numerically oriented attached

processor in the Intel 8087 family). A similar approach is described by Turner et al.[42)
involving a distributed processing architecture using three microcomputers in a pipelined

configuration, also proposed far a broad class of advanced manipulator control algorithms.

In the work most closely related to this paper. Luh and Lin describe a procedure r

for scheduling the sub-tasks of a group of microprocessors computing the Newton-Euler

! dynamics [27],[28]. One microprocessor is again assigned to each controlled joint axis,
but in contrast to the servo-based approaches above, the microprocessors do communicate

and arm dynamics are explicitly computed. Each microprocessor computes the recursion

variables which correspond to its joint axis. Since these variables (as well as intermediate

partial results) recursively aepend on eacn otner in vanious aifterent ways, often some

microprocessor(s) will be idle while waiting for others to complete pending sub-tasks and
idle time must be included in the schedule. It is a non-trivial scheduling problem to assign
each sub-task of each microprocessor a specific execution sequence which minimizes the
global computation time. Because the form of the equations (and hence the sub-tasks to be

performed) for a joint differs depending on whether that joint is rotational or translational, in

:, general each new manipulator configuration requires a new rescheduling of sub-tasks.]

The procedure adopted is a modified branch-and-bound search through the space
¥ of possible sub-task orderings, terminating when the minimum-time ordering has been

y found. Any feasible ordering which accomplicshes all sub-tasks is first found. then refined
I by generating and comparing alternatives (other, partial, orderings from branch (choice)

R points). The estimated total time of a partial task ordering is its partial time so far (including ,
17

idle time), plus the time for all its remaining sub-tasks to complete if idle time is ignored.

Since this is guaranteed to be an underestimate of true total time, branch-and-bound search
applies. Each partial ordering is extended until either its estimated total time exceeds that
of the minimum-time feasible ordering so far found, or it is extended to a complete feasible
ordering of less total time and so becomes the new minimum. At the conclusion of this
procedure, the path of minimum true total time is the optimum schedule. Though by its
nature this procedure is not subject to precise analysis of the computational complexity of
the resulting schedules, the authors report a concurrency factor of 2.64 on the Stanford
arm. This estimated factor is used in Table O.1. 4

Table 1.1 — Linear Reéursive Newton-Euler Formulation
(after Luh et al. [29))

Newton-Euter Backward Recursion:

AT(w,—y + z,—1¢,) it joint ¢ rotational;
w =)
AlTw,_,y if joint s translational.
AT,y + 2,14, +w -1 X 2..1¢.) if joint « rotational;

‘I‘J, = . (..)
Alo, if joint + translational.
Ap_ +w, Xp +w X [(w Xp)

p, =

Alp _ 4o X p 4w ¥ (w. % p)+ ATz 4 4 2w ¥ ATz 4,

Fo=w, X (wo X) 4w, X+,
| = m,¥,
N, = J, &, + w, x (Juw)
Newton-Euler Forward Recursion:

fl = FI +A|+lfr+]

n, = A.+1ﬂ.+1 + N| + 3.. X F+ p.. X (A|+l/|+l)

Te=3-1'N

19

if joint s rotational,

if joint : transiational.

)

7
|
|

——

2. NOTATION

The notation is based on that used by Hollerbach {16] and Luh et ai. {28] in their analyses of
the linear recursive inverse dynamics. which in turn derives from the Denavit and Hartenburg
[10) convention for lower-pair chains. Coordinate systems are fixed in the body of each
link and related rotationally by 3 x 3 matrix coordinate transforms and transiationally by
distinguished body-fixed position vectors. The notation 'v, is used to denote the vector v,
referred to coordinate system O,.

it is worth emphasizing that, with few exceptions, ALL vectors in this paper are referred
to link coordinates. This obwates.the complexity and computational overhead of transforming
everything to base coordinates. Elsewhere in the literature. “v, (denoting the vector v,
referred to base coordinates) is usually abbreviated simply as ,. Since we will almost
never refer any vector to other than its own link coordinates, we adopt instead the notation-

simplitying convention that v, abbreviates ‘'v,, a vector referred to its own coordinate system

-
LR

The links of a mechanism are numbered consecutively 1 to n from base to tip, with link
0 denoting the base reference frame. There is another fictitious link n - 1 attached to the tip
when convenient. which may represent the object grasped or account for environmentally
applied forces and torques at the workpiece. Attached to link 1 is a right-handed orthogonal
coordinate system O, with axes (z,,y,, z).

Joints {equivalently, hinges) occur between the links. Each joint is denoted by the
number assigned to its distal (outboard) link, so that joint 1 connects links s — 1 and 1. Joints
may be either rotational or translational, but may have only one degree of freedom. Multiple
degrees of freedom at a joint are modeled by introducing fictitious links having zero mass
and length.

For any two adjacent coordinate systems 0, and 0,_; there is an orthonormal rotation
matrix A, mapping vectors whose coordinates are referenced to 0, into the corresponding
vectors referenced to O,,. Note that this is a pure rotation. The coordinate systems are
located in the links so as to simplify the form of this matrix. The orthonormal basis vectors

of 0, are arranged as follows:

20

ek o momas i ST U
st amnaad

PRI g o s oW B il AR S TS h At W S

z lies along the positive axis of joint i + 1,
z, lies along the common normal from 2, to z,,
yv,= z, X z, completes the right-handed orthonormal system.

Since the joints have but one degree of freedom, z,, z,, and z,., are all body-fixed vectors
in O, (i.e., have a fixed direction relative to the body-fixed coordinate system). The rotational
orientation of two adjacent systems is completely described by

a, is the angle between z,__, and z, in a right-handed sense about z,,

8, is the angle between z,_, and z, in a right-handed sense about z,__,.
The vectors z,_, and z, being both fixed in 0,, a, is constant. Since z,_, lies along the
joint axis of joint :, and z,_, and z. are fixed in O,_, and ., respectively and both normal to
z._,, 6, measures the relati;/e rotation about the joint axis between the two systems. Thus
if joint 1 is rotational then 4, is the joint variable. otherwise 9, is constant (see Figure 11.1).

By the preceding remarks, the rotation matrix A, corresponds to a coordinate rotation

about z, by an angle a, (which aligns z, and z,_,) followed by a rotation about the rotated
2. (- z,_,) by an angle 6, (which aligns the other two pairs of basis vectors). If the first
rotation is represented by the matrix ¢, and the second by 8,, then

[1 0 0
$, = |0 cosa, —sina,
L0 sina, cosa; J

cos8, —sinf, O
6, = {sinh, cosd;, O

L 0 0 1
A, = 6,9,
fcosf, —sinf, cosa, sin 6, sin &,
= |snf, cosb,cosa, —cosb sina,
L 0 sin a, cosa,

The translational orientation of two adjacent systems is completely described by

a, is the distance between the origins of 0,_, and 0, measured along z,;

s, is the distance between z,__, and z, measured along z,_,.
Since z,, 2,, and z,_; are fixed in 0,, q, is constant. z,_, lies along the joint axis of joint s,
so if joint ¢ is translational s, will be the joint variable, otherwise s, is constant.

21

|

R e at S - '
e e e ek 4 = et s i St ‘¥ PR LT ~,

The following link 1 vectors, referenced to J,, permit a convenient specification of the
transiational relationship between adjacent coordinate systems

P, a vector to origin O, from O,_,

T, a vector to the center of mass of link ¢« from O,

8, =p, +r,, avector to the center of mass of link s from 0,_,.

From the above remarks it is clear that
p:. = S,A'Tz,_l + a,z,

but in virtue of the form of A, - 8,¢, and its constituents, we have

!
9, 2,1 = 2,
I TT
Az, 1 =98z _,
T
= ¢’ Z,—)

which is body-fixed in 0. Thus p’ is composed of a part a.z, which is fixed in O, and
represents (constant) translation normal to both z _ ; and :,, together with a part s, ¢'z,_,
whose direction is fixed in © and whose magnitude represents translation along = _, referred
to O.. If joint : is rotational then s, is constant and so therefore is p.. else p’ incorporates
the result of translational joint motion at joint s,

The rotation matrices A, may be cascaded by defining the rotation matrix 'W,, which
maps ’u,, into 'u,,. Since the inverse of an orthonormal matrix is equal to its transpose it
foliows that

'W, = ()w')T

i

(w)
A A i<y,
AT AT, >,

the superscript T denoting transpose in either matrices or vectors.
From the above it is clear that

W, =[(°2,),("v;),("s,)]

22

and
W, = (W)W,
= (‘W)(*'W,)

= [('IJ)'('yJ)'(lzJ)]'

In the sections on logarithmic recursion it will be necessary to introduce another notation
for consistency with the formalisms developed there. We will use W, to denote the inapping

e i B TR 3.

from &, to 0,—,, so that

WPV R s

3’ W,, ="',
t Also in the sections on logarithmic recursion we will slightly abuse the dot notation
l \ for vector time differentiation (i.e. .., and p_,). Elsewhere in the literature this denotes
differentiation in the inertial frame, with ditferentiation in a rotating frame indicated by ' or
*. We will take ALL terms u,, to denote differentiation of u,, in C ..,. This becomes
equivalent to the standard notation at 4,,, the case of interest, and eliminates proliferation
of * or * superscripts in much the same spirit that taking « eliminated superscripts of 0.
This is explained more fully in Section V.
:
S
r
4
%]
. .".‘
143
[REF
¥
¥ ' -

m,

T,

Table II.1 — Summary of Notation Used
We define the following:

the mass of link j,

a vector to the center of mass of link 5 from the origin 0,,

a vector to the origin 0, from the origin 0,_, ,

accounts for gravitational acceleration, g if y = 0, else 0,

= p + r/ a vector to the center of mass of link ; from the origin C,_;,

= "; /my,

the angular velocity vector of link j,

the inertial tensor (with respect to its center of mass) of link j,

the joint generalized variable for joint j, 6 if rotational and s if translational,
the joint generalized actuator force at joint j, torque if rotational and force if transiational,
liie iviai furce (exciuding ygravity) on iink 7,

the total torque on link j,

constraint force (unknown) exerted on link 5 by link 7 — 1,

constraint torque (unknown) exerted on link 5 by link 5 — 1,

a pure rotation matrix mapping vectors in 0, into vectors in 0,_,,

a pure rotation matrix mapping vectors in 0, into vectors in 0;,

='—lw,,

u,.; differentiated in 0,_; and referred to 0,.

24

9

i=)

Figure 11.1 — Notation of Manipulator Parameters

25

ot B " { G ok N ;_

o

~— e T

)
i

3. PARALLELISM WITHIN A NODE

This section will investigate the effect of exploiting paralielism within a node (joint), while
remaining within the general linear recursive framework. As a conceptual aid in this section
we assume that there is one group of parallel processors for each joint (node) on the torward
and the backward recursion. However, since only one node is active in the computation
ol any given variable at any one step, and all nodes are identical, an implementation could
be constructed using only one processor group by connecting the output back to the input
through a buffer. Details ot how this might actually be done are explored in Section VI. if
only one processor group is useq, camputation of one set of joint torques must be compieted
before the next can begin. Otherwise, with one processor group for each joint (node), it is
possible to systolically pipeline successive sets of joint torques at intervals of 1 Mult + 3
Addns, or 4 Flops.

The hnear recursive structure of the Newton-Euler computations may be shown as a
directed graph as in Figure Hl.1. The essential structure of the algorithm can be clearly
seen — acceleration is propagated outward (incorporating at each stage the next joint
acceleration) and forces are thereafter propagated inward (allowing calculation of joint
torque at each stage). Nodes represent the total processing associated with each joint in
the forward or backward recursion, and directed arcs represent data dependencies. it is
clear that reducing the computational time incurred at each joint {(node) would imply a linear
reduction in the total computational time (a constant factor speed-up). For reasons which
will be explained in Section IV, a double subscript is used in Figure .1 thus (0,;) on
the backward recursion, and (5,n) on the forward. denotes the variables output by nods .
Non-systolic and systolic arrangements are indicated in Figures |11.2 and I11.3.

Tables 111.1 and 11).2 show the detailed internal structure of each node of the directed
graph of Figure ill.1. The computation times given in Table lll.1 reflect the times represented
by the indicated operation. In general we follow Hollerbach[16] in accepting the principle
that economies in computation should be explicit in the formulation rather than implicit
in the programming. and Table O.1 reflects his analysis for the tully general 6-link rotary
manipulator. It should be noted, however, that by “hand-tailoring” the computation to

26

account for special cases the computational cost can be frequently be reduced below that
shown in Table O.1. For example, if the particular manipulator configuration is such that

some of the constant angles a, are multiples of . then the factors cos a, and sin a, become

"y

0 and +1 and multiplication by the rotation matrix A, can be reduced from 9 Muits and
6 Addns to 4 Mults and 2 Addns. Since y, - p, = 0, vector cross products involving p;
can be calculated with a special sub-routine in only 4 Mults and 2 Addns. Several other
optimizations are possible, e.g. see [{18),[20].[28],[29]). Many of these apply to the Stanford
arm, which therefore has a substantially lower computational cost than the fully general
case. Newton-Euler dynamics particularized to the Stanford arm requires only 308 Mulits
and 254 Addns [28]. and Kane's dynamics requires only 646 Mults and 394 Addns [20]. A

-

B .

rotary manipulator particularized to a spherical wrist and non-spinning base requires only
448 Muits and 361 Addns [18]. Our analysis captures the fully general case with time bounds
substantially below these, and in any event the intended implementation in VLSI argues

strongly for a regular and systematic treatment which avoids all special cases.

; The times shown in Tables 1ll.1 and 1.2 reflect, for each variable, the rotational case
only. The extension to the translational case folliows directly in analogous fashion, and the
time bounds stated remain almost exactly the same with only minor variation in the constant
term.

Note that, while on either the torward or backward recursion, the linear coefticient in
the total time cost is determined by the time required to propagate the recursion variables
‘ through a single node. More specifically, this is the interval between the time that the

recursion variables become available to one node and the time that they are made available
| to the next node. However, nothing constrains all of the variables to be made available
{ at the same time. Since the different recursion variables are used at different times in the
computation, relative delays are acceptable provided that each variable is available by the

time that it is required in the computation.

If the different variables become available to a node at staggered times (and in turn are
made available to the next node at equally staggered times), the linear time coefficient is
determined by the longest time required to propagate any single variable across the node.
In determining this time only w;, u,, p,, f., and n, need be considered, as the other variables

27

o

are not propagated down the recursive chain.
Examining Table Ill.1 for the Newton-Euler formulation, it is clear that (given the proper

staggering constant offsets) no variable on either the forward or backward recursion requires
longer than a matrix-vector muitiplication and a vector addition to propagate through a node.
This is evident because each propagated variable becomes available to the (i + 1) node
one matrix-vector multiplication and one vector addition after it is made available to the st&
node. Thus, the time required for the entire dynamics calculation may be reduced to

2n-(MV + VA)+C

where (M17) and (V A) are respectively the time required to perform a matrix-vector mul-
tiplication and a vector addition, and C is a constant which accounts for initiating the
calculation.

This is the case even though each individual variable may take longer than (MV + V A)
to compute. Table 11l.2 illustrates this arrangement graphically. The times when each
of the variables become available are shown in Table 11.2, as well as the intermediate
partial results. For simplicity of presentation in Table Ill.2. a timing model is used in which
1 Mu!t = 1 Addr == 1 Flop. This metric will also be used to establish the relative times at
which various partial results are computed and made available.

w, depends on nothing except w,_; and z,.,4,, and requires time (M V 4V A4) to compute
once these are available. It is clear that successive values of w, will become available at
intervais of (MV 4 V A), since each depends upon nothing but its preceding recursive
variable value and the input. &, depends on w,; as well as on w,_, and z,_,§,. However,
w,—, and z._, ¢, are required in the computation well before w,_,. Given the availability of
{w,} at intervals of (MV + V A), any w,-dependent intermediate partial resuits required by
&, can be calculated before w,_, becomes available (by delaying , if necessary, as will
be seen below). These intermediate results already computed, when w,_, does become
available it will be possible to compute &, in time (MV + V A). Meanwhile computational
precursors to w,,; have been similarly calculated, so that when w, becomes available it is
then possible to compute w,4, in time (MV + V A), and so forth. In this fashion, it can
be seen that the availability of {w,} at intervals of (MV + V A) implies the availability of

28

k|

3

-

]

i {&.} at similar but offset intervals. By a similar reasoning process, both of these imply the
availability of {p,} at intervais of (MV + VA). The structure and timing which realize this
are shown in Table ll).2. Similar considerations would hold for the forward recursion.

i The availability offsets and the constant C may both be determined from Table Ill.1. This

;! is done in Appendix A, where the appropriate offsets are shown to be
Avail(é,_,) > Availlw,,)+VC+ VA *)
Avail(p,__,) > Avail{w,_,)+2VC + 3VA (**)
Avail(p,_,) > Avail(w,_;)+ VC + 2VA.
[Avail(n, 1) > Avail(f,)+ VC + VA. (***)

The three equations above, (*), {**), and {***), define the constant offsets or relative
delays by which the propagation of the Newton-Euler recursion variables should be staggered
in order to achieve the stated time bound. Note that if computation is allowed to proceed
on a scheme whereby a node operates on its inputs as soon as the data becomes available,
then these offsets will be naturally set up and maintained by the inherent computational

; delays shown in Table Ill.1.
Next we determine the constant C by showing when r,, the last generalized joint force
of the forward recursion. becomes available as output. This may also be done from Table

lil.1, and details are also shown in Appendix A. There it is shown that. assuming all input

values become available simultaneously at time ¢ = 0, the time required to calculate the
Newton-Euler dynamics exploiting maximal linear parallelism is

| 2n - (1 Mult + 3 Addns) + (5 Mults + 9 Addns).

Due to differences (not requiring additional computation by the host) in assumptions about 5

the form of the input and output (not in the computation), this is slightly fower (by 2 Mults + t
2 Addns) than given in [25]. Specifically, we assume that the input buffer will deposit ¢, and

i

¢, as the third scalar coordinate behind two pre-stored scalar zeroes so as to make availabie
* the vectors z,_,¢. and z,_,§, directly, and that the output buffer will directly return the third
g scalar coordinate of f, (for translational joints) or n, (for rotational joints) as the indicated 9
joint force or torque. This input/output convention avoids the algorithmically indicated cost

of SV and V D without introducing special cases into the computational structure.

29

Table Il.1 — Relative Time of Linear Data Dependencies

Linear Backward Newton-Euler Recursion
Var. | Waits Ont Time at Step End Step Costt
[w, g = Avail(w,—,) Input Ty = 2,14, oo
a+ VA Nh=w_+T VA
a+ MV 4+ VA w, = AT, MV
':_vu‘:, e = Avail{w,_;) Input Ta = 2,14, i
‘ b= Aval{w,_,}) | a+VC Ti=w_ 1 XTy | VC
i e+ VC +Va T, = Ts + Ts Va
j Cmax(ba s VCIVATVA | =T Fa | VA |
l' max(b,a + VC + V A} @, = Al'T, MV
! i +MV 4+ VA
9 p, | c= Avail(w,) c+ VC T: ==w, X p, ve
| d = Avail(w,) c+2VC Thv=w xTy Ve
i e~ Avallp,_,) | d¥VC Te— o Xp ve |
max{d + VC,c + 2VC) + VA Tio = Ts + Ta VA
e+ MV Th = Alp,_, MV
, “max(e § Mi,d £ VC + VA, B, = T + Th VA
' o | e+vCHVAI+VA |
T, ¢ = Avail(w,) e+ Ve Tio=w X, ve
d = Avasl(w,) ¢+ 2vC Tiy=w XTiy ve
f = Avail(p,) d+ VC Tiq = w, X r: ve
max{d + VC,c+ 2VC)+ VA Tis = Tis + T4 VA
max(f,d+ VC + VA, ¥, = Tis + P, VA
c+2VC+VA)+ VA

L

t See end of table (continued nezt page).

“Avail(X,_,) = t” means that variable X,_, s made available to the 1t2 node at time t (on the
ackward recurawon,; substitute X, on the forward recursson).

30

——

Table 11l.1 — Relative Time of Linear Data Dependencies (continued)

Linear Backward Newton-Euler Recursion (continued)
var. | Waits On Time at Step End Step Costt
F, g == Avatl(¥,) g+ SV F, = m,r, SV
N, ¢ = Avail(w,) c+ MV Te = Jiw, MV
d = Avail(w,) c+ MV +VC Ty =w, X T Ve
d+ MV Tz = Jw, MV
max(c + VC,d)+ MV + VA N, =T; + Ty VA
Linear Forward Newton-Euler Recursion
Var. Waits On Time at Step End l Step Costt
f h = Avail(f, ;1) h+ MV Tiw= A, o1 f 41 MV
R MV i VA fi=F + Ty va
. nA,*‘T »i;:—;i;m_,,)ﬁ already computed * 7 To=3s XF - (veH)
. ko= Avail(n, L) already computed * Ty = Ton + N, (VA*)
i | heMVAVC | Te=pixTe [VC |
\ | hi MV +VC VA [Toa=Ty +Tex | VA
k+ MV Ty = Ajqin 4 MV
max(k,h + VC + VA) n, = T3 + Ty VA

+MV 4+ VA

* (that 1s, computable before the recursion reaches the node, except at the initial node)

t VA =time cost of Vector Addition
VC =time cost of Vector Cross product
SV =time cost of Scalar multiplication of a Vector
MYV =tlime cost of Matriz multiplscation of a Vector

L el -

AnEn

Table Ill.2a — Timing of Linear Newton-Euler Backward Recursion
Timing of w, and w,; n = 4, rotational joints
Wp = Whases “"0 = ‘bbnu

E {For simplicity here, 1 Mult = 1 Addn = 1 Flop) {
. W, = A;r(wl_—l B =w1 X zx-;‘—léi
+ZI—IQI) +2|—1q,
0 - — : 70 "
VA W, =A. (wn—l +Z.—1q,.
1 _ — wo + 2oy ve tw,.—1 X z,14,)
k .
i 2 _ | wo X 20y =A@ +48)
5 MV val 5 .
4 _ | w ’ . VA__31+00
5__ VA.__UI“f‘zl"I'.‘ ve
6 __ | wi X 212 MV
\ 7 MV VA L By - o
]
: 8 _ | w2 __ VA | B+ wy
3
& 9 __ va | _ wy + 2243 ve
10 _ | wa X zaqy Mv
12 — w - VA | B3 + w2
‘ 13 _ VA | wy + 2344 ve
14 _ L_ w3 X 2394 My
! 15 _ MV VA L 8, - | 0y j
16 _ - VA| B +as

Table Ill.2a — Timing of Linear Newton-Euler Backward Recursion {continued)
Timing of p,; n = 4, rotational joints
f’a = ibuu

(For simplicity here, 1 Mult = 1Addn = 1 Flop)

-

0_ !
; ! 1_
{ 2 _
3 _
b, = w, X (w, X p, . :
4 _ [v (pr,_)} p,=w X (w Xp)
5__ _ “+d, X p, = A;rﬁ: -1
6 __ ve o=, Xp, + 6,‘ =7 + AP,
! 7 __ _WIXP:

f - -

Table lll.2a — Timing of Linear Newton-Euler Backward Recursion (continued)
Timing of r,, F,, N,, n = 4, rotational joints
(For simplicity here, 1 Mult = 1Addn = 1 Flop)
0o_
1_.
2 __
} 3_. F,o=w, X (w, X 7)) N \<Jv+J']
4 __ +u' x r'. L= W, (W 1w,
5 +p, .
6 _ —
MV
7T — ve o —
8 __ — —_— F, = mr, L Jiw
MV
9 — ve| ve ve —
' 10 __ L L L. — | Jiun
14
" vol VAL MV Al p,
iz _ L va L7 L Jawe
SV E MV
1B vel ve Fy — ve
14 _ - - . - L Jaws
VA MV VA N
B ve — —
i 16 __ VA 2 | Jyws
; f— B sV E F MV]
17 ve ve ve —
18 —_ e - L — L_ 13(2)3 4
VA MV VA
] 19 - VC — F_ Na
. 20 _ L VAL | Ty J
; sv MV
¢ 2 ye| ve F ve
? 22 L % L — Jqd)q
1]
3 2 val va [N,
. 24 _ VAL +
: 25 _ sV [Fy

Timing of f,, n,; n = 4, rotational }.oints
(.{5 = fhpn Ny = Ny, T = [0)0; 1])

Table I11.2b — Timing of Linear Newton-Euler Forward Recursion !

(For simplicity here, 1 Mult = 1 Addn = 1 Flop)

Ti !
fl = Al+lf|+l :
21 _ +F
t {
2 _ — n, = A4 1n41 :
3 23 _ +p; X (Aig1fit1)
} -
b 24 __ Mv o N4 xXF
25 __ ,_Af)fh ' .
VA
26 —_— b j4 VC —
27 [_ s: X Fy ve
28 _ MV VAL 4N, - py x Asfy MV
|
g 29 __ L Asfs _ val | Agns
1%
' 30 — va r‘ fﬂ ve 4 o 734
' 31 _ . — 5:-; X Fy VC(
32 _ MV VAL +Ny = L p;x Aufy MV
33 _ L Aafs _ VAL — | Aung

{
i’
H
§
\
1
} (“Bkwd,” = backward recursion processor for joint s, “Fwd,” = forward)
Flo va A!
' 4.’.é.’.5i 71 (71,0)
3 (Fo,1. No,1)
!
4
3
g Fa, N, 4
T2 (Tﬁ.n)
(Fo,2, No,2)
P F!n Nlu A(
13 (T3,n)
(Fo,3, No,s)
ws {wo,3,
ws Wo,3,
‘ Ps Po,3)
J'
s ! Wa—1 (wo,n—1,
,‘ h'),._l “"O.n—h
: ﬁo,u—l)
! an Nnt Aﬁ+l
Tn (ﬂ\.n)
4‘ (Fo,m Nﬂ.n) J
. 3
{ Figure IIl.1 — Linear Recursive Graph Structure
it
'Y *
i |
:! ‘ .

Physical Structure:
A,6,8,

i
!
J
]} N.-
: S AR,
|
N Conceptual Structure:
: Auénbi
i
h L wi
} V)
w2 h'll
v Ny o T
ws w3 P N,
we QJ ﬁz Fl Nz
Wy Ps ¥a ¥ N,
W -
. -~
1 } 23 s F, N
" P all N,
all F,
Fy Ja
B ny *Q L0}
. fa ns Lé D
¢ N ny (~—> 1
ig' n ———3n

b - il T8

P

g ey

[y

~ e I

(Time Intervals 2n(MV + VA) + C per complete set of joint torques)

(Only one physical processor per variable — see also Figure VI.1.)

Figure [11.2 — Non-Systolic Pipelined Process, n =4

31

A0,

Vi

FI lNl |A2(‘l)

Fl le !A2(t2)

ﬁ.'l !Nl 0A2(t3)

“Bkwd, "(ts)

F\ N, Aq(ty)

Fy Ny Ayts)

Fl an 'A'I(ts)

Fy.Ny . Aq(ty)

Fl er oAQ(tB)

F'ZQN'.‘-A:i(tI)

Fy. N, Aa(ts)

"Bkwdg"(h)

Fo N3 Aq(ty)
Fu Ny As(t)

“FWdl“(tl)

T](tl)

7a(t))

F1.N2 As(ts)

Fy. N2 As(tg)

Fy.N1.AA(t7)

F3.Ny.Ay(t))

Fll-A’,:hAl(t'.’)

Fa.N3 Ay(ty)

“Bkwd;;"(te)

F:hA';(.A l(t-i)

Fa.N1.A((ts)

Fa AVy ,A,|(t6)

Fq N As(ty)

Fy Ny As(ty)

F4 ;Nd VAS(tS)

“Bkwd,"(ts)

Fy Ny As(ty)

(Time Intervals 1{MV + V A) per complete set of joint torques)

v Fy Ny, As(ts)

\)@;zw j

A0

.

73(ty)

7a(t2)

7a(t3)

|

7(ty)

74(t2)

74(t3)

“Fwd."(t4)

7a(t4)

("Bkwd,” = backward recursion processor for joint s, "Fwd,”" = forward)

Figure 111.3 — Systolic Pipelined Process, n = 4

38

%
|

{. PARALLELISM EXPLOITING LOGARITHMIC RECURSION

The preceding section showed that parallelism potentially leads to considerable time savings

even within a linear recursive framework. This section will show that the linear time
] dependency can be improved. By a suitable restructuring of the basic computational
framework within which the nodes are embedded, together with a corresponding revision to
the recursive forms of the equations. an C(log(n)) total time may be achieved. For convenient
reference, the formulae are collected in Table IV.1.

The basic intuition is illustrated in Figures (V.1.a and b, applied to n consecutive

} multiplications. If these are performed serially, as in Figure IV.1.a. then time > (n) is required.

By processing in parallel (Fi‘gure IV.1.b). time C(log(n)) may be achieved. It is easy to see

that general recursive calculations of the form
I, =a,T,— -+ b' !

may be performed in time O(log(n)).

.o

To exploit this potential in the inverse dynamics case, however, it is necessary to
Y generalize the linear recursive equations. The linear form may be regarded as an operator *
i ¢ which maps a variable (X._,) representing the base through (: — 1)** inputs, together

with the +2 inpnit (1) intn (Y) representing the hase through 4 inpute:
X ®1 - X. f

For logarithmic recursion, an operator ® is required which maps a variable (X,) repre-
senting the at* through k% inputs, together with (X(x41)s) from the (k + 1)t through b2
inputs, into (X,,.) representing inputs a through b:

_ Xok @ Xk+1)6 = Xas.

3 The linear recursive equation is a special case of the more general logarithmic form in which
g a=0k=1s—1,b=k+1=1, X,, = I,, and computation proceeds serially, so that

: . x:' = x0.|

i = XO,(;—!) ®xl.l
is‘ = Xl—l @ ll'

: 3 ‘ 39

! [P UUUNRPIPSPSRE .

s oy

e o sarien ST

ra i dERREL ol
e rogn gt

This is the meaning of the double subscripts in Figure IlI.1.

What physical meaning can be assigned to this? We will return to this question during
the analysis below, where the discussion can be illustrated more clearly by reference to
“real"" physical quantities. For the present, however, the recursive forms (both linear and
logarithmic) may be thought ol as mechanisms for relating physical parameters at one
coordinate system (or link or joint) to physical parameters at another, by abstracting away
the intervening links of the physical manipulator. Very loosely speaking. the goal in both
cases is to relate the acceleration of each link to the acceleration of the base by abstracting
away the intervening joint accelerations, then to relate the distal forces and torques acting
on each hnk to the distal forces and torques acting on the tip by abstracting away the
intervening joint forces and torqﬁes. This done. the joint forces and torques necessary to
sustain the desired acceleration may be found trom a purely local application of Newtonian
mechanics. We will use the term "‘relational parameter’ to refer to a quantity which relates

physical parameters at one coordinate system to physical parameters at another.

The linear and the logarithmic recursive forms differ principally in how they approach
the problem ot relating physical parameters between coordinate systems (or links or joints).
The hnear form relates the base (backward recursion) parameters to the first link parameters
to obtain relational parameters of the form X, (= X,.,). These in turn are related to the
second link parameters to obtain relational parameters of the form X, (= X..), which relate
the second link to the base. in sequence, the relational parameters Xg.3, Xy.4, ... Xo.n, are
formed, which relate respectively the third, the fourth, and the nt! links to the base. The
process may be viewed as one which, at each step, "'glues’ the next link parameter onto
the current relational parameters to produce the next relational parameter, thereby reiating
the base to the next successive link.

In contrast, the logarithmic recursive form may be viewed as a mechanism for “gluing
together'' any two adjacent relational parameters. Parameters of the form X, reflect only
the input values at link (joint) 1; those of the form X, , retiect (abstract away) links s through
5. At the first step, adjacent pairs of (backward recursion) relationat parameters of the form
X2 Xaov1.204+1 are related in paraliel to form the relational parameters X, 3,4,. Thus on
the first step we relate aiternating pairs of adjacent links to form the relational parameters

40

.

Xo., Xoa0 Xas, - Xu—1.n (if n 0dd). At each 7 succeeding step, all adjacent pairs of

the form X, «, Xx4,,. are related in parallel to form the relational parameters X, ., where
a=2m k=a+2 % k<b<a+4+2 —1,and 0 < m < n/(2’). On the second step,
Xo.2, Xo.30 Xa6 X471, -.ov Xn—an—1, Xn_3,» are additionally formed; on the third step we
also pick up Xo.¢, Xo.5, Xo.6: Xo0,7: Xg,121 - -+ Xn—7.n—1. Xn—7.n; and so forth. This process
is illustrated in schematic in Figure IV.2 (only the backward recursion is shown). There,
n = 7, so the backward recursion would take three steps as shown. It is easy to see that in
flog.(n+1)] steps, all (backward recursion) relational parameters of the form X,,,0 < 3 < n,
may be formed. But as noted above, these are just the linear recursive variables X,. Thus
the backward recursion may be performed in real time in C(log.(n + 1)) steps using paraliel
computation. The same is true of the forward recursion, hence of the inverse Dynamics
computation.

The logarithmic recursion operator must possess the following recursive properties:
(a) X, ., must be computable only from inputs a through b,

(b) X, = X, & X4, must be computable from variables of the
form Y, .« or Y, 4. or previously computed Z_ , or non-recursive values,
and

(c) X,.. on the backward recursion, or X, ,, on the forward recursion,
must be equal to the value of the linear recursive variable X,.

These properties will allow the use of a structure analogous to Figure IV.2.

The remainder of this section will be devoted to the derivation of appropnate logarithmic
recursive formulae. Separate sets of formulae will be developed for the forward and the
backward recursion variables. As in Section Ill, it is necessary to consider only those
variables which are propagated the length of the recursive path. For the Newton-Euler
formulation these are w,, w,, p,, f., and n,. These formulae are collected in Table IV.1.

Suppose one wished to find the value of non-propagated values, for example to find ¥,,
for node m on the forward recursion path. One first computes wg, W&o, and py ., using the
logarithmic forms given in Table IV.1. By the remarks above, these are exactly wn,, wm, 8nd

41

p,. of Table I.1; and the time needed here to compute all three is O(log(m)). From these, 7,
may be computed in constant time O(c) using the formulae in Tables .1 and ill.1.
In the derivations below, for each linear recursive variable, our general strategy will be

as follows:

(a) propose a closed-form, non-recursive formula which is equivalent

to the linear recursive formula of Table 1.1,

(b) show that (a) is correct by showing that it is a fixed point of the
linear recursive formula considered, and holds for the zero term (this is

b equivalent to an inductive proof).

(c) propose a non-linear recursive formula which is equivalent to (a)

ata=0and b =1, and

(d) show that the resulting combining operator & is correct by

showing that it preserves the form of the formula in (c).

The reader may verify that fora = 0, k = 1+ — 1, b = k& + 1 = 1 the formulae reduce to Table
| 11
! It will be necessary to introduce several auxiliary variables not directly corresponding to
any variable in the linear recursive formalism. There we will be concerned to show only that
the asserted combining operator is correct.
In the following we assume a < k < b throughout, the case of a = 4 being found as a
f special case of (c) above. In order to cover both the rotational and transiational cases, it is

convenient to introduce

i 1 , joint 1 rotational,

L, o, =
2 0 , joint s translational.
2, =1—o,

1

I3 i

§

]

K 42

e

o,

NEWTON-EULER BACKWARD REéURSION VARIABLES:

Introduce the auxiliary variable W, ,, which will represent products of the coordinate
matrices A.. Notation sometimes used elsewhere in the literature is '~ ' W,, but we write W, ,

here for consistency with other variables. Let

b
Wu.b = H A)

1=a

{ (i) 1 +)

== W/.k‘vlk-ﬁ-l).h

1

It can readily be seen that W, , maps the coordinates of a vector expressed in the system 0,
into coordinates expressed in O, _,. The physical significance of the combining form & is
i to compose a mapping which relates O and C: with a mapping which relates 0, and 0, _;
» in order to produce a mapping which relates the coordinate systems O, and 0.—;. Thus
; W,o = A, and W, ,_, = I (the identity matrix).

In the case of W, ,, the combining operator ® is matrix multiplication and
War @ Wit = WouWisan

' Hereafter we will merely display the combining form without drawing explicit attention to the
operator &, acknowledging implicitly that X, ;, == Xo.x & Xis1.4.
i Next consider the angular velocity w,. We define 2_ ;) to be the axis of rotation of the
“ base system and g, to be its magnitude, so that wy = A7z _)§,. This will be non-zero if, for
example, it is desired to include the Earth's rotation in the calculations (perhaps for satellite
applications). |f one creates a fictitious frame O, at the Earth's center, then z_,) points
through the North Pole and ¢, is equal to the Earth’s angular velocity.
We show that w, satisfies the following closed-form non-recursive formula 4

]
— T
wh = E W;.05814,

J==0

43

|
/

B e s

because this is a fixed-point of the recursive formula for w, given in Table 1.1.
v t—1
wo=AN W, 0,214, 4 0214
=0

= A:’(w._l + alzl—lql)

In order to produce an identical form at A = 0 and b = s, define

b
Wa b = w0,z g
ab = 10985, —14,

j=a
k T]
=3 (WaWusna) 0,214, + Yo Woo,z,4,
i=u) g=h+1
i
= Wi oWk - Wiy
This is the combining form for w,, .
w.: expresses the angular velocity of 2, relative to 0,_,, referred to &,. Thus w,, is

the angular velocity of O relative to the base frame, and w,., also accounts for the rotation
of the base frame (if ¢, = 0 then these are the same). The combining form for «, . is a
means of composing the angular velocity w, 4, of O, relative to O, with w, ., that of 0,
relative to O, _ . in order to obtain the angular velocity of O, relative to O, _,. In particular,

w., -1 = 0. The rotation matrix W/ in the formula transforms w, . from O, into C.. the

el
system to which w,,, is referred.

Similar remarks apply to the physical significance of w, 4, p,,. etc. Derivations of the
other propagated recursion formulae, shown in Table IV.1, are given in Appendix B. Note
that w, is the angular velocity of the base, non-zero if the Earth's rotation is modeled as
in some satellite applications. Also, p, is the acceleration of the base. Typically this is the
acceleration due to gravity at the site. if one took wy # 0 then p, may also include a term for
wo X {wo X pg), where p; is a vector from the Earth's center O;_,) to the site; this accounts
for the centripetat acceleration arising from the rotation of the Earth. One may account for
gravitational acceleration by taking pj = g, else p{ = 0 for i # 0. The term involving #° is a
technical artifice to account for p, cleanly, and vanishes in the combining form.

As mentioned in Section Il on notation, we slightly abuse the dot notation for time
differentiation (e.g.. 1, ,) to indicate the time differentiation of u,, from within the coordinate

44

e om T S
[P

Ll e g ol

v o

system O, _,. This is equivalent to the standard notation at a = 0 (the case of interest), and
results in a less bulky notation. To illustrate this usage, we consider an alternate derivation
of w... where ¢ denotes time differentiation in 0., and u, . denotes u, , referred to O..

d(“—'),,

“.’a,b = Wa b
dta—1)
=2 (Pwa,k + bwet1,)
. d(u—l)
= %ak + 7 Ykt

k
T . b b - dary
=W, 1 sWak + Wak X Wit s+ % Wk41,b

T . T .
= WA+|.f‘~'n.A + (W&-+I.lwu.k) X Wigrb+ Wisr

which is our combining torm.
NEWTON-EULER FORWARD RECURSION VARIABLES

On the Newton-Euler forward recursion, the coordinate matrix products of interest will
be W, ..., instead of W]_, .. This is because we wish to transtorm from &; ., to 0.,
instead of from O; to O.. Intuitively speaking, we are now working from the tip of the
manipulator back toward the base. Hence we are desirous of transforming some relational
parameter X, _ ,,., which abstracts the subchain from coordinate system (or link or joint)
k-4 1to b andis expressed in 2. . .. into the eauivalent nuantity expressed in 0, The X,
so transformed can be combined with X, ,, representing the subchain between ¢ and k&
expressed in (O, to yield X,, expressed in C,. We wiil here assume that the necessary
products W, , 4, are generated on the forward recursion in accord with the formulae
above. This requires a minor abuse of notation, as the combining form would then be

Wortbtr = Wagin+1 @ Wi
but we have agreed that our combining forms will be
Xap = Xok @ Xk,

If the reader finds this troublesome, we suggest that she or he make the substitutions
a =a+1, ¥ =0b+1, and ¥ = k + 1. This done, one need only remember that

Wa',a' = Aa+l .

45

Table IV.1 — Logarithmic Recursive Formulations

Logarithmic Backward Recursion:

{1 , joint a rotational,
Op =

0 , joint a translational.

F,=1—o0,
Au ’ |f a = b,
Wa.(: ‘—‘—{
W Wiy it a £ b.
't 0.Al Z(a—1)4u if a = b;
W F !

H/ZA'A—I).P.UH-" + U(k+|),b lf a % b.

0',/“: z(u—l).q.a ifa = b;
“"I-v.h =
lw(’k+l).b“"ﬂ-’f + (W(T;.’_.).bwa.k) X Wik41)b + Wia41)b if a £ b.
v,,A;rza_.lé,, if a = b,
Qa.b =

Wz;--{»])_an.k + @k+1)b it a £ b.

46

[
f
} Table IV.1 — Logarithmic Recursive Formulations (continued)
Logarithmic Backward Recursion (continued):
p; ifa= b;
Ra.b =
W;’;+,)‘bRa,k + R(k+l).b If a # b.
4
Wy X P: |f a — b.
S.x.h = '
WSk + (Wl) swei) X Rugnnt + Sane ifa#b
Bl Wy X P+ Wow X (oo X P} + 8,AT 201G, + 2w X Qara ifa=b
lt Pur =AWk o iiaBus + P + Whp)) i @aik) X Rikprys
- ; FWp1yawe k) X ((W(Tk+1).e-“n.k) X Ry + A8 410 + Qu+1)-')) itasb
¥
Logarithmic Forward Recursion:
F. ita=0b ﬁ
fa.b ={ .
| Wo it k41 fik+1)0 + fak ita b 9
%
Na-f—s;XF. ifa=1¥ }
i na.b = . ~
1 ngx + Wa+l.k+l(n(k+l).h + (Al R. i) X f(k-f-l).b) it a #b.
; 1
3 1
47 ¥

Figure IV.1a — Serial Vs. Paraltel Multiplication (Serial)

Figure IV.1b — Serial Vs. Parallel Multiplication {Parallel)
48

Yoy

X5, X4, X
Sy

D @® G

(= (a=) (=) =) @<t

Figure V.2 — Logarithmic Recursive Graph Structure

(Only backward recursion shown)
49

5. OPTIMIZED LOGARITHMIC RECURSION

Because here the extension to the translational case may not be entirely obvious, the equa-
tions and analyses presented cover both rotational and translational joints in manipulators
composed of mixed systems. Analogously to Section ill, as a conceptual aid we assume that
there is one group of parallel processors for each node shown in Figure 1V.2, and also one
group for each node in the similar forward recursion. However, only one row (tier) is active
in the computation at any one step, and all tiers are identical. Thus an implementation could
be constructed using only one physical device for each pair of joints of the manipuiator,
by connecting the outputs back to the inputs through a buffer. Implementation details are
expanded further in Section Vl.'The comments about the 4 Flop systolic pipeline interval,
found in the introduction to Section lil. also apply here.

The detailed internal structure of a node is presented in Table V.1, which is analogous to
Table 11l.1. Note that the formulae presented in Table IV.1 for the forward recursion require
calculating W, ,. ., and R, , again, exactly as was done on the backward recursion. These
have no interesting data dependencies, do not bound the computation, and are computed
exactly the same on the forward as on the backward recursion — thus for conciseness they
are shown only once in Table V.1.

Deidy conditions for the iogaritnmic case proceed as snown in Appenaix C, stmiiarly 10
Section Iil.

Since it is possible to satisfy the minimum delay conditions, propagation occurs at a
rate of (MV + V A) per node. Assuming that the delay conditions are satisfied and that all
input becomes available simultaneously, it can readily be seen that

Avail(X,) = Avall(X,) + [log,(b — a 4)Y (MV -+ VA).

Thus in particular, if X, is the linear recursive variable corresponding to X, ,, then X, = X,

SO
Avm’l(X,) = AUG”(XQJ)
= Avail(X,..) + [log,(i + DMV + VA).

Assuming a maximally parallel implementation as before, the total time of the calculations
50

JE S

vv"*-“"”“‘"”‘r«mm;a PR “‘ . e et

is shown in Appendix C to be

2/log,(n -+ 1)[(1 Mult + 3 Addns) -+ 5 Mults + 10 Addns.

For the same reasons as in Section Ill this is slightly lower (by 2 M .!ts- 2 Addns) than given

in [25]. due to differences (not requiring additional computation by the host) in assumptions

about the form of the input and output (not in the computation).

51

Table V.1 — Relative Time of Logarithmic Data Dependencies

Logarithmic Recursive Forms; a % b

Logarithmic Backward Newton-Euler Recursion

Var. Waits On} Time at Step End Step Costt
Was a = Avail(W, ,) a+ MM Won=WouWipya MM
| Wa a = Avail(W, ,) | max(a,b) -+ MV Ty = Wi, pwan MV
b= Avail(w,.,) max(a,b) + MV + VA | Wau = Ty + Wit VA
< a = Avatl(W,_.,)*qﬁr max(a,c) + MV jl 1—MV
Db Avail{w,.) | max(ab) ¢ MV 4 VC S ve |
; c = Aval(w.;) ‘max(a + MV ¥ VC, o Ty =Ty + &, r‘li'ﬂ—A—WM .VJA_—_‘
bt MV +VC,c)+ VA
! max(a -+ VC 4 VA, wer=To+ T VA
b+ VC + VA,
‘)+ MV + VA
rﬂli—;‘iT—— Auail(W,,y)HT_ max(a?d) + MV T. = WZ+1,: R, MV
{ hd = Avatl(h‘,_,,! Tﬁgﬁa,d) + MV +VA R,»=T;+ hH,u VA |
S [a= Avad(W.,) | max(a -+ MV,b+ MV, T T X do ve
! i b= Avail(w,,) d)+VC _ L
a4 = Avail{it;) max(a,e) + MV Iz = Wiy p9ak MV
e = Avail(S,) max(a + MV + VC, Ty =T+ Skrip VA
b+ MV 4 VC,
d+VC,e)+ VA
max(a + MV 4+ VC + VA, Sen=T7 + Ty VA
b+ MV 4+ VC + VA,
d+VC+ VA,
e+ MV)4 VA
Q.. | a= Avail[W.) | max{a, f)+ MV To= W], ,Qax MV
f = Avail(Q,,) | max(a, f)+MV +VA Qat=To+Qr+16 | VA

t See end of continued table.
1 X.y,= bothof X, and Xy 41

-—J"""“MMA—J&TM" '

Table V.1 — Relative Time of Logarithmic Data Dependencies (continued)

Logarithmic Recursive Forms; a # b

[

Logarithmic Backward Newton-Euler Recursion

‘Var.? Waits Ont f Time at Step End Step Costt
; p,: a= Avai' .V,) Imax(a+ MV,c+ MV, d)+ VC Tio=Ts X R 418 ve
; b= Avatl(w,) | max(e, f)+ VA Tn_: Skt + @iy (VA
‘ ¢ = Avail(w,.,) Hmax(e,f) + VA+ SV Tya == 2T, SV_|
d = Avail(R,.) max(a + MV + VC b+~ MV + VC, I Ty = Ty + Tha VA
e Avail(S..) d +VCie i+ VA4SV, '
e Aval(@.) VA -SV)+VA |
g - Aval(p.) max(a~ MV 4 VCb+ MV £ VC. [Ty =T, X Tiy ve |
f | 4 VC e+ VA SV,
! f+VA+SV)+VC+VA
, ‘max(a ~ MV < 2VC + VA, Tis = Tio + Tia VA
‘ bt MV 4 2VC + VA,
} c+ MV +VC,d+2VC 4+ VA,
e +VC+2VA+ SV,
i . [+ VC+2VA+SV)+ VA
l ? max(a,g) + MV] I, = —W’1+|.o.f5...» M;ﬁ
max(a + MV -+ 2VC + 2V A, Ty = ﬁk.ﬂ_c, + Tis V;g—
b+ MV +2VC + 2V A,
c+ MV 4+ VC+VAd+2VC +2VA,
e+ VC+3VA4 SV,
f+VC+3VA+ SV,g)+ VA
max(a + MV +2VC + 3VA, Pop = Tie + Thv VA

b+ MV 4+ 2VC + 3VA4,

e+VC+4VA4 SV,

c+ MV 4+VC+2VA,d+2VC + 3V A,

f+VC+4VA+ SV, g+ MV)+VA

t See end of continued table.
$ X:,= bothof X,, and Xy,

53

W T T

i
o
1
4 Table V.1 — Relative Time of Logarithmic Data Dependencies (continued)
Logarithmic Recursive Forms; a # b
b r — .
H I Logarithmic Forward Newton-Euler Recursion
T Iy - =
_ Var. ' Waits Ont . Time at Step End | Step Costt
fur \ h = Avail(f,.) }l h_f MV l Tliz W;+|L_1fto1r MV
N B o jheMVeVA ([Je=letTe (VA
! n,. \ h = Avazl(f W) /already computed *) 1 Ty == A,_,,R » | (MV*)
‘ b e -t -‘-—i—>- =
P t Avarl(n) Ao VC i j T, = Tn X fowers Ve
| ‘h* W\ »\(‘ T 'H’,.x ~JTIV.‘| MV
i max(zhf\l\ -'¥(') A =n, . + To VA k
t t *{VV] H",' «)"’Hu ‘ MV
| i {max(1h+VC—+—VA) N = Toy + Taa VA
; | LMV~ VA i
.- It JRSS - RSSO SR
i * (that 1s, computable before the recursion reaches the node, except at the initial node)
‘ { X,, - bothof X,, and X, .
b
Ty VA - time cost of Vector Addition
' VC = time cast of Vector Cross product
SV - tume cost of Scaicr mult:plication of a Vector
MV =time cost of Matriz multiplication of a Vector
MM = time cost of Matrir Multiplication
j
!
i
, 54
4

e g

6. IMPLEMENTATION CONSIDERA TldNS

As noted earlier, the main thrust of this paper has been an exploration of the extent to which
paralielism can be pushed in this particular domain. Nonetheless, we hope to indicate that
the physical requirements are not particularly excessive and thus this might be a reasonable
thing to actually implement. This section contains a fairly general discussion of hardware
requirements. Chip architecture is discussed in the next section.

Except perhaps for some variation in the constant term, the hardware sketched in
this section 1s intended to capture the maximally parallel nature of the algorithms and to
physically attain the stated time bounds 1t is aiways possible to deliberately sacrifice speed
and gain matenal economy by allowing hardware multiplexing in a partially parallel system.

The description of the algorithms. the data dependencies. and the timing, have been
developed quite generally in terms of matrix and vector operations. One can easily imagine
many different ways of implementing matrix arithmetic, however. The purpose of this section
will be to imagine these in sufficient detail to conclude that the algorithms proposed are
reasonable We also imagine that any actual physical implementation will differ in many
particular details from those presented here. That is. we expect that the details of the
arrangements and requirements which we display will change. but not by so much as t
fender e yenieiai Luticiusiuts inappiicabie.

Much that we will observe, however, can be seen as a consequence of the macro-
scopic computational structure of the algorithm itself. Where possible we will conduct the
discussion at a level of matrix-vector arithmetic whose operators are expressed in differing
implementations, and we will seek to discover regularities which constrain the design across
different implementations.

We will generally worry about three main concerns which commonly dog parallel systems:

{a) internal buffering and storage of intermediate resuits,
(b) communication and bussing of intermediate results, and

(c) number of processors.

We will propose a general computational structure, then use that to consider requirements

55

> 1,
-

R O

for internal buffering and storage. This will lead us to the communication and bussing
necessary to get the data to the appropriate storage locations. Finally we consider the

processing required.

We accept several intuitions commonly held in VLS|, including: as dimensions scale
downward complexity scales upward, which leads us to seek simplicity and regularity; and
as dimensions scale downward processing power becomes cheap and communication,
bussing. and buffering become the limiting factors. We are for now willing to assume
global communication (in particular, a global clock and a global reset signal). This avoids
many problems of timing and handshaking protocol. We further assume that timewise,
1 Mult = 1 Addn = 1 Flop. This substantially simplifies timing, and would not be an
unreasonable simplification to imbose on a (synchronous) physical implementation anyway.
In the discussion of buffering in particular. we will use this metric (together with the relative
offsets and more general timing developed in Sections 1l and V) to establish the cases in
which buffering is or is not required.

Note that the logarithmic formalism as developed in the text above required a separate
handling of the a = b case. This would certainly be the way one would build it from
multipliers and adders in order to achieve the tightest possible time bound. However, if the
most likely implementation of the logarithmic algorithm will be in VLS! or WSt it is here more
interesting to devise a single regular, systematic structure which unitormly handles both the
a = b and the a % b cases. Since ¢ = b only happens once each direction we are quite
happy to purchase simplicity and regularity at the price of an increase in the constant term.
Appendix D presents a technical artifice by which we can make the a == b case look like
a # b,

The conceptual structure of the computation was shown in Figure lll.1 (for the linear
case) and Figure IV.2 (for the logarithmic case, with only the backward recursion shown).
The processor nodes could be hooked up in a regular, regularly extensible structure very
similar to Figures 1.1 and IV.2. This would permit global pipelining of successive sets of joint
torques at intervals of 4 Flops. However, note that only one node (linear) or tier (logarithmic)
is ever active at any given point in the computation. We couid therefore map our full
conceptual structure into a much smaller one, which bufters intermediate resuits in such a

56

way as to use only one physical processor node (linear) or tier of nodes (logarithmic). This
would use much less hardware, but would imply that computation of one set of joint torques
must complete before the next could begin. The basic notion (which will be expanded
more fully in the discussion below) is shown in Figure VI.1a, for conceptual orientation. The
backward and forward recursion nodes are never simultaneously active, so processors could
be shared between them; see Figure Vi.1b. The choice of architecture will depend heavily
on whether it is desired to systolically pipeline successive sets of joints torques at 4 Flop

intervals, or simply to calculate one set.
BUFFERING

As shown in Figure Vi.1b, there are four sets of buffers and communication pathways with
which we will concern ourselves: input bulftering. intra-node buffering. inter-node buffering,
and backward-forward recursion buffering. These may be roughly divided into internal and
external buffers. From input/output considerations we can put immediate bounds on the
amount of buffering external to a node which may be requ:.iad (this is input, inter-node,
and backward-forward recursion buffering). There are, after all. only so many variables
to transmit. The potential problem lies in the internal buffering within any one processor
node. for we have created a whole host of intermediate partial computations which have
complicated, intertwined data dependencies. The potentially massive buffering required for
these is actually very tightly bounded.

input buffering requires storing the scalar values for z,_,4,, z,—1§,. and A,, as well as
the manipulator configuration parameters (p,. p’, r.. s., z,—,, m,, and J,) and the endpoint
values (wg, Wo. Py, fny1 and n,1), for a total of about 37n + 15 scalar values. Buffering
within any one node in the linear case requires at most 15 scalar values of temporary storage
since (referring to Table H1.1) only w,, Ts, Ti3. Ths and T,: are not used immediately, but this
requirement can be met by simply latching the output of the sub-processors into registers
(as in the next section). This requirement is only 3 scalars in the logarithmic case (for T),
and it can also be met by latching. Buffering between nodes is not needed in the linear
case. and requires about 54 scalars per node in the logarithmic case (if outputs are latched,
this can nearly be halved). Backward-forward recursion buffering involves at most only the

57

e

passed recursion variables from each joint. (Additional intermediate storage is needed if
a systolic pipelined architecture is implemented, by about a factor of n, linear, or {log, n],

logarithmic.) Buftering requirements are considered in more detail in [25).

COMMUNICATION

We do not wish to propose a detailed communication protocol, only to show that the
requirements are sufficiently bounded that such a protocol could be devised. To develop
this. we shall discuss communication in terms of "“wires"” which are vector busses three
scalars wide. and not allow multiplexing of busses. In a real implementation, data on
the "vector busses three scalars wide” might be transmitted seriaily as three sequential
numbers over only a single reai wire. Also in a real implementation. the busses might
be time multiplexed. Thus in the discussion below, the reader should supply her or his
own scale factor depending on her or his own implementation image. After developing
communication models for Figures VI.1b, we will show how the systolic pipelined structures
of Figures IlIl.1 and V.2 have a regular, regularly extensibie communication network.

As in the question of buffering. communication falls into that internal and external to a
node. The internal communications may be treated as comprising a fixed-size hard-wired
module in which the “wires’ are laid down as dictated by the algorithm. The external
cotmunication musi carry exiernaily bufiered datia back and forih between the process
nodes and the buffers.

Bounds may be placed on the internal communication by noting the following:

(a) as shown below (when number of processors is considered), none
of the linear forward or backward recursion, the logarithmic forward or
backward recursion, or the non-propagated. variables have more than 25
matrix-vector operators,

(b) no operator has more than two operands, and therefore

{(c) no single module of the above (a) has more than 50 point-to-point

busses.

It the forward and backward recursion share processors then this must be increased to a

58

:ﬂﬂ

maximum of 35 operators, hence 70 busses. The non-propagated variables have no more
than 10 operators, hence 20 busses, and these must be included somewhere as noted
above. We stress that this is an upper bound based only on the total number of processors,
and in any real implementation the actual number would doubtless be much smaller. This is
because many intermediate results are used by only one operator, so we expect that many
operands could be transmitted by abutment, by simply connecting one operator's output
directly to the input of the next operator. This will, however, depend on the particular
implementation layout geometry chosen. The essential point is that there are easily few

enough wires to route on a point-to-point basis.

For external communication we consider the paths to and from the buffers separately.
We essentially argue that since the external buffering requirements were not excessive, the
communication required to support those requirements will not be excessive. No inter-node
buffering was required in the linear case, but the variables themselves must be transmitted
— this requires four vectors on the backward recursion and two on the forward. The
jogarithmic case required buflering at most 18 vectors (54 scalars) per node per (MV -+ V A)
cycle (both backward and torward recursion). hence at most 18 vector busses. The input
values (18 scalars per node) and the endpoint values (w,. etc. — 12 scalars at the first
node of the backward recursion and 6 scalars at the first node of the forward} must be
communicated. Finaity, each noge must eventuailly communicate £, and V, to the backward-

forward recursion buffers.

The systolic pipelined structure of Figures I1l.1 and V.2 has particularly nice scaling
properties as n increases. These structures do not fold the nodes or tiers together as does
Figure Vl.1a or b. In the logarithmic case., the reader should compare Figure IV.2 with
Figures V1.2 and VI.3. All show almost identical structure, but in different fashion. Figure

V1.2 shows Figure I1V.2 expanded to include the forward recursion, and Figure V1.3 maps this
into a regular rectilinear array. This array is aiso regularly extensible as shown in Figure
IV.4. In all cases, circles are processor nodes which implement one complete node of the
fogarithmic algorithm. Additionally, in Figure V1.3 squares represent passive buffers which 4
do no more than perform buftering for the variables transmitted from node to node, or from

backward to forward recursion. In the linear case the regular, regularly extensible array
59

T

structure can be clearly seen from Figure lll.1. Passive buffering is only required between

backward and forward recursion processors. (We assume that the non-propagated variables
are computed from the propagated variables within the circles as appropriate, in the manner
discussed above). All variables pertaining to the same time slice are thus calculated in the
same node (linear) or tier (logarithmic), and progress node by node (tier by tier) until they
finally emerge as the desired torques. Each node or tier requires (MV + VA) = 4 Flops t0
complete, so if different successive input values were presented at intervals of 4 Flops at the
bottom, corresponding motor torques would emerge from the top at intervals of 4 Flops. It
seems likely that the speed would be bounded by thé input/output requirements of the host

system.

The thing to notice about the linear case in Figure lil.1 is that it is possible to restrict the
total width of the busses between successive nodes to the width required for the inter-node
communication of any single node, and as argued above this is finite and small. In the
logarithmic case (Figure VI.3). the maximum total width of the busses may be restricted to
twice this. Thus as the structure is scaled upward (i.e. as n becomes arbitrarily large). the
amount of area consumed by busses remains a constant fraction of the total area.

NUMBER OF PROCESSORS

Consider next the number of processors required. Tables lll.1 and V.1 were constructed
to represent exactly each operation at a node exactly once (except that as noted in Section
V. W,, and R, , are calculated in the same way on both the logarithmic backward and
forward recursions, so for conciseness were shown only on the backward — here they must

be counted in the forward recursion).

Since the time denotation given in Tables lll.1 and V.1 (MV, VA, VC, etc.) also
denotes the operation, we see that to propagate the recursive variables through a single
node requires

60

il

1!- | Requirements Per Node — Propagated Variables Only
3 Algorithm MV VA vC SV MM Total
Linear Bkwd. N.E. 3 5 1 12
1 Linear Fwd. N.E. 2 4 2 8
3 Logarithmic Bkwd. N.E. 6 12 4 1 1 24
% _Logarithmic Fwd. N.E. 5 4 1 1 11
4

Additionally, one must also compute the non-propagated variables (¥, F,, N,, and , from
Table 1l1.1). which is the same for both the linear and the logarithmic cases.

k ‘__ _ Requirements Per Node — Non-Propagated Variables Only]
- Algorithm] MV VA vC SV MM Total
i Backward Recursion 2 3 4 1 10
] WForward Recursion 0

The total per-node requirements are thus

‘ [Requirements Per Node — Totals]
| Algorithm MV VA | VC SV | MM | Total
Dinear Bkwd. N.E. 5 8 8 1 22
, L Linear Fwd. N.E. 2 4 2 8
t Logarithmic Bkwd. N.E. 8 15 8 2 1 34
Logarithmic Fwd. N.E. 5 4 1 1 11

An interesting optimization is possible in the logarithmic case if it is not required to

model the rotation of the earth and if n is even. Recall from Section Vi that the recursion

,_, was grounded in 0,_,,, and that we considered z__,, as a vector pointing through the North
Pole, etc. This was primarily done to provide a firm and unambiguous grounding for the
mathematical analysis, and in many cases may not be required. The logarithmic algorithm

3 61
A

|
L)
'
!

T

PR

requires one processor node for each pair (or fraction thereof) of input nodes. if n is
odd then {(n/2)] = [(n + 1)/2] and the number of processor nodes is (n + 1)/2 regardless.
However, it n is even then [(n/2)] = [(n + 1)/2] — 1, and by grounding the recursion in O,
we may eliminate one processor node. Except perhaps in satellite applications, typically this
loses nothing interesting anyway.

An implementation might involve a special-purpose VLSI chip capable of handling general
vector arithmetic up to and including matrix-vector multiplication. (This is chosen to be
midway between two alternatives — a matrix-matrix chip would be larger and could be
implemented using three of the proposed chips, while a vector-vector chip would be smaller
but three could impiement the chip proposed.} The chip would incorporate 18 registers (for
storing three pairs of 3-vectors). 6 multipliers and 3 adders. It would also need a means of
sequencing these operations. as well as a means of decoding (perhaps from jumpers wired
to the pins) which particular vector operation to perform.

A natural candidate is a datapath chip, as in Barrett et al.[3]. As shown in Figure VI.5, it
consists of a Programmable Logic Array (PLA) which decodes micro-instructions to produce
control signals driving computational and storage elements attached to several common data
busses. By controlling when the storage elements read and write which busses., and when
and from which busses the computational elements obtain their operands and output their

rocuits tha nature of the comnutation nerformed on-chin is controlled, Thue 2 datacath chin
functions as an easily-customizable micro-CPU. This will be explored more fully in the next
section.

The reader can gain some intuitive feel for an implementation by turning to Table 1.2,
and imagining that the pages represent printed-circuit boards and the indicated operations
represent chips. The structure so composed would implement the fully systolic pipelined
linear architecture for n = 4. As suggested in the next section, several such Vector
Arithmetic Modular Processors (VAMPs) might be put on a single package, depending on
fabrication and processing technology, so the actual chip count may be lower. To avoid
these dependencies, the discussion following will be conducted in terms of VAMPS, each
capable of computing one vector result, and three together of computing a matrix-matrix

multiplication.

62

-L.&‘.T =

Below. "Single Device" (single node, linear case, or tier, logarithmic) is a non-systolic
configuration. "Systolic Pipeline” in the logarithmic case requires only seven nodes total on
each of the torward and backward recursions, in light of the optimization discussed above
for n = 6 applied to Figure V.2, plus six more if the a = b case is handled as in Appendix
D. The algorithms would require the following number of VAMPs

-
VAMPs* — Propagated Variables Only (n = 6)
T -
Algorithm J Per Node Tier. n == 6 | Single Device ‘ Systolic Pipeline
i Linear Bkwd. 12 * 12 72
' Linear Fwd. 4‘ 8 | . i 8 | 8 |
" Logarithmic Bkwd. | 2% | 18 w7 s |
Logaritmic - - 1
Logarithmic Fwd. i N 13 i 39 | 39 N 169‘_j

* Vector Arithmetic Modular Processors — see also nezt section

N — ,
LM___~___[A§A£§ — Non-Propagated Variabies Only (n = 6)]
\Algorithm | Per Node | Tier. n == 6 | Single Device | Systolic Pipeline
i Linear Bkwd. ‘ 10 * 10 60

| LnewBhes | T

| Linear Fwd. | 0 . o | 0

[Logarithmic Bkwd. 10 20 20 60 |
[Logarithmic Fwd. 0 0 0 0

The total requirements are thus

VAMPs — Totals, n = 6
{ Algorithm Per Node Tier, n = 6 | Single Device | Systolic Pipeline
L Linear Bkwd. 22 . 22 132
!L Linear Fwd. 8 . 8 48
Logarithmic Bkwd. | 36 98 98 398
‘L Logarithmic Fwd. 13 39 39 169

lnter-node Inter-node
Buftering Buffering
(stos+1) (1tos—1)
Input Ly Processor __>J gg‘éﬁg o};'”d N Processor
>] Buffer (Single or Tier) l Buffering (Single or Tier)
/N

RV S A\ j___

| Intra-node Intra-node

i Buffering (Temporary)

L“(Temporary) Buffering

Figure VI.1a — Non-Systolic, Processors Shared, All Joints

__> Input
Buffer

l_ Bkwd to Fwd

Recursion

1_ Buffering

Inter-node
Buffering

stos+1)

v T

Processor
(Single or Tier)

_>

v T

Intra-node
Buffering

(Temporary)

Qutput
Torques

Output
Torques

Figure VI.1b — Non-Systolic, Forward and Backward Recursion Processors Also Shared

64

~‘

BKwb

Xo,o ~ X B

& G

Figure V1.2 — Logarithmic Recursive Graph Structure

Xz,
oy
Ta

@9

{Both Recursions Shown)

65

Y3
(w) R) f) "‘)

@=p
Xo,3

X33
(w)w)w>

Q) R,S,p)

Figure VI.3 — WSt Communication Structure of Logarithmic Recursion
{Rectilinear Array)

66

ke . "™

Figure V1.4 — Regularly Extensible Logarithmic Recursive Graph
67

information
busses

[T 1]

microcontrol

| I B

PLA state
machine

feedback
~~—S

register

register

[l

register

sequencer

shifter

Control PLA

register

arith/

register *

logic

bounds 3

unit

Figure V1.5 — Datapath Chip Structure

checker

68

7. AROBOT CHIP

Having seen that the global physical requirements are not excessive, it becomes interesting to
look more closely at VLSI chip structures capable of physically implementing the computation.
It is clear trom the discussion above that we require a chip capable of performing general
matrix-vector arithmetic. Within this section we investigate the computation and control
architecture supporting this requirement. We will sketch one architecture suitable for our
purposes, though of course there are others. As in the previous section we imagine that
any actual physical implementation will differ in many particular details from those presented
here, but not by so much as. to render the general conclusions inapplicable.

Obviously such a chip will be more broadly applicable than just the inverse dynamics
computation, however. and we will seek to maintain a high degree of flexibility in our
implementation. In particular, we will seek to insure that:

(a) all chips used be identical, or at least interchangeable, so that
only one chip-type is required,

(b) the particular aperation which any chip performs be programmable,

(c) the length of the basic time cycle, and the points during the cycle
when operands are read or the result written to busses, and which busses,
be programmabile,

(d) the host computer be able to dynamically reprogram (b) and (c)
at will by simply writing the appropriate values to the n input bufters, in
exactly the way data is written to the device, and

(e) the control flexibility of (a) through (d) must not use any com-
munication wires or buffering other than those already required to support
the computation and discussed in the previous section.

Later in the section we will consider modifications to the bussing scheme discussed in the
preceding section. By relaxing (e), we will sketch an architecture whereby

(f) the sources of the operands which any particular chip accepts are

programmable (as in (d)), and
69

"y

(g) a limited error-correcting capability may be incorporated, so
that correct computation can often be automatically continued following
individual chip failures.

It should be explicitly observed, however, that the architecture presented is incapable of
matrix inversion or similar operations (e.g., Gaussian elimination). It would also be usefu!
to incorporate some of the common trigonometric functions and inverses, as well as square
root. These capabilities are required for many interesting applications, but require much
more complex control and condition testing than we need for basic matrix-vector arithmetic.

The basic unit of most matrix-vector arithmetic is the vector dot (inner) product. Matrix-
vector multiplication is accomplished by forming the dot product of each of the rows cf the
matrix with the vector. and matrix-matrix multiplication by forming the dot product of each
row of the first matrix with each column of the second. Other familiar operations (vector
cross (outer) product, vector addition, etc.) may be performed with different sequencing of
the basic dot product hardware.

Our strategy will be to compose a primitive module capable of computing one coordinate
of the resuit (i.e., one vector dot product). | we then group several such primitive
modules together. along with suitable control, we can implement all necessary matrix-vector
operations. The number of primitive modules per chip is a design decision; the control
mechanisms we develop suppornt different choices. Nine primitive modules are sufficient
for a matrix-matrix multiplication, and three for a matrix-vector multiplication. The basic
architecture established, we display control sequences implementing the various operations.
Next we embed the mechanism in a timing structure governing when in the cycle operands
are read and the result computed and written. The internal structure explicated, we discuss
how the control information might be loaded under programmed control from the host.
Finally, we indicate how the bus implementation of chip interconnect might be extended
to allow difterent algorithms to be dynamically programmed, and a limited error-correcting
capability.

As shown in Figure V1.5, a datapath[3] is a bus-oriented architecture composed of
stacked computational elements, busses running through them, and a centralized control.
Typically a primitive cell, one bit wide, is replicated in the horizontal direction to the

70

S,.
i

!
b
!
{
i

width (in bits) of the datapath, yielding one computational element (such as a register
or adder). For floating-point arithmetic this is modified slightly so that the mantissa and
the exponent circuitry are replicated separately. Different computational elements are then
stacked vertically to form the datapath. One or more busses run vertically through each cell,
and these may be connected by abutment to vertically adjacent elements forming vertical
global busses. Control lines run horizontally through each cell, control being frequently
generated by a Programmable Logic Array (PLA) on the side.

For datapath elements we assume the following: registers, adders, and multipliers.
(Other elements, such as comparators and dividers, would also be needed to implement
matrix inversion or Gaussian elimination.) Each element "talks™ to both busses and to both
vertically adjacent (abutting) neighbors. Thus each element can load operands and dump
results to and from the busses and adjacent neighbors. Additionally, in order to facilitate
serial communication between chips and minimize wires, we assume that the registers are
shift registers, and can shift operands in or results out. We observed while developing upper
bounds in the preceding section that the “vector busses three scalars wide" might actually
be implemented as a single multiplexed wire in order to minimize wire-count. “Operand"
below will typically mean the three scalar values which make up a vector, unless context
clearly indicates otherwise. (All data transfers within a module are done in parallel. of
courge)

Thus the basic cycle will be:

(a) start cycle,

{b) load first operand from off-module, a certain delay after the cycle
starts,

(c) load second operand from off-module, a second certain delay after
cycle-start,

(d) compute result,

(e) dump result to off-module, another certain delay after cycle-start,

(f) delay until cycle ends, another certain delay after cycle-start, and

() go to (a).

As noted above, the basic cycle length of the inverse dynamics algorithm considered herein
(p!

is MV 4 VA =: 4 Flops, though other algorithms will have other basic cycles.

Consider the floor-plan for a primitive module, shown as a block diagram in Figure VIi.1.
Assuming that the operands have been properly loaded, it is easy to see that it can compute
one coordinate of any of the matrix-vector operations listed at the end of Tables ilf.1 and V.1.
{Note that to enable the vector cross product (VC). the two multipliers are placed between
the two register pairs NOT corresponding to the result component calculated by the primitive
module.) The sequences of data transfers and computations required for each are given
in Table VIl.1. Only two global busses are required, and that the number of multipliers has
been reduced from three to two (a consequence of the 1 Mult = 1 Addn = 1 Flop timing

assumption. as noted in the previous section).

Several of these primitive modules will operate concurrently to produce a matrix or
vector result; since our vectors are in R*, this number will normally be a multiple of three.
As in the previous section. we will assume groups of three primitive modules. Figure
VI1.2 shows a floor-plan block diagram. together with control and (multiplexed) off-module
communication (not shown is the ROM or RAM program storage). Such a device would
be capable of one matrix-vector multiplication, or the three coordinates of any supported
vector-vector operation. For purposes of discussion, we will take this Vector Arithmetic
Modular Processor (VAMP) as our unit of computation.

The VAMP operand inputs are wired (perhaps through intermediate delay buffers as
discussed in the preceding section) to the result output of the VAMP computing that
operand. By synchronizing between source and destination VAMPs the respective dump
and load delays after cycle-start (recall that we are willing to assume a global clock and
reset), interniediate resulls can be passed to successive operators.

Serial off-module communication between VAMPs might permit several VAMPs to share
the same package by substantially reducing pin-out. (The trade-off is that it will increase
communication time, perhaps requiring the insertion of additional delays.) Though the
physical size is heavily dependent on choice of process technology, width of the data word
in bits, and other design parameters, we can make some initial estimates of total package
count based solely on pin-out (with the understanding that these will likely be revised

upwards depending on design parameters and the particular fabrication process). In most
72

2

process technologies, each VAMP would require external connections to Power, Ground,
Clock-1, Clock-2, Global-Reset, Operand-A, Operand-B, and Result. if each VAMP is

R

wired separately, a nominal 40-pin package would provide pin-out sufficient for tive VAMPs
to support these eight signals. (Due to process defects, of course, they must be individually
tested and faulty VAMPs discarded.) !f a single Clack input is converted to Clock-1 and
Clock-2 (or more it needed. e.g. Pre-Charge) on-chip and distributed to each VAMP, and
1 if Power, Ground, and Global-Reset are also brought in on one pin each and distributed,

then a nominal 40-pin package would provide pin-out sufficient for 1. VAMPs. As was seen
in the preceding section, 11 such 40-pin packages would implement the full systolic pipeline
for the linear case of n == 6.

Alternatively the other extreme can be chosen, and each VAMP packaged individually.

Each VAMP could be put in an 8-pin package, resulting in very small cheap chips. This
! would have the further advantage of not requiring innovative packaging.
, The control must specify the delays associated with communication and computation
' ! of the result. and which operation to pertorm. This is shown schematically in Figure Vil.3.
The delays are easily implemented by counters and comparators. A Cycle-Counter is zeroed
at each cycle-start and incremented at each Flop. The delay associated with each register
load/dump is compared to the Cycle-Counter and the register loaded on equality. By
INSUIING that cycie-start occurs Syncnronousty on ail cnips, communication timing between
operand sources and destinations can be coordinated programmatically. In turn, in virtue of
accepting a global clock signal we can insure simuitaneous global cycle-start (e.g., perhaps
by bringing Global-Reset to True for one clock period only at the beginning of each cycle).
This globally resets counters to zero, and insures that accidentally dropping a bit or missing
a clock-tick does not throw a module permanently out of step.

It is sufficient if the device is able to execute operations from only a smat! lixed repertoire,
viz. those at the end of Tables Ii1.1 and V.1. This being the case, the microcode instructions
needed for each item in the repertoire may be stored on-module in Read-Only-Memory
(ROM). The operation to be performed can then be specitied as a pointer into ROM, e.g.
as the high-order address bits or as an index pointer.

it we were designing a very general machine we would certainly want the microcode

13

-

to be loaded under program control from the host. Though such capability is not needed

for most matrix-vector algorithms, we observe that Random-Access-Memory (RAM) could
be loaded in much the same way as we will load control information. The pointer into
ROM would then be augmented with an indicator bit selecting RAM or ROM, and all would
proceed as sketched for the ROM-only case.

Thus we see that communication and control can be effected by loading three registers
with delays for the comparators and one register with a ROM pointer. These four values will
be referred to below as the module’s “‘program’’. Next, consider how these control registers
might be loaded under programmed control from the host. (For a prototype version one
might simply bring the control in from off-chip, each control register bit corresponding to a
pin wired by jumpers to either power or ground.)

Since the same wires are to be used for both data and control. the chips must have
a way to distinguish which is which. Though it would be possible to tag each word with a
control bit. it is preferable to use the Global-Reset signal. In normal operation {Data Mode)
Global-Reset is (for example) brought True for exactly one clock-tick to mark cycle-start,
then immediately returned to False. If instead it is kept True, all chips enter Program Mode.
While in Program Mode they will use the same wires in much the same way. but treat the
words as program data rather than computational data. in Program Mode, Global-Reset
1S {(for example) brought False for exactly one clock-tick to mark program-cycle-start, then

immediately returned to True.

The system must be programmable from any conceivable system state, in particular from
random or partially programmed states. Thus the delay registers must be assumed invalid.
All transfers occur immediately following program-cycle-start. The host writes successive
program data words to the input ports and these are clocked through the network. Each
module will clock in program data as operands, operate on it as discussed below, and clock
out program data as resuit. When the module clocks in the program data containing its
own module program, that data will be loaded into its control register(s) as below. After
all VAMPs have been programmed in this fashion, Global-Reset can be brought and kept
fow forcing Data Mode. Thereafter normal data computation can occur through the fully
programmed network.

74

e

P

Ak o g .4

Thus we must insure that every VAMP is directly or indirectly accessible to the host,
and that each VAMP can recognize its own program when seen. The first condition is
satisfied by the connected directed acyclic graph nature of the network; any module not at
least indirectly accessible to the host could never receive operands and hence could not
participate in the computation.

One way to allow each module to recognize its own program is to assign to each one
a unique number, "“burned in" as in Programmable-Read-Only-Memory (PROM) before the
chip is ever inserted into the network (a prototype might simply have jumpers wired to pins).
The host then simply writes pairs of (VAMP-number, VAMP-program) to the network inputs,
and these are clocked through the network. When a module recognizes its own number
in Operand-A (i.e. the first operand), it loads the associated program. For example, the
VAMP-number might be in the first scalar component of the vector. the VAMP-program
contained in the remaining two scalars. Variations on this scheme could also allow RAM to
be loaded. perhaps using the second scalar component as an address and the third as the
microcode word to store there. The VAMP outputs Operand-A (unchanged) as its Result.
The network can be programmed by writing. to each input port. one such number-program
pair for each module in ihe network. Chips are interchangeable simply by changing the
VAMP-numbers transmitted by the host.

We conclude this section by very briefly sketching extensions permitting a limited
dynamically programmed communication system, and a limited error-correcting capability.
Neither of these are required for the Inverse Dynamics algorithm. but would render the
device more useful.

The communication requirements of parallel algorithms are often mostly local, with a
few long-distance data transfers which must also be supported. This is the case in the
Inverse Dynamics as well. The Mostly Local Bus (MLB) in Figure Vil.4 is intended to
support both high local band-width and sparse but necessary long-distance communication.
It can be used by the host to gain programmatic control of the communication network
implemented by the array of processors. Programmatic host control of the implemented
communication structure (the data dependency graph), together with host control of the

operation performed at each node, allows the same physical device to efficiently implement
75

!
_;
\

|
|

many different algorithms without physical reconfiguration or rewiring.

Refer to Figure VI1.4 (MLB). It depicts a multi-tiered bus, with some of the tiers composed
of many short busses, some tiers composed of several medium-length busses, and some tiers
composed of a very few long busses. Conceptually, imagine that each module is potentially
connected to each bus directly in front of and back of it. (In any real implementation, small
groups of modules would actually share long-distance drivers to keep the area penalty low
for sparse long-distance traffic.) A communication network structure can be imposed by
specifying when each module reads or writes which bus. By insuring that the destination
module reads the same bus of the same tier at the same time the source module writes to
that bus, any two modules which connect to the same MLB can communicate. Different
source/destination pairs can share the same bus provided the communications occur at
different times in the basic time cycle of the algorithm. Within the framework we have
developed this means adjoining. to the registers governing at what time busses are read
and written. additional registers governing which tier is targetted. These registers would be

loaded exactly as already described.

In those algorithms susceptible to this architecture. most communciation will be local
and can occur on the many short-interval bus:.2s. achieving high local bandwidth. The few
long-distance lines exist to support sparse necessary long-distance communication, but if
used too heavily the system performance degrades. This degradation can be made graceful,
however, by inserting extra length into the basic cycle. This creates extra slots into which
conflicting communications could be transferred. Note that this communciation structure is
most suitable for algorithms having a straight-line systolic nature, such as characterizes the
Inverse Dynamics. In cases where it is applicable, it permits relay-free communication with
limited pin-out or bus connections, and would be most suited to WSI or systems with large
numbers of processors. The relay-free character of the communication differs from schemes
based on twisted n-cubes, which may require up to O(logn) relay delays between any two
processors.

it would be possible to "“tune’’ the MLB to the communication requirements of a particular
algorithm (while preserving the capability to dynamically reconfigure so as to perform others)
by adjusting the ratios of bus lengths in successive tiers. For illustrative purposes, Figure

76

Vil.4 shows the number of processors served by each bus doubling at every second tier, with

the even and odd tiers offset from each other so that each processor is roughly symmetric

in communicative power each direction. The number of tiers thus grows as S(log,) of the
number of processors. To tune the MLB to a particular algorithm, one would require that

oo -

the number of busses of a given length was roughly proportional to the fraction of messages
communicated a distance of approximately that length. This rough guide must be refined
further if the average message length varies with distance.

Finally, we note that most of the machinery necessary to support a limited error correcting
| capability has been developed. This will permit several cases of gross individual chip failures

to be caught and flagged. with the device automatically resuming correct computation
following error correction. There are hardware error classes for which this capability will
not apply. of course. some examples being a direct short between power and ground (it is
difficult to automatically recover from this in any case), occassional intermittent faults, or
failures in the error-correcting circuitry itself. Since the error-correcting circuitry is a small
fraction of the total chip circuitry, however, the probability that it will fail first is tikely also

o to be small.

: (Order the VAMPs, so that each has a unigue successor and a unique predecessor
except the two end VAMPs. Basically we suggest a mechanism in which each VAMP checks
its successor alter having been checked by its predecessor. It thereafter plays the role of
its successor in the computation while its successor checks the next VAMP, and so torth.

f After each VAMP has been checked they return to a normal configuration, and repeat the
process. If a faulty computation shoufd be detected in the checking process, the faulty

VAMP will b2 inhibited by its predecessor and excised from the computational structure of

the device. Its predecessor will continue to play its role in the computation until the faulty

component can be replaced.

y In addition to those discussed above, each VAMP would also have a second set of

”» inputs Operand-A’, Operand-B’, inputs for Test-in, Test-back-in and inhibit-in, outputs
) for Test-out, Test-back-out and Inhibit-out, and input/output Result’. Each VAMP's

Operand-A’ and Operand-B' inputs are connected to the Operand-A and Operand-8

inputs, and its Result’ input/output connected to the Result output, of its successor. Its Test-
77

AL DR

nae e

IRTR STC VR

e BT TE
g e v e

in and Inhibit-in inputs are connected to the Test-out and Inhibit-out of its predecessor. Its

Test-back-in input is connected to the Test-back-out output of its successor. See Figure
Vil.5.

These new inputs and outputs are used as follows. During normal operation of a
VAMP, Test-in, Test-back-in, Inhibit-in, Test-out, Test-back-out and Inhibit-out will
all be False. The VAMP will load as its operands the inputs Operand-A and Operand-B,
and dump its result on the output Result. The input/output Result’ will be tri-stated.
Eventually, the VAMP's predecessor will bring Test-in to True at the start of a cycle. The
predecessor is now filling the VAMP's computational role, and the VAMP is free to check its
successor. It does this by loading its operands for that cycle from the inputs Operand-A’
and Operand-B’, perlorming the same calculation as its successor, and comparing its resuit
to its successor's output. which is loaded through the VAMP's input/output Result’. (To
do this. of course, it must have a second set of control registers, correctly loaded to match
those of its successor.) The output Result is tri-stated.

If the two results do not match, then the successor is assumed to be faulty (recall that
the VAMP itself has just been checked in the immediately preceding cycle). The VAMP
excises its successor from the computation by bringing Inhibit-out to True. This causes
its successor to tri-state its data outputs and bring its contiol outputs False. which is
implemented by very simple gate logic at each pad driven directly from Inhibit-in. The
VAMP will continue to fill its successor’s role in the computation until the device is brought
down for maintenance. At that time it can broadcast its VAMP-number through the net in
Maintenance Mode as a fault-finder, somewhat akin to the way programs were broadcast
in Program Mode, except that instead of outputting Operand A unchanged each VAMP
outputs any Operand which contains a fault notification. The VAMP-numbers corresponding
to fault-finders will therefore emerge from the net where the motor torques emerge in Data
Mode, and the faulty VAMPs can be replaced.

If the two results match, then the successor is assumed to be not faulty. The VAMP will
bring Test-out to True at the start of the next cycle, causing its successor to repeat the
operation just described. Since the VAMP must now fill its successor's role, it will continue
to take as its operands the inputs Operand-A’' and Operand-B’, but in addition will now

78

e et sl A it A I Abnrrifirgren

dump its result on the input/output Result’. The output Result remains tri-stated.

The VAMP will return to normal operation after its input Test-back-in (connected to
its successor's output Test-back-out) is brought True for one cycle. The input/output
Result’ is tri-stated, and its output Test-back-out is brought True for one cycle (causing
its predecessor to resume normal operation in the same sequence}. On the next cycle the
VAMP will again load as operands the inputs Operand-A and Operand-B, and dump its
result on the output Result.

So far we have described the action of VAMPs in the middle ot the order. it remains
to describe the ends. The last VAMP can simply have its output Test-out fed back into its
input Test-back-in. This causes the sequence to reverse when the fast VAMP is reached.
To check the first VAMP we must introduce an extraneous VAMP (and properly speaking, a
second extraneous VAMP to check that one). The first extraneous VAMP can simply have

its output Test-back-out fed back into its input Test-in.

79

e e e —— e

Table VII.1 — Primitive Module Operation Sequencing
(refer to Fagure VII 1)

(This primitive module calculates the 3™ scalar component of the result vector)

Operation Flops Dest. Source

VA: 1 BUS-1 « REG: OP-A-3
BUS-2 « REG: OP-B-3
ADDER < BUS-1, BUS-2

(result in adder /subtractor)

Sv: 1 BUS-1 < REG: OP-A-1
BUS-2 <= REG: OP-B-3
MULT-1 <= BUS-1, BUS-2

(scalar multiplier in 13! scalar component of Operand A, by convention)

{result in multiplier-1)

VD, MV, MM: 1 BUS-1 « REG: OP-A-3
i BUS-2 « REG: OP-B-3
‘» MULT-1 = BUS-1, BUS-2
1 MULT-2 = REGS: OP-A-2, OP-B-2
& 2 BUS-1 = MULT-1
o BUS-2 = MULT-2
ADDER = BUS-1, BUS-2
MULT-1 ~ BEGS: QP A1, OPE:
3 BUS-1 = MULT-1
, BUS-2 < ADDER
g ADDER & BUS-1, BUS-2

(alternatively, adder can accumulate instead of being totally bus-driven)

i (result sn multiplier-1)
|

vC: 1 BUS-1 = REG: OP-B-2
BUS.2 <= REG: OP-B-1
MULT-1 & BUS-1, REG: OP-A-1
4 MULT-2 = BUS-2, REG: OP-A-2
3 2 BUS-1 = MULTA
BUS-2 = MULT-2
B SUBTRACTOR = BUS-1, BUS-2
A7

(subtractor computes BUS-1 — BUS-2)
‘B (result in adder/subtractor)

80

-

BUS-1 BUS-2

REGISTER: OPERAND-A(1)

e

MULTIPLIER-1

T

REGISTER: OPERAND-B(1)

REGISTER: OPERAND-A(2)

—
W =
]
—) MULTIPLIER-2
T

REGISTER: OPERAND-B(2)

I NS

REGISTER: OPERAND-A(3)

REGISTER: OPERAND-B(3)

ADDER / SUBTRACTOR

TTTTLTTL]

(To enable VC. the two multipliers are placed between the two register pairs NOT
corresponding to the result component calculated by the primitive module. Thus this example

calculates the 37 scalar component of the resuit.)

Figure VII.1 — Primitive Module Block Diagram

81

MATRIX-VECTOR OPERATOR DATARPATH

(R) 1
e
(B) ARITH
—| |cONTROL | |« . PKG 3
(R)
.*
PLA
i)
f ~| | ARITH - - ARITH B
N PKG 1 PKG 2 -
[o —t
’ [
l b
| oP B RESULT

Figure VI1.2 — Vector Arithmetic Modular Processor (VAMP)
82

r
!
a?

CONTROL STRUCTUKE

IN OPERATION, CONTROL MUST GOVERN:
——— 1) When operand R is read in, & to which regs;
—— 2) When operand B is read in, & to which regs;
3) When the Result is output, & from which regs;

| I'— 4) What operation is performed.

S

;3» Figure VII.3 — VAMP Control Registers
Wi 83

2 0 0 L

MLB
MLB

MLB

MLB

B

— T

.._.—E;]

na

Global Architecture

daooooa

I
I

i

i ;4
1y brrH-0
-+ 1 =
Ti Hittg
___ j _ mdo_ _» m
- ,v?j._ T
T
SRUEREE RN
oo by
TN
ﬂ.orH:TfJ 2
Rt
FWLW i #«\E

; S !
»u..ﬂ,..v*+g‘ﬂ
T et r.rxl,ﬁ
L.A.rl::_.w_';,u

RN P |

Detail Expansion

Fine Detail Expansion

Figure VI.4 — Mostly-Local Bus (MLB)

84

g o SR

L R—es_uit Deslznatwnsl

Result
VAMP
Op-A Op-B

i

Result
VAMP
Op-A Op-B

N

" ()perand qourcq‘

Figure VI.5a — Non-Error-Correcting Configuration

A

[______ —_—

\ ﬁmult Destinations |

*

Result

——XInhibit-In

- Test-In VAMP

| T
; Result Result’ T
5 |
}
— Inhibit-In Inhibit-Out -
—> Test-In VAMP Test-Out

€——i Test-Back-Out

Op ‘A’ Op-B’
e___..___

Figure Vil.5b — Limited Automatic Error-Correction
85

Test-Back-Out

Test-Back-Iin

0p A_0pB |

L

P U —

Op-A’' Op-B8’ Op-A Op-B

N
—>

Result’ "*w“l

Inhibit-Out

Test-Out

Til

Test-Back-In{

i

|

[Bperand SouvcesJ

|

8 SUGGESTIONS FOR FUTURE EXTENSIONS

We very briefly aliude to, without discussing in depth, a few possible extensions to this work.
If the computation can be made to run at a rate which is only 170 bound, it becomes feasible
to consider “active memory" (or an 1/0 device) which provides the calculated torques as
soon as the desired motion has been loaded in appropriate locations. Thus it may be possible
to build an on-line "'optimizing trajectory compiler’ in which the desired motion (trajectory)
for the next several time periods is pre-planned. the motor torques automatically generated,
and the time sequence of necessary motor torques inspected slightly before the manipulator
has actually arrived at the trajectory points. It the motor torques are excessive {motor or joint
damage) or below the rated maximum (faster motion possible), the proposed trajectory could
be modified accordingly, on-line. Also, Torre and Poggio have a result indicating that neural
structures could perform an arithmetic multiplication in about a millisecond. While certainly
not arguing that in fact it is don. that way in the brain, observe that in principle it would
be possible to compute the Inverse Dynamics in approximately real time using a suitable
neural structure. We close with a few remarks concerning the possibility of generalizing the
(log(n)) embedding to other recursive structures.

The question of how to incorporate dynamical considerations into on-line trajectory
planning is an area ot open research |7). MHollerbach[15] shows how to unitormly scala the
velocity of a trajectory so as to remain within torque limits. This applies only to uniform
velocity scaling, however, and we might like to be able to change the path of the trajectory
or scale velocity in a non-unitorm way. Bobrow, Dubowsky and Gibson[6] solve the general
case of time.optimal control along a specified trajectory, but do not allow the path to be
varied in space and require moderately intensive computation by the host.

Consider Figure VIIl.1, which might be taken to represent a shift register of depth m.
Data records pushed in at the top progresses through the shift register with timestep X to
emerge out the bottom time m) later.

imagine that the shift register was interfaced to a memory board in such a way as to
“look like' memory to the host, so that any of the locations could be read or written as
memory. At each timestep) the 0 row would be shifted out the bottom, the whole array

86

s

shifted down one, and the host would write a new set of values at the top. At any time, of
course, the host could read or write any of the array locations.

Now imagine that some of the array locations in the j** row correspond to “input
values” ({g(72), 4(s»), §(s2)}) and some locations correspond to “‘motor torques” ({r{s})});
and that the “torque" locations are really hard-wired (through such a dynamics box as we
have described) ta the "input value’ locations. The box continuously computes, for each
set of input values in the shift register, the corresponding torques — if the host changes
an input value anywhere in the array, the torques corresponding to the new set of values
automagically appear. Set) equal to the refresh rate at which new motor torques are
supplied to the manipulator. Now as each value is shifted out the bottom, imagine that
a demon catches it and passes the torques to the manipulator motors — simultaneously
another deman fills in a new set of input values at the top and the torques appear. We might
as well have the inertial Cartesian coordinates and velocities of each link endpoint appear
too: since they are manifestly simpler to calculate from the same input data as the inverse

dynamics. the fractional cost to include them is small.

This now becomes a fairly explicit representation of many interesting characteristics of
the manipulator trajectory for the next m time periods. If the host inspects the values but
makes no changes, those m values will be shifted to the manipulator, one by one; and that
will detine the path the manipulator will follow for the next m periods. Alternatively the
host may change one or more values causing the corresponding changes in the torques;
the manipulator would then follow the revised course. This arrangement might be usetul
in helping to solve the problem of how to incorporate dynamical considerations into on-line
trajectory planning. acting to help optimize a crude trajectory generated by a higher-ievel
planner.

One extension to this basic idea would be to use our box to also calculate the input
value joint velocities and positions ({q{t), ¢(t)}) directly from the acceleration profile ({§(t)}).
rather than having them set directly by the host. This would avoid the embarassing possibility
of (e.g.) a trajectory requiring an instantaneous step discontinuity in manipulator position,
as well as reduce computational demands on the host. Another extension would be to have

several such shift registers; one could thereby sweep out an envelope around the proposed
87

{
!
3
/ trajectory. exploring in parallel possible' futures and interpolating between them.

Another interesting area is the overfap with human psychology and neurophysiology.
E Torre and Poggio[41],[22] have shown the theoreticat possibility that a neuron could perform
an analog multiplication in its dendritic branches within about a millisecond (this capability
was originally postulated to be necessary in order to explain certain aspects of visual
processing). The analysis treats the dendritic branches according to membrane theory in
t passive RC cables. Where ¢, and g, are inputs they are able to produce a term proportional
to (g — ag:g2). By additionally connecting the g, input appropriately to a side branch on
the dendritic pathway to the axon it is possible to show theoretical cancellation ot the linear

term. Analeg additions may be performed as in classical circuit theory (given appropriate
arrangements of the dendrites).
Thus. given the time bounds on the formulations developed above, the nervous system
! might be capable of performing the inverse dynamics calculation in something approximating
real time. Since the computations are performed in analog by biological components one
! necessarily expects them to be ‘‘dirty”, i.e. contaminated with noise, inaccuracies, and
other errors. !f one postulates a large number of such inaccurate devices performing the
same calculation and averaging the result, however, from fundamental statistical properties
one may show that the resulting calculaticn can be made arbitrarily accurate by taking the
‘ number ot devices arbitrarily targe. Aiso, though the formalisms were developed for a single
chain of length n, the tact that the time complexity increases only as O(log(n)) suggests the
possibility that one might control other large systems involving many degrees of freedom
without paying an exorbitant penalty in real elapsed time. Hollerbach and Flash[17] have
perfarmed experiments investigating the possibility that human subjects perform some sort of
b dynamic scaling in planning ptanar arm trajectories. Many associated questions immediately
: arise, of course, such as how the nervous system learns to perform the computation; or,
it it is hard-wired, how the system learns the parameters; and so forth. We do not wish to
engage in this debate, but only to point out that the computationai aspects are tractable.

Finally, it seems likely that the process of embedding a serial linear-time recursive
algorithm in a paralle! logarithmic-time algorithm is generalizable, certainly at least within the
context of associative ring operators. We saw that several basic properties were exploited

R "

1 88

in our analysis above, including the associativity of the ring operators and the capability to

order the recursive variables in time according to data dependencies.

The basic strategy followed in Section IV was to expand the closed-form non-recursive

formula for X,, into an equivalent expression involving two similar formulae for X, , and
Xk+1.4. This was taken to be the combining form for X, ,. In making the expansion, it was

also necessary to expand and re-group expressions for the dependent variables in terms of

their combining forms. We speculate that the associativity of the operators permitted the

necessary expansion of the dependent variables. Linearity is not necessary, as it is possible
4 to devise a combining form for the (non-linear) (.'-\'i'ﬁ) from expressions for () and ()

(A l B) - (lf)l‘)y(;:‘;)

-(2)=()

Thus it might be possible to devise logarithmic-time parallel algorithms from linear-time serial

! ones even if scalar division is involved, and perhaps other non-linear (non-ring) operators.

Of particular interest would be a general mechanism for logarithmic embedding of linear

algorithms involving matrix inversion (or solutions of simultaneous linear equations, e.g.

Gaussian elimination) at each step. This would render a much wider class of algorithms

accessible to logarithmic-time techniques, e.g. perhaps the inverse kinematics or the direct

(integral) dynamics.
i In Appendix A it is noted that the ability to order the recursive variables according to !

data dependencies
X, >Y,>2Z2,>..

where we define
X, > Y, ift Y, does not depend on X, for any y

iff 8Y,/8X, =0
guaranteed minimal satisfiability of the relative offset inequalities. We speculate that this

condition might alsc be necessary to form logarithmic-time combining forms as well. This
may arise since in devising the combining forms it was necessary to apply previously-deduced

combining forms to break apart the constituent dependent variables. Lacking this condition,

89

one may at least imagine a case in which deriving the combining form for X, requires
expanding the combining form for Y, ,, while deriving the combining form for Y, , requires
doing the same for X,,.. The ability to order the recursive variables by data dependencies

insures that at least this particular deadlock cannot arise. A more formal demonstration of

the applicability of this condition would be usetul.

llllllLJllllM)

' U W R T S N S A N I | (”""’)?\

|
Z
1

L Ll 1l i1 ta13A
T S L

fl bt 2 1 1 1 _ g 2 £ 2 1

A Figure Vill.1 — Fall-Through Memory Shift Register
91

9. CONCLUSIONS

We have shown that considerable time savings accrues from embedding the inverse dynamics
calculation in a parallel computation. A parallel-time algorithm with time complexity only
logarithmic in the number of joints has been derived. Hardware necessary to implement
such paraliel algorithms has been considered, and the requirements shown to be substantial
but not excessive. Using the concepts developed, it shouid be possible to devise a
device capable of implementing the calculation at a speed primarily bounded by the
input/output requirements which the algorithm imposes on the host. We have sketched
speculative extensions to this work in the areas of on-line trajectory planning, psychology

and neurophysiology, and parallel algorithm theory.

-
}
{ REFERENCES:

[1] Albus, J. S.; "A New Approach to Manipulator Control; the Cerebellar Model
Articulation Controller (CMAC)'"', Journal of Dynamic Systems, Measurement, and
Control, Vol. 97, pp. 270-277, 1975.

denoen

[2] Albus. J. S.; "Data Storage in the Cerebellar Model Articulation Controtler (CMAC)",
Journal of Dynamic Systems, Measurement, and Contro!, Vol. 97, pp. 228-233, 1975.

{3) Barrett. W. A., Rogers, B.. Lathrop, R.H.; Kuchinsky, A.: “An Extensible Datapath
Generator'”. Intl. Conf. on Computer-Aided Design (IEEE-ICCAD'83), Santa Clara,
Ca., Sept 1215, 1983, pp. 1-2.

SUIRPPERIPRPPNPT fp i Gt e LRSS
P

[5) Besant. C. B.; A Multiple Microcomputer Robot Controller”, Trans. Amer. Nuclear
Soc., Voi. 43, pp. 751-752.

{4} Bejczy. A. K.; Robot Arm Dynamucs and Control, Technical Memorandum 33-669, Jet
Propulsion Laboratory, February 1974.

[6] Bobrow. J.E.. Dubowsky, S.; Gibson, J.S.; “On the Optimal Control of Robotic
. Manipulators with Actuator Constraints'', Proc. American Control Conf., June 22-24,
; 1983, San Francisco, Ca., pp. 782-787.

f [7] Brady, J.M.; Hollerbach, J.M.; Johnson. T.L.; Lozano-Perez, T.. Mason, M.T.; Robot
: Motion: Planning and Control, M.L.T. Press, Cambridge. Mass., 1983.

[8] Carlisle, B.H.; “Micros and Minis in CNC", Machine Design, Vol. 54, No. 19, August
24, 1982, pp. 66-71.

y , [9) Cook. G.E.; Levick, P.C.; Welch, D.; Wells, AM., Jr.; “Distributed Microcomputer

‘ : Control of an Automated Arc Welding System", Conf Record of Industry Applications
Society Annual Meeting (IEEE-IAS-1982), October 4-7, 1982, San Francisco, Ca., pp.
1296-1302.

i [10] Denavit, J.. Hartenberg, R.S.; A Kinematic Notation for Lower-Pair Mechanisms
Based on Matrices”, ASME Journal of Applied Mechanics, pp.215-221, June 1955.

[11] Dubowsky, S.; "On the Adaptive Control of Robotic Manipulators: The Discrete-
k- ‘ Time Ci:se'’, 1981 Joint Automatic Control Conference (JACC), June 17-19, 1981,
Charlottesville, Va., pp. TA-2B/1-9, vol. 1.

¢ [12] Goshorn, L.A.; A Single-Board Approach to Robotic Intelligence”, Computer Design,
s Vol. 21, No. 11, November 1982, pp. 1 :3-201.
93

e T T -
'

AD-A142 515 PARALLELISM IN MANIPULATOR DYNAMICS REVISION(U)
MASSACHUSETTS INST OF TECH CAMBRIOGE ARTIFICIAL
INTELLIGENCE LAB R H LATHROP DEC 83 AI-TR-754-REV

UNCLASSIFIED NO0O14-80-C-0505 F/G 6/4 NL

Jote
g TR
- e

- EY A

)
! : MICROCOPY RESOLUTION TEST CHART
NATIONAL RUREAL OF STANDARDYS 1963 4

e

[13]} Guo. T.H.; Koivo, A.J.; "Microprocessor Implementation of an Adaptive Controlier
for Robotic Manipulators', Proc. IEEE Computer Soc. Conf. on Pattern Recognition
ond Image Processing, June 14-17, 1982, Las Vegas, Nevada, pp. 641-646.

[14] Gupta, P.; “Multiprocessing Improves Robotic Accuracy and Control’, Computer
Design, Vol. 21, No. 11, November 1982, pp. 169-176.

[15] Hollerbach, J.M.; “Dynamic Scaling of Manipulator Trajectories’, accepted to Journal
of Dynamic Systems, Measurement, and Control; also available as M.L.T. Artificial
Intelligence Laboratory Memo No. 700. Massachusetts Institute of Technology,
Cambridge, Mass., January, 1983.

[16] Hollerbach, J.M.: "“A Recursive Formulation of Manipulator Dynamics”, IEEE
Transactions on Systems. Man, and Cybernetics, SMC-10. No. 11, pp. 730-736, 1980.

[17] Hollerbach, J.M.; Flash, T.: "Dynamic Interactions Between Limb Segments During
Planar Arm Movement”, Biwol. Cybernetics, Vol. 44. pp. 67-77, 1982,

[18] Hollerbach. J.M.; Sahar, G.; “Wrist-Partitioned Inverse Kinematic Accelerations and
Manipulator Dynamics', Intl. Journal of Robotics Research, Vol. 2. No. 4, Winter
1983, forthcoming; also available as M.1.T. Artificial Intelligence Laboratory Memo
No. 717, Massachusetts Institute of Technology, Cambridge, Mass., April, 1983.

[19] Kahn, M.E.: The Necar-Mwmimum. Time Control of Open-Loop Articulated Kinematic
Chains. Stanford Artificial Intelligence Laboratory Memo No. 106, Stanford
University, Stantord, Ca., December 1969.

12C] Kane, MK Levinson, A, "The Use of Kane's Cyinaivucal Cqualions in Ruboiics’,

Intl. Journel of Robotics Research, Vol. 2, No. 3, Fall 1983, pp. 3-21.

[21] Klein, C. A.; Wahawisan, W.; “Use of a Multiprocessor for Control of a Robotic
System"’, Inil. Journal of Robotics Research, Vol. 1, No. 2. Summer 1982, pp. 45-59.

[22] Koch, C.; Poggio. T.; Torres. V.; “Retinal Ganglion Cells: A Functional interpretation
of Dendritic Morphology'', Phil. Trans. R. Soc. Lond. Vol. 298 B 1090, pp. 227-264,
July 1982,

[23] Kopacek, P.; “"Microcomputer Control of Manipulators and Assembling Machines™,
Contro! Science and Technology for the Progress of Society, Proc. of the 8% Triennial
World Congress of the Intl. Federatson of Automatic Control, Kyoto, Japan, August
24-28, 1981, pp. 1897-1901.

{24] Kuo, M. H.; "Distributed Computing on an Experimental Robot Control System”,
IEEE 1981 IECI Proc., Applications of Min1 and Microcomputers, November 9-12, 1981,
San Francisco, Ca., pp. 330-335.

94

-

o

[25] Lathrop, R. H.; Parallelism 1n Arms and Legs, S.M. Thesis, Massachusetts Institute of
Technology, December 1982.

[26] Lee, C. S. G.;, Mudge, T. N.; Turney. J. L.; “Hierarchical Control Structure Using
Special Purpose Processors for the Control of Robot Arms', Proc. IEEE Computer
Soc. Conf. on Pattern Recognition and Image Processing, June 14-17, 1982, Las
Vegas, Nevada, pp. 634-640.

[27] Luh, J. Y. S.; “Scheduling of Distributed Computer Control Systems for Industrial
Robots", Distributed Computer Control Systems 1981, Proc. Third IFAC Workshop,
August 15-17, 1981, Beijing, China, pp. 85-102.

[28] Luh, J. Y. S.; Lin, C. S.; “Scheduling of Parallel Computation for a Computer-
Controlled Mechanical Manipulator', JEFE Trans. on Systems, Man, and Cybernetics,
Vol. SMC-12, No. 2. March/April 1982, pp. 214-234.

[29] Luh, J. Y. S.; Walker, M. W.; Paul, R. P. C.; “On-Line Computational Scheme for
Mechanical Manipulators”, Journal of Dynamic Systems, Measurcment, and Control,
Vol 102, June 1980, pp. 69-76; Errata Correction September 1980, pp. 173.

{30] Luh, J. Y. S.; Walker, M. W.; Paul, R. P. C.; “Resolved-Acceleration Control of
Mechanical Manipulators'’, IEEE Transactions on Automatic Control, Vol. 25, No. 3,
June 1980, pp. 468-474.

[31] Martin, H. L.; Satterlee, P. E.; Bolfing. B. J.; "Distributed Digital Processing for ;
Servo-Manipulator Control”, Trans. Amer. Nuclear Soc., Vol. 43, pp. 752-753. ‘

FANY 38, . - [X (1Y o B

lu&j IVIUUS°| LIS A 1YY ~t

COMPSAC-81, IEEE Computer Soc. 5 Intl. Computer Software and Applications
Conference, November 18-20, Chicago, !ll., pp. 270-271.

{33] Mudge, T.N.; Turney, J.L.; “Unitying Robot Arm Control', Conf. Record of Industry
Applications Soc. Annual Meeting, (IEEE-IAS-1982), October 4-7, 1982, San Francisco,
Ca., pp. 1315-1324.

[34] Orin. D. E.; McGhee, R.B.; Vukobratovic, M.; Hartoch. G.: “Kinematic and Kinetic
Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods', Mathematical
Biosciences, Vol. 43, No. 1/2, pp. 107 -130, February 1979.

{35] Paul, R.C.; Modeling, Trajectory Calculation and Servoing of a Computer Controlled Arm,
Stanford Artificial Intelligence Laboratory Memo No. 177, Stanford University,
Stanford, Ca., September 1972,

[36] Ratauli, R.; Sinha, N.; Tlusty, J.; “A Distributed Microprocessor Control System for
an Industrial Robot"”, IEEE 1981 IECI Proc., Applications of Mint and Microcompulers,

95

November 9-12, 1981, San Francisco. Ca., pp. 319-323.

{37] Raibert, M.H., A Model for Sensori-Motor Control and Learning", Biological Cyber-
netics, Vol. 29, pp. 29-36, 1978.

[38]) Raibert, M.H.; Horn, B. K. P.; “‘Manipulator Control Using the Configuration Space
Method”, The Industrial Robot, Vol. 5, No. 2, June 1978, pp. 69-73.

{39} Shin, K.G.; Matin, S.B.; "Dynamic Adaptation of Robot Kinematic Control to its
Actual Behavior”, Proc. Intl. Conf. on Cybernctics and Society (IEEE), October
26-29, 1981, Atlanta, Ga., pp. 420-427.

[40] Silver, W.; “On the Equivalence of Lagréngian and Newton-Euler Dynamics for
Manipulators'’, Robotics Research, Vol. 1, No. 2, pp. 60-70, 1982

[41] Torre. V.. Poggio. T.: "A Synaptic Mechanism Passibly Underlying Directional
Selectivity to Motion™', Proc. R Soc. Lond. Vol. 202 B. pp. 409-416, 1978.

[42] Turner. T. Craig. J.; Gruver, W.A.; A Microprocessor Architecture for Advanced
Robot Control”, Proc. Intl. Conf. on Cybernetics and Society (IEEE), October 28-30,
1982, Seattle, Wa., p. 297 (abstract only).

[43]) Uicker, J. J.; On the Dynamic Analysis of Spatial Linkages Using 4 X 4 Matrices, Ph.D.
Thesis, Northwestern U., August 1965.

[44] Waters, R. C.; Mechanical Arm Controi, M.L.T. Artificial Intelligence Laboratory Memo
No. 549, Massachusetts Institute of Technology, Cambridge, Mass., October 1979.

(45] Whitney, D. E.; “The Mathematics of Coordinated Control of Prosthetic Arms and
Manipulators™,Journal of Dynamsc Systems, Measurement, and Control, Vol. 94, pp.
303-309, December 1972.

Appendix A — Derivation of the Linear Time Offsets and C

In the following, as in Table lil.1, “Avasl(X,_,) = t" means that variable X,_, is made
available to the ** node at time ¢ (on the backward recursion; substitute X,,, on the
forward recursion). The abbreviations V A (vector addition), VC (vector cross product), etc.,
are explained in Table ill.1; they denote the time required to perform certain matrix or vector
operations.

First we determine the relative delays, or offsets, in variable availability times. We do
this by requiring the following implication, for each propagated recursive variable:

Aval(X) == max(Avail(X,_1) + o, Avail(Y,_)) + 8, Avarl(Z,_)+ 6,..) + v
= Avall(X)) = Avarl(X,_)+ a+ 4

This condition amounts to saying that nothing delays the availability of a variable longer than

itself. This allows one to infer
max(Avail(X,_,) + a, Avail(Y,_,) + B, Avasl(Z,_,) + 6,...) = Avail(X,_)) + a

from which immediately follow the inequalities

Avarl(X,)+ a > Avarl(Y,)+
Avail(X,_\})+ a > Avail(Z,_,)+ 6

That the set of all such inferrable inequalities is globally satisfiable follows from the ability
to globally order the recursion variables

X >Y>x2 ...

where we define
X, > Y, iff Y, does not depend on X, for any j

itf 3Y,/0X, = 0.
In the linear Newton-Euler recursion, for example, we have

nt.:fctb.>d’ltut

and the non-propagated variables could be included in the chain if desired.
97

—

By considering starting conditions (initiation of the calculation) one can generate another

set of inequalities of the form

Avail(X) + o' > Avail(Y,)+ 8’
Avail(X,) + o' > Avail(Z2,)+ &'

Since both sets of inequalities are satisfiable it is possible to reach a point of minimum
satisfaction (how dreary. .. why would one wish to do s0?). This is the unique point (Ava:{(X,),
Avail(Y,), Avail(Z,),...) which satisfies both sets of inequalities above, and also minimizes
Avail(X,) for each variable X. This defines the relative offsets which will minimize the total
computational time.

On the backward Newton-Euler recursion only w,, w,, and p, need be considered. This
is because r,, F,, and N, are merely passed directly to forward recursion nodes. From Table
n.1,

Avail(w,) = max {Avail(w,—,) + VC + VA, Avail(w,_)) + MV + VA

Thus for minimum delay (MV <+ V 4) in propagating w, we require that
max(Avail(w,) + VC 4 VA, Avail{w, __,)) = Avasl(w,_,),

hence
Avail(w, 1) 2> Avasl(w,—,)+ VC + VA *)

Similarly,

Avail(p,) = max(Avail(w,) + 2VC + VA,

Avasl(w;) + VC + VA,
Avail(p,_,)+ MV)+ VA

= max(Avaii{w,_)+ MV + 2VC + 2V A,
(max(Avail{w,), Avasl{w,—,) + VC + VA)+ MV + VA)+ VC + VA,
Aval(p,_,)+ MV) + VA

= max(Avail{w,_,) + MV +2VC + 3V A,
Avail(@,—,) + MV 4+ VC + 2V A,
Availlp,_,)+ MV) + VA

And so the minimal delay in propagating p, requires both
Avail(p,_,) > Avail(w,_,) + 2VC + 3VA (**)
Avasl(p, ;) > Avail(w,)+ VC + 2V A.

If equality holds in (*) then these two bounds are equivalent.

On the forward recursion only f, and n, need be considered.

Avatl(n,) = max (Avatl(f,4) + VC + VA, Avail(n,) + MV + VA

and so
Avail(n, ;) > Aveil(f,;\)+ VC + VA. (***)

Next we determine the constant C by showing when 7,. the last generalized joint force
of the torward recursion, becomes available as output. From Table [il.1, assuming all input

values become avaifable simultaneously at time t == 0,
Avail{w,}) = MV + VA
Avatl{w)) = MV + VC + 2VA
Avail(p,) = max(Avail(w;) + VC + VA, Avail(w,) + 2VC + VA, MV) 4 VA)
=MV +2VC +4VA
Note that these satisfy (*) and (**) so the propagation time is (M V + V A) per node.
Avatl(w,) = (n — 1} MV + VA}+ Avail{w,)
=(n—1) MV + VA + MV + VA
Avail(w,)= (n — 1MV + VA)+ MV 4 VC + 2VA
Avail(p,) = (n— 1MV + VA}+ MV +2VC 1+ 4VA
Avail(¥,) = max(Avail(p,), Avasl{w,,) + VC + VA, Avatl(w,} + 2VC 4+ VA)+ VA
=n—1)MV 4+ VA + MV 42VC +5VA
Avail(F,) = Avail(v,) + SV
=(n— 1MV 4+ VA)+ SV + MV 4 2VC + 5VA
Avail(N,) = max(Avail(w,} + VC, Avail(w,)) + MV + VA
={n—1)MV +VA)+2MV +VC + 3VA.
Thereafter, on the forward recursion, (recognizing that Avail(f,) = Avail(n,4;) = 0),
Avail(f,) = Avatl(F,)+ VA
=(n—1}{MV +VA)+ SV + MV 4+ 2VC +6VA
Avail(n,) = maz(Avail(F,) + VC, Avail(N,)) + 3VA
={n—1)(MV +VA)+ MV +VC+6VA
+ max(SV 4+ 2VC + 2VA, MV)
=(n—1)(MV +VA)+ SV + MV 4 3VC +8VA

99

Sty

)
i

These two expressions satisy (***) so propagation occurs at the maximum rate of (MV +V A)

per node.
Avail(n) == 2(n — 1)(MV 4+ VA)+ SV + MV +3VC + 8VA

Avail(r)) < max{Avai(f,), Avail(n,))
=2(n—1)(MV +VA)+ SV 4+ MV +3VC +8VA

(Actually. Avail{r,) will depend on whether joint 1 is translational (= Ava:l(f,)) or rotational
= Avail(n;)), but we assume here rotational, the worst case.)

Assuming a maximally parallel implementation, we would have:

VA= Addn (using 3 adders)

SV=1 Mult (using 3 muitipliers)

VC=1 Mult+ 1 Addn (using 6 multipliers and 3 adders)
MV=1 Mult+2 Addns (using 9 multipliers and 3 adders).

So
Avail(r;) < (2n + 3) Mults + (6n + 7) Addns

suffice.

100

Appendix B — Derivation of the Logarithmic Recursive Formulae
NEWTON-EULER BACKWARD RECURSION VARIABLES:
The derivation of the logarithmic combining form for w, has been developed in the text.

Next, we show that w, satisfies the following closed-form formula: !

w, = Z WI.”}(‘J—‘aJ + w1 X 2,14,)

2=0

as it is a fixed-point of the recursive formula for &, in Table I.1:

1—1
@, = AT(Z WT _o)(z18, + w1 X 2,14))

=0

+ al(zl——l a(+ Wy—1 X zl—lél))
= A;r(w:—l + ol(zl—‘é' +w_; X Z,_jé,))
As in the case of w,, we take wo = Alz_1)4,- Most applications of interest will have

Qo=.q'°=0.

In oraer to match ata = 0 and b =1,

b
Wap = Z W;r,b%(lj—l'é, + wq,(3—1) X 3)—lé))

J—=c

k
= E (W_,,kmk+,),,,)ra,(z,_,'q', + W 5—1) X z,14;)

Jw=a

]
+ Z W,T'bd,(z,-—lﬁ, + (W{;+|)_(J_l)wn.k + U(k+1),(;-—1)) X 31—19';)
k41

b
= W(Tk-f-l).b“’a-k + @+ + Z Wf-b”)((wﬁ+1).(:-—x)“’ﬂvk) X z,_m,)
kg1

= w(ﬂ.«pl),b“"n.k + (W{‘.;+|)'bwa.k) X Wik4-1),b + d"(k+l).b

which is the combining form for @, ».

To derive the combining form for p, ,, it is necessary to create the auxiliary variables

b
Qur= z W;’:f,ajz]—léj

J=a

= W] +Qux + Qut1)s

b
—_ z : T *
R,,.', = W_)+l.bpj

J=n

= WZ#—l,bRu.k + Riipnye

[3
— T *
S”"' = Z wj+l.l/(wﬂ».l x p])

)=
b
= W,f+,',,S,.,k + Z W}-+l.!r((WZ+1.;w-'-*‘ + "’k+1-1) X P;)

y=k-41
=Wl 148k + Wl swak) X Rikgr)s + Sietr)s

Next we show that p, satisfies the closed-form expression

b, = Wi b+ Z Wf+l.v(wl X P, + w, X {w, X ?,)

J=1

+5,(AT 2,14, + 2w, % A}'z,_,a,)) :

s v e

This is a fivad point of the recursive formula tor 5 ac chown
t—1

B, = Af(w{_,_,ﬁo +3 wf+,',~,(w, X p, + w, X (w; X p;)

Je=1

-+ EJ(A}',:,,,@J + 2w, X A;rzj_lél)))

oy

!
: +W‘T+",(w. X p, + w X (w, X p;)

+ 0-(-4.13.~\§. + 2wl X A;r'l—-lél))

"'—'A.Tﬁ;—l +w, X P: + w, X (wl XP:)
+ U,(A:rl'—nii. + 2“: X A:rzl—lél)
¢

where p, is the acceleration of the base. Typically this is the acceleration due to gravity at
the site. If one took wy # 0 above then jp, may also include a term for wy X (wp X p;), where

i
102

p, is a vector from the Earth's center 8~ to the site; this accounts for the centripetal
acceleration arising from the rotation of the Earth. if one accounts for the gravitational
acceleration (g) by taking pj -= g at the base, else p7 == 0 for 1 5% 0, then the formula may be
equivalently re-written with greater clarity (covering both cases wp = 0 and wg # 0) as

p, = EW}%A(?’? + @, X p, +w, X (W, X 7))

=0

+ 6‘,(AJT11_|&) + 2w, X A;rz,_lé,))

This we will take to be the defining closed-form non-recursive formula for p,. The term
involving p’ is a technical artifice to account for p, cleanly, and will vanish in the combining

form.

The demonstration of the combining form of p, , will require the vector identity a x (b X

c)+(bX a)x ¢=>X(a X c) Inorder to match at a = 0 and b =1, take
103

[
Pub = W;’;r.,,.('ri;" F Sy X P+ way X (wa, X P)+8,(AT2, 1§, + 2wa, X Az, 14,))

J==a

k
T T . . . -
= Wk+[‘l, ZWJ.*.[.&(p;)""wu.J X PJ +wu.J X (wu.) XPJ)

J=a

+5,(AT2,14, + 2wa,, X A]’z,_lq,))

b
T - . . .
+ Z W_,+1.:-(Pf + (WAT+1.J‘“"-*‘ + (Wi, wak) X Wik, + W(k—+|),1) X P,

y=nr+41

T o, .
+ (Wk+l.,,w“~"' + wlk?')u) X ((Wz+1.1‘*’a.k + “’(k-H)-J) X P;)

+ 5;(‘4;’ z, 14, + 2(W[+x.,“"'l-* + Wit1,) X A] z«'”'q-'))

b

T . . , i . 3 7 .
=W, i wPus + Pugye + (Wi awai) X Z WP,
J=k—+1

b
+ (W] wak) X ((WZ+|.P~Wu.k-) X Z W}}l.bf’;
1=k+1

b
+ 2 Z (WJT-H.b(“"H'-*—!)-J X p:)+6wa+l.b(A}.zJ“léJ)))

J=k+1

f’u.t = (Wz.-f:,oﬁa.k) + ﬁ\u-H).t + (WI+],bwU-k') X R(k+1).b

i} /. \
+ (Wisiwak) X \(W:‘ﬁ-l.bwu‘k) X Rig1yb + 2Skt1)s + Qk+l-b))

NEWTON-EULER FORWARD RECURSION VARIABLES

As noted in the text, on the Newton-Euler forward recursion the coordinate matrix
products of interest will be W, 1,4+, instead of W[, ,.

Noting that the numbering runs backward, we see that f, satisfies the non-recursive
formula

fc = Ewn+l.JFJ

J=

n

=Ayg1) W, Fy +F
=41

= A'+lfa+l + F,

104

To match ata ==1 and b = n,

b
fn,b = Z Wll+),]Fj

1=a
& b
= E Waitr, P, + Woiik E Wi 2, F,
1=a y=k+1

= fa.k + Wa+1.k+1f(k+1),h

if desired, lorces and torques applied by the environment to the manipulator tip may
be incorporated in a fashion similar to incorporating the acceleration of the base in the
discussion of p,,. This will not change the displayed combining forms.

Similarly, n, satisfies the non-recursive formula

no=3 Wl+l-J(NJ + 8, X Fy +p; X (AJ+1fJ~H))

J==1

=N, 43 XF, +p, X (A4i1fi41)

‘A Y m+2-J(NJ + 8, X Fy +p, X (Al+lfj+|))
PPN

= N, + 3,' X F, +P: X (A1 fewt) + Aieinest
To match at a = 1 and & = n we must have

X .
N p = 5_: Wa+|,,(N, + 8, X F, +p, % (A,+xf(1+1),b))

ym=a

k
= Z Wu+|,,(N, + s; x F, +P; X (A, 41(fy+1.6 + WJ+2.A~+1fk+x.o)))

J==a

b
+Wotrintr Wk+2.:(N; +3, X F, +p, X (A:+1fu+l)-b))

1=k
k
= gk + Wag1 k41%41,6 + 2 Wa+1.;(P, X (W;+1.k+1fk+1,b))

j=a

2= g4 + Wa+l.k+l((A;r+‘Ra.k) X fit1,6+ Retr.)

105

Appendix C — Derivation of the Logarithmic Time Offsets and (

These may be derived from Table V.1 by inspection, by applying the rule that to insure
minimum delay. the maximum defay of any variable must be caused by a data dependency
on that variable.

Avail(w,,,) > Avadl(W,)

Avail(w,,,) > Avarl(W,)+ VC + VA

Avail{w,) 2> Avail(w,)+ VC 4+ VA

Avail(R,) > Avail(W, ,)

Avail(S,) > Avail(W,)+ VC + VA *)

Avail(S,;) > Avail(w,)+ VC + VA
Avail(S,)+ MV > Avail(R,)+ VC+ VA

Avarl(Q..,) > Avail(W,)

Avail(p,) > Availl(W,) + 2VC + 3V A

Avail(p,) > Avail(w,)+ 2VC +3VA

Avail(p,) > Avail(i,)+ VC + 2V A
Avail(p,)+ MV > Avail(R, ,})+ 2VC + 3VA

Avasl(p,)+ MV > Avail(S,)+ VC + 4VA + SV *)
Avarl(p,)+ MV > Avail(Q,,) + VC +4VA+ SV
Avail(p,)+ MV > Avail(W,)+ 2VC + 5VA + SV (from (*) above)

Avau(":.u) > Ava".l(fx.u) +VC+VA

The delay conditions established, actual timing can be generated. From Table IV.1 we
extract the a = b case; Table V.1 covers a 5 b.

Avail(W, ,) =0

Avail(w, o) = MV

Avail(w, o) = MV)
Avail(Q,. .) = MV

Avail(Ry,0) =0

Avasl(S, ;) = MV + VC. *

However, the equations marked (*) fail to satisfy the delay conditions and so must be revised

to
Avail(w,) =MV +VC+VA

Avasl(S,) = MV + VC + VA
106

N . e e s e e m L -

Analysis of Avail(p,) is less obvious, but proceeds as follows (assuming VC > SV and
Ve > VA)

Avail(p?) =0 i
Avail(3,Alz, -§,)= MV
Avatl(p? + 3,AT 2, _14,) = MV + VA
Avail(we,a X (Waa X p,)) = MV +2VC
Avasl(p? + 8.AT 2,14, + Waa X (Wae X P,)) = MV +2VC + VA
Avail(@ao X p,) = MV 4+ VC
Avail(2w,., X Quu) = MV + SV 4+ VC
Avasl{@,,a X Py + 20 X Qo) = MV + SV +VC + VA
Avail(p,) = MV +2VC + 2VA *)
Avail(p, ,) = MV +2VC + 3VA

where the last line is added so that p, , satisties the delay conditions (assuming MV >
SV + 2V A).

Since these satisfy the minimum delay conditions, propagation occurs at a rate of
(MV + V A) per node. It can readily be seen that, in general, i

Avail(X,) = Avail(X,) + [loga(b — a + 1)](MV + V A).

Thus in particular, if X, is the linear recursive variable corresponding to X, ,, then X, = X,

T !

Avasl(X,) = Avail(X, ;) i
= Avail(X, ,) + [log,(s + 1)}(MV + VA).

Hence,

Avail(wg,,) = Avail(w,,.) + [log,(s + DMV + V A)
Avasl(wg,,) = Avasl(,) + [logy{s + 1)[(MV + VA)
Avail(p,) = Avasl(p, ,) + [logy(s + 1)}(MV + VA)
Avail(¥y,,) = max(Avasl(p,), Avail(ig,) + VC + VA, Avasl(w,,) + 2VC + VA)+ VA
Avail(Fy) = Avail(¥y,.) + SV

= MV + SV 4+ 2VC 4+ 4VA + [log,y(s + 1)|(MV + VA)
Avail(Np,,) = max(Avasl(wo,) + VC, Avail(wy,)) + MV + VA

== 2MV + VC + 2VA + [logy(i + 1)}(MV + VA)

107

Avail(f..,) = Avail(Fo)
= MV + SV 4 2VC + 4V A + [logy(n + 1){(MV + VA)
Avatl(n,,,) = max(Avail(Fy) + VC, Avail(No) + VA
' = MV +VC+3VA
+ max(MV,SV 4 2VC + 2V A) + [log,(n + 1)}(MV + VA)

!—
; Thereafter, on the forward recursion (from Table 1V.1),

which satisfies the delay conditions. Propagation therefore occurs at the maximum rate and

Avail(n, o) = MV 4+ VC +3VA .
+ max(MV,S8V + 2VC + 2V A) + 2[log,(n + 1){MV + V A)
Avail(rg) = MV +VC +3VA
+ max(MV, 8V + 2VC + 2V A) + 2[log,(n +)MV + V A)
= 2logy(n + 1)|[(MV + VA)+ MV + SV 4+ 3VC +5VA
= 2logy(n + 1)|[(MV + VA) + 5 Mults + 10 Addns
> Avail(r)

] assuming again a maximally parallel system.

Appendix D — Unificatio'n of Logarithmic a = b and a ¥ b Cases

By the following technical artifice we can make the a = b5 case look like a 7# b.

WQ‘k = I
Wiiis = Aa
Wak = 0a3a—19a
Wi pip =0
} Wak = 052514,
; Wet,6 =0 .
Qak = 320140
Qiy1p=0
R,p =0
D Reqip=p,
. Sax =0
Sk+1.b =0
Pax = Ba8a—14G, ‘
Bryrs = Bl

Q... is substituted for Q.44 in p, ,
Watrrksr =1
Wit2,041 = Ao

fa.k = Fa
fearn=0
Nak = N,

' Nkg1,p = 3; X Fy.

] Now following two applications of the (n/2) processor nodes to the n groups of input
data we have X, , as required, and similarly on the forward recursion.

109

