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0. OVERVIEW

The Inverse Dynamics problem consists (loosely) of computing the motor torques necessary
to drive a mechanical manipulator through a specified motion: given that you know where it
should go, compute what you have to do to get it to go there. Recently, efficient recursive

formulations have been developed using both Newton-Euler and Lagrangian dynamics

[16]29. These have reduced the number of additions and multiplications (for n joints)

from an :(r') dependency (see Table 0.1) to one linear in the number of joints, 1(n),

requiring

(150n 48) AUts - (131n .18) Addrs (Newton-Euler)

multiplications (Ault) and additions (Adds) when performed serially.

This paper investigates the high degree of parallelism inherent in the calculations, and

presents two formulations especially suited to Oighly parallel implementations using special-

purpose hardware or VLSI devices. Table 0. 1 shows the improvement over serial implemen-

tations. (Note that this reflects the algorithmically indicated cost. as in Hollerbach[16]: see

the discussion at the beginning of Section III.)

The first formulation is again linear in the number of joints. but reduces the real-time

coefficients by almost two orders of magnitude to

(2n - - 3) Mults - (6n + 7) Addns (Newton-Euler)

The second formulation shows that by exploiting a novel parallel algorithm developed

below, the time required to perform the calculations increases only as ^()Og(n)). The time

dependencies are

(2!Iog 2(n + )1 + 5) Muits -i- (6flog,(n -- 1)] + 10) Addns (Newton-Euler)

Either formulation is susceptible to a systolic pipelined architecture. We show below

that the basic time cycle of the algorithm is 1 Mult + 3 Addns. Thus, after the first complete

set of joint torques had emerged from the pipeline, successive sets would appear at intervals
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of four floating-point operations (4 Flops). This yields the ability to rapidly and efficiently

evaluate a large number of alternatives.

Section I contains a brief introduction to the problem and review of previous work in

the area.

Section II explains in detail the notation used in this paper. It is essentially an adaptation

of the notation used by Hollerbach[161 and Luh et al.[29], which in turn derives from the

Denavit-Hartenberg[10] convention for lower-pair linkages through Uicker[43] and Kahn[19].

The reader already broadly familiar with this notation should at least review Table 11.1 where

the notation is summarized.

Section III explicates the first approach considered. yielding an -'(?,) formulation with

greatly reduced coefficients. Luh et al.[29] give the recursive form of the Newton-Euler

formulation as shown in Table 1.1. Many of the computations associated with any given

joint (node) may proceed concurrently. For example. the computations of the variables

L, (denoted by (*) in Table 1.1) and .- (*°) do not interact (given that .. _, and .' -1

have already been computed) and hence may be performed at the same time by different

sub-processors. Additionally, different sub-expressions of the same variable may often

be computed concurrently by different sub-processors. Finally. by locally pipelining the

recursive variables additional speed may be gained; e.g.. the computation of . may be

started before the computation of , has finished. (See Tables 111.1 and 111.2). Essentially,

this formulation arises from trying to compute as much as possible as early as possible, and

still remains within a basic linear structure.

Section IV shows the derivation of an "(log(n)) time dynamics formulation. This arises

from restructuring the fundamental framework within which computation proceeds, together

with a corresponding revision to the recursive equations. The linear recursive algorithm is,

conceptually, a formalism for beginning at the manipulator base and propagating desired

motion outward link by link to the tip, then propagating tip environmental forces and torques

back inward link by link to the base (determining the needed joint motor torques along the

way). (See Figure 111.1). In contrast, the logarithmic recursive algorithm is a mechanism for

recursively propagating desired motion (or, forces and torques) between any two adjacent

groups of links. Conceptually speaking, the propagation of desired motion from base to tip

7
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is accomplished by grouping together adjacent links on the first step to form (n/2) groups

of two links each, then on each succeeding step grouping adjacent pairs of groups together

until after [log,(n)1 steps there is one group encompassing all links (actually, the intermediate

groups are also formed). It is analogous to summing n numbers in [Iog,(n)] steps by adding

together first adjacent pairs, then adjacent pairs of pairs, and so forth. (See Figures IV.1

and IV.2).

A synthesis of the two approaches is presented in Section V. The techniques of Section

III for exploiting parallelism within a node are applied to the O(Iog(n)) time structure of

Section IV, yielding an J(Iog(n)) formulation with reduced coefficients.

Ultimately the algorithm must be expressed in hardware, and Section VI addresses

a few words to potential implementations. The principle thrust of this paper lies in the

analytic formulations above, and we will consider hardware only to the exte- , -howing

that physical implementations are reasonable and feasible. We consider tht '"I number

of processors, buffering of intermediate results. and internal communication, only to the

extent of showing that the requirements are reasonable.

Construction of suitable hardware using today's technology argues for a special-purpose

VLSI chip. and Section VII presents one architecture suitable for this purpose. A primitive

module consisting of two multipliers, one adder, and some registers is sufficient to support

all of the computation required. Several such primitive modules may then be assembled,

together with a suitable control structure, to produce a matrix-vector arithmetic module.

These may then be connected into a network corresponding to the communication structure

of the algorithm, and each module programmed by the host computer to execute the
operation and communication sequencing necessary to implement the algorithm (or for that

matter, any other high-speed straight-line matrix-vector computation).

Finally, Section VIII will very briefly allude to, without discussing in depth, a few possible

extensions to this work. The ability to efficiently pipeline implies that a number of considered

variations on the same basic manipulator trajectory could be explored in parallel, and the

one having the most satisfactory dynamical characteristics for actual execution chosen from

among that set. It may even be possible to build an on-line "optimizing trajectory compiler"

in which the desired motion (trajectory) for the next several time periods is pre-planned,

8



the motor torques automatically generated, and the lime sequence inspected slightly before

the manipulator has actually arrived at the trajectory points, thereby incorporating some

dynamical considerations into trajectory planning. Poggio has a result indicating that neural

structures could perform an arithmetic multiplication in about a millisecond, which implies

that in principle it would be possible to compute the Inverse Dynamics in approximately real

time using a suitable neural structure. We close with a few remarks concerning generalization

of the 2(Iog(v)) embedding to other recursive algorithms.

9
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Table 0.1 - Compa rison of Dynamics Formulations"

(adapted from Hollerbach[161)

O.1a - Comparison of Time Dependencies
Method Multiplications Additions

Uicker/Kahn 321n' + 866~n3 + 171In 2  25n'4 + 66jn 3 + l29in 2

(original Lagrangian) +531n -128 +42jr -- 96

Waters 106An 2 + 620 n - 512 82n +514n -384

(partially recursive)

Hollerbach 830n - 592 675n - 6
(4x4 Lagrangian)

Hollerbach 412n - 277 320n - 201
(3x3 Lagrangian)

Luh, Walker, Paul 150n -48 131n -48

(Newton-Euler)

*Horn. Raibert 2n: ' -t-nn3 n -t- 2n

(table look-up)

*Luh, Lin 57n -- 18 50n - 18

(scheduled parallel N.E.) (estimated - see text) (estimated - see text)

Lathroo 2n -- 3 fRn 4- 7

(linear parallel N.E.)

Lathrop 2[109 2 (n + 1)1 + 5 6[10g 2(n + 1)] + 10
(logarithmic parallel N.E.)

Lathrop 1 3
(systolic pipeline) (squccessive - see text) (Successive - see text)

This table reflects the algorithmically indicated cost for the fully general 6-link rotary manipulator,

as in Hollerbachjl6/. By considering special cases, tntroducing configuration or workspace assump-

tions, or tailoring the computation, additional reductions are possible. See the discussion at the

beginning of Section 1!!.
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Table 0.1 - Comparison of Dynamics Formulations*

(adapted from Hollerbach[l6J)

Qi1b - Comparison for n = 6 ____

Method Multiplications Additions
Uicker/Kahn 66,271 - 51,548

(original Lagrangian)

Waters 7,051 5,652
(partially recursive)

Hollerbach 4,388 3, 586
(4x4 Lagrangian)

-. Hollerbach 2,195 1,719
(3x3 Lagrangian)

Luh, Walker, Paul 852 738
(Newton-Euler)

Horn. Raibert 468 264
(table look-up)

Luh, Lin 323 280
(scheduled parallel N.E.) (estizmattd) (cstimated)

Lathro 43

Lathrop 11 28
(logarithmic parallel N.E.)

Lathrop 13
*(systolic pipeline) (successive) (successive)

This table reflects the algorithmically indicated coat for the fully general 6-link rotary manipulator,

as in Hollerbach161. By considering special cases, introducing configuration or workspace assump-

tions, or tailoring the computation, additional reductions ate possible. See the discussion at the

beginning of Section III.
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1. INTRODUCTION

In active articulated mechanisms, including both artificial and biological systems, the

parameters which one typically can directly control are the forces (in translational joints,

sometimes called prismatic) and torques (rotational joints, sometimes called revolute) applied

by the actuators to the joints. Unfortunately, the parameters in which one is frequently

interested are the linear and rotational accelerations (hence also, velocities and positions).

This gives rise to two dual problems; both highly complex and non-linear, and both desirable

to calculate in real time.

The Direct (or Integral) Dynamics problem is to compute the mapping :' from a set

of applied joint forces and torques (r,, arising from stimulation of the actuators) into the

resulting linear and rotational joint motions (accelerations j,):

Computing such a mapping is equivalent to simulating the motion of the mechanism under

the applied actuator effects. In this case one knows what one does to the thing, and wishes

to find out where it will go in response.

The Inverse Dynamics problem is to compute the inverse of the above mapping; given

the accelerations desired. find the forces/torques necessary:

L{,}.

Given that one knows where one wants the thing to go, what does one have to do to make

it go there? This is the question that the Inverse Dynamics seeks to answer. "Where one

wants it to go" is the desired trajectory, the manipulator configuration as a function of

time. The configuration may be completely specified by the joint positions, so the trajectory

may be given by stating each joint position as a function of time (i.e., q(t), where q is an

n-.dimensional vector giving the actual positions q, of the n joints). These functions are

assumed to be twice time-differentiable to provide joint velocities and accelerations (4(t),

,. q(i)).

The question is usually posed by giving the joint positions and velocities (q(to), 4(t0 ))

which describe the state of the manipulator at a given point in time (say, to), together with

12
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the joint accelerations which are desired at that point (q(to)). The answer expected is the

n motor torques (the n-dimensional vector T(to) giving the motor torques r,(to) at each joint

i) which, if applied to the manipulator at that point in its state-space, would induce the

t desired accelerations. Typically one measures q and q, while 4 is supplied by a higher-level

planning and control module. Position and velocity are the time integrals of acceleration, so

acceleration control suffices, at least in a "mathematically exact" sense. There are a host of

practical problems which insure that the model and the reality it models never quite match,

and which we shall relegate to feedback. For control purposes the formalism provides a

good first approximation to the "inverse plant", which is close enough to render feedback
correction feasible.

Computing the motor torques is quite complicated, however, due to the high degree

of non-linearity inherent in rigid-body rotational mechanics. The torques supplied must

compensate for the inertia of the manipulator, gravitational force, the Coriolis and centrifugal

forces. and viscous friction at the joints, Viscous frictional forces often depend only on q,

and at joint z: hence they are susceptible to relatively simple correction and will therefore

be ignored. All of the other terms vary in a non-linear fashion depending on the manipulator

configuration at a given point in time: additionally, the Coriolis and centrifugal forces also

depend on all pairwise products (4,, 1 < t, < n) of joint velocities.

I his complicated computation has until recently posed a bottleneck in on-line con-

trol of manipulators, and much effort has been expended in devising more time-efficient

methods. Typical resonant frequencies of many mechanical manipulators is around 10Hz,

so the computation must be repeated at about 60Hz or faster[29]. Uicker[43 and Kahn[19]

derived an early formulation for an n-link manipulator based on the Lagrange equations.

This had an O(n 4 ) time complexity and required 7.9 seconds on a PDP 11/45 to com-

pute the torques for just one point in the trajectory[29]. This was too slow for on-line

control. Efforts to improve this time have either explored other computational algorithms

[44],[45],35],30],29],[16], made simplifying assumptions [41,[351, or substituted table look-
up for computation [381,[1],[2].

Since only the Coriolis and centrifugal terms involve pairwise products of all joint

velocities, a common simplification is to just ignore them. Unfortunately this works well only

13
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at low velocities where the product terms are small. During fast motion the Coriolis and

centrifugal terms may dominate the computation [29] to such an extent that attempts to

control the errors by feedback require excessive corrective torques[38].

Table look-up is in principle the fastest method of obtaining the necessary torques.

If one could index a table of size 0(n 3 ) using the 3n values of (q,, i ,< n),

all computation could be replaced by memory references. This extreme was explored by

Albus[1],[2]. Raibert[37] reduced the table size by proposing a table indexed by position

and velocity (with acceleration handled separately), and this was further refined by Raibert

and Horn[38] to a table indexed only by position. Nonetheless for fine enough division of

the table dimensions the size required remains enormous, filling the table and interpolating

between stored values present problems, and the table is valid only for one particular load

(e.g., mass of object grasped)[16].

Two other formulations, not reflected in Table 0.1 because particularized to special

cases and hence not directly comparable, deserve mention. Kane and Levinson[201 discuss

a formalism (Kane's Dynamics. originally developed for complex spacecraft control) based on

generalized coordinates and velocities similar to the Lagrangian approach. The dynamical

parameters can be represented explicitly so as to exploit simplifications arising from

manipulator configuration or workspace constraints, though the computational complexity

therefore reflects both configuration and workspace assumptions. They analyze the Stanford

arm under the assumption that the workspace never requires the second joint to approach

9. = 0° or 91 -- 1800 (due to numerical instabilities there). Hollerbach and Sahar[18] present

a method of merging the inverse kinematics with the inverse dynamics, particularized to the

case of a robot with a spherical wrist. Many of the kinematic parameters generated in the

inverse kinematics are needed in the inverse dynamics, and additional savings arise from

the simplification of assuming a spherical wrist. Other special cases are discussed in the

beginning of Section II1.

The most successful formulations of the general inverse dynamics involve recursive

algorithms. Waters[44] first presented an 0(n 2 ) partial recursive form of the Lagrange

equations, which was made fully linear recursive by Hollerbach[161. Hollerbach also contains

an overview of contrasting approaches to the inverse dynamics problem, to which the

14



interested reader is referred for further details. Orin et al.[34] first presented a linear

recursive form of the Newton-Euler equations, which was refined by Luh et al.[29].

We have considered both the Newton-Euler and the Lagrangian formulations, in the

form presented by Luh et al.[29] and Hollerbach[16]. Silver[40] has shown them to be

fundamentally equivalent, differing mainly in that the representation of angular velocity in

the Newton-Euler equations is more efficient. Reflecting this, the parallel formulations for

both formalisms are found to require approximately equal parallel time to compute, but the

Lagrangian formulation would require substantially more hardware to implement. This paper

will thus present only the Newton-Euler results. Complete details for the Lagrangian case

may be found in Lathrop[25).

The underlying intuition in both cases is the following. The motion (by which we will

generally mean: position, velocity, and acceleration) of the manipulator base is assumed

known, as is the motion of each individual joint. By beginning at the base and accounting

for the (known, desired) joint motion at each joint, the motion of each successive link may

be cascaded recursively from the base of the manipulator to the tip. Since the forces

and torques applied by the environment to the last manipulator link (the tip, workhead, or

end-effector) are known or measured. and the motion of the last link is known, the force

or torque at the last joint necessary to drive the last link through its desired motion may

be calculated directly trom free-body rotational mechanics. This in turn allows calculation

of the forces and torques transmitted across the last joint to the next inboard neighbor

link, which in turn allows calculation of the next but last force or torque from rotational

mechanics. Continuing in toward the base in this fashion, and accounting for the forces

and torques passed across each joint, the force or torque necessary at each joint to drive

each link through its desired motion may be calculated in linear time. The required motor

force or torque at each joint is then the component of force or torque along or about the

joint axis. Thus in linear time. the motor torques needed to support a desired motion may

be computed.

A number of practical attempts have been made to relieve the host computer of some

of the computational burden associated with manipulator control. The principle idea is that

machine management should be performed outside the main computer (CPU). A common

0 15



strategy is to use a single microprocessor to control the robot, and the host to control the

controller, e.g. [111113], and [23]. This paper will not consider these further because the

parallelism achieved is minimal, and they do not address arm dynamics.

Most attempts to apply parallel processing to manipulator control have involved using

microprocessors to servo individual joints, and have not attempted to include dynamical
considerations. Typically, this involves the microprocessor as the active element in a joint
control feedback loop with sensors to monitor the error (usually of joint position). Also,

the individual joint servos for each joint axis are usually under the control of a master
microprocessor, which coordinates their actions with commands from the host. In fact,

usually the servo microprocessors will not communicate with each other directly at all. Shin

and Malin[39] discuss one control strategy for this general approach.

Acting under this general paradigm, Cook et al.[9] discuss a configuration of seven

68000s and a programmable logic controller, designed for welding underwater pipelines.

Kuo[24] describes an arm mounted on a mobile platform, having one microprocessor per
*motor and based on an AIM-65 system. Rafauli et al.[361 control a modified Unimate 2000,

using one Intel 8748 to servo each axis based on positional feedback and a master composed

of an iSBC 86/12A combined with an iSBC 337. Gupta[14] advocates several advantages

of the MK68000 for similar applications. A single-board controller for a pneumatic drive

arm, using one microprocessor at each axis with feedback from air pressure and speed

as well as position, is presented by Goshorn[12]. Carlisle[8] additionally dedicates several
microprocessors to sub-tasks such as sensor monitoring or I/O, though his interest leans

somewhat more to computer numerically controlled machines. Distributed manipulator

control schemes for servo-manipulators used in nuclear reactor maintenance are described

by Besant[5] and Martin et al.[31]. The OSU Hexapod (an 18-degree-of-freedom, motor-driven
walking machine) is controlled by an experimental multiprocessor consisting of five LSI.11s

[21]. These are reconfigurable so that tree, star. and loop structures can be simulated. This

multiprocessor has also been used for real-time optimization of leg tip forces, a task which

is not strictly parallel in nature.

Mudge and co-workers in several papers outline a scheme whereby the general purpose

computer incorporates attached special-purpose processors for real-time numerically inten-
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sive computations. The special processor proposed is a single chip implementation, which

would interpolate between set points from the host and compute the correction torques for

each joint of the robot arm, replacing their current PUMA control scheme of one LSI-11/02

and six 6503s [26]. Though this particular application ignores dynamic coupling between

joints, another paper [33] proposes a scheme to unify Resolved Motion, Gross Motion, and

Fine Motion, based on the Newton-Euler formalism, suitable for implementation in real-time

on their processor. The processor (called by them NP, the Numerical Processor) is described

[32] as lying between Floating Point Systems' AP120B (a high performance numerically

oriented attached processor) and the Intel 8087 (a single chip numerically oriented attached

processor in the Intel 8087 family). A similar approach is described by Turner et al.[42]

involving a distributed processing architecture using three microcomputers in a pipelined

configuration, also proposed for a broad class of advanced manipulator control algorithms.

In the work most closely related to this paper, Luh and Lin describe a procedure

for scheduling the sub-tasks of a group of microprocessors computing the Newton-Euler

dynamics [27],[28]. One microprocessor is again assigned to each controlled joint axis,

but in contrast to the servo-based approaches above, the microprocessors do communicate

and arm dynamics are explicitly computed. Each microprocessor computes the recursion

variables which correspond to its joint axis. Since these variables (as well as intermediate

partiai resuitsj recursveiy oepena on eacn oner in various airerent ways, oten some

microprocessor(s) will be idle while waiting for others to complete pending sub-tasks and

idle time must be included in the schedule. It is a non-trivial scheduling problem to assign

each sub-task of each microprocessor a specific execution sequence which minimizes the

global computation time. Because the form of the equations (and hence the sub-tasks to be

performed) for a joint differs depending on whether that joint is rotational or translational, in

general each new manipulator configuration requires a new rescheduling of sub-tasks.

The procedure adopted is a modified branch-and-bound search through the space

of possible sub-task orderings, terminating when the minimum-time ordering has been

found. Any feasible ordering which accomplishes all sub-tasks is first found, then refined

by generating and comparing alternatives (other, partial, orderings from branch (choice)

points). The estimated total time of a partial task ordering is its partial time so far (including

17
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idle time), plus the time for all its remaining sub-tasks to complete if idle time is ignored.

Since this is guaranteed to be an underestimate of true total time, branch-and-bound search

applies. Each partial ordering is extended until either its estimated total time exceeds that

of the minimum-time feasible ordering so far found, or it is extended to a complete feasible

ordering of less total time and so becomes the new minimum. At the conclusion of this

procedure, the path of minimum true total time is the optimum schedule. Though by its

nature this procedure is not subject to precise analysis of the computational complexity of

the resulting schedules, the authors report a concurrency factor of 2.64 on the Stanford

arm. This estimated factor is used in Table 0.1.

is



Table 1.1 - Linear Recursive Newton-Euler Formulation

(after Luh et al. [29])

Newton-Euler Backward Recursion:

AT(,_ z, q,) if joint i rotational;
,= (*)

lA~a,_ if joint i translational.

A z, + z 14, + w, x z,- q.) if joint t rotational;
(SO)

AT,_7 4 if joint , translational.

_A .- , x p* + W x (W, x p) if joint % rotational;

A t ! , p- w (- y x p') 4-ATz. 4 2w; v A7z - , if jointt translational.

x (W, , x , + ,

F,

N, J,,, + w, x (Jw,)

Newton-Euler Forward Recursion:

f, = F, +A,+,f,+,

At, A,+n,+I+- N, + x > F, + p, X (A+I,+=)

19
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2. NOTATION

The notation is based on that used by Hollerbach (161 and Luh et at. 1291 in their analyses of

the linear recursive inverse dynamics. which in turn derives from the Denavit and Hartenburg

[10] convention for lower-pair chains. Coordinate systems are fixed in the body of each

link and related rotationally by 3 x 3 matrix coordinate transforms and translationally by

distinguished body-fixed position vectors. The notation 'Iv is used to denote the vector v,

referred to coordinate system 0,.

It is worth emphasizing that. with few exceptions, ALL vectors in this paper are referred

to link coordinates. This obviates the complexity and computational overhead of transforming

everything to base coordinates. Elsewhere in the literature. (,v, (denoting the vector v.

referred to base coordinates) is usually abbreviated simply as ,. Since we will almost

never refer any vector to other than its own link coordinates, we adopt instead the notation-

simplifying convention that v, abbreviates "v, a vector referred to its own coordinate system

The links of a mechanism are numbered consecutively I to n from base to tip, with link

0 denoting the base reference frame. There is another fictitious link n ; I attached to the tip

when convenient, which may represent the object grasped or account for environmentally

applied forces and torques at the workpiece. Attached to link i is a right.handed orthogonal

coordinate system 0, with axes (x,, y,, z,).

Joints (equivalently, hinges) occur between the links. Each joint is denoted by the

number assigned to its distal (outboard) link, so that joint t connects links s - I and t. Joints

may be either rotational or translational, but may have only one degree of freedom. Multiple

degrees of freedom at a joint are modeled by introducing fictitious links having zero mass

and length.

For any two adjacent coordinate systems 0, and 0,_ there is an orthonormal rotation

matrix A, mapping vectors whose coordinates are referenced to 0, into the corresponding

vectors referenced to 0,-,. Note that this is a pure rotation. The coordinate systems are

located in the links so as to simplify the form of this matrix. The orthonormal basis vectors

of 0, are arranged as follows:
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I

z lies along the positive axis of joint i -- 1,

z, lies along the common normal from z,_1 to Z,,

y,= z, x z, completes the right-handed orthonormal system.

Since the joints have but one degree of freedom, x,, z,, and z,_1 are all body.fixed vectors

in 0, (i.e., have a fixed direction relative to the body-fixed coordinate system). The rotational
orientation of two adjacent systems is completely described by

a, is the angle between z,_1 and z, in a right-handed sense about x,,
0, is the angle between z,_1 and z, in a right-handed sense about z,-,.

The vectors z,_ 1 and z, being both fixed in 0,, a, is constant. Since z,_ lies along the

joint axis of joint z, and z, and z are fixed in 0,-, and A, respectively and both normal to

z, 0, measures the relative rotation about the joint axis between the two systems. Thus

if joint z is rotational then 0, is the joint variable, otherwise 0, is constant (see Figure 11.1).

By the preceding remarks, the rotation matrix A, corresponds to a coordinate rotation

about x, by an angle a, (which aligns z, and z,-,) followed by a rotation about the rotated

z,-,) by an angle 0. (which aligns the other two pairs of basis vectors). If the first

rotation is represented by the matrix 40, and the second by 0,, then1 0 01
40, [0OS C"a -- sin ,I

LU hDl ( S COsiQ J

sin 0, Cs i 01, s in , co , 0]
I0 0 i

A, 0,0,1

Cos 9, - sin e, cos a, sin 0, sin a, 1
= [sin 0, co , cosa, -cos , ina ',]

0 sin a, cos a,

The translational orientation of two adjacent systems is completely described by

a, is the distance between the origins of 0,_ and 0, measured along x,;

a, is the distance between z,_1 and x, measured along z,-,.

Since a,, z,, and z,-, are fixed in 0,, a, is constant. z,_1 lies along the joint axis of joint i,

so if joint : is translational 3, will be the joint variable, otherwise s, is constant.
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The following link i vectors, referenced to ,_ permit a convenient specification of the

translational relationship between adjacent coordinate systems

P, a vector to origin 3. from 0,_

r a vector to the center of mass of link t from 0,

3, = p' + r1 , a vector to the center of mass of link i from 0,_.

From the above remarks it is clear that

p, = s,ATz,_ + a,x,

but in virtue of the form of A, e,0. and its constituents, we have

A - Tz,-,

which is body-fixed in f Thus p" is composed of a part a z, which is fixed in 0, and

represents (constant) translation normal to both z 1 and z,, together with a part s,1 rz,-

whose direction is fixed in ' and whose magnitude represents translation along z_ referred

to . If joint 2 is rotational then s, is constant and so therefore is p. else p: incorporates

the result of translational joint motion at joint s.

The rotation matrices A, may be cascaded by defining the rotation matrix 'I,, which

maps 'u,,, into ' ,. Since the inverse of an orthonormal matrix is equal to its transpose it

follows that

= A, ... A if i <j,

IAT ...AT if, > j,

the superscript T denoting transpose in either matrices or vectors.

From the above it is clear that

'W,

22



----------- ... .. ..

and

_ (,wk)('w,)

IC '), C'),C ') I

In the sections on logarithmic recursion it will be necessary to introduce another notation

for consistency with the formalisms developed there. We will use W,,, to denote the napping

from CQ to 0_1, so that

Also in the sections on logarithmic recursion we will slightly abuse the dot notation

for vector time differentiation (i.e. . and ;.. Elsewhere in the literature this denotes

differentiation in the inertial frame, with differentiation in a rotating frame indicated by ' or
.. We will take ALL terms ,,, to denote differentiation of u,., in C, . This becomes

equivalent to the standard notation at is0,, the case of interest, and eliminates proliferation

of ' or " superscripts in much the same spirit that taking v eliminated superscripts of 0.

This is explained more fully in Section IV.
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Table 11.1- Summary of Notation Used

We define the following:

mi the mass of link .,

r. a vector to the center of mass of link J from the origin 0,

P a vector to the origin 0, from the origin 0,-,

..9 accounts for gravitational acceleration, g if 0 = , else 0,

S p+ r+ , a vector to the center of mass of link 3 from the origin C.-,

J the angular velocity vector of link .j,

JJ the inertial tensor (with respect to its center of mass) of link 3,

q, the joint generalized variable for joint j, 6 if rotational and s if translational,

the joint generalized actuator force at joint j, torque if rotational and force if translational,

J tilt LuCI, iuiui (lxt.iumuiiy yravity) ois link 1,

N, the total torque on link .,

L constraint force (unknown) exerted on link j by link j - 1,

n, constraint torque (unknown) exerted on link j by link j - 1,

A] a pure rotation matrix mapping vectors in 0, into vectors in C,-l,

'W a pure rotation matrix mapping vectors in 0, into vectors in 0,,

W,,' = '-W,

Ua,b u,.b differentiated in 0°-, and referred to Ob.
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Figure 11.1 - Notation of Manipulator Parameters
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t
3. PARALLELISM WITHIN A NODE

'This section will investigate the effect of exploiting parallelism within a node (joint), while

remaining within the general linear recursive framework. As a conceptual aid in this section

we assume that there is one group of parallel processors for each joint (node) on the forward

and the backward recursion. However, since only one node is active in the computation

of any given variable at any one step, and all nodes are identical, an implementation could
be constructed using only one processor group by connecting the output back to the input
through a buffer. Details of how this might actually be done are explored in Section VI. If

only one processor group is used, computation of one set of joint torques must be completed

before the next can begin. Otherwise, with one processor group for each joint (node), it is

possible to systolically pipeline successive sets of joint torques at intervals of 1 Mult + 3

Addns, or 4 Flops.

The linear recursive structure of the Newton-Euler computations may be shown as a

directed graph as in Figure 111.1. The essential structure of the algorithm can be clearly

seen - acceleration is propagated outward (incorporating at each stage the next joint

acceleration) and forces are thereafter propagated inward (allowing calculation of joint

torque at each stage). Nodes repiesent the total processing associated with each joint in

the forward or backward recursion, and directed arcs represent data dependencies. It is

clear that reducing the computational time incurred at each joint (node) would imply a linear

reduction in the total computational time (a constant factor speed-up). For reasons which

will be explained in Section IV, a double subscript is used in Figure II1.1: thus (0,i) on

the backward recursion, and (j, n) on the forward, denotes the variables output by nod& j.

Non-systolic and systolic arrangements are indicated in Figures 111.2 and 111.3.

Tables 111.1 and 111.2 show the detailed internal structure of each node of the directed

graph of Figure 111.1. The computation times given in Table 111.1 reflect the times represented

by the indicated operation. In general we follow Hollerbach[16] in accepting the principle

that economies in computation should be explicit in the formulation rather than implicit

in the programming. and Table 0.1 reflects his analysis for the fully general 6-link rotary

manipulator, It should be noted, however, that by "hand-tailoring" the computation to
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account for special cases the computational cost can be frequently be reduced below that

shown in Table 0.1. For example, if the particular manipulator configuration is such that

some of the constant angles a, are multiples of 9, then the factors cos a, and sin a, become

0 and ±1 and multiplication by the rotation matrix A, can be reduced from 9 Mults and

6 Addns to 4 Mults and 2 Addns. Since y, - p,' 0, vector cross products involving p,

can be calculated with a special sub-routine in only 4 Mults and 2 Addns. Several other

optimizations are possible, e.g. see [18],120],128],129]. Many of these apply to the Stanford

arm, which therefore has a substantially lower computational cost than the fully general

case. Newton-Euler dynamics particularized to the Stanford arm requires only 308 Mults

and 254 Addns [28], and Kane's dynamics requires only 646 Mults and 394 .4ddns [201. A

rotary manipulator particularized to a spherical wrist and non-spinning base requires only

448 Mults and 361 Addns [18]. Our analysis captures the fully general case with time bounds

substantially below these, and in any event the intended implementation in VLSI argues

strongly for a regular and systematic treatment which avoids all special cases.

The times shown in Tables 111.1 and 111.2 reflect, for each variable, the rotational case

only. The extension to the translational case follows directly in analogous fashion, and the

time bounds stated remain almost exactly the same with only minor variation in the constant

term.

Note that, while on either the torward or backward recursion, the linear coefficient in

the total time cost is determined by the time required to propagate the recursion variables

through a single node. More specifically, this is the interval between the time that the

recursion variables become available to one node and the time that they are made available

to the next node. However, nothing constrains all of the variables to be made available
at the same time. Since the different recursion variables are used at different times in the

computation, relative delays are acceptable provided that each variable is available by the

time that it is required in the computation.

If the different variables become available to a node at staggered times (and in turn are

made available to the next node at equally staggered times), the linear time coefficient is

determined by the longest time required to propagate any single variable across the node.

In determining this time only w,, w,, p,, I,, and n, need be considered, as the other variables
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are not propagated down the recursive chain.

Examining Table 111.1 for the Newton-Euler formulation, it is clear that (given the proper

staggering constant offsets) no variable on either the forward or backward recursion requires

longer than a matrix-vector multiplication and a vector addition to propagate through a node.

This is evident because each propagated variable becomes available to the (i + I)'- node

one matrix-vector multiplication and one vector addition after it is made available to the i t
h

node. Thus, the time required for the entire dynamics calculation may be reduced to

2n . (MV + VA) + C

where (Afl') and (VA) are respectively the time required to perform a matrix-vector mul-

tiplication and a vector addition, and C is a constant which accounts for initiating the

calculation.

This is the case even though each individual variable may take longer than (MV + VA)

to compute. Table 111.2 illustrates this arrangement graphically. The times when each

of the variables become available are shown in Table 111.2, as well as the intermediate

partial results. For simplicity of presentation in Table 111.2. a timing model is used in which

I Alult ==- 1 Addr. 1 Flop. This metric will also be used to establish the relative times at

which various partial results are computed and made available.

.,, depends on nothing except w,_1 and z,_1 4,, and requires time (MV+ VA) to compute

once these are available. It is clear that successive values of w, will become available at

intervals of (MV + VA), since each depends upon nothing but its preceding recursive

variable value and the input. , depends on w,_1 as well as on a,_1 and z,_ 1 ,. However,

w,_ and z._14, are required in the computation well before , Given the availability of

{.,} at intervals of (MV + VA), any w,-dependent intermediate partial results required by

k, can be calculated before ,_j becomes available (by delaying ) if necessary, as will

be seen below). These intermediate results already computed, when i,_, does become
available it will be possible to compute d, in time (MV + VA). Meanwhile computational

precursors to c, have been similarly calculated, so that when (i, becomes available it is

then possible to compute C,+, in time (MV + VA); and so forth. In this fashion, it can

be seen that the availability of {w,} at intervals of (MV + VA) implies the availability of
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{,,} at similar but offset intervals. By a similar reasoning process, both of these imply the

availability of {,} at intervals of (MV - VA). The structure and timing which realize this

are shown in Table 111.2. Similar considerations would hold for the forward recursion.

The availability offsets and the constant C may both be determined from Table 111.1. This

is done in Appendix A, where the appropriate offsets are shown to be

Avail(c,_,) > Avail(w,_) + VC + VA ()
Avail(,_,) Avail(w,_I) + 2VC + 3VA

Avail(,_,) > Avai(C,) + VC + 2VA.

Avaoi(n,+ 1 ) > Avai (f,+,) + VC + VA. (***)

The three equations above, (°), ("), and (°), define the constant offsets or relative

delays by which the propagation of the Newton-Euler recursion variables should be staggered

in order to achieve the stated time bound. Note that if computation is allowed to proceed

on a scheme whereby a node operates on its inputs as soon as the data becomes available,

then these offsets will be naturally set up and maintained by the inherent computational

delays shown in Table 111.1.

Next we determine the constant C by showing when rl, the last generalized joint force

of the forward recursion, becomes available as output. This may also be done from Table

111.1, and details are also shown in Appendix A. There it is shown that. assuming all input

values become available simultaneously at time t = 0, the time required to calculate the

Newton-Euler dynamics exploiting maximal linear parallelism is

2n.(I Mutt + 3 Addns) + (5 Multi + 9 Addna).

Due to differences (not requiring additional computation by the host) in assumptions about

the form of the input and output (not in the computation), this is slightly lower (by 2 MuLt +

2 Addns) than given in [25). Specifically, we assume that the input buffer will deposit q, and

q, as the third scalar coordinate behind two pre-stored scalar zeroes so as to make available

the vectors z,_14. and :, 1 4, directly, and that the output buffer will directly return the third

scalar coordinate of f, (for translational joints) or n, (for rotational joints) as the indicated

joint force or torque. This input/output convention avoids the algorithmically indicated cost

of SV and VD without introducing special cases into the computational structure.
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Table 111.1 - Relative Time of Linear Data Dependencies

Linear Backward Newton-Euler Recursion

Var. Waits Ont Time at Step End Step Costt
W, a = Avail(w,_3) Input T, = z,-14, 000

a - VA T 2 = w, 1- + T VA

a+MV+VA w, = AtT2 MV

w, a = Ava:l(w, 1 ) Input T3 = ,,, ...

Sb= Ava l(;j,_I) a+VC T4 =,W,_, XT, VC

a + VC 4- VA T-, T.-, + T, VA
Smax(b,-a -- VC. -t V A) V VA T,, T-, q- +U., -- VA

ax(b, a-i- VC+ VA) ,= A,'T, MV

VVA

+MV + VA

Ic + VC T-,= w, x p: VC

+d Aail(,,,) c+ 2VC TS -, x T-' VC

e Avatl(O,_) d-+ VC T,. = r, p" VC

rmax(d - VCc -+" 2VC)+VA T., -- T, VA
Af MV T,, AipO_ MV

max(e f AI,d j- VC + VA, T1 U-- T )IT VA

c-- 2VC + VA) + VA

r, c =Avat1(w,) c +VC T12 = W, X r, VC

d -- Avasl(,;;) c + 2VC T11 = wX TJ2 VC

f=Avatl(O ,) d +VC T14 = CX r, VC
max(d --+ VC, c + 2VC) + VA TIS = 'T3 + T,,4 VA'

max(f, d -+ VC +- VA, " i, = TIS -+ 0,- VA4

L c + 2VC + VA)+ VA

t See end of table (continued next page).

'Avai(X,_,) = t" means that variable X,-, is made available to the 011 node at time t (on the
ackward recurson; substitute X,+, on the forward recursion).
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Table 111.1 - Relative Time of Linear Data Dependencies (continued)

Linear Backward Newton-Euler Recursion (continued)

Var. Waits On Time at Step End Step Costt

F, g Avatl(i,) g + SV F, = m,F, SV

N, c = Aval(w,) c-+ MV T 16 = J,w, MV

d =Avatl(cw,) c+MV+VC T17 W, X T16 VC

d+MV TS =J, , MV

max(c + VC, d)+ MV +VA N=T 1 7 + T VA

Linear Forward Newton-Euiler Recursion ____

Var. Waits On Time at Step End __step Costt

f f = Avail(f,+,) h M V T A,+,_f,,. MV

h M MV ; VA -f,-= F -+ T_ VA

n h Avail(f,-,) already computed ' 7T2o s × F'. (VC*)
k Avatl(n,.,) airfady computed *= 7i -- N, (VA*)

-Mv + VC _ p: X Tiq VC

h N MV - - VC - VA I T _,, ,. VA

i k + MV T 2 4  A,+
4

n,+
1  

MV

max(k, h + VC + VA) n, = T 23 + T 24  VA

t+MV + VA

(that is, computable before the recursion reaches the node, except at the initial node)

t VA =tme cost of Vector Addition
VC =tme cost of Vector Cross product
SV = time cost of Scalar multiplication of a Vector
M V = time cost of Matrix multiplication of a Vector
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Table 111.2a - Timing of Linear Newton-Euler Backward Recursion
Timing of w, and L,; n = 4, rotational joints

WO = Wbase, W0 C Jbase

(For simplicity here, 1 Mult = I Addn = 1 Flop)

VA ,, 'A(;), + z, ,
WO + Z041 VC = T,-1 Z q,)MV v ~ -+w,-1 X z,_.1 q,)

2- WO X Z0o1

3- MV VA

4 - __W1 VA 01 +l - o

6 VA w X z 1 2  MV

7 MV VA W1I

VA
V A 2 + L,

9 VA W + Z 2 4,1 VC

MVVAH w, x zVA MV
11 _ M A . -- __ .

12 -VA

13 VA W3 334 wW3X 34-

14- W3 X z MV
15- MV VA 04 "- _

16 _VA

17 .

18- MV

19.

20-

21 -

22-

23-
I 24 -

25-
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Table 111.2a - Timing of Linear Newton-Euler Backward Recursion (continued)

Timing of 0,; n 4, rotational joints

(For simplicity here, I Mult I Addn I Flop)

0_

1_

2_

3-

5 _ _ , x p -A ',

[F, =ii iii+,j = ' + A; ,_'
5- 

xp p,
6- VC
7 -_ -- w X p,

8 _ VC VC|9- _1 -. x Pl XMV

10- VA,~ I A,' PO

VC VA11 VC W2 X P2-

12 VC VC }I

13 62 -2 X P; MV

14- VCVA 2 VA

16 VC VC

17- 63 -. X P; MV

2, VAA-; 19- W4 -- P4 x ___3

-"20-_ VC VC
I.21_ -. 4 X P; MV

VA ATp
22 -_ 74 4

I 23__ VA _

24-

25-
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Table 111.2a - Timing of Linear Newton-Euler Backward Recursion (continued)
Timing of r,, F,, N,; n = 4, rotational joints

(For simplicity here, I Mult = I Addn = Flop)

0_
1__

2__

4 _ P, X r, 4
4- + "

5-

6-
MV

Vc - F+, J"wJI MV 7

S VC Vc Vc

10 _ I- _ -

VA L MV VA N,

VA KNi2 _VA J2W2

13- vC VC v EF, VC MV

15 VA MV VA - N2

15 -_ C _--

16 VA f2 JW3SVIF MV

17- VC VC L F2 VC

18 - -. J3W 3
VA MV VA--N

19_ VC N3

20 VA F3 4W4

svFF MV
21 - VC VC _ F- VC

22 .... J4w4V- VA VA N4

_23 -_ N4

24- VA i4

25- SVL F
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Table 111.2b - Timin9 of Linear Newton.Euler Forward Recursion
Timing of f,, n,; n = 4, rotational oints

(Us = f,,., n5 = n,, ; ,= [0,0, 1] n,

(For simplicity here, I Mutt = I Addn = 1 Flop)

f, fa,+,,

21 n, A

23 -__ +p,* x (A,+./'.+,)

2. MV +N, 4- s; X F.
24-

25- Af.
VA26 -- f4--

27 - s: x F, VC

28 - MV VA +N4 p; x A.fs MV

29 A 4f 4  An 5

VA VA
30- f3 VC V[n4

31 -s.F; VC

32 MV VAL+N 3 -pxA 4 f 4 MV

33- A, f3  VA L . A 4n4

i34- VA _12 VC _ n3

35- V K; x F2  VC V

36 MV VA p x Aaf MV

37- A 2f2  V _ An 3

38 VA Af VC V 2

39- a, x F VCVAK+ ~ :L
40 - +Nx x A 2f2 MV

41- VA - A 2n2
42- __VA nj

43-

44-

45-

46-
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Physical Structure:

I
Conceptual Structure:

Aa F2 ,9N

F. F3 all N

• (Time Intervals 2n(MV +r VA) + C per complete set of joint torques)
. (Only one physical processor per variable - see also Figure Vl.)

• . . Figure 111.2 - Non-Systolic Pipelined Process, n ---4
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(Time Intervals I(MV + VA) per complete set of joint torques)

("Bkwd," = backward recursion processor for joint s, "Fwd," a forward)

Figure 111.3 - Systolic Pipelined Process, n = 4
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4. PARALLELISM EXPL OITING LOGARITHMIC RECURSION

The preceding section showed that parallelism potentially leads to considerable time savings

even within a linear recursive framework. This section will show that the linear time

dependency can be improved. By a suitable restructuring of the basic computational

framework within which the nodes are embedded, together with a corresponding revision to

the recursive forms of the equations, an .2(log(n)) total time may be achieved. For convenient

reference, the formulae are collected in Table IV.I.

The basic intuition is illustrated in Figures IV.1.a and b, applied to n consecutive
multiplications. If these are performed serially, as in Figure IV.a. then time _2(n) is required.
By processing in parallel (Figure IV.b). time f(log(n)) may be achieved. It is easy to see

that general recursive calculations of the form

:, az ,, + b,

may be performed in time .2(Iog(n)).

To exploit this potential in the inverse dynamics case, however, it is necessary to

generalize the linear recursive equations. The linear form may be regarded as an operator

( which maps a variable (X.) representing the base through (i - 1)-!'A inputs, together

with thp ,L" innit (I intn . I rnnrpSQntinn thp hse thrmisnh ,± inn tst

X,_ EDI, X X,.

For logarithmic recursion, an operator g is required which maps a variable (X,.k) repre-

senting the aL-- through kW inputs, together with (X(k+),b) from the (k + 1)L through bft

inputs, into (X,.b) representing inputs a through b:

X..k (9 Xlk+l).b - Xa.b.

The linear recursive equation is a special case of the more general logarithmic form in which

a = 0, k i - 1, b = k + 1 =i, X,,, = I,, and computation proceeds serially, so that

Xi = Xo,

= XO,- 1 ) 9 X,.,
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This is the meaning of the double subscripts in Figure 111.1.

What physical meaning can be assigned to this? We will return to this question during

the analysis below, where the discussion can be illustrated more clearly by reference to
"real" physical quantities. For the present, however, the recursive forms (both linear and
logarithmic) may be thought of as mechanisms for relating physical parameters at one

coordinate system (or link or joint) to physical parameters at another, by abstracting away

the intervening links of the physical manipulator. Very loosely speaking, the goal in both

cases is to relate the acceleration of each link to the acceleration of the base by abstracting

away the intervening joint accelerations, then to relate the distal forces and torques acting

on each link to the distal forces and torques acting on the tip by abstracting away the

intervening joint forces and torques. This done. the joint forces and torques necessary to

sustain the desired acceleration may be found from a purely local application of Newtonian

mechanics. We will use the term "relational parameter" to refer to a quantity which relates

physical parameters at one coordinate system to physical parameters at another.

The linear and the logarithmic recursive forms differ principally in how they approach

the problem of relating physical parameters between coordinate systems (or links or joints).

The linear form relates the base (backward recursion) parameters to the first link parameters

to obtain relational parameters of the form ', (-- X 0 .1 ). These in turn are related to the

second link parameters to obtain relational parameters of the form X 2 ( X.), which relate

the second link to the base. In sequence, the relational parameters Xo,3 , XU.4 -... Xo,,, are
formed, which relate respectively the third, the fourth, and the nL-! links to the base. The
process may be viewed as one which, at each step, "glues" the next link parameter onto

the current relational parameters to produce the next relational parameter, thereby relating

the base to the next successive link.

In contrast, the logarithmic recursive form may be viewed a-- a mechanism for "gluing

together" any two adjacent relational parameters. Parameters of the form X,,, reflect only

the input values at link (joint) s; those of the form X,., reflect (abstract away) links i through

,. At the first step, adjacent pairs of (backward recursion) relational parameters of the form

X 2, 2,- X 2,-t 1.2,41 are related in parallel to form the relational parameters X2.,.2,+1. Thus on
the first step we relate alternating pairs of adjacent links to form the relational parameters
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X0. 1 , X2.,, X 4 .. X,_-.,, (if n- odd). At each jL.!L succeeding step, all adjacent pairs of

the form X.,k, Xk+I.L are related in parallel to form the relational parameters X,, where

a = 2'm, k = a + 2) - 2, k < b < a + 2) - 1, and 0 < m < n/(2j). On the second step,

X 0 ,,, X 0,3, X 4 .6 , X 4,7 ... X.-3,.-1, X,, 3 ,, are additionally formed; on the third step we

also pick up Xo,4, X 0 ,5 , X0 ,6 , XO,7, X8 12, ... , X,-_..._], X,,- ,.; and so forth. This process

is illustrated in schematic in Figure IV.2 (only the backward recursion is shown). There,

n = 7, so the backward recursion would take three steps as shown. It is easy to see that in

r9og1(n+ 1)1 steps, all (backward recursion) relational parameters of the form Xo.,, 0 < i < n,

may be formed. But as noted above, these are just the linear recursive variables X,. Thus

the backward recursion may be performed in real time in :(log2(, + 1)) steps using parallel

computation. The same is true of the forward recursion, hence of the Inverse Dynamics

computation.

The logarithmic recursion operator must possess the following recursive properties:

(a) X,.b must be computable only from inputs a through b,

(b) X..b X,,,, X(A +]).I, must be computable from variables of the

form Y,.A or Y + )., or previously computed Z.. or non-recursive values,

and

(c) X0 ., on the backward recursion, or X,.,, on the forward recursion,

must be equal to the value of the linear recursive variable X,.

These properties will allow the use of a structure analogous to Figure IV.2.

The remainder of this section will be devoted to the derivation of appropriate logarithmic

recursive formulae. Separate sets of formulae will be developed for the forward arid the

backward recursion variables. As in Section III, it is necessary to consider only those

variables which are propagated the length of the recursive path. For the Newton-Euler

formulation these are w,, , pj,, f,, and n,. These formulae are collected in Table IV.t.

Suppose one wished to find the value of non-propagated values, for example to find i,,

for node m on the forward recursion path. One first computes wo.,m,(O,., and p0, using the

logarithmic forms given in Table IV.1. By the remarks above, these are exactly win, ,, and
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p,, of Table 1.1; and the time needed here to compute all three is O(log(m)). From these, i,,

may be computed in constant time 0(c) using the formulae in Tables 1.1 and 111.1.

In the derivations below, for each linear recursive variable, our general strategy will be

as follows:

(a) propose a closed-form, non-recursive formula which is equivalent

to the linear recursive formula of Table 1.1,

(b) show that (a) is correct by showing that it is a fixed point of the

linear recursive formula considered, and holds for the zero term (this is

equivalent to an inductive proof).

(c) propose a non-linear recursive formula which is equivalent to (a)

ata Oand b- s, and

(d) show that the resulting combining operator & is correct by

showing that it preserves the form of the formula in (c).

The reader may verify that for a 0 0, k t - 1, b k + 1 t the formulae reduce to Table
1.1.

It will be necessary to introduce several auxiliary variables not directly corresponding to

any variable in the linear recursive formalism. There we will be concerned to show only that

the asserted combining operator is correct.

In the following we assume a < k < b throughout, the case of a = 6 being found as a

special case of (c) above. In order to cover both the rotational and translational cases, it is

convenient to introduce
=1 ,joint i rotational,

,0 joint i translational.

42

.1 >



NEWTON-EULER BACKWARD RECURSION VARIABLES:

Introduce the auxiliary variable W,,0,, which will represent products of the coordinate

matrices A,. Notation sometimes used elsewhere in the literature is -W,,, but we write W,.b

here for consistency with other variables. Let

b

W..1, = f A,
a

= W,.A II + J).h

It can readily be seen that W, * maps the coordinates of a vector expressed in the system Ot.

into coordinates expressed in ',, . The physical significance of the combining form (& is

to compose a mapping which relates , and C0 with a mapping which relates OA and 0,,_-

in order to produce a mapping which relates the coordinate systems O and 0_I. Thus

WK. = A,, and W,,... I (the identity matrix).

In the case of W,.,, the combining operator 0& is matrix multiplication and

W.., () Wk--,.b - Wa.kWkI 4,.b

Hereafter we will merely display the combining form without drawing explicit attention to the

operator 0, acknowledging implicitly that X,, - X.,A 0 Xk+,. I

Next consider the angular velocity w,. We define z(_, to be the axis of rotation of the

base system and 4o to be its magnitude, so that w0 = A Tz - 1 )q0 . This will be non-zero if, for

example, it is desired to include the Earth's rotation in the calculations (perhaps for satellite

applications). If one creates a fictitious frame 0(-,) at the Earth's center, then zt_ 1 ) points

through the North Pole and 40 is equal to the Earth's angular velocity.

We show that w, satisfies the following closed-form non-recursive formula

-3.-a
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because this is a fixed-point of the recursive formula for W, given in Table 1.1.

A 'A WT,,a z q3 4 ,z,
3,-0

- AT(w,_ 1 + zj_14,)

In order to produce an identical form at A 0 and b i, define

b

kbW

=-W jk .1).bW..k "+- W k+ 1).b

This is the combining form for wq.h.

., expresses the angular velocity of relative to 0.,1, referred to ,. Thus wI., is

the angular velocity of 1^ relative to the base frame, and w0., also accounts for the rotation

of the base frame (if , = 0 then these are the same). The combining form for ',.. is a

means of composing the angular velocity UA+1.1, of 01, relative to 0, with w,., that of OA

relative to . in order to obtain the angular velocity of J: relative to , In particular,

0. The rotation matrix 14'1. in the formula transforms w,, from 04 into j- the

system to which w,+ . is referred.

Similar remarks apply to the physical significance of , . etc. Derivations of the

other propagated recursion formulae, shown in Table IV.1, are given in Appendix B. Note

that wo is the angular velocity of the base, non-zero if the Earth's rotation is modeled as
in some satellite applications. Also, p0 is the acceleration of the base. Typically this is the

acceleration due to gravity at the site. If one took w0 - 0 then P0 may also include a term for

W0 X (Wo x P;), where p* is a vector from the Earth's center 0 _,) to the site; this accounts

for the centripetal acceleration arising from the rotation of the Earth. One may account for
gravitational acceleration by taking 01 = g, else = 0 for t 4 0. The term involving j0 is a

technical artifice to account for 0. cleanly, and vanishes in the combining form.

As mentioned in Section II on notation, we slightly abuse the dot notation for time

differentiation (e.g., Ub,.) to indicate the time differentiation of u,.t from within the coordinate
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system C,,. This is equivalent to the standard notation at a = 0 (the case of interest), and

results in a less bulky notation. To illustrate this usage, we consider an alternate derivation

of ,,, where denotes time differentiation in 0,., and 'u,j, denotes u,., referred to 0,.
d(a- )bO~

wa'b - wa b

dt

k o*+ + dtl~

= W TA + ,.j 4 ,.o .+ (W AT , .W ,,.k ) X W A+ ,. h + (; k + 1.,

which is our combining form.

NEWTON-EULER FORWARD RECURSION VARIABLES

On the Newton-Euler forward recursion, the coordinate matrix products of interest will

be W,, . -. 1 instead of W, ,.,. This is because we wish to transform from 0 ,- to 0.,

instead of from 0, to 0,.. Intuitively speaking, we are now working from the tip of the

manipulator back toward the base. Hence we are desirous of transforming some relational
parameter XA_1.1. which abstracts the subchain from coordinate system (or link or joint)

k 4- 1 to b and is exnr4Ps.ed in , intn th. nitivalnt nijantitv Pxnrp.q d in (0 Th= Y'.

so transformed can be combined with X,.A, representing the subchain between a and k

expressed in 0., to yield Xa.b expressed in C.. We will here assume that the necessary

products W. 1 .A+l are generated on the forward recursion in accord with the formulae

above. This requires a minor abuse of notation, as the combining form would then be

W+.+ = Wo+,+l (9 Wst lior+i

but we have agreed that our combining forms will be

~Xo.b = xo.k (9 xk,..

If the reader finds this troublesome, we suggest that she or he make the substitutions
a' = + 1, b' = b + 1, and k' = k + 1. This done, one need only remember that

W.,,., = A.+,.
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Table IVA1 - Logarithmic Recursive Formulations

Logarithmic Backward Recursion:

=11 joint a rotational,

0 ,joint a translational.

A,, if a =b;

W~j' if a 34 b.

if a b

w A-4I ).tWj +~ W(k+1 ),h if a b .

tT,,A' (,,if a

W( bJ~ + IW'(k+i),W.A&) X W~~. -+ (+Ib if a 34 b.

acAT~_140if a= b;

Qa.b=

{W(k+I),bQalk + Q(k+l),b if a y b.
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Table IV.1 - Logarithmic Recursive Formulations (continued)

Logarithmic Backward Recursion (continued):

{p: if a = b;
R.,b =h

WT,,+l),bR.,k + R(k+),b if a 6 b.

x p,, if a = b;

W1A+ 1)' S<. -+ (W .+ I," ) x R1j+ 1 .j. + S(k-4 i).b if a b.

+X(wd..,Xp,)+A TA7_,+2,La Qa.. if a b;

01, .+ ,J- .. pl W. n- +2t ,

P,,. = I +I. ,. -r P + 1.1 + ( W ~ + ,b .A,.) x R (k+ ).h

+ -+ . .)× ( k+,).tW,.,) x R(A+,.p -2(S,*+j, + O +,,)) ifa b

Logarithmic Forward Recursion:

F. it a = b;

f..b { W+,k+lf(k+l).b + f.,k if a 3 b.

+ a: X F. if a = b;

n j 1.o + wo+,k+,((k+,),h + (ATROA) X f(k+ip. ) if 0 b.
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Figure IVAla - Serial Vs. Parallel Multiplication (Serial)

Figure IV.lb - Serial Vs. Parallel Multiplication (Parallel)
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5. OPTIMIZED LOCARITIIMIC RECURSION

Because here the extension to the translational case may not be entirely obvious, the equa-

tions and analyses presented cover both rotational and translational joints in manipulators

composed of mixed systems. Analogously to Section III, as a conceptual aid we assume that

there is one group of parallel processors for each node shown in Figure IV.2, and also one

group for each node in the similar forward recursion. However, only one row (tier) is active

in the computation at any one step, and all tiers are identical. Thus an implementation could

be constructed using only one physical device for each pair of joints of the manipulator,

by connecting the outputs back to the inputs through a buffer. Implementation details are

expanded further in Section VI. The comments about the 4 Flop systolic pipeline interval,

found in the introduction to Section II1. also apply here.

The detailed internal structure of a node is presented in Table V.1, which is analogous to

Table 111.1. Note that the formulae presented in Table IV.1 for the forward recursion require

calculating 14,. and R,,., again, exactly as was done on the backward recursion. These

have no interesting data dependencies, do not bound the computation. and are computed

exactly the same on the forward as on the backward recursion - thus for conciseness they

are shown only once in Table V.1.

Deidy conditions ior the iogarithmic case proceed as snown in Appenaix C, simiiariy to

Section III.

Since it is possible to satisfy the minimum delay conditions, propagation occurs at a

rate of (MV + VA) per node. Assuming that the delay conditions are satisfied and that all

input becomes available simultaneously, it can readily be seen that

Avail(Xa.b) Avad(Xa) + flog2(b - a + 1)1(MV + VA).

Thus in particular, if X, is the linear recursive variable corresponding to X,h, then X, =X0,

so
Avat(X,) = AvaiL(Xo.,)

= Aaii(X,,,) + flog,(, + 1)1(MV + VA).

Assuming a maximally parallel implementation as before, the total time of the calculations
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is shown in Appendix C to be

2,1og.,(n -- 1)1(1 Mult + 3Addns) + 5 Mults -10 Addns.

For the same reasons as in Section III this is slightly lower (by 2 M .Its 2Addns) than given
in [251, due to differences (not requiring additional computation by the host) in assumptions

about the form of the input and output (not in the computation).
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Table V.1 - Relative Time of Logarithmic Data Dependencies

Logarithmic Recursive Forms; a - b

Logarithmic Backward Newton-Euler Recursion

Var. Waits On$ Time at Step End Step Costt
W .h a=Avail(W,) a + MM W,.W= W.,.W.+),. MM

w,,, a = Avazl(W,,) max(a, b) -+ MV T= Wf+.wa.- MV

b=-Avail(w,.j) max(a,b) + MV + VA w.1,=TI + Wk, I6 VA

a- Avatl(W.,) rnax(a,c) -t MV -T- WW . MV

b Avai(.xi...) max(a,b) j MV-4 VC 7T, , VCc :-:Avad(U..,) rnax(a + MV -t- VC, Tiz-T:+&, l., VA

b t MV + VC,c) -+ VA

max(a - VC-+ VA, ,.=T 2 + T VA

b -f VC + VA,

c) + MV + VA

a -- Avail(W,.) inax(a,d) + MV i ]T, =WL+ij.?,.- MV

d Avazl(Rr,,,) max(a, d) + M V + VA -- + R+ V A

S a ,.atl(W,.j inax(a -t- MV, b -+ MV, 7, -- 71 X 1?, VC
b Ata~i(wr.,) d) - VC

d Ava:t(fIKCj max(a, e) + M V 17- = bb, jMV
e Avasl(S,,j max(a + MV + VC, TS = T 6 + S+l,b VA

b-+ MV + VC,
d+ VC, e)+ VA

max(a + MV + VC + VA, S.,6 = T? + T8 VA
b-+ MV + VC-+ VA,

d + VC + VA,
e + MV) + VA

Qa, a Avail(W .,) max(a,f) -4-MV 9= wT+,.Qa.k MV

f = Avail(Q,.,) max(a, f) + MV + VA Qa. 79 + Qk+l.b VA

tSee end of continued table.
X=, both of X.,k and Xk+l,b
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Table V.1A Relative Time of Logarithmic Data Dependencies (continued)

Logarithmic Recursive Forms; a 3 b

Logarithmic Backward Newton.Euler Recursion

Var. Waits On$ Time at Step End Step 3ostt

.,. a - Av'. .) max(a + MV,c - MV,d) + VC To = T2 X R+l. VC

b = Avatl(w,.j max(e, f)-+-VA TI = S4 1.-, 4 Q k.. VA

c = Avaal(.,) max(e, f) 4 VA -+- SV T, 2T, I SV
4 vazI(R,.,,) 1max(a -MV - V C b-- MV VC. TI,: Te, i-TI.2.V

r Av::(S..) d- VC, et VA + SV,

f 4Avazl(Q..) . f. VA . SV) +-VA _1__ __

9 -ArazI(O,:.,) inaw(a A MV -+. VC, b - MV --t- VC, TI., T, x TI:j

d- 1 VC, e + VA -- SV,
f_+ VA + SV) -- VC + VA

max(a -- MV -t- 2VC + VA, Tis = To + T14  VA

b. MV -2VC -+ VA,

c MV +VC, d + 2VC + VA,
r VC-4 2VA+ SV,
f VC -- 2VA + SV) + VA

max(a, y) + MV T,,, = _V

max(a + MV + 2VC + 2VA, TITPk, = -,, + TI.s VA
b -+ MV + 2VC + 2VA,

c + MV + VC + VA, d + 2VC + 2VA,

e + VC + 3VA + SV,

f + VC + 3VA+ SV,g) + VA
max(a + MV + 2VC + 3VA, POab T16 + T17 VA

b + MV + 2VC + 3VA,

c + MV + VC + 2VA, d + 2VC + 3VA,

e + VC + 4VA + SV,

_f+VC 4VA+SV,9 MV) +VA

See end of continued table.

X.= both of X0.k and Xk+lb
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Table V.1 - Relative Time of Logarithmic Data Dependencies (continued)

Logarithmic Recursive Forms; a y b

Logarithmic Forward Newton-Euler Recursion

Var Waits Ont Time at Step End step Cost
f.. h = Avazt(f,. ,) h .- MV ii T_,_ = W,_.. I MV

h -MV - VA- t, ff.-T VA

n,, h = Avazl(f.,) (already computed *) R A,R,.e (MV*)

.laa(ri ) h VC -7-, T. f ,C

h V V VC T2- , T2 MV

rnax(i, h -MV-, V C) VA T., n,v T ,A

-max(t, h -VC + VA) n,,.= T.13 + T24 VA

___ - MV - VA _

(that is, computable before the recursion reaches the node, except at the initial node)

X,.,, - both of X,., and X ±1 .

VA time cost of Vector .4ddition
VC time cost of Vector Cross product
SI' time cost of Scailr rnult:phcatzon of a Vector
M V =-time cost of Matrzx multiplication of a Vector
M M =- tzme cost of Matrix Multiplication
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6 IMPLEMEN TA TION CONSIDERATIONS

As noted earlier, the main thrust of this paper has been an exploration of the extent to which

parallelism can be pushed in this particular domain. Nonetheless, we hope to indicate that

the physical requirements are not particularly excessive and thus this might be a reasonable

thing to actually implement. This section contains a fairly general discussion of hardware

requirements. Chip architecture is discussed in the next section.

Except perhaps for some variation in the constant term, the hardware sketched in

this section is intended to capture the maximally parallel nature of the algorithms and to

physically attain the stated time bounds It is always possible to deliberately sacrifice speed

and gain material economy by allowing hardware multiplexing in a partially parallel system.

The description of the algorithms, the data dependencies. and the timing, have been

developed quite generally in terms of matrix and vector operations. One can easily imagine

many different ways of implementing matrix arithmetic, however. The purpose of this section

will be to imagine these in sufficient detail to conclude that the algorithms proposed are

reasonable We also imagine that any actual physical implementation will differ in many

particular details from those presented here. That is. we expect that the details of the

arrangements and requirements which we display will change. but not by so much as t-j

IeusUki ilt YVtlld; L~.UbIulib imiippiidbie.

Much that we will observe, however, can be seen as a consequence of the macro-

scopic computational structure of the algorithm itself. Where possible we will conduct the

discussion at a level of matrix-vector arithmetic whose operators are expressed in differing

implementations, and we will seek to discover regularities which constrain the design across

different implementations.

We will generally worry about three main concerns which commonly dog parallel systems:

(a) internal buffering and storage of intermediate results,

(b) communication and bussing of intermediate results, and

(c) number of processors.

We will propose a general computational structure, then use that to consider requirements
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4
for internal buffering and storage. This will lead us to the communication and bussing

necessary to get the data to the appropriate storage locations. Finally we consider the

processing required.

We accept several intuitions commonly held in VLSI, including: as dimensions scale

downward complexity scales upward, which leads us to seek simplicity and regularity; and

as dimensions scale downward processing power becomes cheap and communication,

bussing, and buffering become the limiting factors. We are for now willing to assume

global communication (in particular, a global clock and a global reset signal). This avoids

many problems of timing and handshaking protocol. We further assume that timewise,

1 Alult = 1 Addn = 1 Flop This substantially simplifies timing, and would not be an

unreasonable simplification to impose on a (synchronous) physical implementation anyway.

In the discussion of buffering in particular, we will use this metric (together with the relative

offsets and more general timing developed in Sections III and V) to establish the cases in

which buffering is or is not required.

Note that the logarithmic formalism as developed in the text above required a separate

handling of the a = b case. This would certainly be the way one would build it from

multipliers and adders in order to achieve the tightest possible time bound. However, if the

most likely implementation of the logarithmic algorithm will be in VLSI or WSI it is here more

interesting to devise a single regular, systematic structure which uniformly handles both the

a = b and the a 5- b cases. Since a = b only happens once each direction we are quite

happy to purchase simplicity and regularity at the price of an increase in the constant term.

Appendix D presents a technical artifice by which we can make the a == b case look like

a3 b.

The conceptual structure of the computation was shown in Figure 111.1 (for the linear

case) and Figure IV.2 (for the logarithmic case, with only the backward recursion shown).

The processor nodes could be hooked up in a regular, regularly extensible structure very

similar to Figures 111.1 and IV.2. This would permit global pipelining of successive sets of joint

torques at intervals of 4 Flops. However, note that only one node (linear) or tier (logarithmic)

is ever active at any given point in the computation. We could therefore map our full

conceptual structure into a much smaller one, which buffers intermediate results in such a
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way as to use only one physical processor node (linear) or tier of nodes (logarithmic). This

would use much less hardware, but would imply that computation of one set of joint torques

must complete before the next could begin. The basic notion (which will be expanded

more fully in the discussion below) is shown in Figure VI.ia, for conceptual orientation. The

backward and forward recursion nodes are never simultaneously active, so processors could

be shared between them; see Figure VI.lb. The choice of architecture will depend heavily
on whether it is desired to systolically pipeline successive sets of joints torques at 4 Flop

intervals, or simply to calculate one set.

BUFFERING

As shown in Figure VI. lb, there are four sets of buffers and communication pathways with

which we will concern ourselves: input buffering, intra-node buffering, inter-node buffering,

and backward-forward recursion buffering. These may be roughly divided into internal and

external buffers. From input/output considerations we can put immediate bounds on the

amount of buffering external to a node which may be reqL'.;ed (this is input, inter-node,

and backward-forward recursion buffering). There are, after all. only so many variables

to transmit. The potential problem lies in the internal buffering within any one processor

node, for we have created a whole host of intermediate partial computations which have

complicated, intertwined data dependencies. The potentially massive buffering required for

these is actually very tightly bounded.

Input buffering requires storing the scalar values for z,- 1 4,, z,_1,. and A,, as well as

the manipulator configuration parameters (p , 0,, r,*, s,, z,,, in,, and J,) and the endpoint
values (wo,. cO. 0, ,/, and n,,+,), for a total of about 37n 1 15 scalar values. Buffering

within any one node in the linear case requires at most 15 scalar values of temporary storage

since (referring to Table 111.1) only w,, Ts, T1 3 , T., and Ti-, are not used immediately, but this

requirement can be met by simply latching the output of the sub-processors into registers

(as in the next section). This requirement is only 3 scalars in the logarithmic case (for TI),

and it can also be met by latching. Buffering between nodes is not needed in the linear

case. and requires about 54 scalars per node in the logarithmic case (if outputs are latched,

this can nearly be halved). Backward-forward recursion buffering involves at most only the
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passed recursion variables from each joint. (Additional intermediate storage is needed if

a systolic pipelined architecture is implemented, by about a factor of n, linear, or [log1 ni,
logarithmic.) Buffering requirements are considered in more detail in [251.

COMMUNICATION

We do not wish to propose a detailed communication protocol, only to show that the

requirements are sufficiently bounded that such a protocol could be devised. To develop

this. we shall discuss communication in terms of "wires" which are vector busses three

scalars wide. and not allow multiplexing of busses. In a real implementation, data on

the -vector busses three scalars wide" might be transmitted serially as three sequential

numbers over only a single real wire. Also in a real implementation, the busses might

be time multiplexed. Thus in the discussion below, the reader should supply her or his

own scale factor depending on her or his own implementation image. After developing

communication models for Figures VI.lb, we will show how the systolic pipelined structures

of Figures 111.1 and IV.2 have a regular, regularly extensible communication network.

As in the question of buffering, communication falls into that internal and external to a

node. The internal communications may be treated as comprising a fixed-size hard.wired

module in which the "wires" are laid down as dictated by the algorithm. The external

(,u iiiiiudiiiii mu.si uarry exiernaiiy bufiered data back and iorth between the process

nodes and the buffers.

Bounds may be placed on the internal communication by noting the following:

(a) as shown below (when number of processors is considered), none

of the linear forward or backward recursion, the logarithmic forward or

backward recursion, or the non-propagated, variables have more than 25

matrix-vector operators,

(b) no operator has more than two operands, and therefore

(c) no single module of the above (a) has more than 50 point-to-point

busses.

If the forward and backward recursion share processors then this must be increased to a
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maximum of 35 operators, hence 70 busses. The non-propagated variables have no more

than 10 operators, hence 20 busses, and these must be included somewhere as noted

above. We stress that this is an upper bound based only on the total number of processors,

and in any real implementation the actual number would doubtless be much smaller. This is

* because many intermediate results are used by only one operator, so we expect that many

operands could be transmitted by abutment, by simply connecting one operator's output

directly to the input of the next operator. This will, however, depend on the particular

implementation layout geometry chosen. The essential point is that there are easily few

enough wires to route on a point-to-point basis.

For external communication we consider the paths to and from the buffers separately.

We essentially argue that since the external buffering requirements were not excessive, the

communication required to support those requirements will not be excessive. No inter-node

buffering was required in the linear case, but the variables themselves must be transmitted

- this requires four vectors on the backward recursion and two on the forward. The

logarithmic case required buffering at most 18 vectors (54 scalars) per node per (MV + VA)

cycle (both backward and forward recursion), hence at most 18 vector busses. The input

values (18 scalars per node) and the endpoint values (wo. etc. - 12 scalars at the first

node of the backward recursion and 6 scalars at the first node of the forward) must be

communicated. Finaiiy, eacn node must eventually communicate 14, and N, to the backward-

forward recursion buffers.

The systolic pipelined structure of Figures 111.1 and IV.2 has particularly nice scaling

properties as n increases. These structures do not fold the nodes or tiers together as does

Figure VIl.a or b. In the logarithmic case, the reader should compare Figure IV.2 with

Figures VI.2 and VI.3. All show almost identical structure, but in different fashion. Figure

VI.2 shows Figure IV.2 expanded to include the forward recursion, and Figure VI.3 maps this

into a regular rectilinear array. This array is also regularly extensible as shown in Figure

IV.4. In all cases, circles are processor nodes which implement one complete node of the

logarithmic algorithm. Additionally, in Figure VI.3 squares represent passive buffers which

do no more than perform buffering for the variables transmitted from node to node, or from

backward to forward recursion. In the linear case the regular, regularly extensible array
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structure can be clearly seen from Figure 111.1. Passive buffering is only required between

backward and forward recursion processors. (We assume that the non-propagated variables

are computed from the propagated variables within the circles as appropriate, in the manner

discussed above). All variables pertaining to the same time slice are thus calculated in the

same node (linear) or tier (logarithmic), and progress node by node (tier by tier) until they1finally emerge as the desired torques. Each node or tier requires (MV + VA) = 4 Flops to

complete, so if different successive input values were presented at intervals of 4 Flops at the

bottom, corresponding motor torques would emerge from the top at intervals of 4 Flops. It

seems likely that the speed would be bounded by the input/output requirements of the host

system.

The thing to notice about the linear case in Figure 111.1 is that it is possible to restrict the

total width of the busses between successive nodes to the width required for the inter-node

communication of any single node, and as argued above this is finite and small. In the

logarithmic case (Figure VI.3), the maximum total width of the busses may be restricted to

twice this. Thus as the structure is scaled upward (i.e. as n becomes arbitrarily large), the

amount of area consumed by busses remains a constant fraction of the total area.

NUMBER OF PROCESSORS

Consider next the number of processors required. Tables 111.1 and V.1 were constructed

to represent exactly each operation at a node exactly once (except that as noted in Section

V. W1 ., and R,., are calculated in the same way on both the logarithmic backward and

forward recursions, so for conciseness were shown only on the backward - here they must

be counted in the forward recursion).

Since the time denotation given in Tables 111.1 and V.1 (MV, VA, VC, etc.) also

denotes the operation, we see that to propagate the recursive variables through a single

node requires
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Requirements Per Node -- Propagated Variables Only

Algorithm _ __ _ VA_ __VC SV-T MM Total
Linear Bkwd. N.E. 3 5 4 12

Linear Fwd. N.E. 2 4 2 8

,Logarithmic Bkwd. N.E. 6 12 4 1_ 1 24

Logarithmic Fwd. N.E. 5 41 1 1 11

Additionally, one must also compute the non-propagated variables (i,, F,, N,, and , from

Table 111.1). which is the same for both the linear and the logarithmic cases.

Requirements Per Node - Non-Propagated Variables Only

Algorithm MV VA VC SV MM Total
LBackward Recursion 2 3 4 1 10

Forward Recursion 0

The total per-node requirements are thus

Requirements Per Node - Totals

Algorithm MV VA VC SV MM Total

I Linear Bkwd. N.E. 5 8 8 1 22

L Linear Fwd. N.E. 2 4 2 8_________________________c 8 15 8 2

Logarithmic Bkwd. N.E. 8 15 8 2 34
Logarithmic Fwd. N.E. J5 4 1 11

An interesting optimization is possible in the logarithmic case if it is not required to

model the rotation of the earth and if n is even. Recall from Section VI that the recursion

was grounded in 0(_ ), and that we considered z(- 1 ) as a vector pointing through the North

Pole, etc. This was primarily done to provide a firm and unambiguous grounding for the

mathematical analysis, and in many cases may not be required. The logarithmic algorithm
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requires one processor node for each pair (or fraction thereof) of input nodes. If n is

odd then [(n/2)] = [(n + 1)/2i and the number of processor nodes is (n + 1)/2 regardless.

However, if it is even then [(n/2)1 = [(n + 1)/21 - 1, and by grounding the recursion in 00

we may eliminate one processor node. Except perhaps in satellite applications, typically this

loses nothing interesting anyway.

An implementation might involve a special-purpose VLSI chip capable of handling general

vector arithmetic up to and including matrix-vector multiplication. (This is chosen to be

midway between two alternatives - a matrix-matrix chip would be larger and could be

implemented using three of the proposed chips, while a vector-vector chip would be smaller
but three could implement the chip proposed.) The chip would incorporate 18 registers (for

storing three pairs of 3-vectors). 6 multipliers and 3 adders. It would also need a means of

sequencing these operations, as well as a means of decoding (perhaps from jumpers wired

to the pins) which particular vector operation to perform.

A natural candidate is a datapath chip, as in Barrett et al.[3]. As shown in Figure VI.5, it

consists of a Programmable Logic Array (PLA) which decodes micro-instructions to produce

control signals driving computational and storage elements attached to several common data

busses. By controlling when the storage elements read and write which busses, and when

and from which busses the computational elements obtain their operands and output their
rc,?9tiltf the nntftra nf tha nmnistftmnn nerfrme d n.chip scc!rtrclld Th,," Chn*, ,4Itt -h.;.

functions as an easily-customizable micro-CPU. This will be explored more fully in the next

section.

The reader can gain some intuitive feel for an implementation by turning to Table 111.2,

and imagining that the pages represent printed-circuit boards and the indicated operations

represent chips. The structure so composed would implement the fully systolic pipelined

linear architecture for n = 4. As suggested in the next section, several such Vector

Arithmetic Modular Processors (VAMPs) might be put on a single package, depending on

fabrication and processing technology, so the actual chip count may be lower. To avoid

these dependencies, the discussion following will be conducted in terms of VAMPs, each

capable of computing one vector result, and three together of computing a matrix-matrix

multiplication.
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Below. "Single Device" (single node, linear case, or tier, logarithmic) is a non-systolic

configuration. "Systolic Pipeline" in the logarithmic case requires only seven nodes total on

each of the forward and backward recursions, in light of the optimization discussed above

tor n 6 applied to Figure IV.2, plus six more if the a = b case is handled as in Appendix

D. The algorithms would require the following number of VAMPs

VAMPs* -Propagated Variables Only (n = 6) ________

1 I.
Algorithm Per Node Tier. n 6 Single Device Systolic Pipeline

Linear Bkwd. -12 *12T 72
Linear Fwd. 8 84

Logarithmic Bkwd. 26 78 78 3387

Logarithmic Fwd. 13 39 39 169

Vector Arithmetic Modular Processors -see also next sectso&

______VAMPs -Non-PropagatedVariables Only (n =6)

Aloih e Nd ir 6 Sngle Device1  SystolicPpln

Linear Fkwd. 10 60

Logarithmic Bkwd. 1020 20 60
Logarithmic Fwd. o0 0 0

The total requirements are thus

______________ VAMPs - Totals, n 6
Algorithm _ _ _ __eTirn Single Device _ _ _li ipln

Linear Bkwd. 22 *22 132
ILinear Fwd. 8 *8 48

LogarithmicBkwd. 36( 98 98[ 398
Logarithmi cFwd.113t 39 39 169
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Figure VIA4 - Regulaiy Extensible Logarithmic Recursive Graph
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7. A ROBOT CHIP

Having seen that the global physical requirements are not excessive, it becomes interesting to

look more closely at VLSI chip structures capable of physically implementing the computation.

It is clear from the discussion above that we require a chip capable of performing general

matrix-vector arithmetic. Within this section we investigate the computation and control

architecture supporting this requirement. We will sketch one architecture suitable for our

purposes, though of course there are others. As in the previous section we imagine that

any actual physical implementation will differ in many particular details from those presented

here, but not by so much as to render the general conclusions inapplicable.

Obviously such a chip will be more broadly applicable than just the inverse dynamics

computation, however, and we will seek to maintain a high degree of flexibility in our

implementation. In particular, we will seek to insure that:

(a) all chips used be identical, or at least interchangeable, so that

only one chip-type is required,

(b) the particular operation which any chip performs be programmable,

(c) the length of the basic time cycle, and the points during the cycle

when operands are read or the result written to busses, and which busses,

be programmable,

(d) the host computer be able to dynamically reprogram (b) and (c)

at will by simply writing the appropriate values to the n input buffers, in
exactly the way data is written to the device, and

(e) the control flexibility of (a) through (d) must not use any com-

munication wires or buffering other than those already required to support

the computation and discussed in the previous section.

Later in the section we will consider modifications to the bussing scheme discussed in the

preceding section. By relaxing (e), we will sketch an architecture whereby

(f) the sources of the operands which any particular chip accepts are

programmable (as in (d)), and
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V
(g) a limited error-correcting capability may be incorporated, so

that correct computation can often be automatically continued following

individual chip failures.

It should be explicitly observed, however, that the architecture presented is incapable of

matrix inversion or similar operations (e.g., Gaussian elimination). It would also be useful

to incorporate some of the common trigonometric functions and inverses, as well as square

root. These capabilities are required for many interesting applications, but require much

more complex control and condition testing than we need for basic matrix-vector arithmetic.

The basic unit of most matrix-vector arithmetic is the vector dot (inner) product. Matrix-

vector multiplication is accomplished by forming the dot product of each of the rows of the

matrix with the vector, and matrix-matrix multiplication by forming the dot product of each

row of the first matrix with each column of the second. Other familiar operations (vector

cross (outer) product, vector addition, etc.) may be performed with different sequencing of

the basic dot product hardware.

Our strategy will be to compose a primitive module capable of computing one coordinate

of the result (i.e., one vector dot product). If we then group several such primitive

modules together. along with suitable control, we can implement all necessary matrix-vector

operations. The number of primitive modules per chip is a design decision; the control

mechanisms we develop support different choices. Nine primitive modules are sufficient

for a matrix-matrix multiplication, and three for a matrix-vector multiplication. The basic

architecture established, we display control sequences implementing the various operations.

Next we embed the mechanism in a timing structure governing when in the cycle operands

are read and the result computed and written. The internal structure explicated, we discuss

how the control information might be loaded under programmed control from the host.

Finally, we indicate how the bus implementation of chip interconnect might be extended

to allow different algorithms to be dynamically programmed, and a limited error-correcting

capability.

As shown in Figure VI.5, a datapath[3] is a bus-oriented architecture composed of

stacked computational elements, busses running through them, and a centralized control.

Typically a primitive cell, one bit wide, is replicated in the horizontal direction to the

70



I
width (in bits) of the datapath, yielding one computational element (such as a register

or adder). For floating-point arithmetic this is modified slightly so that the mantissa and

the exponent circuitry are replicated separately. Different computational elements are then

stacked vertically to form the datapath. One or more busses run vertically through each cell,

and these may be connected by abutment to vertically adjacent elements forming vertical

global busses. Control lines run horizontally through each cell, control being frequently

generated by a Programmable Logic Array (PLA) on the side.

For datapath elements we assume the following: registers, adders, and multipliers.

(Other elements, such as comparators and dividers, would also be needed to implement

matrix inversion or Gaussian elimination.) Each element "talks" to both busses and to both

vertically adjacent (abutting) neighbors. Thus each element can load operands and dump

results to and from the busses and adjacent neighbors. Additionally, in order to facilitate

serial communication between chips and minimize wires, we assume that the registers are

shift registers, and can shift operands in or results out. We observed while developing upper

bounds in the preceding section that the "vector busses three scalars wide" might actually

be implemented as a single multiplexed wire in order to minimize wire-count. "Operand"

below will typically mean the three scalar values which make up a vector, unless context

clearly indicates otherwise. (All data transfers within a module are done in parallel, of

Thus the basic cycle will be:

(a) start cycle,

(b) load first operand from off-module, a certain delay after the cycle

starts,

(c) load second operand from off-module, a second certain delay after

cycle-start,

(d) compute result,

(e) dump result to off-module, another certain delay after cycle-start,

(f) delay until cycle ends, another certain delay after cycle-start, and

(g) go to (a).

As noted above, the basic cycle length of the inverse dynamics algorithm considered herein
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is MV + VA 4 Flops, though other algorithms will have other basic cycles.

Consider the floor-plan for a primitive module, shown as a block diagram in Figure VII.1.

Assuming that the operands have been properly loaded, it is easy to see that it can compute

one coordinate of any of the matrix-vector operations listed at the end of Tables 111.1 and V.1.

(Note that to enable the vector cross product (VC), the two multipliers are placed between

the two register pairs NOT corresponding to the result component calculated by the primitive

module.) The sequences of data transfers and computations required for each are given

in Table V1l.1. Only two global busses are required, and that the number of multipliers has

been reduced from three to two (a consequence of the 1 Mutr = 1 Addn = 1 Flop timing

assumption. as noted in the previous section).

Several of these primitive modules will operate concurrently to produce a matrix or

vector result; since our vectors are in X.', this number will normally be a multiple of three.

As in the previous section. we will assume groups of three primitive modules. Figure

VII.2 shows a floor-plan block diagram, together with control and (multiplexed) off-module

communication (not shown is the ROM or RAM program storage). Such a device would

be capable of one matrix-vector multiplication, or the three coordinates of any supported

vector-vector operation. For purposes of discussion, we will take this Vector Arithmetic

Modular Processor (VAMP) as our unit of computation.

The VAMP operand inputs are wired (perhaps through intermediate delay buffers as

discussed in the preceding section) to the result output of the VAMP computing that

operand. By synchronizing between source and destination VAMPs the respective dump

and load delays after cycle-start (recall that we are willing to assume a global clock and

reset), intermediate results can be passed to successive operators.

Serial off-module communication between VAMPs might permit several VAMPs to share

the same package by substantially reducing pin-out. (The trade-off is that it will increase

communication time, perhaps requiring the insertion of additional delays.) Though the

physical size is heavily dependent on choice of process technology, width of the data word

in bits, and other design parameters, we can make some initial estimates of total package

count based solely on pin-out (with the understanding that these will likely be revised

upwards depending on design parameters and the particular fabrication process). In most
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/ process technologies, each VAMP would require external connections to Power, Ground,

Clock-l, Clock-2, Global-Reset, Operand-A, Operand-B, and Result. If each VAMP is

wired separately, a nominal 40-pin package would provide pin-out sufficient for five VAMPs

to support these eight signals. (Due to process defects, of course, they must be individually

tested and faulty VAMPs discarded.) It a single Clock input is converted to Clock-1 and

Clock-2 (or more if needed, e.g. Pre-Charge) on-chip and distributed to each VAMP, and

if Power, Ground, and Global-Reset are also brought in on one pin each and distributed,

then a nominal 40-pin package would provide pin-out sufficient for 1. VAMPs. As was seen

in the preceding section, It such 40-pin packages would implement the full systolic pipeline

for the linear case of n 6.

Alternatively the other extreme can be chosen, and each VAMP packaged individually.

Each VAMP could be put in an 8-pin package, resulting in very small cheap chips. This

would have the further advantage of not requiring innovative packaging.

The control must specify the delays associated with communication and computation
of the result. and which operation to perform. This is shown schematically in Figure VII.3.

The delays are easily implemented by counters and comparators. A Cycle-Counter is zeroed

at each cycle-start and incremented at each Plop. The delay associated with each register

load/dump is compared to the Cycle-Counter and the register loaded on equality. By

insuhing that cycie-stari occurs syncnronousiy on an cnips, communication timing toetween

operand sources and destinations can be coordinated programmatically. In turn, in virtue of

accepting a global clock signal we can insure simultaneous global cycle-start (e.g., perhaps

by bringing Global-Reset to True for one clock period only at the beginning of each cycle).

This globally resets counters to zero, and insures that accidentally dropping a bit or missing
a clock-tick does not throw a module permanently out of step.

It is sufficient if the device is able to execute operations from only a small fixed repertoire,

viz. those at the end of Tables 111.1 and V.i. This being the case, the microcode instructions

needed for each item in the repertoire may be stored on-module in Read-Only-Memory

(ROM). The operation to be performed can then be specified as a pointer into ROM, e.g.

as the high-order address bits or as an index pointer,

If we were designing a very general machine we would certainly want the microcode
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to be loaded under program control from the host. Though such capability is not needed

for most matrix-vector algorithms, we observe that Random-Access-Memory (RAM) could

be loaded in much the same way as we will load control information. The pointer into
ROM would then be augmented with an indicator bit selecting RAM or ROM, and all would

proceed as sketched for the ROM-only case.

Thus we see that communication and control can be effected by loading three registers

with delays for the comparators and one register with a ROM pointer. These four values will

be referred to below as the module's "program". Next, consider how these control registers

might be loaded under programmed control from the host. (For a prototype version one

might simply bring the control in from off-chip, each control register bit corresponding to a

pin wired by jumpers to either power or ground.)

Since the same wires are to be used for both data and control, the chips must have

a way to distinguish which is which. Though it would be possible to tag each word with a

control bit, it is preferable to use the Global-Reset signal. In normal operation (Data Mode)

Global-Reset is (for example) brought True for exactly one clock-tick to mark cycle-start,

then immediately returned to False. If instead it is kept True, all chips enter Program Mode.

While in Program Mode they will use the same wires in much the same way. but treat the

words as program data rather than computational data. In Program Mode, Global-Reset

is (for example) brought False for exactly one clock-tick to mark program-cycle-start, then

immediately returned to True.

The system must be programmable from any conceivable system state, in particular from

random or partially programmed states. Thus the delay registers must be assumed invalid.

* All transfers occur immediately following program-cycle-start. The host writes successive

program data words to the input ports and these are clocked through the network. Each

module will clock in program data as operands, operate on it as discussed below, and clock

out program data as result. When the module clocks in the program data containing its

own module program, that data will be loaded into its control register(s) as below. After

all VAMPs have been programmed in this fashion, Global-Reset can be brought and kept

low forcing Data Mode. Thereafter normal data computation can occur through the fully

programmed network.
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Thus we must insure that every VAMP is directly or indirectly accessible to the host,

and that each VAMP can recognize its own program when seen. The first condition is

satisfied by the connected directed acyclic graph nature of the network; any module not at

least indirectly accessible to the host could never receive operands and hence could not

participate in the computation.

One way to allow each module to recognize its own program is to assign to each one

a unique number, "burned in" as in Programmable-Read-Only-Memory (PROM) before the

chip is ever inserted into the network (a prototype might simply have jumpers wired to pins).

The host then simply writes pairs of (VAMP-number, VAMP-program) to the network inputs,

and these are clocked through the network. When a module recognizes its own number

in Operand-A (i.e. the first operand), it loads the associated program. For example, the

VAMP-number might be in the first scalar component of the vector, the VAMP-program

contained in the remaining two scalars. Variations on this scheme could also allow RAM to

be loaded, perhaps using the second scalar component as an address and the third as the

microcode word to store there. The VAMP outputs Operand-A (unchanged) as its Result.

The network can be programmed by writing, to each input port, one such number-program

pair for each module in the network. Chips are interchangeable simply by changing the

VAMP-numbers transmitted by the host.

We conclude this section by very briefly sketching extensions permitting a limited

dynamically programmed communication system, and a limited error-correcting capability.

Neither of these are required for the Inverse Dynamics algorithm, but would render the

device more useful.

The communication requirements of parallel algorithms are often mostly local, with a

few long-distance data transfers which must also be supported. This is the case in the

Inverse Dynamics as well. The Mostly Local Bus (MLB) in Figure VII.4 is intended to

support both high local band-width and sparse but necessary long-distance communication.

It can be used by the host to gain programmatic control of the communication network

implemented by the array of processors. Programmatic host control of the implemented

communication structure (the data dependency graph), together with host control of the

operation performed at each node, allows the same physical device to efficiently implement
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many different algorithms without physical reconfiguration or rewiring.

Refer to Figure VII.4 (MLB). It depicts a multi-tiered bus, with some of the tiers composed

of many short busses, some tiers composed of several medium-length busses, and some tiers

composed of a very few long busses. Conceptually, imagine that each module is potentially

connected to each bus directly in front of and back of it. (In any real implementation, small

groups of modules would actually share long-distance drivers to keep the area penalty low

for sparse long-distance traffic.) A communication network structure can be imposed by

specifying when each module reads or writes which bus. By insuring that the destination

module reads the same bus of the same tier at the same time the source module writes to

that bus, any two modules which connect to the same MLB can communicate. Different

source/destination pairs can share the same bus provided the communications occur at

different times in the basic time cycle of the algorithm. Within the framework we have

developed this means adjoining, to the registers governing at what time busses are read

and written, additional registers governing which tier is targetted. These registers would be

loaded exactly as already described.

In those algorithms susceptible to this architecture, most communciation will be local

and can occur on the many short-interval bus:,,3s, achieving high local bandwidth. The few

long-distance lines exist to support sparse necessary long-distance communication, but if

used too heavily the system performance degrades. This degradation can be made graceful,

however, by inserting extra length into the basic cycle. This creates extra slots into which

conflicting communications could be transferred. Note that this communciation structure is

most suitable for algorithms having a straight-line systolic nature, such as characterizes the

Inverse Dynamics. In cases where it is applicable, it permits relay-free communication with

limited pin-out or bus connections, and would be most suited to WSI or systems with large

numbers of processors. The relay-free character of the communication differs from schemes

based on twisted n-cubes, which may require up to O(logn) relay delays between any two

processors.

It would be possible to "tune" the MLB to the communication requirements of a particular

algorithm (while preserving the capability to dynamically reconfigure so as to perform others)

by adjusting the ratios of bus lengths in successive tiers. For illustrative purposes, Figure
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VlI.4 shows the number of processors served by each bus doubling at every second tier, with

the even and odd tiers offset from each other so that each processor is roughly symmetric

in communicative power each direction. The number of tiers thus grows as ,)(Iog,) of the

number of processors. To tune the MLB to a particular algorithm, one would require that

the number of busses of a given length was roughly proportional to the fraction of messages

communicated a distance of approximately that length. This rough guide must be refined

further if the average message length varies with distance.

Finally, we note that most of the machinery necessary to support a limited error correcting

capability has been developed. This will permit several cases of gross individual chip failures

to be caught and flagged. with the device automatically resuming correct computation

following error correction. There are hardware error classes for which this capability will

not apply, of course, some examples being a direct short between power and ground (it is

difficult to automatically recover from this in any case), occassional intermittent faults, or

failures in the error-correcting circuitry itself. Since the error-correcting circuitry is a small

fraction of the total chip circuitry, however, the probability that it will fail first is likely also

to be small.

Order the VAMPs, so that each has a unique successor and a unique predecessor

except the two end VAMPs. Basically we suggest a mechanism in which each VAMP checks

its successor after having been checked by its predecessor. It thereafter plays the role of

its successor in the computation while its successor checks the next VAMP, and so forth.

After each VAMP has been checked they return to a normal configuration, and repeat the

process. If a faulty computation should be detected in the checking process, the faulty

VAMP will be inhibited by its predecessor and excised from the computational structure of

the device. Its predecessor will continue to play its role in the computation until the faulty

component can be replaced.

In addition to those discussed above, each VAMP would afso have a second set of

inputs Operand-A', Operand-B', inputs for Test-in, Test-back-in and Inhibit-in, outputs

for Test-out, Test-back-out and Inhibit-out, and input/output Result'. Each VAMP's

Operand-A' and Operand-B' inputs are connected to the Operand-A and Operand-B

inputs, and its Result' input/output connected to the Result output, of its atsuccesor. Its Test-
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in and Inhibit-in inputs are connected to the Test-out and Inhibit-out of its predecessor. Its

Test-back-in input is connected to the Test-back-out output of its successor. See Figure

VII.5.

These new inputs and outputs are used as follows. During normal operation of a

VAMP, Test-in, Test-back-in, Inhibit-in, Test-out, Test-back-out and Inhibit-out will

all be False. The VAMP will load as its operands the inputs Operand-A and Operand-B,

and dump its result on the output Result. The input/output Result' will be tri-stated.

Eventually, the VAMP's predecessor will bring Test-in to True at the start of a cycle. The

predecessor is now filling the VAMP's computational role, and the VAMP is free to check its

successor. It does this by loading its operands for that cycle from the inputs Operand-A'

and Operand-B', performing the same calculation as its successor, and comparing its result

to its successor's output. which is loaded through the VAMP's input/output Result'. (To

do this. of course, it must have a second set of control registers, correctly loaded to match

those of its successor.) The output Result is tri-stated.

If the two results do not match, then the successor is assumed to be faulty (recall that

the VAMP itself has just been checked in the immediately preceding cycle). The VAMP

excises its successor from the computation by bringing Inhibit-out to True. This causes

its successor to tri-state its data outputs and bring its contiol outputs False. which is

implemented by very simple gate logic at each pad driven directly from Inhibit-in. The

VAMP will continue to fill its successor's role in the computation until the device is brought

down for maintenance. At that time it can broadcast its VAMP-number through the net in

Maintenance Mode as a fault-finder, somewhat akin to the way programs were broadcast

in Program Mode, except that instead of outputting Operand A unchanged each VAMP

outputs any Operand which contains a fault notification. The VAMP-numbers corresponding

to fault-finders will therefore emerge from the net where the motor torques emerge in Data

Mode, and the faulty VAMPs can be replaced.

If the two results match, then the successor is assumed to be not faulty. The VAMP will

bring Test-out to True at the start of the next cycle, causing its successor to repeat the

operation just described. Since the VAMP must now fill its successor's role, it will continue

to take as its operands the inputs Operand-A' and Operand-B', but in addition will now
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I dump its result on the input/output Result'. The output Result remains tri-stated.

The VAMP will return to normal operation after its input Test-back-in (connected to

its successor's output Test-back-out) is brought True for one cycle. The input/output

Result' is tri-stated, and its output Test-back-out is brought True for one cycle (causing

its predecessor to resume normal operation in the same sequence). On the next cycle the

1VAMP will again load as operands the inputs Operand-A and Operand-B, and dump its

result on the output Result.

So far we have described the action of VAMPs in the middle of the order. It remains

to describe the ends. The last VAMP can simply have its output Test-out fed back into its

input liest-back-in. This causes the sequence to reverse when the last VAMP is reached.

To check the first VAMP we must introduce an extraneous VAMP (and properly speaking, a

second extraneous VAMP to check that one). The first extraneous VAMP can simply have

its output Test-back-out fed back into its input Test-in.
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Table VI1.1 - Primitive Module Operation Sequencing

(refer to Figure VIII1)

(This primitive module calculates the Y-"t scalar component of the result vector)

Operation Flops Dest. Source
VA: 1 BUS-i 4 REG: OP-A-3

BUS-2 4 REG: OP.B3-3
ADDER 4=BUS-i, BUS-2

(result in adder/subtractor)

SV: 1 BUS- 1= REG: OP-A-i
BUS-2 $=REG: OP-B3-3
MULT-1 BUS-i, BUS-2

(Scalar- multiplier in I12 scalar component of Operand A, by convention)

(result in multiplier-i)

VD, MV, MM: 1 BUS-i REG: OP-A-3
BUS-2 REG: OP-B3-3
MULT- 1= BUS-i, BUS-2
MULT-2 REGS: OP-A-2, OP-B-2

2 BUS-1 ~ =MULT-I

BUS-2 MULT-2
ADDER 4=BUS-i, BUS-2
MULT-1 PEGS: OP A , OP e

3 BUS-i 4= UlLT-11
BUS-2 s=ADDER
ADDER 4=BUS-i, BUS-2

(alternatively, adder can accumulate instead of being totally bus-driven)

* I (result in multiplier-I)

VC: 1 BUS-i 4 REG: OP-B3-2
BUS-2 R= EG- OP-B-i
MULT-1 4=BUS-i, PEG: OP-A-i1
MULT-2 4=BUS-2, REG: OP-A-2

2 BUS-i MULT-1
BUS-2 s=MULT-2
SUBTRACTOR 4=BUS-i1, BUS-2

(subtractor computes BUS-I - BUS-2)

(result in adder/subtractor)
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BUS-i BUS-2

REGISTER: OPERAND-A(1)

_________MULTIPLIER-i

REGISTER: OPERAND4B(l)

REGISTER. OPERAND-A(2) u

L
AMULl IPLIER-2

- REGISTER: OPERAND-B2 r

___ REGISTER- OPERAND-A(3)

REGISTER: OPERAND-B(3)

ADDER / SUBTRACTOR

(To enable VC. the two multipliers are placed between the two register pairs NOT
corresponding to the result component calculated by the primitive module. Thus this example
calculates the 3L scalar component of the result.)

Figure VII.1 - Primitive Module Block Diagram
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MIATRIX-VECTOR OPERATOR DRTRPATHC)

(R)

(RR)

_______ PIR- ___ __

Figure V11.2 - Vector Arithmetic Modular Processor (VAMP)
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CONTROL STRUCTUIkE

IN OPERATIOI, CONITROL MUST GOVERNl:

1) When operand R is read in, & to which ress;

2) When operand B is read in, & to w~hich ress;

3) When the Result is output. & from which ress;

F4) What operation is performed.

Figure VII.3 - VAMP Control Registers
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) ~ ~~1~ MLB ___

________MLB

____ - ~MLB___ __

LI -

MLB______

Global Architecture

Detail Easo

11i' ]

FieDetail Expansion

Figure VII.4 - Mostly-Local Bus (MLB)

84



VAMP VAMP

Op-A Op-B Op-A Op-S

Oprrand _1U 2

Figure VII.5a -Non-Error-Correcting Configuration

1[;Icul Desthna~~

Result Result' i Result Result'4 Inhibit-in Inhibit-Out Inhibit-in Inhibit-Out

Test-In VA MP Test-Out Test-in VA MP Test-Out__

( Test-Back-Out Test-Back-In TetBack-Out Test-Back-In-

Op-A' Op-B' Op-A Op-B3 Op-A' Op-B' Op-A Op-B

Figure VII.5b - Limited Automatic Error-Correction



MIN
j 8. SUGGESTIONS FOR FUTURE EXTENSIONS

We very briefly allude to, without discussing in depth, a few possible extensions to this work.

If the computation can be made to run at a rate which is only I/0 bound, it becomes feasible

to consider "active memory" (or an I/0 device) which provides the calculated torques as

soon as the desired motion has been loaded in appropriate locations. Thus it may be possible

to build an on-line "optimizing trajectory compiler" in which the desired motion (trajectory)

for the next several time periods is pre-planned. the motor torques automatically generated,

and the time sequence of necessary motor torques inspected slightly before the manipulator

has actually arrived at the trajectory points. If the motor torques are excessive (motor or joint

damage) or below the rated maximum (faster motion possible), the proposed trajectory could

be modified accordingly, on-line. Also, Torre and Poggio have a result indicating that neural

structures could perform an arithmetic multiplication in about a millisecond. While certainly

not arguing that in fact it is donL that way in the brain, observe that in principle it would

be possible to compute the Inverse Dynamics in approximately real time using a suitable

neural structure. We close with a few remarks concerning the possibility of generalizing the

2 (tog(n)) embedding to other recursive structures.

The question of how to incorporate dynamical considerations into on-line trajectory

planning is an area ot open research 17J. HollerbachL15J shows how to uniformly scalp the

velocity of a trajectory so as to remain within torque limits. This applies only to uniform

velocity scaling, however, and we might like to be able to change the path of the trajectory

or scale velocity in a non-uniform way. Bobrow, Dubowsky and Gibson[6] solve the general

case of time-optimal control along a specified trajectory, but do not allow the path to be

varied in space and require moderately intensive computation by the host.

Consider Figure VIIIA, which might be taken to represent a shift register of depth m.

Data records pushed in at the top progresses through the shift register with timestep X to

emerge out the bottom time mX later.

Imagine that the shift register was interfaced to a memory board in such a way as to

"look like" memory to the host, so that any of the locations could be read or written as

memory. At each timestep > the O-h row would be shifted out the bottom, the whole array
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shifted down one, and the host would write a new set of values at the top. At any time, of

course, the host could read or write any of the array locations.

Now imagine that some of the array locations in the jL'- row correspond to "input

values" ({q(X), 4(j),,(jX)}) and some locations correspond to "motor torques" ({(.(jX)});

and that the "torque" locations are really hard-wired (through such a dynamics box as we

have described) to the "input value" locations. The box continuously computes, for each

set of input values in the shift register, the corresponding torques - if the host changes

an input value anywhere in the array, the torques corresponding to the new set of values

automagically appear. Set X equal to the refresh rate at which new motor torques are

supplied to the manipulator. Now as each value is shifted out the bottom, imagine that

a demon catches it and passes the torques to the manipulator motors - simultaneously

another demon fills in a new set of input values at the top and the torques appear. We might

as well have the inertial Cartesian coordinates and velocities of each link endpoint appear

too; since they are manifestly simpler to calculate from the same input data as the inverse

dynamics. the fractional cost to include them is small.

This now becomes a fairly explicit representation of many interesting characteristics of

the manipulator trajectory for the next m time periods. It the host inspects the values but

makes no changes, those Yn values will be shifted to the manipulator, one by one; and that

will detine the path the manipulator will follow for the next m periods. Alternatively the

host may change one or more values causing the corresponding changes in the torques;

the manipulator would then follow the revised course. This arrangement might be useful

in helping to solve the problem of how to incorporate dynamical considerations into on-line

trajectory planning, acting to help optimize a crude trajectory generated by a higher-level

planner.

One extension to this basic idea would be to use our box to also calculate the input

value joint velocities and positions ({q(t), q(t)}) directly from the acceleration profile ({q(t)}),

rather than having them set directly by the host. This would avoid the embarassing possibility

of (e.g.) a trajectory requiring an instantaneous step discontinuity in manipulator position,

as well as reduce computational demands on the host. Another extension would be to have

several such shift registers; one could thereby sweep out an enve!ope around the proposed

* 87

t'



trajectory, exploring in parallel possible futures and interpolating between them.

Another interesting area is the overlap with human psychology and neurophysiology.

Torre and Poggio[41],f22] have shown the theoretical possibility that a neuron could perform

an analog multiplication in its dendritic branches within about a millisecond (this capability

was originally postulated to be necessary in order to explain certain aspects of visual

processing). The analysis treats the dendritic branches according to membrane theory in

passive RC cables. Where g, and 9., are inputs they are able to produce a term proportional

to (g, - ag~g2). By additionally connecting the g, input appropriately to a side branch on

the dendritic pathway to the axon it is possible to show theoretical cancellation of the linear

term. Analog additions may be performed as in classical circuit theory (given appropriate

arrangements of the dendrites).

Thus. given the time bounds on the formulations developed above, the nervous system

might be capable of performing the inverse dynamics calculation in something approximating

real time. Since the computations are performed in analog by biological components one

necessarily expects them to be "dirty", i.e. contaminated with noise, inaccuracies, and

other errors. If one postulates a large number of such inaccurate devices performing the

same calculation and averaging the result, however, from fundamental statistical properties

one may show that the resulting calculaticn can be made arbitrarily accurate by taking the

number ot devices arbitrarily large. Also, though the formalisms were developed for a single

chain of length n, the fact that the time complexity increases only as O(log(n)) suggests the

possibility that one might control other large systems involving many degrees of freedom

without paying an exorbitant penalty in real elapsed time. Hollerbach and Flash[17] have

performed experiments investigating the possibility that human subjects perform some sort of

dynamic scaling in planning planar arm trajectories. Many associated questions immediately

arise, of course, such as how the nervous system learns to perform the computation; or,

if it is hard-wired, how the system learns the parameters; and so forth. We do not wish to

engage in this debate, but only to point out that the computational aspects are tractable.

Finally, it seems likely that the process of embedding a serial linear-time recursive

algorithm in a parallel logarithmic-time algorithm is generalizable, certainly at least within the

context of associative ring operators. We saw that several basic properties were exploited
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in our analysis above, including the associativity of the ring operators and the capability to

order the recursive variables in time according to data dependencies.

The basic strategy followed in Section IV was to expand the closed-form non-recursive
formula for X=.j into an equivalent expression involving two similar formulae for X,,,k and

X, .h. This was taken to be the combining form for X,,,t,. In making the expansion, it was

also necessary to expand and re-group expressions for the dependent variables in terms of

their combining forms. We speculate that the associativity of the operators permitted the

necessary expansion of the dependent variables. Linearity is not necessary, as it is possible

to devise a combining form for the (non-linear) Afrom expressions for (--) and

(AB))

Thus ih might be possible to devise logarithmic-time parallel algorithms from linear-time serial

ones even if scalar division is involved, and perhaps other non-linear (non-ring) operators.

Of particular interest would be a general mechanism for logarithmic embedding of linear

algorithms involving matrix inversion (or solutions of simultaneous linear equations, e.g.

Gaussian elimination) at each step. This would render a much wider class of algorithms

accessible to logarithmic-time techniques, e.g. perhaps the inverse kinematics or the direct

(integral) dynamics.

In Appendix A it is noted that the ability to order the recursive variables according to

data dependencies
~x, >_ Y, _ z' >_..

where we define
X, >- Y, iff Y, does not depend on X, for any.

iff aY/ax - 0

guaranteed minimal satisfiability of the relative offset inequalities. We speculate that this

condition might also be necessary to form logarithmic-time combining forms as well, This

may arise since in devising the combining forms it was necessary to apply previously-deduced

combining forms to break apart the constituent dependent variables. Lacking this condition,
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one may at least imagine a case in which deriving the combining form for X,. requires

expanding the combining form for Yt, while deriving the combining form for Y,., requires

doing the same for X,,,!. The ability to order the recursive variables by data dependencies

insures that at least this particular deadlock cannot arise. A more formal demonstration of

the applicability of this condition would be useful.
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9. CONCLUSIONS

We have shown that considerable time savings accrues from embedding the inverse dynamics

calculation in a parallel computation. A parallel-time algorithm with time complexity only

logarithmic in the number of joints has been derived. Hardware necessary to implement

such parallel algorithms has been considered, and the requirements shown to be substantial

but not excessive. Using the concepts developed, it should be possible to devise aIdevice capable of implementing the calculation at a speed primarily bounded by the

input/output requirements which the algorithm imposes on the host. We have sketched

speculative extensions to this work in the areas of on-line trajectory planning, psychology

and neurophysiology, and parallel algorithm theory.
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Appendix A - Derivation of the Linear Time Offsets and C

In the following, as in Table 111.1, "Avail(X,_) = C means that variable X, 1 is made

available to the i-'L node at time t (on the backward recursion; substitute X+, on the

forward recursion). The abbreviations VA (vector addition), VC (vector cross product), etc.,

are explained in Table 111.1; they denote the time required to perform certain matrix or vector

operations.

First we determine the relative delays, or offsets, in variable availability times. We do

this by requiring the following implication, for each propagated recursive variable:

4vazl(X.) nax(Avai(X,_) - a,Avail(Y,_,) + /,Avasl(Z,_) + 6,...) +
= Avail(X,) Avat(X,,) + a + yv

This condition amounts to saying that nothing delays the availability of a variable longer than

itself. This allows one to infer

max(Avat(X,_j) + a,Avail(Y,_) + I,Avail(Z,_,) + 6,...) = Avail(X,_) + a

from which immediately follow the inequalities

Avail(X,- 1 ) + a > Avail(Y,_,) + j3

Avail(X,_i + a > Avail(Z,_) + 6

That the set of all such inferrable inequalities is globally satisfiable follows from the ability

to globally order the recursion variables

X _ Y, > Z, >...

where we define X >- Y, iff Y, does not depend on X, for any j
iff a,/X, -- 0.

In the linear Newton-Euler recursion, for example, we have

n, w , _

and the non-propagated variables could be included in the chain if desired.
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By considering starting conditions (initiation of the calculation) one can generate another

set of inequalities of the form

Avai(XI) + a' > AvaiL(YI) + 8'
Avatl(X,) + a' > Avasil(ZI) + 6'

Since both sets of inequalities are satisfiable it is possible to reach a point of minimum

satisfaction (how dreary... why would one wish to do so?). This is the unique point (Avatl(XI),

Avatl(Yi), Avat(Z),...) which satisfies both sets of inequalities above, and also minimizes

Avail(XI) for each variable X. This defines the relative offsets which will minimize the total

computational time.

On the backward Newton-Euler recursion only w,, ,, and p, need be considered. This

is because i,, F,, and N, are merely passed directly to forward recursion nodes. From Table
II1.1,

Avatl(c,,) = max(Avail(w,_,) + VC - VA, Avail(C,_,)) -+ MV + VA

Thus for minimum delay (MV + VA) in propagating ;, we require that

max(Avail(w,,) -+- VC + VA,Auail((,_,)) = AvaI(C,_l),

hence

Avil(c ,_) _ Avail(w,) + VC + VA ()

Similarly,

Avail(p,) = max(Avail(w,) + 2VC + VA,
Avail(w,) + VC + VA,
Avail('p,) + MV) + VA

= max(Atrail(w,_i) + MV - 2VC + 2VA,

(max(Avail( j,_ ), Avail(w,_,) + VC + VA) + MV + VA) + VC + VA,
Avoa:(p,) + MV) + VA

= max(Avail(w,_I) + MV + 2VC + 3VA,
Avail(&,_) - MV + VC + 2VA,
Aval(,_.) + MV) + VA
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And so the minimal delay in propagating p, requires both
Avail(o,_1 ) > AvatIl(w, 1 ) + 2VC + 3VA

Ava(,_,) > Avail(;,,._,) + VC + 2VA.
If equality holds in (*) then these two bounds are equivalent.

On the forward recursion only f, and n, need be considered.

Ava t(n, = max(Avai(f,+,) + VC + VA,Avai1(n,+i)) + MV + VA

and so

Avail(n,+ ,) > Avait(f,+ 1 ) + VC + VA. (444)

Next we determine the constant C by showing when r1. the last generalized joint force

of the forward recursion, becomes available as output. From Table 111.1, assuming all input

values become available simultaneously at time t == 0,

Avatl(w) = MV + VA

Avai(L ) = MV + VC + 2VA

Avazl(p1 ) max(Avail(d1,) + VC + VA,Avail(wl) + 2VC + VA, MV) + VA)

- MV + 2VC + 4VA

Note that these satisfy (*) and (**) so the propagation time is (MV + VA) per node.

Avasl(w,,) = (n - I)(MV + VA) + Ava,'(wi)

= (n - 1)(MV -- VA) + MV + VA

Avail(,;,,) = (n - 1)(.MftV + VA) + MV + VC + 2VA
Avas(p,,) = (n - 1)(M V + VA) + M V + 2VG + 4VA

Avatl(i,,) = max(Avail(p,), Avad(c ,,) -- VC + VA, Avatl(w,,) + 2VC + VA) + VA

= (n - 1)(MV + VA) + MV ± 2VC + 5VA
Avail(&.) = Avasl(,) + SV

= (n - 1)(MV + VA) + SV + MV + 2VC + 5VA
Avail(N.) = max(Avail(Wn) + VC,Avai1(C.,)) + MV + VA

= (n - 1)(MV + VA) + 2MV + VC + 3VA.

Thereafter, on the forward recursion, (recognizing that Avail(f + 1) = Avail(n + ) = 0),

Avatl(f,,) = Avail(F,,) + VA
= (n - 1)(MV + VA) + SV + MV + 2VC + 6VA

Avatl(n.) = maz(Avail(F,,) + VC, Avail(N,)) + 3VA

= (n - 1)(MV + VA) + MV + VC + 6VA

- max(SV + 2VC + 2VA, MV)

= (, - 1)(MV + VA) + SV + MV + 3VC + SVA
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These two expressions satisfy (***) so propagation occurs at the maximum rate of (MV +VA)

per node.
Avatl(nl) 2(n -- 1)(MV + VA) + SV + MV + 3VC - 8VA

Avatl(7) K max(Avazl(f I), Avail(tij))

- 2(n -- 1)(MV + VA) + SV + MV t 3VC + 8VA

(Actually, Avail(T) will depend on whether joint t is translational (= Avazl(f 1)) or rotational

(< Avatl(nl)), but we assume here rotational, the worst case.)

Assuming a maximally parallel implementation, we would have:

VA= 1 Addn (using 3 adders)

SV= 1 Mult (using 3 multipliers)

VC= 1 Mut - 1 Addn (using 6 multipliers and 3 adders)

MV= 1 Mult + 2 Addns (using 9 multipliers and 3 adders).

So

Avail(TI) _ (2n + 3) Mults + (6n + 7) Addna

suffice.

- I
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Appendix B - Derivation of the Logarithmic Recursive Formulae

NEWTON-EULER BACKWARD RECURSION VARIABLES:

The derivation of the logarithmic combining form for w, has been developed in the text.

Next, we show that o, satisfies the following closed-form formula:

,= W ,0,,(,_ + W, _! X ZjI4,)

as it is a fixed-point of the recursive formula for a,, in Table 1.1:
I-|

(E= A J(,j w _,o,(ziq 3 + W3,_ x
J- 0

i + a.,(Z'_ + W,_ x IXZ, - O

AT d,-+ r,(z,-,i, + wt,1 X

As in the case of w,, we take o0 = ATz( 1 )4o. Most applications of interest will have

WO = 40 = 0.

in oroer to matcn at a = 0 and b

b

(;).,b E wJol(Zi,-,14, + W..,€,-, 1) X , ,-,))

= o(,.kWk+ ) ,(_) + X.q, 1,,)

++, (Z. + ,, + W X ,(, ._I.x
+ x:W~bO(Z,1, +(k~4)~,w + tWk+l),( 2 1)xzi,

Wk+l)b()a~k + W)(k±I),b + Wj'bOf)(k+)~l)ak

W+l),b'Z.ak + (W,+),bwa=,k) X W(k+1),b + ("(k+l),b

which is the combining form for C,,,b.
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To derive the combining form for ,b.it is necessary to create the auxiliary variables

b

- k±I 6 Qk + Q&+I).b

W1 7
- W 4_,tR,6, + Rt6 +1 ),6

S1 - X Pj)

- Wk~1 6SOA. + W,.+..,,((W'+,W..k + X6 P1.)

- V."+ 1 1ISn~k + (Wk+J±,w,n.k) )(kl, -f S~k ),b

Next we show that p, satisfies the closed-form expression

0= 7I. + I wr X~ P;~+-, 3 X (W, XP;)

+ CT,(A TZ3 ..iq + 2w, XA7

Th. q iq n fiYPH nr~gnt Mi tha ratmir iIwa f rmniola Fe m achehon

0,AT(W>~ wT-0+ - WT1 . 1 ~ ; w

+. E J+A , q, + Xw X

+ &,(ATZ,_.1q, + 2w, X A

+ x p, + W, x (W, X P'*)
+ 6,(A~z,-1q, + 2w, X AZ1

where 0() is the acceleration of the base. Typically this is the acceleration due to gravity at
the site. If one took w0 34 0 above then 0. may also include a term for w0 x (wo x p,*). where
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~p* is a vector from the Earth's center _j to the site; this accounts for the centripetal

acceleration arising from the rotation of the Earth. If one accounts for the gravitational

acceleration (g) by taking p' -- g at the base, else p 0 for t 0 0, then the formula may be

equivalently re-written with greater clarity (covering both cases wo = 0 and wo 0 0) as

+ x(Afz,_ + 2w x X_;)

This we will take to be the defining closed-form non-recursive formula for p,. The term

involving 0, is a technical artifice to account for 0 , cleanly, and will vanish in the combining

form.

The demonstration of the combining form of ,,b will require the vector identity a X (b x

c) +(b x a) X c = b X (a x c). In order to match at a 0 and b-= i, take
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W+ + X . + W".W X. , p) + z,(A z _q j--2w,,,, x A.J z, )

+.- E. W_ +,, + an., x p, + w,., X (W,,, xPj)

+ cr,(A7 z , + 2wo,,, X A7 . )

- w ,., w . + (w +,., k., X , )., + ,+,)-, x PW )

+ aA'z,-q + 2(W + Wk + .) X A'Z

WT W(~)A -+X i W+ 1 .hpj+ 4,+ + +

+(WT (WT

+~2~ (w,+..,wIA±.., P,,.,.,1x wf.,..f + J ,,+,,.)))
--- +. L.. k) Xr kj +l , tW. X E wJ+pj"

j~~ = + +

2 w _. .. (wr+. .+1., ) + &' .,

W=j P)k+ - + A

i N,

k(W ,
1  

x (w-,.b,,.k) X Rf,+ ,b + 2(s k+, .b + Qk+.b))

NEWTON-EULER FORWARD RECURSION VARIABLES

As noted in the text, on the Newton-Euler forward recursion the coordinate matrix

products of interest will be Wa+,,A.+, instead of Wk+).b.
Noting that the numbering runs backward, we see that f, satisfies the non-recursive

formula
'ii ' ='' w,+,,,

f,
= A,+, W,+2,;F + F.

-A,+,I ff + ,

104

'I



To match at a =s a and b=n,

b

fa~b k r uI~F

k bW. + 1o,., , + k.k,+, r wk+2 ,,
.9, a -k+!

= f.., + W+J.k+lf .+))h

If desired, forces and torques applied by the environment to the manipulator tip may

be incorporated in a fashion similar to incorporating the acceleration of the base in the

discussion of 0,,. This will not change the displayed combining forms.

Similarly, n, satisfies the non-recursive formula

= Iv w+ ( , + x F)+ ,- X (A,+,f, )

N, + a, x F, + p,'.x (A,+ + ×

+A,+ W"" (N + a; X j+p'X (j+f

-N, +3' x F, +p, x (A,+tf,+,)+A,+In,+,

To match at a - and b n we must have

.wo+,, (N, +,; x F, +,' x (A,++,,, b)+

= .W.+,. (N + -; X F, + P; x (A,+I(f,+,,k + W+2.,+,fk+,.b))

ji a

b

e+.Jk+, : W+.{,,(N, +,; x F, + p X (A,7+,,,,.b))
j-k+ Ij k

na~k + WG+,k+Ink+I,b + E Wa+Ij(P; X (,Iklklb

no.k + W.a+,k k,((A"+jR..,) X f,+t,6 + n+ 1 .6)

105

e
__ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _



Appendix C - Derivation of the Logarithmic Time Offsets and C

These may be derived from Table V1 by inspection, by applying the rule that to insure

minimum delay. the maximum delay of any variable must be caused by a data dependency

on that variable.

Avail(w.. j _ Avail(W,.,)

Avai(;,,) > Avail(W,.,) + VC + VA

Avail(.j > Avail(w.) + VC + VA

Avat(Rj > Avail(W..)

Avail(S,.,,) Avail(W,,) + VC + VA ()
Avatl(S,,,) > Avas(w.j + VC + VA

AvatI(S.) -t- MV > Avatl(R,..) + VC + VA

Avail(Q1 .) Avail(W1 )

Avaz1(p0,..) Avail(W,..) + 2VC + 3VA

Avail(p.,) Avatl(wj.u) + 2VC + 3VA

Avail(p.) _ AvaiL(L. ) + VC + 2VA

Ava(p,.) -+ MV > Avail(R,.,) - 2VC + 3VA

AvatI(p.,) + MV > Ava:L(S,.,) + VC + 4VA + SV (*)

Avati(p,.) + MV > AvazI(Q,..) + VC + 4VA + SV

Avatl(p,,) - MV > Avail(W,.,) - 2VC - 5VA -t SV (from () above)

Avail(n1 .,) > Avai(f..) + VC + VA

The delay conditions established, actual timing can be generated. From Table IV.1 we

extract the a = b case; Table V.1 covers a 3 b.

Avail(W.,a) = 0

Avail(wa,) = MV

Avail(a.,.) = MV (')
Avat(Q.,) = MV

Avail(R.,.) = 0

Avail(S.,.) = MV + VC. (N

However, the equations marked (*) fail to satisfy the delay conditions and so must be revised

to
Avail((,.,a) = MV + VC + VA
AvaiL(S0 .,) = MV + VC + VA.
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Analysis of Avatl(pa,,) is less obvious, but proceeds as follows (assuming VC > SV and
VC > VA)

Aatl(0,) = 0
AvaiL(a,,A7'z. .) = MV

Avail(p. + aaAa 4a) = MV 4- VA
Avail(Wa.. X (w, X p:)) = MV + 2VC

Avai( + .A z,_,. + Wa. (a.a x P,)) = MV + 2VC + VA
Aai(L,,, X p) = MV + VC

Aval(2w,,. X Q.,,) = MV + SV + VC
AvaiL(c ,,. X pa + 2wa.0, X Qa..) = MV + SV + VC + VA

Aval(o,,..) -= MV + 2VC + 2VA (0)

Avail(p0 ,a) = MV + 2VC + 3VA

where the last line is added so that a,. satisfies the delay conditions (assuming MV >

SV + 2VA).

Since these satisfy the minimum delay conditions, propagation occurs at a rate of

F (MV -t- VA) per node. It can readily be seen that, in general,

Avail(Xa.b) = AaiL(X,,,) + [log 2 (b - a + I)](MV + VA).

Thus in particular, if X, is the linear recursive variable corresponding to Xab, then X, =X,

so

Avail(X) = Avail(X0,,)

= Aail(X.0 .) + [1g 2 (, + I)](MV + VA).

Hence,

AvaiL(,o..) = Avtail(a,.) + og2(i + 1)](MV + VA)

Avail(tO,) = Avail(wa.) + fog2(i + 1)](MV + VA)

Avail( 0 ,,) = Avail(p.,.) + rog2(i + 1)](MV + VA)

Avail( u.,) = max(Avail(oj,,, AvaiL((o.,) + VC + VA,Avail(wo,,) + 2VC + VA) + VA

Avaul(Fo,,) = AvailQo,,) + SV
= MV + SV + 2VC + 4VA + 1Iog 2 (' + 1)1(MV + VA)

Avail(No.,) = max(Avail(wo,,) + VC,Avail(o,)) + MV + VA

= 2MV + VC 4 2VA + 1Iog 2(i + 1)](MV + VA)
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Thereafter, on the forward recursion (from Table IV.A),

AvatI(f,....) = AvaiI(Fo,,.)1= MV + SV + 2VC + 4VA + [log(n + I)(MV + VA)

Avail(n,,) max(Avail(Fo,) + VC, Avatl(No,)) + VA

= MV + VC + 3VA

+ max(MV, SV + 2VC + 2VA) + [log.(n j- 1)I(MV + VA)

which satisfies the delay conditions. Propagation therefore occurs at the maximum rate and

Avatl(n,,o) = MV 4 VC + 3VA

+ max(MV,SV + 2VC + 2VA) + 21log 2 (n -t 1)I(MV + VA)
Aval(,o) = MV + VC + 3VA

+ max(MV, SV -+- 2VC + 2VA) 4- 21og2 (n - . 1)1(MV + VA)
= 29og0 2(n + 1)](MV + VA) + MV + SV + 3VC + 5VA

= 2[log.,(n + 1)](MV + VA) + 5 Multi + 10 Addna

> Aval( 1 )

assuming again a maximally parallel system.
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Appendix D - Unification of Logarithmic a = b and a / 6 Cases

By the following technical artifice we can make the a 6 case look like a 4 b

W.,t = I

Wk+1,b = A.
&Wa~k = 17a al a 4

Wk+l,b - 0

Cdic+I,b 0

Qa,k = &aXa-a

Rk+l~b 0 '
RS,k 0

Sa'k 0
Sk+l,b = 0

O a~hOaa-14a

Ok+,.b P g

Q., is substituted for Qk+l,b in P,,

Wk+2,b+l =A+I

f,, = N.
nk+l,b = -9 X F..

Now following two applications of the (n/2) processor nodes to the n groups of input

data we have Xaa as required, and similarly on the forward recursion.
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