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INTRODUCT ION

Transient solutions of the hyperbolic type partial differential equation,

for example the wave equation or the beam equation, are important for solving

engineering problems such as stress wave for gun dynamics or shock behavior of

penetration mechanics. At present these equations are usually solved

numerically by the finite difference method or by the Galerkin method.

Considerable advantage may be obtained if the finite element method can be

directly employed instead. Variational procedures using bilinear formulation

with adjoint variables can serve as the theoretical basis for the derivation

of algorithms using the finite element method for the hyperbolic type partial

differential equations (POE).

THE VARIATIONAL PRINCIPLE

A dynamical system can be modeled by the following partial differential

equation.

L( ) y(4) = -Q( ) I)

with appropriate boundary and initial conditions. In the above equation L is

a linear operator in both spatial and temporal domain, y is the dependent

variable, Q is a forcing function, and 4 represents all independent variables,

both spatial and temporal.

The inner product < > of an adjoint forcing function Q and the solution

(y(r.)) of Eq. (1) can be ssed for the purpose of estimation. This inner

product is <Q,y>.
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An accurate estimation can be m~ade by constructing a vartat tonal

principle (ref 1). By using the adjoint variable y as a Lagrange mnultiplier

for Eq. (1) adding to <Q,y>, we have

Jl[y,y] < Q,y> + <y,(Q+Ly)> -(Qy> + (y,Q> + (y,Ly> (2)

To keep the system symmetrical, let us define the adjoint system as

By using the original variable y as a Lagrange multiplier for Eq. (3) adding

to <Q,y>, we have

J2[Y,yJ < Q,y> + <y,(Q4-Ly)> -<Qy> + (y,Q> + <y,Ly> (4)

b~.i By definition, the relationship of the adjoint system to the original system

is

D <y,Ly> - (y,Ly> =0 (5)

where D) is the bilinear concomitant (ref 1). Combining Eqs. (2), (4), and (5)

one obtains

31 - J2(6a)

In order to keep the functional symmetrical, we have

Al1
J - [lj + J1(6b)

which is of the form

To show that the above funcionl stisiesbotLth original and the

adjoint systems, let us take the first variations of Eqs. (5) and (6) which

gives 6 6J('sy) + 6J(6y) (7a)

'Stacey, Weston, 14. Jr., Variational Methods in Nuclear Reactor Physics,

2



where
- - - 1 --

6J(6y) - <6y,Q> + - <6y,Ly> + - <y,L6y> - 0 (7b)2 2

and
.5- 1 -- 1

6J(ay) - <6y,Q> + - <6yLy> + - <y,L6y> = 0 (7c)
2 2

Also

6D 6D(6y) + 6D(6y) (Ba)
where

6D(6y) <6y,Ly> - <y,L6y> - 0 (8b)

and

6D(6y) - <6y,Ly> + <y,L 6y> 0 (8c)

From Eqs. (7b) and (8b) we obtained
1 - 1 -yLy <6- 9

6J(6y) - <6y,Q) + - <6y,Ly> + - <6yLy> - (6y,(Q+Ly)> 0 (9)
2 2

For arbitrary 6y satisfying certain general limitations on the boundaries it

can be shown that the Euler-Lagrange Equation for the original system in Eq.

(1) is satisfied. From Eqs. (7c) and (8c) we get

- I -- I ... .

6J(6y) - <6y,Q> - - <6y,Ly> + - <6y,Ly> - (6y,(Q+Ly)> - 0 (10)
2 2

For arbitrary variation 6y, the Euler-Lagrange Equation for the adjoint system

in Eq. (3) is also satisfied.

INTEGRAL OF BILINEAR EXPRESSION

The integral of a bilinear expression for a two-dimensional problem

having second order partial derivatives in time and fourth order partial

derivatives in space can be written as

* Xb tb

I -f f il[y(x,t),y(x,t)]dtdx (11)
10 to

5 3
I

4%5% % S "' ~ - %.*.-V~.



.rWS U -' . -7-1, . .- . .7 7. . .. 7 --. V . - .7•

*.4

where Q[y,y] is a given bilinear expression in the form

"[Y'Y] - YtYt - W yy- a 2VxYX - b yxxYx (12)

The subscripts t and x indicate the partial derivatives for the functios y

'S and y.

Equation (12) can be integrated by parts. Two different forms of

integration and end conditions are given. The first form of the integral is

obtained by integrating by parts on the adjoint variable.

tb Xb- Xb - tb

I -f t f yLydtdx + f YtYI dx
to Ko  xo  to

tb - xb  ~ - xb -xb

+ f {-b2yxxyxI + (b2yxx)xyl - a 2yXyb }dt (13a)
to xo xo xo

On the other hand, we can perform integration on the original variable to give

tb)b-- xb -. tb

12 = -J tb fxb yLydtdx + f Ytyl dx
to xo X0 to

tb -_b2 X~lb - xb - Kb

+ fb {-b2 yxy b+ b2 (yxx)xy b - a 2yxy Xb }dt (13b)
to Xo Xo Ko

To keep the form sy'nmetrical, we take the average of the above two expressions

1 1 xb tb1 -- 1 Xb -- tb
I =- lI + - 12 -f f -(yLy+yLy)dtdx + - f (Yty+yty)I dx

2 2 x0  to 2 2 x. t')

1 tb--Xb
+ - f (-a2)(yxy+yxy)l dt

2 to K o

I_ -- Xb 1 -b - xb
+ 1 t (-b2 )(yxyx+yxxyx)l dt - f [(-b2yxx)xY + (-b2yxx)xy] dt (14)

2 to xo  2 to Xo

4
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where
Ly - ytt + w2y - aZYxx + b Yxxxx (15a)

and _Ly - + y - a2 yxx + b2 Yxxxx (15b)

For a fourth order spatial partial and a second order temporal partial system

Eq. (5) becomes

xb tb..- 1b tb -

D - f f yLydtdx - f f yLydtdx (16a)
xo  to X0 to

By equating Eqs. (13a) and (13b) and solving for D in Eq. (16a) we are

converting the double integral into single integrals in terms of the boundary

conditions.

We can express the quantity D as the sum of three parts for end

conditions D1 , D2 , and D3 as

D - D+ + D2 + D3  (16b)

The terms in DI involve the initial conditions of y and y as

_tb - tb
Dl - f b (Ytyl t  ytyl }dx

10 to to

Dl f dx{(Yt(x,tb)Y(X,tb) - Yt(x,tb)Y(X,tb)]
x o

- [yt(x,to)Y(Xtto) - yt(x,to)Y(Xt o )]} (17a)

The terms in D2 involve the boundary conditions from the second partials of y

and y as
tb - xb  - xb

D2  fto (-a2) (y Y yxyl }dt
to 1o

tb - -

D2  f f dt{-a2 [yx(xb,t)y(xb,t) -Yx(xbt)Y(Xb,t)
to

+ a2(yx(xot)y(xo,t) - yx(xot)y(xo,t)]} (17b)

* 5
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% The terms in D3 involve the boundary conditions from the fourth partials of y

and y as
tb - xb xb xb - xb

D3- f (-b2yxxyxl + b2yxYxl + (b 2 yxx)xYl + (-b2Yxx)xy }dt.to XO  XIO XO X0

"''tb - -
~tO

D3  f dt(-b 2 [Yxx(xb,t)Yx(xb,t) - Yxx(xb,t)yx(xb,t)]

+ b2[yxx(xo,t)YX(xo,t) - Yxx(xo,t)Yx(Xo,t)]

tb-
+ f todt{-b2 -Y.xb,t)y(xb,t) + yxxxlb,t)y(xbt)]

+ b2[-yxxx(xo,t)y(xo,t) + yx(xo,t)y(xo,t)]} '17c)

In order that D - 0 in Eq. (16b) it is sufficient that

D =0 18a)

D2  0 (18b)

and D3  0 (18c)

THE SYMMETRICAL ADJOINT SYSTEM

The adjoint independent variable T in Figure 1 can be expressed as

b - T t - t o
- ---- (19)

Tb- To tb- to

which gives

T - Tb  for t to (2Oa)
andaT = To for t tb (20b)

It is noted from Eq. (19) that

b - To - tb - to (21a)

.4 T Tb + to- t (21b)

dT - -dt (21c)

6



d d
-- = - -- (21d)

dT dt

and

Let us assume that the adjoint system shown in Figure I gives

yK(x,t-t) - Yx(x~t-tb+to-t) (22c)

where t is a dummy variable for t.

We may define the adjoint system as the image reflection in the time

domain of the original system. Equation (22) yields the following known

initial conditions

Y(X,t-tb) Y(X,t=to) (known) (23a)

Yt(x~t-tb) = Yt(x,t-to) (known) (23b)

The interpretation of the above equations gives the initial conditions of the

originAl system as the far end conditions for the adjoint system, since the

adjoint system is a reflected mirror of the original system in time.

INITLAL CONDITIONS FOR THE ADJOINT SYSTEM

We take a symmetry approach for the initial conditions of the adjoint

system as

Y(x,tintb) = Y(K,tto) , Yt(x,t-utb) - Yt(x,twto) (24)

y(X,t-to) -y(,X,t-tb~) ,yt(x,t-to) - Yt(x,t-tb) (25)

Thus Eq. (17a) becomes

lxbDf dx11yt(x,t-utb)Y(x,t-to) + Yt(x,t-to)Y(x,t-tb)

- yt(x,t-to)y(X,t-tb) + Yt(x,t-tb)Y(x,t'to)]} 0 (26)

7



Since the integrand of Eq. (26) is zero, the above satisfies Eq. (18a). The

initial conditions in Eq. (25) are given. ThereforeI

6Y(x,t-tb) =6Y(x,tto) -0 (27a)

6Yt(x,tintb) = 6Yt(K,t-to) - 0C2bI

THE GENERALIZED) BOUNDARY CONDITIONS

Let us consider the operator L in Eq. (15a) for two different cases as

follows.

A. For the wave equation we have

Ly ,ytt - a 2Yxx (28)

Let us assume that elastic springs are installed at the ends such that

Yx(xo,t) = -koy(x0 1t) , yx(xo,t) = -koy(x0 ,t) (29b)

This is equivalent to state that the fixed end condition for a prismatic bar

is kb -ko + - and the free end condition is kb =ko + 0. If Eq. (29) is

substituted into Eq. (17b) we have

D2 = 0 (30)

B. For the beam equation we have

Ly , t + byxx (31)

Two sets of springs are incorporated at the ends. They are:

(1) Torsional springs relate the moments (the second partials) with the

slopes (the first partials)

Yxx(lbt) nbYx(xb,t) yxx(xb,t) m bYx(xb,t) (32a)

Yxx(xot) - noyx(x0 ,t) yxx(xott) , -noyx(xo,t) (32b)



(2) Linear springs relate the shears (the third partLals) with the

deflection (no partials)

Yxxx(4b,t) ' Cby(xb,t' yxxx(xb,t) - CbY(xb,t) (33a)

Yxxx(o,t) - -Coy(xot) Yxxx(Ko,t) , -Coy(xott) (33b)

By substituting Eqs. (32) and (33) into Eq. (17c) we have

D3 = 0 (34)

Table I shows the assignment of the spring constants for various physical end

conditions.

TABLE 1. GENERALIZED BOUNDARY CONDITIONS

At Fixed End At Hinged End At Guided End At Free End

YY=O Y=YO Yx=Yx=0  Yxx=Yxx=O

Yx=Yx=0  Yxx='YxxO Yxxx=Yxxx'O Yxxx=>xxx 0O

6Y-6.Y=O 6Y=6yso 6yx= 6yx-=') 6Xyx

6 yx= 6yx=0  6 Yxx 6Yxx=O 6 Yxxx= 6y,(K=O 6YXXx= 6Yxx×=O

Torsional Spring
A

Yxx=yx n +  + 0 n + cc + 0

Deflection Spring

Yxxx=CY c c + - c + 0 c +

Spring

Yx-ky 6yM6y=O k + w k + 0 k undetermined

6yx =  yxffi

.::.
9
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THE FIRST VARIATION

The sum of the two functionals is obtained by adding Eqs. (6c) and (14)

as

~+ I f f (Qy+yQ)dxdt+ T +W +B (35)
K0 to

-. where

1 Xb -- tb 1 tb - Xb
T - f (yty+yty)I dx , w - - f (-a2)(y+yy)I dt

2 xo  to 2 to XO

and
S1 t-b 1 tb 2 Xb

B - - I (-b2 )(yxxyx+yxxyx)l dt - - f ((-b2yxx)xy + (-b2yxx)xyl dt (36)
2 to 10 2 to

By taking the variations 6y and 6y separately, we let

6J - 6J(Sy) + 6J(6y) (37)

Then one obtains from Eqs. (35) and (36) that

J(t y) - -SI(Sy) + ff Q6y dxdt + 6I(6 y) + 6W(8y) + 6B(6y) - 0

where
- 1b - - tb - 1tb - - Xb

6T(6y) - - (yt6y+yyt)o dx , SW(Sy) - to (-a2)(yxy+y~yx )l dt
2 10 to 2 to 10

and

1 .tb'. Xb
6B( 6y) - f (-b2)(yxx6y x+yx0yxx)l dt

2 to 10

1 tb + Xb
- - [(-b 2)Yx2 x6y + (-b

2)y0yxxx] dt (38), 2 to

where -6I(6y) can be derived from Eqs. (11) and (12) as

-xb tb ....

-61(6y) - -f f (Yt6 (39)
Xo to

The second term on the right side of Eq. (37) is
'..

SJ(6y) - -61(8y) + ff Q6y dxdt + 6T(6y) + 6W(6y) + 6B(6y) - 0

10

'.'I ,...' - . - r . .. . -



. where
S4.I -Xb - - tb I _tb - - b

where 2 fjx (;6y.y6y)l to dx 6W(6y) = f tb (-a2)(yx6y+y6yx)l dt. T6) 2 x0 (t+Yt)to 2 to  Ko

I tb - Xb
6B(6y) f (-b2)(Yxx6yx+yx 6Yx)l dt

2 to Xo

tb 2- xb

- ft (-b2yxxx)6y-b2 y6yxxx] dt (40)
to K0and

-61(6y) = - f to (yt6yt-w2 y~y-a2 yx6yx(-b2)Yxx6Yxx)dxdt (41)
Xo to

It is noted that Eqs. (38) and (40) are exactly the same form, where Eqs. (39)

and (41) are also similar.

For the beam equation it is noted that the high partials in Eqs. (38) and

(39) can be replaced by Eqs. (32) and (33). The variations of the adjoint

higher partials from these equations can be written as

6Yxx(Xb,t) - nb6YX(xb,t) 6yxxx(xb,t) = cb6Y(xb,t) (42a)

6Yxx(Xo,t) , -no6yx(xo,t) 6yxxx(Xo,t) = -co6y(xo,t) (42b)

Equations (38) and (39), with the aid of Eqs. (32), (33), and (42), are

the key equations to be used for the finite element method. It is noted that

the first variation 6J(6y) is the same as the first variation 6J(6y) by adding

or dropping the bar on top of the variables and their variations. We do not

need to solve for the adjoint system in Eqs. (40) and (41) since they give

exactly the same solutions as that of the original system.

I1I
° •



SECOND VARIATIONS

The functions y and y and their partials are written in the form in terms

of a small parameter Pi

Y(x,t,I') - Y(x't) + 6y(xt'ii) 0 6y(x,t,u) - pn(x,t) (43a)

yt(x't,p) - yt(x,t) + 6yt(xt,u) , 6yt(x,t,u) - Pnt(X,t) (43b)

Yx(X,t,p) - yx(X,t) + 6Yx&~,t,II) , '5y,(xqt~u) - Pnx(x,t) (43c)

- y(xt,p~) - y(X,t) + 6y(x,t,ii) ,sy(x,t,u) = pn(x,t) (43d)

txtp - yt(x,t) + 6yt(x,t,u) , 6yt(x,t,u) = n- xt (43e)

Yx(~t,) yx(x,t) +- 6yx(x,t,wi) R 6yx(x,t,u) - lPnx(x,t) (43f)

Similar expressions can be derived for higher partials in x. Thus, the

I functional J(P) can be expressed as (ref 2)

3(u) - J(U0O) + Uj + 652 j (44a)

where a
6J . P(--) (44b)

aU 0
and

2 a2

By taking variations of 6J(6y) in Eqs. (38) and (39) and some for 6J( 6y) in

ei Eqs. (40) and (41), we have

* 623 62T + 62B + 6w-21(45a)

where

6T - 2 f I (
6

yt
6

y
4 - 6

y'
5
yt) todx (45b)

2Rund, H., The Hamilton-Jacobi Theory of the Calculus of Variations, Robert E.
Krieger Publishing Company, Huntington, NY, 1973.

4% 12



I ftb 2- - Xb
62 B 1 (-b 2)(6yxx6Yx+6yx6Yxx)I dt

to K0

1 tb - - Xb

+- ft b2 (6yx x x 6y+6y6Yxxx)I X o dt (4 5c)
2 to K0

and

2W - fb (-a2)(6yx6 6y6y)I dt (45d)
2 to xo

The second variation of I is obtained from Eqs. (39) and (41) as

62, 4 2  a212 3 21

2 2I I -

2 - y[ 61(6y) ] +2- 6y[ 6I(6y)]

1 Xb ftb ....= - (Syt 6yt-w26y6y-a2 yxY-b2 6yxx6yxx)dxdt

2 xo  to

I 'xb tb -- -S2 ,c to (Yt 6Yt-w 2 6y6y-a 2 6yx6yx-b 2 6yxx6yxx)dxdt

Xb tb .. ..

621 . f f1b (dyt6yt-w 26y6y-a 2 6yx6yx-b 2 6yxx6yxx)dxdt (45e)
X0 to

Substituting Eq. (27) into Eq. (45b) we have

62T - 0 (46a)

For all the end conditions in Table I either the variations 
6 Yxx and 6Yxx must

vanish or 6yx and 6 yx must vanish. Thus, the first term on the right side of

Eq. (4 5c) is zero. Similarly, for all the end conditions in Table I either

the variations 6 Yxx and 6Yxx must vanish or 6y and 6y must vanish. Thus the

second term on the right side of Eq. (45c) is also zero. The third term is

zero except at the guided end. Thus, in general

68 0 (46b)

13
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In Table I, except the free end, either the 6yx and 6 yx must vanish or 6y

and 6y must vanish. Thus, one obtains

W 2 0 (4 6c)

This reduces the second variations 62j to

62j _ _62J (47)

as given in Eq. (45e).

Substituting Eq. (45e) into Eq. (47) gives

62j f tbf [-6yt(xt)6yt(x,t) + W26y(x,t)6y(x,t) +
,'." /,'t

o  x 0

+ a2 6yx(x,t)6yx(x,t) + b 2 6yxx(x,t)6yxx(x,t)]dxdt (48)

In order that the functional J is an extremum (refs 3,4), the second variation

62 J must be either positive semi-definite or negative semi-definite, i.e.,

62j > 0 (or 62j 4 0) (49)

The above is a necessary condition for a minimum (or a maximum).

% , The adjoint variations in Eq. (48) may be obtained by the relations given

in Eq. (22) as

6y(x,t-t) -,6y(x,tt-tb+to-t) (50a)

SYX(X,t-t) - 6yx(x,ttb+to-t) (50c)

*. , The variations of adjoint initial conditions can be derived from Eq. (23) as

6 y(x,t-tb) - 6y(x,t-tb) - 0 for all x (51a)

6 Yt(x,t-tb) - -6yt(x,t-to) - 0 for all x (51b)

3 Gelfand, I. M. and Formin, S. V., Calculus of Variations, Prentice-H1all,

1963.
4Sagan, Hans, Introduction to the Calculus of Variations, McGraw-Hill, 1969.
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By substituting Eq. (51) into Eq. (48), we have

'.'-'. tb Kxb

62j = f f P(x, t)dxdt (52a)

where
P(x,t) = 6yt(x,t)6yt(X,tb+to-t) + w2 Sy(x,t)6Yx,tb+to-t)

+ a26yx(x,t)Syx(x,tb+to-t) + b2 6yxx(x,t)6yxx(Ktb+to-t) (52b)

SENSITIVITY RELATIONSHIP

*.. In order to show that the second variation of the functional .1 is

positive semi-definite, one needs to obtain the variations of the function and

its partials together with that of the adjoint functions and its partials as

indicated in Eq. (48). We can get these variations through the study of the

sensitivity coefficients (ref 5) and its relationship to the parameters given

in Eq. (43). Let the forcing function in Eq. (1) be

Q(x,t) - qf(x,t) (53)

It is assumed that the forcing function parameter q is subject to a small

'.4 constant perturbation Sq as

q = qo + 6q (54)

4' Then the variation of the function y is

ay(x, t)

6y(x,t)- - 6q = v(x,t)6q (55a)3q

where

v(x,t) - -- (55b)

The quantity V is the sensitivity coefficient for the variation 6y(x,t) due to

a small constant perturbation 6q.

5 Tomovic, RaJko, Sensitivity Analysis of Dynamitc _stems, McGraw-Hill, 1963.
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-.' The original POE in Eq. (ISa) can be written as

0 Ly + Q

- Ytt + -2y - a 2yxx + b2yxxxx + qf(x,t) - 0 (56)

., Due to the perturbation of q the change of * obeys the following relationship

3. Ytt a0 aYxx a0 aYxxxx
S+-- - --------------- ------- f(x,t) 0 (57)3Ytt 3q 3yxx 3q aYxxx aq

It is also noted from Eq. (56) that

W2 =(58a)
Ytt 'ay

a2 = Do2 = b2 (58b)
ayxx aYxxxx

Using the definition in Eq. (55b) the partials can be interchanged as

.'Ytt a2

a"" q (59a)

3q~ at 3q(9b

ay = 32 aqy t
aq 3X q t 

5b

---and - -- ay (59c)

3q a q xx

Substituting Eqs. (58) and (59) into Eq. (57) we have

Vtt + w2 v - a 2Vxx + b2vxxxx + f(x,t) - 0 (60)

If we compare the definitions of variation in Eq. (43a) with the definition of

sensitivity relationship in Eq. (5 5a) we have

.y(x,t) - Un(x,t) - (6q)v(x,t) (61)

which gives
-(x,t) - v(x,t) (62a)

16
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and
6q 1 (62b)

Thus Eq. (60) becomes
ntt + 2 _ a2 x + brix + f(x,t) = 0 (63)

which gives the PDE of the variations of the original system.

If we compare Eq. (63) with Eq. (56) we see that the variation r(x,t)

i -16y(x,t) in Eq. (63) takes the place of the function y in Eq. (56) with q =

* 1.. Therefore, the POE for the variations is unchanged except by a scale

factor. Thus the solution of the variation 6y(x,t) has the same form as that

of the original function y.

Similarly for the adjoint system one can obtain

6y(x,t) = pn(x,t) = (6q)v(x,t) (64)

A (x,t) = v(x,t) (65a)

6q (65b)
and

ntt + W2n - a2 ixx + b2 xxxx + f(x,t) 0 (66)

which is the PDE of the variations of the adjoint system.

EXTREMAL OF FUNCTIONAL FOR A SIMPLE OSCILLATOR

To show that 62J must be positive semi-definite we start with an example

by a simple harmonic oscillator with no forcing function. Thus from Eq. (63)

we have the ordinary differential equation (ref 6)

1tt + 2n = 0 (67)

6Shen, C. N. and Wu, Julian J., "A New Variational Method for Initial Value
Problems, Using Piecewise Hermite Polynomial Spline Functions," ARO Report
81-3, Proceedings of the 1981 Army Numerical Analysis and Computers

oer Conference, 1981.
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The solution for the above equation is

6y tirl - A cos(wt+O) (68a)

6 yt uit - -wA sin(wt+6 ) (68b)

Both A and B can be determined from the following given initial conditions

,, 6y(t-O) 6 6y(O) - A cos 0 (69a)

6yt(t=0) 6yt(0) - -wA sin 0 (69b)

For computation by the finite element method the increment time is taken

as T which gives

n ir
T - tb - to (-)(-) (70)

w 2

where n 1,2,3...

The image function becomes

6y(t-T-t) = A cos[+w(T-t)] (71a)

6yt(t-T-t) - -wA sin[O+(T-t)] (71b)

For the ordinary differential equation we have the second variation from Eq.

(52) which gives

62j = [6yt(x,t-t)6yt(x,t-T-t)

+ w26y(x,t-t)dy(x,t-T-t)]dt (72)

Separating Eq. (72) into two parts and using Eqs. (68) and (7L) we have

62j . 62j[6ytl + 62j[w6yJ (73a)

where

2j[Yt] f w2 A2 sin(O+wt)sin(O+wT-wt)d(wt) (73b)
0

(2j[41y f0TaW2A2 co9(O+wt)cos(e+WT-wt)d(wt) (73c)
0

18
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~and andf =  (7 3d)

2
which is a multiple of 1/2.

The trigonometric relationship for Eq. (73) is

sin(wt+3 ) = sin wt cos e + cos wt sin 0 (74a)

cos(wt+O) - cos wt cos e - sin wt sin 0 (74b)

sin(6+wT-wt) - -sin[wt - (0+nw/2)]

- -sin Wt cos(O+nT/2) + cos wt sin(4-nw/2) (74c)

and cos(B+wT-wt) - cos[wt - (O+nr/2)]

. cos wt cos(B+nn/2) + sin wt sin(Onr/2) (74d)

For the case when n is odd, we have

cos(0+nwr/2) - (-l) 2 sin 0 (75a)

n-I

sin( O+nir/2) - (-i) 2 cos 0 (75b)

For the case when n Is even, we have

cos(+nr/2) - (-1)n/2 cos 0 (76a)

sin(0+nn/2) - (-1)n/2 sin 0 (76b)

First, we take the case when n is odd. Substituting Eqs. (74) and (75) into

Eq. (73), one obtains

62J[3ytj _ 2A2f n/2{(sin wt cos 0 + cos wt sin 0)

[- sin wt(-)(n+l)/ 2 sin 0 + cos wt(-l)(n-l )/2 cos 0]}d(wt)

- (-l)(n-l)/2 ( 2 A2 fnw/2 (sin 0 cos 0 + sin wt cos wt]d(wt)

(-l)(n-l)/2 w2A2 [-.4 -- sin e cos 81 (77a)2 2

19
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and

62 J[fw6yl 2 A2 f /(cos wt cos 6 - sin Jt sin "-4
0

[cog wt(-I)(n+D)/2 sin 0 + sin wt (-l)(n-1)/2 cos 6I}d(wt)

(_i)(n-i)/2 W2Afnir/2
(lfI [-sin 0 cos 0 + sin wt cos wt]d(wt)

0

= (-1)(n-l)/2 w 2A 2 
[2 - 2..) sin 0 cos 0] (77b)

2 2
From Eq. (73a) when n is odd we have

1 nit I nil

2j (_l)(n-l)/2 w2A 2{[1 + _- sin 0 cos 0] + [2 - -- sin 0 cos 0]}
2 2 2 2

62j = (-l)(n-l)/2 w2A2  (77c)

In particular for n = 1, one obtains

62j = w2A 2 > 0 (78a)

which gives a minimum for the functional J. For n - 3

62j = _W 2A 2 < 0 (78b)

which gives a maximum for the functional J. It is noted that 62J is

independent of e which is related to the starting conditions. It is also

independent of the polarity of A since it appears in terms of A2 .

Now we take the case when n is even. Substituting Eqs. (74) and (76)

into Eq. (73), one obtains

62j[6yt] = w6A 2 f n r / 2 ((sin wt Cos + cos wt sin 0)
0

[-sin wt (-i)n / 2 cos 0 + cos wt(-l) n /2 sin 0]}d(wt)

"-l)n/2 [2A2  f2 [- sin 2 Wt cos 2 0 + cos 2 Wt sin 2 0]d(wt)
0

- (-l) n/2 w2A2(- cos 2 0 + sin 2 6)nw/4 (79a)

20
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nlr/2

6 2J[tay] = W2 A2 f /(cos wt cos 0 - sin wt sin 0)
0

* [Cos wt(-l)n/2 cos 0 + sin wt(-l)n/2 sin 8I}d(wt)

(_l)n/2 W2A2 fni/2 [cOs 2 wt cos 2 0 - sin 2 wt sin 2 0]d(wt)
0

= (-I) n / 2 w2 A2 (cos 2 0- sin 2 0)nTr/4 (79b)

From Eq. (73a) when n is even we have

62j (_l)n/2 w2A 2{(_ cos 2 0 + sin 2 0) + (cos 2 0 - sin 2 0)}nn/4

62j _ 0 for all n even (79c)

We can conclude here that the functional J definitely (ref 6) has a

minimum if wT = N/2, or T is a quarter of the natural period of the

oscillation T = 2w/w. Moreover, from Eq. (70) for n = I

T = tb - to - n/(2w) = T/4 (30a)

If n = 2 and 62j = 0 in Eq. (79c), we have

T = tb - to < 7f/W= T/2 (8Ob)

This is the upper limit of the increment we chose for T, above which the

minimum of the functional J is not guaranteed.

EXTREMAL FOR A SIMPLY-SUPPORTED BEAM WITH CONCENTRATED LOAD AT THE MIDDLE

To show that 62j must be positive semi-definite we use the example of a

simply-supported beam with a concentrated load at the middle. If the load is

suddenly removed (ref 7), Eq. (63) becomes

itt + b2nxxxx = 0 (81a)

6Shen, C. N. and Wu, .Julian J., "A New Variational Method for Initial Value

Problems, Using Piecewise Hermite Polynomial Spline Functions," ARO Report
81-3, Proceedings of the 1981 Army Numerical Analysis and Computers
Conference, 1981.

7Jacobsen, Lydkis and Ayre, Robert S., Engineering Vibrations, McGraw-Hill,
1958.
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Or from Eq. (56) we have

Ytt + b2yxxx 0 (81b)

The starting conditions are

d
-- 00(x) 0 (82a)
dt

(Px/2)h
G (x- c/I- ------- for 0 4 x < £/2 (82b)

I

and P(i/2)h x
(1 - ) for X/2 < x • (8 2c)

The solution for Eq. (81b) is
a 2y

o(xt) - Eh

60s 1
F = - - I - (-i)(n-l)/ 2 sin(nnx/l)cos pnt (83a)
Sn-odd n

where
Pn = bn 2 7

2 / 2  (93b)
and

as - (PX/21)(h/2) (83c)

The quantity o is the initial static stress at the middle of the beam where

x - X/2 and on the outer surface of the beam.

In order to find Yt we let

n-l1 8 s G* 1 9. ---Y 8h 2 (.)(__.)2(-) 2 sin(n7rx/Z)cos Pnt (84a)

F~h 7 n-odd n nir

Then by partial differentiation we have

n-l
a2 y 8s o 1 ---

2(_)(-1) 2 sin(nffx/£)cos Pnt (84b)
ax Eh n-odd n

which agrees with Eq. (83a), and

n-l
ay 1 8s 4 1 ---
* ------- (--)(--) 2 b sin(nrx/) sin pnt (84c)
at Eh 7r2  n-odd

22'4..
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where from Eq. (83b)

an b Pn 2/(n2 12) (84d)

pl bir2/Lt2  (84e)

It is noted that the Index n appears in both spatial and temporal functions in

Eqs. (84a) and (84b) under the summation sign. We are interested in finding

those functions of t that are independent of the index n. Let us assume that

n2 7T

n2Ir/2 - n 7nc/I (85)

It is noted that for n 1, 3, and 5, n2 T/2 becomes i/2, 47r + irI2, and 12ir +

4, 7r/2, respectively.

N. Thus we have

cos Pnt -cos [n 2 .IT/2 - n2inc/11

'p = Cos [n/2 - n21Tfc/x]

-sin 0n2 W/c/0) (86a)

and

sin Pnt -cos (n21rc/y.) (86b)

Moreover, for c/(9/2) -1, 1/2, and 0

cos pnt -sin[(1/2)c/(1/2)J 1, 0.707, and 0, respectively (87a)
and

sin pnt - cos[(IT/2)c/(9./2)] 0, 0.707, and 1, respectively (87b)

'A The above functions are independent of index n at those values of c/(X/2).

Thus, Eq. (84) may be rewritten at those values as

32(x,t-t) Eh - sin(irc/Lt)y0 (x) (88a)

23
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and
ay A S

-- (x,t-t) --- cos(nc/9.)y0(x) (38b)
at Eh

where n-1

y0 (x) I (-l) 2 sin(nnx/.) (88c)

n-odd

The series terms in Eq. (88c) are the result of an expansion of a triangular

deflection of the form

yo(x) -x(9./2) for 0 4 x 4 X./2 (88d)

-*yo(x) -2 -x/(9.-2) for t/12 4 x 4 9. (88e)

as shown in Figure 2.

For the images of Eqs. (84b) and (84c) the time dependent terms become

andC08 Pnt(T-t) - cos(PnT-Pnt) (89a)

sin Pn(T-t) - sin(pnT-Pnt) (89b)

The term pnT can be obtained from Eqs. (84d) and (UVe) as

pnT -(bn 2 w2/9.2)T - 2 plT (89c)

For computation by the finite element method the increment in time is

taken as T which is defined as

T -tb - to - (m/pl)(Ir12) (9ua)
where

m - 1,2,3... (90b)

Then with the aid of Eqs. (85), (89c), and (90a) we have

Pn(T-t) -mn 2(vr/2) - [n2lT/2 - n2nc/jt

- (m-l)n2('r/2) + n2c/9. (90c)

Then for the case when m 1, the time dependent terms become

cos pn(T-t) - cos(n2 rc/9.) (91a)

24



%7

adstn Pn(T-t) =sin(n
2 Irc/2.) (91.b)

By similar method we can obtain

32 y as
--(x,t-T-t) --- cos(irc/t)y0(x) (92a)

-- (x,t-T-t)-------sin(1rc/y-)y0(x) (92b)
at Eh

For the partial differential equation we have the second variation from Eq.

(52) which gives
TA

62j f (6yt(x,t"t)6yt(x,t-T-t)

+ b26yxx(K~tt)Syxx(x,tTt)]dt (93)

Separating Eq. (93) into two parts and using Eqs. (88) and (92), we have

62j . 62j(6yt] + 62'J~b6yxx1 (94)

The first term on the right of Eq. (94) is

62jXb plT-rw/2 owctsi7c/Xdpt
62J6yt) f (bas/Eh)2yo2(x)dxf csicLsnic9.dpt

,co 0

- I (bas/Eh)2y0
2(x)dx > 0 (95a)

where

plt - ir/2 - ic/9, d(pit) -- (n/t)dc (95b)
* at

plt M wr/2 ,cI(.t12) - 0 , icft - 0 (950)
at

pit -0 ,c/(k./2) - 1 , wre/X - wr/2 (95d)

The second term of Eq. (94) is

62j~b6y11]- (bo.fEh)2y0
2(x)dxff sin(1rc/1) cos(wrc/X)d(wc/X)

10 0

~4*. fXb

I (bas/Eh)2y0 2(x)dx > 0 (95e)
10
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Thus by combining Eqs. (95a) and (95e), one obtains

62j = fx 2 2(bas/Eh)2yo2(x)dx > 0 (96)
xo

which gives a minimum for the functional .1.

Now we take the case when m - 2, Then Eqs. (90c) and (89) become

Pn(T-t) - n2n/2 + n2 itc/£ (97a)

cos Pn(T-t) - cos(n 2 r/2+n 2 c/.) , n2 = 1,9,25, etc.

- -sin(n2 rc/2) (97b)
and

sin Pn(T-t) = sin(n2 7r/2+n 2 rc/X) , n2 . 1,9,25,etc. (97c)

= cos(n 2 71c/X)

Thus the image function becomes

a2 y as
--- (x,t-T-t) ..-- (-sin nc/g)yo(x) (98a)
ax2  Eh

a as
-- (x,t-T-t) . -- cos(wc/g)yo(x) (98b)
at Eh

By substituting Eqs. (88) and (98) into Eq. (94) we have

2J f xb(bos/Eh)2yo2(x)dxf /2[cos 2(Irc/Z) _ sin2 (wc/i)]d(c/Z)
,co 0

= 2b I
-Jb (bas/Eh)2yo2(x)dx(-)[sin n - sin 0) = 0 (99a)

X0 2

We can conclude here that the functional J definitely (ref 8) has a minimum if

p1T - 0/2, where T is a quarter of the natural period of the oscillation

T - 2n/pl. Moreover, from Eq. (90a) for m - I, we have

8Shen, C. N., "Variational Principle for Gun Dynamics With Adjoint Variable
Formulation," Proceedings of the Third US Army Symposium on Gun Dynamics,
Volume I1, May 1982, p. IV-108.
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p7--

T- tb - to n 1/(
2 pl) -/4 (99b)

If m = 2 and S2.1 - 0 in Eq. (99a), we can conclude that

T - tb - to < "/Pl - T/2 (99c)

This is the upper limit of the increment we choose for T, above which the

minimum of the functional J is not guaranteed.

CONCLUSIONS

The functional in bilinear form is svmmetrical about the original

variables and the adjoint variables. The Euler-Lagrange equations for the

original and the adjoint systems are derived using the fundamental lemma of

the calculus of variations. By integrating the bilinear expression by parts,

one can obtain the bilinear concomitant in terms of initial and boundary

"I. terms. The adjoint system can be arranged in a manner that it is a reflected

mirror of the original system in time. Thus the initial conditions for the

btlinear concomitant become zero.

Generalized boundary conditions using many types of "springs" relating

the various spatial partial derivatives are defined to satisfy the boundaries

of the concomitant. The higher partials in original variables and variations

in the adjoint variables can be kept in low orders by these "springs".

Algorithms are developed for use in the finite element method by taking the

first variations of the functional. These algorithms are simplified because

the adjoint system gives exactly the same solutions as that of the original

system.

Sensitivity coefficient is found to be similar to the variation of the

variable and obeys the same partial differential equation. The solution of

27
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the original PDE is taken as the solution of the variations for two examples,

a simple oscillator and a simply-supported beam with load at the middle. It

is found that the second variation of the functional is positive semi-definite

if the increment in time for the finite element method is less than half the

natural period of the physic systems in both cases. This will guarantee a

minimum for the functional and thus the method is truly workable if employed

as algorithms for the finite element method.

... ~ 28

'p..



F'.

REFERENCES

1. Stacey, Weston, M. Jr., Variational Methods in Nuclear Reactor Physics,

Academic Press, 1974.

2. Rxnd, H., The Hamilton-Jacobi Theory of the Calculus of Variations,

Robert E. Krieger Publishing Company, Huntington, NY, 1973.

3. Gelfand, 1. M. and Formin, S. V., Calculus of Variations, Prentice-11all,

1963.

4. Sagan, Hans, Introduction to the Calculus of Variations, McGraw-Hlill,

1969.

5. Tomovic, Rajko, Sensitivity Analysis of Dynamic Systems, McGraw-Hill,

1963.

6. Shen, C. N. and Wu, Julian J., "A New Variational Method for Initial Value

Problems, Using Piecewise Hermite Polynomial Spline Functions," ARO Report

81-3, Proceedings of the 1981 Army Numerical Analysis and Computers

Conference, 1981.

7. Jacobsen, Lydiks and Ayre, Robert S., EngIneering Vibrations, McGraw-Hill,

1958.

8. Shen, C. N., "Variational Principle for Gun Dynamics With AdJoint Variable

Formulation," Proceedings of the Third US Army Symposium on Gun Dynamics,

Volume II, May 1982, p. IV-108.

40

29



,V T 1 r u-v)w -j :. t WWW L~ .:, WTW W - -J. . .q . .i . , 1 -w- . , . • . . .. .• • •.

A

t00Nk

L-t j ;c (

A Akto x)t> V U, 7>

Figure 1. Image Reflection of the Adjoint System.

$4 30



.76

-70

Ijt2

Figure 2. Variation of the Partials f or a Beam Equation.

5- 31

Ice 5.\'* .



.17

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

NO. OF
COOIES

CHIEF, DEVELOPMENT ENGINEERING BRANCH
ATTN: DRSMC-LCB-D I

-DP 1
-DR 1
-DS (SYSTEMS) 1

. -DS (ICAS GROUP) 1
-DC 1

CHIEF, ENGINEERING SUPPORT BRANCH
ATTN: DRSMC-LCB-S 1

-SE 1

CHIEF, RESEARCH BRANCH
ATTN: DRSMC-LCB-R 2

-R (ELLEN FOGARTY) I
-RA 1

S-PRM 2

4 -RP1
!4 -RT i

TECHNICAL LIBRARY
ATTN: DRSMC-LCB-TL

TECHNICAL PUBLICATIONS & EDITING UNIT 2
ATTN: DRSMC-LCB-TL

DIRECTOR, OPERATIONS DIRECTORATE 1

DIRECTOR, PROCUREMENT DIRECTORATE I

DIRECTOR, PRODUCT ASSURANCE DIRECTORATE 1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: DRSMC-LCB-TL,
OF ANY ADDRESS CHANGES.



. . . . . . . . . - -- . . -

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. OF NO. OF
COPIES COP IES

ASST SEC OF THE ARMY COMMANDER

RESEARCH & DEVELOPMENT US ARMY AMCCOM
ATTN: DEP FOR SCI & TECH 1 ATTN: DRSMC-LEP-L(R)
THE PENTAGON ROCK ISLAND, IL 61299
WASHINGTON, D.C. 20315

COMMANDER
COMMANDER ROCK ISLAND ARSENAL
DEFENSE TECHNICAL INFO CENTER ATTN: SMCRI-ENM (MAT SCI DIV)
ATTN: DTIC-DDA 12 ROCK ISLAND, IL 61299
CAMERON STATION
ALEXANDRIA, VA 22314 DIRECTOR

US ARMY INDUSTRIAL BASE ENG ACTV

COMMANDER ATTN: DRXIB-M
US ARMY MAT DEV & READ COMD ROCK ISLAND, IL 61299
ATTN: DRCDE-SG 1
5001 EISENHOWER AVE COMMANDER
ALEXANDRIA, VA 22333 US ARMY TANK-AUTMV R&D COMD

ATTN: TECH LIB - DRSTA-TSL
COMMANDER WARREN, MI 48090
ARMAMENT RES & DEV CTR
US ARMY AMCCOM COMMANDER
ATTN: DRSMC-LC(D) 1 US ARMY TANK-AUTMV COMD

DRSMC-LCE(D) 1 ATTN: DRSTA-RC
DRSMC-LCM(D) (BLDG 321) 1 WARREN, MI 48090
DRSMC-LCS(D) 14., 46

DRSMC-LCU(D) 1 COMMANDER
DRSMC-LCW(D) 1 US MILITARY ACADEMY
DRSMC-SCM-O (PLASTICS TECH 1 ATTN: CHMN, MECH ENGR DEPT

EVAL CTR, WEST POINT, NY 10996
BLDG. 351N)

DRSMC-TSS(D) (STINFO) 2 US ARMY MISSILE COMD
DOVER, NJ 07801 REDSTONE SCIENTIFIC INFO CTR 2

ATTN: DOCUMENTS SECT, BLDG. 4484
DIRECTOR REDSTONE ARSENAL, AL 35898
BALLISTICS RESEARCH LABORATORY
ARMAMENT RESEARCH & DEV CTR COMMANDER
US ARMY AMCCOM 1 US ARMY FGN SCIENCE & TECH CTR
ATTN: DRSMC-TSB-S (STINFO) ATTN: DRXST-SD
ABERDEEN PROVING GROUND, MD 21005 220 7TH STREET, N.E.

CHARLOTTESVILLE, VA 22901
MATERIEL SYSTEMS ANALYSIS ACTV
ATTN: DRSXY-MP 1
ABERDEEN PROVING GROUND, MD 21005

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER,
US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, DRSMC-LCB-TL,
WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.
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WATERTOWN, MA 01272 WASHINGTON, D.C. 20375

COMMANDER COMMANDER
US ARMY RESEARCH OFFICE AIR FORCE ARMAMENT LABORATORY
ATTN: CHIEF, IPO 1 ATTN: AFATL/DLJ 1
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CODE X212

DAHLGREN, VA 22448
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