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INTRODUCT LON
Traunsient solutions of the hyperbolic type partial differential equation, 25

for example the wave equation or the beam equation, are important for solving !?
engineering problems such as stress wave for gun dynamics or shock behavior of ;ﬂ
penetration mechanics. At present these equations are usually solved Ei
D!

numerically by the finite dtfference method or by the Galerkin method.

’
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Considerable advantage may be obtalned if the finite element method can be

directly employed instead. Variational procedures using bilinear formulation
with adjoint variables can serve as the theoretical basis for the derivation
of algorithms usiang the finite element method for the hyperbolic type partial

differential equations (PDE).

THE VARIATIONAL PRINCIPLE
A dynamical system can be modeled by the following partlal differentlal
equation.

L(g) y(&) = -Q(%) (1)
with appropriate boundary and initial conditions. In the above equation L is
a linear operator in both spatial and temporal domain, y is the depeadent
variable, Q is a forclag function, and f represents all independent wvariables,
both spatial and temporal.

The inner product < > of an adjoint forcing function 5 and the solution

(y(%)) of Eq. (1) can be used for the purpose of estimation. This laner

product 1is £Q,y>.
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An accurate estimation can be made by constructing a varfational

prianciple (ref 1). By using the adjolnt variable y as a Lagrange multiplier
for Eq. (1) adding to <a,y>, we have
ILLTY] = @y + 5, (QLy)> = <Qy> + <7,05 + <yyly> (2)
To keep the system symmetrical, let us define the adjoint system as
L(E)Y(6) = -Q(&) 3
By using the original variable y as a Lagrange multiplier for &q. (3) adding
to <Q,;>, we have
3203,3) = <Qy> + <y, (QLy)> = €Qu3> + <y, + <y,Ly> )
By definition, the relationship of the adjoint system to the original system
is
A -
D= (y,Ly) - Ly,Ly> =0 (5)
where D i{s the bilinear concomitant (ref 1). Combining Eqs. (2), (4), and (5)

one obtains

J1 = Jy (6a)
In order to keep the functional symmetrical, we have
Al
J = 5 {3y + J391 (6b)
which {s of the form
1 1 -
J = <Q,y> + <y,Q> + - <y Ly> + E <y,Ly> (6c)

To show that the above fuanctional satisfies both the original and the
adjoint systems, let us take the first variations of Eqs. (5) and (6) which
glves

83 = 8J(8y) + 8I(S5y) (7a)

1Stacey, Weston, M. Jr., Variational Methods in Nuclear Reactor Physics,
Academic Press, 1974,

------------------
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AL where
) - - 1 - -
5S 8J(8y) = L8y, Q> + 5 <{Sy,Ly> + E {y,L6y> = 0 (7b)
1
- and
) - 1 - 1 =
L 8J(3y) = <boy,Q> +£ {8y,Ly> + E {y,Léy> =0 (7¢)
.'.:e
§3 Also
' -
8§D = 8D(Sy) + &D(&y) (8a)
13 . where
8D(8y) = <8y,Ly> - <y,Léy> = 0 (8b)
and
Lo _— -
8D(8y) = ~ <8y,Ly> + <y,L8y> = 0 (8¢c)
e
‘ ﬁ From Eqs. (7b) and (8b) we obtained
! - - 1 - 1 - -
1 83(8y) = <8y,Q) + - <By,Ly> + = Cby,Ly> = <oy, (QrLy)> = O (9
S -
\’: For arbitrary Oy satisfying certain general limitations on the boundaries it
}\'
i; can be shown that the Euler-Lagrange Equation for the original system in Eq.
-
(1) is satisfied. From Eqs. (7c) and (8c) we get
X - 1 - 1 - - .-
v 6J(8y) = <&y,Q@> - 5 <Sy,Ly> + 5 <Sy,Ly> = (8y,(QtLy)> = O (10)
Am'
For arbitrary variation S8y, the Euler-Lagrange Equation for the adjoint system
;‘ in Eq. (3) 1is also satisfied.
o
A INTEGRAL OF BILINEAR EXPRESSION
- The fntegral of a bilinear expression for a two-dimensional problem
" having second order partial derivatives in time and fourth order partial
. . derivatives Iin space can be written as
[
™ Xp tp -
31 L=/ [ aly(x,t),y(x,t)]dedx (11)
.;‘ xO to
.1
& 3
]
»
X

', Og

YTy

[ A
P



where Q[y,y] is a given bilinear expression in the form

R[y,y] = yeyve - 02yy - a%yeys ~ byyuYx (12)

o) The subscripts t and x indicate the partial derivatives for the functions y

and y.

Equation (12) can be integrated by parts. Two different forms of

integration and end conditions are given. The first form of the integral is

obtained by integrating by parts on the adjoint variable.

ty Xp - Xb - tp
I = -] [ ylydedx + [ yey| dx
to %o Xo to

ty -~ Xp - Xp ) - Xp
+ I {‘bZYxxYxl + (bZYxx)xYI = aZYxY| }de (13a)
to Xo Xo Xo

On the other hand, we can perform integration on the original variable to glve

ty Xp —-- Xbh - ty
1 = -f | yLydtdx + [ yey| dx
to %o Xo Co

ty - Xh - Xb - Xh
+ f {‘bZYxxYxl + bz(Yxx)xY| - aZYXY| ldt (13b)
to Xo Xo X0

To keep the form symmetrical, we take the average of the above two expressions

1 1 % th 1 - - 1 Xp -~ T
T=-0) +=Ip==-[ [ =(yLytylyddtdx + = [ =~ (yeyryey)|  dx
2 2 X5 to 2 2 Xo to

1 .t 20, "= Xp
s f: (~a®)(yxytyxy)|  dt

o Xo

b 9 - - Xp 1 .ty ) - - Xb
| b eyt Yxxyx) | At = = [ [(-b%yxy + (-blyxx)y]  dt  (14)
to Xo 2 t, Xq

+
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Ly = ypp + w2y = alygy + b2 15a) :

y = Yet y = a%¥xx ¥ xxxx (15a -

and —_ - - - - o
Ly = yee + mzy - aygx + szxxxx (15b) 4

For a fourth order spatial partial and a second order temporal partial system ﬁ
3]

Eq. (5) becomes ﬁ
Xp tb - X tp -- E

D=/ [ yLydtdx - [ [  yLydtdx (16a) ]

X b X to K

“
.-1

By equating Eqs. (13a) and (13b) and solving for D in Eq. (16a) we are
converting the double integral into single integrals in terms of the boundary
conditions.
We can express the quantity D as the sum of three parts for end
conditions Dy, D2, and D3 as
D =D + Dy + D3 (16b)

The terms in D] involve the initial conditions of y and y as

Xy -tp - ty :
Dy = [ {yeyl - yeyl lax :
Xo to to 3
“ ) ) ;
D = fx dx{[ye(x,tp)y(x,ty) = ye(x,tp)y(x,tp)] A
(¢] ’ 1
- (7l ) Y(X, to) = Telx,ta)¥(x,te)]) (17a)

The terms in Dy involve the boundary conditions from the second partials of y

and y as

-
»

PRSI T [ S A

e

P PP .

ty - Xp - Xp
Dy = [ (=a®)lygy] =~ yxyl lat
to Xo Xo

.
.
-

tb - -
Dy = ft dt {~a?[yx(xp, t)y(xp,t) — yx{xp,t)y(Xp,t)
[o]

+ a2[yx(X0rt)¥(X0st) = ¥x(Xo,t)¥(X,t)]} (17b)




b oy The terms in D3 involve the boundary conditions from the fourth partials of y
PO -
08 and y as
ty - Xp - X} - Xy - Xp
v D3 = f {'bZYxxyxl + bzyxxyxl + (bzyxx)xYI + (’bZYxx)xYI }dt
t Xo Xo Xo %o

\.
<
S o
.

Y ty - -
" D3 = It dt {~b2[yxy(xp, t) ¥y (xp,t) = Txx(Xp, ) yx(xp,t) ]
o

- + B2 [Txx(Xort) Yx(Xort) = Yxx(Xost)Yx(Xost)]}

ty - -
+ ft dt {=b2 [~yxxx(Xb» ) ¥(Xp, t) + Yxxx(Xp,t)y(xp,t)]
(o]

:.:‘ + bz['Yx}g:(xopt)Y(XOst) + YX(XO,C)Y(xo’t)]} 17¢)
o In order that D = O in Eq. (16b) it is sufficient that

b D1 =20 18a)
S

_;:::. D 20 (18b)
:s and D3 =0 (18¢c)
[ (3

NN THE SYMMETRICAL ADJOINT SYSTEM

e

\ﬁ The adjoint independent variable t in Figure 1 can be expressed as

.

N

Tb - T t - to
" = (19)

o Tp = To tp~

"ff

:ﬁ which gives

.

= T=1T, for t=t, (20a)
5, and

A T=1, for t=tp (20b)
QJ’_:-

j:{ It 1s noted from Eq. (19) that

' Ty = To = tp = to (21a)
otd T=Tp+ty-t (21b)
o

2 dt = -dt (21c)
4

oY
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drt dt

and ~
y(x,t) = y(x,T = Tyrt,-t) (21e)

Let us assume that the adjoint system shown in Figure 1 gives

~ A~

y(x,t=t) = y(x,t=tpt+t,~t) (22a)
ye(x,e=t) = ~yp(x,t=tptty-t) (22b)
Yx(x,t=2t) = yx(x,t=tytty-t) (22¢)

A

where t is a dummy variable for t.
We may define the adjoint system as the image reflection in the time

donmain of the original system. Equation (22) yields the following known

initial condittions

- ~

;(x,t=tb) = y(x,t=ty) (known) (23a)

~
-

ye(x,t=ty) = -ye(x,t=ty) (known) (23b)
The interpretatinn of the above equations gives the {nitial conditions of the
original system as the far end conditions for the adjoint system, since the

adjoint system {3 a reflected mirror of the original system in time.

INITLAL CONDITIONS FOR THE ADJOINT SYSTEM

We take a symmetry approach for the lnitial conditions of the adjoint

system as
y(x,t=tp) = y(x,t=ty) , ye(x,t=tp) = ~ye(x,t=ty) (24)
vix,t=t,) = y(x,t=ty) , ye(x,t=ty) = ~y,(x,t=ty) (25)

Thus Eq. (17a) becomes
Xb
Dy = fx dx{{ye(x,t=tp)y(x,t=ty) + yelx,t=ty)y(x,t=ty)
o

=~ [ye(x,t=ty)y(x,t=ty) + ye(x,t=tp)y(x,t=ty )1} = 0 (26)

CaT. WP )7 o
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Since the integrand of Eq. (26) is zero, the above satisfles Eq. (18a). The

7.7, ‘. f'n_/-.'fy " b o T

i{initial conditions in Eq. (25) are given. Therefore

(l 6;(x,t=tb) = Sy(x,t=ty,) =0 (27a)
= -

‘ Syp(x,t=ty) = =8y (x,t=t,) = 0 (27b)
X

THE GENERALIZED BOUNDARY CONDITIONS

5 Let us consider the operator L in Eq. (15a) for two different cases as

-3 follows.

i A. For the wave equation we have
: Ly = yee = a’yxx (28)
é; Let us assume that elastic springs are installed at the ends such that

N e(xprt) = kpy(Xpyt) 5 ¥x(Xp,t) = kpy(xp,t) (29a)
Q Yx(x0,t) = ~koy(%Xo,t) , ;X(XODt) = ‘ko;(xo»t) (29b)
q This is equivalent to state that the fixed end condition for a prismatic bar
. is kpy = kg * @ and the free end condition is ky = kg * 0. 1If Eq. (29) is
;; substituted into Eq. (17b) we have

i Dp =0 (30)
| B. For the beam equation we have

; Ly = yee + b%yexxx 31
?i Two sets of springs are incorporated at the ends. They are:

(1) Torsional springs relate the moments (the second partials) with the

slopes (the first partials)

Yxx(xb»t) = nbe(xbtt) Yxx(xbat) = nbe(xb’t) (32a)

Yxx(%0st) = =ngyx(xo,t) ;Xx(xOot) = '“o;x(xo:t) (32b)
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(2) Linear springs relate the shears (the third partlals) with the

deflection (no partials)

yXxx(xb’t) = CbY(xb:t:

Yxxx(Xg,t) = ~Coy(%q,t)

Yxrxx(Xpst) = Cpy(xp,t)

Yxxx{Xo,t) = =Coy(xy,t)

By substituting Eqs. (32) and (33) into Eq. (17c) we have

Dy = 0

(33a)

(33b)

(34)

Table I shows the assignment of the spring constants for various physical end

conditions.

- —————— e - - ——

fa
Yux=NYx

Deflect
Yxxx>cy

Spring
Yx’ky

Bt o s

Torsional Spriag

TABLE 1.

At Fixed End | At Hinged End
y=y=0 y=y=0
Yx=Yx=0 Yxx=Yxx~0
Sy=8y=0 Sy=8y=0
Sy =Sy=0 8y yx= 8 xx=0
n +® n-+0

iton Spring
c *r ® c * @
Gyas;ao k > =
Syx=8yx=0
9
RN N RS 0 YO TR S, NP S

—————pr——————

GENERALIZED BOUNDARY CONDITIONS

At Guided End

yxayxso

Yxxx=Yxxx=0

6yx=6yx=0

8y xxx= 0¥ xxx=0

LI N

S

A ot At T T T e e e e e e e e e

At Free @nd

fe =~ - ettt e ———————e

Yxx=Yxx=0

Yxxx=Yxxx=0
Syxx=Syxx=0

8y xxx= 0¥ xxx=0

k = undetermined
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o THE FIRST VARIATION

:".'.-‘ The sum of the two functionals is obtained by adding Eqs. (6¢) and (14)
.‘. as

5 J+1=f [ (qQrtyQ)dxdt + T+ W+ B (35)
_:\.‘, xo t:O

N where

1 X% -- _ tp 1t L, -~ X

T==) (gevtyen)]  dx , W= = [ (mad)(ygrtyey)| at

)_:

o and

S 1 %, - - Xp 1 b 2 - " xp

A B==[" (b Y Fxayxtyexyx) | dt = = [ [(-bZygx)xy + (=bPyx)xy| dt  (36)
.-‘. 2 to xo 2 to xO

;f:': By taking the variations 6; and Sy separately, we let

o 8J = 8J(8y) + 8J(dy) 37)
": Then one obtains from Eqs. (35) and (36) that

"- §J(8y) = -8I(Sy) + [ QSy dxdt + SI(Sy) + SW(Sy) + SB(Sy) = O

"" where
. - 1 X ~ - tp = 1L & - - %
» ST(Sy) = = [ (yelSy+ydye)|  dx , SW(8y) = = [ (~a®)(yxlytysyx)| dt
N 2 % to 2 't Xo

"a and

! -1 % - - X

§B(6y) = = [ = (-b2)(yxxS¥xtyxSyxx)| dt
2ty X0

e

1 tb ) - s = B

= = [ [-bD)ygxxy + (-b2)ySygex] 4t (38)
N~ 2 'ty Xo

b -

\ where -§I(8y) can be derived from Eqs. (11) and (12) as
{ j;:s - Xb tb - - - -

=81(8y) = =f [ (yedyp-wlySy-alyySyy-blyxySyxx)dxde (39)
.-:; xo to
The second term on the right side of Eq. (37) is

~ -

e

s: 8J(8y) = ~81(8y) + ff QSy dxdt + ST(Sy) + SW(Sy) + 6B(Sy) = 0

'~"

s

)

r: 10

W

’1

o~

‘s
o

A

'Yl
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where

1 Xp - - th 1 .t 2, - Xp
§T(8y) = > fx (yeSy+rySye)|  dx ,  6W(6y) = " ft (-a%) (yxSy+ydyx)| dt

o to ) X0

S Y - Xb
sB(8y) = > It (b (YexSyxtyxSyxx)| dt

o Xo
ty - - Xp
= | [(-b2yxxx) 8y-b2ySyxuy] dt (40)
to Xo
aand
Xp tp - = - 2 "
-81(8y) = - | ft (ye8ye-w?ySy=aZyy Syx(=b2)yxy Syxx)dxdt (41)
Xo to
? It is noted that Eqs. (38) and (40) are exactly the same form, where Eqs. (39)
,
g and (41) are also similar.
For the beam equation it is noted that the high partials in Eqs. (38) and
: (39) can be replaced by Eqs. (32) and (33). The variations of the adjoint
N
) higher partials from these equations can be written as
Oyxx(Xpst) = npdyyx(xp,t)  Syyyx(xp,t) = cpSy(xp,t) (42a)
Syxx(Xort) = ~noSyx(xg,t) OSyxxx(xo,t) = —cody(xo,t) (42b)
X! Equations (38) and (39), with the aid of Eqs. (32), (33), and (42), are
N

the key equations to be used for the finite element method. It is noted that

the first varifation 8J(S8y) is the same as the first variation 8J(8y) by adding

or dropping the bar on top of the variables and their variations. We do not

need to solve for the adjoint system in Eqs. (40) and (41) since they give

exactly the same solutions as that of the original system.
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SECOND VARIATIONS

The functions y and y and their partials are writtean in the form In terms

of a small parameter u

y(x,t,u) = y(x,t) + Sy(x,t,u) , Oy(x,t,u) = un(x,t) (43a)
ye(x,t, 1) = ye(x,t) + Sy (x,t,1) , Oye(x,t,u) = un.(x,t) (43b)
Tr(Xaty 1) = yx(xs€) + Syp(xatyt) 5 Oyx(x,t,u) = ung(x,t)  (43c)
YO, 6,0) = y(x,t) + Sy(x,t,m) , OSy(x,t,u) = un(x,t) (434)
Ye(R,t, ) = ye(x,£) + Syc(x,t,1) , Syp(x,t,u) = une(x,t) (43e)
Fi(Xo b 1) = yy(x,8) + Sy (x,t, 1), Syx(x,t,u) = un (x,t)  (43F)

Similar expressions can be derived for higher partials in x. Thus, the

functional J(u) can be expressed as (ref 2)

J(u) = J(u=0) + 8J + 823 (4ba)
where 3J
8J = u(=-) (44Yb)
H y=0
and
8§25 1 (aZJ) (44¢)
2 ou? u=0

By taking variations of 8J(S8y) in Eqs. (38) and (39) and some for 8J(Jy) ia

Eqs. (40) and (41), we have

623 = 827 + 628 + 6%y - §%1 (45a)
where
, 1 %o - - t
82T = - [ (byeSy+SySyr)  dx (45b)

2Rund. H., The Hamilton-Jacobi Theory of the Calculus of Variations, Robert E.

Krieger Publishing Company, Huntiagton, NY, 1973,

(SN RO
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1 tb o, - - %b
5§28 = i’ jt (-b )(GYxxs)'x"'GYxGYXx)l dt

0 Xo
1 % - - X
+ = [ " b2(SyxxxSy+Sydyxxx)| dt (45¢)
2 ¢, Xo
and
9y _ L b T
820 = = [ 7 (~a®)( 8y, Sy+Sydy,)| dt (45d)
2 t, Xo

The second variation of I is obtained from Eqs. (39) and (41) as

521 u? (321)
=57 72
2 T a0

1 l -
-5 Sy[SI(8y)] + " Sy[SI(8y)]

1 % b w28y y-a2 Sy yo=b2 Sy dy
= = [ [ (SypSyp-w®Sydy~a‘ Sy, Syx—b 6y, Syxx)dxdt
2 x5 to

Xp tb

t . 250 8y—a28y 25,
+ - f f (Syy Sy —w*Sydy-a Sy Oyx—b“SyxxSyxx)dxdt
2 "%y g

Xp ty
21 = [
Xo bo

(8y¢ 8yp~w?SySy=-a2 by, Syx~b2 Syyy Syxx)dxdt (45e)

Substituting Eq. (27) into Eq. (45b) we have
82T = 0 (46a)
For all the end conditions in Table I either the variations dy,, and S;xx must
vanish or 8y, and G;x must vanish. Thus, the first term on the right side of
Eq. (45c) is zero. Similarly, for all the end conditions in Table I either
the variations Sy,, and G;xx must vanish or 8y and 6; must vanish. Thus the
second term on the right side of Eq. (45c) is also zero. The third term is

zero except at the guided end. Thus, in general

528 = 0 (46b)
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In Table I, except the free end, either the 8y, and S8y, must vanish or &y

and 6y must vaaish. Thus, one obtains

82y = 0 (46¢)

This reduces the second varlations 82J to
823 = =823 (47)
as given in Eq. (45e).
Substituting Eq. (45e) 1into Eq. (47) gives
ty Xp - -
623 = f f [=6ye(x,t) 8y (x,t) + wzﬁy(x,t)éy(x,t) +
to *o
+ 28y, (x,t) 6yx(x,t) + b28y, (x,t) Syxx(x,t)]dxdt (48)
In order that the functional J is an extremum (refs 3,4), the second variation
627 must be either positive semi-definite or negative semi-definite, i.e.,
623 > 0 (or 627 < 0) (49)
The above 1s a necessary condition for a miaimum (or a maximun).

The adjoint variations ia Eq. (48) may be obtained by the relations given

in Eq. (22) as

~ -~

Sy(x,t=t) = Sy(x,t=tp+ty~t) (50a)
Sye(x,t=t) = =8y, (x,t=tp+ty-t) (50b)
Syx(x,t=t) = Sy, (x,t=tp+t,~t) (50¢)

The variations of adjoint {nitial conditions can be derived from Eq. (23) as

~ A~

Sy(x,t=tp) = Sy(x,t=ty) = 0 for all x (51a)

Sye(x,t=ty) = =Sy¢(x,t=ty) = 0 for all x (51b)

3Ge1fand, I. M. and Foramin, S. V., Calculus of Variations, Preatice-llall,
1963,
ASagan, Hans, Introduction to the Calculus of Variations, McGraw-lill, 1969.
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f}f By substituting Eq. (51) into Eq. (48), we have
e
e th Xp
l: 823 = [ [ P(x,t)dxdt (52a)
et to Xo
RN where
-‘:.: P(x,t) = Sy (x,t)8y (x,ty+to-t) + wzsy(x,t)éyx(x,tbﬂo—t)
) + azcyx(x;t)GYx(x»tb'H:o't) + bzGYxx(x;t)GYxx(xytb"'to"t) (52b)
R
\j SENSITIVITY RELATIONSHIP
g
o0
I In order to show that the second variation of the functional I is
o
\ positive semi-definite, one needs to obtain the variations of the function and
AW
X
gt: its partials together with that of the adjoint functions and its partials as
ads
}:f indicated in Eq. (48). We can get these variatlons through the study of the
'
Ad sensitivity coefficients (ref 5) and its relationship to the parameters glven
AN
::ﬂ in Eq. (43). Let the forcing function in Eq. (1) be
Py
2
\‘3 Q(X,t) = qf(X,t) (53)
\ It 1s assumed that the forcing function parameter q is subject to a small
k (_4
:;: constant perturbation 8q as
gy q=qo + $q (54)
%
058
5 Then the variation of the function y {is
N dy(x,t)
: sﬂi Sy(x,t) = -===2-= 8q = v(x,t)dq (55a)
d.;,‘n 3q
‘ h
where
.y
- v(x,t) = Py (55b)
P q
...‘
*{q The quantity VvV is the sengitivity coefficient for the variation Sy(x,t) due to
s
5:; a small constant perturbation dq.
dnch
s e
T
$E 5Tomovtc, Rajko, Sensitivity Analysis of Dynamic Systems, McGraw-Hill, 1963. J
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The original PDE in £q. (15a) can be written as
$ =Ly +Q
2y - a2y . + b? + qf(x,t) = 0
= yee ¥ @y - a%yxx yxxxx + af(x,t (56)
Due to the perturbation of q the change of ¢ obeys the following relationship

3¢ et 3¢ IYxx 3 IYxxxX
+ oo e + f(x,t) =0 (57)

3yer 94q dyxx 99 Iy xxx 3q

It 1s also noted from Eq. (56) that

3¢ L1 2
=== = y U =W (58a)
3yee dy
3¢ 3¢
=== = -a? |, oeeoe- = b2 (58b)
Wxx Iy xxxx
Using the definition in Eq. (55b) the partials can be interchanged as
; dyer 22 (ay
momm B ems (=) =V 59
3q 31:2 Bq) tt (59a)
dyxx 92 (3y
——tapam R e - = \ Sgb
3q ax? Bq) et ( )
and dyxxxx 3" (By
------ = ==z (==) =V 59¢
g ax4 aq) Xaxx (39¢)
Substituting Eqs. (58) and (59) into Eq. (57) we have
vep + 02V = aug + b2y + E(x,t) = 0 (60)

If we compare the definitions of variation in Eq. (43a) with the definition of

é; sensitivity relationship in Eq. (55a) we have
.
LY,
e Sy(x,t) = un(x,t) = (8q)Vv(x,t) (61)
- which gives
n(x,t) = v(x,t) (62a)
16
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and

8q = ¥ (62b)
Thus Eq. (60) becomes
Nep + 020 = aZng, + bingp + E(x,t) = 0 (63)
which gives the PDE of the variations of the original system.

If we compare Eq. (63) with Eq. (56) we see that the variation n(x,t) =
u=l8y(x,t) in Eq. (63) takes the place of the function y in Fq. (56) with q =
1. Therefore, the PDE for the variations is unchanged except by a scale
factor. Thus the solution of the variation S8y(x,t) has the same form as that
of the original function y.

Similarly for the adjoint system one can obtain

§y(x,t) = un(x,t) = (8q)V(x,t) (64)
n(x, ) = W(x,t) (65a)
8§q = u (65b)
and
nee + w2n - aZn., + b1 +f a
tt XX Ny xxx (x,t) = 0 (66)

which is the PDE of the variations of the adjoint system.

EXTREMAL OF FUNCTIONAL FOR A SIMPLE OSCILLATOR
To show that §2J must be positive semi-definite we start with an example
by a simple harmonic oscillator with no forcing function. Thus from Eq. (63)
we have the ordinary differential equation (ref 6)
Nee + wPn =0 (67)

—— e e .

6Shen, C. N. and Wu, Julian J., "A New Variational Method for Initial Value
Problems, Using Piecewise Hermite Polynomial Spline Functions,” ARO Report
81-3, Proceedings of the 1981 Army Numerical Analysis and Computers
Conference, 1981.
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The solution for the above equation is
Sy = un = A cos(wt+6) (68a)
Sypr = ung = —wA sin(wt+6) (68b)
Both A and © can he determined from the following given inftial conditions
§y(t=0) = Sy(0) = A cos 8 (69a) >
8y, (t=0) = Syt(0) = -wA sin 6 (69b) K
For computation by the finite element method the increment time is taken

as T which gives

TR | AT

n w
Tty o= (53 (70)

o

where a= 1,2,300.

The image function becomes

"

RN R

Sy(t=T-t) = A cos[Huw(T-t)] (71a)
Syp(t=T-t) = -wA sin[6+uw(T-t)] (71b) %
For the ordinary differential equation we have the second variation from Eq. ,'i
(52) which gives :j
T - g -]
627 = Io [Sye(x,t=t) Sy (x,t=T-t) X
~ ~ “J
+ w?8y(x,t=t)Sy(x,t=T-t)]dt (72) $
Separating Eq. (72) into two parts and using Eqs. (68) and (71) we have 1
821 = 62J[8y,] + 62I[wdy] (73a) 3
where q
2 Wt 2,2 .
823(8y,] = [ w?A? sin(8+ut)sin( B+uT-wt)d(wt) (73b)
o
2 wT 2,2
8 J[wsy] = [ w?A? cos(6+uwt)cos(B+uT-wt)d(wt) (73c)
o
18
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which is a multiple of u/2.
The trigonometric relationship for Eq. (73) is
sin(wt+3) = sin wt cos © + cos wt sin O
cos(wt+0) = cos wt cos 6 - sin wt sin 6
sin( 8+uT-wt) = ~ginfwt - (6+n7n/2)]
= -gin wt cos(®4+nnw/2) + cos wt sin(&mn/2)
and cos(6+uT~wt) = cos[wt - (&4nu/2)]
= cos wt cos(8nm/2) + sin wt sin(&+nn/2)

For the case when n is odd, we have

nt+l
cos(6+nn/2) = (-1) 2 gin O

n-1
sin(&4+nm/2) = (-1) 2 cos O

For the case when n 1s even, we have

cos(&4nw/2) (-1)n/2 cos 6

sin(64+an/2) = (-1)0/2 g4n 8

Rt safl Al GArade fd pica i S LIS S0 S

(734)

(74a)

(74b)

(74c¢)

(744)

(75a)

(75b)

(76a)

(76b)

First, we take the case when n is odd. Substituting Eqs. (74) and (75) 1into

Eq. (73), one obtains
nw/2
52J[6yt] = szzf {(sin wt cos 6 + cos wt sin 6)
o

© [~ sin we(-1)("*1)/2 gin 8 + cos wt(-1)(0-1)/2 cog 6]}d(ut)
2
= (-1)(n-1)/2 uzAzfn“/ [sin 8 cos O + sin wt cos wt]d(wt)
o

1
= (-1)(n"1)/2 mzAz[E + gf sin 0 cos 6]

19
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» 62J[w6y] = mzAzf {(cos wt cos 6 = sin wt sin %)
‘ o
§ * {cos wt(-l)(“+1)/2 sin 6 + sin wt (-1)(“‘1)/2 cos 9] }d(wt)
)
+ an/Z
a = (-1)(n-1)/2 2A2f {-sin 8 cos 6 + sin wt cos wt]d(wt)
¥ 1 n-
= (-1)(n-1)/2 2,2 [5 e sin 0 cos 6] (77b)
g From Eq. (73a) when n is odd we have
1 an 1 nn
i, §23 = (—1)(“'1)/2 szz{[; + E— sin 6 cos 0] + [E - 5— sin 6 cos 6]}
L]
¥ 625 = (~-1)(n=1)/2 4242 (77¢)
. In particular for n = 1, one obtains
» 821 = w2AZ > 0 (78a)
~
2 which gives a mintmum for the functional J. For n = 3
I‘ .
§23 = -w?a%2 < 0 (78b)
P which gives a maximum for the functional J. It is noted that §2J is
5 independent of 9 which i3 related to the starting conditions. 1t 1is also
¥
independent of the polarity of A since {t appears in terms of AZ,
; Now we take the case when n 1s even. Substituting Eqs. (74) and (76)
ﬁ into Bq. (73), one obtains e
2 2 nw/2 -]
§¢J[8yg] = wdA / {(sin wt cos 8 + cos wt sin B) i |
- o B
; [- sin wt (-1)“/2 cos B + cos mt:(--l)“/2 sin 0] }d(wt)
N
nw/2
e = (-1)“/2 w2A? f [- sin? wt cos? O + cos 2 wt sin? 6]1d(wt)
o
= (-1)“/2 szZ(— cos? 0 + gin? )nn/4 (79a)
-
*
~
~
~
~
L 4
¢
!
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g and

X , /2

§2J[wly] = w2a?f {(cos wt cos 8 - sin wt sin H)
o

(. * [cos wt(-l)“/2 cos 9 + sin mt:(--l)“/2 sin 9] }d(wt)

nn/2

g = (—1)“/2 w2a? f [cos2 wt cos? 6 - sin? wt sin? 8]d(wt)

- 0

- = (-1)0/2 4242(cos? 6 - sin? O)nn/4 (79b)

' From Eq. (73a) when n is even we have

Jl

i §23 = (-1)“/2 szz{(- cos? 0 + sin? 8) + (cos? 8 - sin? 0)}Inn/4

o

< §23 = 0 for all n = even (79¢)

- We can conclude here that the functional J definitely (ref 6) has a

:: minimum 1f wT = w/2, or T is a quarter of the natural period of the

>

", oscillation T = 27/w. Moreover, from Eq. (70) for n =1

3 T =ty -ty = 1/(20) = 1/4 (30a)

. If n =2 and 62J = 0 in Eq. (79c), we have

ol

p T =ty -ty < t/os= 1/2 (80b)
\, This is the upper limit of the lncrement we chose for T, above which the

[

~i

o minimun of the functional J 1is not guaranteed.

A

i.

1 EXTREMAL FOR A SIMPLY-SUPPORTED BEAM WITH CONCENTRATED LOAD AT THE MIDDLE

3

; To show that §2J must be positive semi-definite we use the example of a

ﬁb

i simply-supported beam with a concentrated load at the middle. If the load is

v

® suddenly removed (ref 7), Eq. (63) becomes

" 2

4 ntt + b nxxxx =0 (813) ;
» —— o
! 3
- 6Shen, C. N. and Wu, Julian J., "A New Variational Method for Initial Value

- Problems, Using Pilecewise Hermite Polynomial Spline Functions,” ARO Report

v 81-3, Proceedings of the 1981 Army Numerical Analysis and Computers .
2 Conference, 1981. )
v 7Jacobsen, Lydkis and Ayre, Robert S., Engineering Vibrations, McGraw-Hill, N
3 1958.
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5 Or from Eq. (56) we have
\ .

;j' yer * b%¥xxxx = 0 (81b)

F The starting coanditions are
Ny

2- Uo(x) =0 (82a)
dt
(Px/2)h
Oo(x) = Mc/1 = -——;—-- for 0 € x < &/2 (82b)

- and P(2/2)h x
Oo(x) = ---E-—- (L - E) for &4/2 < x < ¢ (82¢)

e The solution for Eq. (81b) is

-

Bzy
o(x,t) = = Eh ‘B;E

ESAY
3%

§o o

1
= -3 Z -3 (-].)(“'1)/2 sin(nmx/2%)cos ppt (83a)
T n=odd N

ANIAY
W N

>

.'.

where

..‘t

py = bn?n2/22 (33b)

)
s
L

]

and

og = (PL/21)(h/2) (83¢)

hy

7 gt o
A e ke
ot B P

-

The quantity og is the initial static stress at the middle of the beam where

Ry
I

x = £/2 and on the outer surface of the beam.

>¥Q In order to find y; we let
Lo -1
1 808 oo ———

1 2
J = o= =5 I  (=(=2)%-1) 2 sin(amx/%)cos pat (84a)
; Eh ¢ ,aodd n° oF

i€§ Then by partial different{ation we have
n-1
- 32y 1 308 0 —-——

1
e =5 = - o= =3~ L (=3)(-1) 2 sin(amx/2 t (84b)
.3.2' %2 Eh 72 n’t))‘dd (nz)( ) sin(amx/L)cos py

th.‘é
g which agrees with Eq. (83a), and

n-1
—— 9 y 1 808 @« -

1
A = m = ==~ z (-3)(~1) 2 sin(nmx/L) sin put (84c¢c)
, ::’Z 3 t Eh 7'2 n-odd nz

.vpd-.-¢ --"‘l -
WY, YN
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= sin (n2n/c/2) (86a)
EN

j\ and
2

- sin p,t = cos (n?nc/R) (86b)
2N Moreover, for c/(&/2) =1, 1/2, and 0

A
e 5

:3 cos put = sin[(®/2)c/(2/2)] = 1, 0.707, and O, respectively (87a)
) and
g; sin pat = cos[(7n/2)c/(%4/2)] = 0, 0.707, and 1, respectively (87b)
aﬁ The above functions are independent of index n at those values of c/(%/2).

:ﬁ Thus, Eq. (84) may be rewritten at those values as
A

L
> 27 (xutet) = - <2 stn(ne/ Dyl (88a)
o === (x,t=t) = - -- gin(nc/R)y,(x a

: ax? ’ Eh °

3
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where from Eq. (83b)
b = pyt?/(n2n?) (84d)

and
pPL = b‘nz/lz (84e)

It is noted that the index n appears In both spatial and temporal functions {in
Eqs. (84a) and (84b) under the summation sign. We are interested in finding
those functions of t that are ladependent of the index n. Let us assume that
nn

Pat = ~7° (4/2-c)

= n?n/2 - n?nc/ 8 (85)
It i{s noted that for n =1, 3, and 5, n2n1/2 becomes /2, 47 + w/2, and 127 +
n/2, respectively.

Thus we have
cos put = cos [nzn/Z - nznc/2]

= cos [7/2 - n?mc/2)

''''''''''




and

d - g

3% (x,t=t) = - EE cos(mc/L)yq,(x) (88b)
where n-1
Yolx) = I (-1) 2 sin(amx/%) (88c)
n=odd

The series terms in Eq. (88c) are the result of an expansion of a triangular
deflection of the form
Yol(x) = x(£/2) for 0 < x < 4/2 (884)
Yo(x) = 2 - x/(2-2) for £/2 < x < & (88e)
as shown in Figure 2.
For the images of Eqs. (84b) and (84c) the time dependent terms become
cos p,t(T-t) = cos(p,T-ppt) (39a)
and
sia p,(T-t) = sia(pnaT-ppt) (89b)
The term p,T can be obtained from Eqs. (84d) and (&’e) as
PaT = (bn?w2/22)T = a?pT (89¢)
For computation by the finite element method the increment in time is
taken as T which 1s defined as
T : ty - to = (m/p1)(n/2) (9ua)
where
m=1,2,3... (90b)
Then with the ald of Eqs. (85), (89¢), and (90a) we have
pn(T-t) = mnz(ﬂ/Z) - [nzﬂ/2 - n2nc/4)
= (m-1)n2(w/2) + n2c/2 (90c)

Then for the case when m = 1, the time dependent terms become

cos py(T~-t) = cos(n?mc/ ) (91a)

24
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and
stn py(T-t) = sin(n2ne/R) (91b)

By similar method we can obtain

azy - o

3;5 (x,t=T-t) = ~ EE cos( e/ R)yo(x) (92a)
dy . bog
- (x,t=T-t) = - —==- sin(nc/L)y,(x) (92hb)
at Eh

For the partial differential equation we have the second variation from Eq.

(52) which gives

2 T
§4J = f [Syp(x,t=t)dye(x,t=T-t)
o

A ~

+ b28yyx(x,t=t) Syxx(x,t=T-t)]dt 93)
Separating Eq. (93) into two parts and using Eqs. (88) and (92), we have
8§23 = §2J(8y,] + 62I[bdyyyl (94)

The first term on the right of Eq. (94) is

Xp p1T=7/2
62J[6yt] = fx (bcs/Eh)zyoz(x)dxf cos(me/R)sin(me/R)d(pyt)
o o
Xb
z [ 7 (bog/Eh)2y,2(x)dx > O (95a)
Xo
where
pit = /2 - we/R d(p1t) = =(n/R)de (95b)
at
pit = w/2 , ¢/(&/2) =0 , mwc/R =0 (95¢)
at
pit =0 , ¢/(&/2) =1 , mwc/f% = n/2 (95d)

The second term of Eq. (94) is

Xb 2
62J[b6yxx] - (bcs/Eh)zyoz(x)dxf"/ sin(mc/ L) cos(me/R)d(n1c/ L)
Xo o
Xb
= [ (bog/Eh)2y,2(x)dx > 0 (95e)
Xo
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Thus by combining Eqs. (95a) and (95e), nne obtains
X2
§23 = [ 7 2(bog/Eh) 2y 2(x)dx > O (96)
X
o
which gives a minimum for the functional J.
Now we take the case when m = 2, Then Eqs. (90c) and (89) become
Pn(T-t) = a?w/2 + n2nc/12 (97a)
cos pp(T-t) = cos(nzﬂ/2+n2nc/2) . nl = 1,9,25, etc.
= -gin(nZnc/2) (97b)
aand
sin p,o(T-t) = sin(n?7/2+n?nc/2) , n? =1,9,25,etc. (97¢)

= cos(n?mc/R)

Thus the image function becomes

2%y (x,¢ i /% 98

=== (x,t=T-t) = = == (-sin 7

ax2 x ) Eh (=sin we/R)yqo(x) (98a)
dy . Og
== (x,t=T-t) = - -~ cos(mc/2)yy(x) (98b)
at Eh

By substituting Eqs. (88) and (98) into Eq. (94) we have

Xp /2
§23 = | (bOS/Eh)zyoz(x)dxf“ [cos?(mc/L) = sin2(me/R)1d( e/ L)
Xo [s)
Xb 1
z (bos/Eh)2y02<x>dx(5>[sin T ~sin0) =0 (99a)
Xo

We can conclude here that the functional J definitely (ref 8) has a minimum {f
piT = #/2, where T is a quarter of the natural period of the oscillation

T = 2n/p;. Moreover, from Eq. (90a) for m = 1, we have

8Shen, C. N., "Variational Principle for Gun Dynamics With Adjoint Variable
Formulation,” Proceedings of the Third US Army Symposium on Gun Dynamics,
Volume 11, May 1982, p. IV-108.
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.o
P T=tp -ty = "/ (2py) = /4 (99b)

.;E If m = 2 and §$2J = O in Eq. (99a), we can conclude that

l T =ty - tg < n/pp = 1/2 (99¢)
~

-~ This is the upper limit of the increment we choose for T, above which the
<
-

-i: minimum of the functional J is not guaranteed.

'
7, CONCLUSIONS

; '-‘;

:i The functional in bilinear form is symmetrical about the original

>

variables and the adjoint variables. The Euler-Lagrange equations for the

‘n{ original and the adjoint systems are derived using the fundamental lemma of
Ei the calculus of varfations. By integrating the bilinear expression by parts,
;:i one can obtain the bilinear concomitant in terms of initial and boundary

E:: terms. The adjoint system can be arranged in a manner that it is a reflected
%; mirror of the original system in time. Thus the initial conditions for the
ﬁ}; bilinear concomitant become zero.

\:b Generalized boundary conditions using many types of "springs” relating
;S' the various spatial partial derivatives are defined to satisfy the boundaries
f: of the concomitant. The higher partials in original variables and variations

in the adjoint variables can be kept in low orders by these "springs”.

{\ Algorithms are developed for use in the finite element method by taking the
:? first variations of the functional. These algorithms are simplified because
:;} the adjoint system gives exactly the same solutions as that of the original
:ﬁ system.

_:? Sensitivity coefficient {s found to be similar to the variation of the

wdned.

variable and obeys the same partial differential equation. The solution of

o2

N
e
e

-~
ot
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-
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the original PDE is taken as the solution of the variations for two examples,
a simple ogcillator and a simply-~supported beam with load at the middle. It
is found that the second variation of the functional is positive semi-definite
1f the increment in time for the finite element method is less than half the
natural period of the physic systems in both cases. This will guarantee a
minimum for the functional and thus the method is truly workable if employed

as algorithms for the finite element method.
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Figure 1. Image Reflection of the Adjoint System.
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Variation of the Partials for a Beam Equation.

Figure 2.
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