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ABSTRACT

A two-element spaced array system for reception of low frequency
transverse magnetic radio waves was studied, constructed, and tested.
It consisted of two well-spaced vertical loops combined through a
microwave link and an adjustable delay. It was tested against
atmospheric noise on transmissions from an aircraft towing a long wire
antenna. Improvements of up to 12.8 dB in signal-to-noise ratio over

omnidirectional antennas were demonstrated.
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1. INTRODUCTION AND BACKGROUND

In 1980, it was suggested that an array of simple low-frequency antennas
might improve the signal~to-noise ratio (SNR) beyond that obtainable with the
simple loop. More detailed calculations* showed that with a certain antenna
spacing there should be an improvement in signal-to-noise ratio even if the
noise were distributed uniformly around the horizon. A more likely scenario
would postulate noise from more or less discrete directioris. Noise from one
azimuth could be suppressed by orienting the antenna loops, while noise from
another could be suppressed by properly phasing the array. Sometimes it might
even be possible to reduce tﬁe noise of a third storm direction by judiciously
choosing the combination of parameters. 1In the two-storm case a much greater
improvement in SNR was expected than with uniformly distributed noise, provid-
ing, of course, that the wanted signal came from a different direction than
the noise. This report describes an experimental study of some of these con-
cepts.

In order to assess the noise environment for purposes of maximizing the
SNR, it was important to know the main direction of arrival of the sferics
noise. Accordingly, a direction finder and two-loop spaced array system was
assembled and its capabilities demonstrated; improvements of over 12 dB in
the received signal-to-noise ratio from an in-flight aircraft towing a long
antenna were shown. The direction finder (Watson-Watt type) displayed on an
oscilloscope radial traces in directions corresponding to the azimuth of the
noise sources, with radial lengths proportional to the amplifudes of the re-

ceived pulses.

*Lewis & Heckscher memo "Potential Improvement in the Reception of TM and TE
Polarized LF Waves with Two and Three Spaced Antennas on the Ground”




The array consisted of two loop antennas separated by about four kilometers but
connected by a telemetry link. By inserting a variable delay between the two
received signals, summing, filtering and detecting, the signals were caused to
add and the noise was caused to cancel. Also, the loop antennas were manually
turned so as to optimally position their nulls for greater noise reduction.
2. THE NOISE

The dcainant source of noise at low and very low radio fr-=quencies is lightning
discharges. The currents flowing in.the strokes from clot :o cloud or from
earth to cloud produce large radiated fields with spectra ce that shown in
Figure 2.1. Various aspects of this noise - the field as .aaction of distance,
the spectra of the average noise from many distant storms, and the amplitude
distribution of the band limited noise envelope ~ are shown in Figures 2.2
through 2.4. At the lower amplitudes, this envelope follows a Rayleigh distribu-
tion implying thatgthe function itself is Gaussian. Electrical discharges
commonly occur in individual storm cells belonging to weather fronts and moving
across the earth's surface. Each cell becomes active independently, remains
active for awhile, and dies. Meanwhile, a new cell is born at some other
position., The location of the source of noise and its direction and intensity
as seen from the array changes with time. The changes are especially marked
with local storms but also occur with storms over a thousand miles distant.

The noise of greatest amplitude as measured in the northeastern United
States originates in local storms, generally in late Spring, Summer, and early
Fall afternoons. At all seasons, but predominantly in the afternoon, storms in
the southeastern United States provide a medium range of amplitudes. All of
this is added to a more or less continuous background noise originating in

storms throughout the world, especially in South America, Africa, and Indonesia.
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3. THE ANTENNA

The antennas used in this study were loops oriented for transverse-~magnetic
polarization. Two loop antennas were separated by a distance s and positioned
vertically, with axes horizontal and parallel. The signal from one (slave)
loop was telemetered to the master station and added to the delayable signal
from the other (master) loop. The amount of delay inserted determined the
angle of the lobes and nulls, and changed the shape of the patterns. Each loop
was manually rotatable so that the operators could aim or null the loop pattern
in any azimuth, thus giving the antenna a second controilable parameter for the
shaping of the pattern. The loop axes were always aligned and parallel to
insure proper combinations.

The equation describing the array pattern (amplitude V versus azimuth 6 )

normalized to the response perpendicular to the line joining the two loops, is

1 + cos (ks sin 6 - ¢)
v(e)= cos (6 - 7) 3.1

1 + cos ¢

where the gain of both loop channels is identical, k is the wave number (= 360/1),
¢ is the delay in degrees (= 3601f), ¢ is the direction in which the loop

maximum is pointed, f is the frequency and T is the time delay. This equation

was originally derived for continuous wave signals, but can be used to null
impulsive noise in narrow frequency bands. The narrow band component of a
broadband impulsive waveform has a smoothly varying envelope, which rises to a
peak and then decreases at rates determined by the bandwidth. The output of

an actual narrow-band filter, such as a receiver I.F. strip, typically looks

like that shown in Figure 3.1, and is commonly referred to as the filter "ringing”.
If two slowly decaying wave shapes, identical except that one is delayed 180

degrees with respect to the other, are summed, the result will be nearly complete



a. Bandwidth = 100 Hz

b. Bandwidth = 1000 Kz

Figure 3.1 Filter Ringing, Singer NM-12




cancellation. Equation 3.1 has been evaluated for a great variety of parameters.,
Figures 3.2 through 3.7 are a sampling of the resultant patterns. These represent
the array only, the cosine term describing the effect of the loops has not

been included.

For an illustration of how this array worked, assume that two loops have

been placed on an east-west line, separated by a distance s, as shown in

Figure 3.8. Suppose, also, that the desired signal is coming from the south and
that sferics noise is arriving from a storm at azimuth 8, There are two basic
ways in which the signals and noise arriving at the two loops can be processed for
"constructive or destructive addition: inversion (multiplication by -1) and 180°
time delay. 1In the first case the signal or noise impulse arriving perpendicular
to the baseline (south or north in the figure) will be cancelled over a wide
frequency range by the addition of the inverted pulse from one loop to the
unchanged pulse from the other. This is 1llustrated in Figure 3.9a. Impulses
arriving from the east or west, inverted at one station and summed, will

produce a positive going pulse followed by a negative going one (or vice versa),
the time separation being the travel time from one station to. the other. This
will produce no wide band gain, but if the signals are bandpass filtered at a
frequency for which the separation is about a half wavelength, the frequency
components within the filter bandpass of the inverted and non-inverted pulses
will combine constructively. An artificially introduced delay or a larger
separation will change the angles and perhaps the number of maxima and nulls,

but the effect {3 the same. The disadvantage of the inverting array is that

the desired signal which is to be maximized is combined with a 180° lag, which

is all right 1f {t is CW but will cause distortion if it is modulated.
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Figure 3.5
Array Pattern, ks-315°, ¢-40°, rho=1
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It seems preferable to combine in a manner that does not degrade the signal,
but does the noise. If there are no artificial inversions introduced into the
array depicted in Figure 3.8, signals arriving from the north or the south will
be constructively added over a wide frequency band because they arrive at both
loops at the same time as sketched in Figure 3.9. An impulse coming from
the east will arrive at the western loop about half a period after it arri?ed at
the eastern loop and, after summing and filtering, partly cancels itself. The
cancellation is only partial because, unless the filtered bandwidth is zero, the
amplitude will decay slightly in a half cycle.

If the Q of the filtef is large, this error becomes negligible. For an
information bandwidth of 100 Hz at 40 kHz, Q = 400. When it is desired to null
noise from direction 8, the peak of the frequency component of interest of a
noise pulse reaches the west station a time T before the valley reaches the east
station. To null this noise, delay the western pulse and add it to the eastern
pulse. From the diagram

Tc = A/2 - g gind, 3.2
Expressing the delay as a fraction of the period in degrees,
360Tf = 180 - 360(s/A)sin9

= 180 - ks sind 3.3

-9
where ¢ 1s the free space speed of light and ¢ is the delay in degrees used in
Equation 3,1, If the western site is the slave, its signal is always delayed
by the "teledelay”, the sum of the propagation time from W to E and an equipment

delay.
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The delay to be inserted in the eastern channel is then the sum of the tele-

delay and the steering delay,

A = teledelay - ¢/(.36f) 0 < ¢ < 180 (f in kHz) 3.4

= teledelay - ¢/(.36f) + 100/f 180 < ¢ < 360

To better understand the action of the array, and as an aid in determining how
best to steer it, the array equation was solved for the null angles for different
delays. Some of the data is in Figures 3.10 through 3.12. If a lobe is not
aimed directly at the source, a frequency modulation of the carrier will cause

a change in the array pattern for the instantaneous frequency, and produce an
amplitude modulation, which might distort the signal. The magnitude of this
effect, for one case, is plotted in Figure 3.13. To help determine the array
size, the width of the lobes and nulls is a major consideration. Figures

3.14 and 3.15 show these effects.,
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4. THE ARRAY SYSTEM

Figure 4.1 is a block diagram of the electronics which formed the array
system. At the left is the instrumentation of the "Watson-Watt"” direction
finder. The Spears antenna is, in fact, two orthogonal loops complete with
amplifiers; the outputs of which, after balancing and bandpassing, are intro-
duced to the horizontal and vertical axes of an oscilloscope. The relationship
between the loops and the cathode ray tube deflection plates is such that when
an electromagnetic signal arrives from the north or south, the display is deflected
vertically by an amount proportional to the amplitude of the signal. If the
radiation arrives from the east or west, the deflection is horizontal; if from
the northeast or southwest, the deflection is tilted at 45 degrees, etc. Because
loop antennas have two maxima, 180 degrees apart, the system cannot tell the
difference ahd displays both. The inclusion of a whip antenna and associated
receiving electronics driving the z axis (intensity) eliminates the 1800
ambiguity by blanking the screen when it would otherwise be writing the erroneous
data. Ideally, the deflections should be straight radial lines, but a number
of factors cause them to loop. One is the presence of a TE component of
the sferics, slightly out of phase with the TM component. Another is an overlap
of two or more pulses. Although not common with large sferics, this second effect
becomes large as the noise under study gets small, soon rendering the display
useless. Also, unless extreme care is taken to insure identical filtering,
any slight phase shift between the x and y channels will cause loops to appear
as the bandwidth is narrowed. For this study, the displays presented were of sferics
noise at its peak frequency between 10 and 15 kHz, not at the operating frequencv.
The measurement of an improvement in signal-to-noise ratio by the array

requires a reference channel against which the antenna under test can be compared.
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It was decided that the reference antenna be omnidirectional in the horizontal
plane, which was easily accomplished by properly combining the outputs of the
two Spears loops. This signal was narrow band filtered (gemerally 100 Hz) with
an RFI receiver nearly identical to that used for the array. The linear inter-
mediate frequency output from this receiver was detected and integrated. As any
electric circuit must have amplitude limits, the integrator was made to reverse
at positive and negative thresholds, so that it would output a triangular wave
when fed a steady signal. A standard counter counted and displayed the number
of integrator reversals in a time determined by the operator's wristwatch, and
then the average signal level could be computed.

Shown to the right in Figure 4.1 is the slave station., A receiving loop,
about one meter square and resonant at about 100 kHz, was mounted on a rotatable
transit base which, in turn, was mounted on a tripod. After amplification, its
output modulated an S-band transmitter which broadcasted through a horn to a
receiving horn located at the master station. The telemetry signal was demodula-
ted with a receiver and fed to the combiner, where it was added to a signal re-
ceived with essentially identical equipment less the telemetry apparatus and plus
the steering delay line. The combined signal was inputted to a receiver whose
I.F. output was detected, integrated, and counted just as was the reference
signal. A comparison of these two counters provided the performance of the
array relative to an omnidirectional antenna.

When a visual sighting aliowed, the loops were geographically aligned by aim-
ing them on landmarks taken from a map. When the horizon was obscured by trees,
a magnetic compass was used. In both cases, double and sometimes triple checks
were made by electrically nulling the antenna on some known radio source at some
known great circle azimuth. Array separation and baseline direction were taken

from maps.
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The system portion of the telemetry delay was measured by erecting the two loops
at the same élace, parallellbut opposed, and tuning theireceiver to a known trans-
mitter. Sufficient delay was injected to achieve the best null. The travel time
portion of the telemetry delay was computed and the sum of these two, dubbed the
“teledelay"”, was the base delay of the system. Its insertion Iin the master channel
put the maxima of the antenra pattern perpendicular tohthe baseline.

Known transmitters were also used té balance the gains of the two array
channels. After computing the delay necessary to steer the null toward a trans-
mitter and injecting that delay, the gains of the two channels were adjusted for
the best null achievable, and locked., Often no known transmitter existed at the
operating frequency, and the system was balanced on two stations with frequencies
bracketing the operating one, and a compromise drawn. The inability to calibrate
and test at the operating frequency was a weakness of the experiment, but the
installation of a sufficiently remote transmitter would have been a large under-
taking.

After setting up, aligning, and balancing the system in preparation for a
test, long (minutes) photographic exposures were made of the Watson-Watt display.
These photographs provided a record of the intensity and azimuth of the storm
activity, Figure 4.2 is a melange of such records, taken on different dates and
times. In some cases the z-axis blanking channel was not connected. In others,
it was rendered ineffective by an increase of gain well above design to allow
examination of smaller sferics. Since the tests were performed in the early
Spring in New England, it was believed that no storms were to the north, and

the northerly indications were ignored.

27




Figqure 4.2 Watson-Watt Displays
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The photographs were then compared with precomputed antenna patterns and the

known direction of the desired source; and, with educated guessing, a delay and

loop angle were chosen. The system was set to these parameters and the integrators

started. After one or more minutes of integration, the counters were read and
recorded, and the process restarted; On those few occasions when the source was
inactive, similar measurements of the noise alone in bqth the array and reference
channels were measured. Alternatively, the receivers were tuned away a few kilo-
hertz, and noise measurements made. From this data the performance of the array
was measured by computing the improvement in signal-to—noise ratio of its out-

put and comparing to that of the omnidirectional antenna.

(s/n), sa/ng (s+n),/n,

(s/n), se/ng (s+n)/n,

where s is a signal level, n is the noise level, the subscript a indicates the
array and subscript r indicates the reference omnidirectional antenna. The

approximation is within 10%Z for s/n values greater than 2.
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S. THE FIELD PROGRAM

After initial assembly, the master station was reconstructed in Stow, MA at
the Air Force Weather Station on the Fort Devens Annex. The slave station was
located on Pinnacle Hill in Harvard, MA, 11.75 km away, bearing 330.5°T.
Although both sites have towers extending above the surrounding trees, the
distance, and the intrusion of a hill well into the first Fresnel zone rendered
the telemetry link marginal. Intersite communication using citizen band radio
was unsatisfactory. A computer was used to calculate and draw 121 antenna
patterns for this separation and 35 kHz (ks = 493.5°), and 11 values each
of ¢and . These were posted in a large mosaic, a reduced portion of
which is shown in Figure 5.1. The intent was to provide a complete and easily
used display to be compared with the noise distribution and from which the
array steering parameters could be drawn. As can be seen, the pattern gets
quite complex, with as many as eight nulls. Although only two of these are
independent, the array provides a great deal of flexibility for the process
of selecting the pattern of optimal noise reduction.

After a winter recess, the slave site was moved to an apple orchard on Gospel
Hill in Hudson, MA. The separation was now 4.1 km and the baseline bearing
243,50T. The teledelay was 17.9 usecs, and ks = 162.94° at a frequency of 31
kHz. The array pattern alone (removing the loop pattern terms) was calculated
for incremements of 10° of the delay ;ngle. Some of these are shown in
Figure 5.2. The normal’zation has also been removed from the equations to aid

in the use of these graphs as tools.
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The cosine pattern of the loops was drawn to the same scale on clear
plastic and, in operation, was laid over the graphed array pattern selected.
The logarithmic verticals were then eyeball added, creating the complete
pattern. The overlay was slid from side to side on a number of array patterns
before the parameters to be used were selected.

After having had some practice with noise alone, with stationary sources,
and with transmitting aircraft, the capabilities of the array were demonstrated
on 29 April 1983. On that afternoon an aircraft towing a long antenna flew in
a racetrack pattern off the Virginia coast. The specifics of the flight are
listed in Table 5.1. The Watson-Watt display photographs taken at various times
are shown in Figure 5.3. Figure 5.4(a) through (e) shows the five antenna patterns
used (incorporating the pattern of the loops). The short vertical lines
drawn near the bottom of each pattern show the position of storms as indicated
by the photos.

At about 1925UT the array was adjusted to produce the pattern shown in Figure
5.3(a). Measurements of signal plus noise and noise alone were made with both the
reference antenna and the array. Improvements of 11 dB, 6 dB, and 4.7 dB were
measured, the improvement decreasing as time progressed. At about 2025UT the array
was changed to produce the pattern shown in Figure 5.3 (b). The aircraft was still
heading almost directly at the array, and still modulating with a spread spectrum
which had a wider bandwidth than the 100 Hz bandwidth of the array receiver. 1In
the Figures the azimuth of the aircraft is indicated by a long vertical line,
Meas#rements taken over the next half hour yielded array improvements of 7.1 dB
and 11.7 db, in spite of the fact that there were storms directly along the

transmitter azimuth.
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TABLE 5.1. FLIGHT DATA FOR 29 APRIL 1983 CINCLANT TWA TRANSMISSIONS

True Air Speed (TAS) - 410 kts
Altitude - 32,000 ft
Wire Length - 15,030 ft
Transmitted Power Measurements -
Mode 15 - 20 kW/ 90W reflected
Mode 9 -~ 20 kW/200W reflected
Mode 15 Transmissions (FSK)
Start Time
Time MSG Heading Geog. Coords
1907-1909 MSG 270 36.06N, 73.42W
X3
1953-1955 MSG 010 35,42N, 73.35W
X3
2039-2042 MSG 010 35.48N, 73.35W
X3
Mode 9 Transmissions (Spread Sprectrum)
1912-1916 MSG 188 NA
1916-1933 MSG 240 NA
1958-2033 MSG 010 (w/turns) NA
2045-2107 MSG 270 (w/turns) NA
2107-2123 MSG 010 (w/turms) NA

34




¢g ady 6z ‘Suro3lS [ESTI3O09[H WOXF UOTIRIPERY 3O sfe1dsTtg 33EM~UOS3IEM €°G 9aInbrg

00LT “Y

8191 °3 GZsT ‘P

LOST °© 00SsT 4

35




10 4B

(@]
[

/\

g=191. u
Xi= 350

#=336,6°
Xi= 50

#=88. 2
Xi=190°

c

Figure 5.4

N\

$0°

FHAR RO RTINS IR TEE ST A R BIORANS,

TG PME AR M At LT MEANE VY KM T Syl oY M o

(9]
O,

Lo
(92N

Source 27 0

a
ﬁ-btorms-_—’

180°

29 April Antenna Patterns

36



| 10 dB l

Figure 5.4

<

{ Source

Storms

]

N\
—_ T

90° 180° source

29 April Antenna Patterns

37

[
270°

Q)



At 2055UT, the array pattern was adjusted to that shown in Figure 5.3 (c¢) and
five measurements of signal plus noise were made (standard deviation of less than
6%) yieléing an improvement of 12.8 dB. Slightly later an improvement of 10.6 dB
was measured. The delay, but not the loop direction, was changed at 2105UT to that
shown in Figure 5.3 (d) just as the aircraft turned to the west and presented
the array a broadside view of its antenna. An improvement of 5.1 dB was
measured; Again, at 2f16UT the pattern was changed to that shown in Figure 5.3(e),
and an improvement of 5.6 dB was measured.

6. CONCLUSIONS AND RECOMMENDATIONS

In spite of a noise situation far from ideal for displaying signal-to~noise
improvement, with storms spread over large azimuthal angles instead of narrow
angular bands, and with a storm directly behind the signal source, the demon-~
stration regularly showed improvements of over 5 dB and as great as 12.8 dB.

This could be equivalent to increasing transmitter power from 20 kW to 380 kW.
Weaknesses in the array as consTructed and operated became apparent during the
tests. There was no way to accurately tune the system at the operating frequency.
The process of reading the storm direction from a display of a few large sferics
at a different frequency and then guessing the best array pattern needs improve-
ment. It is not known with certainty that the azimuth of sferics measured at
their peak frequencies near 12 kHz and the azimuth of the higher frequencies of
interest were one and the same. Also, it is not known if the direction distribu-
tion of the large sferics displayed by the direction finder is the same as that of
the average noise power which possibly may be heavily influenced by a preponderance
of small sferics from large distances. Ideally, the azimuthal distribution of

all the noise power should be measured at the operating frequency and the array

parameters for maximum signal-to-noise ratio automatically computed.
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It was originally proposed that more than two loops be incorporated into the
array, thus producing more independently steerable nulls. It was also proposed
that the array be converted to, and tried with, transverse electric radiation
from the aircraft towing a long wire antenna. Investigation of these possibilities
was not within the scope of the present work.

The performance of the array could be greatly improved by using the array
itself to determine the directions of the noise sources rather than a different
system operating at different frequencies, times, and amplitudes. Each station of
the array should be equipped with two orthogonal loops and perhaps a monopole. An
array gontrol system would automatically determine and adjust the parameters
necessary to steer the array and the elements for maximum signal to noise ratio.
Such a system would produce signal to noise improvements significantly better than

those demonstrated in these tests.
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APPENDIX A

TWO THEOREMS ON NOISE MEASUREMENT WITH A ROTATING LOOP ANTENNA

Suppose the noise intensity is purely TM-polarized and distributed around the
horizon as described by the function N(a), see Figure 1. Evidently N(a) is a
periodic function with period 2rw radians. Suppose, also, that the receiving
antenna is a vertical loop, whose orientation is described by the angle g, and
whose amplitude response is a sinusoidal "figure of eight.” With the loop set
at angle 6', the noise power will be

27w

P(8) = K[ N(a) cosz(a-e)da @))
o

where K is a constant depending on the details of the equipment. Using standard

-

trigonometric formulas,

27
P(g) = %f N(a) . [1 = cos(2a~28)]da (2)
o
27 27
=3[ Naxa-% [ NG . cos(2a.20)da )
o o
pA 21
-% f N(a)da - l;— cos 26 f N(®) cos 2ada (&)
o °
m
- % sin 26 f N(2) sin 2cda
o
A-1




gﬁ//Antenna Pattern
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Figure A.1 Illustration of Noise and Antenna Patterns




Since N(a) has a period of 2r radians, it may be expanded in a Fourier series:

a
N(a) = —% + al‘cos a + a, cos 2a + a,

+ b1 sina + b2 sin 2o + b3

where for instance

2w
1
a, = T f N(a)da
o
m
a -1 f N(a) cos 2a da
2 T
o
om
b2 = % f N(a) sin 2a da
o
Then

P(6) = "—1; [ao - a, cos 28 = b, sin 28]

This may be rewritten in the form

nKa
P(8) = —52 [1 = Q cos(26=¢)]

cos 3a + ..o

sin 3¢ + ...

(3

(6)

(7

(8)

(9

(10)




where

-1 "2
¢ = can  -— (11)
a3
and
iy
Q= - (12)
a
o

Evidently, from inspection of Equations (6), (7) and (8),
2
a
a2 (13)

and

]
[

(14)

NN
[}

so that Q is a positive quantity less than or equal to one.
The following theorems can now‘be stated.

THEOREM 1: No matter how complicated the noise distribution N(a) is, the

the resultinggnoise curve distribution consists of a constant

level upon which is superimposed a sinusoidal modulation with a

minimum value at 8 = ¢/2 and a maximum value at ¢/2 + 7/2 .

THEOREM 2: 1Information about N{(a) obtainable from P(8) is limited to the

Fourier coefficients a , a,, b,.
o 2 2

(ao may be found directly, while a, and b2 may be found from

¢ and Q.)

A-4




MISSION
of
Rome Avwr Development Center
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