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Abstract. In this paper we introduce a novel representation of the significant
changes in curvature along the bounding contour of planar shape. We call the
representation the curvature primal sketch. We describe an implemented algorithm
that computes the curvature primal sketch and illustrate its performance on a
set of tool shapes. The curvature primal sketch derives its name from the close
analogy to the primal sketch representation advocated by Marr for describing
significant intensity changes. We define a set of primitive paramicterized curvature
discontinuitics, and derive expressions for their convolutions with the first and
sccond derivatives of a Gaussian. The convolved primitives, sorted according to the
scale at which they are detected, provide us with a multi-scaled interpretation of
the contour of a shape.f
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1. Introduction

Recently: Bisdy 19820 19S2h0 19830 19810, Brady and Asada 19510 we
hove introduced o representation ol tao-dimensional shape called soioomnd o
sgrrreeirres iSESY The foeoetnie aspects of the representation are ~amuoaoizod i
Figure 1. Figure La shows that both the bounding contour and the endlosed reion
ol a shape are represented, for reasons discussed in {Brady and Avada 1951001 pure
Ib shows the hierarchical decomposition of a shape into subobjecis ~moothed
local svinmetries are being applied to recognition and inspection. and inte rated
with a sveten that can reason by analopy (Winston 19800 Winston, Binford. o,
and Lowry 19%1] to investigate the relationship between function and form Brady
1984b)].

The representation of the bounding contour of a shape. particularly o the
significant changes of curvature, is called the curvature primal sketeh. and it is
the subject of this paper. There are three reasons for discovering and representing
significant curvature changes. First, they amount wo a rich, stable, description
with local support that can enable the recognition of partially occluded objects.
Second, they provide a set of knot points for constructing a perceptually close
spline approximation to a contour. Finally, it is possible to describe a shape at
multiple scales by interpreting the curvature events along the contour at various
scales. The basic idea of the curvature primal sketch first appeared in |Brady and
Asada 1984).

We call our representation the curvature primal sketch, because the repre-
sentation of significant changes in curvature is analogous to the primal sketch
representation of intensity changes in grey level images [Marr 1974, 1976]. For
example, a discontinuity in the orientation of a tangent to the contour (C! discon-
tinuity) is perceived as a corner and is analogous to step changes in intensity. A
discontinuity in curvature (C2 discontinuity) is a smooth junction of two picces of
contour and is analogous to a gradient cdge.

Our approach follows that of Marr [1974]. We define a parameterized set of
idealized curvature changes. The sct includes composite structures such as end
and crank (sce Figures 8 and 9) which are analogous to thin bar and line ending
respectively. We then derive expressions for the convolution of the primitives with
the first and second derivatives of a Gaussian. The instances are described at a
variety of scales in terms of the positions of the local maxima of the derivatives.

We use the idea of multiple scales in two ways. First, it is possible to find
an instance of a curvature change primitive at onc scale, even when it cannot
be found at other scales. There are two main reasons for this. Ilirst, the filtered
responses of two ncarby curvature changes may be confounded at larger scales, and
sccond, instances at smaller scales may be caused by noise. A pertinent observation,
concerning intensity changes, but relevant because of the analogy between curvature
and intensity changes, was made by Marr and Hildreth {1980] and Binford [1981],
and discussed more explicitly by Canny [1983]. It is that there is an uncertainty
principle between the detectability of an event and its accurate localization in the
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Figure 1. a. A portion of a shape and the corresponding smoothed local symmetry
representation. The solid lines form the curvature primal sketeh representation of the contour.
The dotted lines form a representation of the region enclosed by the shape fragment. b, The

o« .

:.‘;::: representation of a hammer, showing the subparts. Other links form a ISA hicrarchy, cmbody
AR constraints, and detail the function of the shape. For details of smoothed local sy mmetries, sce
e [Brady and Asada 1984].

wde
- presence of noise. That is, the coarser the edge finding operator, the more the
RS signal to noise ratio (a measure of detectability of the event) is improved, while the
-:.\_d smaller the operator, the more accurate the localization. By varying the width of
":{: an operator it is possible to vary the trade-off in signal to noise versus localization
o [Canny 17%3). Larger scales can be used for detecting the occurrence of ¢vents and
o smaller scalcs for localizing the events accurately.

T We also use multiple scales in a second way, namely to build a multi-scaled vt
::J_ description of a shape. The idca of convolving a signal with multiple operators
A
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at diflerent spatial scales has been explored Tor several vears Recenth . however,
Within 1983 has promoted the idea ol scale space. a representation ol . <ignal
that consists of it convolution at multiple scales. An important part of itk
propo=al ix the automatic determination of the set of scales at which 1t s uselul
to deseribe o sinal svmbolicallv. Witkin s seale space representation i~ a ternan
tree ob zero crossings. He did not attempt o interpror the muttple deseriptions in
terms ol prinitive events as we have done,

Yuille and Poggio (1983a] have provided some theoretical underpinning for the
scale space representation. They have shown that the contour of zero crossings of
sccond derivatives (Chugerprint™ )y meny preserve cnough information to reconstiuet
the original signal to within a constant scale Factor. They also ~how Nuille and ‘
Poggio 1983b] that a Gaussian filter is essentially unique in having the property |
that zero crossings are not introduced as one moves to coarser scales. However, ax
we discuss further below, this mathematical property cannot be relied on in an
implementation of the interpretation process, since a discrete set of scales mav make
a match ambiguous when the responses of two nearby < vonts are confounded. o our
knowledge, the curvature primal sketeh reported here is the first implementation of
an interpretation process that generates multiple scate descriptions from multiple
convolutions.

An instance of a curvature change primitive that is detectable at a large
scale suggests that it is a dominant feature of the shape. One which is inhibited
by a dominant event at a large scale and can be detected only at smaller scales
indicates a feature that is geometrically less significant. However, geometrically less
significant events are not necessarily less important for the successful exccution "of
a vision task. A small dent in an object, for example, may be considered noise when
the task is to identify the object, but it may be crucial when the task is to inspect
for defects.

In section 2, we summarize the idea of the curvature primal sketch and define a
set of primitives and their instances in scale space. Section 3 discusses the algorithm
to build a multi-scale description. The results in the experiment on a sct of tools
are shown in Section 4.

2. Represerting Significart ChangesIn Curwvature

The contour of an object is represented by a spline whose knots are the
significant changes in curvature. The smooth curves between the knots, what
Perkins [1978] calls concurves, can be parameterized by approximating the portion
of the contour lincarly, with quadratics, cubics, Cornu spirals, or any other
suitable function. Here we are more concerned with the problem of finding knots
corresponding to curvature discontinuities than the parameterization of smooth
portions of contour between knots. The detection and localization of discontinuities
is more crucial because the good parameterization of a picce of contour depends
on them (Figure 2).
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Figure 2. Knot points should mark signilicant changes of curvature along the contour. o
A corner Tragment on o contour. b, Approximation when knot points (marked by crosses) are
placed to cither side of the perecived corner. ¢, Approxiination when the corner is made explicit,
(Reproduced from [Brady and Asada 1984, Figure 8))

In our experiments, piecewise circular approximation of the contour has proven
to be good cnough, provided we can first accurately locate all the scmantically
significant curvature changes as knots. In Figure 3a we show the contours of a
number of tool shapes found by the Canny edge detector. Figure 3b shows the
circular spline approximations to those contours once the curvature discontinuities
have been located by the method described in this paper. I'igure 3c shows the
overlay of Figure 3b on Figure 3a.

We propose a particular set of primitive curvature changes. We analyze cach
primitive at several scales using an ideal parameterized version f;(s) of the primitive,
where s denotes arc length along the contour. We then determine analytic forms for
the convolutions of f;(s) with the first and second derivatives of Gaussian, namely
G! » f; and GU * f;, where G, denotes the Gaussian of standard deviation o:

Go(t) = (1/V2ro) exp(—t%/20%).
Equivalently, by the derivative theorem of convolutions, we determine the analytic
forms of (G, * fi(s)) and (G, * fi(s))". Then we construct a program to find

instances of the curvature change models along actual contours.

2.1. Two Basic Discontinuities

We begin by deriving expressions for the convolutions of the two basic models,
the corner and the smooth join, each of which have a single discontinuity. The
convolutions of the compound models namely, craunk, end, bump, and dent, are
formed by appropriate superpositions of the filtered responses of these two models.
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LAY 1) Filtered response of a corner
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~ A o L. .
-, Figure 4a shows a corner fragment consisting of two circular fragments of
curvatures £; and K2, enclosing an angular discontinuity of ¢. Figure 4b shows the
A corner model in orientation space, relating the orientation of the tangent to the
ﬁ_"‘ curve to arc length along the curve. The corner model is defined by:
"-
- f (s) {n|s+c if s <0
- e .
corner Kes+c+ ¢ if s > 0.
\I.. . . .
. As we shall see, the convolutions of the model assume particularly simple forms when
o the curvatures of the circular arcs flanking the corner are the same, k) = k(= «)

say. We call that special case a pure corner. Its analytic form is:

f (s)__{rcs+c if s <O0;
PAYT T ks +c+ ¢ if s > 0.

I We now convolve feyrner with the Gaussian G,(t), and find:
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. AN P g .'...
. & . BT -
boADS exp( St b s expl Nt
. 2o~ I Qe
0 S;.
et exp(= )0,
2o0-

It follows that

, . 8"
\/'.’7.’(1((.,, * f(.,,,,“,)'(s) = oexp(- "n'-')
5 (2 e ,;’
+ K-_»/ exp(- S )l Hl/ exp| Lt
w Qa- g o-
This has a particularly simple form for a pure corner namely:
52
V210(G, * foe)(5) = ¢exp(—5‘--7~i) +V2nko.
e . . - .
- The function (G, * f,..)(s) is shown in Figure 4c. It has the shape of a Gaussian
o that is offset from the line § = 0 by the scale and curvature dependent constant
o V2rko and is attenuated proportional to the angle ¢.
Similarly, convolving with the second derivative of a Gaussian (approximatcly o)
O equal to a difference-of-Gaussians) yields: .
7
ya
5 " —¢ s2 s*
V2ro(Go * feorner)' (8) = R cxp(—é;g) + (ko — K‘)CXP(—Eﬁ)
0N
NN This function is shown in Figure 4d. It has a zero crossing near the corner separating
"fz two peaks of opposite sign. In the case of a pure corner, the expression assumes the
following simple form:
e - 52
e 2 " = - — —— .
- VEro(Go + fy)'(s) = —Ssexp(- )
SN
i The distance along the s-axis between the peaks is
< o? ‘/ L 4
-:."' d == . - K| — Ko)? + -
:-:;- corner ¢ ( 1 ..) o2
.‘.‘:
In the case of a pure corner, this expression reduces to
d,. = 20.
6
e T R A
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Figure 4. a. A corner fragment consisting of two circular fragments of curvatures x; and

ry, enclosing an angular discontinuity of ¢. b. The corner model in orientation space, relating the

@ orientation of the tangent Lo the curve to are length along the curve. In the case of a pure corner,
the slopes k) and sy are cqual. ¢. The function (G, * fp.)(s). It has the shape of 4 Gaussian
that is offset by the curvature & and is attenuated proportional to the angle ¢. d. The funetion
(Go * ferrnes)'(#), which corresponds to convolving the corner model with the second diflerential
of a Gaussian. It has i zero crossing near the corner separating two peaks of opposite sign.

Note that d,. is independent of ¢ and the pair of peaks merges when the scale gets
smaller.

The formula for the heights of the side lobes is complex. In the special case
K| == Ky, they are both equal to

1|4l

'.N-ié hpe = 2
- V2ern
E::\_
AN .
E.; 2) Filtered response of a smooth join
i The corner model f.,rner and its first derivative are discontinuous at the origin.
S . . . . .
T If & is set equal to zcro, the orientation of the tangent is continuous, but the
:::: curvature is not. We call such a curvature change a smooth join. Figure 5a shows
;.{j; two instances of the model, whose defining equation is
i
h;' Kis+¢ if s <0
S Lo, (5) = _
N Kas + ¢ ifs > 0.
t—.‘;s
N
¢ 7
e
4
:




S N N T T T e e Iy oy v s e e o e

‘i
K
i
«
Asadad Heady [ S . 1
{
i
i
{
|

a

k2 o
(b) . 8 #”’M’,,#’ 1

Fﬁ (a) -

. DA
ey e
Vg

(c)

1
L:.: i b3
< ()
| 3

Figure 5. a. Two instances of a smooth join. in which the signs of the flanking curvatures are
the same (top) and opposite (bottom). b. The smooth join in orientation space. ¢. The filtered
response of a smooth join to the first derivative of a Gaussian, d. The filtered response of a
simooth join to the [irst derivative of & Gaussian,

When the signs of the curvatures flanking the smooth join are opposite, the smooth
join is called an inflection. Figure 5b shows the smooth join model in orientation
space. It is well known that smooth joins are diflicult to perceive unless there is
a large difference (k; — x2) in the flanking curvatures. For example, Ullman [1976]
and Brady, Grimson, and Langridge [1980] have investigated smooth curves that
have a single C. discontinuity in curvature. Figure 6 shows a curve that is the
smooth join of two circles. The curve and its tangent are continuous, but there is
a step change in the curvature at a point along the curve. Evidently the curvature

l"

- discontinuity is not perceived.

N

- Inserting ¢ = 0 into the equation for the response of a corner to the first
o derivative of a Gaussian, we find

@

N

9

V210(Go * f,;)(s) = K'-'[.w exp(~ ; ;

ol

—f2

).

hARR R

)dt + Kl/v exp( -

2

a
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R

Suppose, w. hout loss of generality, that k; < x». Then
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This function s shown in Vigure de. 1t has the form of a smooth step wiiose
height is proportional to (k) — ~2). the difterence in cuevatures flanking the joro 1f
the difierence in flanking curvatures is small the <tep nay not be perceived.

Differentiating again, we find the filtered response of the smooth join to a
sccond differential of a Gaussian,
9

S

V210(Go * f.j)'(5) = (k2 — KI)PXP(—Z"'_)‘)

This response is shown in Figure 5d. It has a single peak whose height s
proportional to (k2 — &1)/o. Introducing the quantity ¢, == (x2 — ~1)oy/e, we can
write an expression for the height of the response peak that is similar to the
expression for the height of the peaks in the corner response, namely

/ot 2re.

hsj = !¢.~j

The detectability of a smooth join is essentially determined by the peak height
h,, that is by the value of ¢,;. In particular, a smooth join is hard to detect unless
the product of 0 and (k2 — &) is sufliciently large. This is consistent with human
perception of changes such as those indicated in Figure 6. It is not known how the
threshold on &, required to perceive a smooth join is related to that on ¢ required
to perceive a corner.

2.2. Primitive curvature changes and their detection

In this section, we introduce the five primitive curvature changes that we use
in the curvature primal sketch. We call them corners, smooth joins, cranks, ends,
and bumps or dents. We define each primitive and show it in orientation space. We
show example responses at different scales vhen the primitive is filtered with the
second derivative of a Gaussian. Corners and siooth joins were analysed in the
previous section; in this section we show different scale responses and give detection
criteria.
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The corner primitive

As shown in Figure 4d, a corner gives rise to a pair of peaks whose separation
is deorner- An expression hy,. for the heights of the peaks was given for the case of
a pure corner. If the flanking curvatures x, and x. are not equal, so that there
are simultaneous C; and C, discontinuities, the zero crossing in (Gl * feorner)(8)
is not exactly at the origin. In practice, the difference x; — xy is small, so that
deorner == dpe. Note that deorner is linearly dependent on the scale constant o, and
hence it monotonically decreases with o. This provides a strong clue for recognition
of corners and enables spatially close events to be decomposed in order to distinguish
a pair of smooth joins from a corner. Figure 7 shows the second derivative filtered
responses to a corner at several scales.

The smooth join primitive

In the previous section, we showed that the response of a smooth join to the
first derivative of a Gaussian is a smooth step, and that to the second derivative
it is a peak. The peak height is (ko — &1)/(0v/27). Recall that only when the
curvatures flanking the smooth junction are very different can this be reliably
found. Inflections produce a zero crossing in the first derivative response.

The end primitive

An end consists of two corners with angle changes of the same sign (Figures
8a and 8b). It is not necessary that the contour fragments comprising the end
arc straight or parallel, nor arc the corners required to be right angles. An end is
analogous to the primal sketch intensity change called a “line ending” [Marr 1976).
Let a be the distance along the contour between the corners forming the end. At
large (dimencionless) scales, when the ratio o/a is greater than one, the filtered
responses of the contributing corners are confounded, and the end is perceived as
a corner. At smaller scales, when the ratio o/a is less than a half, the individual
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A. g o corner responses are separated, cnabling the detection of the corner pair. This
'.' occurs, for example, in the interpretation of end; for the punch shape shown in
B Figure 11. Figure 8 shows the second derivative filtered responses to an end at
e several (dimensionless) scales. i
» The crank primitive ‘
.‘\ A crank is like an end, except that the changes in angle are of opposite sign
NN (Figures 9a and 9b). It is analogous to the primal sketch intensity change called a
. " . . .
ey “thin bar” [Marr 1976]. Again let a be the arc length between the corners forming
Ef, the crank. When the ratio o/a is less than one half, the crank is essentially signalled
by two independent corner responses. When o/a is greater than one, a crank
A produces a strong central peak with two side pcaks of opposite sign that are at most
:::(: half the height of the central peak if curvature differences are negligible. Figure
e 9c shows second derivative filtered responses to a crank at several (dimensionless)
"l scales.
- The bump and dent primitives
._::*,': Instances of a bump and dent are shown in Figure 10a and Figure 10b. They
o are typically spatially localized and correspond to two nearby cranks of opposite
¢ sign. Figure 10c shows filtered responses at several scales. They are reliably detected
o by finding the sequence of four peaks at a suitably small scale.
;:,::: '._‘. Different instances of the primitives at suitably coarse scales can be ambiguous.
DN Figure 11 shows several ambiguous contour fragments. An example of the ambiguity
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Figure 11. A matrix of contour fragments that appear ambiguous at suitable scales.
betwecn . crank and a simooth join will be found in the curvature primal sketch of
a screwdriver in Figure 19.
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3. Multiscalelnterpretation

WX
'A x 'l

LAY L4
4y

l

In this section we describe an implemented algorithm that produces a multi-scale
curvature primal sketch representation of a contour.

2
[y -

Step 1: Convolving orientation with derivatives of Gaussians

-~

e The bounding contour of a shape is found using the edge finder developed by
::::: Canny [1983]. The filtered responses G, * ¢(s) and G" » ¢(s) are computed for the
= contour c(s) at a variety of scales 0. The result is a set of one dimensional arrays
aca for both G', and G”. Figures 12 through 15 show examples for four tool shapes.
_\" Step 2: Matching the Locations of Peaks among Scales

.,
‘::::- The locations of local positive maxima and local negative minima in the
P, filter responses computed in step 1 are extracted and matched among the scales,
.,-.' producing a tree. Ideally, the tree is cquivalent to a “fingerprint” [Yuille and
o Poggio 1983]. However, we cannot trust the tree entirely because the match can be
L ambiguous for two nearby events. For example, each of the two peaks that signal
";": an cnd splits into a pair of peaks when the ratio ¢/a is one. However, due to the
.“.' discretization of the scale factor and the effect of the curvature difference between
R two fragments of the contour, it is possible that only one of the peaks splits into
;: two at a particular scale. In such cases, the match between the new peak and the
:, old ones is ambiguous. We need knowledge of the primitive type in order to build
2
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a complete tree, but such knowledge is not available vntl the tree i< uterpreted.
Consequently, it is necessary to leave the tree incomplete and take 11 into account
at the interpretation stage.
Step 3: Parsing the tree

The parsing method we use is simple, In the early stages of this rescarch, we
considered using heuristic methods, such as relaxation and dynamic programuming,
in order to cope with the ambiguity that occurs at the interpretation of the responses
of two closely located events. However, it has turned out that in the vast majority

of cases these responses can be decomposed casily by looking at the movement of

the peaks over several scales and taking account of the convergence property of a
corner response. This experience supports idea of scale space as a representation
technique.

Instances of the composite structures, namely ends, bumps and cranks are
scarched for first. The movement of the peaks at lower scales and the heights of the
peaks arc the only clues for the detection. Once an instance is detected, the tree
is refined. The search proceeds to lower scales until the scales are exhausted. Next,
corners are searched for in the same manner and finally inflections and smooth
junctions.

Step 4: Computing Knot Points

Instances of curvature primitives detected by the parsing process are represented
by a part of the tree starting with a peak at the scale at which the instance was
first detected. The exact position of each primitive, which gives rise to knot points
on the contour, is computed from the tree. For corner primitives, the zero crossing
between peaks at the smallest scale gives good localization. For smooth joins, on the
other hand, good localization is accomplished at the largest scale. The primitives,
sorted according to the scale, provide us with a multi-scale interpretation of the
contour.

4. Examples

In this section we show some examples of the multi-scaled interpretation of a
contour. The results are for the set of tools shown in Figures 12 through 15.

Figurc 16 shows how the curvature primal sketch procedure works on the
shape of the punch shown in Figure 12. Figure 16a shows the positions of the
local positive maxima (+) and negative minima (-) in the first derivatives (top) and
second derivatives (bottom). Connccting lines are the part of the tree which was
generated when an instance was found. At the largest scale, 0 = 22, two ends are
found. Then a dent at the scale of 11, two cranks at ¢ = 8, and another dent at
o = 5 are detected. Figure 16b illustrates the multiple scale interpretation of the
shape. it suarts out as a trapezium and its fine structure becomes ciear as scale gets
smaller.

Similarly, Figure 17 shows the curvature primal sketch representation of the
carving knife shown in Figure 13. Figure 17a is similar to Figure 16a. At the largest

14

L

\a

PRI -




S AS At g A S R SO T UM A S AT S B RS AL A S 0 4 A4k B BAUM L S LR Sn RarCh AT Danch Abay o Rarbon DAs on e Bee Be Bee Ty
\rm!:u-\“r.u?) Chury e 10 0 ~ee
e sapvas ~ua »u \
SremA = 1) \
ves e Sp T e 1
- p 4
:“."‘ Y — - /
hY ey i $16mA - 1 ! \\
SIGM = 16 . - = / !
o r-r':‘v—ﬁ&ng \/ﬁ—v-ir ™S W
|
& e 3w i/
(a)
i r. S1onA = 8 JA
. W% \
ey N T -P SIS = &
s " .
o g s
s e
(b) (c)
Figure 12. a. The contour of a punch or nail set. b. The filwered responses with G2 ¢. The
filtered responses with (7.
@ - S Mew - bt SI6KA = 22
&!ﬂv‘ *
o8] mt‘ﬁmuwﬁﬂﬁh‘ut uu!
-u.lle . a2
ez . 5"* N “ )
N { l
o] ﬂﬁ‘txi’lruavhﬁﬂi“un n’dn rn RN Y
AN SIN
WO 2 W
b e D
sl e ﬁﬁnim-)nl;m-l\rﬁﬁnﬂlv-f
I
wes.apten . s1ema s
oahe masm‘m -&nv&lmn;
1D DN
(a) WS Py "'a._, -
o MAPAM.“AU&“JV &mﬁ
%%
LE " XY . - | B . 8
oohtzrr s maam:d. rsm M&remmuf - el
~wisheras i aasr (c)
‘igure 13. a. The contour of a carving knife. b. The filtered responses with G%. ¢. The
. ,:::, N filtered responses wit Iu oh. .
'I’. - RN — - —— e e ———————
>
\/'
g
v




e, s S st
e e e AN TS VAT e W N ST
AN N AR N A AN N AN ST AR e Al e el T A Y A —
Rt A A S AN AR A S PRI SR A A S N B A A A Al

Corvater Priged Skeion

Asadud Hrady

o SIRMA « 22
[ ]
-
S = 16
hapos
'.1". e e 1}
""T" S - 8
L]
(‘) o ssun
) ’:‘ ’ SiGRa = 5
.y
o
- a0 men
"1” SICA - &
(2]
|
- (b) ~vsckorses (c)
Figure 14. a. The contour of a Warrington hammer. b. The filtered responses with 1. c.
The filtered responses with G7.
wampsn
Siema = 12 f/‘u':
e
)
-e.
$16M = 16 e b SIGM v 16
[T}
X 2 T
'“1-‘— - SIGNA = 1)
siom = 11
‘ “
_‘L'
-ty siam - 3
(a) .-
. 1
"y assope e SIGN o §
[
cola N
,P'..
", . mead
-',1 9 Ran .
o ‘q . YIEMA o b 4
\l * ' L
15 .
ol L
oo ]
_ e ' 7 2% R wen LL L
o Figure 15. a. The wontour Sl'ba screwdriver. b, The filtered responses R.m. ¢ . ¢ The
o l ° |
) filtered rosponses with o). 1




o S T W W T A A A A YW YT T v TS TevYE T W™
~ AN y At dar i A A S A O AEERCR e i '._'.','.11

A~adad Heady Curvatare e -y

‘A “ i 1

‘4’1

LY

‘-‘ “e

O - scale=22
.t . ,

i

: . 0 oy p b 00 o - proo“ o.ore. pryusigmank scale=l]
‘-':'. 0"] t' Lol :H . ; * “IO L L R IRY }n@o *®

? -',' . 1 *rene . ’I . LN PN 1 Adoae

. XReX +red *XEK XX XS XX

-"" * N 4 X e X 4 X X & Ao X .

* X ¢ x +x e x s igma=22 scale=8

::-: 00+ Y1 WOt X4 1 3 Mpy o0t W pros pesan @b | GTARY

'.'j‘ ouofl X onta xe nxn e+ 134 woa § -

L DgNTg

- *x e x EXIX S XX + XXX
- R Crankd scale=5
.. X4 xen x eNe XOX eXe X
. DENT3
¢ X % Xe X X #XeX
T X ¢ X + x xe x & X sigmae22
- END! END2
(a) (b)
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::_,: found. b. The multiple scale interpretation of the shape.

.- - - -

::} .o scale, again ¢ = 22, all the major curvature discontinuities are found. These are

( q; the tip of the blade, the crank signalling the join of the blade and handle, and the

N hand grip at the end of the handle. At finer scales, smooth joins are found on the

\{: blade and the handle. These would occur in diflerent positions in different views of

:'_: the knife (see below).

<
* Figure 18a shows the local extrema of the filtered responses for the Warrington

3 hammer shown in Figure 14. At the largest scale, the lollowing discontinuities are

.).' discovercd: the end of the handle, the corners defining the side-end join of the

- handle and head of the hammer, the end signalling the striking surface on the head,

:'.:;: the tip of the nail puller, and a smooth join on the nail puller. At smaller scales

‘ additional smooth joins are found, first on the head and then on the handle. At

A the largest scale, the description of the handle is that it is a cylinder (a “worm” in

- the terminology of Blum and Nagel [1976]). At a smaller scale, a pair of inflections, '

, symmetric about the axis of the handle, is found. The corresponding description of

- the handle is that it has a thick body and a thinner neck. Heide {1984, forthcoming] :
; shows how to gencrate symbolic descriptions of this sort from smoothed local

(8 symmetries (Hollerbach [1975] has shown how rich symbolic descriptions can be

::\: gencrated from an appropriate geometric analysis of a shape).

:::'. Figure 19a shows the filtcred responses of the screwdriver shown in Figure ]

;3 15. At the coarsest scale, the end of the blade, the corners defining the end of

- ., the handle, and the pair of cranks signalling the join of the handle and the blade

R are all discovered. At scale 6 = 11, an inflection is found on the handle. The !

:;j symuetrically placed discontinuity, a crank, is not found until the scale is 8. Note
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that an inflection and a crank are ambiguous at certain scales, as noted earlier.

We finally illustrate the robustness of our algorithm. In Figure 20 each shape
is the bounding contour of the same object as the serewdriver shown in Figure 19
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first derivatives (top) and second derivatives (bottom) for the filtered responses of the serewdriver
(Figure 15). Conuecting lines are the part of the tree which was generated when an instance wis
found. b. The multiple scale interpretation of the shape.

but the orientation is different. Due to noise in the imaging process and directional
tessclation, each is slightly different. However, the interpretation is still reasonable.
In each case, the two ends are stably detected. Also, the two cranks that signal the
join of the handle and shaft arc found at the same scale. Other cranks at the grip
are also found in all cases though at different scales.

5. Conclusion

In this paper we have discussed the problem of computing a representation of the
significant changes in curvature, and shown that it is possible to produce multi-scale
representation of a contour by interpreting the significant changes in curvature at
various scales. Our method applies more generally to any one-dimensional signals
when an appropriate set of primitives is chosen, because the problem of representing
a 1-D waveform can be reduced to two subgoals; segmenting the whole signal into
homogenous (in some sense) portions and paramecterizing them. This is exactly the
same as our problem.

The result shown in this paper can be used for developing the region- and
contour-based representation of 2-D shape [Brady 1984a). We can’ also use the
symbolic interpretation as clues for finding subpart joins without the knowledge of
the object’s identity.
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