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Abstract. In this paper we introduce a novel representation of the significant
changes in curvature along the bounding contour of planar shape. We call the

-C--representation the curvature pri'mal sketch. NVe describe an implemented algorithm
that computes the curvature primal sketch and illustrate its performance on a
set of tool shapes. The curv'ature primal sketch derives its namne from the close
analogy to the primal sketch representation advocated by Marr for describing
significant intensity changes. W~e define a set of primitive paranmeterized curvature
( iscon tiflui ties, and derive expressions for their convolutions with the first, and
second derivatives of a Gaussian. The convolved primitives, sorted according to the
scale at which they are detected, provide us with a multi-scaled interpretation of
the contour of a shape.,
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1. lilt rodhIict.ioI

l~ccit ~lla~l I152; 191,21). 1!1Si, l l1 a lradlv andi A\ .. Id~i IN~I

igur 1 . Va~ igrc h(I)li.. ii fo r oll ilSi bou l ill, ilil d Ih-al (.11 , I] .d i'I i

lb Mio\\ s ill' I ra 1ii I dcio1iii Ii j o i li of a1 hAap I nt ,ilt C bJ 101 I- Ii ot 114

locall ;.rllu I~ rc borig applied to rucl, ot ldl dIs.Icutloill .a11d liltc mulld
Il -Y-1 kIuImI 1li,11 ali1 [ea~ori b i;tlo v j\\in onl I 9SO. \\jlist on. I iiordi. I-,.

andi [.oxr\ I II ijt)iiv't ilae t lie clait ionilpf bet wvei finlctio andl FIt orm ii fro.l

Ilie refprcenitat ion tf' it b)ounin~rg 'onitour of' a shape. particular ly oF(lH
-~sign ificarlt changes of' c~urvature, is calledtl te currature primal .0:00!. and It

tile subject of this paper. There are tthree reasons for discovering a nd represn u

Z4signiicantu. c'urvatu re changes. First. they amount Lo a rich, stable, descriptiOn
with local support that can enable the recognition of partially occluded objects.
Second, they provide a set of knot points for constructing a perceptually close

* spline approximation to a contour. Finally, it is possible to describe a shape at
multiple scales by interpreting thle curvature events along tile contour at various
Scales. Tile basic idea of' the curvature primal sketch first appeared in Ili3rady and
Asada 1984).

NVe call our representation the cuirvature pri'mal sketch, because the repre-
sentation of significant changes in curvature is analogous to the prI'mal sketch
representation of intensity changes in grey level images [Marr 1974, 1976]. For
example, a discontinuity in thle orientation of a tangent to the contour (CI discon-
tinuity) is perceived as a corner and is analogous to step changes in intensity. A
discontinuity in curvature (C2 discontinuity) is a smooth junction of two pieces of
contour and is analogous to a gradient edge.

Our approach follows that of Marr [1974]. We define a parameterized set of
idealized curvature changes. The set includes composite structures such as end
and crank (see Figures 8 and 9) which are analogous to thin bar and line ending
respectively. WVc then derive expressions for the convolution of tile primitives with
the first and second derivatives of a Gaussian. The instances are described at a
variety of scales in terms of the positions of the local maxima of the derivatives.

We use thle idea of multiple scales in two ways. First, it is p)ossible to find
anl instance of a curvature change primitive at one scale, even when it. cannot
be found at other scales. There are two main reasons for this. First., the filtered
responses of two nearby curvature changes mnay be confounded at larger scalles, and
second, instances at smaller scales may be caused by noise. A pertinent observation,
(oricerning intensity changes, but relevant because of the analogy between curvature
andi intensity changes, was mnade by Marr and llildreth [1980] and Binford [1981],
atnd discussed nmore explicitly by Cannly[19831. It is that there is an uncertainty

principle betwcen the detectability of' an event and its accurate localization in the
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• ,,.." " [lhrady anlt AItd: I984].

presence of noise. That is, the coarser the edge finding operator the more the

~signal to noise ratio (a mcasure of detectability of' the event) is improved, while the

., smaller thne operator, the more accurate the localization. fly varying the width of
an operator it is possible to vary the trade-off in signal to noise versus localization

r s[Canny tiQ3]. Larger scales can be used for detecting the occurrence of Iverts and

hsmaller scai for localizing the events accurately.

r We also use multiple scales in a second wayh, namely to build a multi-scaled

description of a shape. The idea of convolving a sign with multiple oper tors

.F [Brad ." Asada 1984].. -
- of n Tht i t c t edg-find o t- mr the

sina t nis rti ( masreofdeecabliy f heevnt i iipovdwhle2h
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Ili E t, r os igS are i 11 ro i[lo s on c li , (lll)\ (,rp 1 1r,, 1[1 It'1l . I lowt . III
v,,'e (iscuss li't ler l elov tils mat ieriaticaI prop rt fio a rot u , relied o iO awa

in Ipleet: tion of tliehi crp rtation p.rocess, .itn', a Irc rotst of zeoa v >m-a, rak
a match a )l gtOUS wh'G the responses of two nearby un ius are (o nou(ledi . "o ou

knowledge, the curvature primal sketch reported here is the first inhpletruntatioli of
an interpretation process that generates multiple scale descriptions from multiple
convolutions.

An instance of a curvature change primitive that is detectable at a large
scale suggests that it is a dominant feature of the shape. One which is inhibited
by a dominant event at a large scale and can be detected only at smaller scales
indicates a feature that is geometrically less significant. However, geometrically less
significant events are not necessarily less important for the successful execution 'of
a vision task. A small dent in an object, for example, may be considered noise when
the task is to identify the object, but it may be crucial when the task is to inspect
for defects.

In section 2, we summarize the idea of the curvature primal sketch and define a
set of primitives and their instances in scale space. Section 3 discusses the algorithm
to build a multi-scale description. The results in the experiment on a set of tools
are shown in Section 4.

2. RepresettingSignificart ChangesIn Curvature

The contour of an object is represented by a spline whose knots are the
significant changes in curvature. The smooth curves between the knots, what
Perkins [1978] calls concurves, can be parameterized by approximating the portion
of the contour linearly, with quadratics, cubics, Cornu spirals, or any other
suitable function. ilere we are more concerned with the problem of finding knots
corresponding to curvature discontinuities than the parameterization of smooth

portions of contour between knots. The detection and hcalization of discontinuiliesis more crucial because the good parameterization of a piece of contour depends

,, ,t',¢.oil theim (Figure 2).
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,.eproduc d from Irady and Asada I1, Figure 8.

In our experiments, piecewise circular approximation of the contour has proven

to be good enough, provided we can first accurately locate all the semantically
significant curvature changes as knots. In Figure 3a we show the contours of a

'a

number of tool shapes found by the Canny edge detector. Figure Ab shows the
circular spline approximations to those contours once the curvature discontinuities
have been located by the method described in this paper. Figure 3c shows the
overlay of Figure 3b on Figure 3a.

We propose a particular set of primitive curvature changes. We analyze each
primitive at several scales using an ideal parameterized version f1(s) of the primitive,
where s denotes arc length along the contour. '%Ae then determrine analytic forms for
the convolutions of ft(s) with the first and second dlerivatives of Gaussian, namnely

% G' ft and G" f,, where GC0 denotes the Gaussian of standard deviation a:

G, (t) = (I u 7) exp( / )

Equivalently, by the derivative theorem of convolutions, we determine the analytic

forms of (G, * f,(8))' and ( , * f(s))". Then we construct a program to rind

instances of the curvature change models along actual contours.

2.1. Two Basic Discontinuities

We bc n by deriving expressions for the convolutions of the two u asic rodels,
the corner and the smooth join, each of which have a single discontinuity. The
convolutions of the compound models namely, cnk, end, buup, and ent, are
formed by appropriate superpositions of the filtered responses of these two models.

~~4
%s

".A 4N
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Figure 3. 111lstraling lite adequtacy ,,r irctilar splines rior i *.t or took-. Avs disc's.,,t iii Brad)• a lld~~- n ( A s a d a [ !18 ], a c ir cd e nm y b ~e re p la c e d tb y a s t~ra ig h t lin e d ,,le n d ifi o n t h e , rc n d t io n ri tiu n h e ro ti ts fitting vi c qujation., a. T eoriginal contour. b. riie cirrclar spline approximationafter find~ing the significiant. changes or cuirvatuire, c. Overlay or b on a.

1) Filtered response of a corner

Figure 4a shows a corner fragment consisting of two circular fragments of~curvatures rcl and K2, enclosing an angular discontinuity of 0. Figure -1b shows the
corner model in orientation space, relating the orientation of tile tangent to the

% curve to arc length along the curve. The corner model is defined by:

f~o,. K1s + s l  c if s < 0;
tK28s+C+ ifs > 0.

As we shall see, the convolutions of the model assume particularly simple forms when
the curvatures of the circular arcs flanking the corner are the same, r.1 -2(--- r)i say. We call that special case a pure corner. Its analytic form is:

¢..'~rc f r~)..~+ c+ if s > 0.

.- : .... W e now% on ov f ,, ,r with the Gaussian G o(t), and find:
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It follows that

*- fe,,,,)'(s) o - ._,x,.( -

+ K " (xj) ( )t t "J ex ( ,)d("x• 2O"" , O - (

'.his has a particularly simple form for a pure (o,,ier nauiiely:

S.SV'ii,,(G1 , f,,)'(s) = exp(--,,1 +-.,

The function (G, * fj,.)'(s) is shown in Figure '4c. It has the shape of a Gaussian
- ." that. is offset from the line 0 = 0 by the scale and curvature dependent constant

z... i,/\ria and is attenuated proportional to the angle .

Similarly, convolving with the second derivative of a Gaussian (approximately 4- t
equal to a difference-of-Gaussians) yields:

I2 eS

*=' ro(, f,orngr)"(s) =- 32 s2
-. ' 7ro:-Ga * = --,,lu s exp(-- ) + (K, - K )exp(- -)

This function is shown in Figure 4d. It has a zero crossing near the corner separating
two peaks of opposite sign. In the case of a pure corner, the expression assumes the
following simple form:

...V ,r(, * f,)"(s) exp( )0.1 2

The distance along the s-axis between the peaks is

coe.,r a2

In the case ,)f a pure corner, this expression reduces to

el,,. 2a.

92_:
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Figure 4. a. A corner fraginii (oliistiiig or t wo circular fraginents of cirvattnres K, anid
KLi eniositig an anguilar discoiitmiity of 0. 1). The corner inodel in orienitation space, relating the

orictilatio of th ltligviit to ( lie (U rve to arc leiigthl along- thle ci e. [it the case of a puire cornter,
he Mlipi's K, and KL, are (qua!. c. 'Ilre Ftin ctiori (Ge, * f,)'(.4). It haIS the Shape) Of 4 (, iS~i:Lnl

% thait is offset by Owe torvaltirre K arlid is at tetiniated proportional to the anigle d). (I. Irle fil et ionl
* ~ )"(~),which correspord~s to conivolvinig Ithe corner nirooel with the second (lifl~relrtial

of' a ( irissian. It has a zero crossinig near the corner separating Iwo peaks of opliosit c sign.

Note that 4., is independent of arid the pair of pcaks merges when the scale gets
smaller.

The formula for the heights of the side lobes is complex. In the special case
Kthey are both equal to

% 2) Filtered response of a smooth join

The corner model forffr and its first derivative are (liscoritifluous at the originl.
If 6 is set equal to zero, the orientation of the tangent is continuous, but the
bcurvature is not. We call such a curvature change a smooth Join. Figure 5a shows
two instances of the model, whose defining equation is

K28 +c ifS > 0.

19* 7
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(b) 8 1k2

(a) _

0

(C)

~ (d)

igure S. ai. Two ins~tance(s or a smooth join. ill whit h tIhc sigrns of the flanikinig ctirvat tires ;tre
the SalIne (to1) .1id Opposite (bottorni). b. 'Ilne sioothi join in orienitatimn sjipn((. c. Tin, iteed
response or a smooth joirn to tine first. derivative of a Gaussian. d. Theli itered response or a
smoncothn join to the first derivative or a Gaussian.

When the signs of the curvatures flanking the smooth join arc opposite, the smooth
join is called an inrflecti'on. Figure 5b shows the smnooth join mnodel in orientation
space. It is well known that smooth joins are difficult to perceive unless there is
a large difference (icl - K.,) in the flanking curvatures. For example, Ulnian [1976]
and Brady, Grimson, and Langridge [1980] have investigated smooth curves that
have a single C2, discontinuity in curvature. Figure 6 shows a curve that is the

-A. smooth join of two circles. The curve and its tangent. are continuous, but there is
a step change in the curvature at a point along the curve. E-Ividently the curvature
discontinuity is not perceived.

Inserting 0 into the equation for the response of a corner t~o the first
derivative of a Gaussian, we find

'/jircr(G K. -cxp(- - )dt +±e exp(- )dt.

Suppose, w, hout loss of generality, that K, < K, Then

V NI

2

K (7 V .) 7 P- -x ( .) .- . ..



This hinctio Ois shown'r in Viglir( ac. It has th( lorni ol a snmot h 'a inp v
heighlt is propo)rtionl to KI J h (ifCI(( -c ir~tu flaikig Ilic itt 1f

the difiervint in fl.,rikirig rurvil tires i, small tire Seip -iai riot bet percevemi.

Differentiating ;iairi, xe find( the filtered recsponse of' tie snmoot h poin to a
Second dIifferen tial of a G aussian.

S
V'27ToK(G, f.,j)"(s) (K,- ) exp(- -)

Thi-, respJonse is sho'Wn in Figure 5d. It has a single peA -whose heigit ill
- -proportional to (K,) - Kj)/ur. Introducing the quantity 6,, (~ we can

write an expression for the height ofr the response peak that, is sirrillar to the
*expression for the height of the peaks in the corner response, namnely

The detectabilit v of a smooth join is essentially determined by the peak height
hg, that is by the value of' O.j. In particular, a smooth join is hard to detect unless
the product of a a1nd (K-, - 'KI) is sufficiently large. This is consistent with humian
perception of changes such as those indlicated in Figure 6. It is not known how the
th reshiold on 6, required to perceive a smooth join is related to that on 6 required

to perceive a corner.

2.2. Primiltive curvature changes and their detection

In this section. we introduce the five primitive curvature changes that. we use

iii the cuirvatutre primnal sketch. We call them corners, smooth joins, cran ks, ends,LI andl buitiips or djenits. We define each primitive and] show it in orient ation sp.'icW
show exariiple responses at, different scales ' Aien the primitive is filtered with the
Second dlerivative of a Gaussian. Corniers and smnooth join wee analysed in the

previous section, in this section we show different, scale responses and give detection

c rite r i.
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Figure 7. T1hv responses to the corner showni in Vi'gti re 4 to (G" at vvvraI spatial scales a.

The corner primitive

As shown in Figure 4d, a corner gives rise to a pair of peaks whose separation
is deorncr. An expression h,~ for the heights of the peaks was given for the case of
a pure corner. If the flanking curvatures tK, and ic2 are not equal, so that there
are simultaneous C1 and C2 discontinuities, the zero crossing in (G" * forr)S

* . is not exactly at the origin. In practice, the difference Kj - r,2 is small, so that
dcorncr;:: dp,. Note that 4.rc is linearly dependent on the scale constant a, and
hence it monotonically decreases with a. This provides a strong clue for recognition
of corners and enables spatially close events to be decomposed in order to distinguish
a pair of smooth joins from a corner. Figure 7 shows the second derivative filtered
responses to a corner at several scales.

The smooth join primitive

In the previous section, we showed that the response of a smooth join to the
first derivative of a Gaussian is a smooth step, and that to the second derivative
it is a peak. The peak height is (r-2 - II1)/(orNF2r). Recall that only when the
curvatures flanking the smooth junction are very different can this be reliably
ftund. Inflections produce a zero crossing in the first derivative response.

The end primitive

An end consists of two corners with angle changes of the samne sign (Igue
* 8a and 8b). It is not necessary that the contour fragnients comnprising te endl

are straight or parallel, nor are the corners required to be right angles. An end is
analogous to the primal sketch intensity change called a "line ending" [Marr 1976].

Let a be OP' distance along the contour between the corners forming the end. At
large (d imencion less) scales, when the ratio a/a is greater titan one, thie filtered
responses of the contributing corners are confounded, and the end is perceived as
a corner. At smaller scales, when the ratio u/a is less than a halr, the individtial

t
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____________S 0a = o
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Figure 8. a. A typical end as it appears on a contour. b. The end in orientation space. c.
the second derivative ltered responses to an end at several (dimeisionless) scales.

corner responses are separated, enabling the detection of the corner pair. This
occurs, for example, in the interpretation of end1 for the punch shape shown in
Figure 11. Figure 8c shows the second derivative filtered responses to an end at
several (dimensionless) scales.

The crank primitive

A crank is like an end, except that the changes in angle are of opposite sign
(Figures 9a and 9b). It is analogous to the primal sketch intensity change called a
"thin bar" [Marr 1976]. Again let a be the arc length between the corners forming
the crank. When the ratio a/a is less than one half, the crank is essentially signalled
by two independent corner responses. When a/a is greater than one, a crank
produces a strong central peak with two side peaks of opposite sign that are at most
half the height of the central peak if curvature differences are negligible. Figure

V. 9c shows second derivative filtered responses to a crank at several (dimensionless)
scales.

The bump and dent primitives

Instances of a bump and dent are shown in Figure 10a and Figure 10b. They
are typically spatially localized and correspond to two nearby cranks of opposite
sign. Figure 10c shows filtered responses at several scales. They are reliably detected
by finding the sequence of four peaks at a suitably small scale.

Different instances of the primitives at suitably coarse scales can be ambiguous.
Figure 11 shows several ambiguous contour fragments. An example of the ambiguity

* * . * . .,

* S .* *W'"w * ~ . -



(c) a/a = 0.25

(a)

a/a = 0.5

-S

(b) a/a = 1.0

Figure 9. a. A typical crank as it. al)parq on a con.otir. 1). 11 'rarik in orici.tation -Apace.
c. the second derivative filtered r(,spon ws to an crank at .'vral (dimns.ionless) 'Icals. -"

'.5. corner

crank-

end

smooth join

bump/ dent

Figure 11. A niatrix or contour rragfmlellt.s Ihat appear amliiguotiJ at suiLi h. sc.ales.

betwect . crank and a smooth join will be found in the curvature primal sketch of
a screwdriver in Figure 19.

12
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(a) a/a = 0.5

cy/a =1.0

I SS

,'.

(b)

(c)

Figure 10. a. A typical buirip as it appears on a contour. b. The bhijip in ori(ntation

space. c. the second derivative filtered responss to a bump at ,wral (diFiCn-.ionlcss) scales.

3. MultiscaleInterpretation

In this section we describe an implemented algorithm that produces a multi-scale

curvature primal sketch representation of a contour.

Step 1: Convolving orientation with derivatives of Gaussians

The bounding contour of a shape is found using the edge finder developed by

Canny [1983]. The filtered responses G' * c(s) and G" * c(s) are computed for the

contour c(s) at a variety of scales a. The result is a set of one dimensional arrays

for both G' and G". Figures 12 through 15 show examples for four tool shapes.

Step 2: Matching the Locations of Peaks among Scales

The locations of local positive maxima and local negative minima in the

filter responses computed in step 1 are extracted and matched among the scales,

producing a tree. Ideally, the tree is equivalent to a "fingerprint" [Yiille and

loggio 19831. However, we cannot trust the tree entirely because the match can be

ambiguous for two nearby events. For example, each of the two peaks that signal

an end splits into a pair of peaks when the ratio a/a is one. However, due to the

discretization of the scale factor and the effect of the curvature difference between

two fragments of the contour, it is possible that only one of the peaks splits into

two at a particular scale. In such cases, the match between the new peak and the

old ones is ambiguous. We need knowledge of the primitive type in order to build
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a complei e tree, bu( s ch k oM\hledli, i. not ;I%,il;il)( mlill Ih ' l ri , I - lilerl)rt (d.
('olseii ienily, it is iee ssarv to la'e t, Iv re ir'coi Ji t('aI d take im in lil ,(ollill-

at thle int e rpretatlion stig .

Step 3: lParsitg (lie tree
The parsing inethod %( t.sc is .im)l. IlII Il. 'a v .ork h,

considered using het, ristic nl('tho(ds, su ('hi . rel ilion aind (d\'lviili(' pro r;itlli lilni,

in order to cope wit I the a l)igulit v t hat occursat the int (,rprct t il ii oh I li, reS ioilses

of two closely located events. However, it has turnied oUt that in IIt' I 'st Ii1aoritv

of cases the,(se responses (ain i' cecomposed ea'sil v y) looking at the inovelIIerlt of
the peaks over several scales aiid tking account oh the, coilverge.nce properlt of a
corner response. Th'lis experience stpports idei of' scale space as a re ipresenit a ion
techn ique.

hstances Of the comnposite structures, namnely ends. bunmps alld cranks arc

searched for first. The movement of the peaks al lower scales arid the heights of' teie
peaks are the only cities for the detection. Once an instance is detected, the tree
is refined. The search proceeds to lower scales until the scales are exhausted. Next,
corners are searched for in the same manner and finally inflections and smooth
junctions.

Step 4: Computing Knot Points

Instances of curvature primitives detected by the parsing process are represented
by a part of the tree starting with a peak at the scale at which the instance was
first detected. The exact position of each primitive, which gives rise to knot points
on the contour, is computed from the tree. For corner primitives, the zero crossing
between peaks at the smallest scale gives good localization. For smooth joins, on the
other hand, good localization is accomplished at the largest scale. The primitives,
sorted according to the scale, provide us with a multi-scale interpretation of the
contour.

4. Examples

In this section we show some examples of the multi-scaled interpretation of a
contour. The results are for the set of tools shown in Figures 12 through 15.

Figure 16 shows how the curvature primal sketch procedure works on the
shape of the punch shown in Figure 12. Figure 16a shows the positions of the
local positive maxima (+) and negative minima (-) in the first derivatives (top) and
second derivatives (bottom). Connecting lines are the part of the tree which was
generated when an instance was found. At the largest scale, o = 22, two ends are

. found. Then a dent at the scale of 11, two cranks at a = 8, and another dent at
a = 5 are detected. Figure 16b illustrates the multiple scale interpretation of the
shape. Lt starts out as a trapezium and its fine structure becomes clear as scale gets
smaller.

Similarly, Figure 17 shows the curvature primal sketch representation of the
carving knife shown in Figure 13. Figure 17a is similar to Figure 16a. At the largest
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Figure 16. ;L. The positions of the local positiv( mxxirtn; (-4-) acnd negative minim: (-i) nr

the first derivativesi (Lop) and stcomid derivatives (hottom) for the iiltercd respconcs s or the ptinch

(]'igure 12). ('eonnecting lines are the part of the tree which wasM gencrated %hen anc in.stance wa;s
found. h. The midtipl, scaule interpretactiorn of thc shape.

scale, again ai = 22, all the major curvature discontinuities are found. These are
the tip of the blade, the crank signalling the join of the blade and handle, and the
hand grip at the end of the handle. At finer scales, smooth joins are found on the
blade and the handle. These would occur in different positions in different views of
the knife (see below).

Figure 18a shows the local ext rema of the filtered responses for the Warrington
hammer shown in Figure 14. At the largest scale, the following discontinuities are
discovered: the end of the handle, the corners defining the side-end join of the
handle and head of the hammer, the end signalling the striking surface on the head,
the tip of the nail puller, and a smooth join on the nail puller. At smaller scales
additional smooth joins are found, first on the head and then on the handle. At
the largest scale, the description of the handle is that it is a cylinder (a "worm" in
the terminology of Blum and Nagel [1976]). At a smaller scale, a pair of inflections,
symmetric about the axis of the handle, is found. The corresponding description of
the handle is that it has a thick body and a thinner neck. Ieide [1984, forthcoming]
shows how to generate symbolic descriptions of this sort from smoothed local
symmetries (llollerbach [1975] has shown how rich symbolic descriptions can be
generated from an appropriate geometric analysis of a shape).

Figure 19a shows the filtered responses of the screwdriver shown in Figure
15. At the coarsest scale, the end of the blade, the corners defining the end of
the handle, and the pair of cranks signalling the join of the handle and the blade
are all discovered. At scale o = 11, an inflection is found on the handle. The
syntimmerically placed discontinuity, a crank, is not found until the scale is 8. Note
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Figure 17. a. Tt(- pos~itionIs of the local positike mnaXili~a (+)arld negat ive riini it,; -)

the first derivatives (top)) andt second1 derivatives (hottoni) for th lI ter((1 responrses of the carvinig

kniiife (1 iguirv 13). C~onnrectinrg lines arv tite part of the tree whi chI was~ generated when an insttance
was. found. h). TIhe niil tiple scale interpretation of the shape.
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Figure 18. a. The positions9 of the local positive mnaXirTia 4 -) and negatk~e inininia ()in the
first derivatives (top) arid second derivatives (bottomn) for (fhe filtered responses of the( Warrington

* .. hatnmer (Figure 14). Connecting lities are the part of the( tree which was generated whenci an
* iiistate was round. b. The mrultiple scale interpretation of the shape.

that an inflection and a crank are ambiguous at certain scales, as noted earlier.

Z .0.We finally illustrate the robustness of our algorithm. In Figure 20 each shape
PP. .4is the bounding contour of the same object as thc screwdriver shown in Figure 19
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Figure 19. a. The positiolls of the local positive maxima (4) arid negative mini a (-) in the
first dcrivativcs (top) a d second derivatives (bottoii) for the filtered responses of tIhe scr(,dri er
(l'igire 15). Connliec ing lines are the part of the tree which w L g generated wlier an ilistaice W;L

round. b. The irirltiple scale interpretation of tire shape.

but the orientation is different. Due to noise in the imaging process and directional
tesselation, each is slightly different. However, the interpretation is still reasonable.
In each case, the two ends are stably detected. Also, the two cranks that signal the
join of the handle and shaft arc found at the same scale. Other cranks at the grip
are also found in all cases though at different scales.

5. Conclusion

In this paper we have discussed the problem of computing a representation of the
significant changes in curvature, and shown that it is possible to produce multi-scale

irepresentation of a contour by interpreting the significant changes in curvature at
v..-. various scales. Our method applies more generally to any one-dimensional signals

when an appropriate set of primitives is chosen, because the problem of representing
a 1-D waveform can be reduced to two subgoals; segmenting the whole signal into
homogenous (in some sense) portions and parameterizing them. This is exactly the
same as our problem.

The result shown in this paper can be used for developing the region- and
contour-based representation of 2-D shape [Brady 1984a]. We can' also use the
symbolic interpretation as clues for finding subpart joins without the knowledge of
the object's identity.
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