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performance evaluation for Rayleigh fading channels. The expressions for the
probability of error for these systems are formulated in a way that allows the
identification of the key parameters of the communication system.

The performance of DPSK and FSK are evaluated for several signaling formats.
The design parameters considered are the shapes of the basic data-pulse wave-
forms for both DPSK and FSK, the modulation index, and the relative phase between
successive transmitted signals for FSK. It is shown that the system error
probability is highly dependent on these system parameters.

The interaction between the various elements of the communication system
is examined. We show that the average error probability can be approximated in
terms of one or two rms type channel measurements. A technique for obtaining
bounds on system performance in terms of the key system and channel parameters
is described and applied to the evaluation of both DPSK and FSK systems for
several channel models and signaling formats. A method of approximating the
performance of systems employing complicated pulse shapes and channels which are
difficult to fully characterize is discussed. It is shown that the techniques
for obtaining bounds and approximations for Rayleigh channels are easily applied
to the more general frequency-selective Rician fading channels.

The applicability of adaptive equalization techniques to digital communica-
tions over WSSUS frequency-selective fading channels is discussed. We describe
the characteristics of adaptive equalizers that are commonly employed for
fading-channel communications. It is found that adaptive equalizers can be used
to establish a coherent communications environment as well as to reduce the
effects of ISI. The results of cited simulation and experimental studies are
compared to the analytical results for the error probabilities of the DPSK and
FSK systems. We develop a method of obtaining estimates of adaptive equalizer
performance for practical systems.
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PERFORMANCE OF DIGITAL COMMUNICATIONS
OVER SELECTIVE FADING CHANNELS

Frederick Dwight Garber, Ph.D.
Department of Electrical Engineering
L~ University of Illinois at Urbana-Champaign, 1983

ABSTRACT

The performance of digital communications over selective wide-sense-
stationary uncorrelated-scattering (WSSUS) fading channels is investigated.
The emphasis is on the evaluation of the performance of binary differential
phase-shift keyed (DPSK) and binary frequency-shift keyed (FSK) communications
with primary emphasis on the effects of intersymbol interference produced by

the frequency—selective character of WSSUS fading chanmels.

The error probabilities of DPSK and FSK are evaluated for several models
of WSSUS frequency—-selective fading channels. The analysis is focused on the
performance evaluation for Ravleigh fading channels. The expressions for the
probadbility of error for these systems are formulated in a way that allows the

identification of the key parameters of the communication system,

The performances of DPSK and FSK are evaluated for several signaling
formats. The design parameters considered are the shapes of the basic data-
pulse waveforms for both DPSK and FSK, the modulation index, snd the relative

phase between successive transmitted signals for FSK. It is shown that the

e
Jj system error probability is highly dependent on these system parameters. 'Tﬁm'“>
«? The interaction between the various elements of the communication system

is examined. We show that the average error probability can be approximated :

gg in terms of one or two rms type channel measurements. A technique for
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. obtaining bounds on system performance in terms of the key system and channel
' parameters is described and applied to the evaluation of both DPSK and FSK .
systems for several channel models and signaling formats. A method of Ej:;
-‘ -.“
A -
pS| approximating the performance of systems employing complicated pulse shapes -
. and channels which are difficult to fully characterize is discussed. It is .
A o
) shown that the techniques for obtaining bounds and approximations for Rayleigh "
:::: channels are easily applied to the more general frequency-selective Rician ‘.',-_
- fading channels. »:
~ o
™. )
The applicability of adaptive equalization techniques to digital .
<
-; communications over WSSUS frequency-selective fading channels is discussed. .-
We describe the characteristics of adaptive equalizers that are commonly :j:.
o . ,
o :
o employed for fading-channel communications. It is found that adaptive o
a equalizers can be used to establish & coherent communications eanvironment as i
well as to reduce the effects of ISI. The results of cited simulation and “
r:'_: experimental studies are compared to the analytical results for the error -~
probabilities of the DPSK and FSK systems. We develop a method of obtaining
! estimates of adaptive equalizer performance for practical systems. E:t_
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CHAPTER 1
. INTRODUCTION
\'. ::: Several problems arise in the consideration of slow-frequency—hopped
;. - (SFH) spread—-spectrum communications which motivate the study of the
\; S performance of digital communications over selective fading channels [1-4].
$" - In many applications of SFH systems, the channel (or transmission medium)
j' o cannot be adequately modeled as a non-dispersive additive white Gaussian noise
23;: ‘tj channel, In cases where the characteristics of the channel are significantly
";5: ~ different from this ideal, the channel is commonly referred to as a fading
*"' :‘ channel. Fading channels may exhibit such undesirable properties as a time-
‘ < varying amplitude response, the spreading of transmitted signals in the
IS :':i frequency domain (time—selectivity), and dispersion in time (frequency-
A

selectivity) which may produce significant intersymbol interference (ISI). In

d
L3
5

$ - cases where it is impractical to obtain accurate channel estimates and
} :‘j’ incorporate these estimates in the detection process, the random character of

the fading channel precludes the use of coherent demodulation, Binary

-,", s differential phase—shift keying (DPSK) and frequency-shift keying (FSK) are of
:;: Eiz particular interest for applications of SFH systems in selective fading
'3' " channels, since these forms of digital communications do not require the
'-:‘; !::J receiver to establish phase coherence at the beginmning of each hop [2,3,5].
\E = The primary focus of this thesis is the evaluation of the average probability
::-: of error for DPSK and FSK communications in selective fading channels. The
5 .2'-‘ analyses of these systems are of considerable importance independent of

*

)& - applications to spread-spectrum communications. Furthermore, the results on
f: ﬁ the average error probabilities for DPSK and FSK can also be used in the

performance evaluation of SFH systems [2-4].
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Previous analyses of various forms of digital communications over fading
channels which are selective only in time show that system performance
parameters such as signal-to-noise ratio and average error probability are not
significantly degraded unless the degree of time selectivity is quite large
[2,3,6-12]. When coupled with the measurements of the time-selectivity of
practical channels [7,13], these results indicate that the time-selective
nature of the chanmel is not a limiting factor for the performance of these
systems. In this thesis, we are primarily concerned with the effects of
intersymbol interfer?nce produced by the frequency—-selective character of
fading channels, Thus, models of strictly frequency—-selective channels are

used in the evaluation of the average probability of error,

Two common examples where fading phenomena are encountered in practice
are ionospheric high-frequency "skywave” and tropospheric scatter channels
[6-8]. A channel model which accurately describes the characteristics of
these and other examples of fading enviromnments is the wide-sense—stationary
uncorrelated—-scattering (WSSUS) fading channel, which is discussed at 1length
in [9] and [10]. This model is quite general and includes, for example, the

doubly-selective Rician channel as a special case.

Experimental investigations [8,14,15] of the multipath characteristics of
fading channels show that no one multipath model adequately describes the
properties of various frequency—-selective chamnels encountered in practice.
These investigations also indicate that there are many situations where the
multipath parameters of the channel do not remain constant during the time
required for transmission of a 1long data sequence. In Chapter 2, four
examples of multipath propagation models for WSSUS frequency—selective

channels are described.
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:-',:: In Chapters 3 and 4, we evaluate the average probabilites of error for
( l binary DPSK and FSK over WSSUS frequency-selective fading channels. The
~: o snalysis is focused on Rayleigh fading channels, since the adverse effects of
‘ '.‘t" frequency-selective fading are most evident for such channels. The primary
. = goal of the analysis in Chapters 3 and 4 is to formulate expressions for the
e

': system error probability that provide insight to the nature of the fading
" -:'_:'. mechanism. The expressions for the probability of error for these systems ar

’ —~ developed in a way that allows the identification of the key parameters of tt

A

::.: - communication system.

:;:' :é One of the fundamental design parameters for DPSK systems is the shape of
::,_« .- the data-pulse waveform. Since the spectral characteristics of the
o

:\ n transmitted signal are largely determined by the properties of this waveform,
o i it is reasonable to expect that the performance of DPSK in a frequency-
i

selective fading enviromment is highly dependent on the choice of the pulse

J:..“';. .
A_AA
)

LA O

waveform. For FSK communications, the character of the transmitted signal

.‘j .\\'
]
4

:-.Q. ~ phases between successive transmitted signals as well as the shape of the
::5: :::4 data-pulse waveform. Previous investigations of DPSK and FSK over frequency-
,; i selective fading channels [2,5,16-18] indicate that the error probabilities
_ -'. are strongly dependent on these parameters.

g’ .j: We examine the interaction between the characteristics of the fading
I: =~ channel, the transmitted signal, and the nonlinear detection that arises in
(E botk DPSK and FSK demodulation. We show that in many cases of practical
:;: . interest, the performance of these systems can be approximated in terms of one
; d or two parameters which can be obtained from rms type channel measurements
:.. X (e.g., see [13]). It is found that the error probabilities for DPSK and FSK
A

»¥1 B

K

S

b
‘.
-

depends on the frequency separation between the two FSK tones and the relative

s 'Y
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- depend on a number of common factors and that, in certain cases, the effects
N —

of frequency selectivity on both DPSK and FSK systems can be characterized by

" o

r & %Y
B 2T

the same channel measurement. A technique for obtaining bounds on system

o

performance is described and applied to the evaluation of both DPSK and FSK

Y55

systems for several examples of channel models and signaling formats. We then

‘i .

o
NI SRV PIw v VASREIL

present a method for approximating the performance of systems employing

IR
LRI AN
Tatrtate

complicated pulse shapes and chanmnels that are difficult to fully
* characterize, By using the results of [19], it is shown that the techniques
o for obtaining bounds and approximations for Rayleigh channels can easily be

applied to the more general frequency-selective Rician fading channels.

: In many practical systems, the effects of intersymbol interference (ISI) o
E in a frequency-selective fading channel can severely limit the performance of i;
conventional digital communications. For a number of years, considerable ;é
Si attention has been given to adaptive signal processing or "equalization” o
.5 techniques for digital communications over certain non-fading channels [20- ;f .
$ 21]. For channels of this type, such as telephone lines and line—of-sight -
5 (LOS) microwave links, both linear and nomlinear equalizers (typically in the ' i
5 :
E? copfiguration of tapped-delay—-line (TDL) filters) have been used effectively ;E E
oy to reduce the effects of ISI [22]. More recently, there has been comsiderable
{ interest in applications of similar equalization techmiques to improve the :f. :
:5 performance of digital communications over WSSUS frequency-selective fading .- E
~: channels [23]. While the random character of fading channels presents a = ;
‘: number of additional difficulties which must be overcome, both simulation %
N REEA
? studies [24] and experimental evidence ([14] indicate that reliable ] X
> communications can be achieved even in fading environments that produce iﬁ ¥

unacceptably high error probabilities for unequalized systems. .
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In Chapter 5, we describe adaptive equalizers that
for fading-channel communications. It is found that
adaptive equalizers are the reduction of the effects of
establish coherent communications. We briefly discuss
simulation studies and experimental investigations.

compared to the results presented in Chapters 3 and 4.

are commonly employed
the main attributes of
ISI and the ability to
the results of several

These results are

By examining the basic

properties of TDL equalizers, we develop a method of obtaining estimates of

sdaptive equalizer performance for practical systems.
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e CHAPTER 2

vy CHANNEL MODELS

- In this chapter, we discuss the key characteristics of the wide-sense-
-~ stationary nuncorrelated-scattering (WSSUS) fading channel model used in the
. pecxformance evaluation of the communication systems discussed in subsequent
e chapters. This channel model is described in detail in [9] and is employed in

A the analysis of a variety of digital communication systems in

N [2,5,9,11,16,17,24,25].

We employ narrowband signal models (see [6]) so that if the input to the ia

g channel i3 -

" 3(t) = Re{s(t)exp(janct)} , . (2.1)

\ then the output is given by

: F(t). = Rels(t)exp(j2nf_¢)} , (2.2) :

o

where

(t) = as(t) + [ n(e,2)s(e-8) g + n(e) , (2.3)

*
IR

a¥a

<,

and n(t) is the equivalent (see [11]) low-pass Gaussian noise with (one-sided)

POV, ¥

spectral intemsity N,, For the general case of Rician fading, the received v

- .

signal r(t) consists of three components: a single specular component, a -
diffuse or Rayleigh-faded component, and the channel noise. The fading

process is characterized by the ensemble auntocovariance of the response

e G

by
W, .

P

function h(t,&),

‘.

LN

E(k(t,v)b*(x,8)} = 26%p(t-x,8)8(c=8) ., (2.4) |

%
'_f_:'
.v

L4

where 8(.) is the Dirac delta function and 202 is the total power in the e

B3
e
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fading process, so thatl[ p(0,8) d& = 1. Alternatively, the quantity o? can
L]

be interpreted as the average power received when a (real) sinusoid of wunity

peak value is transmitted over the channel.

If a > 0 in (2.1), there is a specular (non—-faded) component present in
the channel output. In this case the channel is termed a Rician fading
channel (as in [12,19]). If a = 0, there is no specular component in the
received signal and the channel is a Rayleigh fading channel as is considered
in [2,5,11,16,17]. The autocovariance function in (2.4) represents the
second-order statistics of a channel that is selective in both time and
frequency (i.e., doubly selective). Doubly selective channels sare the most

general examples in the class of WSSUS fading chanmels [9].

The effects of time-selective fading on DPSK communications are
considered in [3] for several data pulse shapes and a variety of fading
channel models. In [11], the performance of binary FSK communication via
time—selective fading channels is calculated for one example of a fading
channel. In each case the performance is evaluated as a function of
parameters related to the bandwidth of the Doppler power demsity spectrum
[11]. While it is probably true that most fading channels are time-selective
to some degree, it 1is also true that, for a given fading channel, the
normalized Doppler spread (see [3]) decreases with increasing channel data
rate. Moreover, the results in [11] and [3], when coupled with measured
Doppler spreads for typical channels [7],[13), indicate that the time-
selective nature of the channel is not a limiting factor in determining the
performance of practical systems. In the analyses that follow, we consider
channels that are selective only in frequency, i.e., that are strictly

frequency—selective,

o~
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-{3 For strictly frequency-selective fading channels, the autocovariance
SN —
E‘ function (2.4) of the fading process becomes [9]
A
- 2¢% p(t-x,8)6(t-F) = 26%g(E)8(x-E) , (2.5)
. .
. where g(&) is the delay power-density spectrum of the fading process. The ‘
.Eﬂ inverse Fourier transform of g(f) is called the frequency correlation function
:f [9] and is given by <
° -2 ~
4 6@ = [ gze?m8E gz . (2.6) -
A da N
e~ o
‘A" . A'.‘
\: There are several ways in which the degree of frequency-selectivity can =
-{f be specified. One is to define the selectivity as the "bandwidth” of the .
S; frequency correlation function G(Q@). For example, in [16] and [17}, the ¥
l:'-
- distance between the "1/e” points of G(Q) is used as a measure of frequency- é%
A .
N selectivity. Alternmatively, the degree of selectivity can be defined in terms }
J‘-
> of the delay power—density spectrum g(&).
ox !
-s:._ ‘
In any physical channel the transmitted signal undergoes a propagation i 1
4 4
ﬁ: delay <t, (say) which, for the analyses of non-selective or non-fading
”~, ' b
:: channels, is usually assumed to be a known deterministic quantity that is fa
A, .

compensated for at the receiver. In the case of frequency-selective channels,
the transmitted signal may experience a continuum of random propagation
R delays, with mean value §d given by
®
tg = | e ae, (2.7) 2

which is referred to as the mean path delay. A parameter that is commonly

used to specify the selectivity of the channel in terms of gelative delay is

.'\41

the “"multipath spread” [S] which is defined by

~Q OO
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m.s. = 2{1. (& - g42808) ag1t/2 (2.8)

(see ([13], where techniques for measuring this channel parameter are

discussed).

We are concerned with relative delays only and we assume that the
receiver has compensated for the mean path delay &d, Equivalently, we let &4
= (0 in order to establish a time reference. Parameters that are used in the

sequel to specify the degree of frequency-selectivity are the rms delay,
-]
M= {I. g2-5(8) az)i/2 (2.9)

which is equal to half the spread parameter defined in [5] and the zms

multipath spread, defined by pu = M/T, where T is the data symbol duration.

. This latter parameter is related to the normalized data rate [16,17], since it

0

is a function of the ratio of the transmitted data rate and the chanmnel

correlation bandwidth.

Since the delay power-density spectrum, g(¢) in (2.5) (and hence the
function p(0,¢) in (2.4)) can be viewed as the Fourier transform of the
correlation function G(Q) in (2.6), it is necessarily a nonnegative, real-
valued function. We also assume that g(&) is symmetric, i.e., g(&) = g(-&).
This assumption can be made without loss of generality since we consider only
symmetric binary signaling, and the average probability of error depends on
the fading channel model only through an ensemble average (2.4) of the channel

statistics.

In the analysis that follows, the evaluation of the average probability
of error for DPSK and FSK is considered for four examples of delay power—

density spectra: the Gaussian, exponential, triangular and rectangular delay
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densities. The Gaussian delay power-density spectrum is given by

2 —p2/2M2
.:::l s(g) = ——1—— e ¢ » (2.10)
A.j\:: 2n M

with corresponding frequency correlation function

s 2
E::, G(Q) = e 2(mMB)" (2.11)

b4 o
L &
N The parameter M in (2.10) and (2.11) is the rms delay given by (2.9). The
Y .\'

N exponential delay power—density spectrum is given by o~
R - 2lel/m
AN s2) =45 ¢ , (2.12) 3
e &

and the corresponding frequency correlation function is

~.".:: :;
oy G(R) = (1 + 2(nM@)2)71, (2.13) :
™ i
¥ =
x‘# The triangular delay spectrum, which was employed in [4] and [18] for the -
. o> - . "
i:; analysis of a slow—frequency—hopped FSK multiple—access system, is given by ;t
.::". )
o

T - ™
To - 18l ; el < 1, =
¥ o
.
Y g(&) = ¢ (2.14)
! |' .

A S0 ; otherwise .

. -2:7
oY The frequency correlation function for the triangular spectrum is s
)

S -

v 2 T
¥ 6(Q) = sinc®(0T,) , (2.15) =
o
fg' where sinc(x) = sin(nx)/(nx); and the rms delay is given by M = Tb/ V?;, The
e
}ﬁj rectangular delay power—density spectrum is given by .
. T

: el
-
N, <e
2
¢ .-
¢ =
7 T
=
f\ y ".- é, LR ey \...'.'-. "’*‘ \' .".\- L \'.\‘ .“-".-\. “"-“\'-\.n.'.:".ﬂ\..\-‘.". ".."--.'.A\‘.. .-\:;.'r;"i.‘ :‘;‘;._'..".l » ) _.;.l - : ; -1 X
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:'_'.‘ Y] 0 .
i .)',; : otherwise ,
2 j -
i
l? with corresponding frequency correlation function
NN
;ff W 6(8) = sinc(24T)) , (2.17)
R 3g
where M = TO/\/3—-
-ﬁﬁ -;‘ For a general frequency-selective channel, the detection of a given
~
}E o information bit may depend on a number of consecutive data pulses, because of
) LA
— - intersymbol interference (ISI). Although the analysis presented below is
fﬁé :% easily extended to include more severe intersymbol interference, we assume as
AR
;:: in (5,16,17] that the degree of frequency-selective fading is small enough
h Y

&

that the intersymbol interference affects only adjacent data pulses; this is

‘.1 £y » s

-::‘ 53 satisfied if p(t-x,§) » 0 for 1|l > T (cf. (2.4)). In this case, the channel
3\

) L is referred to as an adjacent-pulse-limited ISI chanpel. This assumption is

made for two reasons. If the intersymbol interference is not limited to

2« |

adjacent data pulses, it is much more difficult to formulate tractable

A

expressions for the system error probability. Seconmd, for all models of the

delay power-density spectra considered here, the complementary assumption

A |

implies that the resulting average probability of error is unacceptably large.

»
..
a0 A N

A
[

Our assumption of adjacent-pulse-limited ISI places a restrictionm on the

a® e

saximum value of the rms delay. In particular, if we require that at least

AW
AN

90% of the total emergy of the delay spectrum lies within the range

[-T { & { T] for the Ganssian delay density, (i.e., if we require that in the

A,,.
<

absence of additive mnoise, less than 10% of the energy received in the

]

e

intesrval {(i-1)T,iT] is due to pulses transmitted outside the interval

s
37
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[(i-2)T, (i+1)T]), then we must have

TR =T 0.43 .

where g is the rms multipath spread. For the expomential delay power—density
spectrum the requirement that 90% of the total emergy of the delay spectrum is

within the range [-T { &  T] implies that the rms multipath spread satisfies

=0 _2

In the case of a triangular delay spectrum, intersymbol interference is

completely limited to adjacent pulses if

lé-l

2 .
W = g7 L 1/6.

Finally, it is easy to see that intersymbol interferemce for the rectangular

spectrum is limited to adjacent pulses if

T
=32,

In the analysis that follows, we show that the "shape” of the delay
power—density spectrum (as well as the rms multipath spread) can have

considerable influence on the error probability of both differentially

coherent and noncoherent communications,.
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SN
l\'_
::' f::- PERFORNANCE OF BINARY DPSK COMMUNICATIONS
o u‘
{3 OVER FREQUENCY-SELECTIVE FADING CHANNELS
v N
o
o
::; < In this chapter, we consider the evaluation of the average probability of
Lo
A error for binary DPSK communications over wide—sense—stationary uncorrelated-
ol rf scattering frequency-selective fading channels. In what follows, we primarily
= -
A > consider the performance of DPSK over WSSUS frequency-selective Rayvleigh
-"‘.
. -
x é, fading channels. It is in this case that the adverse effects of frequency-
selective fading and the dependence of system performance on the chanmel delay
w2
A
2 L pover—density spectrum is most evident.
-t
YR
b ." The dependence of the error probability for Rayleigh fading on the shape
Ay
< of the data-pulse waveform used as the DPSK signal has been considered in
-“ :'"
{:é _; (5,16,17]. 1In particular, the rectangular pulse as well as the sine pulse,
b
- " wvhich is the basic pulse shape for minimum-shift-keying (MSK) modulation, is
‘
.,:‘ & considered in [5] where the average probability of error is obtained for the
'\'. :é Gaussian, exponential, triangular, and rectangular delay power-density
\ spectrum models. The result for DPSK using the rectangular pulse for a
- -
~ ~ .
:;z: o~ Gaussian delay spectrum has been previously obtained by Bello and Nelin [17]
\0
.‘: r;.-: snd by Bailey and Lindenlaub [16]. In [16], the authors also consider the
o
" rectangular pulse and the raised-cosine-spectrum pulse for a rectangular delay
.‘. .jls power—-density spectrum.
N
> 2 A number of conclusions may be drawn from these results:
_ n i) For all models of delay power—-density spectra considered, significant
‘l-‘ -

V] gains in performance can be achieved by proper choice of pulse shape.

G \' ------- _.--..‘ PR ey ] :- - :._.- DR \.' (N \.\-.\—.\~.\~4._‘~._‘~.\- - . . .. '. LI \. -_:.\-.\-‘\\‘-:\
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ii) Closed-form expressions for the average probability of error can be
unwieldy even for the simplest pulse shapes because of the quadratic
nature of interference inherent in differential detection in a
frequency-selective environment.

iii) Depending on the data pulse and the choice of normalization for multipath
spread, the error probability can be very sensitive to the parameters of

the fading chanmpel, i.e., delay power—density spectrum.

The first observation indicates that the error probability of DPSK in
frequency—selective fading channel can be substantially reduced by a judicious
choice of pulse waveform. Unfortunately, the latter observations suggest that
identification of a "good” pulse shape is, at best, analytically cumbersome
and dependent on s number of channel and syster parameters (as indicated by
the complicated form of the results in [5,16,17]). Moreover, it is not
necessarily true that analyses of this type provide a reasonable indication of
the performance for a physical channel unless an exact mathematical
description of the channel is available. This is especially unfortunmate since
8 complete characterization may not be possible [13]), and for many practical
channels, the characteristics are not likely to remain constant during the
time required for transmission of a long data sequence [9]. Hence, it is
possible that several statistical models could be used to describe the same

frequency—selective Rayleigh channel for repeated transmissions.

In this chapter, we show that the performance of DPSK communications over
frequency—selective Rayleigh fading channels can be closely approximated in
terms of one or two parameters which can be obtained from rms—type channel
measurements. A techmique for obtaining bounds on system performance in terms

of the key channel parameters is described. We present a method for
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approximating the performance of systems employing complicated pulse shapes
and channels that are difficult to characterize fully. Finally, it is shown
using the results of [19], that our results on bounds and approximations of
the probability of error for Rayleigh channels can be applied to the more

general case of frequency-selective Rician fading channels.

3.1 System Model

"The system consists of an information source, a DPSK transmitter, and a
differentially coherent receiver. The information to be transmitted is
modeled as a sequence (;i) of mutually independent random variables, each
taking values O or 1 with equal probability. The binary data sequence (bi)'
with elements in {-1,1}, is formed by differentially encoding the information
sequence (;i)' Thus, (b;) is a sequence of mutually independent random
variables, each taking on the values -1 and +1 with equal probability. The

data signal is given by

b(t) = b v(t-iT)

for each integer i. The data pulse-waveform v(t) is assumed to be time

limited to the interval [0,T] such that

1 T
;J' v at =1 ;
0

thus for each integer i, the data signal is a positive or negative version of
the basic pulse shape v(t). The transmitted signal s(t) is given by (2.1)

with s(t) defined by

R U L T SCIU AR - Tt AT N
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s(t) = JG%? b(t) , (3.1)

where E is the energy per data bit of the transmitted signal.

«

N~ ERER A 4 0

:
-

»

In the present analysis, three examples of the pulse waveform v(t) are

considered., These are the rectangular pulse -

A 1, 0 t<T
v(t) = PT(t) = (3.2)
0, otherwise ,

the sine pulse, -

v(t) -J?.in(nt/r)pr(:) , (3.3)

and the rectangular phase-coded pulse [26] given by

1
v(t) = EN-

4=0 a2 pTc(t~iTc) (3.4)
for 0 <t { T. The sequence (a.), referred to as the signature sequence, is a ?%
sequence of elements of {+1,-1]. The chip duration Tc is related to T by K
T = NT, where N is the integer number of chips per data pulse. .The sine pulse ’
in (3.3) is the basic'vaveforn used for minimum—-shift-keying systems while the ::
phase-coded pulse is referred to as the spectral-spreading signal imn direct- .
sequence (DS) or code—-division spread—-spectrum multiple-access (SSMA) {3
communications [26-29] and hybrid SFH/DS SSMA [4]. -
The DPSK receiver is the differentially coherent matched filter receiver -'
shown in Fig. 3.1. At the end of the i-th data-pulse interval the receiver i;

forms the decision statistic Z, represented (in terms of narrowband models) by
Z, = 2Re [ 4 I(i+1)r r(t)v (t)dt jiT £ (t)v(t)de ] , "
iT (i-1)T ke

= u'v. + U.v (3.5)
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g PN where _
. K
; (i+1)T . :
SN =2 f r(t)v (t) dt (3.6a)
L iT
e iT .
o V=2 I c(t)v (t) dt . (3.6b) ~
: (i-1)T :
‘;,‘ Notice from (3.5) that the statistic Zl is expressed as a quadratic form of
. e
:: complex Gaussian random variables U and V.
< Under the assumption that p(t-x,§) ~ 0; l&g] > T, i.e., adjacent-pulse-
limited ISI, the output statistic Zi depends on at most four comsecutive data
no bits represented by b, = (b;_,, by, bj, b;,q) and the probability of error s
,u:;;. can be written in terms of probabilities conditioned on the event that certain
}\-f
e sequences of data bits were transmitted, i.e.,
- :
e 1 A
‘ . Pe = 16 % P(b;) ., (3.7)
-};:Z, =i
ey >
::\‘ where P(b.) = Pr {error occurslb; transmitted}. In [11,17] Bello and Nelin -
N show that these conditiomal error probabilities are given by -
.'.::' -1 i
.;:: P(gi) = (2 + v(2;)) , (3.8) =
3 v
' where y(.) is the "equivalent” signal-to-noise ratio, which may be writtem in
'd_ terms of the conditional moments "XY(ki) = E{XY‘lki} of the random variables U .
‘-\.j: and V as
(- -
( 28 (b,) |
o s i bi-1 = by =
R Y agylbymyy(by) - mgylby)
o
*.n .
% T(hy) = (3.9) §
—2mpy(b;) -
- 2 s by # by -
o Vagg(eymyy(by) + mpylby) o
o |
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Using (2.5) and (3.6), the necessary moments are written as
(i+1)T .(i+1)T T
2 » *
(b;) = 8¢ (t-x,E)s(t-E)v (t)s (x-&)v(x) d&dxdt
“oulRi IiT IiT IT pltmx,8)s(t=L)v
+ 8N0T (3.10a)

and

(i+1)T

iT T ] ]
j I p(t-x,&)s(t=¢)v (t)s (x~§)v(x) d&dxdt.(3.100b)
(i-1)T =T

862 j

{
o
.
~
[}

iT

The moment myy(b;) is defined similarly to mpy(b;) with the region of

integration of the outer two integrals given by [(i~-1)T,iT], and myylby) =

By substituting g(.) for p(s+,.) in (3.10) and using the assumption that g

is symmetric, the moments needed to evaluate y(hi) are found to be

2
E -
noplb;) = 329 [n, + n, + (by_4b; + b;b..;)ng] + 8NGT, (3.11a)
T
(b)=32°2E[- +m, + (b;_,b. . + b._+b.)n’] + 8N,T, (3.11b)
Byy(d; T Ny ¥ My i=2°i-1 i~1%i’ My ot’ .
and
(b,) 16"2F‘tzbb n o+ ( + b.b
oviky) = ~ iPi—gny * (b b g + bibi Iy
* (2 bi—zbi + by qbiigdngl (3.11¢)
where
- T,
n, = Io g(Z)RL(Z) dg, (3.12a)
T 2
Ny = Io g(§IR,(Z) d&, (3.12b)
and
’ T =
n, = fo ()R, (&) R () dE , (3.12¢)
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vhere the parameters Rv(&) and R, (%) are defined in (3.14). By examining
i - * . - .
(3.9) and (3.11), it 1? easy to see that Y(Qi) exhibits certain symmetry

relations in terms of the data pulse sequence gi, Making use of these

properties, Pe in (3.7) can be reduced to

Pe = % [P(-1,+1,-10+1) + P(+1'+10-15'—1) + 2P(—1'+10_1l_1)

+ P(-1,+1,+1,-1) + P(+1,+1,+1,+1) + 2P(-1,+1,+1,+1)]. (3.13)

The functions iv(-) and Rv(-) in (3.12), which are the usual continuous-
time aperiodic autocorrelation functions [26,27] for time-limited signals,

depend only on the pulse waveform v(t). They are defined by

_ T
R (%) = I v(t) v(t-¢) dt (3.14a)
4
and
&
R, = [ v(e) v(es1-2) a (3.14b)
0

for 0 { &€ { T. These functions are easily evaluated for the first two pulse

shapes. They are found [27] to be

R(&) =T-¢ (3.15a)

and

R(§) =& (3.15b)

for the rectangular pulse, and they are given by

R (&) = (T-E)cos(nE/T) + (T/n)sin(n&/T) (3.16a)

and

R (&) = - cos(n&/T) + (T/x)sin(xE/T) (3.16b)

G

.
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for the sine pulse. The autocorrelation functions ﬁv(-) and Rv(') for the

l! phase—coded pulse (3.4) are given for 0 ch L& (k+)T, < T by

o R (2) = Cu0) ((R+1)T; - &) + C,(k+1)(§ - KkT,) (3.17a)
; and

=

‘ RZ) = Co(N-B) ((k+1)T_ - &) + C(N-k-1)(§ - kT,) ,  (3.17b)

where Ca is the discrete aperiodic autocorrelation function for the sequence

-~ (a;) of length N defined in [26] by
r_‘fj / N-1-k
- ' a8 49 0k (N1
i=0
< { N-1+k
~ C, (k) = X ag g8, 1-NCKEO
) i=0
.\ on lk| _)_ N .
:;
- This function C_ is comsidered in [26-29] and many of its properties are given
z: in [30]. 1In what follows, it is shown that the performance of the phase-coded
o .
) pulse depends on the correlation properties of the signature sequence (ai) as
o
}‘ well as other system characteristics discussed earlier. Notice that the
- simple rectangular pulse (3.2) is obtained as a special case of (3.4) for any
v N 2 1 by letting a, = +1 for all i € {0, ..., N-1}. We would also point out
:E that the approximation [2,3] of the average error probability for SFH/SSMA in
-
) terms of the hopping pattern parameters and the probability of error given
AN there are no hits does not generally apply to phase-coded pulse waveforms.
o Indeed, the principal reasons for considering this class of pulse shapes for

coherent PSK systems include increased multiple-access capability [4,26-29]

0 and immunity to the interference effects caused by multiple and/or diffuse
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propagation paths [12,31]. Since, at present, there is no evidence to the
contrary, one would expect similar gains to be realized in differentially
coherent systems. Hence, a proper analysis of differentially cohereant hybrid
slow-frequency—hopped direct-sequence SSMA would be influenced by these

characteristics.

Notice that the moments necessary to specify the average probability of
error depend on the pulse shape and the delay power—density spectrum omnly
through the integral expressions (3.12). Thus, the average probability of
error is easily obtained once these three basic integrals are evaluated. In
[5) closed-form expressions for the integrals in (3.12) are obtained for the
rectangular and sine pulses, and for the four examples of delay spectra

discussed in Chapter 2.

From (3.9) and (3.11) it is clear that the probability of error Pe for a
WSSUS frequency—selective fading channel depends on a number of system and
channel parameters. In order to evaluate the effect of the fading process, it
is instructive to first consider a limiting case in which the additive channel
noise is neglected, In particular, Fig. 3.2 shows Pe as a function of the
signal-to-noise ratio S = 2GZE/N0, which is the ratio of the average emergy
per data pulse of the received signal to the real noise power spectral denmnsity
NOIZ. The rectangular pulse waveform and the Gaussian model for the delay
power—density spectrum with rms multipath spread p = 0.05 is assumed for this
example.  Also shown in Fig. 3.2 is P__, the error probability for DPSK in a

nongelective Rayleigh fading channel, which is [6, Eq. 9-5-25],
2 -1
Pn’ = (2 + 4a E/No) . (3.18)

Notice that when the signal-to-noise ratio S is small, the average probability
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Figure 3.2. P_ vs. S for rectangular pulse DPSK and Gaussian delay power—
density spectrum with g = 0.05
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s

of error is well spproximated by P .. This is because at low signal-to-noise

P'd _'1',

ratios, the decision errors are largely due to additive Gaussian noise rather

i

than intersymbol interference.

‘f "A

-'T.T'}‘?;.Yﬁ“i

For large signal—-to—noise ratios, the errors caused by the effects of

L)
Lilacasar X oo o

intersymbol interference dominate; the average error probability approaches a

limiting error probability P; as S -) @, This limiting error probability is

known as the irreducible error probability for the frequency-selective WSSUS
Rayleigh fading channel [5,16,17]. For large signal-to-noise ratios, the ff

irreducible error probability is a good (although pessimistic) estimate of the

average probability of error. If P; and P . are known, we can obtain a good S

approximation to the average probability of error for both large and small

\.
signal-to-noise ratios. Moreover, PI alone is a useful indication of -
performance for practical systems since it is a lower bound on Pe for all ;;
signal-to-noise ratios and a good estimate of Pe for high signal-to-noise
ratios. :

In [5] the results of numerical evaluations of Py 4 Pels -y « 2re given m
for the rectangular and sine pulses and the four delay power—-density spectra
discussed above. The parameter d, given by f:

2, (" =

a=2% ([ 22 agt’?, (3.19) »

-0 -

is used as a basis for comparing the system performance for the various :f

-

channel models., This parameter is just twice the rms multipath spread p = M/T
’
- where M is the rms delay given by (2.9). R
»
!
\$ In Fig. 3.3, the irreducible error probabilities PI are shown as a o

b

g function of the rms multipath spread p for the various combinations of basic
..‘ “-
f: pulse shapes and delay power—density spectra mentiomed above. The values of {2
5\
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Y PI for the phase-coded pulse are calculated by standard numerical integration -
Q techniques. The signature sequence used for this waveform is an m-sequence of
A
RN length N = 31 in its characteristic phase (see definition and Fig. 7 in [32]).
f \.‘ -
" Unless stated otherwise, comparisons between irreducible error probabilities
N are always made with respect to a fixed value of rms multipath spread. :
-:\
LS
}}: Notice that while the irreducible error probabilities for the rectangular
\-
)
> and sine pulse are "well-behaved” functions of the rms multipath spread, the
\
MR limiting error probability for the phase-coded pulse varies in a more erratic T
% <
:E: way making a —relative evaluation of the effects of intersymbol interference )
NN difficult. In the next section, we show that such erratic behavior is =
—;}
o characteristic of the irreducible error probability for phase-coded pulses X
oo :
‘ﬁﬁ: when m—sequences (or any binary sequences that produce large time-bandwidth
~L
Lt oo
‘\ product signals) are used as signature sequences. These results do, however, éﬂ
:}: indicate that rectangular pulse DPSK exhibits small variations in the .
0y e
Aﬁﬁ irreducible error probability with respect to changes in the model for the W
b
W delay power—density spectrum. In contrast, the irreducible error -
:{ﬁ probabilities for systems employing the sine pulse and the phase—coded pulse
\!..
:$3 vary by more than a factor of 10, In the next section, it is shown that this t{
.\.; ~
> apparent insensitivity of the rectangular pulse to changes in the shape of the
E:{ delay-spectrum is due primarily to the choice of delay-spread normalization ..
\' 0
-,
:;- rather than any inherent properties of the pulse itself. For example, if the o
" ! A
- £
JEI normalization is defined in terms of the "1/e points” of the corresponding
.ifj frequency correlation function G(Q), as in [16,17], the irreducible error ff
Eﬁ probabilities for the rectangular pulse vary by a factor of four. In the mext .
- =
o section, we examine the implications of the choice of normalization on the L
»
‘3 evaluation of the irreducible and average error probabilities.
]
E
o
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3.2 Performance Bounds and Approximations

In order to gain a better understanding of the relationships between data

- pulse shapes, models for the delay power~density spectrum, the signal-to—noise

!u ratio, and other system design parameters, it is useful to examine the
frequency-selective fading mechanism from a "cause—and-effect” point of view. -

1} In this section, we investigate the influence of the fading process on the

average error probability by separately considering the effects of WSSUS
-~ frequency—selective fading in the time domain (or delay domain) and in the

Fourier transform or frequency domain. It is true, of course, that these

representations each merely describe the same fading mechanism from different
:ﬁ points of view. However, the separate consideration of these two effects .
‘4

provides insight to the causes of degradation of system performance inherent i
¥ 3

in a frequency—selective environment,. Moreover, investigating the fading
characteristics in this way aids in the identification of the nature of the E
fundamental trade-offs between the key system parameters. In the remainder of
this section, we first consider the characterization of frequency-selective

fading in the delay domain and identify the key parameters for determining the

S

- 2R

effects of intersymbol interferemce. (In all that follows, we assume that the

) delay density g(f) is symmetric.) We then focus on the frequency-domain

- characterization and identify the system parameters that provide an indication :

- {

rj of performance degradation due to additive noise.

‘s
T 3.2.1 Effects of Intersymbol Interference: Characterization X
SR .
A8 -
.* Eg Consider the detection of an information bit corresponding to the data- y
-
- bit pair (bO'b1)° If we ignore the contributions of the desired signal as g
SEERY

J -
\: :j well as the additive noise and only consider the effects of intersymbol K
0,‘ :

Od
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interference resulting from positive (relative) propagation delays, the

decision statistic 21 = Uv. + U.V with the random variables U and V given by

T T
U=2 _‘:v(t-'l‘) J 1.0 B vgv(e-pagar (3.20a)
and
T T
V=2 fov(t) fpee Vo vieT-nage . (3.200)

Using (2.4), (2.5) and (3.20), the moments necessary for the evaluation

of the average probability of error are found sas

1602E

m.UU = mvv = nv (3.213)

and

_ 166°E
T

Iw

b_ibg 1, - (3.21b)

Under the assumption that the delay power—density spectrum g(¢) is symmetric,
it is easy to see that identical expressions result from the comsideration of
the effects of intersymbol interference produced by negative values of
relative delay (with a change of data-bit indices im (3.21b)). Alternatively,
if we consider the matched filter output for both positive and negative

relative delays when hi = (+1,+1,+1,+1), the moments in (3.11) are found to be

2 2
E - E
= 160 2[ﬂv + 'ﬂv + 21‘;] = 160 -H

ﬂU.U = mvv = muv v (3-22)

s0 that in the absence of additive noise, (3.22) represents the total “"power”
at the filter output due to the transmitted signal with no data modulation.

Thus, 2ﬂv/2(;v +n, + 2ny) = 2q,/H, represents the portion of filter output

due to interfering signals relative to the tota]l output. Hence, the parameter

Selely
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'!v/l!v provides a characterization of the effects of intersymbol interference

on DPSK communications in frequency-selective fading.

From the discussion in Sectionm 3.1 it is apparent that the parameter most
indicative of the effects of intersymbol interference is the irreducible error
probability P, Hence we would expect that if the delay-spread is normalized

with respect to 2n /H , the limiting error probability Py should exhibit
minimal sensitivity to the actual shape of the delay power—density spectrum
g(¢). In particular, notice that, under the assumption of adjacent-pulse-

limited ISI, the rms multipath spread can be written as

T
= 2
p=w.= (2 [ gt art/?
£ 0
- % {2 "r}llz . (3.23)
since Hr = TZ for the rectangular pulse, where Rr(g) = Rv(g) is given by

(3.15). (The subscript "r” denotes the rectangular pulse.) Thus, it is not
‘surprising that the normalized rms multipath spread B, provides an effective
normalization of the various delay spectra for the rectangular pulse as

suggested by the results in Fig. 3.3,

Similarly, we define the normalized rms multipath spread CR for the sine

pulse by

T
B = ( %s Io s(0IRE(2) ag}l/?

= { %s.ns]1/2 , (3.24)

with xs(t) = Rv(t) given by (3.16b). In Table 3.1, numerical values of HS/T2

are listed for the four examples of delay power-density spectra discussed in
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Table 3.1. Hs/'r2 for sine pulse DPSK with respect to the rms delay M o
‘h..‘.
AR W/T Gauss Exp Tri Rect
?-.::
a,
: 0.005 1.0 1.0 1.0 1.0 .
0.01 0.999 0.999 0.999 0.999
0.05 0.9784 0.9796 0.9781 0.9778 S
0.1 0.9275 0.9356 0.9253 0.9223 -
0.5 0.6394 0.6813 0.6812 0.6304 -
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,:} Chapter 2 and various values of rms delay M. It is easy to see that Bs/'r2 2
; il 0.6 for all values of rms delay, and that Hs is not very sensitive to the
?: shape of the delay spectra., Moreover, Hs = T2 for ell practical values of rms
R delay so that n . alone provides a good indication of the effects of

\d
.~ intersymbol interference for the sine-pulse.
S
:{ Finally, the normalized rms multipath spread up for the phase-coded pulse
:j 'f is given by
..:'. e
Kl - T
ot 2 2 1/2
b= 05 | s
DA P B Jo ®°77p
" e N
I‘ .'-.
- = (2. )12 (3.25)
- P
-‘.. p
S
.?: A with Rp(t) = R,(§) given by (3.17b). The values of Hp/T2 for the m-sequence
::I

of length N = 31 are listed in Table 3.2 as a function of the rms delay M.

o~
R

"o In contrast to the results for the rectangular and sine pulse, the
N

a
ra ey’
L
s s

-.A.

parameter Hp is very sensitive to the shape of the delay spectrum and can be

much smaller than T2 for relatively small values of rms delay. This is true

‘."n.n

Z: for two reasons. The parameter ip can be substantially smaller than the
‘Sﬁ :: corresponding parameters for either the rectangular or sine pulse; this fact
L

P has profound implications on the performance of phase-coded pulse waveforms in
e -

'fa ' the presence of additive noise. Using the properties of the discrete geriodic \
i? ) autocorrelation function for m—sequences [30], it is easy to show that né
f‘ ) given by (3.12¢) is never positive. In fact, depending on the shape of the
5§§ Sg delay density, the negative coatribution of 2n£ can be nearly as large as the
}\ i sum of ﬁp and np. This is in sharp contrast to the analogous situation for
a E; the rectangular and sine pulse where n"r is non-negative and generally much
53 . smaller than ﬁv'

5
=
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L
Table 3.2. lip/r2 for phase~coded pulse DPSK (N = 31) with respect to the rms
delay M

M/T Gauss Exp Tri Rect
0.001 0.9446 0.9741 0.9488 0.9456 T
0.005 0.7703 0.7994 0.7643 0.7485 ,.::
0.01 0.5917 0.6487 0.5798 0.5481
0.05 0.1636 0.2400 0.1598 0.1209 o
0.1 0.0835 0.1330 0.0831 0.0610 m
0.5 0.0199 0.0315 0.0547 0.0130 o
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The negative contributions of ﬂé in the absence of data modulation can be
viewed as intrasymbol interference which is characteristic of phase-coded
pulses when m—sequences are used as signature sequences. While this
characteristic is not exclusive to m—sequences, it is not generally true for
other classes of binary sequences. Because of this intrasymbol interference,

phase-coded pulses employing m—sequences are a particularly poor choice of

pulse waveform.

In Figs. 3.4 and 3.5, the results of numerical evaluations of PI for the
sine pulse (as a functiom of us) and the phase—coded pulse for N = 31 (as a
function of ﬂp) are shown for the four models for the delay power—density
spectra, For comparison, the irreducible error probabilities obtained by
approximating the parameter Hv as Iz are also shown. By examining the results
in Figs. 3.4 and 3.5 for the cases when the true value of Hv is included in
the computation, and when Hv is approximated as 12 (in which case B, =
(2nv)1/2/T). it is clear that this parameter is a significant factor only for
phase—coded pulses, In fact, the error introduced by the approximation for
the evaluation of the irreducible error probability for the sime-pulse is
quite small., However, assuming Hp = 'I2 for the evaluation of the irreducible
error probability for a phase—coded pulse with N = 31 can produce a result in

error by more than two orders of magnitude!

Notice that some of the irreducible error probabilities in Figs. 3.4 and
3.5 are shown for different ranges of normalized rms multipath spread for the
cases where Hv is approximated as 12. This was necessary to ensure that the
assumption of adjacent—pulse—~limited ISI holds but is also indicative of the
relative values of n, for different data-pulse shapes. That is, for a fixed

channel model and fixed rms delay M, there is substantial variation between
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the values of n_ for different pulse shapes. The of H

"roles v

and n, in

determining the normalized rms multipath spread is made apparent by examining

the relationship between these parameters for different pulse shapes with a

fixed channel model. The values of (2nv)1/2/T for the Gaussian delay spectrum

are given in Table 3.3 for the rectangular, sine, and phase-coded pulse shapes

using characteristic m—sequences of lengths N= 7, 15, 31, and 63 given in

[32, Fig. 7]1. The values of the normalized rms multipath spread B, are listed

in parentheses in Table 3.3. Notice that for large rms delays, the parameter

ﬂp for the phase—coded pulse can be much smaller than the corresponding

parameter for the rectangular pulse. However, the values of normalized rms
multipath spread for the phase-coded pulse can be significantly larger than
the corresponding values for either the rectangular or sine pulse. Also,

notice thst both n, and Hp seem to be independent of the sequence length N for

any fixed value of rms delay. This is a bit surprising since it might be

expected that the effects of intersymbol interference for phase-coded pulses

employing m—sequences could be substantially reduced, for any rms delay, by

- U
[T IR AR

ne

simply using an m-sequence of greater length., Unfortunately, the results in B

Table 3.3 indicate that unless the sequences are carefully selected, -
increasing the sequence length can increase the semnsitivity to delezy spread,

[

: and that the phase—coded pulse is at least as vulnerable to the effects of -
5: intersymbol interference as the rectangular pulse. .
e
;ﬁi The above results for the phase-coded pulse are a consequence of both the =
r‘:’
x4 channel model we employ, (i.e., that of a continuous delay power-density
\';

:: spectrum), and the interaction between the data pulse correlation function
. .

™ .
'y )
L‘ Rv(t) and the delay spectrum g(f). In particular, for very small values of tsf
:; rms delay, the power spectrum of the delay is concentrated close to the origin K
<

4 -
Q .
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b M/T rect sine N=17 N=15 N =31 N = 63 #
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: ' 0.01 - -
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so that the parameter Hp depends most heavily on the portion of R, (§) that
corresponds to very small values of {. From (3.17b) we see that, for values

of { in the range [0,T ], |Rp(§)| = IR (&)| = &. Unless the signature s

sequences are carefully chosen, this relationship can hold for several

consecutive chip intervals. Thus, it is clear that for small values of 1ms

H,l delay, the nornaiized rms multipath spreads, and hence the irreducible error
Si? probabilities are nearly the same for the rectangular and phase-coded pulse -
\'h: shapes.
;Zg Finally, the results in Figs. 3.3-3.5 indicate that the irreducible error
f;q probability strongly depends on the normalized rms multipath spread B,. From Es
‘;% these results and the results in Table 3.3, one might erroneously conclude “u
Ei{ that the performance of the phase-coded pulse is approximated by the -
;Qj performance of the rectangular pulse. In what follows, we demonstrate that ;;
\\i pulse shapes that produce similar jirreducible error probgbilities, do not
;ﬁa necessarily exhibit similar performance for practical signal-to-noise ratios.
“:; These results do however show that the irreducible error probability, as a ~
$:E function of the normalized rms multipath spread, is insensitive to variations -
22; in the shape of the delay power-density spectrum. In fact, the maximum :E
¢;j variation of P; for the pulse shapes evaluated in Figs. 3.3-3.5 is less than a _
factor of 1.2 for fizxed normalized rms multipath spread. This latter f
observation indicates that the limiting error probability for a particular X
9 frequency-selective Rayleigh fading channel can be minimized by simply =
i? choosing a data pulse waveform which minimizes the normalized rms multipath i
-E; spread (defined as in (3.23)-(3.25)) for the delay power-density spectrum of )
‘. "

the fading channel. .-
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3.2.2 Effects of Intersymbol Interference: Bounds

The relative insensitivity of the irreducible error probability to the
shape of the delay spectrum for & fixed normalized rms multipath spread
suggests the possibility of obtaining meaningful bounds on the probability of
error. In this section we describe a method of obtaining bounds on PI for

frequency—selective Rayleigh fading channmels.

3.2.2.1 Rectangular pulse

Under the assumption of adjacent—pulse—limited ISI, the functions defined

by (3.12) can be written (for the rectangular pulse) as

A= T2 - 2T + W22, (3.26a)
n_ = u2/2 (3.260)
r P el *

and
N’ = TE(g) - u2/2
r g u! (30260)

with the normalized rms multipath spread B, given by (3.23) and where the

functional f(g) is given by

T
f(g) = Io & og(&) dt . (3.27)

Hence, for fixed K., the irreducible error probability is completely specified
up to the determination of f(g). Equations (3.13) and (3.26) imply that the
irreducible error probability is a continuous function of f(g) so that it is
possible to characterize P; over the ramge of values taken on by the
functional £(g). Thus, upper and lower bounds on PI can be obtained if the

minimum and maximum values of f(g) can be found for a fixed normalized rms
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multipath spread. The characterization of the variation of f(g) is

2
(I ]

e /S,

accomplished through an application of a result due to Dubins [33].

¢
Y
fﬁ Let M be the set of all nom-negative measures m on the Borel sets of
:3 [0,T) such that m([0,T]) = 1/2. It can be shown [33] that the extreme points
At of M (denoted by ex M) are the point masses on [0,T] and that M is compact on
-‘:‘
:j the weak® topology [34]. If m € M, the hyperplane H defined by
L T
\ I x(t) m(dt) = ¢
0
ko for constant c is closed and bounded for x € C[0,T] [35]. Dubins’ Theorem
-
% guarantees that every extreme point of M’ 4 {MNH} is a convex combination of
A
L at most two extreme points of M.
A In terms of the present application, upper and lower bounds on PI can be
)
L]
( obtained for each value of normalized rms multipath spread by finding the
j; mninimum and maximum values of
)
% T '
-, f(m) = jo : maz) , (3.28)
% for m € M subject to the constraint
‘:_ T
: T"z'_[ :;2 m(d§) = ui/z. (3.29)
- 0
o .
‘: where m(df) = g(&)df. Since the functional f in (3.27) is a continuous linear .
I’ :1
. functional om m, it obtains its minimum value on an extreme point of o
N S T
i» M' = MNH. Hence, by Dubins’ Theorem, the minimum of f is found by searching :;
" ¢ "
: over all convex combinations of two point masses (impulse functions) in M’ for e N
q "
> the smallest value of f(m); i.e., S
i . g
¢ 4
N fmin = min{ f(m) : m € ex M’ } . .
[ .
s
> .
‘

v
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A P 2
This search in [0,T] is easily implemented. In fect, for the
.)~ ﬂ rectangular pulse it can be shown that. the pair {fnin'fmu} is given by
i N
e L {llilz.ur/ZJ for u. < 1/2. The resulting bounds for the irreducible error
:}é o probability are then found by searching over the interval [fmin'fmax] for the
R minimum and maximum values of P;, It is necessary to carry out this final
N
search since PI is not necessarily a monotomic function of f(g). In Fig. 3.6,
)
f, the minimum and maximum irreducible error probabilities for ihe rectangular
j- pulse are shown as a function of p_. Notice that for a fixed value of u., the
:j:::; - total variation from the minimum to the maximum value of PI is very small; the
™
’*4:
:'._\', - two bounds differ by a factor of less than 1.5.
i -
= 3.2.2.2 Sine pulse
I |
e Using the fact that H_ S T2, and assuming adjacent-pulse-limited ISI, we
tal
2 27 I
) n can write the functions in (3.12) for the sine pulse as
.:::: e o T2 ’ ” 2
.,"'_:_' .\f 'fls = £ (8) - 2Tf (G) + l-ls/2 ’ (3.30a)
- n, = u3/2, (3.300)
4 s s
_P::‘ ' and
N ,
s ng = TE"(g) - py/2 (3.30c)
" with the normalized rms multipath spread K, given by (3.24) and where the
‘..‘
",',:j ~; functionals £'(g) and £f"(g) are given by
et ;-S
d g T
£(8) = [ cos(nt/T) 8(8) a (3.31a)
":'.' - 0
WO
}::} and
N a~
" .t a.'
o T )
Ny £"(g) ‘I [-Ecos“(n¢/T) + T/n sin(n&/T)cos(n&/T)] g(&) d& . (3.31b)
0 0
OORNAN
...:
)
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Thus, we may proceed as in the previous section where the constraint H is now

given by

T-Z. T R 2 = 2
0 [-Ecos(nE/T) + T/n sin(n&/T)1° g(&) d& ke/2, (3.32)

except that in this case the set {f'(m),f”(m); m € ex M’} is a region in R2.

Hence, the minimum and maximum obtainable error probabilities are found by

searching over the convex region
Q=co {(£'(m),f"(m)) : m € ex M'} € R ,

where co (S} denotes the convex hull of S. However, in order to avoid the
task of completely characterizing Q, we perform the two-dimensional search for

the minimum and maximum PI over the rectangular region

ﬁ = {[f;l ! ] X [f:linof” ]} »

in‘fnax max

which contains Q. The resulting bounds for the irreducible error probability
for the sine—pulse are shown in Table 3.4 as a function of the normalized rms
multipath spread p . Notice that even though we have "weakened” the bounds on
P, by performing the search over Q rather than Q and assuming that B = T2,
the total variation between upper and lower bounds is still no larger than a

factor of 4 (for fixed Be).

3.2.2,3 Phase-coded pulse

Finally, we address the problem of obtaining bounds on PI for the phase-
coded pulse, which is the most complicated of the three pulse shapes
considered. Under the assumption of adjacent-pulse-limited IS1, the function

ﬂp can be written as
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Table 3.4. Irreducible error probability bounds for sine pulse DPSK with
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respect to the normalized rms multipath spread Hy

Lower Bound

Upper Bound

0.0005
0.001
0.005
. 0.01
0.05

0.1

0.8361.1077
3.7526.1077
1.0311.107°
4.1277.107°
1.0262.1073

0.4104.1072

1.2273.1077
5.2812.1077
1.4204.107°
6.1089.1073
2.4748.1073

1.6259.102
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2
n, = W /2 . (3.33)

4

Unfortunately, there is no obvious way to characterize the functions ﬁp and ﬂé
in terms of the normalized rms multipath spread up and a few linear

functionals of g. Moreover, since Hp strongly depends on the shape of the

M ""i‘l bt

delay power-density spectrum and can, in fact, equal zero for certain examples

(V.1

of multipath delay spectra, there is not a clear relationship between and

AR A o o

np (as evidenced by the data in Table 3.3). Thus, a given value of normalized
rms multipath spread does not necessarily correspond to a linear constraint on
the set of delay power—density spectra. Alternatively, if we assume that

Hp = T2 and proceed as before, the resulting upper bound for the irreducible

error probability is approximately 1/2.

However, if we make two additional assumptions concerning the
characterization of the channel, both upper and 1lower bounds on the
performance of phase-coded pulse DPSK can be obtained. We assume that a
fraction of at least 1/2N of the total power of the delay spectrum lies in the
range [-Tc.Tc] where N is the length of the signature sequence. Second, we
assume that the frequency-selective channel is represented by a specular
multipath channel with paths corresponding to delays in the set
lootIc.:zTc.--'.1(N-1)Tc] so that the delay power-density spectrum g(&) is
represented by a discrete density spectrum g(ch), This model may, in a
sense, be more appropriate for phase—coded pulse since systems employing
phase-coded waveforms can resolve the multipath components of the delay
spectrum for many channels of interest. We proceed by finding the minimum and

maximum values of ip aad ni under the constraint,

-2 N
- 2k=0 3Nk -8(xT ) = u2/2, (3.34)
P

0 N - \_'..' . .t
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N
bﬂ
ti{ and performing the search for the minimum and maximum PI over the region
:{: Q= {[np,niﬂ’“p.max] X lqé,min'“i,max] X [“p,min'“p.max]} ’
\::‘
. where ﬁp min = 2¢2T2/N. The resulting bounds for the irreducible error
Al ’
probability for the phase-coded pulse are given in Tables 3.5 and 3.6,
o
:: respectively, for m—sequences of length N = 7 and N = 31 discussed above.
T
“--
s Notice that there is almost no variation between upper and lower bounds,
gg_ and that the bounds for the phase-coded pulses are very similar to those
‘ﬁj obtained for the rectangular and sine pulses. The small variation between the
Lii bounds in Tables 3.5 and 3.6 is partially a result of the first assumption;
S there is a path with non—zero energy corresponding to zero delay. However,
:% the "closeness” of these bounds is primarily due to the fact that modeling the
e delay density as a discrete spectrum allows the effects of the parameter Hp to
{
-, be incorporated in the bounding procedure. (Recall that this parameter is a
i? significant factor in determining the value of the normalized rms multipath
e spread.) In fact, it is easy to demonstrate that if we assume Hp = Tz. the
resulting upper and lower bounds differ by a factor of N (the sequence length)
for normalized rms multipath spreads of about 0.01.

Since the bounds in Tables 3.5 and 3.6 are obtained under assumptions
fj that are more restrictive than those used to obtain the bounds for the other
~:i pulse shapes, it might be argued that the results for phase-coded pulses are
"; of 1little consequence, However, it seems reasonable to assume that some
<.

o portion of the received signal energy corresponds to zero (or mnear-zero)
*? propsgation delays, and that this portion is at least as large as the average
i of the energy received in any interval of width Tc, Since the upper bound on
o
:. PI for phase—coded pulses can approach 1/2 if there is no signal component in
o
.
4
.\:
N,

L T N
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1A

:-:{: . Table 3.5, Irreducible error probability bounds for N = 7 phase-coded pulse
—-.::\ -~ with respect to the normalized rms multipath spread up

- . :,3 Hy Lower Bound Upper Bound

::::::. )

[ -

N 0.0005 1.1176.1077 1.3039.1077

0.001 4.9919.1077 5.1781.1077

NEEER 0.005 1.2543.1075 1.2565.1073

A~

o0 0.01 4.9754.1075 5.0252.107°

o 0.05 1.1186.1073 1.4069.1073

A 0.1 3.3669.1073 7.3647.1073
P L

S 0.5 3.7202.1072 2.5337.1071

-

N

'_:'-'.'_:: :;: Table 3.6, Irreducible error probability bounds for N = 31 phase—coded pulse

‘: N with respect to the normalized rms multipath spread p

l\-.. p
2

COOUR My _Lower Bound Upper Bound
ARl

T -
s 0.0005 1.1176.1077 1.3039.1077
o I 0.001 4.9919.1077 5.1781.1077

ave -5 -5

A 0.005 1.2267.10 1.2850.10

QY 0.01 4.5614.107° 5.4812.107°

Vot 0.05 0.3679.1073 4.2587.1073

T

s 0.1 0.4683.103 4.8358.1072

L 0.5 5.8824.1073 4.3373.1071
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the range [_Tc'Tc]' this assumption can be viewed as a necessary condition for

the operation of phase—coded pulse DPSK.

3.2.3 Effects of Additive Noise: Characterization

Consider the response of in-phase and quadrature correlation receivers
matched to v(t) (and assumed synchronized in time) to a single transmitted

data pulse signal

s(t) = ‘/%% bov(t) ; 0t<T,

where E is the energy per data bit., In the absence of additive noise, the sum

of the squares of the filter outputs is

2 ©
Sout = 16; £ L 8(%) i3,(“:1) it (3.35a)
2. @ _
= 160°E i G(a) g (@) da , ' (3.35b)
T o

by Rayleigh's theorem, where 5v(0) is the inverse Fourier traansform of

Ri(lél). The corresponding output due to the additive white Gaussian noise

with (two-sided) spectral intemnsity No/z is 8NgT.

For a nonselective Rayleigh fading chanmel, g(§) = &(§) so that the
frequency correlation function G(Q) is equal to unity across the band of
interest. 1In this case, the signal-to-moise ratio (snr) at the output of the
matched filter becomes

202E

No

since, by definition, R%(O) = T2. Notice from (3.35) that the function B, (Q)

sar = , (3.36)

can be viewed as a power—-spectrum of the single-pulse, or "one-shot” matched

filter output prior to sampling, in nom—selective fading so that (3.35b) and
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the resulting signal-to—noise ratio is maximized when the frequency

correlation function G(Q) is flat across the band.

In contrast, one of the essential characteristics of frequency-selective
fading is the fact that the frequency correlation function G(Q) is not flat
but resembles the transfer function of a band-limited data channmel. We point
out that this is only a resemblance and not an equivalence. Rather, in the
absence of additive noise, the function G(0}) is a measure of the degree of
statistical correlation between two received spectral components separated by
Q Hz. Thus, in the case of frequency-selective fading (3.35b) indicates, in a
statistical sense, what fraction of the received power (due to a single pulse)
is available at the output of the matched filter. This observation is made
appareni in the resulting expression for the single-pulse signal-to—noise

ratio for frequency—selective fading, given by

26°E 262E

G(Q) B_(Q) dO = —— (&) B2(lel) 4
Nor’-E v Norz'[:” 2(1gh) az

sar =

2
E -
= 20 211‘,/'1'2
No

(3.37)

which implies that iv is the key parameter in determining the signal-to—noise
ratio for single-pulse matched filter detection. Notice that if we neglect
the effects of intersymbol interference on the error probability in
frequency—selective fading so that both n, and n; (cf. (3.12)) are taken to be

zero, the average error probability (3.7) becomes

2 -
40°E 23, -1
P, = [ 2+ N —;5 ] . (3.38)
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o The results in Section 3.1 demonstrate that for small signal-to-noise
ratios, the average error probability for frequency-selective Rayleigh fading
\'} )
:%f is well approximated by Pns = (2 + 4czE/No)-1. which is the probability of
s
L error for non—selective fading. While this approximation is valid independent
i of data—pulse shape, the above discussion implies that (3.38) is a much better
f:?; approximation of the error probability for small signal-to-noise ratios than
\'.*:'
:ﬁf Pns' In fact, for a given pulse shape, the asymptotic error probability for
small signal-to—noise ratios is given by (3.38). Moreover, for all examples
iiz of data-pulse shape and delay density considered here, (3.38) may be taken as
e
N a lower bound for the average probability of error for all values of sar.
Lol
~Tx Hence, the parameter iv in some sense determines the position of the
tgf "inverse~linear” lower bound on the error probability as a function of
N . .
i signal-to—noise ratio S = ZazE/N .
ENE The differences between the signal-to—noise ratios in (3.36) and (3.38)
-
ﬂt" are probably not a major concern for signals with relatively small time-
- \- .
N

bandwidth products, viz, the rectangular and sine pulses. However, for large

e time—bandwidth product pulses, such as the phase-coded pulse with moderately
S )
:}: large N, this factor becomes significant and plays a central role in the
¢
-
~ choice of pulse shape. For a channel with Gaussian delay power—density
\$4 spectrum, the values of the parameter ?iv/'r2 are given in Table 3.7 for the
9 o
Egi rectangular and sine pulse shapes, and for the phase—coded pulse shapes using
N
- the m~sequences of length N = 7, 15, 31, and 63 discussed above. The results
{kﬁ in Table 3.7 show that for small to moderate values of M/T, a large percentage
;,; of the received signal power is utilized by the matched filter detector for
e both the <rectangular and sine pulses for this channel. If M/T = 0.1, for
::i example, the matched filter output for the rectangular and the sine pulse
T
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Table 3.7. Values of 'qv/'[2 in terms of the rms delay M for the rectangular and
::: ‘}, sine pulses and for the phase—coded pulse with sequence lengths N =
O 7.15,31,63
::‘ -'-‘ *
{ . M/T rect sine N=7 N=15 N=31 N =63
_'.:'; 0.05 0.4614 0.4886 0.2419 0.1634 0.0844 0.0424 .'_
3 ' - 0.1 0.4252 0.4594 0.1453 0.0878 0.0436 0.0217
_ ' 0.5 0.2246 0.2124 0.0437 0.0208 0.0106 0.0049
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N represents about 85% and 91% of the total received signal power, respectively.
m In comparison, only about 9% and 5% of the received signal power is utilized )

o«
p{Q for matched filter detection of the phase-coded pulse for N = 31 and N = 63.

In contrast to the analogous results for the normalized rms multipath

spread, the parameters ﬁp for phase-coded pulses uniformly exhibit a strong
dependence on the sequence length. It can be shown that, for a large class of
channel models and typical sequence lengths N, the parameter ﬁp is closely
approximated by k/N whkore k depends on the channel. For the above example, o
this constant is approximately 2,62, 1.35, and 0.33 for M/T equal to 0.05, )
0.1, and 0.5, respectively. The low signal- fo—noise ratio asymptotic error ;5
probability (3.38) becomes .
~
p.[z+iﬂ-2—§._2_]_1 (3.39)
e No N ) .
2
for the phase~coded pulse with sequence length N.

In the previous section, it was demonstrated that the phase-coded pulse
waveform is at least as susceptible to the effects of intersymbol interference -
as the rectsngular pulse. Thus, phase—coded pulses provide little potential
for improvement in the 1limiting error probability. Moreover, when coupled
with the data in Table 3.7, these results indicate that the average error -
probabilities for the phase~coded pulse are relatively large for all practical p
values of § = 202E/N0, For example, from Table 3.7 for M/T = 0.05 and N = 63, -
we see that for fixed error probability, the additional signal-to-noise ratio =

Ea

:{. required for the phase-coded pulse relative to the rectangular pulse is about

Ty

) 0.4614/0.0424 or 10.37 dB.

~ -
o,

A wsd

o The relationships between irreducible error probabilities, available

o0 ‘

‘ﬁ: signal power, and system error performance can be seen by examining Fig. 3.7. e
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Figure 3.7. Average error probability for rectangular, sine and phase-coded
pulse using an m—sequence of length N = 31 for a Gaussian delay
spectrum with p = 0.1
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The average probability of error is given as a function of S = ZGZE/NO for the

rectangular, sine, and phase—coded pulse (N = 31) for the Gaussian delay
power—density spectrum with rms delay M = T/10. The low signal-to—noise ratio
asymptote given by (3.38) and the irreducible error probabilities (which
appear as horizontal asymptotes) are shown fur each pulse. Notice that while
the 1limiting error probability for the phase-coded pulse with N = 31 is
roughly equivalent to that of the rectangular pulse, the actual error
probability for the phase—coded pulse is higher than for the rectangular pulse Te
for values of signal-to-nocise ratio less than 35 dB. Also, notice that the
sine pulse exhibits the best performance of the four pulse shapes considered
for the entire range of signal-to-noise ratios. These results are in
agreement with the data presented in Tables 3.3 and 3.7 which show that the “\
normalized rms multipath spread p  for the sine pulse is significantly smaller s
than the corresponding parameter for the rectangular pulse. Moreover, the
parameter iv' which'is related to the utilizable signal power, is largest for
the sine pulse while the corresponding parameter for the phase-coded pulse

indicates severe performance degradation in the presence of additive noise. .

Finally, we point out that the performance of phase—coded pulse DPSK in
Rayleigh fading is related to previous results concerning the performance of
coherent spread-spectrum communications. In particular, the results in [26] e
and [31] demonstrate that the effects of interference caused by multiple
propagation paths for relative delays in the range (—T¥Tc,TLTc] can be
substantially reduced by the choice of the signature sequence. More
importantly, it is shown that the spread-spectrum receiver (which is
essentially a coherent matched filter) severely discriminates against signals ;1

with propagation delays outside the range [—Tc,Tc]_ This property is .
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E‘:-i-:- o
SOV
::.:-: generally desirable for communications in a multipath enviromment when there
L Q is at least one relatively strong path., However, it is precisely this property
\}_: that degrades the error probability of spread-spectrum communications in a
\‘:\’ <3
:};:' R frequency—selective Rayleigh fading channel.
v'.\:
J :
ey - 3.3 Performance Approxjmations for Other DPSK Systems
NN
S
:f: : In the previous section it was demonstrated that bounds on the error
‘“ - probability of DPSK in a WSSUS frequency-selective Rayleigh fading enviromment
e e,
:-'::-‘ . can be obtained when the channel delay spectrum is normalized with respect to
4
&~ o : .
: 4 :4: the autocorrelation function of the specified data—pulse shape. The resulting
:; bounds show that the limiting error probability is relatively insensitive to
j«.; C;: variations of the channel delay power—density spectrum (for fixed normalized
o
j‘-? rms multipath spread).
W O
::}.: The bounds on system performance represent useful results since the
L sé
" YA “~
;{:\: 7 limits on the effects of frequency-selectivity on DPSK communications have not
AN
' g been previously characterized. Moreover, the closeness of these bounds imply
% s that it is not necessary to fully characterize the channel in order to obtain
e
e _'"'." an accurate estimate of system performance. This is of considerable
T, “J
e .
importance, since in practice it is difficult to precisely describe the fading
!
= process [13].
AN
:::-..j T Another implication of the above results is that it may be possible to
P
- estimate the average probability of error of a proposed system from the
]
j:'.' ::: tabulsted error probabilities in Section 3.2. In particular, Figs. 3.3 and
o' Y
N ‘3 - 3.4 indicate that the irreducible error probability for the rectangular pulse

B
£

as a function of the normalized rms multipath spread B, closely approximates

A
i)

<

LR ARN

the irreducible error probability for the sine-pulse as a function of L
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Simjilarly, Figs. 3.3 and 3.4 indicate that the irreducible error probability
for the rectangular pulse as a function of B, closely approximates the
irreducible error probability for the phase—coded pulse as a function of pp,
In Fig. 3.8, the irreducible error probabilities for the rectangular pulse,
the sine pulse, and the phase—coded pulse (N = 31) are shown as a function of
their respective normalized multipath spreads, Ky. The results in Figs. 3.3-
3.5 indicate that there is little to be gained by comsidering more than one

delay power—density spectrum. Hence, for this example we have represented the

fading channel by a Gaussian delay power—density spectrum.

The results in Section 3.2 and Fig. 3.8 indicate that there is
essentially a single relationship (represented by Fig. 3.8) between the
irreducible error probability P; and the normalized rms multipath spread
for DPSK in frequency—selective Rayleigh fading. We make the following

observation concerning this result: The data in Fig. 3.8 in some sense

represents the irreducible error probability as a function of b, for a generic

(time—limited) data-pulse waveform v(t). Hence, the limiting error
probability for a particular Rayleigh fading channel and a particular time-
limited data-pulse waveform u(t) (say) can be closely approximated by means of

a gingle rms—-type [13] channel parameter,

T
2 2 1/2 1 2 1/2
ua{--f()n()d} = (- RA(IE]) ag)
o= Ui somio a nuijue)c
= %n-L s@riIEh apt/? (3.40)

with the autocorrelation function Ri(g) defined by (3.14). 0f course, the
last equality in (3.40) follows only if the adjacent-pulse-~limited ISI

assumption holds. (However, the data presented in Section 3.2 indicates that
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this must be the case if the performance is to be acceptable at all.) The

resulting approximation for the irreducible error probability is found as the

corresponding value of PI in Fig. 3.8.

For small time-bandwidth product pulse shapes, a good estimate of the
average error probability as a function of the signal-to—noise ratio S is
realized as a curve which lies above Pns in (3.18) and PI (calculated from -
(3.40)) and which asymptotically approaches Pns and Py for extreme values of
the signal-to—noise ratié. If it is also possible to measure the quantity

®

2T = | @ Bleh at = | o) gy a0, (3.41)

then a more accurate approximation (especially for large time-bandwidth pulse .
shapes) can be found as above by replacing Pns by the low signal-to-noise -

ratio asymptote given in (3.38) for the parameter iu calculated from (3.41)., . . °:

There may, of course, exist design situations for which an approximation
of error . performance is unacceptable for a system evaluation. In these
situations, it may be necessary to construct and test the proposed system or -
obtain a more complete <characterization of the channel. However, the
approximations discussed above could be of significant utility in the
consideration of DPSK systems employing complicated pulse shapes and in
applications to fading channels which are difficult to fully characterize.
For example, if phase-coded pulse waveforms ares under consideration as X
candidates for the pulse shape, these approximations may be useful in the
selection of signature sequences, as well as in the comparative system
evaluations which would provide insight into the potential benefits of hybrid

frequency-hopping/direct—sequence systems versus simple frequency-hopped -

systems employing DPSK modulation.
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3.4 Applications to Fregquency—Selective Rician Channels

In the analysis of the preceding sections, we have assumed that the
response of the fading channel to a deterministic input signal s(t) is
represented by a zero—mean complex Gaussian random variable (i.e., Rayleigh
fading). There are, however, situations where the fading channel is more
accurately modeled as Rician., This channel model arises when the received
signal contains a nonfaded specular component as well as a Rayleigh faded

component.,

The narrowband model for the received signal in the case of Rician fading
is given by (2.3) with the parameter a > 0 representing the strength of the

specular component. As in the case of Rayleigh fading, the decision statistic

Zi in (3.5) can be written as a quadratic form of Gaussian random variables U

and V. The resulting conditional probability of error, givenm a particular
sequence of data bits (hi) is transmitted, is related to the probability
distribution of the ratio of Chi-square variables, each having two degrees of
freedom; the non-centrality parameters depend on the characteristics of the
system. Expressions for the conditional error probabilities are derived in
{19] and ([36], where in each case the result is obtained through the inversion
of the characteristic function of Hermitian quadratic form of complex Gaussian

random variables [37] by means of a double integral evaluated by Price [38].

Results of previous investigations of the performance of digital
communications over Rician fading channels indicate that the error probability
is upper and lower bounded by the corresponding results for the Rayleigh

channel (no specular component) and the additive white Gaussian noise channel

{no fading), respectively. In the remainder of this section, we show that the
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average probability of error for DPSK in Rician fading is completely
determined by the parameter a in (2.3) and the parameters mnecessary for the !
evaluation of the error probability for Rayleigh fading considered in the
previous sections, Thus, the results for Rayleigh fading, which are
essentially the results for the "worst-case” Rician channel, are also useful A
?:$N in determining the error performance in the more general Rician case.
. It can be shown that the conditional error probabilities for the Rician
ACAS channel .depend on the characterization of the Rayleigh faded portion of the
S -
;:ﬁ; received signal only through the parameters n&, Ny, and n defined in (3.12)
':f} and discussed imn Section 3.1. In particular, assuming without loss of ;;
iE;i generality that bi-l = b; for the transmitted signal s(t) given by (3.1), the
[+, -,
={$~ conditional error probability [19] can be written as
e
-.'1 ".
Jogp () oyy(b;) + myy(b,)
P 1} ov'l
o P(b,) = a(VAGRp . VBE) - [ TR ~1- :
o 2 By (b ;) myy () "
A
S
; A(p;)+B(b;) -q
y exp[- —5—] - 1,(VapB@,) . (3.42) B
o . »
e where Q(.,.) is Marcum’s Q function [6], and Ip(x) is the modified Bessel 2
vt N
:t: function of the first kind of order zero and argument x. The parameters A(hi)
N ~=
*iﬁf and B(b,) in (3.42), which are related to the non-centrality parameters of the .
e
;:;} corresponding Chi-square variates, are given by -
R =
(o]
aa Ab,) = 4a’ET (3.432)
N i (=00 (2 +myy(2y) -2(0;b;_ 1) Vo )myy(e)] G-
RSN -U'U(hi)-w(-ti)
S
" -:z and o
l:L‘ l‘
o B(},) = 4a’ET " ] 3.43m) x
o i [mgute) +my (2 +20b38;_p) Vaggemyy (e |- €3
o "ru(ky)myy(Ry)
':-'::.'
\:‘-"::l ".:
o
e e e
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The moments, Byy(b;) in (3.43) are the central moments of the random variables

U and V defined as )
]

. ,

mXY(hi) = E{(X - E[X|hi])’(y = E[Yl.lli]) Ihl} . j

4

.

Using (2.3) and (3.6) for the signal defined by (3.1), we see that E{U} = ?}
a V8ET-b, and E{V} = a V8ET*b,_; so that the moments in (3.43) are precisely ;1
B

the same as those defined in (3.10) for the analysis of Rayleigh fading .
)

channels, 1

It is easy to see that (3.42) reduces to the error probability
expressions for Rayleigh fading (see (3.8) and (3.9)) when ¢ = 0. In fact, if

a = 0, then A(gi) = B(hi) = 0, and (3.42) becomes

R 2SI oo
. ;.zlh. DR AP Y {

Vogg(R)myy(by) + mpy(b;)
2V agy(hy) myy ()

since @(0,0) = I (0) = 1, which is identical to (3.8) for the case b, , = b,

Alternatively, if there 1is no faded component in the received signal, then

26% = 0 (cf. (2.4)) so that tie moments in (3.43) become

Tyy = myy = 8NgT

and
0.

llluv

If b, _; = b;, then A(b;) = 0, and B(h;) = 2a2£/N0 and (3.42) becomes

b, a=
No

(since Q(0,x) = exp(~x/2) [6]), which js the average error probability of DPSK

P(b.) = % exp[ - a2E ] ,

for the additive white Gaussian noise channel.

o N .
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CHAPTER 4
PERFORMANCE OF BINARY FSK COMMUNICATIONS OVER

FREQUENCY-SELECTIVE FADING CHANNELS

In this chapter, we consider the evaluation of the average probability of
error for binary FSK communications over WSSUS fading chamnels. As in Chapter
3, the analysis is first carried out for the case of Rayleigh fading channels
(i.e., with the channel response given by (2.3) for a = 0). It is then shown

that the error probability for the more gemeral Rician chanmel is completely

G-

specified in terms of the key system parameters used in the performance

evaluation for Rayleigh fading. <

Previous results on the performance of FSK in frequency-selective fading Iz
inclunde those found in [2,17,18]., In [17], Bello and Nelin consider the
performance of FSK where the frequency separation between the two signals is
assumed to be an integer multiple  of 1/2T. The channel is modeled as a
Rayleigh fading channel with a Gaussian delay power-density spectrum. The
degree of frequency-selectivity 1is defined as the distance between the 1/e e
points of the frequency correlation function G(Q). It is shown that the
system error performance depends on the relative phases as well as the
frequency separation of the two transmitted signals. The authors claim that
FSK is generally less sensitive to the effects of frequency—selective fading ;;
than rectangular pulse DPSK. The authors also state that for large signal-
to-noise ratios, FSK produces lower error rates than rectangular pulse DPSK
for channels which are highly selective. However, these <claims are not .
supported by the numerical results for the irreducible error probability in

[16] which differ from the results in [17] by an order of magnitude. -
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In [2] and [18], the performance of FH/FSK for Rician fading channels is

considered for a triangular delay power—density spectrum model. However, in

both cases the authors assume that the two FSK signals are orthogonal at the

receiver, In Section 4.2, we show that this is equivalent to assuming that

the frequency separation between the FSK tomes is infinite.

In this chapter, the effect of frequency-selective fading on the
performance of noncoherently—-detected FSK is investigated for a number of
signaling formats. The parameters that characterize the effects of
intersymbol interference and additive channel noise are identified. It is
shown that the performance of FSK communications over frequency-selective
Rayleigh fading channels can be well approximated in terms of these key
parameters which are related to rms—type channel measurements. The results
for FSK are compared to the results for DPSK in Chapter 3. It is found that
the error performance of these two systems depends on a number of common
factors and can be quite similar in some cases. The technique for obtaining
bounds on the irreducible error probability for DPSK is applied to the
analysis of FSK. Finally, we consider the approximation of the performance of

other FSK systems in terms of the key system parameters.

4.1 System Model

The information source for the FSK transmitter is modeled as a sequence
(51) of mutually independent random variables, each taking on values in the
set (0,1} with equal probability. The binary data sequence (bi) is given by

the mapping

b,
bi = (-1)i
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from {0,1} to {-1,1} for each integer i. Using the narrowband signal models

discussed in Chapter 2, the transmitted signal s(t) is defined by

s(t) = /%lg V(t-iT)e-j [biﬂht/T + e(ilbi)] (4.1)

for t € [iT,(i+1)T] for each integer i. The real-valued waveform v(t) is

assumed to be time limited to the interval [0,T] such that

T
1
:r-j v(t)? dt = 1,
0
so that E is the energy per data bit.

The parameter h in (4.1) is known as the deviation ratio or modulation
index of the FSK signal set [39] and is related to the frequency deviation fd

from the carrier frequency f. (which, of course does not appear in the

narrowband signal represemtation) by h = Zde, The two transmitted signals

are referred to as the mark signal and the space signal. We follow the

convention in [39] by denoting the signal transmitted at frequency fc - fd as

the mark signal and the signal transmitted at frequency fc + f4 as the space

signal. From (4.1) we see that the mark signal corresponds to the case when

bi = -1 (i.e., ;i = 1), and the space signal is transmitted when b; =1

(i.e., 51 = 0). The phase angle Q(i,bi), which depends on both the value of
the i-th data bit and the interval in which it is transmitted, represents the

phase of the transmitted signal s(t) at time t = O,

Depending on the method used to generate the transmitted signal, the

phase angles O(i,-1) and 6(i,+1), corresponding to the mark and space signals,

respectively, may be related or may be modeled as statistically independent

random variables. For example, if the transmitted signal is obtained by

switching between two uncoupled oscillators, the two phase angles are mwodeled
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as  independent random variables  uniformly distributed on [0,2n].
Alternatively, if the transmitted signal is a continuous-phase FSK (CPFSK)
signal, then the phase angles are related by ©(i,+1) = @(i+l,-1) + 2xhi, We
assume in any case that mno abrupt phase transition occurs between two
consecutive data-pulse intervals if the two corresponding data bits are
identical. That is, we assume that 6(i,+1l) = O(i+l,+1) and that O(i,-1) =

o(i+l1,-1).

By using narrowband signal models to represent the signals in the FSK

system, we have removed the dependence of the orthogonality of the two

transmitted signals on the carrier frequency fc, Rather, the two signals are
said to be orthogonal if and omnly if
IT

vZ(t)e—j[Znht/T + 6(0,+1)-6(0,-1)] dt = IT v2(t)e-j[2ﬂht/'r] dt = 0 .
0

0

Unless stated otherwise, "orthogonality” is used to describe the relationship
of the mark and space signals at the transmitter. Hence, for narrowband
signal models, the orthogonality (or lack of orthogonality) between the mark
and space signals is completely determined by the pulse waveform v(t) and the
modulation index h. This is equivalent to the assumption that both fc and 1

are integer valued, or that (ch - h) > 1.

The FSK receiver is modeled as the noncoherent matched filter receiver
shown in Fig. 4.1, which is discussed in [39]. During each time interval,

[iT,(i+1)T), the receiver forms the decision statistic Zi represented by
(i+1)T . 2 (i+1)T . 2
Z;, = 4' I r(t)v ()ed™/T g¢ I - 4| I e(t)v (£)e dnt/T g4
iT iT

= Jul? - Ivi? , (4.2)
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(i+1)T .
=2 I c(t)v (£)ed /T g¢ (4.3a)
iT
and
(i+1)T .
V=2 I r(t)v‘(t)e-Jﬂth/T dt . (4.30b)
iT

From (4.2) we see that the decision statistic for the i~th data bit is a

quadratic form of complex Gaussian random variables U and V.

Under the assumption that p(t-x,&) = 0; |&¢| > T, (i.e., adjacent-pulse-—
limited ISI), the output statistic Z, depends on at most three comsecutive

data bits represented by b. = (b; ;, b;, b;,y). The probability of error can

be written as the average of probabilities, each conditiomed on the event that

one of the eight possible sequences of data bits are transmitted, i.e.,

P(b;) . (4.4)

w
"
0o
o M

i
where P(ki) = Pr {error occurslhi transmitted}. Imn [11,17], Bello and Nelin

show that the conditiomnal error probabilities are given by

P(b,) = (2 + y(p;)) T . (4.5)

where the "equivalent” signal-to-noise ratio y(.) may be written as

2 (myy (b;) = myy() | ;
1(b,) = —— (4.6)

a function of the moments myy(b;) = E{XY.lki} of the random variables U and V.
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Using (2.5) and (4.3), the moments in (4.6) are found to be
(i+1)T _(i+1)T T
= Ra’ . jnth/T
(b;) = 8¢ (t-x,8)s(t-E)v (t)edTt
"ty Ii'l‘ ‘[iT Ir pltmx. sl
5% (x-€) v(x) e inxb/T dgdxdt  + 8N.T, (4.7a)
(i+1)T .(i+1)T T
2 * -jnxh/T
(b;) = 8¢ (t-x,8)s(t-g)v (t)e I7X
'VV 1 IIT jiT j-r p x § S( 6 M
-s'(x-t)v(x)ej“th/T dgdxdt + 8N°T, (4.7b)
and
(i+1)T .(i+1)T T .
2 * h/T
(b;) = 8 p(t-x,8)s(t-¢)v (t)ednt
“ovi®s jiT J.iT i1' ¢ D
. T .
es*(2-8)v(z)ed™xR/T dgdxdt + 8N, I v(t)v (£)ed2Tt/T 4¢ (4 70)
0
By substituting g(.) for p(.,.) in (4.7), we see that the moments needed

to evaluate Y(hi) and hence P, can be written as

_ 16

2, T
E -
o fo 88 -[ 21R (n,v, 0017 + IR (h,b,_1,8) 1% + IR (n,by,,.8) 12

"rolly) = —

=jl@0p(i,b.)=(b.-b._;)nh&é/T] 5 .
+ 2Re (70T R 20707 I MBRITLR (4 p ey R (Buby_y,0)

i [0 (i+1, b, o -
+ 2Re(ed [Op(i+1,b;)+(by,, I)Nh]'Rv(h.bi.é)'R:(h.bi+1»§) ] dg

(4.8a)
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T —»
Io s(c)'[ ZIRv(hn-bin§)|2 +lR:(hr-bi_1'§)|2 +'R:(h."bi+1.§)|2
-3 i,b.)-(b.~b. =&

. . %
. 2Re{eJ[°T‘1*1'91’+(bi+1+1’"h]-Rv<h.-bi.§)-Rv(h.-bi+1.§) ] ae

LN Sy VS|

+ 8NJT,  (4.8b)

and

2
_ 1606°E
My (k) =

T s _ _
Io g(g).[ (1+e J2ﬂh§/T).Rv(h'bi,§).Rv(h,-bi,g)

e-j2nh(§-T)/T

+ Rv(hnbi_llg) 'Rv(hp—bi_lnc) + .Rv(h'bi‘l‘l'e) .Rv(h’_bi“‘l'&)

+

.Rv(h'bi—l'é) ‘EV(h'-bing)

+

.Rv(h'bipt) 'Rv(hv_bi-llg)

e—j[9T(i+1.hi)+2nh§/T+nh(bi+1-1)]

+

.Rv(h’bi‘l‘l'c) .Rv(h'—bi'a)

j i+1,b.)=-2nh&/T+nah(b._,+1 e
ed [0p(i+1,b ) =2nhE/T+nh(b;_, )]'Rv(h'bi'g)'Rv(h'-bi+1'§) ] d¢

+

T .
+ 8N | viev' () ed2mB/T gy (4.8c)
0

The phase transitionms, O,(i,b,), which denote the differences between

phases of the mark and space signals at time t = 0 is given by

6(i,b,) - 8(i-1,b;_¢) s by # b; 4

Op(i,b;) = (4.9)

0 3 bo=b 4 .

The correlation functions ﬁv(h.bi.a) and R,(h,b;,E) in (4.8) are defined

by

- N S e e
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' T inht(1-b;) /T
R (n,b,,8) = jﬁ v(t) v(t-g) e /T at (4.10a)
and
< : -
R (h,b;,E) = jo v(t) v(t+T-) eITBE(L-B /T 4¢ (4.10b)

for 0 < § < T. Notice that R (h,b,,) and R,(h,b;,Z) are related to the

aperiodic autocorrelation functions defined by (3.10a) and (3.10b). In fact,
using (3.10a) and (4.10a), it is easy to see that iv(h,l,g) = Ev(g),
Similarly, from (3.10b) and (4.10b) we have that Rv(h.l.é) = R,(&). In
contrast, the functioms iv(h.-l.t) and R, (h,-1,§) are, in general, complex-
valued functions that depend on the modulation index h as well as the waveform
v(t). Unfortunately, it is difficult to express the result of these integrals
in compact form for arbitrary modulation index. Finally, notice that the

fuaction iv(h.-l,O) is simply a measure of the orthogomality of the two FSK

signals.

Using (4.6), (4.8), and the fact that we consider only binary symmetric
signal sets (cf, (4.1)), it can be shown that y(hi) = y(-b;). This property,

along with (4.4), implies that Pe in (4.5) can be reduced to

Pe = % [P(-1.+1.-1) + P(+11+11-1) + P(-1;+10+1) + P(+1.+11+1)]n (4.11)
80 that we need only consider the case when a space signal is transmitted

during the i-th data-bit interval.

In the present analysis, we consider 2 number of examples of binary FSK
signal formats. Within the class of CPFSK signals, we consider modulation
indices h = 1/2, 1, 2, and 10 for a rectangular waveform v(t). The example
of rectangular pul:2 FSK for h = 10 is considered as an approximation to the
case of "infinite” frequency separation between the two FSK tones. Notice that

the CPFSK signal with h = 1/2 produces what is known as a minimum~shift-keyed
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or MSK signal [39]. Of course, it is not common practice to consider the

performance of MSK signals for moncoherent detection since MSK signals do not

—

comprise an orthogonal signal set. By examining Rr(h‘—l'O) in (4.10a), it is

easy to see that b 1 is the smallest modulation index producing an

orthogonal signal set for the rectangular pulse. We include the case of h =

:;: 1/2 as an example in order to gain a better understanding of the role of the

7.§§ ‘ modulation index in determining the performance of noncoherent FSK in the

" ° presence of frequency—selective fading. Since we assume that knowledge of the

:;3 :t phase of the transmitted signal is unavailable to the receiver, the phase

.Ef iz transitions for MSK signals are related by GT(i,hi) = 0 and OT(i+1,gi) = n or

P equivalently, O,(i,b;) = n and Op(i+l,b;) = 0 for differing consecutive data
fé bits.

Other examples of FSK signals considered include those generated by

5 phase-coded waveforms defined by (3.4). The signature sequences for this
SE? o pulse waveform are the m—sequences discussed in Chapter 3. Notice that for
¢f: - the phase-coded pulse, the orthogonality of the transmitted signals depends
;ﬁJ ?i only on the modulation index h so long as the pulse waveform is composed of a
:ES% :2 sequence of rectangular pulses. In this case, ﬁp(h,-l,o) = Er(h,-1,o), where
?ﬁ‘ ) the subscripts "p” and "r" denote the phase-coded pulse and the rectangular
;: S; pulse, respectively. Hence, h = 1 is the smallest modulation index for which
E}E - the phase-coded pulse signals are orthogonal. However, for fized modulation
Ei :l index, the spectral spreading effect of the direct-sequence waveform causes
E:g ﬁﬂ significantly more overlap of the spectra of the mark and space signals than
EEE - for the rectangular pulse. For a given sequence length N, we can specify a

.
o
.
» 5

!l: ?
&

set of orthogonal phase-coded pulse signals with roughly the same degree of

-..,
« '8 Tn
]

OGO

spectral overlap as rectangular opulse FSK with h =1 by let 4 h = N for

S
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phase—coded pulse signals. In what follows, we consider examples of phase-
coded pulse FSK where the modulation index .is taken as the sequence length,

i.e., h = N, as well as examples with h = 1.

In Fig. 4.2, the results of the numerical evaluation of the average error
probability of CPTSK with modulation index h = 1 are shown as a function of
the signal-to—noise ratio S = 2°2E/No for a Gaussian delay spectrum with mms
multipath spread p = 0.05. The probability of error for orthogonal FSK in

non-selective Rayleigh fading, given by

_ 2 -1
Pns = (2 + 2¢ E/No) , (4.12)

is also shown. From Fig. 4,2 we see that for small signal-to-noise ratios,
the average error probability is largely determined by the value of Pns' As
the signal-to—moise ratio becomes 1large, the effects .of' intersymbol
interference become more significant and the average error probability
asymptotically approaches the irreducible error probability for FSK in
frequency-selective fading defined by PI 4 Pels -) o+ The results in Fig. 4.2

imply that P; (shown as a horizontal asymptote) is a key performance parameter

for the design and evaluation of practical systems.

The irreducible error probabilities PI for several examples of FSK signal
sets and the four examples of delay spectra given in Chapter 2 are shown in
Figs. 4.3 and 4.4 as a function of the rms multipath spread p = M/T. In all
cases, the results are obtained using standard numerical integration
techniques. In Fig. 4.3, the results are shown for rect;ngulat pulse CPFSK
with modulation indices h = 1/2 and 1, and for rectangular pulse FSK with h =

1 and eT(i.-l) = Op(i+l,-1) = 6p = n, where Oy denotes the common phase

transition, Notice that for modulation index h = 1, the irreducible error

.......
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L' N =31, h = 1 and rectangular pulse FSK with h = 10 vs. rms mul-
tipath spread
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- J

E% probabilities exhibit significant sensitivity to the shape of the delay _ 5

aq density. However, the variations caused by changes in the shape of the delay f

o density are small compared to the variations between the examples for OT =0 .i
and O, = 5. The results in Fig. 4.3 for the two examples of CPFSK (i.e., h =

1/2 and h = 1) seem to indicate that the irreducible error probability is also

IO T S PR R

sensitive to small changes in the modulation index. However, in Section 4.2
it is shown that the larger values of PI for CPFSK with h = 1/2 (MSK) are

primarily due to orthogonality comnsiderations rather than the effects of

intersymbol interference.

In Fig. 4.4, the irreducible error probabilities for rectangular pulse
CPFSK with h = 10 and phase-coded pulse FSK with h = 1 and signature sequence
length N = 31 with Op = 0 are shown. For this example of rectangular pulse
CPFSK, we see th;t the irreducible error probability is not semsitive to
changes in the shape of the delay density for large values of rms multipath
spread. Also notice that the irreducible error probability for phase-coded

FSK exhibits the same erratic behavior as the results for phase-coded DPSK. o

4.2 Performance Bounds and Approximations

In this sectiom, the relationships between irreducible error probability, -
intersymbol interference, and signal orthogonality are explored by first -

characterizing the frequency—selective fading mechanism in the delay domain.

The results for FSK are compared to the analogous results for DPSK in Chapter

(]
- ‘- “ut

- 3. We show that, in some cases, the limiting error performance of FSK is -
A\.':

:j dependent on parameters that are closely related to the key parameters for

~

~ - -
! DPSK. VWe then focus on the frequency—domain characterization of the fading

.

RO A

channel and identify the system parameters which provide an indication of T

aa

PSR
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average error probability with respect to the degree of frequency-selectivity

and the degradation due to additive noise.

4.2.1 Effects of Intersymbol Interference: Characterization

Consider the effects of the interference from the signal corresponding to

b_1 on the detection process for the signal corresponding to bo = +1, If we
consider the portions of the received signal corresponding to positive
propagation delays only, the decision statistic in (4.2) is given by Zo = |U|2

- Iv]® with the random variables U and V given by

U = \/’ijzvo(t)cjuth/'r I:h(t.:)-

and

V= Vﬂ%;I:V'(t)e'j"th/T I:h(t-T’E)

Using (2.4), (2.5) and (4.7), the moments mgy snd myy are found to be

T

2
E -
B sl Bmnn i+ ke 00

.UU.

. zx‘{‘-jIOT(O.ho)-(l-b_l)nhC/T].iv(h.l‘g).n:(h'b_l,g)] ] dt  (4.14a)

16023

T -
j; ([ 1B (n,-1,8)12 + IR3(hy-b_y,8) 1

+ 2Re(e~3[07(0,bg)—(1-b_;) nhE/T]

-
‘B (b,-1,8) B (h,~b_;,8)} ] d&. (4.14b)
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In view of the complicated form of (4.14a) and (4.14b), it is useful to
consider the evaluation of these moments for specific examples of signaling
formats. In particular, for the case when the modulation index h is integer—

valued and v(t) is the rectangular pulse given by (3.2), the autocorrelation

functions in (4.10) are given simply as e 1
T - & » b = 1
R(h,b,2) = (4.15a)
~2ed ™/ T, ginc(he/T) 5 b = -1 o
and ;'..
v
& i b =1
R(b,b,&) = / (4.15b)
ged™/ T ginc(ne/Ty ; b = -1 , "
where sinc(x) = sin(nx)/(nx). The bracketed terms appearing in (4.14) depend .
only on the transition phase 9T(0.§o) and the functions in (4.15). For this -
example, the terms appearing in the expression for Dgy are given by .
2, if by =1, (4.16a)
and -
(T-8)2 + £2sinc?(n/T) .
* 2(T-3)8c0s(8,(0,by) -nh&/T) sinc(hE/T), if b_; = -1. (4.160b) o
Similarly, the bracketed terms for Byy in (4.14b) become :f f
0, if b =1 (4.17a) T
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82 + t2sinc? (BE/T) - 28008(8(0,by) ~nhE/T) Esinc(BE/T), if b_y= 1. (4.17b)

P .

Under the assumption that the delay power—density spectrum g(&) is symmetric,

it is easy to see that similar expressions result from the consideration of

bl Aehadeanintinds

the signal components corresponding to negative delays and the effects of the

signal corresponding to bi+1' j

By examining (4.16) and the expression for Zi in (4.2), we can interpret
By as the average '"power” in the desired signal component of the received
signal when & space signal is transmitted. Similarly, myy TIepresents the
average power in the interfering (undesired) component of the received signal.
(The roles of b 1) and myy are simply reversed if the desired signal happens to
be a mark signal.) Notice that' (4.17a) indicates that no intersymbol

interference is produced by the successive transmission of (b_l,bo) if

b_1 = bo. while if b_1 = -bo. the intersymbol interference produced by the

data pulse preceding b, is given by the integral of (4.17b).

Now consider the output of the matched filters for both positive and

negative delays for the transmitted sequence hi = (+1,+1,+1) in the absence of

T 1

additive mnoise. For the rectangular pulse waveform and integer-valued

"

modulation index, we see from (4.7), (4.16), and (4.17) that the moments 2

Byy. and mpy are given by

ik S b dndinciuo R e

2
mpy(+1,41,41) = 169 B j g(&)+ [ 2T%] d& = 3262ET, (4.18a)
mpy(+1,+1,+41) = 0, (4.18b) ;
and i
L
Yy
By (+1,41,41) = 0 . (4.18¢) i
;
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Hence, the total average power at the output of the space signal filter in the
absence of data modulation is given by (4.18a) as 3202ET. Using (4.18a) and
(4.17b), we see that the portion of detector output due to interfering signals

relative to the total output is

4o o (T
myy(-1,41,-1)  _ - 2.j0 &) [ €% + £2sinc?(ne/D
By (*1,+1,+1)

°§[COS(OT(O.bo)-ﬂhtlT)+cos(9T(1,bl)-nhg/T)]&sinc(h&/T) ] a . (4.19)

From the discussion above, we conclude that the effects of intersymbol

interference are well characterized by

(-1p+1 :—1)
H,(h,0) = A . (4.20)
Bpp(+1,+1,+1)

which we take as the definition of the normalized rms multipath spread for FSK
communications in frequency-selective fading. From (4.19) it is clear that

k,(h,8) in (4.20) depends on the phase transitions 6y(i,b;) as well as the

modulation index h.

If it is assumed that the delay power—density spectrum g(f) is a unimodal
function, (4.19) provides a means to predict the role of the modulation index
and the phase transitions in determining the effects of intersymbol
interference. A positive, real-valued functiom f(x) is said to be unimodal if
f is non-increasing for increasing Ixl. For example, the four models of delay
spectra discussed in Chapter 2 are unimodal functions. If g(&) is unimodal
and h is integer valued, it is easy to show, wusing (4.19), that the
sensitivity to the effects of intersymbol interference is minimized if the

common phase transition O, = 0 (i.e., CPFSK). Similarly, (4.19) indicates

that the effects of intersymbol interference are maximized when OT = 5, which

FETN
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- is the limiting case of phase-discontinnous FSK. These results are in 9
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agreement with the irreducible error probabilities shown in Fig. 4.3 for the

. rectangular pulse with h = 1, For this example, the assumptions OT =0 and
e °T = xt produce limiting error probabilities that can differ by more than an
% order of magnitude. From this discussion, it is also clear that, for unimodal

delay densities and integer—valued modulation indices, the irreducible error
probability for random phases must lie between the valmes of PI for eT = 0 and
- Op = =x.

As the modulation index increases, (4.19) indicates that the mnormalized

rms multipath spread becomes less dependent on the phase tramsition OT. In

L
fact, it is easy to show that for increasing h, the normalized rms multipath
spread given by (4.20) approaches
T 1/2
-2
l B (=,0) = [ 2T ‘[o g(2) 8% a ] = N/T, (4.21)
?f where M is the rms delay defined in (2.3). We conclude that for large

modulation index and fixed rms delay, the irreducible error probability as a
function of M/T becomes independent of the shape of the delay demsity as well

as the phase transition OT'

Now suppose that the modulation index is some fixed integer. If g(&) is

- :
= unimodal, then for large values of wms delay, the value of uv(h.e) is R
.
- dominated by 2T = 272y (= 2 »
o ominated by B,(=,0), which corresponds to the integral of the ¢ -
- term in (4.19). This may be seen by noting that the integral of the [{
j&z sinusoidal terms in (4.19) becomes small for increasingly wide delay spectra.
Alternatively, as the rms delay (and hence the first term in (4.19)) becomes
f‘
Py
t4 small, the sinusoidal terms become significant so that uv(h,e) is influenced

by the shape of the delay density as well as the phase tramsition OT' The
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R
e . irreducible error probabilities in Fig. 4.4 for h = 10 provide a good example
Kt%i of the behavior of systems with large modulation indices. Notice that P; for
A
{i?j this example depends on the shape of the delay spectrum only for rms delays
o less than 0.01.

)
e We next examine the characteristics of the parameters discussed above for
ol
ﬁ:ﬁ} an example of non—orthogonal signals. In particular, for rectangular pulse
-
;"' CPFSK with h = 1/2 (i.e.,, MSK), Dgp(+l.+1,+1) = 3zquT as before., However,
o the normalized rms multipath spread is given by
I.'.h\
A

LAY .
$:‘-J:: 2 ) = T—?. T 2+ cos{nE/2T 2_2 (n/2+ /2T)[¢OS n&/2T dE.(4.22)
e l-lv(h.‘ j.O g(%) (C [' - S“IELZT' —)'] gcos(n/2+n§ '—S'IE'L_)',r 2T ]) §.(4.

-t
N By comparing (4.22) and (4.19), we see that if the delay density is unimodal,
\ Y

MSK is considerably more sensitive to the effects of intersymbol interference

.
2 2'p

than signals with integer-valued modulation index. It can be shown that this

A JENEOORN
;
»
a

'
-D

increased sensitivity is partly due to the lack of orthogonality between the

%]
o,
0000

o
a_ s

two MSK signals. Notice that, in the absence of additive noise, (4.8b)

<
LY
B
L]
s

becomes

\Ez myy = 32:?E IZ 8@ ( [£2§§§§§111]2+ t2sinc?(£/2T)) dg = 326%ET
g

] |A

2] (4.23)

for hi = (+1,+1,+1). Equation (4.23) implies that if three consecutive space

signals are transmitted, the output of the mark signal filter is more than
B half that of the space filter, a property which holds even for nonfading
RO channels. In comparison, recall from (4.18b) that for integer—valued
;%?' modulation index, my (+1,+1,+1) = 0. This result and the data presented in
;;;- Fig. 3.3 suggest that MSK signals are of little interest for nomcoherent

on detection, especially for applications to frequency-selective fading chanmels.
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:i: In Table 4.1, numerical values of the normalized rms multipath spread )

)

m i defined by (4.20) are shown as a function of the rms delay M for the Gaussian ‘#

'?' . delay power—density spectrum. The results are listed for signals with )

- modulation indices h =1, 2, and 10, for OT = 0 (CPFSK) and @ = n. Notice %

that in the case of CPFSK, there is substantial variation between the 1
normalized rm: multipath spreads for different modulation indices. In fact,

for very small values of rms delay, this variation is nearly equal to h. Also
notice that in all cases, the difference between the values of normalized rms
multipath spread for O, = 0 and @y = n are very large. It is also interesting

to note that for the case when QT = 5, there is almost no variation for

different modulation indices. Numerical evaluations of the normalized rms
multipath spread for MSK signals revealed that this parameter ranges between
0.64 for M/T = 0.001 and 0.82 for M/T = 0.5, indicating that the parameter

P,(h,8p) is mnot a useful measure of the effects of intersymbol interference

for this case,

.

For the consideration of phase~coded pulses, it is much more difficult to
derive analytical expressions which provide insight to the character of the
normalized rms multipath spread Fv(h.O). Alteratively, consider the moment

Byp in (4.7) for the phase~coded pulse with modulation index h = N, where N is

the sequence length. If we neglect the terms corresponding to the additive

noise, IUU(+1.+1.+1) is given by

2 T - -
16o°E I S(C)'2[32(h.1.§)+R2(h,1.§)+23 (h,1,E)R_(h,1,&)] dE. (4.24)
0 P P P P

IU.U.

PUP ROy

Recall that R (h,1,§) and Ry(h,1,§) sre given by R (I and Ry (%),
respectively, where these latter functions are the autocorrelation functioms i

given by (3.10) for the analysis of DPSK. Hence, in the absence of data
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Table 4.1. Normalized rms multipath spread pv(h,eT) as a function of the rms
0 and (6 = m)

delay M for rectangular pulse FSK with GT =

N/T h=1 b =2 b = 10
0.001 7.4081.10°5 1.4814.1073 7.4049.1075
(2.3915.107%) (2.3914.1073)  (2.3896.107°)

0.005 1.3602.10~F 2.7192.107¢ 1.3419.107
(9.9984.107°) (9.9938.107%)  (9.8481.107°)

0.01 5.4384.10°4 1.0859.1073 5.1151.107
(1.9988.102) (1.9950.1072)  (1.8839.1072)

0.05 1.0001.1072 2.5776.1072 5.4470.1072
(9.8481.1072) (9.4197.107%)  (5.5126.107°)

0.1 5.0002.1072 8.6507-1077 1.0250+10"1
(1.8839:10 1) (1.6123-10°1)  (1.0250-1071)

0.5 5.0000+107 4.5710-10° 1 4.4052.107"
(4.8907.1071) (4.5099-1071)  (4.4026-1071)
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.; ) modulation, the average power at the output of the space signal filter is ﬁ
. . X
|' given by 150215p/T. where the parameter Hp is defined by the relation (3.22). E
:ﬁ .. The values of l!p/'r2 for an m—sequence of length N = 31 are listed in Table 3.1 &
N 4
. S .4
. for a Gaussian delay density as a function of the rms delay M. 4
.
. In Table 4.2, the values of the up(h,e) with h = N are shown for phase- :]
. . -1
> -
A coded pulses with sequence lengths N = 7 and 31. Also listed in Table 4.2 are 4
~ :‘
N the values of Mp(h.e) for modulation index h = 1 (shown in parentheses). In d
A each case the results are obtained for OT = 0, Surprisingly, these results j
"o :.: 4
o indicate that the normalized rms multipath spreads are generally smaller for -4
’. . 5
-t i; h = 1 than for h = N. From the similarity of tlhe results for h = N and h = 1, '
'; . we conclude that the sensitivity to the effects of intersymbol interferemce is
. I S
S largely determined by the auntocorrelation properties of the phase-coded pulse 4
N .i waveform rather than the valne of the modulation index, From this we might ;E
{ \
. slso assume that the normalized rms multipath spread is relatively independent ii
lza ;a of the phase transition @,, The evaluation of pp(h.OT) with @p = n for the a
e l! cases listed in Table 4.2 shows that up(h.n? differs from the values listed in FI
3
L Table 4.2 by at most a factor of two. Also notice that there is no clear -
b < dependence of u_(h,8y) on the sequénce length, N. Finally, we point out that ~
by 5
- in comparison to the corresponding results for phase-coded DPSK 1listed in
v~ =
,fﬁ - Table 3.3, it is clear that phase-coded pulse FSK is, in genmeral, much more
XA sensitive to the effects of intersymbol interference.
A
‘ ) The discussion leading to the expression for ooy in (4.18¢c) also provides
:5 i an interesting interpretation of the role of this parameter in determining the
N .- performance of FSK. Recall from Chapter 2 that the rms delay M is related to
dq t the bandwidth of the frequency correlation function G(Q@). For small mms
.,
R delays (large frequency-correlation bandwidths), there is significant
’: “
fl
¥ '1'1
LA

-

)

.
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Table 4.2. Normalized rms multipath spread uv(h,O) as a function of the rms

delay M for phase-coded pulse FSK for N = 7,31 with h = N and
(h = 1)

M/T N=17 N =31

0.001 9.6176.1073 3.8895.10 2 -
(3.3950.1073) (4.4933.1073) -

0.005 4.1005.1072 1.6159.107} . .
(1.4575.10°2) (2.0919.10"2) ~

0.01 8.2911.1072 2.7283.1071
(3.0111.1072) (4.7569.1072) .

0.05 3.1451.1071 - 3.8556.1071
(1.9%62.1071) (2.5002.1071)

(3.9451.10°1) (4.3055.1071)

0.5 7.0356.1071 6.9406.10"1

o 3
0.1 4.0232.1072 4.0257.1071 h 1
(8.3483.1071) (9.2494.10°1) !

—
~'.
.,
"
I.'-
t
7
“»
.y
o .
o »

AN

! '." »

I, 25
I 4

S .~~.'. AT L R A Y -_"-‘*-‘\‘~"."\'. P

.o PP P i A AT ST P P
----------------------

b I - . . R N S P . O - .
PEAC LR A P PO PR YR AR N G R G GG TRARATNE. GE R S WG S RGOS PRSP LS LIRS PP S LV VR PR ATV




S R T I IR IR T T TR R YU VLTS AL S S T e e e T Tt
E
. 87 1
e
' correlation between the fading processes acting onmn the two signals. The j
:q ' parameter that characterizes the relationship between the effect of frequency ;
i~ 3 correlation and the orthogonality of the transmitted signals is muv(+1,+1,+1), 5
- (or more precisely, Byy(+1,+1,+41) /mgy(+1,+1,+1)). For the rectangular pulse 1
-~ !; waveform and integer—-valued modulation index, we see from (4.18¢c) that

- ) IUV/IIIUU=0. In contrast, it is easy to see from (4.7c), that for MSK

= - signals,

= 2 (T 2T

S mgy(+1, 41,41 fag(+1,41,41) = T 50 s S5—Jaee . 29
o

\: \".: which not only shows that the received signals are highly correlated but also
' ‘ shows that the value of the correlation is independent of both g and M.
'.; . Notice that the square of the magnitude of (4.25) corresponds to the result in
'\ (4.24), confirming that the 1lack of orthogonality of MSK signals is a
_‘ ' significant factor in determining resulting error probability for both
: selective and nonselective fading channels. Finally, we point out that the
'\-_ | close relationship between the values of Oy (+1,+1,+1) and myy(+1,+1,+1) for
_;.: E the rectangular pulse waveform does not hold for phase-coded pulse waveforms.
-‘::- N In fact, for N = 31 and Gaussian delay density with M/T = 0.001, numerical
o

evaluations of these parameters reveal that my, = myy/10 and mgy = myy/100 for b

."vff “ = 31 and h = 1, respectively.

- The discussion leading to the definition of the normalized rms multipath 3
A

. = spread in (4.20) and the results in Tables 4.1 and 4.2 suggest that the ;
}j . normalized rms multipath spread is a good indicator of the effects of
intersymbol interference for both rectangular pulse and phase-coded pulse with ,
2% ~

;' E} integer—-valued modulation index. Since the irreducible error probability is

'l: . the performance parameter most dependent on the effects of intersymbol
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interference, we expect that if the delay spread is normalized with respect to
#v(h.OT). P; should exhibit minimal sensitivity to either the signal format or -
the shape of the delay power—density spectrum g(&). Numerical evaluations of
PI as 'a function of the normalized rms multipath spread show that of all
examples of pulse waveform, modulation index, and delay density considered,
the cases exhibiting the most variation are rectangular pulse waveforms with h
=1 for 8, = 0 and O = n. The irreducible error probabilities for these two
cases are shown in Fig. 4.5 as a function of pr(h,eT) for the Gaussian,
exponential, and triangular delay densities. Notice that even for these
extreme cases the maximum variation for fixed normalized rms multipath spread
is less than a factor of 1.4. These results show that the limiting error
probability is almost completely determined by the normalized rms multipath o

spread uv(h,OT) defined in (4.20).

Before concluding the discussion on the characterization of the effects
o of intersymbol interference, it is interesting to draw comparisons between the
normalized rms multipath spread parameters for UPSK and FSK. In particular, ff
. notice from (3.23) and (4.21), that for large h, the parameter #,(h,8) = p_

O which is the normalized rms multipath spread for rectangular pulse DPSK.

t Thus, for fixed rms delay M and sufficiently large modulatiom index, the

irreducible error probability for rectangular pulse DPSK is a good

approximation for PI for FSK.

Next, notice that the parameter ps for sine pulse DPSK is given by

~' T

o I g(8) [E2cos2(ne/T) + 282sinc? (£/T) - 2¢2cos(ng/T)sinc(&/T) ] dE . (4.26)
< 0

For the case when the phase transition OT = 0, (4.20) becomes

(except for a

constant factor),
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o Io s(&) [£2 + 282sinc? (/D) - 282cos(nE/Dsinc(E/T) ] dE.  (4.27) .
: -
_\ Hence, we see that sine-pulse DSPK is considerably less semsitive to
N
N intersymbol interference effects than FSK for any integer—-valued modulation
LN, ‘
oY index, even for the minimizing case of phase transition, 9’1‘ = 0. =
03
l’;;i 4.2.2 Effects of Intersvmbol Interference: Bounds
‘e As in the conmsideration of DPSK in Chapter 3, the insensitivity of the o
h -
\j irreducible error probability for FSK as a function of the normalized rms )
'
:3 multipath spread suggests the possibility of obtaining useful bounds on the h
probability of error with respect to the parameters of the fading chanmel. In
N “
~§: this section, the method of obtaining bounds on the irreducible error :";
\ [}
o probability for DPSK communications in a frequency-selective Rayleigh fading S
) [l
b |
‘_“ environment is applied to the evaluation of PI for FSK.
& | p
.4-:1“ It is clear from the definition of uv(h,e.r) in (4.20) and the discussion
v, .
o
kN above that the normalized rms multipath spread is dependent on the phases i
~ 60..(i,~1) and Or(i+1,-1). However, the results in the previous section
o T
é: indicate that 9T(i.-1) = Op(i+l,-1) = 67 = 0 and Or(i,-1) = Oy(i+1,-1) = O =
‘I
‘ n in some sense represent limiting cases in terms of the normalized rms
; 3
” multipath spread. In what follows, the bounds for the irreducible error
24
"‘- probability are considered for these cases only. The resulting bounds for -
s
these cases are representative of, if not limits for, the results for other -+
"’ choices of phases.
\:; N
A 4.2.2.1 Rectangulsr pulse
= &
:: Under the assumption of adjacent-pulse-limited ISI, the moments defined
N .
; in (4.7) can be written (for integer—valued modulation index) as :::'
2

-
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.:E ’ npplhy) = 166°B/T-[ 2T + (I(b,_j=-1} + I(byy=-11)£"(g)] (4.282) |
(. |
RS CE
:“ nyy(;) = 1662E/T-[ (I(b,_ =-1] + I(by,;=-11)-FPil(n,6p] (4.28b)
s
\.. "
B and
o ngy(by) = 166°E/T[ 1o, a1} £7%(0)+ 1, =1)em(p) ] (4.28¢)
::s} o,

e ‘
T - where the normalized rms multipath spread pv(h,o.r) is given by (4.20), and \
:: :—j I{.} is the indicator function. The functionals £’'(g) and £f¥(g) in (4.28) are |
e Y

»'\ given by
RS 3
£'(g) = Iz g(&) [gz - 28T + tzsincz(tl'l') ‘
N f
R |
27 + 2(T-§) E2cos (x8/T+0y) sinc(2/T) | 4&, (4.29) |

-
-

) n and

<o

LSRRGS T

o ) () = [ gep) [203-D2ed /T gine(/m)

e 0

o 2 + 008(0) (T-1) 2%+ s1n0(3/T) - t2oos(Opsina® (/M) at . (4.30)
WK )

4

SRS

. \ o £7(g) for delay spectra g(!) satisfying the comstraint, given by
o T
”-'.\
_.;;: " 2 j 5(2) [?,2 + gzsincz(tl'l') - thcos(or-ntl'l')sinc(tl'l‘)] .14
e N 0
ou L2
NN llv(h.O-r). (4.31)
v,
R
:'4. a Notice that f£" is, in gemersl, a complex-valued function of g. From (4.5) and
‘ (4.6) we see that the average probability of error depends on the momeat
P
N ;:e' -W(hi) only through its magnitude. Hence, in order to obtain bouands for the

%

-+
o E

Thus we may proceed as in Chapter 3 by characiverizing the functions f’'(g) and




L ORCRL SRR

it is

error probability,

necessary to characterize the range of values of
I£7(g) | for g satisfying (4.31). Recall from Chapter 3 that the minimum and
maximum values of a continuous linear functional are found by searching over
the set of extremal g. Since |£f"(g)| represents a non-linear functional of g,
this technique cannot be directly applied to find the minimum and maximum of
I£#]. BHowever, it can be shown, through an application of the triangle
inequality, that the maximum of |£”(g)| for g satisfying (4.31) is obtained
for some extreme g. The characterization of the possible values of [f”| is
completed by assuming that the minimum of |£f"(g)| is zero. Also, notice that
if by ; = bj,; = -1, myy depends only on £" + £#° = 2Re{f") so that the
problem of a nom-linear functional does not arise in this case., The resulting
bounds for the limiting error probability are found by searching over the

volume

Q=0 0e7, 60,00 X 10,1871, X [2Re(£"}, ,2Rel£"} . 1 }.

max max

Numerical evaluations of the resulting bounds for the irreducible error
probability reveal that the maximum variation between the upper and lower
bounds for fixed p_(h,0q) occurs for the case b = 1 and Oy = 0. The results
for this case are shown in Fig. 4.6 as a function of B.(1,0). Notice that the
maximum variation for this example is still less than a factor of 3. We point
out that the bounds in Fig. 4.6 not only represent the case of the maximum
variation, but also represent upper and lower bounds for all examples of
rectangular pulse waveforms considered. That is, the bounds for rectangular

pulse FSK, with modulation indices h = 1, 2, and 10 for the cases OT = 0 and

O = n, all lie between the bounds shown in Fig. 4.6.
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Figure 4.6. Irreducible error probability bounds for rectangular pulse FSK
with h = 1, and OT = 0
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4.2.2.2 Phase-coded pulse

The task of obtaining bounds for the irreducible error probability for
phase~coded pulse FSK is more difficult than for DPSK since PI for FSK depends
on essentially twice as many parameters (a number of which are complex valued)
as the 1limiting error probability for DPSK, Under the assumption of

adjacent—pulse-limited ISI, the function nvv(-1,+1,-1) can be written as

myy(-1,41,-1) = u2(h,6pH, . (4.32)

As in the case for phase-coded pulse DPSK, there is no obvious way to

characterize the moments mop(ly) s syy(b;), and mpy(b;) in terms of the
normalized rms multipath spread up(h,.) and a few linear functionals of g.
Also, we have seen ‘that nUU(+1,+1,+1). which is closely related to the
parameterz Hp defined in (3.22) is dependent on the shape of the delay power—

density spectrum. Moreover, unless the rms delay is zero, both nuv(+1,+1,+1)

and lvv(+1.+1.+1) can be significant in the determination of the irreducible

error probability.

However, representative bounds on the irreducible error probability can
be obtained by assuming a specular multipath model for the fading channel, as
in Chapter 3, with a sampling epoch chosen so that a path with average power
of at least 1/2N of the total power of the delay spectrﬁn corresponds to a

zero relative delay. We proceed by using the model for the discrete density

spectrum (kT ) and rewriting the equivalent signal-to-moise ratio y(h;) in

(4.6) as

2lmgy (e ) myy by |
Vimgy (R ) myy(hy))? +4agg(h,) myy(hy)-lagy(y) 121 ~lagg(e,) —myy (b |

.(4.33)
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The bounds for the irreducible error probability are found by characterizing

the minimum and maximum values of the parameters (muu(hi)—.vv(hi)) snd
2 .

(-UU(hi)‘Vv(hi)-I'UV(hi)' ) for each combination of the interfering data bits

(bi—l and b,,,) under the comstraint

2
nvv("'l."'lo-l) = llp(h.OT)Hp .

Using the assumed symmetry properties of the delay spectrum g(kI;), the search
for the minimum and mazimum irreducible error probability can be reduced to
the six-dimensional search over the 1limiting values of the two functions
described above for the cases bi-l'bi+1'1' bi—l'bi+1"1' and bi—1='bi+1' The
resulting bounds for the irreducible error probability of phase-coded pulse
waveforms are given in Tables 4.3 and 4.4, respectively, for m—sequences of
length N = 7 and N = 31 discussed above. Notice that the variation between
upper and lower bounds is not large, and that the bounds for the phase—coded

pulse are very similar to those obtained for the rectangular pulse above.

4.2.3 Effects of Additive Noise: Characterizatjonm

Consider the response of the space and mark filters (producing the

sampled outputs U and V) to a gingle transmitted data pulse signal,
s(t) = 2B y(4)TIP0™/T ;0 ¢ e ¢ T,

where E is the emergy per data bit. In the gabsence of additive noise and
assuming a space signal is sent, the second moments of the outputs of the
space and mark filters are given by

160°E

T
- 160°E

= 2
"o = I: 8(3) IR (B,1,1ED)|° &2

'[: a(a) [Ivia) 1%lva) 1] aa , (4.34a)
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Prels
s ] —
a N
N -
:.r Table 4.3. Irreducible error probability bounds for N = 7 phase-coded pulse S
M FSK with respect to the normalized rms multipath spread pp(h,e), —
forh=7.and0.r==o o
W
3-._35 lll,(h,G) Lower Bound Upper Bound Y
o .
- 0.0005 1.2499.1077 1.2504.1077 .
o ) )
"-32 0.001 4.9999.1077 5.0060.1077 ~
) -5 -5 N
s 0.005 1.2499:10 1.2887.10 -“
s 0.01 4.9998.1073 5.6829.107°
Oy .
< : 0.05 1.2488.1073 4.9551.1073 -
4
4
z";" i
“5 < m
2 !
f_\: “::
s
L
: ~
) Table 4.4, Irreducible error probability bounds for N = 31 phase—coded pulse ~
o with respect to the normalized rms multipath spread pp(h,e), for o~
o h =31, and 6. = 0
T -
3
3 by
o, o
ey Hp(h,0) Lower Bound Upper Bound
N 0.0005 1.2499.1077 1.4131.1077 ;
. _
'3'.33 0.001 4.9999.1077 9.2896.1077 -
o =~
- 0.005 1.2499.1073 4.4880.107°
v
&
L) R
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4 and
\ - 2
. 160°E r = 2
= (&) IR (h,-1,lED)1“ 4§ :
' "vv T 4, 88 1Ry A3 .1
K :.', 2 N
3 N = 165°E j: 6(0) [V(O-2n/T)V (DO (0-270/TIV(Q)] 48 , (4.34D) B
4
" b
4 where V(8) is the inverse Fourier transform of the basic pulse shape v(t), and "
¥ ]
S @ denotes convolution. Notice that (4.34a) represents s measure of the common J
T spectra between the data pulse waveform and the frequency correlation functioa i:?
", ? G(Q). Similarly, (4.34b) represents a measure of the common spectra of v(t), ®
- s frequency shifted version of v(t), and the correlation function G(Q). The ]
- o
v ‘1 corresponding output of each filter due to the (real) additive white Gaussian
: o noise with (two—sided) spectral intemnsity No/z is 8N,T.
O
3 For a nonselective Rayleigh fading channel, the signal-to-noise ratio at
. the output of the space filter becomes
. 2
K 4 E
P sar = 20 , (4.35)
vy No
’ since, from (4.10s), li(h.l,O) = '1'2 Thus, it is easy to see that the one-
. ]
4 shot signal-to-noise ratio at the output of the space signal filter is
J X
*,
3 mazimized when the rms delay spread is zero. In the case of frequency-
- selective fading, the signal-to-noise ratio at the output of the desired
] hE .
" - signal filter is
& S-: 2023 ® -2 zgzl! 2 /1‘2
< sar = ——I g(%) lv(h.l.lﬂ) @ =—§N— Ny . (4.36)
N, L= 0
) Recall from (4.10a) and (3.14a), that Ri(h,J,,g) = is(g), so that ;v defined in
a‘ (3.12a) for the consideration of DPSK communications is also the key parameter fi
- Ny
in determining the signal-to-noise ratio for the space signal filter for “3
Lo o
< * o
1 !

--------------
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single-pulse matched filter detection, If we mneglect the effects of
intersymbol interference and assume that the modulation index is sufficiently

large that the signal components of both by and mgy are approximately zero,

the average error probability (4.5) becomes

2 -
. 26°E 21 -1
P = 2+ o_v » -7
e =1 N, ] (4.37)

which is identical to (3.38) except for a factor of two appearing in the

signal-to—noise ratio.

Tﬁe results in Section 4.1 (see Fig. 4.2) demonstrate that for
rectangular pulse FSK with integer-valued modulation index, the low signal-
to-noise ratio average error probability in frequency-selective Rayleigh
fading is well approximated by Pns = (2 + 2“2E/N0)-1 which is the probability
of error for orthogonal FSK in non-selective fading. While it is not
surprising that P . represents a lower bound for the average error
probability, it might not have been anticipated that this performance
parameter for orthogonal signals would provide an adequate low signal-to-noise
ratio approximation of P, for selective fading. In particular, notice from
(4.35) that even in the case when a single data pulse is transmitted, the
relative delays introduced by the frequency-selective channel produce non-zero
outputs in both filters. Thus, in general, the transmission of a space signal
also produces an output due to this signal at the mark signal filter.

However, it can be shown that P.s 18 an accurate low signal-to-noise ratio

approximation of the average probability of error in selective fading for

rectangular pulse FSK for any integer-valued modulation index h.

The discussion above indicates that the low signal-to—noise ratio error

probability is largely determined by the output due to the desired signal at

"'T'T"'Tv‘“‘i:':_'d"- T o .
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the filter matched to that signal, which in turn, depends only on the

parameter iv' Thus, we expect that for & given pulse shape, the asymptotic

error probability for small signal-to—noise ratios is well approximated by
(4.37) which is independent of the modulation index h. Numerical evaluations

'1 of the average error probability in (4.4) and Pe defined in (4.37) show that

this is the case for both rectangular pulse and phase-coded pulse FSK, for all

4 combinations of delay spectrs, modulation indices and phase transitions
a © considered. In fact, the average probability of error for phase—coded ..lse
(EZ ':4 FSK is both well approximated by (4.37) for small values of signal-t/ _ise
is ;P ratio and lower bounded by (4.37) for all values of sar, Hence, just . “»or
ﬁi “ DPSK, the parameter iv determines the position of the "inverse—linear” lower
sg ij bound on FSK error probability as a function of signal-to-noise ratio S =
;E 2¢2EIN . Of course, the factor of two (or 3 dB) difference between (4.37) for

P
[
a
Ja

FSK and (3.38) for DPSK reflects the disadvantage of noncoherent versus

o
- :i differentially coherent detection in Rayleigh fading channmels.

) -
b s

4] |5 In Table 3.7 of Section 3.2, the values of ivlrz are listed for the
N, < rectangular pulse, and for the phsase-coded pulse using the m—sequences of
W
,3 :; length N = 7, 15, 31, and 63 for a Gaussian delay power—density spectrum. It
ey ‘.

,‘ can be shown that for phase—~coded pulse FSK,

-

P P = [ 2+ 25°E _Zk]'l (4.38)
::' e No "N ’ .

I': '-l

2 ;,

by independent of the modulation index h, where N is the length of the signature
e

:‘ ;C sequence and the comstant k depends on the chamnmel. Moreover, the discussion

h Y
r

~ ~

': in Section 3.2 concerning the performance degradation of the phase-—coded pulse
B

e relative to the rectangular pulse for DPSK applies to the comsideration of
:j o phase—coded pulse versus rectangular pulse FSK. In particular, Table 3.7
1 )

' ‘?J

&,

N
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2 ]
N shows that for a Gaussian delay density with M/T = 0.1, the additional
A

signal-to-noise ratio requirement for phase-coded pulse FSK relative to

7
oo
tnsindduniadidth, b

:: rectangular pulse FSK for fixed error probability is about 5§ dB and 9 dB for
*.
tﬁj sequence lengths N = 7 and N = 31, respectively. j
. - g
. <4
i In Figure 4.7, the average error probability for several examples of FSK L4
i: signalling formats is shown as a function of the signal-to-noise ratio, S. i

For comparison with the results for DPSK in Figure 3.7, the results are shown
for rectangular pulse FSK with modulation indices h = 1, and 10 (OT = 0) and

phase-coded pulse FSK (N = h = 31, @r = 0) for the Gaussian delay power—

XXX
s r s .

density spectrum with rms delay M = T/10. Also shown are the low signal-to— .

»-
4N
sadiliibetedebidodndadatiion hinnes

"

R ]

noise ratio asymptotes given by (4.37), and the irreducible error

i{ probabilities which appear as horizontal asymptotes. (The low signal-to-noise
es, .

- ratio error probability given by (4.37) is identical for both examples of SO
‘ a4
o rectangular pulse FSK). Notice that in contrast to the results for DPSK in

-~ e

o Section 3.2, the limiting error probability for the phase-coded pulse is N
b considerably larger than that of either example of rectangular pulse FSK. —

R

o Also notice that the rectangular pulse with h = 1 exhibits the best o
oy .9
e performance of the three FSK signals considered for the entire range of ]
-~ S
,\ signal-to—-noise ratios. These results are in agreement with the discussion i
;} leading to (4.37) which shows that the phase—coded pulse experiences severe S
’;: performance degradation in the presence of additive mnoise; and the data -
q: presented in Tables 4.1 and 4.2 which show that the normalized rms multipath =y
fi spread uv(h.OT) for rectangular pulse FSK (with modulation index h = 1, and :i

. IOV
-\ -
Ny phase transition GT = 0) is significantly smaller than the corresponding

i parameter for phase-coded pulse FSK. od
Lt _'._. ]
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Figure 4.7. Average error probability for rectangular pulse FSK (h = 1, 10,
snd O, = 0) and phase—coded pulse FSK (N=h =31, and 6, = 0)
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,:f 4.3 Performance Approximations for Other FSK Systems )
(.
‘}j In Section 4.2 it was shown that meaningful bounds for the irreducible
f;? error probability of FSK in a WSSUS frequency-selective Rayleigh fading -
. channel can be obtained under assumptions that correspond to the -
_it' characteristics of many practical systems [16,17]). These bounds demonstrate
O -
:_:'.- that the normalized rms multipath spread R (h,0q) defined in (4.20) is the key -
,{ parameter in determining the limiting error probability for FSK systems.
}g Moreover, the closeness of these bounds (for fixed normalized rms multipath -
~y ’
fg spread) indicates that it is sufficient to specify only this parameter in -
N g
1 =]
order to cbtain an accurate estimate of the irreducible error probability for
'ﬁz a particular fading chanmel and FSK signalling format. ;;
> "

Since in many practical systems, the limiting error probability is of s

primary concern in the evaluation of system performance, the bounds in Section

y! o
i 4.2 represent a characterization of the limits of the effects of frequency- -
- .
.

~ selectivity on FSK communications for & wide variety of signalling formats and

-

. frequency-selective fading channel models. As in the case of DPSK in Section -
i 3.3, these results also imply that if it is possible to measure the normalized -
e ‘::
. rms multipath spread parameter for a proposed FSK system, then we can obtain '
_%: an estimate of the average probability of error for this system from the error o
AN

':C probabilities in listed in Section 4.2.

S
If' In particular, it was shown in Section 4.2 that the irreducible error -
;i' probability as a function of the normalized rms multipath spread for ;ﬂ :
'52 rectangular pulse FSK for any integer—valued modulation index and any phase !
ia transition is bounded by the results presented in Fig. 4.5. Also, comparing ;d
,;k the results in Tables 4.3 and 4.4 with Fig. 4.5, we see that the irreducible

\"

q.;:

B
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error probability for phase-coded pulse FSK as a function of "p(h'eT) closely

. approximates the irreducible error probability for rectangular pulse FSK as a

function of p_(h,8;). Hence, the results presented in Fig. 4.5 represent what

X is essentially a single relationship between the irreducible error probability

!: PI and the normalized rms multipath spread p,(h,61) for FSK in a frequency-

selective Rayleigh fading enviromment. Thus, we can take the dats in Fig. 4.5

as representing the irreducible error probability as a function of By (h,0y)

- for a generic FSK signalling format with time—limited data—pulse waveform

v(t). The 1limiting error probability for a particular FSK system may be

approximated by means of a single channel measurement,

o b (h,0) = myy(71.+1,-1) (4.39)
Bp(+1,+1,+1)
. ‘i Using this measurement, the resulting approximation for the irreducible error

probability is found as the corresponding value of PI in Fig. 4.5.

Notice that this performance parameter is more complicated than the

!3 corresponding result in (3.40) for DPSK. Unfortunately, it is not clear that

S a8 less complicated form of channel messurement would provide information that

o
e is adequate for determining the limiting error probability. However, for the

-
;: 3 indicate that an accurate estimate can be obtained from a less complicated
E? channel measurement. In particular, for rectangular pulse waveforms,
. Bgp(+1,+1,+1) is independent of the modulation index h and the phase
E: transition O, (of. (4.18a)). If, in addition, the modulation index is large,

special case of rectangular pulse FSK, the results in the previous section

the channel may be characterized by measuring the value of
§
{
1
\
|
|
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which is equal to both the normalized rms multipath spread for rectangular
pulse DPSK and the multipath spread p = M/T. For rectangular pulse FSK with
smaller modulation index where the phase ttansitiéns are modeled as uniformly
distributed random variables, (4.19) and the results in Table 4.1 indicate
that (4.40) also gives a reasonable estimate of the limiting error probability

for this case.

A good estimate of the average error probability for small time-~bandwidth
product pulse shapes is realized as a curve lying above Pn‘ in (4.12) and P;
calculated from (4.40) and the data in Fig. 4.6 which asymptotically

approaches P = and Py for extreme values of the signal-to-noise ratio. For

large time—bandwidth pulse shapes, a more accurate approximation may be

obtained by additionally measuring the quantity

TyT = | ao Bansileb at = | s Bdeh ge . @

and replacing P _ by the low signal-to-moise ratio asymptote given in (4.37).

If, in the absence of a complete channel characterization, it is possible
to obtain close estimates of the parameters discussed above, these
approximations could be used in the preliminary evaluation of FSK systems
employing complicated signals., Alternatively, if a fairly accurate model for
the delay power—density spectrum can be obtained, the definition of the
normalized rms multipath spread (4.20), the data in Fig. 4.5, and the
expression for the low signal-to-noise ratio error probability in (4.37) may
be wused for comparative evaluations of FSK signalling formats and data—pulse

shapes.

Finally, we point out the several basic similarities between the above

results for the approximations of FSK and the approximations for DPSK

........
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i
i? - discussed in Section 3.2. In particular, the 1low signal-to—-noise ratio
( Ii asymptotic error probabilities for any particular data-pulse shape are
E: . identical for DPSK (3.38) and FSK (4.37) except for a factor of two increase
z§; ~ in effective noise power for FSK. Also, the normalized rms multipath spread
: ! for rectangular pulse DPSK is similar to the normslized rms wmultipath spread
Eg - for rectangular pulse FSK, especially for 1large modulation indices. The
E: Eg relationship between the low signal-to-noise ratio performance of the two
. - systems might have been predicted by noting that DPSK can be viewed as a form K
‘% fi of binary orthogonal signalling with signal duration 2T. In contrast, the K
fg E. relative effects of intersymbol interference on the two binary orthogonal K
-t - signalling systems do not appear to be related to the basic similarities
::: ;E between system models. In particular, it is not immediately apparent that
W

>~

- rectangular pulse FSK exhibits the same sengitivity to intersymbol

interference as rectangular pulse DPSK only for very large modulation indices.

5
[ 8 J"J‘

Nor was it expected, prior to the development in Section 4.2, that it is .

A ANy
[ 3
.
.P.‘

‘: ) possible to choose a time-limited pulse waveform for DPSK (sine-pulse) that :
) !é produces lower error probsbilities than any standard (i.e., rectangular pulse)
;é . form of FSK communications over the same fading chanmel.

o - :
N

d - 4.4 Applications to Freguency-Selective Rician Channels %
N N
:j .- In this section it is shown, in s development that closely parallels i
O

WD )
Z; < Section 3.4, that when the received signal contains a nonfaded specular i
. 1
'j > component as well as a Rayleigh faded compoment, the average error probability i
CRERC 1
N depends on the same key parameters identified in the preceding sections of !
S .
- iﬁ this chapter. VWith the parameter a > 0 in (2.3) representing the strength of i
- h|
Y e the specular component, the decision statistic zi in (4.2) is a quadratic form 3
VS

S \
Nyt N
o bl
- g
i E 1
X :

\
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'C; of (nonzero mean) Gaussian random variables U and V. As in the amnalogous
l~ situation for DPSK communications, the probability of error, given a :
fta particular sequence of data bits (b;) is transmitted, is given by a value of
;:: the probability distribution of the ratio of Chi-square variables with non-
2] centrality parameters dependent on the characteristics of the FSK system. In L
B
:{: the remainder of this section, we show that the average probability of error
) -
iﬁ for FSK in Rician fading is completely determined by the parameter ¢ in (2.3)
‘a and the moments noky). myy(b;), and mpy(b;) defined in (4.7) for the .
Dy .
if: evaluation of the error probability for Rayleigh fading channels.
o ;
o) In particular if we assume, without loss of genmerality, that bi = 1 in &
A
¢:. (4.1), so that a space signal is transmitted during the i-th signalling o
= . i
o interval, the conditional error probability [19] can be written as
= | i
. P(2,) = a(VaAr) , VB ""‘
\.
N :
™ 2 2
2 = 1 V(miy 2y +my (8002 = 4lmgy () 12 + mgy(p)-myy ()1
Ay
. 2 (mgy(b,) +mygy (8,2 - 4lmgy(n ) 12 -
. .
s A(b,) +B(b;)
2 vengf- Ali)*BlB,) i
: oxp| 3] * Io(VAB()) . (4.42)
w
- where Q(.,.) is Marcum’'s Q function, and Io(x) is the modified Bessel ;T
< Te
4_: function. The parameters A(D,) and B(b;) in (4.42) are given by
-‘ r
) S
< i
- 2 _ 2
A(p,)= sa’ET-[ PouRy) * myy(by) - oy () smyy (8012 ~4lmgy(p) | ] (4430
¥ 2 _ 2 -
bq and )
E‘ 2 (By) + myy(by) + (mgglhy) +myy(h))? ~4lngy (b,) 12 -
= B(b,)= sa’eT-[ 2uuy) * Byy(Ry) * vimgyihy)ievy(hy)) T Rgv(R) T .cs.43b)
Ny me—— == S ettt A —
N V (g +ayy () - 4lmgy(py) 12 3
N .

e
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The moments, my.(b;) in (4.43) are the central moments of the random variables
U and V defined in Chapter 3. Using (2.3) and (4.3) for the signal defined by

(4.1) and assuming s space signal is sent, we see that E{U} = aV 8ET and E(V}
= 0 so that the moments in (4.43) are precisely the same as those defimed in

(4.7) for the analysis of Rayleigh fading channels.

It is easy to see that (4.42) reduces to the error probability
expressions for Rayleigh fading (see (4.6) and (4.8)) when a = 0. In this

case, A(hi) - B(hi) =0, and (4.42) becomes

V (mgy () +myy(2,0)% = 4lagy(p) 12 + lagy(a)-myy(py) |
P(hi)a -[

= = ] t4.40
2 iy (p) +myy (0302 - 4lagy(p) |

which is identical to (4.6) for the case bi = 1, Alternatively, if there is
no faded componment in the received signal so that the chanmel is simply the

additive white Gaussian noise channel, then 202 = 0 in (2.4) and the moments

in (4.43) become

Bgp = Byy = 8N, T

and

=y = 0.

It bi = 1 snd the transmitted signals are orthogonal, then A(h;) = 0, and

B(hi) - 2¢ZE/No and (4.42) becomes

2
P(b,) = ‘} exp[ - o’k
2N
o

(since Q(0,x) = exp(-x/2) [6]) which is the average error probability of FSK

for the additive white Gaussian noise channel,

A
r}_
1
|
!
)
.‘1
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ADAPTIVE EQUALIZATION TECHNIQUES FOR DIGITAL COMMUNICATIONS

OVER FREQUENCY-SELECTIVE FADING CHANNELS

té In Chapters 3 and 4, the performance of differentially coherent (DPSK)

,E and noncoherent (FSK) communications via VWSSUS frequency-selective fading ég
; channels was considered. It was shown that the average error probadbility for .
; these systems is degraded by two effects that are each closely related to the :ﬁ

multipath spread of the fading channel. The first effect is that of 1loss of :;
available signal c¢nergy due to time~dispersion of the desired signal beyond =

3 the sampling window of the matched filter receiver. While this effect causes .E
3 minor performance degradation for small time-bandwidth product signals and for o
' adjacent-pulse—limited ISI, it can become a major coansideration for 1large ™=

time—-bandwidth product signals, and for channels which are not; severely
! frequency—selective (dispersive in time),

. The second adverse effect is dne. to the intersymbol interference :*i

g introduced by the superposition of delayed versions of the transmitted signal

at the channel output. The results in previous sections demonstrated that it

is this effect which most severely 1limits the performance of digital f: >
communications over frequency-selective channels. In fact, we see from . ﬁ
Figures 3.7 and 4.7 that for tms multipath spread p as small as 0.0S5, EZ q
intersymbol interference can result in irreducible error probabilities that s
are unacceptably large for many applications. Notice that the parameter u = B 2
M/T is a linear function of both the rms delay M defined in (2.3) and the é;

data-bit rate 1/T. VWithin the past decade, there has been increased interest

in applications for high—frequency (HF) and troposcatter communications
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:. (7,14,23,40] for which the rms multipath spread p = 0.5. For all examples of

delay spectrs and modulation formats considered in previous chapters, the

.
NPT PRSrO

.-
2

T irreducible error probabilities resulting from 1:.his degree of frequency- b
-~ .
o selective are substantially larger than 10-1. Thus, in order to achieve i
; E reliable communications over dispersive fading chanmels, it is necessary to "%
.‘ N employ more complicated receiver structures which are less sensitive to the :
;. E‘ effects of intersymbol interference. ;
_': "j For channels, such as telephome lines and line-of-sight (LOS) microwave

;: - links, both linear and nonlinear equalizers (typically in the configuration of

:.: S a tapped-delay-line (TDL)) have been effectively used to reduce the effects of

.. intersymbol interference [20]. More recently, there has been interest in

E :'E: , applications of similar equalization techniques to improve the performance of

A

digital communications over classes of randomly time-variant linear channels

o~
-

o [8,23]. The majority of channels for which equalization techniques have been
* o
:: \ considered are accurately modeled as WSSUS frequency-selective Rayleigh fading
- ﬂ channels. While it is clear that the random character of the fading channel
‘ presents a npumber of additional difficulties (e.g., zero-mean unequalized .
[
: =~ signal amplitude) which must be overcome through the use of diversity or some
SR
L NN
2 form of redundant transmission, both simulation studies [8,24,41-43] and
: ’ experimental evidence [14] indicate that for a given data rate, reliable
I
- communications can be achieved for fading channels with rms delays which would
' = produce uanscceptable limiting error probabilities if the system were not
s equalized. Alternatively, for a fading channel with a given value of rms i
" u"
XY
2 multipath spread, equalization allows an increase of an order of magnitude in
v, )
:’, 'a data rates for a specified bit—-error probability [7]. j
‘ 3
- 'd
WIEN .
o >
y 3
L A o
W a =
- 1
: N
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Studies of equalization techniques for non-fading dispersive channels
(e.g., high-speed digital telephone links) have been concentrated on linear
equalizers, in general, and on linear TDL equalizers, in particular [21].
However, omne of the characteristics of WSSUS frequency-selective channels is
that the time-variant transfer function frequently exhibits nulls at various
portions of the spectrum which result in "deep” fades of the spectrum of the
received signal at these frequencies [9,13]. The primary goal of the
equalizer is the elimination (or reduction) of the effects of intersymbol
interference. More generally, the goal of equalization is to realize an
equalizer filter such that the combination of the channel and equalizer yields
an equivalent "channel” with flat frequency response [44]. Since practical
linear TDL equalizers can oanly realize equalizer filters with Z-transform
transfer functions consisting entirely of zeroes [21], linear equalizers are

not well suited for applications to WSSUS frequency—selective fading channels

[8] L]

There are several nonlinear equalizer structures that can be used to
compensate for channels with nulls in the frequency response {21]. The
nonlinear equalizer structure that has received the most attention, because of
its relatively uncomplicated implementation and demonstrated effectiveness, is
the class of TDL decision—feedback equalizers (DFE) [8,23]. The form of DFE
receiver considered for applications in fading channels consists of a linear
TDL equalizer operating on the received signal at some intermediate frequency
(or passband [45]), a filter matched to the transmitted data pulse shape, and
an additional TIDL operating on the results of the (mnonlinear) decisions of

previous data symbols., The performance of the TDL equalizer strongly depends

on the effectiveness of the linear TDL portion of the equalizer [24,44]. In
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SQ what follows, the characteristics of DFE equalizers are considered by first
’\ l! discussing the characteristics of linear TDL equalizers.
o,
R S.1 Linesr Equalizes Chagactegistics
4
= o F
R A model for a linear tapped-delsy—line equalizer with Kl + xz +1 taps is
- shown in Fig. 5.1. Using narrowband signal representation, the input to the }
e equalizer is givenm by ‘
‘:: ®
r(t) = I h(t,8) s(t-8) ag + a(t) . (5.1)
- -
The time-varying channel response functiom h(t,E) is assumed to be that of a
kf WSSUS Rayleigh fading channel as discussed inm Chapter 2 and an(t) is the
A,
.. equivalent low-pass Gaussian noise with (one-sided) spectral intemsity N_. - ]
ll The tap-weight vectors ¢ and d in Fig. 5.1 represent the real and
ﬂf imaginary parts of the equivalent complex-valued tap-weight vector w = ¢ - jd.
We have, for simplicity, dropped the dependence on the time reference t. The
g; remainder of the receiver is composed of in-phase and quadrature correlation
A receivers such as those shown in Fig. 3.1, which operate on the in-phase and
3
quadrature outputs I(t) and Q(t) of the TDL equalizer. The sampled output of
-
:: the composite receiver is given by
< T I '
-’ U = 2 Io V(t) [] ro(t) dt » (5.2)
iS where Iy(t) = I(t) - jA(t) is the output of the TDL equalizer and the slowly :
]
g time-varying phase © represents the combined phases of the transmitter, the ;
Ta |
s channel, and the receiver. It is convenient to represent the output U in '
fiz terms of the vector sum of the equalizer output as :
) |
|
. |
s ;
'-: 1
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U=J8—,1§ w' Rb+ 2w n, (5.3)

where w' represents the conjugate transpose of the column vector w, T is the
duration of the data pulse waveform v(t), and E is the transmitted energy per

bit. The tap-weight vector w' im (5.3) is given by w' = [':K R ,,.,.;, cevs
1

';2]. where (Kl+lz+1)T is the width of the time window of the received signal
r(t) represented by the equalizer output z5(t). The vector b represents the
sequence of data bits which have influence on the receiver output U. Notice
that the length of b depends on the number of equalizer taps as well as the

time duration of the channel impulse response function h(t,E).

Simulation studies [24] of the performance of linear TDL equalizers are
often based on the assumption that the chanmel response to an impulse at t = 0
is non—-zero only for relative delays & in the range [-T,T]. Notice that this
is similar to the adjacent-pulse—limited ISI assumption used in Chapters 3 and
4. In what follows we assume, for purposes of discussion, that the response
function h(t,:) is identically zero for [t-&| > T. Also, notice that there is
some ambiguity as to the time reference of the equalizer receiver output
relative to the transmitted signal. In fact, the determination of time
reference (timing phase) is a major concern for the implementation of both
linear and decision—feedback equalizers [23,46). We adopt the common [24,44]
sssumption that the time reference is chosen so that the output of the zero—th
tap, Yo’ corresponds to the maximum channel output due to the desired data

bit, by. Under the above assumptions, the data sequence b affecting the

zeceiver output U is -given by

» =1Ib s by 4 vees b_ 1,
K2+1 Kz 11-1

where l"1+lz+1 is the total number of equalizer taps.

U o |
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:_f The matrix R in (5.3) contains elements which represent the combined .
L impulse response of the transmitted waveform v(t), the fading channel response _(
Ry
-
,:;j function h(t,f), and the matched filter correlation receiver. Under the .
:\1. :..
D adjacent-pulse~limited ISI assumption R is given by
)_ ~
e [R(-N,1), R(-N,0), R(-N,-1), 0 .0, ..., 0
SN 0 , R(-N+1,1), R(-N+1,0), R(-N+1,1), 0, ..., O
:.‘-:‘.‘-: _R_ = . ’ ( 5 . 4)
:_"._‘_: .
_ . 0 » 0 s o e s R(N,l), R(N,O), R(Nu"l) —
S
S where .
-:\.-:. ‘:é_
% T _ e
o R(n,k) =[ R(1ED) n(aT, kT+g) de . (5.5) N
AN T
NN
L, o, .
\ - S
( The function R(.) in (5.5) is the aperiodic autocorrelation function of the = )
&tﬁ time—limited pulse waveform v(t) defined by (3.14a). It is common to
N
L represent the combined response of the transmitter, fading channel, and
..‘-\.l
. receiver in this way, In fact, the rows of R are closely related to the “!
{ﬁ{j discrete—time channel response functions discussed in [9] and the equivalent
47 -
e N
":: tapped-delay-line model for doubly selective fading chanmnels considered in o
i;; [10]. Note that the first argument of R(n,k) denotes the value of this -
j:j integral for the channel response at time t = nT. The variation of the value
SN -
‘:} of (5.5) as a function of n is related to the time-selectivity of the fading v
o~
A ..‘:. -
channel. For the present discussion we assume that the value of R(n,k) is
independent of n for n € [-K1-1, x2+1]. 1
. !
¥ One of the key characteristics of both HF and troposcatter channels is -
.
N that the response function h(t,f) is time varying. When the changes of the
::: characteristics of the response function are sufficiently rapid that the above :j
N o I
o2 |
N -

.-ﬂ!‘
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assumption does not apply, the channel is modeled as a time-selective fading
channel [9]. Typically, the degree of time—-selectivity is measured in terms
of the width of the Doppler power—-density spectrum which is the temporal
Fourier transform of the function p(t-x,.) defined in (2.4). Definitions of
this type which are commonly used in the published literature are the distance
between the 1/e points or the half-power bandwidth of the Doppler spectrum
(e.g., see [3,9]). -Alternatively, the time-selectivity of the WSSUS fading
channel may be grossly characterized by the smallest value of <t for which
p(t,0) = 0. This value, which is inversely proportional to the width of the

Doppler spectrum, is referred to as the channel "decorrelation time” [7,24].

Since both HF and troposcatter fading channels are time—selective to some
degree, a time—varying equalizer must be employed. For applications to WSSUS
fading channels, the equalizer must adapt to the time-varying characteristics
of the channel. One of the earliest applications of adaptive equalizers was
to high~speed data communications over switched telephone-line networks [22].
In this situation, the receiver is designed to adapt to one of a number of
links before the data is transmitted. Equalization of fading channels
requires continuous adaptation in step with the changing characteristics of
the fading chanmel. Moreover, it is crucial that the equalizer adapt in a
time period which is much shorter than the channel decorrelation time. For
many applications, this implies that the decorrelation time must be much
larger than the data pulse duration T. Fortunately, this constraint, which is
referred to as a learning constxaint [(40], does not preclude the use of
equalization techniques for most fading channel applications. Typical values
of the decorrelation time are on the order of 103'T for HF systems and 107°T

for troposcatter links [7].
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In order to‘teduce the effects of intersymbol interference, the tap-
weights w are adjusted (adaptively) to minimize some cost function which,
hopefully, is related to the resulting system performance. When the receiver
bases the binary decision for each successive data bit on a single sampled

output, the cost—function that is most often employed is the mean-square-error

(MSE) [8,23,44].

The consideration of the performance of adaptive equalization techniques
for slowly time-varying fading channels must, it seems, be based on the
following basic assumption., At each time t and for each sample function
h(t,%) of the channel impulse response, the TDL is adjusted in a manner such
that the equalizer is able to "track” the slow changes in the channel. In
this case it is not clear that knowledge of the channel statistics (zero—mean
Gaussian for a Rayleigh fading chamnnel) can be utilized to obtain a meaningful
interim measure of system performance., On the other hand, if we assume that
the equalizer is unable to track the chanmel, then the TDL would only serve to
add additional intersymbol interference as well as correlated Gaussian noise.
In this case it is reasonable to assume that it would be better not to attempt

channel equalization.

Consider the receiver output U for a fixed channel impulse response
function h(.,&), which is a function only of the relative delay &. The mean—
square-error (MSE), as defined for the consideration of fading channels
{8,24,45] and for the consideration of deterministic channels [45,47], is

given by

MSE = Ep(|u - kVBET byl?) , (5.6)

where E is the transmitted emergy per bit and ER[-} denotes the conditional
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expectation given R. The expectation in (5.6) is taken with respect to the

data sequence b, for i#0 and the additive noise samples n. The scale factor k
in (5.6) is a positive real constant which does not affect the form of the

minimum MSE filter. Using the vector representation in (5.3) for U, we have

MSE = Eptl VAF w' B b+ 29’ n - kVEET bol?) . (5.7)

If we assume that the data sequence is a sequence of independent, ideatically
distributed random variables taking on the values -1, +1 with equal

probability, (5.7) becomes

MSE = %1; w RIR w+ BNOT'!'! + k2°85T - IGkEORe{!'_o} ’ (5.8)

where
v * - . . ] .
.R_o = [R (l. Kl), ...,R ( :0)) eeep R ( ,xz)] .

It can be shown [23,44,45] that the solution for the MSE optimum tap-weight

vector w is given by

' Aw=ke Re{yw’ 99 (5.9)

or
w=kAlR
where the Hermitian matrix A is written as

N,T
A,r"lgz' +L

a2 E 'l . (5.10)

Using (5.9) and (5.8), the minimum MSE (MMSE) is given by

MMSE = kZ8ET - X8E. By A7l R, . (5.11)
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Alternatively, the MMSE can be written as
4
MMSE = k28ET - k8E.Re{w’ R) . (5.12) -
Notice that, for a particular channel response matrix R, the second
N\
moment of the filter output U (for by = 1) in (5.3) is related to the mean-—
square-error by
Ep(lul?) = MSE - k®SET + 16kE-Re(x’ B} . (5.13)
Using the expression for the MMSE in (5.12) we bhave
2 2 , =
Ep(lul®) = MMSE - k“SET + 16kE-Re(w’ R} (5.14)
Eg(lul?) = k8E-Re(x’ Ro) > 0 . (5.15) d
' =
We have seen that the MSE or, in particular, the MMSE is related to the i
second moment of the receiver output U (cf. (5.14)). It is tempting to i?
consider the possibility of characterizing an "average” MMSE by taking an
e
additional expectation with respect to the channel statistics. Using the R
expression for MSE in (5.8) and averaging with respect to the channel ensemble
(WSSUS zero~mean Gaussian) we have
MSE = '8-1;!' Cw+ SNOT!'! + kstT ’
where the matrix C denotes the expected value of the quadratic form RR’. If =
there is no additional restriction on w, then this implies that w = 0 produces
the minimum MSE. Alternatively, if we insist that w'w = 1, then it is easy to
see, using an example where the fading channel is nonselective, that the above ;;
minimization produces the wrong result.
al
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It is interesting to note that the last term in (5.8), which is also the
right-hand side of (5.15), is just a constant times the real part of the
output U due to the desired signal (corresponding to bo:1), Then we see that
(5.15) implies that the optimum tap vector w produces a "one—shot” receiver
response whose real part has non—zero mean-value. Hence, we see that a linear
TDL equalizer designed to minimize the MSE, not only reduces the average

contribution of interfering adjacent data signals, but also provides phase-

coherence between the transmitter and receiver. Moreover, using (5.8) and
(5.15), it can be seen that for small values of E/NO' the linear TDL equalizer
receiver is closely related to the maximal ratio diversity combiner for a
one—shot receiver [48] where the “diversity” links are produced by the time-

dispersive properties of the channel. In a frequency-selective fading

nchemdnadeaiindedii St ool

environment, the received signal can be characterized as the superposition of

Sl ANRE B

delayed versions of the transmitted signal. Thus, the efficient combining of
these signal components at the receiver results in a potential for diversity
gain, The diversity that is due to the time-dispersive nature of the
frequency—-selective fading channel is commonly referred to as "implicit”

diversity [25] as opposed to explicit forms of diversity which can be realized

PP S Ry T Y

by redundant transmissions over channels separated by space, time, frequency,
or antenns polarization [6]. (Recall that maximal ratio combining is a
linear, coherent diversity combining technique which achieves the maximum

possible output signal-to-noise ratio for a single data pulse at each sampling

instant.) If the matrix A in (5.10) is dominated by the term due to the !
additive noise, and if the contributions from interfering data signals are

d
ignored, the statistic U in (5.3) becomes i
L]
\
|
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\Jz XE [ [BE 2E

e 'No[\/—';&')l_tobo*'-ﬂ;gég]. (5.16)

&,
"I

,ﬁj With U defined in this way, the signal~to-noise ratio is given by
\':-'
Y g
N
o e Bk
N No 1
$:: which is precisely the definition of the instantaneous signal-to-noise ratio
Srd
2:; for maximal ratio combining considered in (6] and (48] where the order of the
o
implicit diversity is related to the number of significant elements of go, In
p -
:j: light of the relationship between a MMSE linear TDL equalizer and coherent -
N :
Eﬁ: maximal ratio combining, it is not reasonmable to assume that it is .
e >
;;. advantageous to consider signalling techniques other than cohereat PSK. 1In =
;j; fact, it is well known that coherent binary PSK produces smaller error
‘iﬂf probabilities than other common form of binmary signalling (i.e., DPSK, and ,
&9 o
. coherent and noncoherent FSK) for maximal ratio combining in a Rayleigh fading b |
{52 enviromment [6]. ‘.
o : 3
Xy We have seen that for a given channel impulse response, the MMSE~TDL
- ¥ "‘
o] equalizer allows the use of coherent PSK detection. Using the solution for 3
1
LA
}j: the MSE-optimal w in (5.9) for k = 1, the random variable U in (5.3) can be
‘R, o
%:‘ written as
~ .
= -
N = [SE -1 y -1 e
:, U TROA RR+2R A 3. (5.17) -
33 .

=

where 36, R, and A are all determined by the channel response function and the

statistics of the additive noise. Conceptually, the conditiomnal bit-error

2,
LY

Y ¥ad
7

probability for a particular h(.,{) and a particular data sequence } can be

i

&

‘ 2
A

obtained by finding the signal-to-noise ratio and computing Pe(h)-Q(SNR;/z)o i@

where Q(x)=1-F(x): the standard Gaussian cumulative distribution function.

, . * .
5

The average probability of error is then determined by averaging Pe(h) over

%
s‘.«-’s

R, 4%
3
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the possible data sequence combinations. Unfortunately, the evaluation of
both the conditional and average error probabilities is quite cumbersome even
for non—-fading channels and the results concerning the performance of MMSE
equalizers are almost always in the form of simulation studies [21,44]. An
exact evaluation of the average error probability for fading channels appears
hopeless, since, in this case, it is necessary to perform additional averaging

with respect to the channel response functioa h.
5.2 Decision-Feedback Equalizer Characteristics

The receiver structure of a DFE is similar to that of a linear TDL
equalizer receiver with the addition of a feedback loop which forms a linear
combination of the values of previbnsly detected data symbols [8,23,42,49,50]).
(The nonlinear nature of the eqnalize:. is due to the effect of the hard
decisions used to form the output of the feedback seqtion.) The device wused
to form the .feedback output D can be (and usually is [8]) represented as a
linear TDL with tap spacing necessarily equal to the data symbol duration T.
If we assume the current decision concerns the zero—th data bit bo, the output
of the feedback sectiom of the DFE is given by

-

i=1

o'l

d; b_, , (5.18)

where N is the number of feedback taps and Fi is the value of the decision on
the i-th data bit. Using vector representation for the parameter D, the

expression for the decision statistic U for a DFE can be written as

u= \/3% 2 Reb+d'hy+2y a, (5.19)

L ] - - -
vwhere 4' = [dN.....d;] and bg = [b_;,...,b_y]. Notice that there are mow K; +
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1 taps for the linear IDL portion of the equalizer so that Kz=o, The matrix

!f in (5.19) is obtained from (5.4) by deleting the last K, +1 columns and the
last ‘2 rows of the original channel response matrix.

The MSE criterion for the DFE is defined similarly as for the linear TDL -
equalizer and is based on the assumption [8,24,44] that the previously :
detected symbols in the feedback filter are correct, i.e., Bi = b; for i<0.

Using this assumption and the definmition in (5.6), the MSE for the DFE is
given by
SE = By (| /2B w' R b, + g'by + 2u' 1 - k VEET +by|%) (5.20)
R, T % Bgbg+d'by+2x' 2 ol™t - ~
Minimization of (5.20) with respect to w shows that the linear TDL that i
minimizes the MSE is given by the relation [44]
»' Af X = k* Rely’ _R.fo} )
or 1
= k'.A.f !fo s (5.21)
where the matrix Af is "~
-1 NoT .
Ar =T "R R+ 1. (5.22) :
'_‘J
The coefficients of the DFE are then chosen so that the resulting output D .
exactly cancels the intersymbol interference due to previously detected -
symbols or "precursors” [23]. In this case, the coefficients d, can be o
written in terms of the coefficients of the linear TDL section by -
d=x' 31 . (5.23)
vhere the matrix R, is obtained from (5.4) by deleting the first K, columns o
snd the first ‘2+1 rows of R. iKY
Y
e R R Ry N N NN N TN SO N RN IO NN
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tu For any practical implementation of DFE receivers (especially for

'. l' Rayleigh fading channels) it is not reasonable to assume that all previous
gg - data decisions are correct. Moreover, in the case vh;n 8 decision error is
?j ‘j made, the output from the feedback portion of the equalizer adversely affects
_ !a subsequent decisions causing error propagation. For nonfading channels, the
. . increase in the average error probability due to this effect is considered in |
> (20] using a Markov chain model. The analysis is carried out under the 5
:3 assumption that the tap weights for the linear TDL forward filter are chosen ;
p according to & zero—forcing (ZF) criterion [22,44]. The ZF cost function is i
SE closely related to the definition of the MSE in (5.7) by heglecting the term ]
. corresponding to additive channel noise, The zero—forcing criterion is simply
E Eé the requirement that the intersymbol interference contribution at the output
x o of the forward filter is forced to zero, at the cost of an enhancement of the
. additive anoise. It should be pointed out that the zero—forcing criterion is
E} not generally applicable to fading channels since ZF can be achieved only for
. channels with limited intersymbol interference [44]. Assuming ideal DFE
A !3 characteristics and a particular nonfading channel response functiom, it is
% E; shown in [20] that error propagation is not a major source of degradation for
< typical values of signal-to—noise ratio and channel characteristics. A
‘ ?2 similar conclusion is obtained in [40] where a sinnlatiog study of the error
;% ;. propagation effect is carried out for a single—echo and an exponentially
E} decaying multiple echo channel model.
2 25 From the discussion of linear TDL equalizer characteristics in Section }
E jf 5.1, we see that the forward filter portion of the DFE has the potential of |
iz providing a degree of implicit diversity gain as well as some reduction of the J
5 effects of intersymbol interference, at the expense of an increase in the é
o) l
-y 5
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L) effective noise power. In contrast, the feedback portion of the DFE is -
‘ designed to eliminate the distortion due to previously transmitted data s
E:\.i: signals at the expense of a loss of diversity gain and some degradation due to

%:f error propagation, Hence, the DFE receiver can be viewed as a compromise

between these two configurations.

Finally, we point out that for both linear TDL and DFE receivers, the
ability to track the channel characteristics strongly depemds of the available
signal-to-noise ratio [44]. Clearly, if the received signal is dominated by

the additive noise, there is little hope of maintaining equalization. In a

Rayleigh fading enviromment, the instantaneous SNR can fall below the level Eﬁ
necessary to maintain equalization so often that the equalizer performance is By
severly degraded. In order to overcome this difficulty, practical DFE modems ~
are designed to process signals received from L explicit independent diversity gg
links [23]. This is accomplished by employing a separate forward TDL filter T'
for each of the L explicit links, appropriately combining the forward filter ;5
ontpnt{ by means of automatic gain control devices, and using a common data -
pulse filter and feedback loop 1TDL to process the combined output of the -
forward filters. :
5.3 DFE Performapnce Considerations ™
The published analytical work on the evaluation of the average bit~error ff

probability for DFE receivers in frequency-selective fading is almost entirely

due to Monsen [24,40]. The analysis in [24] is carried out for a system
without explicit diversity and is based on the fundsmental assumption that the s
d

feedback portion of the equalizer precisely cancels the intersymbol

interference due to pulses transmitted prior to bo (the desired bit). Under

-
oo




. ‘ ‘ ‘
L4
S ol
=
p 'R} .Ai
- 125 L
this assumption, it is easy to see that the resulting analysis is independent »
by
' of the parameters of the feedback portion of the equalizer. Hence, the P
- development in [24] can be viewed as an analytical technique that can be i;;
) applied to linear TDL equalizers. j’,::
f ¥
o Notice that the receiver output U in (5.3) can be written as 1
i = 8 8 R.b
T v \/’%-'-' Reobo + Vrx' Eghe + 20'n . (5.24) |
4
-‘-; where gf and if are obtained by deleting the column of gf and the entry of D K
corresponding to the desired bit "0' The first term of (5.24) then denotes
K]
o
ﬁ‘ the desired signal component, the second term is the output due to interfering ']?
) signals, and the 1last term is due to the additive chaanel noise. In [24], A
< Monsen approximates the interfering data bits bi for i > 0 as independent g

i zero—-mean complex Gaussian random variables with variance 72. (Recall that

the intersymbol interference due to previous data pulses is assumed to be
eliminated by the feedback portion of the equalizer.) VWith the intersymbol
. interference from future data pulses modeled as additive Gaussian noise, the

minimization of the MSE with respect to the coefficients of the forward filter

o yields
: x B = k'xe{!' !fo} ’
where the matrix B is given by
- T
3 B =112 B & + N%._I_ . (5.25)
Substituting the solution for the MMSE forward filter tap weights into (5.24),
W
] the statistic U becomes
-
R U= V5F RpoB 'Begby +y F RioB KB + 2B;o7'n . (5.26)
25
| 4
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Under the Gaussian noise characterization for the interfering data
pulses, we see that the last two terms in (5.26) represent the contributions
due to additive noise. Monsen definmes an "equivalent signal-to-noise ratio”

SE -1 42
= (Rt B~ Riy)
om = L Bio 1fo
8NoT Rgo B ~ By
=Lt poBlRy (5.27)
N,

which is the ratio of the output due to the desired data pulse to the average
of the output due to both interfering data pulses and additive noise. Hence,
we see that the intersymbol interference has been replaced with interference

due to additional additive Gaussian noise.

The second approximation employed in [24] is to replace the matrix B by
its mean value, E{B}. However, even with these simplifying assumptions, it is
still necessary to find the eigenvalues of the correlation matrix E{Bfogio} of
zero—mean correlated complex Gaussian random variables with means and
covariances that depend on the channel response function h(.,E). When the
eigenvalue distribution is obtained for a particular channel realizatioan, it
is then necessary to find the coefficients of a partial fraction expansion of

a polynomial in the eigenvalues. The variance 72

of the interfering data bits
is chosen in [24] to be 0.5 to allow the best sgreement between calculated and

simulated results.

Since, in reality, the average bit—error probability is dominated by the
probability of a wrong decision for the worst case intersymbol interference,

it would be useful to supplement the analysis in [24] by characterizing the
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~
RS
receiver output U for the worst-case data sequence. Using (5.24) we have
U ,/ TX Reg b+ VT¥ Reb+2¢'n, (5.28)
2
o so that -'(gfo + gf i) represents the sampled output of the receiver for a
;; particular data sequence. If we assume h(.,E) = 0 for &l > T and that the

forward TDL filter comsists of only 2 taps, (R, + E B) is given by

-*.
BR(.,-1) bzn(o.l) + bl(k(-.O)

:‘.‘ = . (5.29)
;:: R('uo) blk(.’l)
i: Unfortunately, even for this simple example it is not clear that the worst
ol

case interference and the resulting effect on the error probability can be
;f adequately characterized.
t.' 5.3.1 Nonselective Fading Channel Approximation of DFE Performance
A
W Since the forward TDL equalizer in each explicit diversity branch is
» assumed to achieve coherence with the channel, an interesting approximation of
"y
- DFE system performance (which proves to be a reasonable estimate of the
E: performance of practical DFE receivers) is the error probability of cohereant
A

PSK for maximal ratio combining of independent nonselective Rayleigh fading
-
- channels, If L denotes the order of the explicit diversity, the probability
. of error of maximal ratio PSK is given by [6],
N .
. PL) = | a(vVZa)fi(s)as | (5.30)
. 0

where s is the instantaneous combined signal-to-noise ratio and fL(s) is the
S
;i probability density function of s for diversity L. Assuming identical
.y diversity branch statistics (i.e., average branch signal-to-noise ratios), the
“
%)
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probability density function fL(s) is [6], _
K
: £, (s) = (Lil)! . ‘i;l .exp(-s/8) , (5.31) )
where the common per branch average signal-to—-noise ratio S=262E/N0, The
\_' results of the computation of P (L) as a function of S are shown in Fig. 5.2 "
‘:\t for diversity L =1, 2, and 4. As a comparison for the results in Chapters 3
}':- and 4 for the case of diversity reception, the error probability for square
, | | law diversity combining of DPSK in nonselective Rayleigh fading is also shown -
5_’ as a dashed line for the same orders of diversity. When the decision <
5:: statistic for DPSK signalling is of the form of Z in (3.5), '"square law” ;
-:":. combining should be viewed as quadratic form combining (see [6]1) of the ‘
.‘-EE: ’ received signals given by the sum of L independent variables Zn for =a=1,L _‘N‘:
:::: [17]. Since DPSK signalling can be represented as a particular form of -t
_.._ orthogonal signalling on the interval [0,2T], this quadratic-form combining, ~|
__ which is the optimal combining technique for DPSK in Rayleigh fading if no '_:_'.:
\. channel estimate is available, is equivalent to square law combining of the -
._“_ orthogonal signals, It can be shown, using the results in [6] or [48], that v
-;‘.:v: the average error probability for square law DPSK in Rayleigh fading is given =
o by
:.:t. PyL) = PeL ) EL_I (l-l’t.')n C(L-1+n,n) , (5.32) =
= u=0
.:": where Pe=(2+28)_1 is the average error probability for DPSK in nonselective =
«_\’. Rayleigh fading (cf. (3.18)), and Clm,n) is the binomial coefficient. The -
.}?é corresponding result for orthogonal FSK can be obtained from Fig. 5.2 by ;
:';:i’ finding the value of the error probability corresponding to a 3 dB reduction "
e of signal-to-noise ratio S. The effect of the limiting error probability on .
: the square law diversity performance of DPSK and FSK can be approximately l
L)
" R DA el o SR N AN, R
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—~-e= P (L)

Signal-to-noise ratio, S (dB)

Figure 5.2, Probability of error for maximal ratio PSK and square law DPSK for
diversity L vs. per branch signal-to—noise ratio, S
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determined by finding the irreducible error probability for a particular value

of rms multipath spread p from Fig. 3.3 or Fig. 4.3, which is the exact result

for L=1. The approximation of the limiting error probability for L=2,4 is

N
a g

then obtained by finding the corresponding value of S for the square law, L=1

PR TY GO

curve and determining P (L) with L=2 and L=4 for this value of S.

5.4 Simulation and Experimental Results on DFE Performance

5.4.1 Simulation Results

One of the earliest published records of computer simulation results for

the performance of DFE for fading channels appears in [23]. For this

simulation study, the Rayleigh fading channel is modeled with a rectangular .
delay power—density spectrum (cf. (2.16)) with the parameter Tb ranging .
between 0 and 0.5/T where T is the data pulse duration. Notice that for all .i
values of T, considered in this simulation, the frequency-selective chanmel .'
satisfies the adjacent-pulse-~limited ISI assumption for the received. signai i;
prior to equalization. From the definition of the rms multipath spread p in -
Chapter 2, we see that these values of Tb/T correspond to rms multipath -
spreads ranging from zero (i.e., nonselective fading), to a maximum value of :;
0.3 for T) = 0.5/T. The simulation is carried out for a DFE consisting of a ;ﬁ
single three—tap forward filter with data pulse interval tap spacing, and a Eﬁ
three—tap feedback filter (i.e., K;+1 = N =3). The results of this study S
suggest that the implicit diversity gain resulting from the correct resolution =
of the multipath signal componments can be realized in a simulated fading i
environment. This implicit diversity gain produced error probabilities less B ﬁ
than the probability of error for coherent detection in nonselective fading ;; é
(i.e., Pc) by an order of magnitude at S = 10 dB (representing a gain of 12 - §
. %
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jﬁ dB), and more than two orders of magnitude at S = 15 dB (for a gain of more ;
l[ than 20 dB) for an rms multipath spread of 0.3. The results in [23] also ?
o indicate that significant reduction in error probability (am order of ‘
- magnitude for S = 15 dB) is achieved for values of u as small as 0.18. For 1

F; smaller rms multipath spreads (i.e., p < 0.05), the reported error probability

Sindinciatii e

is closely approximated by P, and is upper bounded by P, for all values of u
considered. It is interesting to note that the results in Chapter 3 indicate
= that for this channel model the irreducible error probability of rectangular l

pulse DPSK for p = 0.3 is approximately 6:10-2 and that the average

;i probability of error for DPSK is about 10"2 at 8§ = 15 dB, even for
nonselective Rayleigh fading. In contrast, no limiting probability of error

Ei was exhibited in the DFE simulation for error probabilities as low as 10-6.
ii In [24] simulation results are reported for am explicit diversity

) application of a high speed (~ 10 Mbits/second) troposcatter system described 3
:ﬂ in [51]. The DFE modem was designed to employ rectangular pulse gquadriphase ]
t: shift keying (QPSK) and accommodate up to four independent diversity channels,

¥ each with a forward TDL filter of three taps spaced at one-half the data |
i; symbol interval T. The outputs of the forward filters are coherently combined

i and used as the input to in~phase and quadrature filters, each of which are
%; followed by a three—tap feedback TDL with symbol-interval tap spacing. The

- simulation consisted of measuring the average bit-error probability

57 pexformance for a prototype modem using a troposcatter . anel simulator. The
Eg channel simulator is realized as a TDL filter with tap-weights driven by the
v outputs of Gaussian noise generators so as to realize a random channel with a
é; fixed rms multipath spread for each simulation. Using this configuration,

2 simulation results are obtained for values of rms multipath spreads as large

‘
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as 0.6 for diversity L=2 and 0.95 for diversity L=4. While the delay power—
density spectrum model for the channel simulator is not explicitly discussed,
it is reasonable to assume that a channel with a rectangular delay spectrum is
employed since this model is used in [23], and the TDL channel simulator is

most easily implemented for this model.

The results indicate that for dual diversity (L=2), and signal-to—noise
ratios of less than 20 dB, the lowest error probabilities are obtained for rms
multipath spreads between 0.25 and 0.4. For these values, it is shown that
the DFE modem produces error rates which are lower than Pc(z) by a factor of
ten at S = 15 dB (for a gain of 5§ dB), and an improvement of nearly two orders
of magnitude at S = 20 dB (representing a gain of 10 dB) for S = 20 dB. 1In
contrast to the results cited above, this simulation study establishes the
existence of an irreducible error probability of approximately 1076 for p =
0.6 and 10"8 for p = 0.45. In comparisonm, the results in Fig. 3.3 and Fig.
5.2 for L = 2, indicate that for p = 0.45, the irreducible error probabilities
for both rectangular pulse DPSK and sine pulse DPSK are about 3x10-2
representing an equivalent per branch average signal-to—noise ratio of

approximately 8 dB.

For fourth-order diversity, simulation results are obtained for values of
p as laxge as 0.95. As in the dual diversity simulation, the smallest average
error probability is obtained for an rms multipath spread of about 0.45. In
this case the resulting error probability is shown to be less than Pc(4) by
more than an order of magnitude for S = 10 dB (a gain of 3 dB) and about two
orders of magnitude for S = 15 dB (a gain of 5 dB). For one simulation of
fourth-order diversity, am irreducible error probability of about 1077 was

obtained for an rms multipath spread of 0.45. In comparison, the
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approximation of the irreducible error probability for DPSK with L=4 is about
2x10—3. so that the use of DFE and coherent detection provides a reduction of
more than four orders of magnitude for the limiting error probability in

similar fading environments.

5.4.2 Results of Experimental Studies

In [14], live link test results are reported for the DFE modem described
in [51] and used in the channel simulator studies cited above. In this test,
the DFE modem was operated in both dual (L=2) and quadruple (L=4) diversity
configurations and for two test "channels” with distinct fading
characteristics. The two "channels” each consisted of a radio-frequemcy (RF)
transmitter, fading chanmel, and an RF receiver producing an intermediate-—
frequency output (forward-filter input) for each diversity branch. The two
channels considered in the test were the 900 MHz and 4.5 GHz troposcatter
radio systems at the Rome Air Development Center test facility. The multipath
profiles for these channels were measured with a channel probe using an m-
sequence coded sounding signal. It was found that the delay demsity followed
a basic trisngular shape (cf. (2.14)) and that the shape of the delay demsity
did not vary greatly from test to test (with the exception of the 900 MHz
channel where a secondary triangular "hump” was occasiomally observed). Data

are presented in [14] for the 900 MHz channel with a measured rms multipath

spread of u=0.45, and for the 4.5 GHz channel with g measured as approximately
0.35. The probability of error for the DFE modem was measured by the bit-
error rate averaged over twenty-minute periods as a function of the median
received signal-to—noise ratio. In what follows, the performance of the DFE

modem is discussed in terms of the mean value of the measured error
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probabilities as a function of the per channel signal-to-noise ratio. It
should be pointed out that the results in [14) exhibit sample points that vary
from this mean value by as much as a factor of ten for a particular measured

signal-to—noise ratio.

For all cases reported in [14], the test results show major discrepancies
between measured DFE modem performance and the results of simulation studies
discussed above. In particular, for the 900 MHz channel and dual diversity,
test results are reported for measured signal-to—mnoise ratios ranging from 5§
to 17 dB. These results indicate that the DFE modem error probability is on
the average slightly larger than Pc(Z) for signal-t-noise ratios less than
about 15 dB (differing by at most a factor of three at S = 5 dB, indicating a
SNR degradation of about 5 dB). For S = 17 dB, the average error probability
for the DFE modem was approximately equal to Pc(2)° Similar results were
obtained with dual diversity for the 4.5 GHz channel with measured rms
multipath spread 0.35. For this channel, test results are reported for
signal-to-noise ratios ranging from 15 to 22 dB. The measured DFE error
probabilities are slightly larger than Pc(z) for S < 20 dB, and differ from

Pc(2) by 1less than a factor of two for the entire range of signal-to—noise

ratios reported.

The test results for fourth-order diversity show that Pc(4) is an
excellent approximation of DFE performance for both channels considered. In
particular, for the 900 MHz channel (u=0.45), the results show that the
average measured DFE error probability is between Pc(4) and 2xpc(4) for all
reported values of signal-to—noise ratio (0-15 dB) which corresponds to a
degradation of 1less than 3 dB. Similarly, test results for the 4.5 GHz

channel (u=0.35) show that the measured average error probabilities lie
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between 1-23Pc(4) and 3xP.(4) for all signal-to-noise ratios which range

between 5 and 17 dB for this channel.

The basic conclusion that can be drawn from the above experimental
results is that the average error probability for maximal ratio PSK is a
reasonable estimate of the performance of decision—feedback receivers for
practical fading channel communication systems. This is in stark contrast to
the implications of the simulation results which show that in certain cases,
the DFE can realize error probabilities two orders of magnitude lower than
Pc(L). even in the case of no explicit diversity (L=1). It is reasonable to
assume that some of the discrepancy between predicted and measured performance
is due to the less than ideal characteristics of the RF transmitter and
receiver employed for the experimental studies, However, by examining some of
the very basic limitations of equalizer performance, it cam be seen that the

results of the simulation studies can be characterized as "optimistic.”

Recall, from the discussion in Section 5.2, that the feedback portion of
the DFE receiver is designed solely to eliminate the intersymbol interference
due to previously transmitted data signals. Hence, the implicit diversity
gain can only be realized by the coherent combining properties of the forward
TIDL filter. Thus, the potential for diversity gain with respect to the
decision on the desired data bit, bO is characterized by the vector Rg, (cf.
(5.24)). For the example of a rectangular delay delay power-density spectrum
(2,16) with parameter Tb=T/2. which corresponds to the channel considered in
(23], Bfo consists of only two entries, R(¢,-1) and R(.,0), which are Gaussian
random variables, linearly related to the response function h(.,Z) throungh
(5.5). Using (2.16) and the definition of the rectamgular pulse correlation

function in (3.14a), it is easy to see that the second moments of the
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components of R., are related by
14.E{R*(.,-1)} = E{R%(.,0)) .

In general, the random variables R(.,-1) and R(.,0) are correlated Gaussian
random variables by mnature of the overlapping portions of the rectangular
pulse autocorrelation function. However, in order to characterize a lower
bound for DFE receiver performance, we proceed under the assumption that
R(.,-1) and R(.,0) are uncorrelated and hence independent. (It is well known
[6] that correlations among diversity links can only degrade the performance
of maximal ratio diversity systems.) In this case, the error probability for
maximal ratio PSK is given by (5.30) by neglecting the parameter L, where the
probability deisity function of the instantaneous signal-to-noise ratio s is

given by

f(s) = -i—gg o[exp(-s/S) - exp(-145/8)] ,

and where S is the average signal-to—-noise ratio corresponding to R(.,0).
Calculation of the integral in (5.30) for this density function of s shows
that for S between 10 and 30 dB, the maximal ratio error probability lies
approximately mid-way between the curves corresponding to Pc(1) and pc(z)
shown in Fig. 5.2, and obtains a value of 5.4x10_6 for S = 30 dB. Hence, we
see¢ that even under ideal conditions, the effective order of implicit
diversity is between one and two. Moreover, it is not likely that the actual
DFE performance would reflect much of this potential diversity gain since i)
in reality, the implicit diversity branches are correlated, ii) the one-shot
MMSE forward filter approaches the maximal ratio combining filter only

asymptotically for small signal-to—noise ratios, and iii) the MMSE forward

filter tap weights are largely determined by the character of the intersymbol
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interference, especially for high signal-to-noise ratios. Thus, second-order
u diversity may be considered to be a gross upper bound for the effective order
of implicit diversity for this example. In contrast, it is claimed in (23],
that results of the simulation study for this channel model show that the DFE
;; receiver realizes an implicit diversity order of approximately four. The
discussion above and the results of experimental studies in [14] show that

X this is not the case.

We conclude that while some potential for implicit diversity gain does
exist, it is not a significant factor for MMSE decision—feedback equalization.
;; Rather, the main attributes of decision-feedback equalizers are the ability to
establish a coberent communication eavironment, and the substantial reduction
~ of the effects of intersymbol interference for ﬁractical systems within the
ti limits of the «capabilities of the equalizer. Thus; for a given order of
explicit diversity L, the performance of DFE receivers im frequency—-selective
{} Rayleigh fading channels is both easily and accurately approximated by the

3 average error probability for maximal ratio PSK defined in (5.31).

. 5.5 Additional Considezations

There are, of course, a number of design problems associated with the
implementation of adaptive equalizers which largely determine the
. effectiveness of the equalizer. The aspect of equalizer implementation which
iﬁ most profoundly affects system performance is the realization of the algorithm
used to adaptively adjust the coefficients of the TDL filters. In practice,
the equalizer, and, hence, the tap—adjustment hardware, is designed to operate
ij in two modes. At the start of operation, a known data sequence or training
sequence is transmitted to allow the receiver to adjust to the initial state

-~ of the channel. The required length of the training sequence depends on the
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A total number of equalizer taps, the characteristics of the channel, and the
speed of convergence of the adjustment algorithm [23,44,52]. At the end of “
g}ii the start-up mode, the receiver uses the results of previous data symbol ]
::ﬁt decisions to continuously update the tap coefficients [40,44]. Thus, the ’
. j primary performance criteria for tap-adjustment algorithms are the speed of -
ﬂ}i convergence, the senmsitivity to occasional decision errors, and the complexity
Zﬁij or cost of implementation.
e The most commonly implemented adjustment algorithm for both 1linear TDL
"jtf and decision-feedback MSE equalizers is a8 form of stochastic gradient or
‘ifj steepest descent algorithm [23,49,50]. In this implementation, the tap-vector o
~ w is recursively adjusted according to the relation .
.‘:.'. - 't'
. .
L™
A Tper = B * Ay >
: - =t
N where Hk is the vector of received samples U given by (5.3), ey is the
h {'. 3 _'..
nYy difference between the k-th output and the decision on the k—th output, and A
if} is a scale factor which must be chosen small enough to ensure equalizer -
. convergence [44], While the steepest descent algorithm has the advantage of -~
:2; esse of implementation, it is characterized by a slow rate of convergence o
o : N
Ot [47]. It has been shown (53] that steepest descent algorithms require
AR training sequences of length 10xN, where N is the total number of -equalizer -
o
nj~ taps. A primary constraint for the equalization of fading channels is the -
" need to track the sometimes rapidly varying channel. For applications to =~
:if Rayleigh fading chanmels, it is necessary to insert training sequences at N
. -
:{: periodic intervals to ensure stable equalizer operation. For example, in [8]
iﬁ the results of a simulation study of a DFE consisting of ten forward and ten Qg
~~: feodback taps with no explicit diversity are preseated. The study was ~.
Q.'. '.'.
'~i. S~
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implemented vusing a channel simulator to realize a channel with average
decorrelation time on the order of 104 data pulse durations, In order to
maintain channel equalization, it was necessary to insert a 100-bit training

sequence at 2000-bit intervals in the data sequence.

The slow rate of convergence -of the steepest descent algorithm is a
limiting factor in determining the applicability of adaptive equalizers
implementing this algorithm. Within the last decade, a number of studies have
been directed toward finding rapidly converging algorithms that can be
implemented with minimum additional complexity [47,53-56]. Of these, the
algorithms that have received the most attention are those derived from the
work of Godard [53] who first applied the Kalman estimation algorithm to the
problem of equalizer adjustment, These investigations show that it is
possible to obtain near MSE-optimal equalizer adjustmeat using training
sequences of 1length N, where N is the total number of equalizer taps [54].
Moreover, it is suggested that equalizer adjustment algorithms of this type
are capable of tracking the occasionally rapid changes experienced in a fading
enviromment., The two main disadvantages of these algorithms are additional
sensitivity to additive noise [44) and increased complexity [44]. The
additional computational burden for even the most efficient of these
algorithms 1is roughly 2N times the complexity of steepest descent algorithms

for an N-tap equalizer,
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CHAPTER 6
?i
SUMMARY AND CONCLUSIONS )
In this thesis, we have investigated the effects of frequency-selective '
' fading on the average probability of error for DPSK and FSK communications. :’
‘i}; By considering the effects of frequency—selective fading in both the frequency
) domain and the delay domain, we have examined the interaction between the )
characteristics of the fading channel, the transmitted signal, and the i;
quadratic nature of the detection process employed for DPSK and noncoherent .
FSK conn;nications. We have identified the system parameters that are of ég
- fundamental importance in determining the average error probability. It has .
:?g been shown that the performances of DPSK and FSK can be approximated in terms -
of ome or two parameters that can be obtained from rms—type channel 53
. measurements. Lastly, we have examined the basic limitations of equalizer
;; performance and have developed a method of obtaining estimates of adaptive :
equalizer performance for practical systems, |
The analysis of DPSK and FSK for several examples of multipath models -
N (delay power—density spectra) leads to several conclusions. For DPSK systems, E;
the average error probability as well as the irreducible error probability -
'if strongly dcpend.on the shape of the data-pulse waveform. These examples also
'iE indicate that the lowest error probabilities are obtained when small time- i;
: bandwidth product pulses are employed. In particular, the sine-pulse, which -
':§ is the smallest time—bandwidth product pulse waveform considered [39], also
is produces the 1lowest error probability of any pulse shape considered. Large o
time~bandwidth product pulse shapes (e.g., phase-coded pulses generated by m 4
.;g sequences) exhibit increased sensitivity to the effects of intersymbol 13
3 Y
¢
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3;&: . interference as well as larger error probabilities for practical values of
;F. [3 ' signal-to-noise ratio.

PR

{:{. :; Similar conclusions apply to the relationship between the data-pulse
‘;;jj i shape and the probability of error for FSK systems. In addition, the
;{) 2 modulation index as well as the relative phases between successive transmitted
;?: signals play an important role in determining the system error probability.
:-5 The lowest error rates for FSK are obtained for continuous—phase signals with
e small modulation indices.

;? -. Comparing the results for DPSK and FSK, we find that the error
o i; probabilities for these systems depend on a number of common factors, and in
‘{EE e certain cases, the effects of frequency-selectivity om both DPSK and FSK
ij&f - systems can be characterized by the same parameter. A technique for obtaining
;-‘J [i bounds on system performance in terms of the key system and channel parameters

applies to the evaluation of both DPSK and FSK systems for the several

woot

s
Y
st

s examples of channel models and signaling formats, Finally, the error

0 'y »
L)
..

probabilities for systems employing complicated pulse shapes and for channels

‘ l- -
‘:3§ which are difficult to fully characterize can be predicted from the key system
o, ) '\n
\jt {s parameters and the performance data contained in this thesis.
A
f‘; - For channels with rms multipath spreads 1less than about 0.1, it i.
~ .
f&? possible to substantially reduce the irreducible error probabilities for both
" ..a CY
< ‘.
JNE- e DPSK and FSK systems by choosing system parameters which minimize the
Atﬁ; . sensitivity to intersymbol interference. However, for many practical systems
icﬁ o the effects of ISI can severely 1limit the performance of these forms of
e
et , . :
:;p o digital communications. In Chapter S, the characteristics of adaptive
2 ° ~
o equalizers commonly employed for fading-channel communications are described
e e
tfﬁ :; and the results of several simulation and experimental studies are compared.
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It is revealed, that while claims of "implicit diversity gain” abound in the
literature, the significant attributes of adaptive equalization techniques are

the ability to establish a coherent communication 1link and the substantial o

dndadundn BN S

reduction of the effects of intersymbol interference. Comparing the results ) {
of simulation studies and experimental investigations of equalizer performance - ’
with the analytical results for the error probabilities of DPSK and FSK
systems reveals that reliable communications can be achieved through channel T

equalization even in fading environments that produce unacceptably high error -

probabilities for unequalized systems.

It should be pointed out that one of the factors limiting the implicit
diversity gain for signals with small time-bandwidth products is the inability
to resolve the multipath components in the received signal. For rectangular
data pulse waveforms with duration T, it is clear that signals arriving at the ;ﬁ- *
receiver with relative delays of less than T seconds cannot be resolved into B
independently faded components. In fact, for WSSUS fading chanmels, the
statistical correlation between signals received with relative delay & is
completely determined by the product of the delay power—density spectrum and

the autocorrelation function of the data pulse waveform evaluated at &. ff

Within the last five years, there has been considerable interest in the
application of equalization techniques to both coherent and noncoherent
spread-spectrum communication systems employing phase-coded waveforms, The
analysis [57] and test results [58,59) indicate that the use of this type of

signal with large time-bandwidth product allows resolution and coherent

(maximal ratio) combining for both HF and troposcatter channels. The .
development of useful bounds and approximations of the performance of adaptive o

equalizers for both spread-spectrum and conventional communications in -
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-. frequency—selective fading channels is an area where much further work is
': needed.
tﬁ The current interest in applications of adaptive equalization techniques
- to digital communications over frequency-selective fading channels is in large
:3 part due to the well-documented effectiveness of these techniques in nonfading
o systems. While it is true that reliable communications can be achieved
= through the use of adaptive equalizers, it is not clear that channel
Ef equalization is the most efficient way to reduce the effects of intersymbol
| interference. Unfortunately, the published 1literature is void of the
t; consideration of alternative techniques that could be used in practical
- systems to obtain acceptable performance.
%
One example of a possible alternative which deserves consideration is tke

E use of M—ary orthogonal signalling in conjunction with error correcting codes.
- In particular, suppose that the source data rate R = 106 bits/sec and the
95 channel rms delay M = 3x10-5 sec are fixed design parameters. Hence, for
;1 binary signaling the rms multipath spread By = M/T = 0.3. If 8-ary orthogonal
B FSK is used to transmit the binary data, the effective rms multipath spread is
Tf reduced to Mg = 0.1, Unfortunately, the evaluation of the probability of
- error for M-ary orthogonal FSK in frequency-selective Rayleigh fading is at

present an unsolved problem. While it is true that the introduction of an
; error—correcting code has the effect of increasing the channel data rate (and,
’ hence, increasing the effective rms multipath spread), it may be possible to
;i realize error rates significantly lower than those achieved through adaptive
N channel equalization, The investigation of alternative methods of achieving
Ei reliable communications over frequency-selective fading channels is an area
i“ which appears to be both promising and challenging.
i
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