RENCE
mu

AD-A142 403 PRWEEDINGS OF THE ANNUA m ON ADA
.?S !CIMICS

F/0 9/2

UNCLASSIFIED

V ﬂlﬁ) (Ul

"m l O = 2 s

Al

lllll—- @ 22

Il

=Y N

AD-A142 403

Proceedings of the 2ND Annual Conference on

Y -Ada Technology

- March 27, 28, 1984 ?LI!%N
= SJUN 18 WW
= 5

SPONSORED BY U.S. ARMY CENTER FOR TACTICAL COMPUTER SYSTEMS
FORT MONMOUTH, NEW JERSEY
Host College - HAMPTON INSTITUTE, Hampton, Va.

®Ada is a trademark of the Department of Defense (Ada Joint Program Office)

84 06 14 o095

-

(TITLE):

(SOURCE) :

DTIC

ELECTE
JUnae

COMPONENT PART NOTICE

THis PAPER 1S A COMPONENT PART oF THE FoLiowin COMPILATION RePORT: .

Proc ings of the al Confo A

Held at Hampton, Virginia om March 27, 28, 1984,

Tactical Computer Systems.

To orDER THE cOMPLETE COMPILATION REPORT USE _AD-A142 403 .

THE COMPONENT PART 1S PROVIDED HERE TO ALLOW USERS ACCESS TO INDIVIDUALLY

AUTHORED SECTIONS OF PROCEEDINGS, ANNALS, SYMPOSIA, ETC.

HOWEVER, THE

COMPONENT sHouLD BE CONSIDERED WITHIN THE CONTEXT OF THE OVERALL COMPILATION
REPORT AND NOT AS A STAND-ALONE TECHNICAL REPORT.

THe rFoLLowING COMPONENT PART numBers coMPRISE THE COMPILATION RePORT:

AD#:

AD-POO3 U144
AD-POO3 [15
AD-POO3 416

AD-P003 417
AD-P003 118
AD-PO03 419
AD-P003 4,20
AD-PO03 421
AD-P003 22

AD-POO3 423
AD-POO3 424

AD-PO03 425
AD-PO03 [26

AD-PO03 L27
AD-POO3 428

AD-P003 429
AD-P003 430

AD-POO3 431
AD-PO03 432
AD-PO03 4433

TITLE:

The Army Ada (Trademark) Education Program.

The U, S. Army Model Ada (Trademark) Training Curriculum.
Configuration Management with the Ada (Trademark) Language
System,

Learning the Ada (Trademark) Integrated Environment,
Teaching Ada (Tra.dema.rk) at the US Military Academy.

Experiences in Teaching Ada {Trademark).

Teaching Ada (Trademark) at Hampton Institute.

The CECOM Summer Faculty Research Program,

Teach Ada (Trademark) as the Student's First Programming
Language.

An Ada (Trademark) Network: A Real - Time Distributed
Computer System,

DCP (Distributed Software Engineering Control Process) -
Experience in Bootst rapping an Ada (Trademark) Environment,
Ada (Traedemark)for Business & other Non - DoD Applications.
Exerience with Ada (Trademark) for the Graphical Karnal
System,

Military Computer Family Operating System: An Ada

(Trademark) Application,

An Advanced Host - Target Environment for the Military —
Computer Family, a
Ada Tra.dema.rk§ Tasking in Numerical Analysis. 0
Ada (Trademark) as a Program Design Language - Have the ‘ o
Major Issues Been Add ressed and Answered, i

Ada (Trademark) Design Concerns.

Seeding the Ada (Trademark) Software Components Industry.

Operating System Interface for Ada (Trademark) Instructors. / *

y Codes
Avall and/o#

This document has beea amndA
for public release and sale i
i distribution is ualisndted,

[OOSR

t | Speclal

i
*

L3 A

TITLE:

COMPONENT PART NOTICE (con'T)

PROCEEDINGS OF
SECOND ANNUAL CONFERENCE ON
*ADA TECHNOLOGY

SPONSORED BY
U.S. ARMY CENTER FOR TACTICAL COMPUTER SYSTEMS
(CENTACS), FORT MONMOUTH, NEW JERSEY

HOST COLLEGE
HAMPTON INSTITUTE, HAMPTON VIRGINIA

SHERATON INN/HOLIDAY INN
MERCURY BLVD.
HAMPTON, VIRGINIA

-m, Approved for Public Release: Distribution Unlimited
5510n
) °" +Adais aRegistered Trademark of the Department of Defense

gﬁ: il > (Ada Joint Program Office)
Uncci~onrean '
Just.oio ey " DTI C
- - ELECTE

Ih\(e : ap
St AR sJUle 084 ¥

Avatil v-oor . -

I
t
|

LI S AN J
Ditt | &p i i
A L

D

SECOND ANNUAL CONFERENCE ON ADA TECHNOLOGY

TECHNICAL SESSIONS s /olenw .-

Tuesday Morning 27 March 1984

9:00 am Session | — > Government, Academia and Industry Speak
10:30 am Session Il The Army Ada Training Initiative
10:30 am Session Il Ada Programming Environment.

Tuesday Atternoon 27 March 1984

2:00 pm Session IV . » Teaching Ada.
2:00 pm SessionV Ada Applications

Wednesday Morning 28 March 1984

9:00 am Session Vi ~Application of Adain the Mathematical Science
9:00 am Session VI IEEE PDL Working Group Report. -
11:00 am Session Viil Ada and the Future N
\x
PAPERS

Responsibility for the contents included in each paper rests upon the authors and
the not the Conference Sponsor. After the Conference, all the publication rights of each
paper are reserved by their authors, and requests for republication of a paper should be
addressed to the appropriate author. Abstracting is permitted, and it would be ap-
preciated if the Conference is credited when abstracts or papers are republished. Re-
guests for individual copies of papers should be addressed to the authors.

CONTRIBUTORS

TRW
Redondo Beach, California

General Electric Company
Syracuse, New York

Softech Inc.
Waltham, Massachusetts

it

TABLE OF CONTENTS

TUESDAY, MARCH 27, 1984—9:00 AM-12:15 PM

Hampton Room—Sheraton Inn

Greetings:
Dr. William R. Harvey, President, Hampton In-
stitute, Hampton, VA HOST COLLEGE
Dr. Hugh M. Gloster, President, Morehouse Col-
lege, Atlanta, GA.

SESSION I: Government, Academia and Industry
Speak

Chairperson. James E. Schell, US Army, Director
of CENTACS, Ft. Monmouth, NJ.
Dr. Mark Epstein, Office of the Asst. Secretary of
the Army (RDA), Washington, DC. (Government)
Dr. Percy A. Pierre—President, Prairie View, A&M
State University. (Academia)
Dr. Jean Ichbiah—Alsys Inc. (Industry)

Holiday Room—Holiday Inn
SESSION II: The Army Ada Training Initiative

Chairperson: Charles Oglesby, US Army,
DARCOM HQ, Alexandria, VA

The Army Ada Education Program—D. J.
Turner, US Army, CENTACS, Ft. Monmouth,
N 1

The U.S. Army Model Ada Training Cur-
riculum--P. Texel, SofTech, Tinton Falls, NJ 5

Tidewater Room—Sheraton Inn
SESSION ill: Ada Programming Environments

Chairperson: Joseph E. Kernan, US Army
CENTACS, Fort Monmouth, NJ

Configuration Management with the Ada
Language System—R. Thall, SofTech,
Waltham, MA. 11

Learning the Ada !ntegrated Environ-
ment—G. Snyder, Intermetrics, Cambridge,
MA 25

TUESDAY, MARCH 27, 1984—2:00 PM-5:15 PM

Holiday Room—Holiday Inn
SESSION IV: Teaching Ada

Chairperson: Dr. Genevieve Knight, Hampton
Institute, Hampton, VA

Teaching Ada at US Military Academy— Ma-
jor K. J. Cogan, Dept. of Geography and
Computer Science, US Military Academy,
West Point, NY 3

Experiences in Teaching Ada—P. Caverly, C.
Drocea, D. Yee and P. Goldstein, Jersey City

State Coliege, Jersey City, NJ............ 35
Teaching Ada at Hampton Institute—D.
Rudd, Hampton Institute, Hampton, VA.... 38
The CECOM Summer Faculty Research Pro-
gram—P. Texel, SofTech, Tinton Falls, NJ. . 42

Teach Ada as the Student’s First Program-
ming Language?—S. Richman, Penn State
University, Middietown, PA. 50

Tidewater Room—Sheraton Inn
SESSION V: Ada Applications

Chairperson: Chartene Hayden, GTE Comm.
System Div., Needham, MA

An Ada Network—A Real-time Distributed
Computer System—D. S. Lane, G. Huling,
and B. Bardin, Hughes Aircraft Co., Fuller-
ton, CA. e 55

DCP—Experience in Bootstrapping an Ada
Environment—S. Parish and A. Rudmik, GTE
Automatic Electric Lab, Phoenix, AZ. 62

Ada for Business and Other Non-DoD Ap-
plications—R. E. Crafts, Intellimac,
Rockville, MD. 70

Experience with Ada for the Graphical
Kernel System—K. Gilroy, Harris Corp.,
Melbourne, FL.. 74
Military Computer Family Operating System:
An Ada Application—F. Wuebker, RCA,
Moorestown, NJ. 86

An Advanced Host-Target Environment for
the Military Computer Family—H. Hart, R.
Hart, and . Muennichow, TRW, Redondo
Beach, CA............................. 89

WEDNESDAY, MARCH 28, 1984—9:00 AM-12:00 N

Holiday Room—Holiday Inn

SESSION VI: Application of Ada In The
Mathematical Science

Chairperson: Dr. Arthur Jones, Morehouse Col-
lege, Atlanta. GA

Mathematical Subroutine Packages For
Ada—B. J. Martin, Atlanta University, Atlan-

ta, GA...... 102
Ada Tasking in Numerical Analysis—J.
Buoni, Youngstown State University,
Youngstown, OH. 104
Ada and Statistics—A. M. Jones,
Morehouse College, Atlanta, GA.......... 109

Tidewater Room-—Sheraton inn
SESSION VII: IEEE PDL Working Group Report

Chairperson: Mark Gerhardt, Raytheon,
Portsmouth, Ri

Ada as a Program Design Language~—Have
the Major Issues Been Addressed and
Answered?— 8. Blasewitz, RCA,

Moorestown, NJ 111
Ada Design Language Concerns—K. Grau
and E. R. Comer, Harris Corp., Meibourne,
FL .o 115

Tidewater Room~—Sheraton inn
SESSION VIII: Ada and The Future

Chairperson: Joseph Kernan. US Army,
CENTACS, Ft. Monmouth, NJ

Seeding the Ada Software Componenis in-
dustry—K. Bowfes, TeleSoft, San Diego, CA

Economic, Social, and Legal Aspects ot
Sottware in the Future—/. Feldman, Jersey
City State College, Jersey City, NJ...

Operating System Intertace for Ada Instruc-
tors—D. €. Fuhr, Tuskegee Institute,
Tuskegee, AL..........................

125

129

AD-P003 414

Dennis J.

THE ARMY ADA* EDUCATIJN PROGRAM

Turner

Center for Tactical Camputer Systems (CENTACS)
U.S. Army Communications-Electronics Coammand (CBECOM)
Fort Monmouth, New Jersey

*In behalf of the U.S. Army, CENTACS is pursuing a
comprehensive and aggressive Ada program. An
important aspect of that program is the develop-
ment and transfer of public damain Ada educational
and training materials which are focused on the
needs of the academic, industrial and govermment
cammunities. This paper provides an overview of
the Army's Ada education and training program and
summarizes the products and materials which are
being produced under contracts with Softech, Inc.,
New York University and Jersey City State College.

Summary of the CENTACS Ada Program

CENTACS has been actively supporting the DOD Ada
initiative since 1975. Activities have been
focused in five complementary areas: language
definition, program support enviromments, method-
ology, education and training, and Policy.

Language Definition

CENTACS provided the Army representative to the
DOD High Order Language Working Group (HOIWG)
which developed the initial language requirements.
Campeting designs led to the selection of the so
called GREEN language which was later to become
Ada, as now defined in MIL STD 1815A. CENTACS
contracts with Softech, Inc., Teledyne~Brown
Engineering and New York University have been
instrumental in the development of the test
sulte which is now used by the DOD Ada Joint
Program Office (AJPO) to validate that campilers

are implementing the language definition correctly.

Program Support Enviromments

CENTACS has participated in the development of
requirements for Ada Program Support Environments
(APSE's). These requirements are currently
embodied in a document known as the STONEMAN.

In June 1980, CECOM awarded a contract to Softech,
Inc. to develop an Ada Language System (ALS)
which cambines the Ada and STONEMAN initiatives.
The ALS is a govermment owned, production quality
Ada support enviromment which includes a rich set
of powerful tools (in addition to a compiler)
which will dramatically improve the productivity

of programmers and technical managers. The ALS
baseline system (VAX host) is scheduled for cam-
pletion by the fall of 1984 and additional tools in
support of targeting to the Army's Military
“amputer Family (MCF) by December 1985.

Representatives have also been participating in
the gervice activities aimed at the development of
a Common Ada Interface Set (CAIS), and the Joint
Service Software Engineering Envirorment (JSSEE)
Cammittee under the Software Technology for Adapt-
able Reliable Systems (STARS) initiative.

“ENTACS is sponsoring a research effort which is
developing a prototype system (called GANDALF) for
experimentation with syntax directed editors,
intelligent work stations and distributed process-
ing, all in an Ada context.

The development and evaluation of powerful support
envirorments are essential if we are to maximize
the productivity of programmers.

Methodology

CENTACS has been pursuing a variety of methodology
investigations since the early 70's. This impor-
tant topic is the focus of a great deal of
research and 1s a major thrust of the STARS initi-
ative. The Army is strongly motivated to advance
the state-of-the-art in this area in order to
reduce costs thru effective methodology which can
be applied uniformly across systems.

Education and Training

The Ada language and its supporting envirorments
and methodologies are, obviously, of little value
if the workforce is not able to put them to
effective use. CENTACS has recognized the need
for education and training and initiated a campre-
hensive program to provide academia and industry
with necessary curriculums and materials to meet
that need. Since this is the topic of this paper,
it will be described in greater detail below.

Policy and Objectives

The DOD has established Ada as the standard
programming language to be used across all defense

*Ada is a registered trademark of the Department of Defense, Ada Joint Program Office, OUSDRE (R&AT)

systoems. CBCOM and 1ts parert Command, DARCOM,

are also requiring the use of Ada as a Program
Design Language (PDL) for Army systems. The Army
secks, further, to establish the ALS as a cammon
support enviroment to be used across all Battle-
fleld Autamated Systems (BAS's). The overall
oblective is clear: cammon languge, conmon support
enviroments, comon methodology and camon
oducation/training. With software costs continuing
te grow at an alarmming rate, commonality is not
just desireable - it 1s essential.

Ada Education and Training Initiatives

CENTACS activities in this area have been focused
on the separate nceds of the academic cawmnity
{education) and those of Industry and Govermment
(training). The cammon theme in both arenas is
the timely development of Ada materials and prod-
ucts which can be used to cultivate widespread Ada
literacy and skills.

Education Initiatives

The "Ada/Ed" Translator/Interpreter

When the Ada language first began to emerge,
CENTACS recognized the need for an implementation
that could be used for experimental but, primarily,
educational (thus Ada/Ed) purposes. This project,
which has been performed under contract with the
Courant Institute of New York University, was
inltiatived at a point when the Ada language was
not cumpletely defined and has culminated in the
first tully validated ANSI-Ada translator.

Ada/Ed was written in a very high level "set"
lanquage (called SETL). This approach enabled the
translator to be implemented in roughly one-fifth
the time that might ctherwise have been expected.
However, rapid implementation via this approach
was achieved at the expense of execution speed
(Ada/Ed is slow).

Ada/Ed runs on a VAX-11/780 and, despite its
slowness, has been widely acclaimed as a valuable
education tool, with a particularly friendly user
interface.

Ada/Ed has been placed in the public domain
and can be acquired fram the National Technical
Information Service (NTIS), U.S. Department of
Cammerce, 5185 Port Royal Road, Springfield, VA
22181, Phone: (703) 487-4650, for a nominal
(reproduction) fee.

A continuation contract with NYU is currently
focused on maintenance, efficiency improvements
and re-validation through the AJPO.

Initiatives for Academia

If Ada is to be truly successful, we must
address the need to educate member of ouwr future
workforce as they advance through our academic
institutions. CENTACS recognized this need and
has sponsored a contract with Jersey City State
College which has thus far led to the development

of two courses and the establishment of an Ada
Technology Center.

The two courses - one undergraduate, one
graduate - address Ada philosophy and ooncepts,
syntax, semantics and provide camplamentary
exercises and hands-on experience using Ada/kd on
a VAX-11/780. The undergraduate course focuses on
Ada fundamentals while the graduate course provides
advanced topics such as "tasking" and "generics".

The graduate course was taught at Fort Mormmouth
over an eight week period (2 hours, twice a week)
with CENTACS personnel serving as the evaluators.
The undergraduate course was given at Jersey City
State College with students majoring in camputer
sclence serving as evaluators. Both courses have
been favorably received and suggestions from the
evaluations have already been incorporated.

Course materials include lesson plans, teachers
guides, student quides, and viewgraphs. Again, all
materials will be placed in the public damain and
will be accessible through the NTIS.

An Ada Technology Center has also been
established at Jersey City State College. It
currently includes a VAX~11/780 and eight DEC GIGI
temminals. The center was established to serve as
a friendly site to goverrment, industry and academia
personnel pursuing Ada research, training or educa-
tion.

Future activity with Jersey City State College
will include the development of additional courses
and an attempt to automate the courses (via the
DEC "Course Authoring System") so that they can be
both self-paced and portable to other sites.

Training Initiatives

Initiatives for Government and Industry

In considering the development of ar. Ada
training program for Industry and Govermment,
CENTACS, with strong contractual support from
Softech, Inc., chose a very systematic approach.
Three distinct data gathering activities were
initiated as a means to formulate training require—
ments.

The first involved the use of Ada in the
redesign of selected portions of the AN/TSQ-73
and the AN/TYC-39 by Control Data Corporation and
General Dynamics, respectively. In the course of
these "case studies", Softech monitors were able
to identify the issues (language, envirorment and
methodology) which are of greatest concern (i.e.,
candidates for training emphasis) in approaching
the use of Ada on real Army sSystems.

The second activity involved a survey of the
industry and government workforces in an attempt
to identify and understand the functions which
are performed by personnel working on the develop-
ment of large-scale embedded computer systems.
Each identified job category was characterized by
the associated duties and the required technical
and educational background.

The third activity involved a survey of
industrial training methods and practices. Here,
six large corporations, each with extensive
involvement in large-scale systems, were queried

to determine the most effective training approaches.

The results of the case studles, the workforce
and training methods surveys were analyzed and 15
generic job categqories (see figure 1) were identi-
fied with suggested course sequences within an
overall model Ada training curriculum. Courses
in the model Ada curriculum can be divided into
three basic categories: Ada language, software
engincering methodology and Ada program support
environment. The courses (35 in all) within each
cateqory are identified in figure 2. CENTACS and
Softech are currently developing 15 of these
courses as sumarized in figure 3.

In addition to these "generic" Ada training
materials, CENTACS is alo developing material
unique to the Ada Language System (ALS). Included
here are a Users course, an ALS textbook, an ALS
Administrator Manual and an ALS administrator
course.

All of these materials, when camplete, will
also be placed in the public domain and be
accessible through the NTIS.

Future activities here will include the
development of additional courses within the
model curriculum and the pursuit of the automa-
tion of selected Ada and ALS training material.

Sumnary

Through primary contracts with Softech, Inc.,

New York University and Jersey City State College,
CENTACS has produced a great deal of educational
and training material in support of the Ada
language. While much has been accomplished, a
great deal remains and the Army intends to remain
active in this important arena to help insure the
ultimate success of Ada.

Biographical Sketch

Mr. Dennis J. Twmner holds BSEE and MSEE degrees
from Monmouth College, West Long Branch, New
Jorsey. He has been a member of the U.S. Army
Cammunications-Electronics Camand for twelve
vears and is currently the Chief of the Software
Technology Develomment Division within the Center
for Tactical Camputer Systems (CENTACS).

Mr. Turner has held industrial positions with
DIVA Incorporated, Electronics Associates

Incorporated and Frequency Enginecring Laboratories.

His malling address is:

U.S. Army CBCOM
ATTIN: DRSEL~-TCS-ADA
Fort Mormouth, NJ 07703

re-

PROJECY ADMINISTRATIVL MANAGER
SERJOR ENGINLERING MANAGLR
SUPPORT MANAGER

PROJECT/VASK LEADER

CM/QR ENGINEER (GENERAL)
CH/QA ENGINCER (IN-DEPTH)

DESIGN CONSUL TANT DEVELOPMENT
PROGRAMME R ENGINCERING
SOFTWARE DISIGNER SOFTWARE

DEVELOPER

REAL-TIME SYSTEM ARCHITECT

SPECIALIST _

JUNIOR STAFF MIMBER/TECH AIDL

SYSTEM INTEGRATION MGR/RESEARCH STAFF
SYSTEM INTEGRATION SENIOR TECH STAFF
SYSTEM INTEGRATION ENGINLER

ENGINLERING

]

FIGURE)
GENERIC JOB CATEGORIES

SYSTEM INTEGRATION

MANAGE MENT LANGUAGE ENVIRONMENT
NO. TITLE NO. TImit KO, TITLE
M101 SOFTWARE ENGINEERING 1101 ADA ORIENTATION FOR £10] APSE CONCEPTS FOR
FOR MANAGERS MANAGERS TECHNTCAL MANAGERS
M102 INTRODUCTION TO SOFTWARE L102 ADA TECHNICAL OVERVIEW || [102 APSE OVERVIEW FOR
ENGINEERING PROGRAMMERS
-
M201 SOFTWARL ENGINEERING L103 INTRODUCTIOK 1O HIGH £103 BASIC APSE OPERATION
METHODOLOGIES ORDER LANGUAGES €201 USER'S]NTRODEgI;O’
202 OVERVIEW OF A SPECIFIC 1104 BEGINNING PROGRAMMING THE APSE h 0
METHODOLOGY L20) ADA FOR TECHNICAL E30] COMMAND LANGUAGE
M301 REQUIREMENTS METHOLDOGY MANAGERS '
£302 PROGRAM DEVELOPMENT
M302 DESIGN METHODOLOGY 1202 BASIC ADA PROGRAMYING €305 DATABAS
HODOL 0GY 0 THE ADA LAN
M303 CODING METHODDL L30) USING THE AR LANGUAGE | oot
M304 SOFTWARE REVIEW REFERENCE MANUAL
METHODOLOGY L302 USE OF ADA FOR £305 ASSEMBLING AND IMPORTING
M401 INTRODUCING ADA TO YOUR REQUIREMENTS E£30¢ CONF IGURATION MANAGEMERT
ORGANIZA™ 10N 1303 REAL TIME CONCEPTS AND PROGRAM MANAGEMENT
MAD2 PYSCHOLOGICAL ASPECTS L1304 ADA READER'S COURSE 401 WOW TO ADD TOOLS
0f RETRAINING 1305 ALCORISIS BND DATE £402 . YSTEM ADMINISTOR'S
STRUCTURES IN ADA COURSE
140] REAL TIML SYSTEMS IN ADA
L1500 SPECIALITY COURSES

FIGURE 2
COURSE CATEGORIES

NO. 1TLE DURAT 10N
L1e1 Ada Orientation for Managers] da
L102 Ada Yechnical Overview 1 day
LI1C3 Intro tc Nigher Order Languages] dai
Lz01 Ada for Technical Managers 3 days
L202 Basic Ada Programming I} wez;
1301 Using the Ada LRM 2 days
L30¢ Use of Ada for Requirements 2 dais
1303 Real-Time Concepts 1 day
1304 Ada Reader's Course 1 da)
L30% Advanced Ada Topics 4 uegr
1401 Real-time Systems in Ada i ueel{
Mj01 Software Engineering for Managers 1 day
M102 Introduction to Software Engineering ? days
M201 Scftware Engineering Methodologies 1 ue’;»
M303 Coding Methodology 2 days

FIGURE 23
COURSES UNDER DEVELOPMENT

AD-P003 415

ABSTRACT

‘-» This paper describes the U. S. Army Model Ada
Training Curriculum, developed by SofTech, Inc.
for the U. S. Army, Ft. Monmouth, N.J. The curric-
ulum consists of individual modules which can be
grouped together to form the courses and training
plans that best satisfy the needs of specific
organizations. The paper describes the modules in
terms of content, prerequisites, and status, as of
the date of this conference, Finally the paper
addresses how a manager might go about using this
curriculum to satisfy the training needs of his
organization.

Section 1
BACKGROUND

The U. S. Army Model Ada Training Curriculum
defines a comprehensive set of training modules,
or building blocks, which can be connected in a
variety of ways to form the courses and training
programs that best satisfy a given set of Ada
training needs (see Figure 1).

It is well recognized that software develop-
ment does not depend solely on a language, even
Ada. Ada must be used in conjunction with a good
methodology and systems must be developed within
the framework of a rich and integrated programming
environment. Cons<quently the modules of the U. S.
Army Model Ada Training Curriculum cover three
areas: the Ada language, methodology (both design
and coding), and the environment. The modules
within each of these specific areas are listed in
Tables 1-3, along with brief descriptions.[l]

* ada is a Registered Trademark of the Department
of Defense (Ada Joint Program Office)

I1]C. L. Braun "Ada Training Considerations”
2nd AFSC Standardization Conference. Dayton,
Ohio. Dec. 1982.

THE U. S. ARMY MODEL ADA*
TRAINING CURRICULUM

Putnam Texel

SofTech, Inc.

The modules of the curriculum differ in one
or more of the following dimensions: area, depth,
and viewpoint. Each of these dimensions is dis-
cussed below.

1.1 Area

Each module identifier starts with a letter.
This initial letter indicates the area with which
the module is to be associated. Modules beginning
with the letter L address the Ada language. Mod-
ules beginning with the letter M and E address
methodology and programming environment
respectively.

1.2 Depth

Because each individual does not require the
same degree of knowledge of a specific area, mod-
ules in the curriculum differ in terms of depth of
material presented. The depth is indicated by the
first digit occurring in the module identifier. A
level-1 module, indicated by the digit 1, is a
module having no prerequisites within the curric-
ulum, A level~l module may have some prerequisites
in terms of general computer science knowledge not
related to Ada. For example L103, Introdvction To
High Order Languages, has no prerequisites within
the curriculum. The objective of L103 is to intro-
duce assembly language programmers to the concept
of high order languages, not to introduce a novice
to the world of computing. Consequently L103 does
require experience in assembly language program-
ming as a prerequisite.

Level-2 modules, indicated by the digit 2,
have prerequisites that can be satisfied by
level-1l modules, and so on.

1.3 Viewpoint

Whereas a programmer needs detailed instruc-
tions on using the tools within the programming
environment, a system administrator needs to know
what demands those tools make on system resources.
The fact that different individuals have different
views of a specific subject matter, is addressed
by the curriculum. As the module level increases,
the viewpoint changes. Level-1 modules basically
address managerial needs. Level-2 modules address
programmer needs, and so on.

U.S. Amy Model Ada*

Sy egramming Support
iy cgnent Course Modules

Training Curriculum +M301- a2 apone e
M101-- . +M302 *ethodology Course Modules
h 0M202' ’ ire site for C 15
M102 © «M303. - S e Rws
~ *M304 N
*M201 I o
: +L302 -
*
: +L303 jLaot
1L201
.L304 7
- ‘L3301
L101 . ‘
- - - $M401 +M402
L102- ' <E101 . ‘
. - 1L202- L500
¢E102—— - - - :
L1o3- = - - I L8305
L104- - +E201— <+E301 — <+E302 - +E305 Yot Comiodtum
E103——— ——— 1304 +E401

“Ads 18 8 racemak of the U'S Department of Defenss (Ada Joint Program Office) The U S Army Mode:

Gesigned by SOfTech, Inc_under the Ada Softwar® Methodas Formuistion con
1.C-1087) sponsored by the Software Tec: t Dviston (CENTACS) of the
US Army Commumications Electronks Command (CECOM), Fi Monmouth, N J

- 1
—+E303 —--+E306 -—E402

Figure 1. U. S. Army Model Ada Training Curriculum

Section 2
CURRENT STATUS

Currently SofTech, Inc. is under contract to
develop a selected subset of the modules. Module
development follows the software engineering proc-
ess. A Preliminary Design Review (PDR) is con-
ducted with the government. Upor government ap-
proval of the design, development begins. Upon
completion of development a Critical Design Review
(CDR) takes place at Fort Monmouth. Basically the
CDR is the first teaching of a module and func-
tions as an acceptance test. At the conclusion of
the CDR, government feedback, along with student
and instructors' suggestions, is considered for
inclusion in the final product.

The specific modules under development, their
length and expected completion date are shown in
Table 4.

Section 3
PACKAGING
It is important to realize that one module

can not satisfy the needs of an organization.
Modules are packaged together to create a course

for a specific organization. When selecting a
course, the following must be kept in mind,

3.1 Define the Viewpoint

Who needs to be trained in your organization?
Managers and practitioners? Once the viewpoint is
selected, look for the modules that can be pack-
aged together to train that viewpoint. Managers
courses tend to be shorter and more concept ori-
ented than programmers courses. But do not assume
that the managers courses are therefore superfi-
cial; in many cases the emphasis on concepts (as
opposed to details) makes the manager's courses
deeper than any practioner's course.

3.2 Define the Level

The lower level courses contain the concept
material required for managers. As previously
stated they are prerequisites for the higher level
modules. However for software managers who influ-
ence software without actually writing any code,
or for QA personnel, consultants, analysts, etc.,
the higher levels are also appropriate.

3.3 Identify the Main Course

After having satisfied the prerequisites, an
entry level programmer probably only needs L202 to

Table 1. Environment Modules
NO. TITLE DESCRIPTION DURATION
El0l APSE Corcepts for broad overview of APSE emphasizing 1 day
Technical Managers how it supports s/w life cycle
E102 APSE Overview for broad overview of APSE for software 1/2 day
Programmers developers
E103 Basic APSE Operation introduction to APSE concepts, 1/2 day
basic editing, etc., for people who
will not be real users
E201 User's Introduction to basic use of the APSE database, file 3 days
the APSE system, command language; tool
overview
E301 Command Language command language, substitutors, I/0 1 day
redirections
E302 Program Development Compiler, linker, exporter, loader 2 days
E303 Database files, directories, attributes, 2 days
associations, access control, node
sharing, program libraries, etc.
E304 Debugging debugger, timing analyzer, frequency 1 1/2 days
analyzer
E305 Assembling and Importing assembly language, importer 1/2 day
E306 Configuration Management tools to support CM and PM, example 3 days
and Program Management tools one might build
E401 How to Add Tools programming with the command 2 days
language, KAPSE tool interfaces,
examples of useful tools
E402 System Administrator's user authorization and protection, 3 days
Course installation, backup, system support
Table 2. Ada Language Modules
NO. TITLE DESCRIPTION DURATION
L101l Ada Orientation for overview of development and 1/2 day
Managers features of Ada
L102 Ada Technical Overview overview of language-introduction 1 day
to language features in more
depth than above
Llo3 Introduction to High key HOL concepts for assembly 1 day
Order Languages language programmers
L104 Beginning Programming introduction to computer 4 weeks
programming in an Ada context
L201 ada for Software use of Ada for good systems design: 3 days
Managers packages, types, generics,
portability features, etc.
L202 Basic Ada Programming essentially the Pascal subset 1 week
L301 Using the Ada Language how to use the alarm effectively 2 days

Reference Manual

as a reference

-1

Table 2. Ada Language Modules {continued)

NO. TITLE DESCRIPTION DURATION
L302 Use of Ada for Ada as a requirements definition 2 days
Requirements language
L303 Real Time Concepts real time design concepts for 1 day
technical managers
L304 Ada Reader's Course reading an Ada design or program 1 day
for its key points and overall
structure
L305 Advanced Ada Topics packages, access types, private 1 week
types, discriminated records,
generics, basic tasking, basic
algorithms
L401 Real Time Systems everything about tasking, external 1 week
in Ada interfaces, low~level features
L500 Specialty Courses numer ical analysis, hardware varying
diagnostics, man/machine interface
database management, etc.
Table 3. Methodology Modules
NO. TITLE DESCRIPTION DURATION
M101 Software Engineering software life-cycle, top-down 1 day
for Managers concepts, documentation, testing
M102 Introduction to Software life~cycle, top-down concepts, 2 days
Engineering overview of various methodologies
M201 Software Engineering thorough coverage of major 1 week
Methodologies methodologies
M202 Overview of a Specific overview of an organization's 1/2 day
Methodology selected life-cycle methodology
M301 Requirements Methodology requirements definition techniques 1 week
and methodology
M302 Design Methodology how to do design, with required 4 days
methodology
M303 Coding Methodology structured programming, coding 2 days
standards, programming style, etc.
M304 Software Review Walkthroughs, code reading 1 day
Methodology
M401 Introducing Ada to Your how to use the recommended 1 day
Organization curriculum to meet specific needs
M402 Psychological Aspects techniques for overcoming resistance 1 day

of Retraining

to change

Table 4. Module Completion Dates

MODULE/COURSE
L101 Ada Orientation for Managers

L102 Ada Technical Overview

L103 Introduction to High Order Languages
L201 Ada For Software Managers

L202 Basic Ada Programming

L301 Using The Ada Language Reference Manual
L302 Use of Ada for Requirements

L303 Realtime Concepts

L304 Ada Reader's Course

L305 Advanced Ada Types

L401 Realtime Systems In Ada

M10l1 Software Engineering For Managers
M102 Introduction To Software Engineering
M201 Software Engineering Methodologies
M303 Coding Methodology

E300* ALS Users Course

E402 ALS Administrator's Course

*E300 encompasses the majority of the E modules.

LENGTH (IN DAYS) AVAILABLE TO TEACH

1 Now

1 Now

1 Now

3 Now

10 Now

2 Now

2 April 84
1 April 84
1 March 84
10 Now

10 May 84

1 Now

2 Now

5 Now

2 April 84
10 April 84
3 April 84

become productive. A designer, on the other hand
needs to progress on to L305, and the real time
system programmer/analyst/designer should take
L401.

Por top level managers, L10l1 is appropriate.
For senior QA personnel, program monitors, soft-
ware managers, etc. L201 is appropriate.

3.4 Search for Related Courses

A language course without parallel courses in
methodology and environment is like a car without
an engine., The only reason that language courses
appear in isolation is because different organiza-
tions use different methodologies and different
environments. It is also possible that an organi-
zation may be proficient in software engineering
and only need training in a specific language.

The point is that once a main course is iden-
tified, look for related courses. For all inten-
sive purposes, the following courses are
indivisible.

L10]1 and M101
L102 and M102
L202 and M303
L305 and M302

Additionally each pair listed may be taught
sequentially or in parallel.

Ideally each of the pairs should be comple-
mented by a third course from the environment.
Currently environment courses are fewer in number.
As a consequence L202 is usually supplemented with
a brief introduction to the basic tools needed to
develop homework assignments.

3.5 Do Not Forget the Prerequisites

One common mistake is to focus on the modules
that include exercises to be coded and executed,
such as L202 and L30S. These two modules have
prerequisites.

Another common mistake is to select the
"meaty” modules, such as L201 and M20l. Unless it
is guaranteed that the students have the prerequi-
sites, the students should take a few low level
modules first.

3.6 Consider an Acceleration

In many cases an organization is faced with
stringent time constraints. In these cases several
of the modules in the low level may be compressed,
with additional explanations and/or exercises

supplied, where appropriate, in the higher level
modules. As a general rule however, acceleration
is not a recommended practice.

3.7 A Couple of Exceptions

The curriculum has a few exceptions. For
example L301, Reading the Reference Manual, can be
viewed as a stand alone course. A solid under-
standing of Ada is really the only prerequisite
for this course. How that understanding has been
acquired is not relevant.

The prerequisite for M201 is really a good
solid understanding of software engineering.
Again, how this has been acquired is not relevant.

M303 can be taught after L202, during L202,
or in parallel with L202.

Section 4
I3SUES NOT ADDRESSED BY THE CURRICULUM

The curriculum does define a set of prec-
edences among the modules, as shown in Figure 1.
The intended interpretation of Figure 1 is as
follows: inputs to a given module define the pre-
requisites for that module. The Figure does not
recommend paths through the curriculum. The line
from L202 to L305 means that if there is interest
in L305, L305 should be taken after L202. The line
does not mean that after taking L202 an individual
must procede to L305.

The cirriculum does not state how these mod-
ules are to be packaged into a course, There are
distinct courses that belong together. However
each organization has its own needs and therefore
will create its own "packaging” of modules into a
course,

The curriculum does not state how much train-
ing is required by each individual within an
organization or the total set of skills to be
taught within an organization,

The curriculum does not address specific
contents of modules that are particularly sensi-
tive to a specific organization, e.g., M301, M302,
M303, and M304. These modules are defined in gen-
eral outline only and can be adapted to any meth-
odology. The same holds true for some environment
modules.

10

Section 5
DEVELOPING AN ADA TRAINING PROGRAM

The curriculum is not the starting point for
a complete training program. The real starting
point for an organization in developing a training
program is to analyze the training requirements in
terms of

) number of levels to be trained

[number of individuals at each level

° level of expertise required for each
individual

°® current skill level

° customization of course materials

° cost and time constraints

) supplemental training materials desired

Once these issues have been analyzed, courses
must be scheduled. Generally it is effective to
train managers before staff, designers before
implementots.[ﬂ Management commitment to the
concepts of Ada is essential to its acceptance by
employees. Designers can be designing while train-
ing the implementors is taking place. The imple-
mentors have the support of the designers and have
the motivational level required.

Section 6
SUMMARY

Transition to Ada is a non-trivial process
requiring a great deal of thought. Many individ-
uals may find they are transitioning to Ada with-
out really realizing it., The potential for the
U. S. Army Model Ada Training Curriculum to aid in
this transition is unlimited.

ACKNOWLEDGEMENTS

A great deal of this paper has been excerpted
from material contained with the Preliminary
Design Review documentation. That material was
conceived and written by Nico Lomuto.

2] 1biq.

Putnam P. Texel received a B A and M, <, derrae
in Mathematics from Fairleigh Dickinson University.

She has been heavily invloved in the development
of and instruction in t.S. Army Model Ada Training
Curriculum. She is currently responsible for
coordinating all instructional activities in Ada
tor the Federal Svstems Division ot SofTech, Inc.

Ms. Texel is Chairman of the Greater NY Area lLocal
Adalhe, a local Special Interest Group on Ada
affiliated with the ACM Princeton, NJ chapter.

AD-P003 416

ABSTRACT

“Three characteristics of large software
projects and five basic configuration management
capabilities are igentified. The design of the
Ada Language System (ALS) is then described in
terms of these pasic capabilities. The ALS is a
computer programming support environment for Ada..

Section 1
INTRODUCTION

The emergence of software engineering as a
distinct aiscipline has fostered examination of
the methods used to program computers. This, in
turn, has led to the development of a number of
unified environments to aid programmers and im-
prove their productivity. Many of these envi-
ronments have viewed the programmer as an auton-
mous 1ngivioual prooucing self-contained soft-
ware. However, in most industrial, military, and
commercial applications, it is much more reason-
able to view the programmer as a member of a
team prooucing software that must be precisely
matched to the software produced by other
mempers of the team. This fact has been ac-
knowledged in the Ada programming language,
where emphasis has been placed on the production
of an entire coordinated software system rather
than a collection of loosely coordinated modules.
Tne Ada Language System (ALS) is a programming

The work describeg in this paper is being per-
formed under US Army CECOM Contract No. DAAK80-
80-C-0507.

This paper is a revision of a paper entitled
"Large-Scale Software Development with the Ada
Language System" which appeared in the
Proceegings of the ACM Computer Science
Conference, February 1983.

*Ada is a registered trademark of the Department
of Defense (Aua Joint Program Office) OUSDRE
(R&AT),

CONFIGURATION MANAGEMENT
WITH THE ADA* LANGUAGE SYSTEM

Richard M. Thall

SofTech, Inc.

environment that supports the development of
large systems in Ada. The ALS provides the
underlying facilities necessary to coordinate
programmers working in teams. The ALS was
developed by SofTech, Inc. for the U.S. Army
using the Stoneman Requirements {BUXT] as a
guideline.

This paper first identifies three major
aspects of large team-oriented projects which
differentiates them from small one-man efforts.
The ALS features which support such projects are
described.

Section 2
CHARACTERISTICS OF LARGE SOF TWARE PROJECTS
Large team-oriented software efforts have
three characteristics which differentiate them
from small individual-oriented projects.
[Large prejects are usually developing a
family of similar programs rather than

a single program.

[Configuration management is of critical
importance.

[Close coordination of many programmers
is necessary.

Although the aiscussion of these issues is
separated, they are all heavily interrelatec.

2.1 Families of Programs

Software is aptly named. It is the soft
part of any computer system; it is the most
malleable, easily changed part of the system; it
is the part that is expected to adapt to
changing reguirements and changing hardware. In
fact, the software is often specifically design-
ed to be adapted to differing situations. It is
the part that can be altered most rapidly at the
least expense, provided changes are made in an
orderly fashion. €Even a perfect piece of soft-
ware with no errors will still tend to accum-
ulate changes for the following reasons:

1

[the requirements of the original
application have changed,

. the hardware configuration has changed,
or
[the software is to be incorporated into

a new application.

A change in the original requirements can result
from a change in the external world or the iden-
tification of a shortcoming in the requirements
as originally conceivea. Hardware changes occur
for many reasons: the correction of hardware
oroblems, improvea capacity and performance,
reduced cost, production anag supply proolems,
etc. Software is often designed at the outset
to run on a variety of hardware to accommodate
various sized applications. In general, each
haraware configuration requires a different copy
of the software even though the dgifference 1in
the software might be as minor as the adjustment
of a compile-time constant. Finally, bits and
pieces of software tend to migrate from one
application to another, from one computer to
another, changing in some way each time a migra-
tion occurs.

Every change to a software component that
can aftect its operation must be regarded as
creating a new component with different prop-
erties. It is a serious error to assume that
the significance of a change is related to the
amount cf source text altered. A single char-
acter alteration can be just as devastating to
the tinsl operation of a system as a 10,000
character alteration. However, programs differ-
ing textually by only a small amount are related
and should be treated as such. It is important
to maintain the iogentity of such families of
programs because an error in one member of the
family is likely to exist in many members of the
family. Members of a family may also be tex-
tually unrelated; e.g., they may be coded in
uvifterent programming languages. However, if
they are functionally similar, they may share
errors. A program family may be loosely defined
as those modules which have evolved from a
common source text. The source text is often,
but not always, the compilable text of a pro-
gram; it may be the definition of an algorithm
or pseudo-code. In general, the members of a
program family will all perform similar func-
tions [CARG] [TICH]. The notion of a program
family is supported in the ALS by a database
feature called a "variation."

Program samilies inevitably arise wherever
there must be ongoing software support for mul-
tiple fielo installations. Unless the field
installations are all identical and never
change, there will be differing software for the
various hardware configurations. Given the rate
of change in the computer industry, it is incon-
ceivable that any product would not undergo
design changes for cost reduction alone. Many
classes of products can be expected to undergo
continuous field upgrades which require software
alteration. The ability to control families of

12

software may reduce the need to apply fielc
upgrades to bring hardware into conformance with
a standard. with strong support for program
families, the software could be custom-generated
to adapt to each hardware configuration.

2.2 Configuration Management

Configuration Management (CM) is the "con-
sistent labeling, tracking, and change control
of the ... elements of a system® [BERS]. There
are a number of economic and technical forces
which mandate increasing emphasis on CM for
industrial grade software. Among these are:

[] reliability requirements,
[] complexity, and
] ongoing support requirements.

A growing number of computer applications have
exceedingly high reliability requirements. In
such applications as aircraft and spacecraft
control, automotive control, weapons control,
and medical systems, software failure can result
in personal injury or loss of life. In such
cases, strong CM is necessary to ensure that all
operational software has been fully tested and
that unproven alterations do not find their way
into delivered systems. In very complex systems,
the change control aspect of CM is used during
development simply to ensure that the elements
of a system are kept stable enough over time to
be successfully integrated. In applications
where software corrections and improvements are
to be provided on an ongoing basis to remote
field locations, CM is necessary to assure that
delivered software is appropriate to the hardg-
ware configuration at that site.

CM is usually achieved by the creation of
one or more "baseline" copies of the software.
tEach baseline has some official status. There
can be working baselines updated frequently by
the programming team, frozen baselines pre-
serving exact copies of software delivered to
field locations, etc. CM is obtained by
management review of proposed changes to
baselines and monitoring and recording of actual
changes. In order to perform CM, one must be
able to:

] absolutely identify the elements of a
baseline at any point in time,

] absolutely identify the elements of a
system placed in revenue service,

[] account for and control all changes to
a baseline,

° recreate exactly a system that existed
in the past or exists at a field site,
and

[] control the correspondence between
tested and delivered systems.

rvelr thoagh companies ang projects have
wlverse methous for performing (M, there are
five capauilities vasic to all CM. Tnese are:

[avsolute igentification,

[} change iventification,

[] change tracking,

] inventary control, and

[] access control.

Ausolute identification is the ability to
reliabily associate a name with a component of a
system, usually stored in a file. when a
componerit changes, nc matter how small the
change, a new component with a different name is

created. (hange identification is the ability
to reauily recognize wnen a change has
vccurres. Change tracking is the ability to

record ana review the sequence of changes to a
cumponent . Inventory contro! is the ability to
recordy exactly wnat components constitute a
system at any point in time. Finally, access
control is the ability to guarantee that all
changes to & baseline are authorized and
documented.

A capatility fundamental to all CM is ab-
solute iuentification of software components.
Most conventional file systems fail to provide
the pasic uncerlying support for absclute igen-
tification. Typically, the source code for a
component, say a sine routine, is stored in a
file that might be named SINE.SRC. Anpther file,

SINE.OBJ, uwsually holds the object code.
SINE.OBJ might oe bound into any number of
executable images with unrelated names. CM
problems occur when a change 1is made. Typi-
cally, the change 1is introduced by in-place

editing of the source file. The name of the
source file remains unchanged after the
alteration. A revi- sion history may be part of
the source file, but the person inserting the
change may not possess enough self~discipline to
note the change, par- ticularly when the change
is viewed as minor. The altered source is
subsequently recompiled with the new object
replacing SINE.OBJ. Since the file name is not
altereg, the change is invisible to programmers
incorporating SINE.0BJ in their systems.

I[f the change engenders an unexpected prob-
lem, jocentification of the problem may be very
time-consuming. In general, recompilation from
source followed by file comparison is necessary
to determine if a change in SINE.SRC was ever
appliey to SINE.UBJ. Oetermining if a given
system has the new or old version of SINE.OBJ
involves keeping explicit recoras of when the
change to SINE was applied and when the system
in question was last rebuilt. Such recoros are
seluom kept. Partial rebuilds of systems com-
plicate the situation even further. very often

it is easier to correct the present system than
reconstruct a clear historical picture of what
caused the proplem. If an erronecus change
fings its way into many systems, there can be
many parallel efforts to icentify ard correct
the same error.

A major part of this problem can be alle-
viated by incorporating a revision number ir
file names. Every time & file is changed, the
revision number is incremented. Icentification
of changes is then readily accomplishen: by re-
cording the names of files built into & system.
The differences between two bullds of a system
can then be quickly identified by comparing the
revision numbers of the components. Scuch visi-
bility of changes is fundamental to the notion
of absolute identification. Every change or
closely related group of changes must be viewed
as creating a new object with a distinct name.
In short, the name must identify the object
abso- lutely. (A single object may have several
names, but one name must refer to a wunique
object throughout the lifetime of the name.)

A revision numbering capability supplies, at
one stroke, both change identificatinn anc
tracking mechanisms. As long as a new revision
is created every time a change is macde in a
baseline, changes are easily identified by the
high wvisibility of new file revisions. The
numbered sequence of revisions for each file
provides a change tracking mechanism wupon which
tracking mechanisms for entire baselines can te
readily constructed.

Even with revision numbers, problems arise
in absolutely identifying components when names
have been changed. Component names should be
highly mmemonic. But it is desirabie to allow
mnemonic names to be chamged so they stay
mnemonic as software cevelopment progresses.
This broaches the possibility of renaming nr
ageleting a file ana then creating another file
with the olc name. This can result in twe
distinct components having the same name and
revision numter. To avoid any possicility of
confusion, it is necessary tc have a secondary
naming mechanism where renaming ang reuse of
names is not possicle. in the AL%, thege
secondary names are calleg unigue identifiers,
The mnemonic guality of urigue iogentifiers ie
sacrificed for the unigueness pruperty. Te
absolutely identify a component, it is desiraple
to record woth the mnemonic name and the unique
identitier. The mnemonic name, while not
absolutely necessary, helps numan users. The
unigue icentifier is wused mostly by configura-
tion control tools, to avoigd the ambiquity
which coulo otherwise arise if mpemonic names
were useC Lu compare contigurations.

Inventory control is the ability to create
and store a complete list of all the components
nf a paseline at some point in time, Saveg
inventory liste can be subseguently compared to

13

getermine tne changes 1in a baseline over some
interval, or find the differences petween an
installey system andg tne current baseline.

Access control is the ability to guarantee
that nu unuocumented oI unauthorizec changes
finc tneir way into & vaseline. The term can be
nore oroadly interpretea to encompass
examination as well as modification of
pDaselines. Of course, no guarantee can e
absolute. Most computer systems can be
penetratea by sufficiently clever ang malicious
users. In addition, hardware or software
fallure can always compromise access control.
It is assumecd, here, that ALS users are friendly
ang tne haruware and software are sufficiently
reliable.

The proolem of supporting many installations
with sligntly differing configurations requires
CM fur families of programs. The inability to
o this effectively usually results in software
which must dynamically reconfigure itself or
wnicn must be completely repuilt at each field
site. (M mechanisms must be able to deal with
conuitional compilation or macro expansion
technigues used to generate family members. In
the ALS, revisions ang derivations combine with
variations to support CM for families of
prugrams.

2.3 Coordination of Programmers

In multi-person projects, the effective co-
oruindation of programmers is vital. tLack of co-
oraination results in costly redesign and retro-
fits auring system integration. In complex pro-
jects, the lack of adequate coordination can
Jeupardize the successful conclusion of the pro-
ject. An official working copy or baseline of
the software is usually used to coordinate the
=tfurts of tne programmers. There is a spectrum
of scenarios for using such a baseline. At the
sngs of the spectTum are:

(] the total sharing scenario, and
[the private copy scenario.

Jnder total sharing, all incremental changes are
imeaiately applied to the working baseline.
Tne system 1s periodically rebuilt from the
wulking vaseline. Such a rebuild or relink
usually occurs freguently, on the order of once
or twice a day. Ungder the private copy sce~
nario, each programmer has his own copy of the
vaseline which he can modify or rebuild at will.

Te proolem with sharing is that programmers
interfrre with each other, each making changes
that affect the other. Much time is lost keep-~
ing up with alterations made by other program-
mer.. Changec teng to proliferate, one change
engervering others which engender still more
cliahges, The rate of change ang lack of testing
of changes seriously reduces the chances of ob-
Lalndreg o system that works correctly. Sharing

14

allows for little programmer freedom or the
opportunity to apply changes experimentally.
Even in a two-programmer team, total shiaTing may
be unworkable.

The private copy scenaric solves the prob-
lems of sharing, but does not provide any co-
ordination. With private copies of the base-
line, each programmer works incdependently. The
longer & pregrammer works in his private area,
the greater is the chance that his software
uviverges from software developed by others. On
the other hand, the programmer has total freedom
tc make changes, even to components which are
the purview of others. A programmer working
with an isolateg copy of the system does not
benefit from improvements introcduced by other
team members.

In practice, some compination of the two
scenarios is used to prevent the divergence of
the software. Typically, this involves the use
of private work areas for incremental devel-
opment . When an element is completed and
tested, it is then integrated with the official
baseline. The integration is very often
performed in a private area and the new system
tested before it 1is placed in the project
baseline. In addition, there are often
administrative procegures for controlling
baseline changes and for preventing changes to
components one is not authorized to change. The
ALS provides a general sharing mechanism as well
as conventional copying to facilitate almost any
scenario for programmer coordination. In addi-
tion, the Program Library services of the ALS
gives programmers a totally isclateoc work area
for building and modifying systems starting from
a baseline copy.

Although the examples in this paper are con-
fined to the source and object forms of computer
programs, the discussion is equally valic with a
more comprehensive interpretation of the word
"software." The same problems occcur with all
types of documentation, e.g. reguirements spe-
cifications, design specifications, user refer-
ence manuals, tutorial materials, etc. All of
these should be included under the umbrella of
the term “"software." Similarly, although the
discussion is illustrated by examples of soft-
ware in the development phase, all arguments
apply eqgually well to the maintenance phase of
the software life-cycle. Indeed, there is no
qualitative oifference between the development
and maintenance phases in relation to the issues
treated here.

Section 3
ALS CAPABILITIES

This section descrites the features of the
ALS specifically designed to support large-scale
programming projects. The wuser's view of the
ALS database is presented in some detail. The
use of these capabilities as they relate to

doc umentation

math pac

N2~ .math pac

.math_pac.tests(15)

15] -,
source

.math ;;ac.sour(:e

.math pac.tests{1)

factorial

.math_pac.source.factorial(1)

figure A. Directories and Revision Sets

program families, CM, and programmer
coordination 1s treated In the next section.
Information on ALS features not Telateg to (M
can pe founu in [WOLF] ana [THAL].

3.1 Nodes

The ALS provides users with a database capa-
pility that can be vieweg as either a sophis-
ticatey file system or a rudimentary database
management system. The datatase is a collection
of objects called nodes. There are three
varieties of nooes:

[] files,
[] girectories, and
[] variation headers.

+iles correspong to the wusual notion of a named
Jdta collection. Directories ana variation
neadger nodes are wsed to create groupings of
a06es, All nodes in the database possess de-
scriptors called attributes and associations. An
attribute describes the node which possesses it.
Associations establish relationships between
nodes in addition to the relationships estab-
lished by virtue aof the groupings under direc-
tories ang variation headers.

3.2 Node Naming and Structuring

Hierarchical data structures are built by
using oirectories to group nodes. Directories
are used to group any combination of files, var-

iation headers, and cther directories. Figure A
gives an example. Every ALS has exactly one
connected file structure with one root directory.
(Strictly speaking, the root node is anonymous;
however, it can be referenced with the name ".".)
The root node of our example possess a single
node named "math pac". The reader is free to
think of node names as being properties of
either the node or the link to the node. How-
ever, pecause of node sharing, a single nooe may
acquire aliases. Thus, it is more accurate to
think of the names as properties of the links.
Putting it another way, the name resides in the
parent directory, not in the node itself. To
avola any ampbiguity, the diagrams show node
names on the links. In the example, "math pac”
is the chile (or offspring) of "." which iS5 the
parent of "math pac". A pdarent node is said to
contain its offspring.

The "math_pac" girectory has three off-
spring, the directory "source" and the files

"documentation" and "tests". “Source" in turn,
has five offspring: the files "sin", "cos",
"taylor", "exp", and "“factorial". Directories

are shown as ellipses; and tiles are shown as
sguares. Just as in Ada, the igentity of an
object cdepends upon its position in the whole
structure. The full name of an object is known
as the pathname and is constructed by tracing
the path to the object from the root ano naming
the links traversed along that path., The

pathname of math _pac is ".math_pac”. The name
of the factorial subprogram is ".math pac
.source. factorial”. Several pathbnames are shown

in Figure A. Users are encouraged to view the
data structure as a tree; however, due to
sharing of nodes, the structure is not strictly

15

4 Lree, [t iy a ugirected acyclic graph. The ALS
exCluges cycles from the structure. In other
wiTus 4 ulrectory may not contain a suttree that
cuntaing that same directory.

3.3 Revision Sets

Every fiie in tre ALS oatabase 1s, in
aCtuailly, @ memper of a revision set. The
revision set tracks the changes made to a file
svel time, etacn memuer of a revision set is a
shiapslul ot tne file as it existec at some point
In time, The members, called revisions, are
ruereds in chronolegical sequence and are auto-
maticaliy numuoereu in oruer starting from one.
Trie mEst Tecent revision superseces all previous
revisions, Altnough a revision iIs most often a
noulflec furm ot cne previocus revision, this
reletionsnip is not imposed. In some cases, &
revisiun may o orme from a revision that predates
tne Immediste predecessor in the same revision
w2l Ll fron some otner source entirely. Most
vpelations such as opening, reaging, writing,
ans teleting, appliy to inoivioual revisions of a
revision set. Gharing, however can only be
woomplisteg for o the revision set as a whole.
It tre last revision of a set 1s deleted, the
fonber i3 onet reused when the next revision is
Created.,

Tu pooviae absolute lcentification, in-place
sulling of revisions Is restrictea. Only tne
Latest memper Lf o revision set may ue modified
1o-place, ana tnen only uncer certain conaitions.
The mnost recent revislon supersedes all previous
revisiuns, Tre patest revision can also be
sxpilioitly frocem, after wnich it may not oe
Mo i bad, 40 Tevision can wecone anogitiaole
tur tNTee reascns:

[] it was e2xplicitly frozen by the user or
@ [Iogram,

[] it is not the latest revision, or

[] it nas been used to generate another
oL lect wnich is wnuer confliguration
control.

Jnly in the last case, when the derivec object
i> removed from the database, can an unmoui-
fiaple revision again pecome modifiable. In the
uther cases, tne action of freezing is irrevo-
capie. I the first two cases, the revision is
saiu tu ne frozem. Unmodifiability applies only
to the text of a3 revision; it ooes not lim.c
changes to atirivutes or associatic . Each re-
vision possesses a distinct set of attributes
A assutiations., KHevisions from which files
JrleT configuration management have been derived
ndy NCLLE removed from the database until the
Jerived file has been removed.

Aty revision can be named by attaching a
paleniteslzed Irevision number subscript to the
pathiname of the file. If no subscript is given,
the latest rTevisiun 1s assumed. It the sub-

16

script "+" s specified, the latest frozen
revision is referenced. The latest frozen
revision is either the last revision or the
next-to-last revision. The use of subscript
notation promotes the view that the revision set
is an array possessing elements that are the
ingividual revisions. figure A shows the
pathnames of three different revisions.

3.4 Unique Identifiers

The ALS automatically assiagns each noge an
identifier which 1is temporally and spatially
unigue. In other words, orce assigned, no other
node in any c*her ALS database will ever have
the same identifier, unless it is a copy of the
original. Moreover, once assigrned, the identi-
fier cannot be changea. These identifiers are
called unique identifiers or UIDs. UIDs have
three fields:

[object serial numper (10 bytes),
. ALS database identifier (7 bytes), and
. organization identifier (10 bytes),

An object serial number is assigned
automatically by the ALS each time & node is
created. To that is appended the database
identifier which 1s wunigue for each database
within an organization. Finally, the organi-
zation icentifier, naming the organization
ownlng the setabase, 1Is appended. Latabase
identifiers are administratively assigned by a
specifically appointeg persgn within each
organization to which the ALS has been
teliverea. drganization idgentifiers are
assigned by the government agency responsible
tor confizuration management ang distribution of
the ALS. The name space 1s large enough to
4liow tne creatinn of 10,000 nodes per second
for the next z.e million years in each of 8
trillion gatavases in eoch of 1400 trillion

urjanizationg, with simple compression
technigues, only 10 vytes out of the full 27
Dytes woudd bave tu Le storep for each node.

The AL cupplies tools far copying nodes
from one ALS database to any other ALS
datapase. wnen files are copiead in tnis way,
the original and the copy are automatically
frozen. In the receiving database, copies are
created with tne same UIDs as the origimal. It
is therefore possible to compare baselines on
two hosts by comparing only the UIDs of the
files in the base i :s. Because both the
origina' and copy are frozen, there is a
reasonable level of confidence that tne files
are the same. Without this capability, it would
be necessary to transmit the entire contents of
all the files in the baseline to one of the
hosts where an exhbaustive file comparison would
have to be run. Recording the UIDs of files
from which an installed svstem is built provives
a similar level of control for delivered
software which may nct reside on g host,

3.5 variation Sets

To represent families cf programs, the ALS
Jrovives a construct calleg the variation set.
Memoers of variatiun sets are functionally
sunildl seftwdare components tinat uitfer in their
implementation ogetails. Since wvarlation set
Temuers GG Not supelsSede one anglner, tney are
named, not numuered. Nodes calleg variation set
Neaders are used to represent variations sets in
the ALS gatabase. A variation set heager can
occur anywhere g directory noge can occur except
aL the root of the datatase. The members of a
variation set appear as offspring of the
variation set header node. The members can be
revision sets, other variations sets, ordinary
subtrees {(i.e.,, agirectories), or any combination
of these., A default variation can be designated.

Figure B shows an example of the use of
variation sets. variation set heacers appear as
Nexaygons. In tnis example, the source for
mathi pac exists in two variations, one for inte-
ger hardware andg another for computers with
fioating point ndrdware. The floating point
variation is further gividec into variations for
10y waIus ang short werds. Variagticn set
heauers are similar to directories except that

documentation

. integer
-math pac.source(integer}s

factorial

cos

.math pac.source(integer}.taylor 1

Figure B.

in patnnames, references to trell Lrfspring
appear in parentheses rateer then being seba-
rated vy oots from the Drececinc Dath elemens,
In tris respect, the memvers ot o variz®icr
dare viewed as array eiementsc, wnere the <leme
3re named rather tnan numperen, Filoure bosrows
how pathinames with variation references an
nestec variaticn reference« are fornec. Ind
empty parentheses are specities anc 4 "
variation nas ueen Jesianatec, e
variation will be selectec.

3.6 Node Sharing

To ensure that the ALS car rezcily suopfort
many scenarios for programmer ccordination,
tnere 1s a sharing mechanism in aocition to the
usual copying capablility. Any noce may ve sharen
provicded the sharing does not introouce a cyrle
into the agatabase structure. In essence,
sharing a noce creates an alias for that noce.
A nooe may have two winos of parents, true
parents and foster parents. A true parent s
the girectory (or v=riation heaoer) in whict the
node was originally createc. Every node nas
exactly one true parent. A foster parent ic 4
girectory (or variation heager) that subse-

tests
source

\.malhipac.source

fit_pt

long

factorial factorial

taylor cos

1 taylor

-math pac.source(flt_pt){long).taylor(1)

variation Sets

17

factorial

‘series factoriaf

1

Figure C.

quently snares an exlisting node. A node may
nave an aruitreTy numoer of foster parents.
Figule o« shows 3 node sharing situation, 1In
tnis Tawe, the short word length varlation of
Mt Ldl whales the Yolnt o Meps" | ang "series"
files witn the 1long word length variation.
Notloe et the taylor series proceoure has two
name:s, ".msth pac.source{flt_pt)(long).taylor”
arwd t cscwrce (Flt_pt)(shurt).series”.
it is the same revision set, but shared with a
it he on the 1inn, Inoividual elements
5P g revision set cannct e shared, only the
Wh e e Girectories anc variation headers
Mmay alst L& shared.

3.7 Attributes

A attTitete iz 4 named character string
ot wuelite the nuoe which possesses the
Litwle. & Node may have an aroitrary number

foetilbitey, I ALS uses cerlltaln attributes
Tt Il the gatatbase and restricts the use of
Tt gutric Hrograms Can Create, delete,
inl meelity oary ather attriputes, subject to the
FTal wlies, soitiols. There is noe aglobal list
o or registraticr: procedgure for
LTt UtneT than the attrioutes useu for
satauase control, there are nu att- ibutes that
pvtely e MLt possess. The values of attri-

votes are sttings which can be up to 64K char-
A Lers lung,

attributes can e used to select varias
o, Teic isoaccumplished by glving a ses
gquence ot indmess>value) pairs in place of the
Vo Tiablluh rume, The pairs are separated vy

18

Node Sharing

commas, Figure D show an alternate organization
for the example of figure 8. In this case,
insteas of nesting variations, there is only ane
variation heager with variations named 'va",
"vo", ang "vc". Variation "va" of 'source" has
an attripute named "mode' with a value "integer".
Variation "vb" has an attrioute named "mode"
with value "fit pt"” ang another attribute namec
"size" with valde "long". Finally, variation "vc"
has an attribute named "mode" with value "flt pt"
ana an attrioute named "size" with value "short".
Figure D shows two examples of variation selec-
tion with attribute vaiues, Accitional varia-
tions and selection attributes can be added
gynamically as the scftware configuration
evolves. If attribute selection is used, the
specification must select a single variation
unambiguously .

3.8 Access Control

ALS access controly are bases wuport 4
cenventional lock and key mechanism, Users and
programs have keys and catabase objects have
locks, The user and program keys must match the
appropriate lock in order to obtain access.
Attributes are used to store the locks and keys,

Each user has two keys: a user name and &
team name. The user name is determined when the
user enters tre ALS from the host operating
system. The team name may be chosen by the user
from a3 roster of team names ano team mempers
contralled administratively. The key of an
executing program s octtained from an attrivbute

documentation

mode => integer

taylor

~

.math pac.source({mode- integer).taylor

Figure D.
names "access name’ attachec to the ALS file
wnere the executable image of the program

resides.

Loums ale dattacheg o each database object
with trivetes named read, append, write,
attl change, execute, ond vid. The values of
these aliritutes are lists of the keys which
will satisfy the luck. The lock can be satisfied

Lhe D U teal fame oI the user name, 4n

< el be used to match a substring of all

POl =, Lhe Lot~ "*OSmith' wili match

soels wlth g wey ending In "Smith". The key

Tt mtores wllooweys, It the read iock s
satistied, then tne user may examine the file or
may lwarn tne offspring of o directory or
variation hegoer. If the append lock is

satisfied, then tne user may ago to the ena of a
tise, oI 40 entries to a directory or variation
heouel. If the write lock is satisfied, then
the user may change a file or aud and oelete
eitries of 4 directory or variation heacer. If
trie Attt _change lock is satisfied, then the user
May ailel the values of attributes ang associa~
tions ang add and delete attributes and asso-
clatiune, If the execute lock is satisfiedg, the
gser may place the executable image orf commarg
sLlph Into exepotion,

taylor

source

math pac

tests

mode
size

ve it pt

~ short

taylor

.math_pac.source(mode=>fit_pt.size “short}.taylor

Attribute variation Selection

allows the creaticn of aatarase
objects that can be accessed onliy Uy Procrs
intendea for that purpose., It tie via love 1

not empty, then the key of the program used to
access the ovject must satisfy the via -

Even 1f the via lock Is satisfiew, sitéer
user name or the team name must still
tre lock appropiriate to the type of
desired. If the via lock is nuii,
may be used, provides arcess ic otherwise
uranted. This feature is utilizend, frr example,
te prevert the user from alterinc ot ject ==
produces by the Ada compiler.

The via lock

Satlsfy
Gorees

any orogras

10

3.9 Associations

Asscociations are similar te attributes, @o

to document the relationships wvetwee:
nodes. The value of an assuciation e a list of
pathnames. The ALS ensures that the elements of
the list are syntactically valic pathnames, tat
otherwise performs no valication or maintenance
on tne list. An example of the use of associa-
tions is the Ada compiler which records the
names of previously compiled modules
during a compilation in an association
"uepends on", This association is subseauently

used

retelen e

Emeans

19

useu oy tre linker to enforce tne Ada compila-
tion orcering rules by checking that no mooule
namec in a "“depends_on" assoclation has been
compiled later than the module which possesses
the dosuciation.

3.10 Derivations

The Stoneman calls for the generaticn of
vetalies nistories of objects unaer configura-
tion management. The ALS agoes this vy means of
verivations. Any ALS file can, potentially,
pussess & uerivation, A gerivation s a coume
pination of attributes and associations that
vucument the circumstances uncer which a file
was createc or modifiec. Comparison of deriva-
tivns shiuws wny files ciffer rather than the
exact text of the gifferences. Although
uerivatiung are net intengec or used for
gatabase wackup, they contain encugh information
su tndt the contents of ¢ file can be exactly
recreateu frum tne gderivation if the files namec
In the Jerivation exlist,

Files in the ALS catabase can only be created
oI mwalri=u gurlng tne execution of some program
caliec tne creating tool. The uverivation is an
accourting of the conditions under which the
creating tool executed. The name of the program,
the parameters passec to the program, andg files
operied ana read ty the program are automatically
recoroed in tne cerivation., The creeting tool
carn monify the dJerivation based on specific
KNowieuge L4t @ particuler input is insignifi-
cant ©l that some other wnrecordea information
is siuniticant. The ALY internally maintains
the Information requireo for derivations. When-
evel an outibut file Qs Cicsed, the information
is posten, if agerivations rave been enabled by
L oT §otuold,

rivaticn consist: ot the attrioutes
_tual 4ri the associations
e loputs, geriveo from sng other inmputs.
Treese atlritete. ana associations collectively
cunstitute e derivation. Derivations are
suttroaled Uy e KAPSE gno cannot be modified
et D e resting tooi. Tne functions of
COTROOenNts are:

selivallan

BRI GURL

CosoallTibute conveys the name of the tools
fraat opeober or omucifieq tne file, the para-

- Leannis Ly those tools, and annota-
Tt entes Ly thuse touls.

RIS AL A

T s~oociation lists the pathnames of
thal wele opened ang read by the

sy too; . References in this
Ao bation engencer the incrementation of
tree derivat ion count of the named File,

20

derived from

This is a special assuciatiuvre trat cootsins,
not pathnames, but the unigue jdentifiers of
the files nameo in the Jeaged_inputs
association. By wusing uerived from, the
files named in the verivation can ve founo,
even if they have teen renamec, This 1is
used Dy the ALS Wi decrement ing
derivation_counts.

other_inputs

This assegciation liste th> patnnames cf
files that were open anc Treag by the
creating tool, but were not entered in the
logged inputs association because the
citation was explicitly suppressed.
References 1n other inputs dc not engencer
incrementation of the derivation count of
the named file.

Files which have bteen rnameo In the
logged inputs association of the gerivation of
one or more other files possess a cited by
association and a derivation count attricute.
Cited by contains the UID's of the files that
name this file in their derivations. These are
the back-1links of the derived_from
associations. In other words, citedg by refers
to those files that have been created from the
file possessing the citea by association.
Derivation count is, simply,” the number of
entries in the cited by asscciation. C(ited by
and derivation count “are managed automatically
by the ALS ang are not subject to cirect
alterations by tools or wusers. Entries in
cited_by are removed when the named file is
deleted. A revision canmnot e deleteg if it
possesses a positive oerivation count. Since
this makes deletion very complicated, the use of
gerivations is recommenced only for baseline
objects unoer configuration management.

Section 4
USE OF ALS FEATURES

This section oescribes how the features of
the ALS can be wused to overcome some of the
provlems faced in large-scale software efforts.
For discussion purposes, the wuse of variations
will be illustratea in tne context of proviging
support for program families; the use of revi-
sions, access control, and derivations will he
outlined In relation to CM; and the wuse .f
stiaring will be couched in the discussion of
programmer coordination. However, im reality,
the partitioning is not as clear. variations are
alsu necessary for CM; access control is neces-
sary for programmer coordination; and all aspects
of CM are intimately relatec to programmer co-
ordinat ion,

4.1 Program "amilies

All changes to software components fall into
two Cclasses:

[changes that make previous versions of
tre cumponent obsolete, and

[] changes that do not cause previous
versions to become obsolete.

The first class of change is called revision;
the secung s termed variation.

Examples of changes of the first class are
error corrections. Once an error is discovered
ana corrected, there is no reason, other than
historical investigation of failures, to use
cld, erroneous, versions of a component in any
new systems. The latest version supersedes all
older versions. Pevision sets are used to repre-
sent this type of change in the ALS database.
Revision uoes not give rise to families of pro-
grams. [f all compunents are changed by super-
seging the previous revision, then at any given
time, there is only one current copy of the soft-
wale lncorporating all of the latest revisions
of all compunents.

Examples of changes of the secono class are
changes ir the function or implementation of a
component. (One common source of variation is
testing. A program m&ay have some components
useg only curing testing ang other, similar but
not identical, components usec in production
variations of the system. In this case, the
existence of a test variation does not make a
production variation obsolete; the variations
legitimately exist simultaneously. An error in
one variation may or may not appear in another
variation. Variations may also exist because of
differences in implementation of icentical
functions. (Our SINE routine, for example, might
be codew in any nunper of languages for dgifferent
computers. There may be a separate variation
for computers tnat lack flcating point hardware,
ur a separate dounle precision variation, etc.
AL> vdariation sets are used to represent changes
sf this type. It is variation that gives rise to
families of programs vecause multiple systems
Lal be constructed by incorporating the latest
revisjon of one or another wvariation of a
component in each of the systems.

variation set headers mark the places in the
suftware where evolution of the families di-
verges. Lomponents above variation heacers are
sileled Ly all mempers of the family of programs.
components below variation set headers are
specific to some subset of family members. In
gereral, it is ovest to have the variation set
heacers 4s low In the structure as possitle so
that shared comporents do not appear below vari-
ation hequers. 1o this sense, the example in
Figure G s less than ideal.

a single furctional variation often results
i maby Chaoges ddlstriuuted throughout the

structure of the naseline., It a single varia-
tion header were used, it wouldg have to b
places so high ir the structure that many commer
components wouldg appear in the subtree of tre
variation header. In such cases, it is better
to use multiple variation heacers for a single
functional change. However, each of the result-
ing variations should either te qgiven the same
name, or shoula all have common igentifyinc
attributes. Fer example, if & wvariation is
introducea in a system to support double preci-
sion arithmetic, then all components tnat are
specific to sirgle precision shoulc be namec
"single" ana components specific to double
precision shoulg be nameg "double." Using the
variation notation, this woulc yield names like
sine(single), cosine(single), etc., in one case,
and sine(coutble), cosine(gouble), etc., in the
sther case. Alternatively, attribute variation
selection could be wuseg, in which case the
corresponding component names would be sine
(precision=> single), cosine(precision=> sirgle},
sine(precision=> double), and cosine (precision=»
gouble), respectively. Several attributes can
he usea for selecting a single variation, e.g.,
sine(precisiun=» doutle, tarcet=> 8086). In this
way, variations with gifferent names can be
selected with a common set of attributes.

The ALS supplies these capabilities so that
tools for constructing imcivigual members of a
program family can ve reacily oeveloped. Such
tools woulo be given the attribute values or
variation names to use in selecting components
from a vaseline containing many variations. Tne
tools would then collect the necessary compo-
nents and oinc thew together to form an execut-
able program. Combinations of many attributes
ang variation names couldg be used to generate a
very large numper of family members closely
matched to the requirements of individual appli-
cations. Such a “custom tailoring" approach to
scftware is often avoived simply because corven-
tional methods for dealing with program families
are cumbersome and expensive.

The proper use of variations can lead tc sub-
stantial cost savings during maintenance. Con-
ventionwily, members of & program family are
maintained in entirely separate baselines, often
by entirely separate staff., This tends to en-
courage the continued divergence of the family
members, even when it is unnececsary. By using
variations, a family of programs can be stored
in a single vpaselire. This approach keeps the
evclution of the software from diverging to the
poirt where a separate maintenance staff is re-
quired. Since all variaticns are reaagily visiole,
grouped under a single header, it is much easier
to sssess the effect of a software change on all
members of a family. It is also much easier to
prevent unnecessary divergence ano easier to
apply error corrections to all appreoriate varia-
tions.

It is true that the notion of variations

could have been supportec by using directories.
However, it 1s the author's view that the concept

21

will unly work swcvessfully it programmers are
e . terdnce ot toe gitrerence Dotween
fevisians and valiatictes. Cvely tioe g change
Ps irulodnued, U OINGTalmeT must e ice wheiheD
the Coatge fnoa Ievisior o valiation ane must

JLEt DI)

ToLTeate stTectule to o upply the Chanoge
O the aase [ine,

4.2 Configuration Management

A design qoal of the ALL was to provice the
STy ENG 0 d@talees s mecnanisms tu pertora con-
riguration management. [t was recognizeg that
there oIe many citfering scenarios fur CM and
many tools that can be implementec to support
Nese scenallus,. Hdather than impose one method,
the ALS suppiies the fundamental capabilities
wnich rawke gil CM tocls easy to implement. kuoi-
mentary CM otocls can oe implementeg Jdirectly in
the: A0S commanc lanCuaye without writing a com-
puter program in the conventional sense. An
inpueienitor of CM tools 1s likely to rely upon
tne following ALS mechanisms:

[] revisions,

[} unique igentifiers,
[variations,

. attriiutes,

[derivations, andg

[] access control.

Revisions anc unique identifiers give the ALS
user the means to absolutely identify software
components. The wuse of variations has been
treated in the previous section. Attributes
sapply @ metnco of attaching descriptive
information to an object. Derivations provide a
Jetalley accounting of how an ouject was created
A wWwhy it oirfers from a similar ovject.
Fitmiiy, the ALS access control services give
the (M tools flexibility In restricting access
Ly Laselines.

Revision sets and UIDs are the keys to
ausulute identification; and absolute
igentification is the key to configuration
maragement . Changes to baselines are made by
appending revisions to revision sets and then
freezing the latest revision., From then on, the
name of the revision, say sine(6), stands for
that wuject ang that object only. Any change to
sine would result in a new, hignly visible,
revision named sine(7), which has a new UID.

Revision cets facilitate the comparison of
bdselines with other baselines ang installed
systems, two fundamental (M operations. Suppose
that there exists o baseline from which s
jenetaterd 3 number of variants of & system. The
systems 4are constructed by a3 tool such as
oescrioed in the previous section., As & system
is constructed, the tool proouces a component

22

list ¢t tre revisions incurpuratec, For eacn
component, the 1ist contains the fuil file name,
incluging the revision number ang any variation
Nnale, and the LI0, Every system constTucted for
testing ang every system generated for reverug

service has its component list attaches. Tre
elements of any system can be readily ilentified
Dy examining its compeonent list, if 4

programmer needs to examine the senrce text of
tne system, he merely displays tre oontents of
the revisicns specified in the component pict.
Since the revisions citec in the compunent list
are frozen, there is ne guestion that the source
text is wexactly tnat used to generate the
system. Any change Letween the (iven system ang
the current baseline can be rapicly identifien
by comparing the revision numbers anc UJI0s in
the component list with the latest revision
numtrers ana UI0s ir the baseline. The systen
can be exactly recreated by extracting from the
naseline the revisions citec in the component
list. Finally, the correspongence oetween a
test system ane g producticn system can be
easily verifiec by comparirg the compnonert lists
of the systems,

In a:dition tc system builoing tools, €M
typically entails tne creation of many tocls for
suCh tasks < installation ang accounting of
taseline changes, trac-ing of error reports,
tracking ot proiect status, baseline inventury
antdt audit, error diagnosis, ete. Tools of this
ndture often require auxiliary information about
the objects in the taseline, e.g. installation
date, author, pencina changes, systems in which
the object was usec, etc. ALS attributes are
used to conveniently store such auxiliary infor-
mation.

Attributes are a methcoc of attaching de-
scriptive information to an object without
modifying the contents of an oblect. Without
attrivutes, there are three choices: modify the
object, builc auxiliary files to contain the re-
scriptive information, or use naming conventions.
Modification of the object is very inflexible
since It affects the programs that manipulate
the ouject. This approach leads to such aber-
rations as highly coded control Information em-
beagded in comments in source code. Naming con-
ventinns are inadequate for the amount of infor-
mation necessary for configuration management.
If auxiliary files are used, each program that
uses them must bulld ang maintain the data
structure of the auxiliary file. Ry proviging
attributes, much aof the data manipulation buroen
is removed from the configuration management
progyrams. Attribute values can be quite large,
up to 64K characters. Attributes dre gsed where
the information is to he kept with tte opject
being descrived. Auxilidry Files will =tili te
used where Infurmation atoout many bjects s tc
be collected in one place,

Derivations are reauired Uy the Storemas.,
In essence, they are a semi-automatic methog for
incrementally traceina the history of <cftware
components, In fact, the Stonemdn uses the term

"histury dattritute.™ Tne ALS Implementatior of
gerivdations 1s similar to the 1lmplementation
propusent i the Ada Support System Stucy Com-
pletea In the UK [STEN]. A commun (M operation
s tne Cubparisen of components to luentify the
differences vetween the previous software that
tunctiviey correctly anc tne currert suftware
that malfunctions. Unturtunately, direct tex-
tual cumperisun {s often useless, Ffor example,
the textual comparison ot otject mooules will
usually estaulish that a ndirference exists, put
rarely yielas a clue avout the significance of
the ciffererce. Textual compariscn of source
may not pbe much more enligntening atout the
reievance ot any differences discovered. How-
ever, compdrison of the derivations of two com-
porents carn reveal that cifferent revisions or
variations of source were used to obtain object
modules, or that Jifferent compiler options,
e.q. optimization, were useg in each case, etc.
CM tools can post any relevant information in
the cerivation_text attrioute. Tnis might in-
cluge a component list, or a short descriptiun
¢r g change entered ty the programmer guring dan
edit operation. This type of infurmation is
significantly more useful thian textual
comparison vy itself.

Access to baselimes must be controlliea to
ensuly thal no whaLtnorizeo changes are applied.
The ALS uses a relatively conventiunal paradigm
for access rcontrol. For CM, the via lock is
especially useful. with the via lock, it is
pUsSSiLer tu credate subtrees in the ALS database
that can orily ve accessea through the services
of a tuol or group of tools. In tris way,
access tou baselinmes can be controlled by (M
touis createc for the purpose. Such tools are
used tc ensure tnat changes are applied in an
orgerly fashion, tnat all recording of changes
is duly performed, that changes have been
auttwrizes, and so forth, This feature is used,
for example, by tne ALS Ada compilers to deny
J5eT$ olrect access to program libraries where
ovject moaules are stored. In this way, the
user is preventea from circumventing the
recompilation ordering rules of the Ada
Languaye.

4,3 Coordination of Programmers

This discussion will be limited to program-
mer coordination during the wmanipulation of
source and object cooce. There are many other
aspects of programmer coordination not tieated
her: because the ALS currently provides no
specific tools for interface control, design
coordination, requirements analysis, etc. Some
of these provlems are aodressed by the Ada
language; others will be addressed by tools
written for the ALS. It is expected that the
feqtures of the ALS already outlined will
simpiify the implementation of such coordination
touis. Many of these tools will follow the CM
pAarattians estavlished for baseline control.

For source code, most coordinatior. will e
done by the use of baselines. Source usec 'y
more than one programmer will be storea in &
controlled baselire. Any modifications to the
source will he acccmplished by first locking tne
taode to be modified, performing the mogifica-
tions and testing them in a private asrea, thenr
installing the modifications in the baseline,
after suitavle notice has been given to a1l
interested parties. Locking prevents more than
one person from mouifying a component simulta-
neously. It also serves to alert other user:s
that a mocification miy soon be applien.

The vaseline can ve used in three ways:

[source tiles can ce copied frum the
baseline,

[4Ny subtree can te shared, or

[] the baseline can simply be referenced.

If source 1is coplec, then the gproagrammer s
insulateg from any changes that occur. He is
also cut off from any errur corrections or
improvements. If the source is shared, new
revisions of the source files will automatically
appear in the sharer's area, potentially witnout
notice. If the source is referencec, then there
are a numpber of choices, references to explicit
revisions anc variations, references tc the
latest revision or latest frozen revision, ana/
or references tc the default variation. Ex-
plicit references provide 1isolaticn, general
references do not.

sharing prevents unrecessary divergence of
software. In more conventional systems, sharing
is accomplished by copying. But once copied,
the evolution of software components is likely
to diverge because the copy will pe overlookeg
during maintenance. with sharing, there is only
one copy to maintain. If changes for one sharer
are inappropriate for all, then a variation
should be introduced tc document the civergence.
Keeping all the spurce logically in the baseline
and only referencing it during compilation is a
good compromise. Isglaticon can be achieved by
using explicit revisions and variations, but the
divergence of evolution is less likely. However,
with referencing, deletion of old revisions must
be controlled to avoid deletion of source text
that is still in use. In some sense, this is an
abrogation of the obsolescence property of re-
visions, &nd therefore should not be usec in
place of variations. In other words, explicit
revision references shoula only appear when
there is an intent to track the evolution of the
source component; otherwise, a variation should
be created.

The ALS supplies much stronger support for
programmer coordination at the object code level.
All Ada object code must be placed in a structure
called a Program Library. In general, there is

23

e Program Liorary (PL) for each variation of
an executable program. A PL is a collection of
girecturies and revisions in one subtree. Via
locks are usea to restrict access to Pls., Pro-
jrammers are encouTaged to think of PlLs as
buckets into which they place components of a
system. when all components are in the PL, they
can ve lirked together to form an executable
program. Revisions are used inside PLs so that
one PL can De repeateoly used for recompilation
ana relinking during the system development. Ada
recompilation ordering rules are enforced by all
tools that operate on PLs.

Components can be placed into a PL by com-
pilation or vy acquisition from another PL.
Suppose, for example, that an Ada package exists
for trigonometry. The package can be initially
compilea into a puolicly available PL. Program-
mers whio use the package can then acquire the
ovject code Jdirectly without recompilation.
This 1s done by using a tool named LIB, short
for library. Acquisition is accomplished by
reference, so that duplicate storage of the
object code is avoided while maintaining isola-
tion of PLs. Changes in the acquired-from PL go
nut automatically appear in the acquired-to PL.
Tne aduition of a subscription capability is
antlcipated. With this mechanism, the owner of
an acguired-to PL would be notified if any
changes were made in the agcuired-from PL. He
could then reacquire at his option. PLs provide
the isolation of copying without the duplication
af storage. Acguisition can be done frcm a base-
line to a private PL to establish a private work
area. Thne acguisition mechanism provides a
metnou for easily sharing while still preserving
some 1isolation. The guiding philosophy behind
PLs is that neither a baseline nor & private PL
can te altered without explicit action by the
Ownelr.,

Section 5
CONCLUDING REMARKS

A major technical contribution of the ALS is
the support for large-scale software projects.
The ALS is one of the first production-quality
programming environment to offer native, rather
than tacked-on, support for configuration manage-
ment of program families. Specifically, it is
the first environment to offer:

[} differentiation of revisions ang
variations,

24

[} explicit namey variaticns,
[} freezing of revisions, ana
[] derivations.

The notion that there is a qualitative oifference
petween revision and variation has been inde-
pendently proposed by twa other investigators,
Cargil ang Tichy. The ALS will test the value
cf this model by exposing the idea to a large
number of software engineers in production
situations. In the author's opinion, the ois-
tinction between revision and variation will
prove to be a fundamental notion.

REFERENCES

[BERS] E. H. Bersoff, V. D. Henderson, and S.
G. Siegel, "Software Configuration
Management : A Tutorial," Computer
Magazine, January 1979, IEEE, pp 6-14.

[BUXT] J. Buxton, Department of Defense
Reqguirements for Rda Programming
Support Environments "STONEMAN;" U.S.
Department of Defense, February 1980.

[CARG] T. A. Cargil, A view of Source Text for
Diversely Configurable Software;
University of waterloo, Dept. of
Computer Science, 1780, 100p.

[STEN] V. Stenning, et al., Ada Support System
Study; System Designers Limited and
Software Sciences Limited, 1979 and
1980.

[TICH] w. F. Tichy, Software Development
Control Based on System Structure
Description; Carnegie-Mellon
University, Computer Science
Department, Jan 1980, 180p.

[THAL] R. M. Thall, "The KAPSE for the Ada
Language System;" Proceedings of the

AdaTEC Conference on Ada; October,
1982, ACM, pp 31-47.

[WOLF] M. wWolfe, W. Babich, R. Simpson, R.

Thall, and L. wWeissman, "The Ada
Language System;" IEEE Computer

Magazine, June 1981, pp 37-45,

—_

AD-P003 417

Cambridge,

The Ada Integrated Environment (AIE) is
designed to be easy to learn and easy to
use, It will be powerful, efficient, and
friendly. This paper describes how these
guals are addressed in the design of the
Ada compiler, the MAPSE Command Language,
and the Program Integration Facility.
Plans for future tools are also
described.

1. INTRODUCTION

The Ada* Integrated Environment (AIE)
provides support for the development of
Ada programs. A good environment should
provide the power and flexibility to make
program development as easy as possible.
It should also be friendly and easy to
use,

An environment must meet all these cri-
teria if it is to be easy to learn. Pro-
gram development tools which are slow or
produce poor output discourage the user
from learning by experimentation, Lack
of flexibility 1in tools frustrates a
novice user, and often force experienced
users into arcane methods which are
unreliable and difficult to maintain.
fFriendliness and ease of use help users
get started in the environment. However,
a user advancing into unfamiliar areas
should not be hampered by unneeded

This paper describes the major user
interfaces currently being developed for
the Ada Integrated Environment: the Ada
compiler, the MAPSE Command Language
(MCL), and the Program Integration Facil-
ity (PIF). The MCL is part of the Minimal
Ada Programming Support Environment
(MAPSE)

* Ada is a registered trademark of the
U.S. Department of Defense (AJPO).

LEARNING THE ADA INTEGRATED ENVIRONMENT

George Snyder

Intermetrics, Inc.
Massachusetts

2. COMMAND LANGUAGE

The MAPSE Command Language (MCL)
[Shenker] is the primary interface
between a user and the AIE. The funda-
mental role of the MAPSE Command Proces-
sor is to invoke programs, in response to
a user's MCL commands. The overall philo-
sophy of the MCL is similar to that of
UNIX (R) [Bourne}, a widely used and fam-
iliar system. Because MCL syntax is
based on Ada end UNIX, users will find it
easy to learn.

The MCP uses a "toolkit" approach,
whereby a number of generalized tools can
be easily interconnected for a particular
purpose. All tools are available at the
command level, or in scripts containing
MCL commands. Because tools are pro-
grams, rather than being embedded in the
command processor or operating system,
the tool set can be expanded or modified.
Following this philosophy, the MCP itself
is a tool.

Like Ada, MCL may be typed in free for-
mat. Because MCL is primarily an
interactive language, Ada syntax rules
have been relaxed to reduce the typing of
punctuation such as parentheses, commas,
and semicolons.

2.1 Program Invocation
A program is invoked by typing its name.
Suppose there is an Ada procedure:

procedure Compile (Source: string;
Library: string);

This program could be invoked with a com-
mand like the following., Any combination
of positional and named parameters may be
used:

compile Mysource Library => Mylib

25

2.2 Ppipes

The Ada predefined text input /out put
files STANDARD_INPUT and STANDARD_OUTPUT
can be redirected either to disk files or
to other programs via "pipes." Programs
connected by pipes execute concurrently.
In the following example, Sort reads its
irput from Filel and passes its output to
Unique, which reads the result as its
input and places its output in File2:

Sort -< Filel -| Unique -> File2

2.3 Language Elements

MCL provides a number of Ada-like con-
structs, as well as all Ada operators.
Literals and implicitly declared vari-
ables may be of type integer, float,
boolean, or string. Quotations around
string literals are optional. A variable
may also be given an aggregate value; its
components may then be specified either
by number (as an array) or by name (as a
record). Certain attributes are defined
for MCP wvariables, such as 'TYPE and
' LENGTH. The following examples illus-
trate some of these features:

gvarl := 4

gvar2 := (A => 9, B => "Series 9")
gresult := 5,0 + 3 * (4 / %result)
put svar2'type

put %var2.B'length

2.4 ontro tructure

Control constructs include if-then-else,
case, loop, and begin-end. These con-
structs may be nested, and may be invoked
either from the keyboard or from a
script. When a compound command is being
entered from the keyboard, MCP prompts
with line numbers until the command is
compl eted. A compound command's output
may be redirected. The following example
sorts a 1list of «colors and places the
result in Sorted_Colors (a colon is the
normil MCP prompt):

: for %color in
2/ (green, blue, red, yellow) loop
3/ put %color
4/ end loop -| sort -> Sorted_Colors

26

2.5 Scripts

A frequently used sequence of MCL com-
mands may be saved as a script, resulting
in a new tool. A script may specify
parameters, like an Ada procedure or
function, and the parameters may have
default values. A powerful aspect of this
approach is that an Ada subprogram and an
MCL script are invoked 1in exactly the
same way. Thus frequently used scripts
can be converted to Ada without having to
change scripts which use them. Here is a
script which performs a bubble sort:

gData := (5, 2, 4, 0, 1, 3)
put "Unsorted Data: ", %Data

for %i in reverse 1..(%Data'length-1)
loop
for $j in 1..%1i loop
if spata(%j) > sData(%j+l) then
$Temp := %Data(%j+l)
3Data(%j+1) := sData(tj)
$Data(%j) := %Temp
end if
end loop
end loop

put "Sorted Data: ", %Data

2.6 Help Facility

A help facility is provided, which allows
the user to get information about any
program or MCP script. Help 1is also
available for a program's parameters,
simply by typing a question mark where
the parameter would normally be speci-
fied.

2.7 Qther Commanpds

Any command may be executed in the back-
ground by terminating the command with
"-&", The user will be informed when the
background command completes. The WAIT
command causes MCP to wait until a speci-
fied background command completes, A
background command can be terminated with
the ABORT command.

: comp:
2/ compile Myfile Library => Mylib -&
COMP EXECUTING
: abort comp
COMP ABORTED

A user may end his MCP session with
either LOGOUT or SUSPEND. 1In the latter
case, the session may be later resumed at
the state in which it was suspended.

3. PROGRAM INTEGRATION

The purpose of the Program Integration
Facility (PIF) is to create & manage pro-
gram libraries with minimal direction
from users. In addition to the usual
library support functions, PIF provides
configuration management, including ver-
sion control and automatic reconstruction
of library objects.

3.1 Library Support

Multiple libraries can be maintained in
the AIE, and one or more libraries may be
available to each user. One of the
parameters to the Ada compiler is the
name of the library into which the compi-
lation 1is to be placed. If the library
does not exist, it is automatically
created. Mcre than one user can access
the same library, so that members of a
team can share program units.

In order to save space, a set of related
library wunits which are frequently used
can be stored in a catalog. In order to
save space, catalogs can be shared
between libraries in a manner analogous
to a traditional 1library of object
mocdules. The interface catalogs (specs)
are maintained separately from implemen-
tation catalogs (bodies), and multiple
implementations of an interface can coex-
ist, Users can specify which interfaces
and implementations are to be used for a
particular library.

3.2 Configuration Management

The PIF supports numbered revisions and
named versions of catalogs. Users can
check catalogs out for modification, and
check them back in afterwards. Inter-
dependencies of objects in a library are
tracked, and objects are reconstructed as
needed so that any referenced object is
up-to-date,

3.2.1 VYersion Control Since Ada units
are heavily interdependent, maintaining
revisions on a unit basis is impractical,.
A change in one unit's source may cause a
change in the DIANA of every unit that
depends on it, For this reason, versions

and revisions are treated on a catalog
basis. A user can link to the latest
revision of a catalog, or to a particular
revision number,

A version of an object involves signifi-
cant changes, usually including unit
specifications. A new version of a cata-
log is <created by copying it to a new
name, and changing a library's 1links to
it., A revisjon is typically a change in
implementation, A user creates a revi-
sion of a catalog by deriving from it a
catalog with same name but a new revision
number, Such catalogs can later be pro-
moted to resource catalogs, and thus made
visible to other catalogs.

3.3 Object Recopstruction

The PIF makes sure that every object in a
catalog is up-to-date when it is refer-
enced either directly or indirectly.
This applies not only to Ada units, but
to other kinds of objects. A user can
change the rules and tools by which an
object is updated.

3.3.1 Initial Form A library object may
be present in more than one processing
stage, or form, such as "source,"”
"abstract syntax tree (AST)," "DIANA,"
"object module, " "executable,"” "documen-
tation," etc, Each object in the library
has an jipitial form, which is not derived
from other objects in the library. The
initial form of an Ada compilation wunit
might be Ada source, or Abstract Syntax
Tree (AST), for example, depending on how
it was initially submitted to the
library.

Every other object in the 1library is a
generated form, and is derived from one
or more initial forms. A generated form
becomes out-of-date when one or more of
its initial forms is replaced. An advan-
tage of this scheme is that intermediate
forms can be deleted from a library to
conserve space, without causing generated
forms to become obsolete.

3.3.2 Rules Rules are used to describe
how to generate one form of a library
object from another., The general form of
a rule is:

precursor -> target: operation
Users can modify or add rules to cover
other forms, such as foreign language

conversions, documentation, and problem
reports.

27

3.3.3 Approved QOperations Operations
are maintained 1in a list, which identi-
fies for each operation a tool name and
revision, Thus tools can be updated or
replaced, without changing the 1list of
rules. Because a target_form implicitly
depends on the version of the tool that
creates 1t, updating a tool may cause
some objects to become out-of-date,

4. ADA COMPILLR

A compiler may be a programmer's most
important tool. The AIE compiler is
designed to produce high quality code in
a friendly and efficient manner. A number
of optimizations are used tc make the
generated code efficient. Friendliness
is achieved primarily through informative
error messages and a powerful syntactic
error recovery (parse fixup) scheme,

4.1 (Compiler Optimizations

Compared to cther langquages, Ada presents
four major areas of difficulty in produc-
ing optimized code. Constraint checks,
several of which may occur in one state-
ment, may create significantly more code
than the programmer expected. Inline
subprograms expanded in a simple way may
make modularity expensive, thus defeating
one of Ada's primary purposes, Tasking,
if naively implemented, may be too inef-
ficient for some synchronization needs.
Expansion of generics must be optimized
to avoid time wasted in recompiling gen-
eric bodies and space wasted by redundant
code.

4.1.1 Constraint Check Elimination: The
AIE Ada compiler eliminates many con-

straint checks at compile time, by keep-
ing track of information known about each
object. For example, a simple assignment
of one variable to another of the same
subtype does not require a constraint
check, because the source variable must
already contain a valid value. A use of
a variable which was declared with an
initial value does not require a con-
straint check, since the initial value
has already been checked. The sum of two
integers of discrete range need not be
checked for integer overflow, unless the
dis<rete ranges are large.

Implicit constraint checks which cannot
be removed are flagged at compile time.

28

With careful design, a programmer should
be able to remove nearly all such checks.
In fact, an implicit constraint check may
often be taken as an indication of a flaw
in coding.

4.1.2 Inline Subprograms: The AIE com-
piler fully supports inline subprograms,

and optimizations are applied after such
subprograms are expanded. Thus optimiza-
tions span the subprogram interface.

4.1.3 Tasking Optimizations: The AIE
tasking implementation is optimized in

several ways., Nearly all
overhead 1is eliminated for the second
task of a pair entering a rendezvous,
since the other task is already waiting
and one of the two must be the highest
priority runnable task. The rendezvous
is executed on the caller's runtime
stack, so that parameters are passed with
the same efficiency as a procedure call,
The static 1ink, which would normally
point to the innermost invocation of the
enclosing subprogram in the «caller's
stack frame, is adjusted to point to the
called task's stack, so that up-level
references refer properly to the scope
containing the accept body.

scheduling

In addition, the user may declare a task
which does nothing important outside of

accept bodies to be a "monitor™ task.
For such tasks, even more scheduling
overhead and nearly all stack space is

eliminated.

4.1.4 Qptimizing Generics: Generics are
stored as DIANA ({an intermediate tree
representation), and are therefore not
recompiled for each instantiation. Where
possible, code is shared among instantia-
tions, to minimize redundancy.

4.2 Error Reporting

Accurate diagnosis of syntactic errors is
doubly important. First, the location
and nature of the error must be reported
accurately. Second, the parser must
recover from the error in such a way that
artificial errors are not introduced. 1In
addition, reporting a good parse fixup is
often more helpful to a programmer than a
good error message. The AIE compiler
uses the syntactic error diagnosis and
recovery method described by Burke and
Fisher [BF]. Used in the NYU Ada-Ed com-
piler, this method has correctly diag-
nosed over fifty errors in an Ada

compilation of 111 lines. Some typical
messages are shown in figure 1.

Semantic errors from the AIE compiler are
designed to be as helpful as possible.
Each such message will highlight the
erroneous portion of the source line,
describe the nature of the error, and
give a reference to the relevant section
and paragraph of the Ada Language Refer-
ence Manual [LRM].

The semantic error handling mechanism is
modul ar and flexible. The compiler
defines semantic errors at the levels of
declarations, statements, and expres-
sions, There is a unique exception for
each semantic error, so that an error can
be handled at any of several levels.
Since an error handler can reraise the
same exception or raise a different
exception, there may be responses on more
than one level, An error in an expres-—
sion, for instance, might <cause the
statement in which it occurs to be
skipped. Fasponses to an error can be
easily changed. For example, messages
describing possible causes of a semantic
error and suggestions for fixes might be
added.

5. SUMMARY

The AIE 1is a powertul, easy-to-use
environment for the development of Ada
programs, It provides a powerful command
language based on Ada and Unix. Its pro-
gram integration facility supports shared
code, and helps to automate revision con-
trol and object reconstruction. The AIE
compliler is production-quality tool which
produces optimized code and and helpful
diagnostics.

6. REFERENCES

{pourne] S. R. Bourne, "The Unix Shell,"
The Bell System Technical Jour-
nal, vol 57 No 6 Part 2 (July-
August 1978), 1971~1980.

{BF] Michael Burke, Gerald A,
Fisher, "A Practical Method for
Syntactic Error diagnosis and
Recovery,"” Proceedings of the
SIGPLAN '82 Symposium on Com-
piler Construction, SIGPLAN
Notices, Vol 17 No 6, June
1982, pp 67 - 78.

[Fisher] Gerald A, Fisher, Jr., private
communication to Len Tower,

[LRM] Reference Manual for the Ada
Programming Language, MIL-STD
1815, March 1983.

[Shenker) Abraham Shenker, "A MAPSE Com-
mand Language," Journal of Pas-
cal and Ada, January-February
1983, pp 35 - 39.

7. ABOUT THE AUTHOR

George J. Snyder has been a member of the
Ada Systems Division of Intermetrics
Inc., 733 Concord Avenue, Cambridge, Mas-
sachusetts 02138, since June 1982. Pre-
viously, he was Software Project Leader
in the Electron Beam Lithography Division
of Varian Associates Inc., in Gloucester,
Massachusetts, He received BS degrees in
physics and architecture f rom Mas-

sachusetts Institute of Technology in
1972, and an MS degree in computer sci-
ence from Boston University in 1980. He
is a member of the ACM, and the IEEE Com-
puter Society,

29

30

Figure 1. Example Syntax Error Messages

25 subtype ¢ is range 1..30;

*** Syntax Error: "TYPE" expected instead of "SUBTYPE"
39 X 1 =x + 2;

*** gyntax Error: ":=" expected instead of ":" "="

46 begin

47 declare

48 X: integer;

49 for iinl .. 2 loop

***x Syntax Error: "BEGIN" expected before this token
50 b(i) := 0.0;

*** Syntax Error: "END LOOP;" inserted to match "LOOP" on line 49 at column 27
*** Syntax Error: "END;" inserted to match "BEGIN" on line 48 at column 21

51 end;
52
53 function DAYS_IN_MONTH(M: MONTH IS_LEAP: BOOLEAN) return DAY is

*** Syntax Error: ";" expected after this token
91 K: SHORT_INT = 1;
*** Syntax Error: ":=" expected instead of "="
106 elseif z > w then

*** Syntax Error: Reserved word "ELSIF" misspelled

TEACHING Ada AT THE US MILITARY ACADEMY

Major Kevin J. Cogan

AD-PG03 418

Department of Geography and Computer Science
US Military Academy
West Point, NY 10396

ABSTRACT--A five year history of teaching
Ada* with the NYU Ada/Ed translator has
evolved into an effective methodology for
teaching top-down engineering design
simultaneously with a bottom-up
presentation of the Ada grammar. With
emphasis on enmbedded hardware systems,
students are confronted with successively
more difficult design problems which must
be written and executed on a VAX-11/788.
Exposed to the Ada features of packages,

concutrrency, generics, and exception
handling, students design, write and
execute an extensive term project
simulating a real~time embedded system
using Ada. Projects approach the 1009
lines of source code limitation of the
translator. Reusability of code is
stressed by importing a previous vyear's
package when feasible.

*Ada is a registered trademark of the
U.S. government, Ada Joint Program
Office.

The United States Military Academy
is located fifty miles north of New York
City on the Hudson River at West
Point, Every year nearly one thousand
young men and women receive a Bachelor of
Scilence degree and are commissioned
second lieutenants in the Army. Like
many other educational institutions
throughout the country, an increasing
number of West Point cadets enroll in the
academy's rapidly expanding computer
science curriculum each year. ©Over the
last five years Ada has been part of that
curriculium, The Department of Defense
chose the Ada programming language as its
weapon to combat the software crisis for
embedded computer systems for the 1988's

and beyond. It is a natural result that
west Pouint, the Army's "college," has
added Ada to its arsenal of computer

science studies.

AN _APPROACH TO ADA

Ada education at West Point began in
the summer of 1979 when the academy was
selected as one of the t:rst locations to
conduct an Ada workshop. Recognizing the
impact that Ada programming was to have
on the software industry as well as the
direct applicability of 2da for the
Department of Defense, a course in Ada
programming was offered for cadets in
August 1988. As many readers of this
article are aware, any syllabus for a
course in Ada has been largely
experimental to date. A good case for a
bottom-up approach to Ada education can
be made by those who profess that the
language is large and complex and must be
digested at the syntactical level before
the concepts unigue to Ada ~an be
introduced. Proponents of a top-down
Ada course argue that programming in Ada
requires the student to be reoriented in
order to grasp the fundamental aspects of
data abstraction and packaging in Ada
first, and then master the syntax which
should be a simple process. The correct
approach may ultimately be decided by the

textbook most widely used., 1In the last
year many new Ada texts have been
published since the Ada lanquage
definition was approved as an ANSI

standard in Februaury 1983,

The primary objective of Ada education at
West Point is to determine the framework
for Ada as an undergraduate elective
course concurrent with providing a rich
and rewarding programming langquage
experience for cadets. This effort has
been in cooperation with the US aArmy's
enter for Tactical Computer Systems
(CENTACS) at Fort Monmouth, New Jersey.
As the prime contracting agency for the
Army's first production compiler, CENTACS

has ‘provided West Point with successive
versions of Ada/ED, an Ada translator
which can be implemented on a VAX

minicomputer.

31

THE ADAED TRANSLATOR

Ada ED 1s s product of New York

Iniversity's Cour ant Institute of
Matnematilces under contract for the
Arrmy. Written 1n SETL whith 1tself was
decseloped at NYU, Ada/ED serves as an

inter:m learning environment for Ada until
a corplier 13 completed and released. To
date, CENTACS has provided the US Military

Ao ademy wilth five versions of

Ada ED - 1.4, 13.5, 16.3, 17.2 and ANSI

AadaED .. All versions have been
3

implementesd on the Department of Geography
and Computer 3cience's research computer,

3 VAX-11778@ minicomputer. Each
zaceessive version has resulted in faster
translation and richer semantic error

detectlor messages. Access to Ada/Ed has
put an 1mportant and exciting tool in the
rands of cadets. ANSI Ada/ED 1.1 was the
first compller or translator to receive a
validation certificate from the Ada Joint
Program Office. Vval:dation certifies that
a product fully complies with the ANSI Ada
language definition. ANSI Ada/ED can
translate 180 lines of Ada source code 1in
approximately 208 seconds, complete with
syntax «rror highlighting and semantic
error messages, when

appropriate. Although a production Ada
compiler will be several orders of
maygnitude faster than this, ANSI Ada/ED
nas provided the necessary feedback for
cadets and instructors to assess the
learning skills acquired in the classroom,
west Polnt's findings pertaining to
undergraduate Ada education have FEeen
valuable to CENTACS and, hopefully, to Ada
education in general.

The first course in Ada at West Point
was simply titled Ada Programming. An
1ssessment of student background was made
vetore deriving the first syllabus four a
course never previously taught. Cadets
choosing Ada Programming as an elective
madd, a3 a2 minimum, a course in FORTRAN
programming during freshman year (required
for all freshman cadets regardless of
thelr academic major) and Structured
Programming in Pascal during sophomore
vear., Accordingly, cadets were well
prepared for Ada as another language. But
1t was realized also that Ada 1s more than
Tust o another programming language and not

vast oan extension of Pascal. The birth of
Ada's generic, package, exception, and
tasking constructs requires a new
rirntation to programming if the full
tiower ot Ada is going to be

Reyond syntax, there are the
. readability, rteilability,
Talnr yitarilaty, and portabi'ity to be
Leonn et The concepts were the genesis
e Defonge Department's pursuit of a
stardard lanaduaage for embedded computer

et)

P

systems, Therefore, it was reasoned
that a course in Ada must somehow embody
these concepts and make them an integral
part of the course structure.

In January 1982 the course name
changed to Ada Concepts and Programming.
This placed emphasis on the fact that
Ada's concepts were on a par with
programming as required learning
objectives. Cadets must demonstrate that
they understand the concepts of Ada as a
key to solving the embedded computer
system software crisis. They must
understand that the projected defense
software budget of $36 billion for 1990
can be significantly reduced by fully
utilizing the concepts of Ada.

INTEGRATION OF CONCEPTS WITH PROGRAMMING

Presently the course strives to
integrate the key concepts of Ada with
hands-on programming. It neither purports
to be a top~down nor a bottom-up approach
to Ada, but rather a weaving of these two
approaches throughout the forty lesson
attendances. To accomplish this, syntax
learning objectives are coupled with wnat
might be an actual embedded computer
system application.

For instance, during an hour lesson
devoted to arrays and the block-if, the
well-known problem of counting change is
used. The basic purposes of loops and if
statements are already known by cadets
naving had FORTRAN and Pascal
previously. The notion of strong and
enumerated typing in Ada is encountered
before this particular lesson. Therefore,
to count change in Ada (see Figure 1.)

requires onlv master ing the new
syntax. An opportunity exists at this
point to expand the problem for any

monetary svstem based on 108 as in 14@
cents/dollar or 188 pfennigs/W. German
mark. An immediate problem is the fact
that not all countries based on 180 have
six distinct <coins. Further it might be
desirable for the coin machine to prompt
the user with a voice synthesis module for
the specific unit of currency. At this
point Figure 1 is obsolete.

Figqure 2 leads {almost) to a generic
solution, although the students'
acquaintance with Ada generic wunits has
not yet been firmly established. of
particular note in this solution 1is the
FOR LOOP in the procedure body. Type
COINS is the range governing the number of
iterations of the loop. It no longer is
dependent on the integer range 1,.6 given
in Fiqure 1, but only on the number of
values enumerated for type COINS according
to the nations monetary
system. Concurrently, because the loop
index implicitly takes on the type and

current value of the range, execution of
the statement PUT(N) outputs the current
coin denomination desired followed by a
user input to that coin prompt. Thus to
convert this program for West German use,
the programmer changes only three
statements in the procedure specification
making substitutions as follow:

type COINS is (ONE_PFENNIGS,TWO_PFENNIGS,
FIVE_PFENNIGS,TEN PFENNIGS,
FIFTY PFENNIGS,ONE MARK,
TWO_MARKS, FIVE MARKS);
type MONEY is (MARKS,PFENNIGS);
VALUE : constant array{COINS) of INTEGER
:= (ONE_PFENNIGS => 1, TWO_PFENNIGS => 2,
FIVE _PFENNIGS => 5 TEN_PFENNIGS => 10,
FIFTY_PFENNIGS => 50, ONE_MARK => 198,
TWO MARKS => 208, FIVE MARKS => 500);

This time there are eight enumerated
values for type COINS resulting in eight
iterations of the loop, but this should be
abstract in the mind of the
programmer. The executable part of the
procedure requires no modification. Eight
coin prompts will be in German.

The pedagogical advantages of this
program should be clear. First there Iis
the benefit of the problem solution
itself. Secondly, aside from the issues
of reliability, the «classroom example
embodies the conceptual goals of Ada. It
is readable with virtually no
documentation by the novice Ada programmer
by selecting meaningful names for types
and objects. It is maintainable due to
the mere three statements that need to be
altered for a different country. It is
transportable, not only from the Ada
language standardization point of view,
but alsc physically transportable from a
geographical and linguistic sense with a
minimum of recoding. During a recent
visit by an Australian official, the three
statements mentioned above were quickly
altered to reflect the five subunits of
the Australian dollar (1,%,20,5@,188) and
thus a little bit of Ada is now at work

"down under”. A basic teret of Ada is
rhat there should be 4 minimum of recoding
o«ffort when changes are required. Readers
ramiltar with Ada's generic construct oan
note how this same ~xample problem can be
modified and written 1ater In oa gener o
package.

HANDS-ON TRAINING

Few ecducators in computer proaramming
lanquages coulid refute the benefits of
actdally ranning programs in the languaqc
neing taught. Teaching Ada should not be
an exception to this philosaphy.
Accordingly it has heen found to be
extremely advantageous o get students
utilizing the translator as quilckly as
possible. One lesson an the cyllabus s

devoted exclusively to wusing the Ada /ED
translator on the VAX. Of necessity, the
treatment of input/output in Ada, chiefly
in terms of package TEXT IO, is moved to
the beginning of the course syllabus at
about the sixth lesson so that students
may interact with the execution of their
program. There is a twofold advantage in
this approach. Not only does this allow
students to run programs early in the
course requiring syntactically pure
solutions, but it also allows for the
early introduction of the concept of
packages in Ada. Package TEXT_IO in
Chapter 14 of the langquage reference
manual is rich in Ada style and diversity.
By requilring its use early in the course
of instruction, users get a rudimentary
application of such constructs as generic
package instantiation, subprogram default

parameters -~ NEWLINE wvs. NEWLINE (3),
overloading procedure and function names,
and implementation defined values for

example. The WITH and USE statements must
be introduced as well, thus providing a
natural environment for the wutility and
application of the Ada package. Here is
the essence of weaving the top-down and
bottom-up approach to learning Ada. More
details of subprograms, generics, and
packages come later in the course, but by
lesson 9, having learned the minimal set

of control structures to solve any
problem, students are ready for their
first hands-on application of Ada. A

representative problem statement is stated
as follows:

A computer terminal manufacturer
recognizes that terminals will continue to
progress from computer terminals to
communications terminals. Products such
as direct connect modems should allow the
user to directly dial a telephone number
from the keyboard. A telephone handset
would be connected to the terminal for
voice communications when desired. A
typical complaint from users, however, 1is
that keyboards are not labeled with the
alphabetic letters also found on the
telephone dial or touch-tone pad. 11f a
mnemonic such as ARMY is dialed from the
West Point prefix 938, a tape recording
for Army sports 1s connected. The user is
hard pressed to remember the numbers
associated with A, R, M, and Y as 2, 7, 6,
and 9 respectively. Further, terminals
should be intelligent enough for this to

be transparent to the user. A typircal
telephone dial or pad 13 arrayed as
follows:
ABO DER GHT TR
1 2 3 4 5
MNO PRS TUV WXY
6 7 "8 9 LI

-~

The manufacturer desires to market
terminals with embedded software written
in Ada which allows the wuser to dial
through a direct-coupled modem by either
numer ic or alphabetic values as found on
the array above. Write a program which
has two separate procedures to accomplish
the following tasks: (1) Enter a four
digit number from the terminal and output
to the terminal on separate lines an array
of dots corresponding to the number of
each digit dialed; (2) Enter on separate
lines four alphabetic characters (Q and 2
not allowed) from the terminal and output
to the terminal on separate lines an array
of dots corresponding to the number
associated with that letter.

An student's solution from this
year's course is at Figure 3, It
represents what can be accomplished by the
tenth hour of 1instruction in a hands-on
course in Ada. Readers apprehensive about
the size and complexity of the Ada
language may take some relief at this

point. The student is in his junior year,
with prior experience in FORTRAN and
Pascal. By lesson 20 subprograms,
packages, library units, separate

compilation, and exception handling have
been described. A problem statement is

formulated by the instructor which
incorporates and necessitates these
constructs in the problem

solution. Similarly, after Ada tasks and
generics are taught, another hands-on
exercise is required. With approximately
18 hours of instruction remaining from the
49 hours allocated, students formulate
their own term project in consultation
with their instructor. Term projects may
produce a wuseful package such as for
trigonometric functions which may
subsequently be used by future student
projects (this has already been done).
Term projects also may emulate a present
or future embedded computer system such as
an auto-rotation procedure to safely land
an incapacitated helicopter or a drone
reconaissance aircraft’'s sensor systems.
Both of these projects lend themselves
nicely to Ada's task mechanism for
concurrent processes. Term projects are
not technically complete, but they do
emulate such systems from a design
viewpoint and typically range from 58¢ to
808 lines of code which must be execuated
on Ada/ED.

CONULLSTON

West Point 1$ Tomme et ed i 1t
pursuit to offey Jquaiity Ada ed. araion,
It requires Striking a3 Laiance et ween
student capabilties and the tamely
introduction of onceprs anngue to Ada, A
mix of the top-down and tottom-up approach
to learning Ada has evolved using the

mechaniem of example problems for embedded

34

systems which can stress the advantages of
an Ada problem solution. The luxury of
having the Ada/ED translator available to
fully exploit the education process has
been an invaluable tool fer instructors
and students alike. Programs emulating a
robotics application for optically
recognizing resistor color codes and a
self-service package mailing station for
the post office have been written and
successfully run by cadets. Stimulating
problems such as these spark the
imagination and reveal the power of Ada.
Solving the software «c¢risis of tomorrow
requires sowing the seeds of Ada education
today.

Major Kevin J. Cogan, Department of
Ggography and Computer Science, us
Ml%ltary Academy, West Point, NY 10996.
Major Cogan was commissioned in the US
Army Signal Corps. He received a BS
degree in 1971 from the US Military
Academy and an MS degree in Electricai
Englneeging in 1981 from Columbia
University. He has served in various
gommand and staff positions in the US and
in Europe. Presently he is an assistant
professor of computer science and the Ada
course director at West Point.

EXPERIE

AD-P003 419

A

Fechnoloey Center
Tersev Uity

Jerses Citv,

RN tersen City State Unl-
FERTEEN i ' Since that time,
. . Voo o eepanded consider -
e Woolter LoV A ceurses amd
. 1t - 1lave been jocorperated joto
el FooonCees Sueiln as Settware Enele
ceriae ard o sSvstems Procsramming, Uader o ocontract
P Fort Monmoath owe (1) have established an Ada
Tecnms Yo ro U0 tiave prodoced twe training
1T tor nse, (3 oare current by developing
oot tensions of these courses and (4) are

feasibitity of usine CAL for train-

]
avo bave established o Timson with local indus-

'

toocrelore mutually beneticial ventures and in
nedr tature, expect to offer special seminars
' ndeenient, scientists, engineers and collepe

taonite, We are also censiderine wavc we can use

Ada oas g tirst or seceond ceourse in the curriculum
one with some seltware enginecering concepts, Our
ceal iwore put students in touch with cuttiog edge

technology and realistic problems as soon as pos-

~ible.

INTRODUCTION

rirst Ada vourse at Jersev City State Col-
raueht three vears ago by Dr. Philip
tv, vurrently Chairman of the Computer Science
Department and Director of the Ada Technology Cen-
ter at the college. Since that time, Ada courses
: been wiven regularly to a wide variety of stu-
- including undervraduate, graduate and vis-
tacnltv, Ada has been used as a Program De-
in our Software Engineering course
and as a Svstems Desipn Language in our Systems
Programming course. In this paper, we rveview our
experiences with the use of Ada in our courses and
explore future directions.

iting

sien Languace

Ada COURSES

We have structured all of our programming
courses so that students can start writing complete
rrograms almost immediatelv. As new topics are in-
troduced, they are incorporated into programs. The
nackage concept is introduced at the beginning of
the nrogramming courses and used as the unifving
thread. We discuss the use of packawes as tvpes and
a+ abstract objects alonyg with the concept of in-
formation hiding, endeavored to use Ada as

wWe have

r

Caverly, Charles Drocea,

and Compater
State

N

FEACHING Ada

Philip Goldstein, Donald Yee

Scienve Department
Collee

7303

Ada

Pascal

and not

with

like FORTRAN or

SVRLaN.

another
somewhat

just Language

dittering

1. TRAINING COURSES FOR FORT MONMOUTH

in the Sert-
CENTALS at
Fort Monmouth to develop two Ada courses, a Pro-

fessional Level and a Technical
The intended for engineers a
computer scientists in Government service, while
the Technical Level

Y82 wo obtained a contract from

ware Technology Development Division of

Ccourse Level

COLT S former is

course is for application pro-

srammers. Each course was designed to take eight
weeks Tor a class meeting (wice a week 1or twe
hours per session,

Professional Course Content: The course is divided

into seven modules: (1) Packages and Input/Output,
(11) Encapsulating Data Tyvpes in Packages, (111)
Data Objects in Packawes, (IV)
Finite State Machines P
(VI) Blocks and Exceptions and
Each module takes about
plete, One week during mideourse
review, summary and breather.
Technical Course Content: (I) Introduction to

Input /Output, (11) Introduction to Ada Structures,
(I11) Introduction to Packaves, (1V) Elementary
Data Structures and (V) Advianced Data Structures,
Testing of Professional Course: During the test

and evaluation period the course was given at Fort
Monmouth to about twenty five Fort Monmouth emplov-
[t was a heterogeneous group of students

with a varietv of computer backgrounds. The course
was restricted to those with no prior knowledge of
Ada. In general,

capsulating

capsulating in
(V) Tasking,

Generics.

HOS
(Vi)
one week tooco
for a

-

used

is

ces.

the course was received favorablv.
The main problems encountered were: (1)
neous student backgrounds, (2) students missing
lectures due to job related travel, (3) insuffi-
cient computer time,

Testing of Technical Course: The material in this
course has been tested in a one vear undergraduate
Ada programming coursc described below.

inhomoge-

2. ONE YEAR UNDERGRADUATE Ada LANGUAGE

PROGRAMMING COURSE

Currentlv, many <o | 7 science majors at
Jersey City State College take a one vear course
in Ada. This course is not required, but
gained great popularity among our students because
many of our graduates have obtained good
to their knowledge of Ada, and
students have a sense of excitement

it has

jobs due
the
and enthusiasm

alse because

35

Doowerring with o onew langnare that promises to

ict on the world ot computing,

Most students tasing this course have had o
Qe vedr vourse in PL/C. Nevertheless, they have
Pimited experience in developing svstems, hence
the approach used in this course has been similar
te tne vae used in the Technical Level Course
develeped tor Fort Monmouth. [n fact, the tirst
semester has beedn the testing ground for much of
the Technical Course. Topics covered in the course
include: 1/0, Predetined tvpes, Compilation Units,
Provedures and Functiens, Packawes, Enumeration
Ivpesy Arravs, Records, Scepe and Visibility and
Acvess Tvpes, In the second semester, current !y

in progress, the student’s point o! view is shitt-

cd from beine a user of packages toward hecoming
o

ey ot packdages. The student s introduced
the advanced concepts of Ada adopted
vt Monmouth Professional

aurse, such

Tvpes, ceptions, Uiscriminated

pesy Generiecs and Tasking.

3.

Sottware Envineerine I, 11 dare senior elec-

Vesoinoour computer science curriculum, Most of
eostudents in these courses have had at least
e course i the Ada language. Therefore, in
Tware b

dinvering 1, we use concepts and tech-
Ada-compatible and/or Ada based meth-
cgles such oas SAD (Sysgems Analvsis and De-
T, othe Jackson Methgd™ and CORE (Controlled
tirement Methodolopy) ™ as well as the Intro-

s T

Jucticn of Program Design Languape concepts and

iques. Also covered in this course are
convepts such as top-down design, modualarite,
data abstraction and information hiding. These
are implemented using Ada constructs such as
packares, private tvpes, separate compilation and
program libraries.

A class project is required in Software
fneineering 1. This past semester, the project
was based on the real-time, embedded Cardiac
Treatment svstem discussed in Downs and Goldsack ™.
The svsten was studied at the requirements level,
uning the CORE methodology to specifv the require-
ments of the sveatem.

In Software Enuineering 11, curvently in
progress, the thrust is to design the svstem
modules using Ada. Small teams of students will
desivn each module. Then the svstem modules will
beointegrated into an Ada program librarv.

‘. SYSTEMS PROGRAMMING COURSE

This course is intended to introduce stu-
dents to the characvteristics of svstem software.
The carrent text is by Welsh and McKeag4. Stu-
fents are not reguired to implement the results
»l their work, but rather concentrate on design
through case studies. By going through the
fevelopment of g compiler for a subset of Pascal,
md by construsting a small operating tem,
stems pro-

tudents wain an understanding of

ramming concerns daond methodologies.

36

s oasend anot PR) T
Svster eaden Lancaaee too PR RS
IR L T N I N O B BT A O S T E A (R
POenerlo s, Student . dare e el T Ll
modular decompe-ition 0 e a0 oy
components and to Do oattenty ! Dot r

taces with otier o

5 VISTTING FACUD Y COURSd

[o the summer o

et the Protessicnd. oo

Caveriv to o prongy ' T
dominant iy bilacr ol it
This summer we are ote HEON

coliese favuloy with o

Protessional conrse deved

Attendees can opt Lo reedve cradaate credit,
EOUTPMEN]

Soobar, Il Ada procrams developred b

students biave been v ander the MNew Tore

sity Ada/Ed interpreter runnioe oo VaNL |
drly, we did neot have oar oown VAX, but forturately

the Rutgers Universits Compuler Conter in Newasts

thius car studen

ailowed us to onse their

Have alwdvs been to ovet B

mds-on cnperieno

In 1983, a8 0 resalt of car centraot with

Monmoutn, we were able to bt ain W

117780, and to set up an Ada Teonne layes

We are current iy usineg the validated verwion ot

the Ada/Ed interpreter. Ada/Ed fuis been pnvil -
'

able in enabling us, alene with mans Liar-, (o
valn Invaluable experience in g=ing Ada. Wit oot
it, the use ot Ada would ot be as wWdvianeed o ot

is todav, Unfortunately, Ada/Ed has some maior

shortcomings - It Consumes Coermens Fes ur. v

it is very slow, hoth in vilation amd o

cutien, As ot this writing, wo were

ller. Hopetalle,

to acquire the Telesott o

will enable students to ran large provrans 1o
more reasonable time

Ada TRCHNOLOGY CENTER

One of the purposes of the center = to act
as a friendly site tor iadustry and academe and
to help potential Ady users pet started with Ada.
As already mentioned, tor the sumner ot 1484, we
are oftering an Institute for college tacnlty,
Furthermore, we have already developed a liason
with a number of local companies, and we are
vxploring various mutually beneficial ventures.
It is too early to report any results at this time,

FUTURE PLANS

The trend today is toward the development
of complex computer svstems and large programs,
Yet, manv introductory text books still deal with
hastcally the same set of problems and procedures
that they did ten vears apo. There may be a fow
more commentaries on structured programming or
top-down desipn, but basically, these texts still
deal with what might be called "programming in
the small," That is, thev deal with problems
that are readily solvable at the lowest level of

oeran development. How do owe get undergraduate
to actually builld and implement large
; reasonable time trame? One way
it brovide them with suitable building blocks,

il an eovironment conducive to assembly and
Ada as many features that make it suit-
tse ds the languave of cholce for "pro-

the large. It Ada is required early

4o tadent's vomputer education, the student can
more time in desiening and implementing real-

svaetems without having to learn a new lan-
viice ror vach computer science course, just be-
tise the capabilities of previously studied

Cancuaves are cnadequate. The cateh, of course,
i te provide the building bhlocks. They need to
e redsondably well documented and debugged and
there needs to be a fairly large number of such
CouEse While manv texts preach top~down designs,
thev o thiis i the context of programming in the

small. Tt oIs a challenge to computer science
licators to produce educational materials that
:

will reverse this trend and enable students to
provram in the large.

KEFERENCES

1. JdeMarce, Tom, Structured Analysis and Svstem

Specification,
Yourdon Inc. 1978.

2. Jackson, MUAL, Principles of Program Design,
Academic Press. 1975.

i. Downes, V.A. and S.J. Goldsack, Programming
Embedded Systems with Ada,
Prentice Hall. 1982,

4. Welsh, J. and M. McKeag, Structured Svstem

Programming,
Prentice Hall. 1980,

BIOGRAPHIES

Philip W. Caverly is Professor and Chairman
of the Computer Science Department at Jersey City
State College, and Director of the Ada Technology
Center at the college. He is responsible for Ada
activities and contracts at the Center, and
teaches courses in software engineering and Ada.
Dr. Caverly has been a consultant for the Federal
Government and private industry in Ada related
fields.

Caverly received his BS in Applied Mathe-
matics from Stevens Institute of Technology and
his PhD in Scientific Computing from New York
Universitv, He is a member of ACM, TEEE and SIAM.

Address: Computer Science Department
Jersev Citv State College
Jersev Citv, NJ 07305

Charies Drocea is an Assistant Profossor ot
Computer Science at Jersev City State College and
an active participant in the Ada Technology
Center, located at the college. He presently
teaches courses in Ada, Computer Architecture,
and Computer Orvpanization., Prior to joining the
college he was @ senior software engineer for [DR
(Reuters) and Gould, Inc.

Drocea received his BS and MS deprees in
Phvsics from Fairleigh Dickinson University and .
currently continuing his praduate studiuvs at
Queen's College (CUNY). He is a member of the
[EEE and [EEE Computer Society.

Address: Computer Science Department
Jersev City State College
Jersey City, NJ 07305

Philip Goldstein is Professor of Computer
Science at Jersey Citv State College, and a member
of the Ada Technology Center at the college. He
teaches courses in microcomputers, Computer Organ-
ization and Computer Graphics. He has extensive
experience in the use and development of real-time
systems for medical applications, and has a number
of publications in this field. He has also devel-
oped programs for use in physics courses. He has
a BS in Physics from City College of New York,
and an M$ and PhD in Physics from Carnegie~Mellon
University. He is a member of IEEE, IEEE Computer
Society and AAPT.

Address: Computer Science Department
Jersey City State College
Jersey Citv, NJ 07305

Donald P. Yee is a half-time member of the
Computer Science Department at Jersey Citv State
College and on the statf{ of the Ada Technology
Center. In addition, he is an Associate Protessor
and Chairman of the Computer and Information
Sciences Department of Essex County College in
Newark, New Jersey. He has incorporated Ada
concepts in several of the courses he teaches at
Jersev City State including: Svstems Programming,
Data Structures, Algorithms and Programming Langu-
ages.

Yee received his BA in Mathematics from
Rutgers University and his MS in Applied Mathe-
matics from New York University. He has over
20 vears of experience teaching mathematics and
computer science and is a member of ACM and the
IEEE Computer Societv.

Address: Computer Science Department

Jersey Cityv State College
Jersev Citv, NJ 07305

37

AD-P003 420

Wil

ot

A

Lrrpmirne,
Lrepoare

l.

b

. . ‘ - T
N . N T Vi SN
. Cwnl o
7 - R " . o N
AT R "
DR T R A
V.
e
p : S
. o L TS W
. e A bilihim nden
RO o il Wil e
R o A e el FUHTRAL
! W
o ' o [DTS TN
ey T
: . LA S
[Ve

38

Py
riodes awee of

1ty

Loand oapperen

mernirefd

oo e
Trpremoe -8
crpmiceture, ol

[T I

o Llarnt i

~lanses

Lot

& R

| . N . .
e g

! - .
:
, i
i R
: L e
S
" R R USSR DU S T o ' N : .
" 4 Vol (- . [. :
e T B . .
} et e . T
’ il
Y RTINS L , . :
T st S SO St S S A A A AR B Loy B . .

39

N ¢ i B + . I . i
. ! : .
e F . . . e . it R g

. PO e T W inG B A N “ -
. Lon .) T
' . PR I = i PR

40

e e e

41

AD-P003 421

AHSTRACT

' .

L LI Y tre iJio. wImy
. S by [ASEIRED G il Ot e i

[e cter Por o Tactloal Jompntel

oh PR 1L Furt Monmoutr, b,

; o cf tostering Ho

S L R t caliy Blacw colleie
. . Saay Intetinive Hia

Geooint,
LOoTesuurs wrthn L

coal, coxpertloe to Incsgde Ada witnadin tnedr

il

e

A B P C T T L T R T |

o e . bt Letenue Tese g roh

) I CTidbs Lo i Il ol

oo ; fanues anid fnberesting
L] COTLING e CaaTse.

Section 1

INTRODUCT ION

Ly b INRTODLLGG o 2aliT oy e

ETTO Dves wdy . ol ot Lwale
the Ada ool ale Ghu
EIAPES qNIE RN Vine Hdy

[I

P TRISTT Ehe

Cenenl o detivitivs Qoo

Tl Ltk Dreneagletiog

i Leroo Tor oomiare Lo
RN Mol #eta s SEVe LR G Cul DLl
RS

iTainimg aotivities.

Ul T Lend e

! [V TEPIS I (PRI SRS SRV D
o AL e ol
- was L) to Llanster
L [N AU TH IS G

ot to Db oniinor Ao

it T TN T NIt S
ioDsr el I Lot el Tt eeteren

1.1 Backgroung

e, 0 gl 1t 1 Uttt gl e

e LR A A R Tt R I TR I T Seha?s wer e

LN iy 5o ‘ Yoo ETEEN
Lot PSRN . [
Moo P
Nt | Wi le Lt

o HESTOS N 1 £

ot

42

Putnam Texel

SofTech, Inc.

LI gTan wee

[
Ty
TAIE STPU
P T L

Phier oy

i wriginal

doe to the aeliys coused by Ada/f!

THE CECOM SUMMER FACULTY RESEARCH PROGRAM

d e il e ety i

M ot g Dege

NeDUhe Larining A& state

Crairie View odM orivereity
soelman dhiversity,
TUSweseJor? Lot LUt

Younulsbowt Ll veers

Unlve ity oFf oo

a Team eaeIcise.,
plarr was o ose gn Intersecticn
n

I S L S S |

Lo

P

Stopliaht) a5

N (REE N

Aot 3Ll to Code ANy Ldselng

Tengoestenr thnat the Gqradp proolem be reguced

AN R Ly.

Trcpetore y Lowe St simalste

teasetd LD game with certain pefinements:

R N I ET TP B R ST L
W playeT FIVATCE, e)
ooy ot s indicates oy
foee, it o UAtter D

vach playeT Guvantes

[et oorirat
PRIt e bt er walen,
Tl bt oo R A AR .

S O LR TA
: FUED TR SR REES] SR S S SENRTY S A A ¢
1 o, e GrUer oot L
T A T SR o ATH DA BTSSRI

by
L

Eialyl
in

Lo

ERK

t e

1.z

[EHENE
Sl Do
Slany

cafewenr g Lo
T vmK
PRI

T

1.3

YRS 2t i et

sovis il any Tl Ts hrdeen,
. e el Tt terninaty
atte by e g, cadleu o oo

7 I‘J.i”} .

" S1ann o wds Slvigen into F 0 Lreams
. ST L M T, S el s afld o« et
, PRI Tie Leans were Jiven the alove
CLiatiun and Jlven one weex Lo produce Lhe
AL the erid of 0 tne week, the teams
N [N 4 CRuGE ie L

Sl

NE GTuD

[

dilVa

yooa Janhgon

lem was announced., The
U 500U, edch player
the numoer of Lases
Wil Neiator., Edch

et tnwdr o view o of how easy ur

— e LT anetw D teal was to chanae
ot anage 1t specification,
Tamoradis URall oy 1oSay to moulfy the
Teneon PO L STt time required
= alh tegr's code was owell
ot tear as only o une module,
LNt il Lailea
I TR AL SUTA I
Facilities

SO st u:llﬁgt',

el et TLot

Talisilleos, [

IS TP UEDE ER TR RN WIS PG {

owulw Lauae
PR LS VA
wcd> Tovestd Dy

Aty UF

Tivnial deilule
y w1 Tegullond,

Guest Speakers

AUVANCE Runner, which

acst Loung Branch, New

L CenNTAls, oroviaceo the

wis conguctes each
.omach student had
st oa VWT=100 Terminal
ailh =dided installed.
trie mvicnics KResearch
AV RUR

tiales were proviges vy
For st SpUakeTs,

ot sea<els were inviten to particinate
LotlgNoignt CeTtadn areds ot toe languace. The

PSR TN DAY

sha el

Thive toplos owere

et St el L TRl
S vat Ll a. Ma - L. enerics
Lo Taseing
. oaraty ENTALL L. Proposar writing
s bwpargions Tempie riveISity L. Macnine Representatice
Specifications
Lenenge iy New /arwoiniversity 1. Generics
{0 lompiler imglementation
PR ok Y VTl 1. 3TARS
;oames A AR L. Hostraction
2. Buiizing watae systems
St IR ool Pritel ruipment
I8 i .

Section 2

PLDAGOGICAL 1SSUES

Trwe tobliowia: Uhree sectiong gescrite
veaaliaus ettt b Isoaes Ialseenn Juring the
N (”‘"'.r.

2.1 Input/Output (1/0)

Trnis issue centers alounc Dow
to teach /0 in Aga. In daa, /0 o1l
inciuued as part of the Lanous e
Text Tu. The vasic File mandiement
(e.g. file =reation, ogen, 07 o
proviaged vy subproulams in the oaUkeade o
accessed by protesuTe gy Yo

SArls. However, the actudl proceanrs=s tooor
inpaut ang produce outpet are Lype specitic,
SOne are avallacle by a simglse orocetTe :
function call, while cthers are embe el witiio
jeneric packanes, For esanle, frr
Character and String, 170 is proviseo ty
overluaded prucedures a0t L0

(Adgitionally Put Line is provioes o0 Str
To utilize these” facilities reaquires 5 simp.-
procedure call anc can be ir ot
course wien Mwith®ing a pac
To perform [/0 on the 2toer types - specifi:
the class of integer, redl, a7 =nunelabior
types - reqguires instantiation of ener o

paCckages Locdaterd in Text 1.

If 4 top cown dgpprosch to teacnin:
shilizeo, the with clause is Introm.eed ari,
ang therefore "with Text To;"
~lause for stulents to arite
perform character anc «trine 170 witm :
olfficulty. #Hut for the stadert to sertorn 1o

Hle L

ey

orc other tvpes, ever Intensr, LETES e
introduction of qaenerics and foe (e ¢
instantiation.

It is wneesiravis to Introuuce gereTios

eally In the Course as the cuniect fs congles
and reguires Lime to teach Wnorooardy o an
properly. On the other nann L cive 20 1ic
code to 3 student and tell nie Mot ot
here, It waores. This topds will e oovern:s
later In the roorse.", is in general not the
vest pedacosical fovize. sut this i exactia
what you must co in dua to allow tre stouent t
nerform 170 on tnose tyoes, The ctudent meot e
told to write the following instantiation whiot
will alluw 170 o thne preetfined type Inteae:
with [ittie or no oxplanation e to what is
transpiring.

Dackeie My Inteser 1 io new Inteaer 10 lrteaer”

JOE LemanTaTy sonaticn, b i aiiene
to pravide o "vutffer" cetween tne stunente o
Text Lif, This was oone Ly crestion 5 sk g,
Calles fasy Lo, which inclhuw the omees g7y
fnstantiations fop the aTebefIner typos of the
Latviaue, i, Integer, Foinat, and docleas, s

rensning v aratione tor o Charscter oaneg s

IR By oniting the stagter st Mairnt

43

F TR
. ' PR
. c e e ot
- 1l ’ wloL
. Do
. o : :
. ° 1
' . . PRI
. P
. RN
&
. .o .
» N LT
At
A : iyt i
S Lo
Cb
Low oy [
O

44

. . " I :
AT e Pt
! [T A L "
o Pheit Dot i The
e i P L A
R
Loaeve Ty o I -t i
Al adaow tolo 10U o0

Tt Tt i

et Tyrs ol
Laddiin A LT ot
vitoan " S T T SR S
- el Lo L ot user
. vit t DI lan
P! Lo N ‘Lr) NIRIN MR
T E T S L R
e to Sols
I T, HECES IS}
. Tt N N
. ' PR ME

RN RN A

: wo T ity
Ty : Ll T
. T R TR

Eh 8
R L

a : et L
. [v oAbk
' P S S The
' J Loy Ly,
. L Ly Yo eris
' 1. .y N S) 4
ot EEE A R tre
P . : e e
Pt N ' i
M Al a0 oA
! oot T At woaia b
Toaa, @odit. e Yyl list

0 S S VI RV e U AN

VIR
IR L

PR IR TETATS

R Cows firotti cronben S
HEBITEN Vi ARSTIE S b laTatlies
foituwe
SIS IULI I TIL TS o INTSICR S .
I A LR SO TRTS LD U S I

A Jivett e Foua winn Tl IeClatell e
Input fal : ot T;L‘F‘;
sl ae commanid : .

ANCGiven the 2Toper fnetantiaticers so fallows:

vack e Inpot ChaTatter Tyne 1

18 mew bngimeration 107 (Iapt el DR

ool 18

S

LTI W

L @xetolal o e,

et LT - T

Lol e tolL awnn
ST PRNISN Tl

P ATt HE 1 e
xoeption Taatedible Al AU
T lero, T ; MITES vt
T R TR S LD & oo K
Exmenb ot T oL Talse bhem, [NEINEET
Coln Ut Ty s g ther o e s
Ly L0e e wade heo Lo asing, e,
it Ltk el whoior e
At HEack dertiow e ool
it tre omotivation oxicts N C
Lo et gl ion s e ek '
Poe TN T ST DU L andtalizes g

; i trd A
Pt it s Do Dated ol
IRV Tr Lo s Tt
Tty | roviae PR RO A o crr
[T TS T Ot e,

Arion

2uLomrang Tyne
T T xgarnnes

Ve
N

v

B S5 28 L N 1 T L IO S Y

~- LaCal o declalaUions
Ly o=~ TN Y LT T

B 1L CNGT e LeT

-- Devdining acecutadrle
== o exeepllon tanoler oreoent
B O Wl LOminan
[T v S tuls avtout tng
Cemtew e TP LT PXORDL 1T
R e L o lon fanaiers. T
R T s S S Lhe preblen witn oan
Gl s

R OB G

LAV Dmmand 1

-- Ll e larations
—= EXaEtl L i
T IN0 L O fdl e)
R DD AR N S T T UUT I
i {
. .
wier et T o
L A VR S SR N
S Ty

oLl
Vol
('S

B B
-~ N ' (R
U N "

pentot, g
Aot ;
i
b LT Lhie to lutalize mrw e agrs
SR ik Sl ! v
S Tosiate Cw o4fter T !
ST AR AR e et ion LRSI -
Lroriie trie Jrocesare from el T
Gl diaatlon, nuweve T, we SUILL oLl e '
tapenllity Lo return Lo Ui oLel Slatomert
try olalin - sinple loop G2 InLTacucr o o w
the Cowe 1y moualfiec a3 facloes Lo T I
SuUCranlve pttenpts untii & wvaiic ecni.
rece lved,
STOCeUUTY EXpany Lorriang L.
-- iucdl declarations
Uty == Expand Comman
Luep
be jin
L=l Ulnput Chyraste
exit;
except ion
Wi ity L TI0D =0
Pt Line ("Inwvulid noog," oy
N
eng Lo
~ I AN OT DI L e
U TG L i R

TEXT

AT
sl ol e

Ca UL s T UG NEUE STARY FLACEL el

[N

ACTUAL
oLl —= ranaEnc_Curmarns STUDENT

CGDE

| I
: et UInnut 1 batecter)
cxlly
except Lo
whier Lata brror =>
but Line ("Irvalld tntry™);
e,
i ‘AH-’\.

-- remalring executatle statements

i important to

Lty Lhper and lower
RN nf hce cote, For

[VETY aifficult
M

46

e : ,
i : ‘

: LTt
bariere
oA tire. 0w

1o of
wher it

7. Covering all choices
alternatives.

%)

. Preoper choices

. Medifiability.
easier to mocify?

no changes to its wxcc

Tre
remarkatle
students’

results of such
anc
coce

WVERSTOM 1

gtement versus

net renuire

if statermer

ch

versior

vOorsi1ons

Lacs -
=t
4
§

thic

CreE

ierussion of:

for ilcertifiers.,

procrar
crile .

ssior

e iR

Text 10 ceneT i
is reccirec are
C.

ir case statemert

weTE
rest

sicr.

with Text Iu; use Text IC
procedure txercisels is

;
[&s : raracter
Command : Striec{1..13);

henin -~ bxerciseld
et (Ch)g

rase (h is

wher 'E! => Command ;= "Folt "
when 'L’ => Command ;= "List "y
when ' => Cormang 1= "Help "
when 't => Cormanc 1= "frint "
wher ' => Command = "Quit "
wher othere = > Command = "Try acaie "

ESINSY: T

Fut_tine (Comranc);

enil b xercisela;
J

ViRSTUN

withn Text IC; use
.

L TGoeUUTE Eaians

B Tharanter;
I —e xpane
Gt wrds

It = et ther

LD {MHEELL
el1olf o= EY then

Fut ("Frint"y;

o= 't othen

Ut ("QUiT.”)’

1

("Irproger Input™);

witr Text [0; use Text I,
[roceoure Sxpana Cormsne 1o

ACTUAL

ut Character Type 13
by, By
pancec_Commana_Type is

I, v loty melp, erict

N

_Character @ Input_Character Type;
(mmant! txpanced Comrnang Type;
Sosition : Inteuer;

Laexate [npct haracter 10 i

new bnureTabion ju (Input Character Type);
LalrULE B XLANCE _fommanc_lL_is B

ew founeratlon (0 Gospancec Lommange Type) s
HEens LY dTactel 1oy - -

LXLATET Wt [i g

e it me Bxants U Omman

AU SV SR SEED PP TR ;

PR R I SRS B L Yoot ot g IEDEETERTEN GV
P dar e S|

PRy T Ty Tty RS I
Lyt Ayt Tty

uull
o

Slalwinh

A"
—

Tre o
represerntinG cats flowirs
rot present ary rrociens
Adcitionally, wher suurerteo
WWw & 1n parameler st

{
therefore 1s not meociviatie,

t
regcs in uncerstancing. Seweve
tne corcerts are lost anc atter
abslin vaelues Lo Lrese paramete

ther s

Lugle L0 subprnuTar
Laralielels are ! TCUE
cxample, e stugert bad
TEL eSSt an apen proeleoure:

altn Text Io;
LruceCult i

negin -~

hare is @ rarameter
therefore 7oy net be mocifiec
vet bhe procecore fasses treis
sararerer tC procecure
forias parameter is of MNooe
ocetectec at corpile tire, 35 stowr in

+

tre tollowing compilation listino,

1 owith Text 1C; use Text IC;

2 prececure My Upen (hate @ in File_Twiel i
s

a4 pegin -« My Open

4 Create {(hare, Lut Flle, "Data.cat"),

#x* et brror; inout actusl parareter no.
incall is not o varlarle (LRM + . 401)

- ACTUAL
o STUDENT
I trenclation errur cetected CODE

Transiaticn time: U7 seconos

3.7 Uiscriminants with Default values

b drs coneef tual unaerstancing [B
constroct 1n o oLite distinct frem correctl
COGAT T ctiuCh. % Commen BITOT encount eTe
i ewerplifiee by tre follewing coce:

47

| St ; N Galoadg
Lo vie tipiioation

Mal Tl aTUay en aildy
\ J».J;ti‘vt.‘

Laige: o oy
parge o 2doab s Leaty

MalTix o MELrix array o i..Row slze,

1o.enl sice);

Y InmluTd;

Ctiva, MalTixg, kesuli o MalTix type;

- . A i
Sl e < Mol iniiat
—- A LU slale Denly
LV sTlLe Maltiol Lo
. I Lol witn o transiation
Dol WY 4t runt 1me the
‘ Lelrin BTIOD was Calued 4t the point
DeolaCallans fol the unconstrained
LA, . 1w kesult., Tne
e tosucompilisnment as a
B E gpilation only to e
PRI of Stourage Brror. The
: x tral Lhe use ot Lype
I sbe wiscriminants sets
R . A Je . .. Anteger'tant
N v ! it rianoration simply
v - J ..‘ 4

48

Jat N ubitype witn,
TS oty will
ISP i LR e

with Text [U; use Text g
DToceduTe MalTix Multipiication 1w

subilyise Positiv is Inteaer range ..

PP
Uype MulTix_array 1s alray
(Husitive range- .
Positive range

,
>y ot Fluat;

Ly Motri

Cype Row Side, Loa olee

Positiv ot= 10

ISR O
MalIic 1 MULTix GITdy Lol
et i
rehul b Mol ix Lo
-~ ULneT dgecaarationg
Ue gl == Mallix Murtissicaetion
~= LXeCULatle statlemweals
eng Matrix Multiplication
{he 15 that a 4

point thorough
e abulation for uncunstlained
recurd objects must ue presented.

understanziog

alhg

3.3 Scope and Visibility

Agaln tne ceoncept of scope
is tauyght quite easily, out
Jitterent stury. Consiel the
aevelop Pascdl's Triang

ol
couing It s
Tullowlig vooe

CuNstIalnes

vininlilty

a

o

with Text Tu; use Text 10;
package PasCally 1s
Lype wow_Type is artay ihaluTda. Targes
of Naturdl;

o U, ACTUAL
-- DuneT GtlisTallons STUDENT

CODE
DTUCEdUTs Pastiiliow
Natural; K @

(N

out kow_Type);

end Pascallys

!
|
i

w

w

withi Pascally; use F

b

[
ity
DU et fl gy uhe Teat

IOt ULTE Faveal hiow 1
Cype Row Type is array (hatoral rance -)

or tLLuTaL
i Dohaturalg
R . | (SR
< . R
-= LUbeT TElialatilcd

~- Lo exouutabie statemerts
S ACTUAL

STUDENT
CODE

L S TE T I

- o waci bt e ctatvnents

. Palla. Fuwg

e o is & sefurate
riit il = function wnich
R .

Fow i not complile
fellowiog error:

Iowit
S R A T
2 witr pascall,; use

CTorCLTr e o]l How

o 1T

: type row type 1s array
’ rarge) of ratural;

il LTl

’ - .
‘* [T (Lt
- Luns

sioodrror: irvaslid argurent
for FascalRow

—-miTt eAeTL AR Le statenent:

Poenc Fascal_kows ACTUAL

STUDENT

Lo rann gt i eI ererted CODE
Tranciaticon Lime: SECONTLS

LTSN PA R DY FI S (R PTE SI UUR N T I S A S R PR L At

te basvalrce 1o 0t type bl Fowle
T [CR SN S0 L% S ST LT

falameler of object of Uype dascally.o
o drrer deLsardtloer ob mow Type I8

ol how hices the cer larstion. of o

Poerit o Fatiaday LT LR DpeTtenn vin

Aiase:,

Dtvicusiy the rauting fo tne protiec 1y
to renove the ceclaration of row_type in :
sirge e ceciaratico
the package s 1mportec via the with clau
Butotre polct ie thot acair, uncerstanci-o of
concept is not the same as cooing it.

LILCRULTE al how

Secticn 4

SUMMARY AND CONCLUSION

Stutents of the program 8Te now prencnters
t this curiterence.

w

reveived a BoA.

Putnan 2. jeve!l
i Mathe

inson iversits.

satics from Fairvleich DI

Sine hits heen heavily invelved in the developnent

croand instraction in the ULs. Army Model Ada
training Corrvivelum, she is carrentiv re
instrocrional activities ia

ponsihie
Jor oconordinating aill

s oodvislon of sofTech, Inc.

Nl Tor the Feaeral

Mu, Texel is Chariman o the Greater NV oarves Toeoal
Ada 1 local Special Interest Groop oo Ady
atviliated with the AOM Prinoeten, W7 Fler

————— et i e

49

AD-P003 422

TEACH ADA TS THE STUDENT'S FIRST PROGRAMMING 1.

M. Susan

Rivhman

The Pennsvlvania State University, The Capitol Campus

Middletown,

In desianing an Ada progransi:

U ourse

witnin oar colleves and universitivs, one ot the
tirst issucs we must oconfront is the level ot
sotoas prerequisite to the

Ada 15 o very rich and complex languaye.
student hove experience with some other
arder languace inoorder to apprecaate Adal

aker contends that programming in Ada can
v meaninet ol wav Lo the neophvte

tact, there are decided adviantages

tearning Ada i~ o tirst Langoasne.
cativns are oftered tor coping with the
complexity ol Ada.

Tntroduction

i A\\Ln'\ procramming lansuwige is naned tor
Vicnstoe Ada (18i5-1852)) Countess of Lovelace,
ot othe boglish poet Lord Bvron and
considered to be the world's first
er.,

LOMplLer Drogra

Ade wias cddeveloped under the auspices of the
Vrited States Department of Defense (DoD) in

tesoense Lo the "software crisis.” By the early

T d-19705, programming tangudages used within

Ut Dol proliterated; estimates range from 350 to
oo laneuages and incompatible dialects, Studies
orodos ted that enurmous savings would be realized
it the Ueb ased one common high order language for
Lol dts applications. Requirements were de-

1

foed tor o Tannaaye to serve this purpose, as
t

1
de-oribed o the Ada Lanpunge Reterence Manoal:
. these requirements call tor a
Panpnaee with considerable vxpressive
cowel covering o wide application domain.
As g resslt the Lansuage includes facili-
e ot tered by classical Lonuages such

e Pascat oas well s tacilitives otten
|

i
n spesdadtzed Tammages.

T the Tanguare s moedern alpo-

rivami lamgiiaee with the gsaal control
Stron tnire o and with o the abilits
ferine tupes and subprograe Tt aise

Serven the et tor o modndarite, wherets
dat 1, types, and subproyroams can b

Do Bl It o treats modiularity in the
phvsioal sense as o wello with ot Dhitee

T suppeTt separ it :vw]xlivl[fon.

50

P o teristered trademark ot the TS0 o romen

PA 17057

In addition to these aspects, the
LAmidse covers redl-time programming,
with tacilitics to medel paratlel tasks
and to handle cxoeptions. Tt alse
COVers svstems provvamming: this reguires
previse control over the representation
of data and access to svstem=dependent
properties. Finailv, both application-—
Tevel and machine Tevel inpnt-ontput are
det ined.”

In order to meet all those requirenents, Ads had

to be a very larce and complex lancaage, indeed.

The Teatures which make Ada such g rich and

pewerful lansuage appear, on the sariace, Lo daraie

against teaching Ada as the stadent’s first

programming language. I fact, most tests writtoen

ot Ada are aimed at the "experienced procrammer.”

Yet the possibility of teaching Ada toe the un-
initiated descrves careful consideration.

A number of Ada's features, while incorporated

into the language because of their useininess in
complex svstems rather than for pedayogical
reasons, mav o actoually signiticantly henerit the
novice programmer. Those Teatures will he con-
sidered without regard to whether or not, or in
what wavs, Ada mav be a "better™ Tanmeace than
aother langudayes.,

Tdentiticrs
In the context of powerlul tools, the matter

ot ddentifiers seems almost trivial, vet it cuan
of great importance., The Ada philosophy emphia-

sizes that it is more important to be ahle te read

and understand 3 program than to be ablice to write
r

the prog
be read many tines, bat W itten voniy onve. While
the purpese of this obicotive is to improve the

maintainability o sortware, 1 lona-ters v,

readabil ity is also vital to the student. It can-

boe gusumed that o beyinning stadent will

not
naturally be able to read and understand his own

Drowram,

When o stadent begins te write cade, he
shouid have G Tear mental imape of the logical
strin ture o his provram. Attached to this

Ada Tednt Prosram Ot ioe,

cam quicklve The program, it usctul, wil!

Structure are varioons entities (data tvpes,
variabies, subprograms, ctoel). It these entities

[AY

fven names that are stronely coapgeestive of
the roles they plavy then the structare, with

Tr the
torm ob the identitivrs is severely restricted,

chjects attached, decumes 4 anit jed wholed

Dames become crvptic, are only o vapnely soupestive,
and contuse tie student's mental pictore rather
than reintoree it.

In Adua, the length or an identiticer is roe-
stricted oty by the Jenyth of line. Consequuent Iy,
the name of a4 data object or Tanction or packany
cian be chesen to clearty retlect the nature and
role of that ens tv. One won't have to wonder
whether CMPMAT veters to COMPUNENT OF MATRIY or
COMPLER MATRTX or COMPOUNDED RICIDE or
COMPLIMENTS TO THE MATTRY Dy it will be clear tr
the identiticr

chosen.

In choosing itdentitfers, learninge FORTRAN
prior to learning Ada can be @ disadvantage. A
triend who became g skilled FORTRAN progriammer
betore learning Ada, persisted in nsing FORTRAN-
like identifiers in his Ada code —= terse and
srvptic —— apparent!v siopestive onlv to himselr,
This habit is ditficult to break and aakes the
intentions of the provrammer unnecessarily
shscure to the reader, eoven when the reader L0
the prowrammer, With caretul cholce of identi-
fiers, Ada code that is ready to be compiled can

he read almost like clear Enalish prose.

Ada s a strongly tyvped lanpuase. This means
that every data object used must he declared to
be ot specitic tvpe, cither pre-detined (inte-
ver, fluat, or character, for example) or user-
devined to Vit the particular situation. Further-
more, ecacih object must bhe ased in o manner
consistent with its tvpe o that, for es

mple, one
Cannot compare men to o wonen i they have peen

declared to be of different tvpes., Usually,
comparisons of different kinds of data obiects,
such as distance and mass, are unintentional.

Ada avtively discourages this kind ot cerror, 11
vaorr really are misvuided and want to compare men
i) women, vou mav do se by making vour Intentions
explicit. You can declare foth men and women to
be derived tvpes of ancother people tvpe ana then
compare thes after doing tvpe conversions, Bt

it owvou haven't made vour {ntentions olear,
comparing men to women will resalt o in the

compiler saying that wvon can't e thet,
All ot the tvpe declarations amd the involved
fated with the
U the besdinninge programmer ans tedions tooany-
il Hvwewer, the stadent benet jtss o wWhy! He

rrles asse art b rather daunting

[teroed oy gl caretag ! thoapht o the desiyn
Tanninge of the procsram belore he bogins
i, Stadies Goere shoam that the procrammer

Whooofue e bt et ertert in the planting
oo ot prebles soleing writes programs with
ettt erent caner losico oand preater

e odeeno v thian oo trascrams ot a0 stadent who

tarts writing oo diately, mod it v ine snd o osting

s Uhe soluticn croyresses, Thoroaeh by plannes

procrams also taee Tess Cime Cipebindine olanning

time) to be developed and require e

tire an important considercstion in thes

dovs when tow coampuntation centers hoave enone®
terminalao s S Ady entorces o ostricr disoantine
that resoltys in dmproved desivn practi ee, with

Prnadiate henet it 1o the stadent,

Moedalaricy

Fyven o beeinning stuadent 0= Tikelv to o write
aoprovram with enoneh comples ity Lo mape it worti-

whilc to subdivide It into s ler, mors

un that can be separatel s desizned P
An oS proegran is written as toliows:

i
partitioned into locical picecs, cah wit

some part of the problem. This parrici
(which,
way with anv lancuarceY, when coupled wit
capability for separate compilation o

yioovourse, venld he done oo i

is useful to the student, as well s o
perienced programmer. Each or the Toyic

can be designed, thoy checked separatelsy
compiler tor lowical consistency within itsel and
with others in the program. This permits the

student to concentrate on smaller povtd

fon-s ot the
problem gt one time and to handle complenits i

sore reliable and erdicient manne; .

When o student Is ooraspbiog with o oo b
Leomay teel that ne must o anderstand sest o det o
tohiia o wolutien fetractures ot i et evact 5
how variables should bhe fncremented, and s tortin
betore he can compose the codes Sinee there i

cepri bt »

Timit to how manv Do ets ot

can handle ot one tive, this can Le

P
pape paralvsis, Adaooemnonrace s

ipprogch.

It the student teels the neoed oo oo
which have coertain provert e~y Nda permis:

declare o data tvpe with the e essary prog
without specitving the detaibs 0 rhe dnterneg
structure at that Cime. This s an abstrae to
vpes o Ada also ol lows ror the abetraction o

aperations, the separatiore

do and o they are implem Mothe tep leve!

ot desian the stroctun impleront ition

Jetiils are drvelcvant oand

et e Bt thie

Pl tare,

As the Jdonden {e retined, the nterned

strue tares and related operations e HERITE

b thesn Sompies

forined in ters

topes antil bl are detined in o toro o0t

topes that are proe=det tned bhyothe Tamug e, Lhe

STt o i stepiee ret ppemen! Jnovt anether

wivoin which Ada asmsists the stimdenr in o simplii-

teinge and ounderatading the problon,

51

Debugsing

Hoas Ada envourayes vood design

i

ictiies, crrors will occur. Inherited trom

ol 0= the phitosophy that the aata stractures
et the aleorithms shonld be specitied proecisels
st e iy and that the comptler shonid detect

Comany errors as possible (tyvpopraphical, svatax,
b pogriy

) Preonsistenclies, etoed). This comrile-

fote tion is greatly preterable to ncrmitting

AT main untif ran—time when thev are much
ore divticult te locate and more tinme-vonsumine
I R Ada's abhility to detect many errors,
vt b e antomat ically, relieves the student o

Cothe burden ob program checkine and helps

cette tor the complexity of the Tanguase.

Ada

in making the nvcessary chanpes,

e efrorvs are detes ted, assists the

tudent
Modotarity, tugoether with the rules
i TLity ot variables and the preciscly defined
et the modules with eacihc other,
i ¢ opart ot the program
Dle eifects thronghout

ar scope ad

inters .

pro-

from

Tent o h in «

P

unproedicos

the entire progr 1oa change s made to a

tiable within unt subprowram, anv eftfect out-
. subprogram Wwill be clearly delineated
t Leointerface of that anit with other

procrar cnitse Ihere shonld be ne anpleasant
“urierises ten Tines into ancther subprogram. So,
the vorrection ot errors s not the monumentald
P DU can be tin g omonolithic program, with the
vt s o meditications ripplime throughout the
st ire srrastare,

iecept ion Hand Liog

Plhiis teoa topis which some Instructors may
Wittt coertadnly cian, postponie (o4 mory
VoL e Yoo o Ada. Buty exception handlers

R sty o oan clumentary level, to oadvantiae, |

Selandoerrors ino1 progroam can be Jdetected

: Soure errors ovenr oonly
IR N tion when ottt ie data o waluaes,
citner loont o honlated,y resnlt in oam
v o siUnation,

Moat Dangaages assume that, when oo program
B el cerrect by and e ready teorun,
th S owiil e mmoorid, (e expression whose
Soare root Is to Beotound wils oot turn out to
Poopeeatisees I the ettt bs bebruars, the date
SEDT not e stiven oasw S fwe ot es e b
ot bl wi b b e compatible direnstons, When
thi coras they shoad Loy tae repioal
response of the computer s e Dastie wowarping
Sesoagie ot thea abort L .

I vontrest, Ada i de-ioned to permit panle-
colerant procranminge. T the proaramper oan
wticipate coertaln classes o ahnoermad it ot ions
weolr s dncerrect dat s e sapplied oo

Cioabated value hedng ont Sbde the appropy it
T Heosva et can be o provraneesd e e knowi -
. i il s taat ion oand el owith ie in
o W U o v arme v bas et ers oy,

52

.

sllowine the vrowvran to
than to tevminate umt
situatjon, ol vsample,

the controiling program o

continse 1o
weetulio,
\-}vlimi

cont it

Aller roecoiving erronecns ettt
This ~ee Reep v adrpione o ine et
Craceta i terminatingg, borotiot ds
tothis point.d

Phe particoalar velae n the oy
notitying the student, o oo fedpind
error has been detected during e
chan redcting in the usaal antorcivi
prouram crsh, the progras wilil o ont

perbnps Lo 1 lag

corplete the exeoution

anot her

error, tutop

Wi Ada Firse!

unce the

¢

instructor
to teach Ada Lo the vomputer-innocent

belicves it

i= possibic

stutes

it

or she might ask, "Why?" Undoubtedly the
would have an casier time learning FORTRAN or
Pascal, so why not teach either ©f those

moving on to the more complex and

Ada
focused the
on the problems of the

was dusipned

af ter the
attention of

im

noe
st
the sottwar

1970s.

hitious

twars

u

h

hetore

Adua?

software engineering analvzes these problems o

provides a methodology which offers vreat pr

in their selutions.
wiare ewlinevring princ
languages cannot, It
that these
design, as encouraged

potent ial programmers

desirable,

Ada supports the

iples in wavs

is essential, ov st e
principlos o coed pro
by Ada, be instillaed

before thev

customs that are more consistent wit
The reasen ter ted hing Ads bee
difterent., In o beyinning Ada cours

teaches essentialiv

those !

vl o

e

that

QUi
h FOR
o1

(S

community

T

The discipline o

nine peatiher
N TR N
drbidne pertd
ranning eooen
s in =l
Teer o tipoanoun-
it t By
S :
WAt [Re i
Cion., Watie:
NLoreanner o
ESTT PO .
e i bt [

~tudent

crisis"

cariier

that closely resemble Pascad, woowhiv vt jase
start with the casier langnage! Ada is o ik
and powertul lansuage, sooh mere powert ol han
cither Pascal or FORTRAN. (1 othe ol Doowiv s
mately to achicve the tall nower o Ada, win
beodn by teaching svitax and structures that st
eventual Ty be suporseded? Cle, Lot V-
Aable to teach the "Piscal subset' oo
can later be expanded, rather than te .
whici mugt then be modit ted o fvarning Ada.
e iy Ada
when the dnstricc tor b des doed o tea o Ada
Do pivs=t procramming Laneue v, the next

s tderation is Thow!"

A oprovians bs o sedquence ot iRstoa tiens Ut
dires te the computer in the pertorsance of aon
Cemputat fon, and thesco instractions st e ex-
Tresaed Boa torm o that can be oandersatoesd by e
nopchine, Until the progpram is actialiv i

oo thoe Computet, am

dostemis esero s,

Writine ot

Thevetove,

W
Y

"

Aaadena

hoe writing and exeoalimg provriass as soon as

possibies In ovrder to odu this, the student learns

auiokiy how to decfare basic data tvpes and to s

structure, aud

these With correct svntas, proper
ic o in simple procedures,. Latortunately,

RIS

event G sinple progte

renuites more than just
writine the Ada codes The student must also
interact with the hardware and the operating

svetem. He must learn how te loy on, how to issuce
commands teo the operating svstem, how to react tu
nnextes ted responses trom the operating svstem,

: e editor, and how to create and
ilvs. He will have to tearn how to
intertaces between his Ciles and his

! to vreate and use g program library,
ani oWt Dssue commands tor o compilation and

caen alivne These skills are probably second
tatnre oo the instrncter who may consequent iy lose
slelit or the sheer quantity of intormation which

L

tae ~Uuhont o mnst o absorh on the numerous fronts.

be rather overvhelmine to
wiant= to be able to test his

suare root oot o ha, o He mav

s beenn stranded In Paris without

B banmottage. In other parts of

o attempt to ospeak broach, however

coray b Dikely oro bhe preetoed with o rriendliness
it vcerne ot winicate, on whateve Tevel

.
Tl In Paris, however, as with the
: i+ or vocabulary is npot

cmmunioate will probably

Bt Wit ~tare or perhiaps with a
IS et the student at least, un-
Do Tiiod is most discouraging.
- nat the student must

Lo s of intormation
Bt e can teidba k from the

wter owith his Ada code. Tt
. W t Stor needs to minimize the
oLt : dlon the student must master in

raer o et g oreaning Tl response. One wav o to

et rhiis e to prow e the student with
ot et o tested Ada prosrams,
T et it sl —step instructions for

Sowitn the bardware amd o operating

< Thes o e shoudd make it lear Just
woe Do teartoot tee Ad Tananae, what o is part
(ST Pntere e Wit iy «~§4~r.1tin‘;_ svstem, and
whal L optiero gl o thee ctadent, Initially,
: stoebent o coich b nected o ademonstrate only
Biaoabia iy e ol low dnstrus tions and to tvpe

Che senes of acconplish-
s it he were working
Toast failnre will op
Loassivnment Qwoso
SO WO,) At tirst, ot

Pt et nnderstand the

poeovase Uan 10 is new enumeration TO(Dav)
pae Tve iy
B0, the comamter Wi amderstand then, e tip
aror it ran. lnothe process the stedont
W coeerted Terarasation abeart 0 preer
L R S IO VE IR BT When the o sheat i o ey

tamiliar with the cauipment, eaain
1

cunsist o the stadent sapp iy ineg moasineg sootioae

pootherwise complete o ode,

codde conld thien be anded e thee o e proa-

resse while the amount of code proesided -

decreased, antil o eventually the sradent is
writing the complete prowram, Ta tids wav, i
student will advance, Tearn bow to interact W

the computer, and Tearn Ada, ot e b stace

receivim positive teedback trem the ompates

Providing numerous examples o complote -
will help in other wivs, as wello T caten,

n illustrating various fedtures of the lanteaiee,
code segments gre wiven as

amplos, I

instructor sphould understand that it is a4 non-
trivial exercise for che inexpericnced proeramme:
te assemble these sepments: the cunplete

will provide the often missing intormation ot
the wav the pieees of the pusrle are pat torether

in g functioning wholeo The jostraotor

e

(llustrate particalar teatares by Vocusing oot

relevant <ections; the details mav he i fei
fonored, vet will be there wvhen needed. Complote,

working examples will also provide the studnet with
the opportunity to learn, by experimentatiog, the
eifects of Tovalized modifications g snccess al

program. The

<amples will serve, also, as aode

in the development ot wood Adg progroaeaming stvie.
There is an ancient Chinese proverhs

I hear and 1 forcet.
I see and T oremember.
I do oand T anderstand.

The exampies provide not onlv the "see™ but g
of enormous help in the "do™ that is absolutely

crucial in learning any programming Lansuace,

A reasonable svilabus for the Pirst course i
Ada would include program Structure, diserete and
structured Jatac tvpes, statements, Jdoclaratfons
md blocks, subprograms, and pavkapes. In=tantia-
ticen ot the veneric Text 10 is unaveidable and,
convenijentiv, not Jditticult, Pser-det ined sonorin

are more ambitions and mav vasily be postponed. A

number of the teatures that make Ada such 0or ' oh
and powertul laneuage rae atan be quite ditsioalt
for the bepinning student, Foritunatelvy, some o
these (aceess Cvpes, taskine, Tow=level TO, and

nser=det ined cenerics, tor example) can sately he

tenered in oo intreductory coarse.

Possihle Tests

Untertnnately, 1 have not vet seen g Ada
text whivh i- soitable, in ftwelt o tor o hesinninge
course. Blther the te .

and o does aningdequate job oot covering the

tois ot an elementary

Panetaee, or U assumes experienc o withh some
bivh order Laoroave and tends to cover the basicons
o Ao rather quicklve My opreterence woold be otoe
Choose cne ot the Tatter type, supplement it with

.

53

ot i v Che basics, aad move Calrlv oslowly

gt orirst., U hese tests ooy bavorite s Young

el e Beantita bl s lear and conplete e plana-
Cione, while an updated edition of Barnes (s00n
! tabhle, Toam told)
1

woond. Hoodhoand Geband”oare cxcellent also,

Sht oran o close

oo mere advanced conrses or ter supplemental

reoeiing In titis course.

Cone fus

Lt el shape thought processes. Ghis

trise Conrovramming fanguages, as welloas
RIS A DU T ST I R The Ada ;n‘nurdmmim; Language was
iened withh the principles of readability,
Cderstoandabifity, and modularity of paramount
STt s . Ada supports the development ot good

wiins practices, logical strocturing. and an

onsibilitv

sy it the programmer has o re
o is prosram understandable to future
P With che increasing compluxity of larpe
the iastructor should

stem

Seple cormpler s

’
Crnooni e tie medular approach tooa problem

Catier Chanm the sequential approdach used with most
G lier cresramming languages. The student learns
Sowert al rrogran desinn methodology with Ada,

PRSI S the lamnage itselt.

yolaree ami o compplex Dansuinle, and it

Wi et e vasne to learn or to teach.o But the

Sorent ol bener it are trememndous,

Roterenoes

<] =198,

Lol pemnton s are cound in the
. b in 7.\«':&. Addi=on-

ety WGt tware Enplnes ving with Ada,

i = e T
. Lt SiaroAn Advanced Introda tien, .

N woobv. Perrv, Ada tor e

YRLTER S SNRTTRREI B o U P ey Add iaon=WesTev, T

P
b Jeaeards ada an Intredastien, Springers

Cor D, TuE,

.

oL L P les Ada Programming Langibi e

T T R L TN

S 0. AL sason and BB Frite, Beglioning

Procranming 7‘.~‘ivl}! Ada, Prent fee-tall, 1983,

) R. Ciner and R. Sipcoves, Programming in
A ry Tohn Wilew, 1983

“ - P Younye. o an fatrodoction to A\UNN

P Wiiew, T9RL

54

AD-P003 423

T ot
. C v
- ~ ' e . SO LY
; : Care ol ! epet
' s i Phoet el
w ol M (SR ER O
! [* Dot Lrem o,
MR ‘ ' siad it
. e ' ¢
(R A ' r] in
(R I A CUo Al iwettn eonbajuratlon ana
Wl pent baci it iey The
SR Sl ot ated Ada projrams 18 then
fooaorLten . Atrer the pratotype s5oflwate
Paoliciitedd, e projoect will o focas on
tooe o ing the pert ormance Jharacteristios
Lo YRS S crtically, on odistri-

T, X catave Sottware, and Ada

Cuadn,

L. Introduceion

yuars the hardware architeo-

Tare oyt al ot military real-time syste
s e distrituted, That 135, many con-
puter 1 onnected together by communi-

ton, catiles, However, the sottware
cyned tar trese systems does not pro-
Sole bt ancremental growth, one ol the
pvantates poucible with distributea

rohiiretares, In gencral, the sottware
uxitiblins a high degree of coupling to the
nardwire, the operating system, and the
amnuaiieay fon methods, due to the fact
“hat o the tunctions to Le performed are
wrirten for specitic coriputers in a
machiire dependent manner. Thus, the

ot tware tas to b redesigned ecach time
anorher s conputer 1soadded,

* Ada 15 oA registered trademark of the 1,

Jolnt Program Of f1ce)

Another characteristic of real-time
Fivitary combuter based systems Is the
1puttance ot high reliability., Many
tlre-n this is achieved by having a dupli-
Tite system, known as a hot standby or lhot
steing, 5o that should the primary systen
fal., processing would then be transferred
ts the hot string. Techniques are
currentily being developed to T:otect
fallures of hardware devices and software
nodules in distributed systems. Process-
it J could then continue using the remain-
i) resources of the system. [his
represents a potentially less expensive
siternative to the hot string apptoach {ur
achieving reliability.

Although tine hardwate in the above
systems is distributed, the software 13
not, making the potential advantiajges
(incremental growth, enhanced reliability:
of distributed systems impessible to real-
ize. A nethodology for distributing
sottware 1s needed which will minimice it
complexity and singularity, and at the
sarme time provide capabilities for taulto-
tolerance and incremental growth with a
mininum anount of redesign effort,

Ada, the new programming lanjuage
designed for the DoD, contains features
whil could support the construction ol
dlstributed software [5). However, therwo
psn'toany agreement as to how the viariloous
Language constructs should be used, o1
cven low constructs such as teshing =gl
be lmplemented for the Jdistributed
environment. The implementation chosen
will impact the way the features can be
used to write programs. Softwite support
tor decritraliced prograns in the torm of
proce. ‘nd memory managqemnent wiliio be
needed once the other
resolved, Finally, some mestiod tor
assigning software unit: 3
needed,

1ssues have boen

Sovernment {(Ada

LRyrioght o i 1984 by Huaghes Alrcratt Unnpoany

55

—

(SRS TS N 27 RS RS K
tribute

[ERERS

TP Lo nted
the papetr i
Intent ot the p
softwite archit

. Tree i
L 15 Lo)odevelop o)
voture that Frarts tran-] :
Sparcnt o slistribation of application
Sottwire inoa 1oCar netwsirk of Communicat- !

inj prow 5

P2 tare advantayge of the MILRQPACIT5S0R

: . DEVELDRMENT
potential benetits oftered by distributed STATITN |
atchitectures, (3) assess the use of Ada INTELEDCEn
a5 a projgramming Lanqueyge for real-time T ‘
enbedded sysrens, 14) detine fault detec- I !
tion and recovery technlgues which allow J— } ‘
the systen to degrade yracefully, and, (5)
evaluate the overheads of the Ada network PROCESSNG 5

FLEMENT

local network of loosely coupled process-
ing elenents., 3Section 4 describes the
aadel chosen to distribute Ads proyrans
P finally, the last

{having the capabilities just described). ‘ IAPX 432 s N ‘
soction O oof the paper describes the
hardware conflguration and the facilities ’ AT ! ’
nsed to lop sottware. The third sec- ‘ 4 - —— — - |
tion ¢s some of the motivations and i I COMMUNIZATION MEDSJM]
methods distributing software in a [
—
F

the network, an

summarlzes the contents of the o T T oo -
437 432 437
SoF GoP MEwgRy
[S s

______ ——— e ——

1.0 PROCESSOR]

The nurdware 1s conflgured as a local

Ared network (sce Figure 1) consisting of) 86, 12A a3z

two Intel 432/57C¢ systems, and an Ethernet | *° '“ I

contention bus as the communication L e

nedinm. Hach 432/670 systen will be ; - : B -

referred to as a 432 processing element

due wn the tact that o 432/670 system con- | § e ANE ooal

tains multiple processsrs. One of the 432 ‘ s nEeos

processing elements connected to a e o i o

microprocessor develupment statlion (MDS).

Lorie ﬁ;{tqur fovelopment 15 done on the Flgure 2. One LAPX/432 Processlng
Element

MDS; 1o o addictisn 1t 1s used to leoad and
debuay the 432 systems, The MDS is con-
to oa VAX 11780 where the Ada com-
Lier 13 hosted

ARSI

The AP 15 an 86/12A which uses Lhe
IRMX88 operating system. The AP in both

The architecture of the IAPX/432 is LAPX/432 systems will be used as s
threwhiat different from conventional come COMMUNLICALIuNS precessor; 1t will have
puter architectures [7,9]. 0 An 1APX/432 soltware to send and recelve messages ovet
Lpoeter Contalns general data processors the Ethernet. Software for the $6,02A 13
PPy, interface processors (IPs;, and leveloped 1n PL/M or 8086 assembler,
rttached processors (APs) . The attached There are two IPs, une for interfacing to
trocensors (there can be many) manage any the 86/}5A, and th other ftor communicat-
Deripner:l vices in the system; onc AP bng with the MDS {1t resides in the MDu
Gt it aesciated pecipherals is some- Sottware to control the IP exists an botl,

. - he G 5 o AR .
i reterred to o as a peripheral subsys- the YDT” and the AP. Finally, there are
men e GUPs {(aguin there can be many) Lwo GDPs. Tt is possible ro expand these

Systems with either more SDPs o1 APy,

ire Tt aal 430 processors; they exes
Cate PR rans., ntertace proces- . .
G bt il ty transfer data _ Tlie MDL excoeutes the TUIn-11 operat-
et e vl the ADPS. In our con- ing systen which contains software
Cir ot iom, SRR K AT Contains two development tools tor the 6, 10A: a PLAM
v, ne AaB, and one 1P (see Flgure 2), compiler, a pink]

(T, and o loader., The
1ader Soan IBRC 9578 monitoar; it is also
used to o debug the sottware on the 8o i0A.

56

. addit o, trne MDD nan o ilberent itk
and sottware tor 1oading v dvbtugyging the
S, THe mloroprsoesscl deve Lophent
Ion Is Cunnected Lo VAX
whete L. prete st oftware
the SDPs 10 Tone. An Ada

and linker tor the 4370 SLE
Ada projrarn modales
Potugether on thie VAX.

Load moddle fowniine Ltuaded to the

The primary reasons for choosing this
Computer are 10 the Ada language can be
exercised -- the IAPX/ /432 1s one of the
few systems which has an Ada compller; and
(21 the 1APX/ 432 nas sottware transparent
nmultiprocessing capabilitlies., Transparent
multlprocessing tets: to the fact that it
is possible to add more GDPs to the 432
system by just plug3ging the boards into
the backpliane., The software will automat-
ically incorporate the new processor andg
assijyn processing to it. Some other
features of the 432 are: (1) hardware
operating system primitives, and (2) fault
tolerant capabliiities. L_ome operating
system primitives hav. peen incorporated
tnte the hardware 1n an attempt to: (1)
improve their performance, (2} accelerate
the software development process, and (3)
standardize such operating systenm primi-
Fault tolerant capabilities exlst
In a couple of forms. In the :laplest
form, should one of the processors fail
(within a processing element), the
software will detect the condition end use
only the remaining GDPs. It is also pus-
sibile to have nmore sophisticated capibiil-
ties by using intel chips which provide

tor quadruple modu.ar JMiK and
shadowing., 3
SOrs exXel

RIS
Laves,

redundan sy
cradowlng i3 when two proces-
the same codde and detest dany
Letweon ti WMk 15 when
there vxist two pasr ladowlng proces=—
5Ors, 9ne pair desijnated a master and the
other a1 si1ave, It the master detects 3
discrepency, then the wmaster disasble
taerfoand the slave becomes the new mas-
LS O Thus, the 432 system has some New
foatures that are not offered by more con-
vintianal conputers.,

5

3. Motivarions for Ada Network Software

As mentioned before, distributed com-
'stens o nave the potential for

L el reliiability nver single proces-
Sor o Systens, and far incremental systen
Growthowith o omininum ot hardware and
sottwste redestgn, Sne af the obgeot ives
sfothe Ada network projest o 1s o to deve) o g
BFIOTOLY e System whnoh exnabhle s theae
apabliit e, In rder ¢ N 4o

pater

Crearn

capabiirties, boto Rardwatre oand 5ot twar e
must b e tralized 1o g I Wil
Tunnintent Wit Ens) oW’ P T T S R ST

4 distributed system. As shown above, the
hardwate resources are decentrallzed.

Thus 1t remaling to devise a method for
constructing decentralized software,

One method advosated by rescarchers
tor decentralizing the control and data
structures of software is to constrace
programs as collections of autonornous o=
nmunicating processes (1,2,3,4,6]. The
processes are designed to be autonomous
entities since they may be on separate
processors. Interactions between
vrocesses are well defined and independent
of the actual distribution. Between
interactions, processes on separate pro-
cessors are capable of running in paral-
lel. Thus, the process reqguires no cen-—
tralized control and is the software unit
of distribution and parallelism.

Coordination between autonomous
processes to perform some function
requires the ability to exchange informa-
tion. Because the run time confijuration
is variable {e.qg. in the case of
failiures), the asctual configuration should
be transparent to lnterproCess communica=-
tion. This goal van be achieved by pass-
Ing nessages betweoen processes,

Because processes are autonomous and
¢ no centralized controi, Some means
nmust be provided f{or proce ynchroniza~
tion, For exomple, a process which serves
a3 oa device handier must have control over
It accepts roeguests, Poerhaps how many

avoepts, and from o whorn,

25

i

T 4
Aluo, a proa-

1
A
Cess Lning the service might need to wiit

pietion betore continueing,

The absolute timing of a patticular
Process Tannot Do predicted due toothe
fact tnat processes exlst on Scpatate (ot .-
Tessing elements, ecach with thelr own
environment, Since the timing ot o songl.
process cannot be predicte:, nei*her can
the timing of Interactions v twee:n
prucesses. For example, a1 process whi
is to be used by several other pruoce o
cannut always guarantee betor.
ordering of reguests., This in
predict or guarantee a seque:
means that decentralized ani fiatrit, o
software Is inherently nondeteria:n o
and a distributed system lanjuaie - .0
desligned to tolerate some de it Lol
Jeterminism in the interac:si o o
processes.

angd oto

Ada contains lanjiiaae o T
whiroh Support 11 ot the toas e P e
The paoska 7oy and b ok
an be o use a0 TPt Ctw o
cnowhll ok an e ol Lt oonoye .
s HERANE PPN 3 Hanm o whil ot -
MR * LE S P A LR S ¢ Aty Vor -
T, e et i i Yoot 1 -

SnT o r IEDEERNN inaltly, the Ada se Anotieer porential preblen o P
LR ovides 1 onmeans of handling Cat i E AR TS BT B Lyl
‘ S Dot acteristic ot opr [i t [ES SR 1 : J
tey In g Jdistrivuted systes (T PSR :
I'e b ;o Sy, .
(AT A v dao st I
a4, (TSP S TR [S : srder o
1 PRSI M ; Yy e 1
the Ada networx is Dot i mettod tor incor-
ToanstrucTed foliowi a typlual layored Lot PRI 1o et it
. hys N sy 1y . ’ N
1L oadn e top TJyr:[%g tpt appal Ca It ot e S g passed tor
Lo o proygram(s), written in Ada. Jnder - e 1 e [T SR SYPRS a1,

Geath o the appllcation Ada code is some
cort software to execute Ada programs.,

ool e Do trylny oty Inpioment
Guppott o sottware takes the form of an trla omeede oo vt iooreguites modifica-
Cperating system kernel which suppli a Clons to b cowvgeiaeet ;{“kn(, loader and
il sen of primitives., The vprrating ' asun 19 that dur
i that Intel supplies with the 432 is the inpl compller and

AX, which contalns process and memory pasn0 1l ated Ada support solftware, the
manaienient functions tor progjrans execut- Mlade was that g proygrar wonled
L processing element. The . 4 uingle processor or 2 aul-

MK will be extended to support Ciprocessor with shared memory. Although
R programs, Finally, the i+t is assumed that sone chanjes to the

cr vyer i communication network tantine system wil. beomade, conpiler

Preosro owhich osupports the transmission aodificationg are outside realm of
e s 5 betweon processing elements, this project,

e tvoaaes btedinyg addressed in imple- An alternative model of a distributed
oty s birst o version of the Ada network /stem 1s one where the entitiles that are
ALt taant tolerant processing) are: distributed are tasks, but where there 1is

[T S T T B U o G 4 ada progran, {at ieast) one Ada programn per processing
P e umy ot ion oot kernel to clement, In order to exchange data or
support tre rostributed Ada program, (3 messajges between tasks 1n different pro-
systenm ttartup, and (41 the assignment of grams 1t 1s necessary to define a conven-
sottwar : vlenenta, tion. This convention could not be

chievked by the Ada conmpller for syntax or
other errors. The advantage to assuming
this type of program model s that it

Tre rest Tl

first twe

One plan for implementing distributed would be easier to implement. It would
Ada proorams assumes that a single Ada not be necessar; to modlify any Ada
projram 310 be distributed. The implica- softwares sapport tools., Also, the issues
tisns are the following: (i) the semantics described above (global data, avcess
t the Ada tendezvous and Ada progyrams in Lypes) are not of any concern in this
jeneral will ce preserved and implemented case, The conventlon or protocol defined
i sdistributed fashion, and (2) the com- Jould b cdoas "appiication™ Ada
pller wiil oo used to perfsim the ususi tasks. viviantage of this method is
COWRL LS Chiecks Lebore the program is oxe- : e Location transparoncy i1s lost.

at to have patrallel activity
remental growth, But o now many of
tication specific and
nsibiiivy of the

never a4 chandge

Tuted; thus, syntax cheosing of a distri-
Lated rendezvous d, tn gJeneral, a din-
puss il Le Pasks are ap

tributed progran

SO e

Lo fesigner progrs

Tt tmade Tt

Y

tansks will
iy armang g

samine
dlatribuse

iy

SRR A T E St Wl
. Pieiret C - trondel ot o dlstributed program
. >u-aLln [chaser tor the Ada network 15 rhe second
ty i AL vive sut Lined above, Aithouah the {irst
t CaoEs dnside 4 perdel ds the preferved one, the level ot
iR g, et e L arations to vifort reguired 15 npet within the limits
w' R VL. Trog der ALK e have Uorthne resources avallable an o thils pro-
[N . oot ot SLractare will ant secte Thus some of the desired
Pe D owet b twe reasonn, First, it Sapabilities of the Ada network wiii not
T ottt ot midde b o anto- Leorealized with this medel, However,
T prooe e, ar) ead, 148 ned- with this choice ot implementation, it 18
I ¢ Pracghtt crwar i Lo oetticient to I ible to prototype an experimental
Thees et aaoLors hat o it ineg befweeno pro- pability in a reasonable amount ot time
'~ T I R R LR YV R SRS PO and then assess the overhead involved with
SITE R Jistribution anid the use of Ada.

58

Jlve:

Vious that the
ot drstribution o the task ina inde
Ada prograrns. This method does not
reguire
othet sulbport S0l twale. At the
She Intent 1o Lo preserve @
Ada rendesveous
primary suppoert necded for
divtrivuted projrams 1s some
network software. 31nce the
processing clemnentrs are
and menory management
exlst 1n IMAX can be

rend

G A

chanages

SerlAt ate

e LUt

ritims that

shown in
to synchronize
and

A nornal rendesvous,

C, B. W

varaneters Jan be

1o pr

= otessing can

. shis s dine Ly the server
wh oo Lo finished, out
EER S T SRS g Seloand then the
RN G tiorn,

caller
The

to rransmit

Loy, oot

. Subniet 1iong witho the o

4 a pseudy .
A distributed }

Sofbtware

tu the compiler, linker on
same i
much of the
Lics as pussible,
such a model of
communication
entities on
prograns,
alyo-
used,

ry point
dezvous takes
pass
take place

tendezvous in
now Cails a
purpose of the ATUEPRT LAaCcK Lt the surtengate ser s

5ot | PROCESSING ELEMENT X
ten- |
SN PARAMS
O
spendent i -
- -0
TJuT" PARAMS

I
|

it
Uil t '
|
|
!

¢,
The LEGEND

UATA F Cuw

PRICEDGRE (A

e 1 TASE ENTAY DA

Flgure 3. Normal ADA Rendezvous

Figure
at

ACCEPT state-
specifies an

tion name of the
en task walt for the tesulit
(an (status anda
will then be
s, destination
gyate procedure 1s the
caller on
sutrogate
caller i3 to wait for
tion net; when one
gate caller ~alls
completes 1us ACTE
jate caller

[ERNN 0 SYTIES IR

name spesifled byocne

task) . atiother proc

caller 3 a

i
nooe e
(RS AN

suends
the in Cedure,

e Con-

U Lna-

.
|
| BN ToTMENT
|
| e e
[PLILE LURE HEQUEST MSG
o -

> - - it .
| o RGLA T = \,O;WUNJCA'IUNS
| SEiR i —] o HoRK
I - O BN -—0 SOF TWARE

A [Ty -
| RE TUAN MGS
|
e e — — ———_——— —_—_——,—e e ———— f
BRI L MinT

Figure 4.

ERCTTENY S
ErvER

Distributed Pseudo Rendezvous

intended Cask, 1

out paramneters, 1 oy
returned to the i

name ob o S

59

chere 1s a une=to=-orie

nag tween distributed entry

foles and Surtogate tasks, This allows
Dleaeing ot Jailers just the same

fo LT hE Callers Therefore each calling
Coanh WLoRlcaw the (anilgque; address of ity

Srogate procedure, and wach surroygate
canigue) address

ot its
L dL Ly, each surrogate Cai-
D1 proave fute knows the ¢
arrogate server Task; each surtoygate

creel task knows the address ot the real
ierver task, Holn o this case

Bowdiition to the parameters, the
sent and received during a dis-
rercdlezvous must provide for com-
ion about exceptions., T1f the

has o oan o exception during a rendez-
i propajated to the sur-
aller which can then reqguest the
Sirrogate rver to raise it in the

[SEES P RIEYS

REDENITE SN

it the cailer is killed during a ren-
i server will be unaffected as
the subnet may be burdened

e that will never be read. A

L can be made about the case

rialier dies before or after

«obut while the reguest is

fbuodn transit. It will be necessary

tor Line Comndnilvations subnet to time out

arectaons and clean up any remains. Any

1 1w out sthemes will be application

TVt vaate dles, the same sort

HE 23 S cKtaror Tonmunication s effec-

ERRITTRES [RAEEE Howevel, the subner tinme
I Cvonandle thils case also, and the
Sy bk owan ve glven a disconnected

toopossible in the case ot a sin-

Psvut Lo preserve normal Ada

<, whon the tasks involved in the

15oare on different processing

: i pseudo rendezvous

ch surrogate task
coded for the signa-

belny handled, the cod-

' O3 G TATLES EFE 3
tare ot Lhe

poror all oot rhese is fairly simple, and
caay Lo oropla rane,
L.oonunmary
5 csoribed an Ada net-
Wit 3 stem designed to

prot o type clistiibnted software concepts
: - tor real-tine cmbedded sys-
t latgudje vontaing con-
can e gsed to o write distroa-
SN SUpports o any
Shnfaques (v.g.
LON, parsneterized types,
Poodmprove the guality of
Howover, the conpiieor. and

60

associated support software that are
currertly availlable have supposed that an
fAdda program will execute on oa single
machine, or a multiprocessing system witn
a shared memory, Thus a method, called a
pseudo rend=evous, has been proposed which
will allow Ada programs on difterent pro-
cessing elements to exchange data in a
manner that preserves the Ada semantics of
4 simple rendezvous. This allows the Ada
network to be implemented within the
project's time and rescurce constraints,
and will support the evaiuation ofAthe
performance overheads associated with
using Ada and distributing software.

REFERENCES

T

Erinch Hansen, P., "Distributed
Processes: A Concur”ent Progranmming
Concept", Communications of the ACM,
21, 11, (Nov., 19782), pp. 934-941.

2] ‘nslow, P., "What is a Distributed
ata Processing System?”, Computer,
, 1, {(Jan., 1278), p. 13.
3l Hoare, C.A.R., "Communicating

Sequential Processes", Communica-
tiong of the aACM, 21,8, (Aug. 1972),
Ep. H66-677.

4! Jones, A.K., and K. Schwans, "Task
Forces: Distribute Software for
Solving Problems ot Substantial
Size", Proceedings of the 4th
Iriternational Conference on Sof
(

Twal
. Sept.,

tngineering, Munich, Sermany,
1979y, pp. 315-330.

5] -- Reference Manual for the ALA pro-
gramming Langnage, U.S. Departient
of Defense, July 1982,

[6] LLiskov, B., "Primitives for DI i-
buted Computing", Pro: i R
7th Symposium on Jperating
Principles, Paciiic Grove, o
1279), pp. 33-42.

[7] =—-- 1APX 432 General Data Pr: ot
Architecture Reference Manu [N
Corporation, (Dec. 1981:.

[9] =- Introduction tx the Intel 430
Cross Develaspment 0 tem, Tntel Cor-
poration, (Dec. 1

31 == Sycren 4312/600 Reference Manual,

Tntel Corporation, (Dec.id9B1).

z S, e, . Hutiog, and oML bhar-
o, Mimplementation of oy Beal=Time
stritutes Computer Ada”,

Proceedings ot the A
Conference on Computer in
Aerovnpace, Hartford, OF

i L

IRy, pp. 34 PR

Bryce P oorlin 1s the Te
tor i the o . Projects Sectiun in
Goftware Engineering Division of Hujghes
niroraft in Fullerton. He received
L6 Physics from the Universiry of Califur-
berkeley and borh e .0, and Fub
i pPhysics from the Urniversity of Coiorado
Boulder., Dr. Bardin has participated
in many of the public reviews associated
wit), Ada ant internal studies of the
aprlization of Ada to air defense systems.
He has presented o number of lectur on
Ada, both publicelly and lnternal to
Hughies.,

Hia at

Debra 8. Lane is a member of the
iical staft in the Software Engineer-
Division of Hughes Alrcraft at Fuller-
ton, She i1s currently engajed in research
and development of software for real-time
distributed systems., Ms, Lane has a B.Ah.
in Mathematics from SUNY at Potsdam, NY
and an M.S., 1n Computer Sclence from the
University of Cornecticut,

techs

ing

The authors may he
Alrcraft Co., P.O.
Fullerton, CA 924034,

at Hughes
M/G Al P215

r

v o

George Huling roceived o BE,5. in
Mechanical Englneering from Duke Univer-
ity and an M.S. 16 Mathematics from the
Steyvens nstitute of Technology, Hobokuen,

N, Mr. Huling is a member of the techni-

a1l staff in the Ada Projects Section in e
tne Software Engineering Division ot -
Hughes in Fullsrton. Hi: current artivi- i N

thies include leading an Ada design metho- ““\~\\
Tohoay wWOURLITVD rrondp. \\\\\\\

61

AD-PC03 424

GTE COMRALY

Pl
or Qo jo e SR o T
M (LU © 1 D

[s]
1

Gl T olenlres.,

ra

that the DCP de-
and can learn from
Some of the

an Ade PLL supp:
and methods

'
portable compon

I

development :s funded by the WIS JPM
under centrace
D e3. tranemnarn othe ULSL 0 Go

e

LiTe

62

DCP - EXPERIEENCE IN BOOTSTRAPPING AN ADA ENVIRONMENT

STEVE PARISH AND ANDRES RUDMIK

S TR Y TNt

nher wear during which
c:rlities will be devel-

en
es 3
< 1 St CFP
prooect assumes that adeguate Programming suppert
wo2ls wiill be available and that they can be inte-
grated 1intc the DCP with minmima. effort.

The approach taken emphas:zes the maintenance and

management <¢f informat:ion about the deveicpment

process and *he objects under develcpment. NpL-
n atiomn E]

The DCF deliveralle 1§ a & stem that supperte the
vtoof torls and applications :n Ada. e
cz the DCP was to manua.lv per-

cns whicn we will ultimately de-

g a aliowed us to exercise the DCP
ccncepts early and has :n many cases allcwed for
changes prior tc development. Also, when the DCP
capability which the manual process has been sup-
porting 1s developed, the data necessary tc popu-
late the DIF database :s already availatle. Arn
example of this 1s our use cf ADA PDL; each pack-
age we develop contains the PDL informatior that
can be extracted and put intc the database when
these extraction tools become available.

TC OTHER
NETWOR¥. NODES
1 v 1 T H
£DL COMMAND ! PORTABLE { | HOST

_ LANGUAGE, MENUS, ; NETWORR . VIRTUAL —— DEPENDENT l
| 3RAPHICS, HELP INTERFACE | INTERFACE TOOLS
! T ‘ ‘
R o
| | i i | ! . :
! ! | w DOCUMENT- |
i ‘ . DCP DATABASE : . j——| ION TOOLS |
' ' i ; ‘ ! ; ! |

! : | - ENCYCLOPEDIA | ! | L
| ‘ | . - LIBRARY 3 [‘ ———
! | | . ! i j i
| ‘ I - DIRECTORY ! i—— DCP TOOLS
\ ! | | ‘ i
l } | ; | l ‘

i

‘i “ ‘ DATABASE INTERFACE “ : '
| ‘ i i

1 CONFIGURATION MANAGEMENT : i ADA

INTERFACE

TOO

1

i —— | COMPILER

INTERFACE i

tllustiated
a datapase
about the

the
n be
ed database
nfero
ac-
oy of
accu-
ns,
eer
can
rma-

z £ Library which contains these object
K a mapping bet-
host depen-

; P

are a.l
terms are
different

scribed.

These -.de a handle by

database data can

cateagrries of

manage and
tCo ogen-

d red

icad modules, i
cuments. The cbjects are typica.ly stcred :r hcst
files using host physical file names
The directory allows DJP users and o reler
to DCP ~objects 1n a host ‘transparent mannter by
maintaining a mapping between logical and physical
file names. The DIP user ates with the
DCP using logical f:le names and invokes DIF tools
using these names. The tool interface 1S respon-
s.ble for converting these logical names intc phy-
sical file names and ther directing the tocls ¢
operate on these files. The DIP has adopted this
approach so that the system would support a dis-
tributed development environment where the user
would not Dbe concerned wit where the f{iles are
stored and how they are accessed.
Surrounding the database, there :s a portahble da-
tabase interface’ that allows the DCF to be ported
tc other hosts where there may be different but
compatible databases. The database interfasce will
provide uniform access operat:ons o ali cof the
DCP faciiities, and a standard guery interface ¢
a.i DIP users. se s B n u
by application

terface

toag

63

64

p

oo O

RS

(e}

N

se, we have built a configura-

ensure that a.. arplica-
veing the DCP
m The desian
yster uses the

tion about the
cf a document or a program.
© tools wili allow users to
, tC add compcnents, fetch
mponents, compile programs
11 contain logic tc ensure
erforming a valiid operation
the prcject developmert

DCP database is identif:ed by
won of a re-
odi1fication number, and a po-

stem in which it

and develop
provides for the crderly
ween these different pos:ti

The cuter layer
verface to> the

user interlace SUpy a a com
mand language, a ful. screen menu syster, a help
faciiity, and an on-lin umer,tatieorn capability.
Some of the tools are hos: depenaent and will
therefore be different on each h2st, in vhich

w
case, the tool interface would be modif.ed tec a
commodate these tools. The DTF user irnterfac
the tool would rema:n the same with the Cr
ferences occurring when the yser 1S nteracting
directly with the w2331, {or example the host edi-

ls

DCP su
skil
OBJECTS relaty
programs

packages

package_speci
package_bod:ies

fications — }
|
I

main_subprojrams — ‘ i
executables oo ! ‘
domains -ty b
documents b b : ; ! ‘ '
dccument_seaments o | [l ! | 1
databases ‘ ! Pro b
change_rejuest - - | |
aztributes :] ! ‘ | ‘ L } ;
i ' ‘ l [! ‘ !
- - . ———
accept _prometion —---- SRR | X X X
add chil ! o -
add_pcl extracticn - -
n . .« ..

add_w:ith_relationshi

browse --=---meommem e

*

*
P
>
e

‘ > X X X M
execute X !

- — — e .
fetch ~----mommmm oo L. XXX
fermat -—------------ooemeo oo ; o

|
Jenerate_v:ew_package ------ | X
m'.‘dlf}'_des‘flptl@ﬂ - J' w w o - LA I) v * » w L)
p:lnt __________ | > - = w oW

PRGN .
rejyest promotidn ~--------- . R X X X
withdraw_promotion =-------- ot A X X X
J— S - — e ———

ence can be eliminated in

tor. Ever. these differ
is are developed 1in Ada.

Time as portab.e tcoo

The initial DTP system consists of t20ls te sup-
port configurat.on management, Ada program devel-
cpment, and arn Ada command language interpreter.
Some of these tocls have beern developed specifi-
cally for the DCP system as well as incorporating

existing host supplied toolis. Figure 2 1s a ma-
trix of DCP objects and the operat:ons which the
user can perform cn these objects. An operation
s dentified by an "X :f 1t 1s part of the ini-
tial automated DCF system and by an '*’ 1f 1t 1is
part of the a more complete system

Giver the initial DCP toclset, along with manually
entered and contrclled data, 1t 1S possible tc ex-
ecute a st able base °f these development functions
and al. that base. This in-
Cremental rcach demonses s the viability of
“he D ian >y early use and evalua-
Tion H

ports the evolution
production guality

ystem 1s not complete, 1t
anagement control tc
pf med:um scale pro-
hdegquate infermation 1is
ped:.a to track the const-
he constituents of a load
for a package or smaller

Cur aporoach tc building the DCP 1 to maximize
cre use of o{f-the-shelf tools and concentrate our
s on integrated environment by

rfaces between the tools,
database. L network Inter-
TP development hosts to be
distributed develop-
e distributed properties of
realized when the distribut-
y 1s available.

DESIGNING REUSABLE COMPONENTS IN ADA

The DCP addresses the gcal of Ada package reus-

ity v both encouraging the development of
usable packages and by providing a documentation
abase that suppcorts the identification of pack-
2s

for reuse. Jur gocal in building the DCP was
max.m1ze the reuse cf{ packages 1n *he DCP in-
erfaces and tocls. Consequently, the design
methodclogy and the Ada PDL used 1 the project
emphasized the development cf reusablie packages.
The fcilowing is a descripticn of some of the les-
scins iearned in this prcject.

F:rs+, Ada p

ed with the

gJes must be designed and document-
of pro inyg reusable pack-
methodcliogy that encourages

reysakie packages 1s imporiant
ev_n thuqh Ada has direct language sup-
reusability, it does not enforce the con-
2 ¢f reusas.e packasls Second, one can
from the package Lext fcrmation tO sup-
reuse by providing da a ol which gueries

far De sased to search IZr pacRazes. Thne UIF cses
both of these approaches pliacing a heavy emphasis
cr how packases are designed and then extracting
the necessary :nfcrmaticn fror the packages ocC
build the encyclopedia.

AL Object orientec des: methodslogy as described
by Booch® adopted and ar hAda PDL suppcrting this
methodelogy was developed. In developing this
methodology special consideration was Jiven o
supperting the design and implementation c¢f resuva-
ble packages. Wwe feel that it 1s cf ut
tance to desigr packages with reu
.nlended oklective Is LT reuse

plications. This approach has some far a
wmplications on the use of Ada PDL, the desig3n
nethodology, &and the documentat:icn supov © tools.
We feel that an approach that fcrc s

to develop packages that implemernt rac
tions with well understood p;Opert;es 1s the ke
to the development of reusakble packages. By forc-
ing the designer to ca%tegorize the kind of ab-
straction represented by a package, we can define
guidelines to complete the remaining package de-
sign descriptions to conform to the selected cate-
gory. The primary advantage of this approach :s
that it produces packages that have well under-
stood properties and that are singular :n thelr
function, thereby promoting their reuse in other
applications.

Our methodology incorporates the use of structured
comments to provide addit:ional descriptive infor-
mation in Ada PDL. Some of these comments are ex-
tracted and stored in the encyclopedia to support
library searching and for documentation gpurpcses.
We are currently storing the following kinds of
information 1in the encyclopedia:

1. Pachkage category:
tegorized i1ntc one
Laration groug,

state machine, a

opiect.
2. E
assccia
packages
3 Summary: Each package will containl a briel
summary o©f the serwvices provided by the
package.
4. Descr:iption: Al expanded description of
the services provided by the package.

5. Data Fiow: Packages tha

‘operational abstractions a state ma-
chines wiil have data flow descripiions
that help tc ident:fy and describe the

e ata

rransfcormaticns perfermed and th
types that character.ze these data ¢
Packaage Specxflcaf;cn: acr
firazisn . a document tna-

lete and Zdetarled descriptiin
ieding the 3data
vser defin

o

65

ways the ensycliye
SUPPOrt the searchiy
nents and documents.
ugh the use cf keywords g
by functicn and applicaticn. Ewven
ems li:ke a reasorable approach there
drfficuit problems :n defining a set ¢!

generate a standard se: of keywords
un difficult:ies because cf the compr
1se between the requ:rement that a keyword be both
general enough to be w:idely applicable, and spe-
cif:c enough to effectively 1limit the search.
Keywords must have read:ly ava:lable mearings and
this implies maintarning a dictionary of vai:d
keywcrds. Also to be effective the keywords must
be wvalidated two ways, first, against the keyword
dictionary, and seccnd, against the code they de-
scribe. This latter validation reguirement im-
pires that one can check consistency between the
reywords and the code being described.

ther way tc partition the encyclopedia descrip-
s packages 1s by the descriptions of the

ows from a package to its environment.
attempts to build a new program by reus-
ting packages 1t 1S necessary that the
flows be consistent within this new p'og'am.
ve ¢ data flow consistency 1s hat <he
s assocrated with the cdata flow out of
ge angd 1ntc ancther package be the same.
a POL 1derntifies the package data flows,
a textual descraption cf the data, and as-
s the data fliows w-th Ada data types. Some
more difficult lssues that must be ad-
ed are data flows that result from the use cf
icnal and non-relaticnal flles. Ir. this
the designer must spec:fy these data f[lows
rackage ‘

D o re

j
te]
®
®
-
wn

COMPONENTS IN ADE

able develop-
taken *o mean

a unifcrm and portable hRda devel-
ironment by supporting the use of Ada as
.4 languagze, as an implementation language
a comrand languadge. As part of the DCP
T ., we are develiping a portable Ada command
.anTcage nterpreter, that allows the user to de-
{.ne Ada command programs in the same manner that
4 construct his applicaticon program. Ar
ntaje of this approach 1s that packages can be
snared between command programs and application
roarams providing a consistent development enwvi-
o t where complete type checking can be per-
orred between command programs and the invoked
iication program As a consequence of this
roach, the DCP presents a consistent Ada based
vircnment to the software developer.

e

sa vy oy

ayg
ER
ern

er t¢ support type checking between the com-
=

mand appiication programs which are developed

66

e d rent ways

passed tc the 1nvok
this infermaticn o g

s systems may LMpPCse

1CTi0ons T stri:ng lencth and ir. some cases

t We wanted to define an int

o1 set which wouid be host ind

1tion provide Ada type checkirn

ace. We :dentified several

~es the each malin program &acts as
-rronment task; the means by
exec initiated are not prescribed by
the language delinitlon. An implementation may
impose certain reguirements on the parameters and
or. the result, if any, cf a main program.”* The
descriptior of how programs interface to the com-
mand language must be described :in Appendix F cf
the Ada LRM, which defines the implementation de-
pendent stics for each Ada imgflementa-

pa ' er @t this railses 1¢ that we
count cn the compiier 1o support a
icular proaram ipvocatlen protocol.

The DCTP scluticn was to deline sone standarc Az
rackazses that wiol ed b ch LIP ot t
Tess parameter o oca
These packages ; epe
representation ¢t the parateters and provide Ad
type compatlible va:ues to the program. If one

uses Ada as a command language the the command
parameters are typed in the same way that they
wouid be within the galled rrogram. TyT
b:lity between the commancd pararmeters an

gram command input 1§ preserved by s!
package that defines these cdata tyrves
command and app.ica%tion progar

in transporting the DIP 1001 set o nos

systens, we wou.d have to modiiy the be cf the
command interface packages, but 7t the programs
that use them. This approach has made the DCF
tocl set independent of the particular host com-

mand parameter passinc mechaliism.

Not only did we want o be akle tc port
other hosts, but we alsz want e
tOC1S DO necessari.y writtern
3 AN cbhv: that
ec was an Ada com
we enctountered fu
ad

compilers made b3 assumpt

Ria l.braries were emented u

OlF, we were recgul ¢ sypport multiple vers:ons
of the l:brary oba with multiple developers
creating cokb-ects at different develgpment s:ites

in addition we needed tc support melitiple levels
cf Lhes lxb:ar;es for development, testing, and
production. Togls were rejuired to retrieve ob-
jects from different librar:es dependent c¢n some
search path specified by the developer. We found

some of the existing Ada library designs to be in-
adeguate tC meet theSe reguirements in & natura.c
ard efficient manner. Tc further encouraage tocl

h hlerar:hA»
n.ocrder to use the
a poriable bda inter-

netw

database we

The usual approach tc 1interfacing a programming
language t2 Ingres 1s to use a precomp:ler which
processes specially marked statements 1in the

urce and generates mocd:ified source containing
calls the DBMS interface routines. This gre-
9 approach places a scurce level dependency
on uﬂderl,ln; OBMS which compromises pertabil-
itv. For example, each DBMS w:ll have a d;fferen:
form of database rective in the scur for the
crecompiler using different guery languages. A
stiut:ion teo this problem s to define a standard
DBMS calil level interface tc be used by all tools
and applicat:ions,

e

erface was achieved by examining
h:a“sAcrs p oduced by the Ingres
ne ces and analyzing the
nerated code. For of-
gres database,
“rieval opera-
ne attribute at a

the view being
e have deveLopea
this reccrd from
€ View. The cor.-
s xrnowledge of the
1nit:eon and the Ada
1. other opera-
delete, and select,
view and are not sen-—
the view. One of
generator which
the DIP database
rting that view,
W, and an Ada re-

gonerated view
itive portion of

together with a
the Gata insens.-
ke the DBM

13}

Q

3
JTnmom O

£

2rates ar &
a retrieval operation 2n that
cord representing the viow.
cactkage addresses the data
TBMS

mal garame*o'

face ¢ t:a“Ala ed easi-
. 1l DOBMSSs eq. Crac.e, oM,
e DL s means that :{ the DIP .s insta..edl

1. a marnhine which does not suppert ingres, but
has anc-her relat.onai database, then “he only

code reguir:ing rework 1§ the package pbody of the
call level interface.

The descriptions of bcth the DCP database anc user
databases are held irn the DCTP encyclopedia. Tocls
re provided tc :nterface with the underlying DBMS
o support the database adminlsirati:on operations
such as def:ining tables and views, and restructur-
.ng the database. These <ocls i unt
Jser erface which 1s 1ndepe: i

guage of the under.iying DBMS.

The DCP project experlience indicates that tocl
portability can be achieved by defining the
ach

priate interface packages. Our app
iar in concept to that defined by ¢
Interface Set 'CAIS:"

Some of the porta
iems that
courliing betwee
In conciluysion, grea

mriler and the Ada iibrary.
e must be exerc:i
sure that these 1in
dependent ©r that
affect periormance.

EXPERIENCES USING ADE
Even though the DCF system .s a medium scale T
ject, we have learned a rumber of lessons that a
applicable tc both medium and large scale projec
and we have identified some areas for further in-
vestigation.

"

raining 1s a more extens.ve prcblem with Ada than
with some other languages. It reguires a consid-
rabie amount &f time and effort to train grogram-
s tc become proficient in Ad
ckiect oriented oes;gu methoasl
eorfle Who are working on the
background ané i gene
T ramming experience.
about three months for the
fluent :n Ada and abie o
tively using the powerful abs
EW Some programnmers srill
ctive use 2 abstracuion
LIingrams were cverdesigned,
s that were too complex and
seems that 1t will
o]

o o

very inefficient.
take cons:iderable experience
re one can make effective tradecf{fs Detween
efficiency and elegance in design.

ir using Ada, there are a number of areas that
need tC be considerec further. For example, what
design methodcliocy and design discipiine must be
:ntroduced to control the use of "with" clauses in
structuring programs. In the past, the design of
he program architecture included the specifica-
1on of the various dependencies that program mo-
duies had c¢n each other. These dependencies were
defined carefully and centrolled during develop-
ment . On the other hand, Ada ailows one to in-
ciude "with"” clauses on both the package specifi-
cations and the bodies as part of the Ada text.
These "with” clauses essentially define the pack-
age dependencies. A developrent environment and

Lo

67

implementaticen of med:um %0 large
rejuires more additional
*na.ﬁ) p'ov;qpc : inimas Ada

environm y the fact

uﬂde' figuraticn

mar wat the Ada comp:ile:
xibil:ity o.. how Ada

ured and mauntarned.
urtered a number of
.

v 03
Pl & g =

or view 0f the Ada pro-
Gr tive £or the DCP task.
Th eveis of Ada librar:es

the comgiler can eas:ly be
riate libraries and packages
Furthermore, these 1l:-

Lrar. ted Dbetween different host
T amo T t the compiler library in-
terfisce pe he DZP ool interlace

nother characterist:c
15 that

£ large sca.e development
éucport environment mu

cumentation, des:gn and
that these program de-

a stzle

LTy TLOE ine Key

: formaticn that sup Lstency
heck. n,, ;mpac’ ana.ysss and tra between
warious development phases. For example, the DCP

darabase tracks the use cf data types by identify-
in3 the package 1n which a type .s defined, and
the packages and programs that depend on that de-

b

finztion. Tris concept alsc handlies the tracking
of database "views”.
cnal DBMSs dz not exist at th:is

Since Ada relat:
time, cnly limited Ada type support can be applied
tc the database. For example, n Ingres, only
character strings, integers, dates, and float are
supported. Ernumeration types do not meép to data-
base implementations since the action of the type
in a program 1s changed when a new member 1s added
to the list at compile time; whereas adding a new
entry 1o a database would affect the action ©of the
*vpe as a run time operatior.

Ancther database probler relates to Ada regquiring
~he unigue identification of a Several com-
mon Ada types may ex.ist T€.3T10NS o7
views 1N a datacase and ult t¢ manage
use dirfferent
f the types
I place
e, possibly
£.ace ail the
. The first
‘'with” clauses
Yy ajainst change. The

operaticns, c
types .. the database i one pa
siution invelves prc;:feratxon
but prevides good granularit
secsnd STIGt1On 15 easy to ilmpiement, but unless
agaress.vely managed 1S expensive 1n recomp:ila-
ticn. Possibly, the best approach 1s tC be aware
2¢ tne underiying :,yas reeded by a prograrm and to
yenerate a packawse for each program based on the
simple types that it needs. OQur soiution in the
DCP 1s t2 place all database types 1nh TwC packag-

by
.

68

fungctional reguirements.
arlierla

o

package

The DCP s being devel M

cated at Eglin AFB rxo"ca runring VM

baud lines are used both for .

and for remote printing via an

an IBM mainframe. The I

fcr development. This ¢

and does not currently su
.

w
N
a
0o
N
<
3
e
.
'
.

i}
I
5
D
o
Jor
W

chosen because 1t supper
and has a more flexible libra
and VAX macrc¢ routines have
system dependent operaticns,

SUMMARY AND CONCLUSIONS

The approach presented in this paper has helped us
achieve our goal of bu:lding a poriable Ada deve!l-
opment environment. This approach included the de-
velopment of wvirtual :interfaces to the database
ans the host c¢perating syster, the use ¢f & data-
base to manage the development process, the devel-
opment of a methodology :nci d;ng orcect criented
ades.gn and Ada PDL, and the development of an Ala
command language interpreter w.th a portable fyped
interface to Ada programs.

Adz has supported this
or capabil:ities

effert wel
are not yet ava.iable inte:
have beern successfully implemented ¢ no i
cesses, :ncluding the database, ¢the text
and the host opera*ing system.

We have addressed the software reusability aoa
hda by supporting a methodclogy for bcth d
1n2 and using reusable components. This me
oGy includes object oriented design, and
0f Ada PDL. The DCP provides tools tZ extract
formation from design specif:cations, and tc popu
iate the DCP encyclopedia which provides con-line
documentation and Supports gueries.

in develzsping the DCP we have i1dentif:ed some po-
tertial rrorlem areas. Ada <o nterface
-

thelr libraries in

make 1t diff:icult to Ty A
compller in a development env;.onme“,. This prob-
ier would be recduced :f a standar. method of in-
terfacing with the Ada comgpiler were defined.

Finally, Ada makes ?IL}IET .
than some other lanzuages and .t takes
months before developers become productive, AS @&
consequence of our experience we feel that more
investigation and development of des:gn methodclio-
cies 15 needed to better understand and utilize
the Ada language concepts.

"Rez.lrelents

o~

oy
w

69

70

AD-P003 425

\
: . . Lo me
' S T Pin <, nao
s k RN ior1vesd
) . woaten
c e B - rientod
' L I
. . Ce
M i . . T]
‘ ‘ T, - A
. . vy e, o v
‘ 1’ b v

FAUR R}

i Pntear st
frear [e

Llal :

- vl
f v .,

o NI
for I

ot
! IER T
e PPt

’
Pt
.
et i
o . ,
e
. FIENTRN .
s e
Toresrort e ey
cribrre ! R

A A i
. AR
e, it 1,
RS U : .
. N . .
o, H f
Tl X ! N
G e oL .
et [

Tu

71

. X : N A - o - . : .-)
, . . T . : = . - -
o Do . . - R I
? - v CoL 5oL . I s e
, C e 5 R : Coe
! 2 e .o -
. : - . U S . . .
Low Iy = L 3 PR B " . S :
. R L ~ = - o Ceoae R .o S [T
PO i S L - = = F K
Pop ot S i LT - 0L s N . . T [PO - . - E
T o L 7) - v . s . : o= R . - KIS)
. oS- e . - : . R U R s : B :
- . - - o o) D e . ~ . PO jad - - Ll . T a : -
R T - C. o e STTRPCI S - E [A L
- - M - : co [. . ’ ST oo
R o T ot ‘ o & - o . -~ . i
. S R oo L R ST T H s
. 1 - o ‘ . N T - . [-
o ol I Lo o S R, L7 N . .. - AR .
: - e . H S . - - - B - E ; R . . LT 3 B - o I

72

Y

fove

Adad

TR

SRS

el

itien sustern in

oy

1

Tirkotine gt
and.

wWiive

N
ainly

twdare,

SIS

vnsive «

YL

ool merviace
il

lelle o

el

TR
environrent s

rotechnicioa

s

w

AD-P003 426

CAPERTINCD WITH ADA FUR Thi

Kathleen

GHAPHICAL KERNLL SYLTLM

Gilroy

Harris Corporation

Government Information Systeims Zivision

Melbourne,
Abstract

saper describes the effort to produce an
Juage binding to the Graphical Kernel
cstem (GRS) and to implerient a subset of the GKS
- L:\er]]tv n Ada. It presents an overview of
e nS, Ade project, discusses some of the issues
:»d during development of the GKS software,
desoripes the results of @ post-coding analysis
Lomparing the binding and prototype code, and

_otiments on the lessons drawn from this experience.

introduction
The Graphical Kernel System (G¥5) is a pro-
sosed national and international standard for an
apt lication Jevel interface *o a graphics system,
oS provides device-independent support for most
grapnics applications. with capability ranaing
from simple output primitives to complex inter-
active sraphics. The set of GRS functions is
interded to be implementable in many programming
Tarcuages. A language binding defines the syntac-
_a1 interface to GKS from graphics proarams
writter in that language. Bindings to ANSI lan-
w5 are ingcluded as part of the GKS standard.
standardization of the bindings promotes port-
shitity of both programs and programmers., and
facititates validation of an implementation of

art,

ud
1

“re project described in this paper was part
otne tultiphased GKS, Ada effort to develop Ada
nqrainics capabitities conforming to standards
currently being developed by the American National
Ltandards [nstitute TANST) and the International
standards Organization (ASD' This first phase,
norsored by *hw World wide Military Command and
Cortrol Systerm (WWMCCS! Information Systeri (WiS)
‘Gint Droarar Management 0ffice (UPMO), provided
1 Ada lanagudaae binding to the Graphical Kernel
viter o titner work involved develooment of proto-
tiie suftware in Adg both device-independent and
dependent’ to deronstrate the capabilities

Ada synter

9]

* o dda 15oa registored traderark of othe UL,

Jovererment - Ada Toant Prggrar dffice.

74

Florida 32901

The binding was developed in cocrdiratior
the A\" Langquage Zindinay and Contorsancs subeomi Tt-
of the Graphics Teohnical Pittern ! 4
It owas des]qned to emuloy the fu capabilities
the Ada lanquaye while conforing to the specitic
tion defired in the G¥U standard. The attenpt to
synthesize GHo and the Ada mind-set resulted v
few difficulties. which were presented to ANSI
Ada bindirg issues About twenty issues were
identified, recorded, discussed. and hopefully
resolved. Gome of these issues may be catejorized
as ueneric binding issues. or issues applicable o
GKS implerentations in any language. Subsequent
analysis shows that some of these issues are also
appilicable to Ada “mplementatiors in qereral. &
few of these Ada language issues are discussed 1
this paper.

tee

[V
a-

ho]

The prototype software was developred on 4
microcomputer interfaced to a oraphics monitor. won
a partial implementation of Ada supjported on ine
development system. The rototvpe was coded or-
tirely in Ada, and demonstrated tne feasibilit, ot
programming graphics in Ada. ioth machine-dererd-
ent and machine independent facilities were reguired
in dmplementing the software, and lack of support
for full Ada presented some problems in the deveior-
ment effort. The prototype code, wnile certairiy

alid Ada. was limited to ‘h" use of thoue languaaes
features supported by the ¢ iler. Tre resylts of
a bost~nod1ng analysis of Lhr binding ard protot,.f
specifications highlinht the differences 1n the use
of the lanquage under these two approaches.

Overview of the traphical rerrei Systen

The Graphical ternel System defines a set of
lanquage-independent functions providing s standard
interface to a two-ditensional color qriphi o
system, GKS supoorts machine and device-indevend-
ence ‘n the production and mamipulation of pictures,
vet allows dev1gc tuning to best emplov the featuyres
of a specific device for a particular application.
As a standard., GKS promotes portability ot graphics
programs, facilitates the developrent of apriioa-
tions, and provides guidelines to manufdcturers tor
future device capabilities. Supports most
araphics applications and devices. Types of
cations for which GKS could be employed inglude
CAD . CAL, management araphics, simulations, cames
and contouring., Devices whign might be interfaced
to G5 include plotters, storaue tube disilave,
printers, digitising tablets, veoctor refresh (870
and raster (RT's, S1x sets ot Jogical 1reout

NI N ot TOrand Lo e
vl SRS AR AT SVIS MY
r D SV A RV TR
' . CU G T UL A TR S ;
T L A T aration oo
T I ah T anSenL oy more 1t
S T . Sl tiple wor
1 4 e, B 3 !
o i . ' votnear capabi
fa Coenud e -
Wit e T oand
BN T ine el teatares,

[o LSooutput oo S
NI EETRES cony disptaging il R
i M Harae Ler s trine Assouiatod with
by et noeabytes which control the
At o T e v wlerert Oosuen s Hine
Lo K o AR ANE
LT a : Lo vobund bes
T A A A 4 tributes
oo RIS N VL S manner, while
. . TS tne gt e Of
oL T [EFRAC TP AR
[T nd TrarL ot i
S Lo Gartesian o Tt vater
ol s ey Tatagn N R AVEA RPN
' At i o e] T owsod byt
: ol ey P Noavtgiised Doy oy Doord-
tose L ot T naent
i 1 I3 [aCE
o r " ' i
r A Ty i [STeE
AR ST A)
. Mondoaoatior and ot AUty ibute
' Ft o ti
IR o L T
., e o - [T a4
s SRREITR B : Jisibility,
' ’ L A ion, and
' t . ¥
N s Leva e Jrteractions
o i : 1 W R
’ Crees,) .
' ' ! the
e o b oanbi a valae st bk
DoaT T i trpaut e e,
LI T R S ot
! P, ' !
I i I (RO
4 IR [N LU et
L [T S I
. 1 v . DR T VISR

Pt Lre enerdtion and
e Tor audit traid
toorecord and ‘
rertorcied during 3
Dror tyoee Jf eenat
DML do wsed tor the
Lointure agture

stoved o WOre-

tation of g o Sion
Titel This e ile -
the seguerce ob GRS opsea
soscios at g workstats
the Viroual Device Mc
Torg-term stor. i
setatile). The pictuce
staticor independent
the sare or o aiftfer

Tater cercit
| EAE N

T

trror Handling

Sosurnorts ervar onecking foroa firite

nurber of exceptioral condition

The rumb

conditiors 1y suff
Seation of reooge
an erveor i
Liorn about i

Sreviae precise Tderti-

Genoalso nroy

Lrdge o Grtorta-

Vi LT AN error,

GEL Lrovid
manivalation foc

The Tunctionality provided oy 5o T
widde van e ot

ne fungtions detinea by 5

Wy sarabiiat,, howesor, ot <0

t Soare nended Cyery
gl ication, nrapnics cability supnoriae
Dans Ve T sindle werkstatioe Gl i
indmal, The introduciion oFf new odl b
Locuntroiled treoun th artitiome: of B0 st
Cwcbve valig Teveld T Coded
witn the adaition Phitaes troard e
derendent by o0 40 T
REAEE e tunctionatite by e

rowr i Toble JUI0-TL Lanala i T e v gt

' Tevel ol w Fothey faret oanpear. G-

ihries gt subseguent Tevels consist ot At des .t
Ploreevious capebiTioies alone cacn of
Pia.ary nee capabiTities. Tor o sinpl o ity
Gilvties which are only uptionglly supelicd o, s
Teyr Doarve anitted feor the table.

Avootmiplementation of ks 15 sand
a teved of GKS If 1t (ontad at least

tione and capabilities detined for tnat Tevel.
. .

Fer

b g e an ey Tut 0F devel Gbomust contain
Trosy o tans o, et ined tor Tevel Oy les trose
v ey b by and el Ao Bioatinn o

SIS I RS EE N S R poleved ot a0t gt does n
et o any Tan T s G e b1 T it es outaee 1t

75

JUTPUT

LEVEL A

INPUT ¢

TVEL

<y

No dnput,

Mini~al control.

M Subset ocutput.
Individual attributes.

Feguest mode.,
Initialization.
No pick input.

Sarple and evert mcde,

Basic control.

F.11 output.,

sregefinec bundles.

“ultiple normalization
transformations.

)

Viewport input priority.

Full bundles.
Basic segmentation,
1 “etafile workstations.

Pick input.

Workstation Independent
Segment Storage.

o

Grs/Ada

s Ada 15 a multiphased effort to develop
1ics capabilities, including develowtent
2 NSl ostandard binding of G¥L to the Add
srauate, a production-quality implementation of
fall Gey functionality, a suite of ANSI-
wovoeed metatiles for GKU validation, and a suite
s device-derendent software drivers. The GKS/Ada
s canformsy to the set of graphics stindards
crent Ty pedn developed by the ANST Committee on

cotartation brocensing Systems {(X3)

LI

e e Ada ster model Tigure 3.0-10 shows
Lreoelerert of gn Ada graphios wystem and rne
PLe Ao Letweer ther

Ao Mda arplication program must access G
hrdar vy ade Bnding intertace (ABL). This
nterf w0 Lontare tooane of twelve lewvelt o
dtined dnothe GFCoand AL <tandards, The K5

e vy roare et ncludes dnterfacing with tne
St e e crterface SVh0 0 and Virtuel Deviee
Nr 1, VOFC L e o b e dradt o AaNe |

v
) Trogy the 0 e intertae to the
R A A I Hrwiare whior grives the
. Ve e ot Devioe intertaod
PR B edeserade st anterf oo at oy
o Eorra o aary than Gy The

Virtual Device Metafile provides for device-inde-
pendent storage of graphical picture information
for later recreation of pictures on the same or a
different system. Metafile generation and inter-
pretation are accomplished through the VDM. A
suite of metafiles could be used to validate a GKS
Ada implementation. Although not shown in this
figure, the VDI and VOM are both directly access-
ible to Ada programs for use in other graphics
systems.

The accomplishments of Phase [of this effort
included production of the Ada Binding Interface.
curvently a draft ANSI standard, and a prototype
implementation of GKS to Level Ua, which deman-
strated the feasibility of the GKS/Ada concepts
that have been defined. The following two sections
discuss the binding and prototype in more detail.

The major emphasis of the GKS/Ada proiect was
the developrent of an Ada lanquage binding to the
vhical Kernel system, (very effort was made to
cnibody the philosophies expressed by the CKS - tand-
ard and the ANST Lanquage Binding subcommittee ir
developing the binding, The binding consicts of
Ada packaue specifications containing all of t4y
data types, subprograms, and exceptions used to
intevface with a4 GES system implemented in Ada.

The binding is currently an otficial work item on

[

Pl

GRS/ Ada wvats

It oand 150 aygendas, and 15 expected to undergo
sore ¢volution as binding and langudge issues dre
resolved by these standards organizations.
Linding Priloscphy

The foliowing guidelines were applied in de-
“iring tne Ada languadge binding to GKS, and in
atteri:tieg ta choose among alternative interface
: iflcations:

. The binding should be transportable.
Changes required to rehost an imple-
rentation of Gooon a difterent system
hould be minimized.

. The binding should be extensiblie. Up-
grades of GF5 should result in minimal
changes to graphics application programs
and G5 implementations.

[} The binding should support the GKy
leveel concept, with the interfaces
for each level upwards-compatible.

] The bainding should support portability

of avpiications programs un o GRS,

Tragears oight ouse any ample rntation

of G owith niniael changes Lo the source.

Features of the Ada Tanqguage should be

sted ta unsort portability

. The binding should tallow the semantics
ot the randard wherever peonible.

‘

¢

mode |

. The full capabilities providec by the Ada
language should be used to best advantaude,
with compatibility with Ada zhilosoohy used
over some other method.

[The binding should be as <irilar as

possible to other language bindinas te
promote programmer portability.

These goals were not alwavs mutually obtain-
able, and involved trade-offs. wany of these or
similar issues are discussed n .

The mapping of GES into Ada waes tairly
straichtforward, although the Ges specification
incorporates some features which are in confli.t
with the Ada language philosophy. for the most
part, thesce areas of potential difference were
recognized by the GKS develovers, ana ailnwanc
made for variation. The apjroacr taken ir
ment of the Ada Binding Interface (AFEL} 14 7
sented for the general cateqories of data i,
fuctionality, ervor handling, packagiry and naring
canventions,

Aeveior -

Mapping of GK» Data Types to Ada

The most ditficult part ot detintra the Ada
tanquaie binding rested in the area of daty tvpics,
The GREL standard detined several simple and
pound data twpes used an o desoribing the se
of th. GEY tunctiorns and data structures.
data types were implemented as s varviety of

s
Ty e

wdda

77

7

o]

P
Wl
'
‘o
'

L Vit
LR R
' ISR A

B

. t
oot
Pl
R
P R}
o
TS
i +
el
it T

et 0=

s ed,

t i
P .
Tl .
'
St
it
Tan t
ot

Nes Lore
T

bt

an da

i '
vt e turn va
St he g oo e

i Ly otne
Huwtye o, tneve o
Coowhion o

RS S ST ST
b bt
AT S EATES RO

sy
!
0
'
el
v
s
[
LN
AN

L
s
o]
sl
[RERR
[N
HER N
naye
N
‘
[P
.

Sl il
AT [t AL
FLoorov ide IS IR P

MV R [S O PR |

thans ol e

DU Y sl

Thie GES evror hanalir
b desinned Lo
VAT Iadnes Wik o
e lacit fo

which s

The bindinag describe
G which was intend '
et not knowing Lne sour
el lon oocur This o
ceobieratic inod ruiti-la
in rrabably best to rely e
Ston taliltities detined by

doeneric aok
drd usirg o Cartesian
Cooorrdc utitity pack
oroam sy latyon
utiil
i abil it

derend

antann
R N
Caty et
at b Tomer Teve s an desorin
St A e, L
T’"‘l RS R SR chene et e g

Trelowa it antee

ool with

Oroetad
torte the gther pach adgqes

Boray o vesu Tt in aronsis

RIS v d Deoutis Tdered,

Do seopared Common A nterface

Al e i inar e ded
DesLILTTILy s sartitianing KD

{ -

Groov ot Lo ot pgonades detaped

G5

L

Free Porath e tor Lot omandn Llati
Corsete Jive thar that o coeoyided an g
ferIne Lonvent
e gt the vost heated dvacaasion
s agetiritien of the Ada Yo cgaoe bhind
oo e e ory st Cotvert g
Pl Tt e, The) IR
fhew R Ty sy T

f
ot
[

w ity h

G
Y
N
<
iy

[crodee et e

i ' * G ded o T k)

AT 1 b * M

vorruvidend byothe stan v, -
STt T Lans T toneyy Pl
TR tano Uiahis, FAUATC Lo T e e meiner by -
. PR Wy throuan I LT R
cortliot with data tvie [T U TR
Tiie o eToush o tor oyt gt T

CLRe T NI IS nlen v garded Tes e e et
SI01 NURerS AN packase rane o trey [T

<5

SoRdye

ol e

ble conflict of GRS neves witn thne o ad o,
Trcation prograr (dor’t rase t T T
and use Ot abbrevialSon e g abSd b=

stangdard

rs defired @ et of

beoussed Inoall Tangaae binding . Foe g
Tike Ada, abbrovoatiory sre rol resuived,
toedy thes munt Le an ey Lons i tent with

tthans det i

—
oy
-~

dirg

velopment of the Ada laaua

A .ot nutiber 0 issues were identitied.
Cote nnges were discusse by the AN
1 ot v sublornittee ana other 1nter@s;ud
: lotertat e resolutions were reached:
t inues can be classified as "ieneric

s oo assues whick are apnlicable to
randinigs . The resolutions whrch have
saa binding will be used ¢

: bindin sy
Aroand

brgeeer
Bividing are

whion have
ot tne Ada

detine the
arl Generalised

Sidow Pmplerentations to

rerfacen far

LU e

TR it ives o oand contaty tnes
P Lo baToN LN

i oaf g pAc ke i TANT I
whioh woula contein 1mplerentatinn-de: cndent

and cotistonity velaten oot

uration,

T e T Ty tor

Cond roim

sordinaty

tabie indices are sib T
Aandiiate, ety M
¢ PR LA N A (RS T A TR e 11 WA
¢ TR [T ERAPARSYLIM R B oF Make an
AT i g [e e
D e ' [P R e
Mo ettt e g abtraction
vty tre ey et b, ada thieounh
et ‘ RSt L [T
. (TR A o et
R RS VRN L L et ared by ne STRING,
4 rog b g e Betren b oty st
oA tears ot b tuning device
sttt e witn e sard to macnnge

i N N . P Lt
. 4 - . “ . . - 0
[] [(5 S A A | T '
v PUE TRREEY IFEVCR AT RN M SRR SRt A S
ttt g '
ern ot ot tware e fix et oar v
wrted e et Ll LuL et T T
cerad oy 1o L et L
AT VO Der s trated ey il i L
Sl L R A AR & FRL ANV A RS S L
T Lt ap el
e Sttt o R R R BT
i en T L iranent
The contiqura
R e o ar
MLt rava di oy 5 ot
andan BUdT nureric Le-nrGe Lr AF

IEISL A RN

hoard fror (ontrao

a Mitenhiond coeiay alt
i oo St v dri,en 2
K taptay Controtier ony

SISUTR ISR

Thee of twdre

To ot e broov,

0'(”- "'hy \ W CN e '>
et Arud . Lo AR
EREIR A KRNI S S0 IR R
Ly oot
| RHEVASY
T
Wi wwed
tne fada

durar s
fey Tementation
Geved

LK e
botr the
rodrtications were regquired an
e et

(o

i

reeOE]

developrer tise whicr = Gua

1
1

i

-

1

devel
COrit

TSIV I IRCTSI o A

o fairly

s sy uter s The dety s
catest drpact on o the ooty

coinagbiiity 1o take Aot
et foature of v Sda

Sitted tar corril

specrbicetion and vods

ANt had to Lo recoes
edenuies anormg the gk

Tatiov ot many other oy

i

L s
Ot tw o

T g [RR SRR SRR A O URE DR b

rreeconds to Level Lo, and arg Taded:

The control functions o oih
Gho,oand cantral fanctions by
LDOnE O ACTIVATL D PALT VAT ara

s werk s tataong

Phes output tunctiors Cal Y oNG,
PULLAREA pavtial ampiorer o qon
cart gl oimpiementatioe Yo 0 twn
poed vawtas Primitives Loeont
A

oot

RATRIAN R

arot

79

4l

. - ottty cutryt sUirihute
oM
[] sttt oy func tions.,
: Tt e ester tecluded g single
L wrh it o wtn saateen predetined
Pt Uit e Pive narker tynes, Lwo
[P roorgracter tants . oane line width,
et e ognd settable bundles. The
e e g crovide anv settable

v tov gtianh,

Tree certere T e tecture tor the GRS system

R cpardte packales were do-
Gt e W
] e Leratonn o cate, ane per system,
oo the ot yalue 0f the operating
oy LN

. T e coorantion Table, one per system,

crer o rurration about availabitity
Tl et iy

. e e st Last, one per system, halds
" s Ltate of workstation independ-

1 na full implementation
Lo, v Tist also includes the input
oatt At

. Treoworkstation Jescription Table, one per
asrkntatcon type available in the imple-
ctation . describes the capabilities
o st T table cannot
seoonanged by an apoplication program.
[} Treoaorkstation State List, ong ner
vviry open workstation, contains the
wurre t osettinas of workstation de-
vendent attributes.

<obrror State List, one per system,
5 information including the current

device independent softiware was

: cancurrently with the development of the
e ndiny Interface, but the ABL specification
cesrwen sedification to confore to limitations
Sl Ly the compiler. For example, the binding
T baren the type of an opject from the Normalized
Lester as follows:

digits PRECISION

“re o tellowing declaration had to be substi-
cute oot nrototype _ode, Sirce proqrarnrey -

G treed flgating-rnirt types were rot supported:
Dtyoe NOUL TYSE 15 FLOAT,

tner data typing facilities which were
vesdted BL mot supported included nteger type
betimations, devived types, record typing involv-
rants, and array aguregates. We
by orelied on the redefined data types and
Py ortrained areays to work arcund the

’

80

vroblems, although the semantics of their use was
inconsistent with the intention of the binding
stecificetion. Limitations on symbol table size
also presented croblems in attempting to compile
GES as a singl package. We ended up dividing GKS
into five separate packages. Ure package contained
all of the GKS interface data types, and each of
the others contained a subset of the GKS tunctions.

Device Dependent Software

The device driver software interface was de-
signed to prototype the capabilities of a draft
standard for tne Virtual Device Interface. The
prototype VDI contains routines for initialization
of the workstation. clearing the screen, drawing a
line, drawing a holiow or filled rectangle, drawing
a4 hollow or filled circle, displaying a marker, and
writing a line of text.

The device driver software was translated into
Ade from existing programs written in the Tanguaqe
C. This code performed the machine and device
dependent functions, such as initializing values
of reqisters and memory addresses, defining bit
patterns for character sets and line styles, and
performing data format conversions.

The package SYSTEM was incomplete, and hard-
ware addressing had to be accomplished through the
use 2086 package supplied by TeleSoft. We also
had to work around the lack of representation
specifications.

Language issues

This section discusses issues identified
during development of the GKS/Ada software. and
which may be applicable to various Ada applications
and other Ada standardization efforts.

txtensions

It is the capability in Ada to declare
"programmer-defined" operations that prompts this
issue:

Should the binding {(or other interface)
provide for the definition of basic
operations approgriate to the data type,
but which are properlty extensions to the
functionality required by GKS (or other
interface requirenents)?

Examples of such operations trom the GKS
binding are:

function "+ (LEFT, RIGHT : POINT)
return POINT;
“unction 1S IN {ITEM : [TEM TYPL;
THL LIST & LIsT ofF)
roturn BUOLLANS

Unless the data type is private or limited
private (in which case all needed operations
should be provided), the user of the type could
define his own routines tor pertorming such opera-
tions. However, it 1s advantageous to standardize
commor: aperations for purposes of portability

sdvartage 1y oftset by the additional burdes
oy placed on o tne developers and maintdainers
U swgn dntertace specifications,

Another i55ue redarding non-required/
tplenertatior-defined extensions:

should such dntertaces allow the intro-
Jucticn ot run-required and implermentation-

Bl

fefined operations?
txarples from the Ade binding include:

p0ssible operations on obiects of
type Gk3M ITEM TYPL

new Lscape functions ov Generalized
crawing Urimitives

it these declarations are allowed in the
‘citication, then it 15 no longer "standard" for
vurposes of validation. An alternative which is
attractive for the {scapes and GDP's is placing
ther 1n an external packadge. However, forcing
operations on private types to be in an external
Cackadqe doesn't mesh with the concept of encapsu-
fation of types and operations. 1t also makes
trelementation of the operations awkward. Another
iiternative 1s to have such exatensicns contained
1rg package EXTINSIONS within the jpackage of
This way, the user of the extensions
ust pretiyoevery use of the element with the word
CYOINSTUNG D or must explicitly indicate use of the
Cothroush oa tuse’ statewent (this ie
~overioaded operators). The probien of
ity of the declaration of yrivate Sypes o

EX

reteronoe,

“

cxeptions

Current practice suggests that o minimal

er of different exceptions be declared by a

vrogram. The pnilosophy of GKS sugqests that the

preciseness of description provided through a
wrber of distincet excention conditions

twelgns che disedvantanes of dealinag with a

wroot possible exceptions.

P .
Dt

wnich 35 sreterable, and under what circum-

An exarole frow the binding in which consoli-
dation ot many errar conditions under one excep-
tign 15 desirable 15 the state error. GKS defines
tight possible cdases in which a state error would
be recorted, each treated separately by GKS. Dur-
ing exacutton of an Ade graphics application pro-
qraes, 1fF any one of these state errors were to
aecur. it oindicates a serious logic error in the
rasrdar, bxceptior nandlers would have to check
foroall o eingnht ot the exceptions to detect if g
stdate error had oocurred. [t 15 suigested that a
ngle exception, STATL PRROM, 15 more appropriate
ot saould be noted that because of the way in
whicn GKS defines error handling, the error hand-
Ting routine would have no way of knowing the
cortext in which the call causing the error was
=ade, and must treat errors uniformly. In Ada,
the programmer determines the context in which

tion nandler eaiots, There
GYoantormation deousteg the pes rined
Since trhe e 1l state error 1S net engel .
seemy Lo be a probler witn eeceiptionsg 10 lerera
the exception wnich 1s detected by a ;0 ira ray
not express the true nature of the Cause oF tny
error condition.

the oy

Jeta Typing

Which approach better promotes porlability of
Ada programs, use of programmer-detined data ty;en,
or predefined data types?

Far example, a program could choose betweern
the dectarations:

type NUMERIC TYPE A is new FLUAT,
type NUMLRIC TYPE B is diuity ©

LET TN
Lls s by

A program which uses "B" is not gudarant.ed
that PRECISION digits of accuracy are supported by
every implementation., "A" 1s quaranteed to Nove
some implementation on every maching, but s iver
implementation may not be appropriate Lo tne needs
of the program. Another consideration 1s that b
1s implemented, but 1n an inefficiert way. [t is
assumed that "A" would employ the most efticient
1 lementation.

Another dssue of interest 1¢ tightness ¢ data

typing.

How strongly typed should GRS (or another

Face

ey |STEIY

[t 7y possible to define the GKy function
parameters in such a way that a maxainur amount of
checking be performed on parameters and other data
objects. tmphasis i; intended on detecting logic
ervors at compile time, but run time checking would
alsu be performed. The strong data typing of Ada
allowed us tooff-load checking for many of the GKS
errors on to the compiler. This seems to be a good
thing, but in order to implement it to the maximum
extent, the binding would be Jost in a sea of data
type declarations which would be confusing at best.
There are two points of view to consider as well.
The appdicatinn program desires assurance that the
tunction perforns as promised, and the GES implie-
montation must alwave check the validity of the
narameter values. LBoth desire to off-10ad a5 muen
checking as possible on the compiler,

Another consideration is "who" detects the
error. For cxample, the value of an integer tyce
parameter should fall in the range 1..5. The type
of the parareter wight be a subtype declaration
which restricts to this range. In this ¢ase. a
value outside that range would be ratsed as a
CONSTRAINT ERROR exception to the calling uni
and the called tunction never gets control.
tevnatively, the type of the parameter could b
Tett as an inteser, and the vdlue of the parameter
chiecked on entering the function. In this case,
the function could raise a mare descriptive and
distinctive exception, such as INDEY IAVALTD.

.
LS
AT

81

rolierdl Mapping

several func-
Sowrioh enploy @ paratieler wro e COntents ar
croreted differently basec onotne valae ot g
Lot rdcareter, ov the value of ore ot Lre gt

e GRS snecitication detiees

Corento o tne pareceter S0 calleotnre g alatg
Pe IS el s aNere are several ortiuns i
Sy e Tudieg
o et a Sintle runction usang g cirsle
data reoord 1y VLUl s a string
WOICT tds d oo Inter ation.,
Tl cotution also includes wne uie
Cfovrivate tyoes, with associated

Jrerations,

3 Cefine a single tunction using @ complex
Jatd record tyre (such as a record
withnodiiomninant conipenents and
variant partsi, whicn nas a simpler

interoretaticn,

. Tverload the function using the specific
Jdata record types needed.

[} T
che <recitic date record types necded.
ttods Tikely trat tne structure of
ne cord will inante over the life of the

SosTer, arotngl o tre structure will vdary areatly
Cuer o vdariods 1rplementatiors, the second o;tien
wis Tiscarded. The third and fourth option., were
Lt it e Tt e mpressary to be able o
inpuses tne contents of the data record without
vrowing inoadvance what the structure looks like,
tnis left us with the first option, and whether
strings or private types. [t made sense
to be Ada-like and opt for the private types, and
detine Yunctions for accessing the components of
tre various data records. Problemrs with this are
that an ordering is imwplied in calling the func-
tiors to deter”ine which of several possible com-

P ERVEN o

sonents may be decessed (similar to variant parts
z* records ;. The semantics of this ordering are
cot irplicit dn tne defindition of the functions

Cothew are with the yicible record type declara-

Tree gl position that there shall be no Ada
subnets avoids the problers associated in binding
Vatiguages ke FORTRAN and PL D (in which autho-

rised subsets exist), resulring alternative bind-
i for the same langudge. However, current Ada
wilers ort the Ada lanqjuage to varying

5 completeness, and it may be some time
ot validated comoilers are available for all
Taorines, whioh could support G it will be even
coer tefore all these features are inmplenented
oan efficient ranrer, Une solution would be for
tools such as GES to erploy only those Ada)
fratures which are deplemented by all LOWDi]DFEb.
This oapsroach would preclude use of generics,

47 overloading, or tasking., Use of
faraguess features outside of that cubset would

arispetes

82

coctability of both o Tooeatat fony
Soand of application progrars whiye s L
The binding defines tne use of all of t
foatures exeent tasking., The
tion described an this paper iu one of
nate mapeings of the GEL biediny Lo tit
tions of o ocorpiler, The positio

bt the
Ut

crotetyre:

AL X2 bl tnat the fullest oo i
tur the Taniudage snould e oo b
CeCoan T zed That Certaln ettt T

othe 1nterin and will rander ot e na over ity
tontorcarce of an daplornentdation o tre St dars
However . the Ada loint Program U401
edicts 4t least sis validated spiiers Lo
1547 0 Tneve should be mare than wufticient
support for Ada as Gke dmplementations pocoss
davallable,

The use of 3 compiler wnicn does not rovide
the tull capabilities of the languade would reslt
in the inability to implerent the syster as in-
tended, or to exploit the power of the languane a

it was desianed to gain the benefitsc? reliabilit,,

extensibility, etc. A comparison of the data type
distributions in the binding and prototype specifs
cations highlights the differences in the utiliza-
tion of the Ada lanauage features in order to
accommodate the subset compiler {Table 4.4-1).

Most of the differences are in the use of pro-

defined versus programmer-defined data types. Use
of generics in the binding allowed the implicit
declaration of many additional data types through
instantiation of packaqges for coordinate svsters
and list manipulation facilities. fBecause

CNer

1

were not supnorted, correspording data types had to

be explicity and individually declared in the pro-
totype. Many of the types provided throuan the
generic instantiations are not necessdarily used,
however. The table is limited to data ty;e decia-
rations frowm levels ma and Oa, since that i the
Tevel implemented for the prototype. The rull
binding utilizes record types, private types, ard
enumeration types much more heavily, as showr in
Table 4.4-2.

77777 mendations

The following conclusions can be drawn from
this experience witn Ada for the Graghical herne
bystem:

o Ada may successfully be used to jrogram
graphics applications at bHoth the machine-
dependent and machine-independent levels

. Graphics programmers from various appli-
cations areas should consider use of the
Ada Binding Interface, and to report any
droblems with the binding. The applica-
tion programs which were written to deron-
Strate GhS/Ada were written to interface
with the prototype specification, and the
interface has not yet been fully tested.

o GKS should be studied tor possible use
as part of the CALS, including compatibiiity
with the CALS definition.

sindirg

tIrctlining generical’y
irdie et tiate Doty T
Porcent Jurcent Cerent
wurler of Total Ciovber of Total I LR
: . W -
z8 7 26 ER
i 1 : 0.6 ! 3
S 3 8] g .0 4
Te L J [V =
Jtner intuyer type 10 2 170 J
LT] 3,0 J U.. 10
ther floati-g-puint tyoe z 14.90 14 8.5 0
STELG 2 3.5 2 0 .0
‘ther anconstrained arrey J .0 36 1 1.3
toer constrained array n 5.3 v § il.4
Recurd with discriviny t
Jarizant uart 1 0.6 8] SN
oowariart part 1 37 22.4 0 2.0
Ty ovecord 3 7 0.3 2¢ 25,3
“rivate tyoe 1 0.6 s .0
RN 57 165 79 .
53 93.0 15 5.5 56 .9
4 7.0 4 2.6 23 Y.l
e ey . 3 .G
T 5 ngL 165 UG, 2
! 3 5.3 3 1.5 23 29.1
- 54 24,7 162 98.7 56 T
57 165 100.9 79
' Pstribtien for Sindivg and crototype
Coven otaoanid only)
S R ® The full power of the Ada languae
o - [T DT should be employed in defining the syster,
. . : NI et and uny modifications and/or cptimize-
R PR TR i tions performed later.
v LRSS I i e The proraminng support envirsnment
i P R Lystem is very dcportant. A non-validated
ot vt iy ovnioutatly i the congiTer can be a Yoo of teouble §F
" Lo st ard nandling, features Tikely to be needed are not
implemented. The same goes for support
Sy ct Coard Lynter desoriotion sackages, Validation also does not
T B TN cddn early, in the 1t quardantee that the run-tive system pro-
X 1 [et Ada a1, bt be used vides the necessary support for 4 GRS
‘ ' ettt inn laruadge . imuelenentation,
ol e et et o ovalidate [A programsing support environmernt sbhould
R R A ranchia Ly sten ine Tude a sutficient program support
. v b Arka that 1, f Tibrary. We sorely msassed naving a math
Cet Yol b Lda are toobe cacka e, o packases for dow-ltevel [0
et Aovalidated compaler <nould be emrloved.

83

Zinding
(Inctuding generically

Binding instantiated types)
Percent Fercent
“umber of Total turber of Total
BUULEAN o] .0 0 0.0
CHARACTER 0 c.0 0 0.0
Other enureration type 41 45,1 42 17.5
[NTEGER 1 12.1 37 15.4
POSITIVE 0 0.0 0 0.0
"ATURAL ¢ 8.0 o C.0
Ither integer type 11 1.1 1 0.4
FLOAT 0 0.0 G 0.5
Other floating-point type 11 12.1 17 7.1
STRING 4 2.2 2 0.2
ither -1 constrained array O 0.9 52 21.7
Uther constrained array 1 1.1 1 0.4
Fecord with discriminant
yariant part 4 4.4 4 1.7
o variant part 6 6.6 52 26,2
Other record 7 7.7 19 7.9
vrivate type A A
TOTALS 91 100.1 240 1u0.0
Types 33 91.2 229 95.4
Sabtypes 3 3.8 3 3.3
Terived types 0 0.0 3 1.3
TOTALS 31 100.0 240 100,90
“redefined types 3 3.3 3 1.3
sser-defined types 38 96.7 237 36.7
ToTALS a1l 100.0 240 10C.0
TABLE 4.4-2
Nata Type oistribution for “inding
(211 levels)
¢ The package S7370M and Appendix F References
“nould be cxamined far support for
rannire-der endent reguirerients, 1. Schmucker, Sparks, Post, Journey, Cutnert,
Preheim, Carson, French, and Skall. “The
Lokrowiedgerents lLanquage Bindings of GKS," future issue
ILEE Computer Graphics and Applications,
Ty gaper s the result of work performed sroposed panel session of SIGGRAPH 1334.
ander ontract number FA964.-03-000835, sponsored
by the world Wide Military Command and Control . Graphical Kernel System (GKS), version 7.2.
Syatens TWWMCCS) Information System (WiS) Joint draft proposed American National Standard
Crogcrar Uffice DIPMTY 0and guided by American of [S0/DIS 7942, ANSI dicument X3H3/83-25R1,
National Standarde vt itute [ANSD) (3H34, the ANST Drodect 362, 19 July 1483,
Largudue Sindirqc ard Conformar e Lubcommitties
nt *the Sraphics Tectnical Cormittes. The auth 3. GKS Binding to Ada, draft American National
al,o wishes to acknowled o the contributions nf vtandard, ANST document X3H3/83-95, 18 uctober
Geril Cuthbert, Sam darbaugh, and Greqg Saunders, RN
Tne gninions expressed in this naper ace not
recesaarily tnose ot WIG-TMUANSTD DU oy 4, Ady Programming [anqudnge, ANST /MU -STD-18510,
i Lorroration, J0 January 1983

84

e

1. Craft

ad. Duee. Gallop., and Sutcliffe,
ciwo Lian te tne graphical kernel
CAUI IO ress 1943,

w2 lb, cabiaa. "Making Tools Iransportable,”

errel Add Pre ratiring suapnort bnvironment
corterface Tear o o Pubiic Report,
N O T

Sda o oins the Arty, o Detense lectronics,

YISO I8

s Ada suecrtication and Prototyvoe boftware:
ort, Lontract No.

dctober 1983,

Pata ckeunntcal Ky

FAubas-83-Lus

2

kR

L7 issues List, ANSI
Jeceriber 1983,

1, Ada Interface of Ry
gocuent X3H3, 33-x%,

~ ~1

ification of the Common APSE
nterface net (CAT 'V, Version 1.0, ¢6 Auqust
1983,

Bioyrapnical Information

kathleen A. Gilroy 1is
3 Serior tnuineer ot
Harris Zorpordatior o
Melbourne, Florida,
where she has been
employed since 1682,
Ms. Gilroy is a member
of the Methodology
- Group, cnartered to
research and develop
advanced software en-
ninerring technigues. methodologies, and tools.
“realan o works closely with the Programming
sup port bnvironment Group, responsible for
develar ing a comprehensive automated software
arairecr e enyironment tor real-time software
entens s Moo S1lroy 'y current work s oas proyram
AT venionsd “or the evaluation of Ada
col s ers and AT , developrient of a trial
redl-tice uiti-tasking problem, and performing
anouprade o Mdarris' Ada POL Suide. Previously
she workoed o Tnane ©oof the GKS/Ada project,
wherre she wa tne ooincipal developer of the Ada
Firding Intefare to GFES. Mo Gilroy received
- puter scotence from the

(ST RN AR i

t, ot orirgn Florida in Urlando, Florida.

85

AD-P003 427

MILITARY COMPUTER FAMILY OPERATING SYSTEM: AN ADA APPLICATION

Frederick K. Wuebker
RUA Government Svstems Division
Misstle and Surtace Radar

Moorestown, New Jersey

summary
CThe Militury Computer Family Operating Svstem - MCFOS)
Program i< an mmteresting Ada® appheation effort. Not only
will the operating <vstem be one of the carly Ada apphica-
Dot~ but it walzo an Ada operating svstem for a new family
ot machines and = designed o support fielded, real-tme Ada
apphceations programs Finallyv, the operating svstem will be
the first Adi program designed to be a formaliy verified
multilevel secure svstem. This ambitious but completely do-

able program will certaimly stretch the state of the art of

ADA programming. 1t not actually advance 1t This paper
explores some of the Adas<ues that have a major impact on
the MOFOS program. .

Introduction

In August 1982 the U S Army's Communmeceations and Flec-
tronies Command CCECOM at Fto Monpmouth awarded twe
competitive contracts tor a Mihitary Computer Family Oper-
ating ~vstem MUFOS - The two contractors who began a
competitive defimtion and desien phase were RCA and
TRW The MOFOS contract reqaured the definition and top-
level design of exten<ions to the Ada Language Svstem nec-
£SNUTY To <upport the construction of A Programs targeted
to the MOF machines The contract al=o required the defing-
tien and top-level design of w famitly of aperating svstems for
the MCF machines. The MCFOSR was to provide functional
capability 1o support the variety of applications programs
currently inthe Armyv's inventory and those projected tor tne
tuture The MOFOS was to be written in Ada and. of course,
to support applications wnitten in Ada and targeted for the
MUEF machimes The MOFOS fimily 1s 1o support the com-
plete range of zecuricy requirements. icluding a multlevel
=ecure operating svstem that i~ capable of passing the Class
A-Lertterin of the DolY Computer Security Fvaluation Cen-
ter. Those criteria require machine proofs of the design vert-
flcation us well as code comphiance assurance. Although
proot rules tar Adia have not vet been published. the RCA
team of RCA Intermetries, and Odyssev Rescarcn Assocr-
ates has been examining the language relation-hip tor zecu-
rity and formulating procedural usage rules tomsure provi-
bility

CAHa s et tradernark of the TS Government Mg Jeont Pre
Sranc PR e g 0T

Brief Description of the MCF Machines

The Miitary Computer Familv Program began in 1974,
when the design of an Instruction Set Architecture JSA was
undertaken by Carnege-Mellon University under Arma
sponsorship. The ISA 15 a 32-bit general-register architec-
ture with byvte-addressable memory This architecture.,
known as NEBULA and specified a< MIL STD 1562H. has
the following features:

® Two active context stacks
® Mapped memory with access protection

® Variable-length instruction with variable number of ap-
erands

® ['se of privileged instructions for resource control
® Vectored interrupt~ and exceptions

® Virtual [O with 10 processors

® Explicit addressing of all mstruction operands

® Procedure-based control structure with a local register
set for each procedure

The Military Computer Family consist= of & mimicomputer. a
microcomputer. and @ sinzle-hoard microcomputer The
minicomputer 15 suited for large svstemsosuch as commanil
and control. large phased arras radar <vstems, and itelli-
gence data handhing svstems. The microcomputer is in-
tended for smaller embedded apphcations such as fire con-
trol. vehicle control, or networked communications. The <in-
gle board microcomputer 1= 2 compatible machine intended
for use i embedded weapons control, biackpack radio can-
trol, and intelligent data entry svstems

Tahle | shows the expected pertormance for cach member of
the family

TABLE I MCF COMPUTER PERFORMANCE

Single-Board
Mintcomputer Mcracomputer Microcomputer

sbERD 3OMIPS SO0 KIPS S0 KPS
MEMORY 4 Mbyvtes P25 Mbyvtes 256 Khvtes
POWER 1O0W J0W S\
WEIGHT 40 1h HARIR 075 Ih

svnopsis of the MOF Operating System

The MUE operatmg svstem 1< to be a family of compatihble
aperating <vstems targeted tor the MOE machimes Thas tam-
v s ta satisty the Armv’s needs for o real-time operating
~vatem to <upport the myvnad tielded apphications that will
exi=t on the MCF machines The operating svstem is to be

written in Ada and 1= to be compatible with and supportive of

apphications written in Adu and or embedded NEBULA . The
nperating <vatem mu<t be efficient and easilv understood. It
must =suppoert multiple Ada programs as well as the mulu-
tt=king inherent in those Adia progran.s.

Finalty, the tanndy of operating systems must satisfv the
securtty requirements of systems that wal range from dedi-
Cated ~ecure through multilevel <ecure. The multilevel se-
cure operaling svstem must be capable of verification as a
Cliss A=l svatem ax dened by the "Computer Security Eval-
tation Criterta.” dated 15 September 1983 and published by
the Dol Computer Security Fvatuation Center

An operating system built tor multilevel secure iippln':unnn
= taced wath stringent requairements More important, the
MOFOS wili be the Grst Ada provram to be formatly ventied

Ada Issues for the N!(‘}"()S

Phree migor arcas of concern =<t be mvestigated onsure
that the operating svstem can ~upport real-tane Ada apph

ciations These are

e Control of the machine and 1ts resources
® Real-time performance

® Security

Fach of these ares interactz with the others Fornstance,
controb of the machine 1~ not only required to insure that
multiple Vi progrioms can co-exist within the machine, but
sl subrect tosome very =trincent rules imposed for secu-
rliv, securtyoin turn, meredses the penalty of overhead for
pertornanee The toltowing paragraphs discuss each of these

Toape-

Control of the Machine and its Resources

A e
Copeethe i permitting each mdividual program’s Run Time
Suppert erary RS to schedule and request task iitia-
nens Nitheagh the nperating svstem has no knowledge of the

wonedibme o wathin the program sthat s, foar example.

~vstenn that supports Ada programs must be

the oper e svatem does not know the task completion
<atu~ 1=t honor the tusk request and start the task on
the miachine

In etfect the operating sv<tem tuakes the place of the ma-

svenntral or Tnaceleus" portion of the RS for the applica-
Gon program The operating svstem must retain control i
the machine sinee the operatimg <svstem controls the schedud-
e of the varmus Ada programs that it sapports Theretors

when an Ada program as suspendeds the 1ok conteat must
be preserved and provided o te RS of the suspended pro
gram. Ax an added complexity . the operating sv<tem i< aiso
an Ada program that imterfuces with the nudens R3L

In a muluprogrammed and or secure environment. the oper-
ating systemn must maintain control of the memory manage-
ment. It must honor the program’s request tor data obpect-
and mnsure that the security rules for those data objects are
observed. The operating svstem must al-o honar the reguest.
by each of the RSLs for working memory space The Ada
RSL may usk for space in =mall increments unul such tune
ax the maximum memory space required by the program -
achteved. The RSL retains that maximum amount until the
program completes or 1s terminated. For the operating sys.
tem, thiz creates the problem of providing smatl increraents
and having the memory returned i a large block. The
memory management for MCFOS must run mapped because
i secure operating svstem reguires paged or segmented
mapped memory to assure protection without an extracrdi-
nartly complex logie and @ high overhead for memory man-
agement

The machine-dependent portion of the RSL. referred 1o as
the nucleus RS will actually control the target machine
Many nucleus RSLs will exist but ideally the machine-inde-
pendent portion of the RSL should be identical for all Ada
programs. Two et~ of mterfaces are involved.

The first set, to nsare portability at the source level. con-
<1at= of user interfaces. The RSL should conform to the com-
man Ada Programming Support Environment APSE inter-
face set as defined by the Kernel APSE interface team. Az
seen now, there will have to be "RSL-Tike” extensions (0 that
mterface definition for various environments. These exten-
<ons must he hutlt 4= 4 =et that does not impacet the common
<ot and can be added to the machine-independent partian of
Rslas needed for the implementation. The MCFOS requires
a #et for such functions as interprocess communieations, de-
vice control. and process control These are Ada packages
that will he added to the commuon APSE interface set

The second set of interfaces 1: much more difficult. This <t
mvolves the interfaces between the machineandependent
RsL ind the nucleus RS A common interface should be
destzned to simphify portabihty 1o varous target muchines
The current set of compilers interfaces with the host mu-
chine’s aperating svatem, 1o Telesoft and SofTech inter-
face with VAX VMS and ROLM Data General ainterfaces
with A0S Eventually a common anterface should be de-
Nined between the machine-independent portion and the RS
nucleus. Figure 1 deprets the various interfaces necessary i
wo from Ada constructs to execution

Real-Time Performance

The MOFOR 12 1o he o veal-time aperating svstem. and offi-
ctency 1< therefore of paramount importance The RSL and
its relitionshin with the Ada programs must be investipated
and underctond The reader must remember thie the Ada

LINKED/ EXPORTED
b ahal
RSt st
M NUCLEUS
f_——A__—V_—Mﬁ
P b
800k | compwen | CO0F | INTERFACE | INTERFACE | ypqy
| constaucrs oo
L
-
TARGET
ARCHITECTURE
INDEPENDENT

Figure | Ada Construct-to-execution Flow.

programs, operating under the MCFOS, communicate
through the machine-independent portion of their RSLs to
an operating system. That operating svstem is an Ada pro-
gram that must verify and interpret the request and trans-
mit the desired action to the n- cleus RSL for execution. That
Ada program, called MCFOS, must control the application
Ada programs its supports.

The NEBULA architecture. is an excellent (though not per-
fect) instruction set architecture for the implementation of
Ada. A measure of the efficiency may be taken from the
number of instructions that must be executed to suppor~ an
Ada request such as task execution. task termination,
memory request, etc. To do this an Ada RSL has been con-
structed and instrumented to provide statistics related to the
execution of Ada programs on an MCF computer. The statis-
tics consist of instruction counts and response times for each
of the requested Ada operations. Table II shows sample va-
lues collected for a multiple Ada program implementation.

TABLE 1. ADA PERFORMANCE ESTIMATE

Average
Process Instructions Count
Program Initiation 99
Task Initiation 185
Entry Call 27
Accept 36
Rendezvous Initiation 28
Rendezvous Completion 34
Task Scheduhing 108
Task Termination 22

Although it 1s expected that there will be some improvement
in these figures. analvsis shows that an order-of-magnitude
improvement will not occur These tvpes of statistics will
definitely influence various factors considered in the ar ni-
tecture of an Ada program

Security

Sinee the MUROS 00 be Ul AT muitlevel secure oper-
AN <vstern e desgrn s e e el vernified and ma-

t
chine-praven 1. e for ot Tecrn nng st then be shown

to satisfy the security pulicy. This "proot™ is a manual proc-
ess that relies on proof rules that reflect the semantics of the
data structures and control constructs of the high-order lan-
guage used. Proof rulex for Ada have not vet heen published,
but the work done by Odyssey Research Associates shows
that Ada is verifiable if 1ts usage 15 restricted. Such restric-
tions do not violate the "thou shall not subset” command-
ment. Thev represent a self-imposed discipline with the
same status as an in-house program development
methodology.

The restrictions chosen have been assembled from a variety
of sources, and although thev are not optimum. they do pro-
vide a baseline. If during implementation it is found that the
restrictions are too stringent, theyv will be reviewed.

On the basis of the study conducted by Odyssev. a set of nine
restrictions will be used. It is felt that Ada programs written
using the discipline listed here can be proved correct:

1. No aliasing: that 18 —

e do not use a global variable as an actual parameter
in a subprogram or entry call.

® In calls. distinct actuals should be used for distinct
formals of mode out or in out, and no such actuals
should be used within an expression hound to a for-
mal in parameter.

2. No variant records.
No yeneries with subprogram parameters.

4. Documentation of exception propagation and exceptton
handling: no handling of the task failure execution

5. No shared variables between tasks, 1.e. all tasks com-
municate explicitly through entryv calls and accept
statements.

6. No access vartables as formal parameters to entries

7. No dynamic task creation using task tvpes and task
access variables.

8 No delay statements or condit' nal entry calls or timed
entry calls.

9. No real tvpes.
Current Status

The MCFOS program has completed the {oacept Definition
Phase. with the top-level design. The second phase. ahout 1o
start, will be the Interim Operating Svs. m phase. Thi-
phase will involv+ burtding an interim secure operating svs-
1em that will b a subset of the MCFOS, targeted for the
MCF Advanced Development Model machines. Also duriug
thi= period the formal specification and =ecure verification i
the multilevel secure operating svstem will be accompii-fic.d
and the detailed design completed

During this period the RSLx tor the MCOF implementaton
will be completed and the real performarces of a full-wcele
Ada implementation can be assessed

AD-A142 403 PROCEEDINGS OF THE AMNUAL CONFERENCE ON ADA (TRADEMARK) J/"
. TECHNOLOGY (2ND)..(U) ARMY COMMUNICATIONS-ELECTRONICS

COMMAND FORT TH NJ CENT.. MAR 84

UNCLASSIFIED F/0 9/2

)

|O = 22
2 £ I 2z
oL | e

= |
=Y R

MICROCOPY RESOLUTION TEST CHART
NAT.ONAL BUREAU OF STANDARDS - 1963 -

— |

AD-P003 428

AN ADVANCED HOST-TARGET ENVIRONMENT FOR THE
MILITARY COMPUTER FAMILY

Hal Hart
Ruth Hart
Isabel Muennichow

TRW

Redondo Beach, CA 90278

Abstract

As part of the Military Computer Family
Operating System (MCFOS) project, extensions to the
Ada Language System (ALS) are being constructed
which allow software for the MCF computers to be
developed and tested in a host/target environment.
These extensions are collectively known as the ALSE.
ALS facilities are used for editing, compiling, linking,
and exporting Ada programs, while ALSE facilities are
used to download the software into a connected MCF
computer and execute the software on the MCF, thus
providing state-of-the-art high level debugging and
performance monitoring facilities in an embedded target
environment. This paper describes the components of
the ALSE from a user viewpoint, concentrating on how
an applications programmer would use MCFOS and the

Extended Ada Language System to develop software.
y'l\
A

Introduction

In August 1982, TRV was awarded a contract by
the U.S. Army Communications-Electronics Command
(CECOM) to develop requirements and top-level design
of two operating systems for the Military Computer
Family (MCF) computers. Both operating systems were
to be written in Ada and were to be designed to support
real-time Ada applications. The Dedicated Secure
Operating System was to be run in either a dedicated or
system high mode, and was to be optimized for
efficiency, while the Multilevel Secure Operating System
was to be designed to support multilevel secure
applications.

As part of this Military Computer Family
Operating System (MCFOS) contract, extensions to the
Army Ada Language System (ALS) were to be designed
which would allow the user to develop and test software
for the MCF computers using the facilities of the ALS.
Together, the Extended Ada Language System and
MCFOS provide support for all phases of software
development: design, coding, debugging, optimization,
testing, and deployment.

Ada and MCFOS

The MCFOS project uses Ada in several different
ways. First, MCFOS itself is written in Ada. Second,
MCFOS supports Ada applications. An applications
program can interface with MCFOS in three different
ways: through Ada language semantics such as tasking
or exception handling, through Ada standard packages
such as those for input/output, and through MCFOS
packages which provide capabilities beyond those which
are part of Ada. Therefore, MCFOS serves as a
replacement for and extension of the runtime support
library provided with the Ada compiler. It should be
noted that the real-time and security requirements
imposed on MCFOS require that much of the ALS
runtime support library be replaced.

The Ada Language System Extensions

The Extended Ada Language System consists of
the Army’s Ada Language System (ALS) augmented by
the Ada Language System Extensions (ALSE).
Together. the ALS and ALSE provide facilities for
developing Ada programs targeted to an MCF
computer. To do this, a host/target configuration is
used, in which the host computer is a VAX 11/780 and
the target computer is any one of the three computers
in the Military Computer Family - an AN/UYK-41,
AN/UYK-49, or the Single Module Computer. As
many as four MCF computers can be connected to the
VAX via a hardware link.

The ALSE has three components: target
dependent tools, software development monitors and a
VAX/MCF link. The target dependent tools consist of
the MCF/Ada Symbolic Debugger, MCF/Ada Timing
Analyzer, MCF/Ada Frequency Analyzer, and ALSE
Profile Display Tool. There are two software
development monitors: a Single User Monitor to support
a single application executing on a bare MCF machine,
and a Virtual Machine Monitor to provide a multiuser
capability for Ada program development in the
host/target environment. The VAX/MCF link consists
of a bardware connection between the VAX and the
MCF, software to support the link, and the VAX/MCF
Loader, which downloads MCFOS /applications software
from the VAX into the MCF.

89

f-—--——'-'

Figure 1 shows the Extended Ada Language
System, with shading indicating the ALSE components
to be developed as part of the MCFOS project.

Software Development Monitors.

The ALSE has two types of Software
Development Monitors, a Single User Monitor {SUM)
and a Virtual Machine Monitor {(VMM). Both monitors
provide a bare machine interface to Ada programs
execnting on an MCF computer, support the other
ALSE tools being used for Ada program development
on the MCF, and provide for simulation of unavailable
peripheral devices. The Virtual Machine Monitor also
provides a multiuser capability for Ada program
development in a host/target environment. The
monitors execute primarily on the MCF, with the
peripheral simulation function executing on the VAX.

All software developed using the Extended Ada
Language System will run under control of one of the
monitors. The VMM provides the capability of
simultaneously running one or more Ada applications
for debugging or testing purposes. The SUM provides a
more efficient capability for debugging or testing a
single Ada application.

Developing Software With MCFOS aand
ALSE.

In this section, we illustrate how applications
software would be developed and tested using the
facilities provided by MCFOS and the Extended Ada
Language System. It is assumed that the applications
software is designed to run under MCFOS.

First, already existing [facilities of the Ada
Language System are used to develop the software on
the VAX 11/780, as shown in Figures 2 and 3. These
facilities include the ALS Editor, the Ada compiler with
MCF code generator, the MCF Linker, and the MCF
Exporter. The MCFOS SYSGEN function then
combines the exported load module with MCFOS to
produce a tactical system suitable for loading into the
MCF computer. Note that this MCFOS function
executes on the VAX rather than on the MCF. Figure
4 depicts the process of building a tactical system.

The output from SYSGEN is now ready to be
downloaded across the hardware link into the MCF
computer. This is accomplished by the VAX/MCF
Loader. Three types of loads across the link can occur.
First, the Software Development Monitors can be
loaded onto a bare machine. Later, applications
software that is to run under control of a Software
Development Monitor can be loaded onto the MCF.
Finally, a system ready to be deployed can be loaded
through the MCF directly onto an MCF peripheral,

from which it can be loaded onto an MCF n the ficld
These operations are depicted in Figures 5. 8. and ©

The VAX/MCF Loader also provides cverall
control (on the VAX side} between elemeats of the
ALSE and responds to user commands That & other
ALSE tools such as the MCF/Ada Symbohe Debugger
the MCF/Ada Timing Analyzer, and the MCF/\da
Frequency Analyzer are invoked via loader
subcommands.

After the MCFOS/applications load module has
been loaded it is ready to be executed. It can erther be
executed directly, with or without timing and frequency
analysis, or it can be executed under control of the
MCF /Ada Symbolic Debugger. This tool is functionally
identical to the ALS VAX/VMS Symbolic Debugger It
allows controlled, incremental execution of the target
program, symbolic display of the state of the program,
symbolic display of program entities, and symbolic
modification of program variables. Figure 8 shows the
operation of the Debugger within the ALSE.

It the software is to be executed directly, a
different loader subcommand is specified. Parameters
to this subcommand indicate if timing analysis and/or
frequency analysis are to be performed. The MCF/Ada
Timing Analyzer is functionally identical to the ALS
VAX/VMS Timing Analyzer. It monitors the execution
time characteristics of Ada programs executing on an
MCF computer, by counting how often each block in an
Ada program is in control at the end of a specified time
interval. Likewise, the MCF/Ada Frequency Analyzer
is functionally identical to the corresponding ALS
VAX/VMS tool. It monitors the execution frequency
characteristics of Ada programs executing on an MCF
computer, by counting how many times each block in
an Ada program has been executed. In both cases, the
collected timing and frequency data are stored in an
ALS file (on the VAX system} whose name is specified
on the execution command. This data can then be
displayed by the ALSE Profile Display Tool, which
executes entirely on the VAX and produces histograms
which measure how often or how many times a
particular subprogram or block was executed. Like the
other ALSE target dependent tools, it is functionally
identical to its corresponding VAX/VMS tool. Figures
9 and 10 show the operation of the Timing and
Frequency Analyzers and the Profile Display Tool,
respectively.

Summary

Together with MCFOS, the Extended Ada
Language System provides support for all phases of
software development, from design through deployment.
It allows a programmer to develop, debug, and test Ada

yrogras deagned to be run on an MCF computer
v v single antegrated system, and allows software to
tebagget onoa real MCE computer instead of being

FHal Hart s the Ada Chief Seientist in the
scftware and Information Systems Division (SISD) of

ThW His main responsibility is to forecast Ada
technology needs, and to plan and direct technology
development/transfer activities. He is principal

investigator for TRW's Ada PDL research project, and
he is o member of KAPSE Interface Team (KIT) for
Ada environment standardization. Hal was a member
of the Air Foree Ada Selection Team and contributed to
the Stoneman requirements for Ada support tools
He previously supported Air Force
programs by developing software standards, compiler
requirements, and HOL development tools. Hal holds a
BA in Mathematies from Carleton College and the MS
in Computer Seiences from Purdue University. Prior to
joining TRW in 1971, he was an instructor and PhD
candidate in ¢S at Purdue. He co-developed and co-
taught Ada courses at UCLA and TRW, and he has
collaborated on development of a new Ada certification
test. Hal belongs to ACM, numerous SIGs, and the
IEEE Computer Society. He is currently an ACM
national Lecturer on Ada topics. Hal has been an
executive committee member of both AdaTEC & the
Ada-Jovial Users Group since their founding. is the
founder of Los Angeles AdaTEC, and is past chair of
LA SIGPLAN and LA SIGSOFT.

environments,

Ruth Hart has worked on the MCFOS project
since its inception. She was the Technical Volume
captain of the MCFOS proposal, was in charge of the
Ada Language System Extensions, coordinated writing
of formal specification, and wrote MCFOS Users
Manuals. Ruth Hart worked at TRW since 1974 on the
design and development of software tools, and the
analysis of high order languages. Prior to joining TRW,
she was an instructor in the Computer Sciences
department at Purdue University for five years. She
has an AB in Mathematics from Cornell University and
an MS in Computer Sciences from Purdue. She is a
member of ACM.

Isabel Muennichow has over 20 years experience
in the software industry, both as a software manager
and developer. Her areas of expertise include: real time
oprrating systems, support software tools, tactical

systems, and man-machine interface. She is currently

the project manager of the Military Computer Family
Operating System, a project wihich is designing a secure
operating system for U.S. Army systems written in Ada.
Her last sssignment was as Manager of the Real Time
Operating System subproject of the Marine Integrated
Fire and Air Support System (MIFASS) on the
AN/AYK-14 computer. She also managed the system
generation work unit on the System Technology
Program (STP) and an executive software work unit on
a USAF telemetry processing language compiler
(MITOL). Her tactical systems experience includes
MIFASS at TRW and the Army's Tactical Automatic
Data Processing System (TADPS) at Litton Industries.
Ms. Muennichow has a BA degree from the City College
of New York and has done graduate work at the
University of Wisconsin,

91

woskg a8enduw] vpy papunxy oy 1 damBig

(30N 130UVL IXVA} LSOM

7004

vdsia

3713044d;
¥OSS300ud
JOVNONYY
ANVYRNOD

HIDYNVYN
ISVaVLIVa

ABVHELT

S0400M
Advyann
. NOLLYII VddY
o

3Svavivad

Bw>wsQ0aFwZe
wOurBdaw

202~ -0x

SNOLLONNS
ISV

SUI1BNISSY

30N Juve

ISNOISNILXI 3OW HLIN STV

92

gmpdwo) pue 3utpo) 33 aandrg

140W) 130UVL IXYAS LSOH

IUVYMOHVYH

_
_
_
— ANIT
_
_

FOWXVA HIZATYNY
i ADN3INOSI
L vav/3n
I
Fl
| ws & WIZATVNY
0 L g ONIWLL
o M £ vav/4oN AHVHE(T
i e w S040M
I 2
| aas -
0310 8
wa's S $1004
| 5 PELLYTE 10B1NOD
n DINOBNAS A¥VERN NOILY
r M vav/4IW S _SNDLINGD
<%
E4
-

NOLLYINWIS
A TECTLED
40W

e

40N Fuve

ISNOISNILX 3 10W HLIN STV

—— — — - — — ——

a3

Bunuedxyy puv Suryur] :g aanSByq

(30N) 130HVL IXYA) LSOH

3YVMAHYH
JINAYA

— AN

T YIZAYNY
ADNINDIN 4
| ¢ vaviion
N
3
— o .u“ & H3IZA YNV
_ : oov m..« ONIWIL BIDVNVYN
: | LM I vav/om AUVUB 1SVEvLva
V3 _ 8
| nas
030 ¥
fros N ¥390n@30
I II08WAS
1 o vav/41on

NO1LYINWIS
IVHINGIY 3d
A0

|

— e a— — — —— — —— —

W30vol
oM XVA

S 319NISSV
7563 N14N0D

40K 38VE

(SNOISNILX 3 4D0 MLIMI STV

94

wasLG |vone]y Buipjing :p aang g

NOLLYTINAWIS
IVH3IHdIHIY
40

SNOILONNS

(401 139HVL _ IXVA) L1SOH
— XN
IUYMOHVYH
ANXTA
— — H3IZATYNY
AON3IND3Y3
| & _ \ VOV/4On
N
2
I u ﬂm & HIZAWNY
* oov MA ONINIL HIDWYNVA
: P £ vav/4om Auvien Isvaviva
13 8 SO40M
— NAS4
030] Abvugi
|was N ¥395NBI0 NOILYIN4dY s1002
S 21108WAS
| 14 vav/4om
= -HNDIINOD
o»®
z
>
%
7

43avol

SHITBWISSY
/S8 3N4W0D

40K 3yvea

{SNOISNILX3 3O HLIMI STV

95

1031u0}y tuewdojaas(21emyjog © Suipeo] :q aanBr g

140W) L39uVL _ IXVA) LSOH

— AN
IYYMOYYH
JOW/XVA

HIZATVYNY
AINFNDIYS
Vav/40n

YIZATVNY
ONINIL
Yav/40n

YIDVNYW
ISVEVLIVO

ANvyan

Abvysn

¥399Nn830

NOLLYDIddV §1001
N108WAS I0w1N0D
Vav/40N Nty

-uNoIINGD

NOLLYINWIS
IVHIHdIY3d

SHITAWISSY
/SH34NOD

40N JdvE

{SNOISNILX3 3D Himl STV

— e —— —— — — o—— — —

woyskg [eonoe] € 3ulpeof 9 aandy

{400} L13DHVL {X¥YA} LSOH

IHYMAHYH

0 A
$Inixy WIZAWWNY

AININO3I8A

— ANIT

1 vav/1om
N
3
N HIZATYNY
cov ONIMLL uIDWNVR
1M Vav/40W AdvHeI 3sveviva
U3 LW SO40N
. N A 3
030 AuvHeN
34VMLA0S $1001
SNOILVOTIdaY nas ¥399ne3a NOILYDIddY Joz»wwu
21108WAS
vav/1om NOILY
- HNDIINOD

NOHLYIOWIS
IYHIHdINId

SNOILONNY
3Sdv

SH31BWISSY
/S83714NCD

¥3140dx3
/43NN
420

40W 3uvE

(SNOISNILX 2 3D H1IMI STV

— — — — — — — — g

97

[Loydie g f)jy ue Sutproy :z aanBiyg

(30W) 13IDHVL XY A} LSOH

HIZATYNY
ADN3ND3IU 4
YOV/4DN

1
N
El
u w ; HIZAIWNY
oov ONINEL HIDUNVI
M vav/IOm AdvHAN Isveviva
St 3 1
° NA S
030
. was

> Advuaan
¥390n830 NOILYOddY
JUIOBNAS :

vaY/4ON

$1001
1081NOD
NOILY
“HNSIINOD

NOILYINNIS
vy IHAIB I

SNOILONNY
ISdv

S¥3IIBNISSY
IO uve

1S¥314dW00

ASNOISNI LN I 4D KW SV

o

Wy INOqUISG R/ N o, Ui) g aanBig

(300} 130UV (XVA} 1SOH

IUVYMAYVH
FIW/XYA

SNOHLVYDYgav

Y3ZATYNY
AININO3H 4

.
_
_
— AN
_
|

Yy Yavisan
N
E)
ﬁ H3IZATyNY
Ov ONINIL H30WNYH
Tm & vav/4on AUvYSIT 35vavLva
31 9. SO30N
A 4
30 8 Advye
0s g NOILYDI Tadv $700L
o ABYYg) IOBINGD
o 387 NOLLY
i Z BN
3IsSvaviva ynnaNoy
»
z
>
] NOILYINWIS
P T INAIY g SNOILONNS
k4 o 354V

¥3Iavol
FOW/ XV A

'¥3180dx 3 SH 318WISSY

1OW IHVE

/S8 311402

ISNCHSNZLX 3 SO HLIAY Sty

99

SIZA[RUY douvIopa] py /1N o, 16 dnS1y

(40 139yvl XY AL LSOH

3HYMO¥YH
JOW/XVYA

HOSS3D0Hd
39vNONY
ONYWADD

_ NI

HIDOVNYW
3ISveviva

AHvyaIN

Qw>ws0aZwzw -~
NWOuwurZTdaw k
g

soz-r0a

INTERFACE 5op5 Fom
E T
R A

’ ° AtvHE
IBYML 5 k s1001
SNOILYDI1ddY +f ¥300n83a NOLLYO Y 10U1NOD
> J1I08WAS NOILY

w Vav/i0W
| ad ! -4NOIINOD

NOLLYINWIS
IVH3IHAIB3d
ER]

SNOLLINNS
3Sd¥H

#30V0D?
IIUXYA

SHITBWISSY
/543 14W00

1% IyvE

{SNOISN3LXT 4DW HLIMI STV

100

101

Joo, Lejdsi(] ofjoi STV o4, :01 4nBrg /

{40W) 130UV — {XVA) L1SOH
— N
FUYMOHYH
VA
| o HIZATYNY
‘,—‘ - AIN3INOIHY
i vOov/i4On
|
N
3
— o ‘““ s HIDVNYWN
i ONIWIL
A vav/1om AUVHSIT Isvaviva
PR T—
— 131 _ $040KM
N A 3
o130] AuvHEN 0
1001
jwas N ¥399n830 NOLLYDH1ady 5“.:‘8
@
w JITOBNAS oy
w
l z v -BNDIINOD

NOILY TINWIS
IVHIHAIYN3d
Iom

430v07
2OW/XVA

S$4319WISSY
/SHITWOD

40W IBYE

{SNOISNILXI 40N H1IM 5TV

BENJAMTN J. MARTTN

Atlanta University
Atlanta, Ca. 30314

ABSTRACT

The authors demonstrate the feasibility of
converting the Linpack routines for analvzing
and salving svstems of linear equations from
PORTRAN to Ada. This is done with minimal al-
teration of the original program structure, thus
requiring verv little re~orientation by current
users of LTNPACK.

TNTRODUCTION

A numher of questions have been raised as to
whether Ada is an appropriate languape for gene-
ral scientific computations. In order for Ada
to he so used, it is required that a number of
software packapes now used in FORTRAN be adaptable
to Ada. One software package that is widelv used
and highlv developed in FORTRAN is LTNPACK,

LINPACK is a collection of FORTRAN subrou-
tines which analvzes and solves various systems
of simmltaneous lincar algebraic equations. Tt
is the aim of this paper to demonstrate the fea-
sibilitv of recoding the LINPACK routines to the
Ada lanzuage.

Tt has been pointed out (see Morris (2))
that a deficiencv in the Ada language is its
failure to include internal representation of
arravs. The FORTRAN standard requires that
arravs he stored in column major form, that is,
columns are stored together one after the other.
This standard along with the absence of strong
tvning allows the programmer to access the ele-
ments of a matrix as if it were a vector and al-
wiavs get the right element. Tt is this standard

102

MATHEMATTCAL SUBROUTTNE

PACKACES FOR - ADA

RORERT F. BOZEMAN

Morchouse Collesge
Atlanta, Ca. IN3LL

among others, that has permitted the development
of the LTNPACK routines. This paper demonstrates
an approach at recoding the LINPACK routines that
requires minimum re-orientation by current LINPACE
users,

METHODS OF CONVERSTOX

There are three approaches to the recoding of
the LINPACK routines which scem obvious and strai-
ght forward. The first apnroach is to merelv insert
the appropriate codes for the varicus BLAS routines
in the various nlaces where the subroutine calls
are made. This would reduce the work required in
performing the conversion. The effect of this in-
sertion on execution time should he minimal since
no extra code is being executed. Tn fact, the
overhead of the subroutine call is saved. However,
it would significantlv increase the space require-
ments for the program code. Tt would also destrov
the modularitv and the readibilitv of the routines.

The second approach is to nrocess the matrices
and vectors prior to the BLAS subroutine call and
postprocess them after the BLAS subroutine call.
The preprocessor would remove the appropriate por-
tion of the column of the matrix or the appropriate
portion of the vector. This approach is placed
back in its place in the matrix or vector, This
approach maintains the readibilitv and modularitv
of the program, The increase in space reauire-
ments is minimal in that onlv four short routines
are needed in addition to the usual ones. The
increase in time requirements is also minimal since
the only thing these routines do is transfer seve-
ral data items back and forth.

The third awproach is to define the matrix to
be an arrav of vectors. After the matrix to be
used is properlv defined the appropriate vector is
sent to the BLAS subroutine. Tn order to use this
technique the vectors to he transferred must be
the columns of the matrix. This mav require a rou-
tine to compute the transnose of the matrix before
proceeding. Therefore, the increase in space re-
quirements and in execution time should be minimal.
The Ada concent of slices mav prove uscful in this
approach.

IHE ITMPLEMENTATTON
The tirst alternative was dismissed as being Timitations of ADAED, especially its execution

the Teast attractive alternative. The second al- speed, anv real testing must await a compiler.

ternat ive aopeared to be the easiest to implement Nevertheless, it is clear that the routines can be

auicklv, and so was considered first. The third fairly easily recoded in Ada. The costs incurred

alternarive is nresently being pursued. in this recoding cannot be determined at this time.
Other approaches mav also be available besides the

n order to implement the second alternatives, ones indicated above. The third alterrmative mav

PINPACK and BLAS routines for a general svstem were bhe the best of the three. There are indeed un-

coded in Ada. The changes made in the programs answered questions, but we must conclude that it is

were of two tvpes. The 7Tirst tvpe of changes sim- feasible to salvage at least a portion of a "quar-

plv involved the use of structured programming ter centurv accumulation of logic and code.”

techningue making use of control structures not

available in FORTRAN. The second tvpe of change BTBLTOGRAPHY

involved writing four new routines call CONVRTM,

RECONVRTM, CONVRTV, and RECONVRTV., The first two 1. Dongarra, J.J., IJEEASKNBEQKLSJEUJU” Siam Press

routines work on matrices. CONVRTM takes a given Philadelphia, PA., 1979,

vortion of a column from a matrix and stores it in

a1 vector. RECONVRTM takes a portion of a column 2. Morris, A.H., Jr., "Can Ada Replace FORTRAN for

“rom a vector and replaces it in a matrix. The N'merical Computation?” ACM, Sigplan Notices,

other two routines do similar things for a vector. Vol. 16, number 12, (Dec. 1981).

The routines dre used in conjunction with the BLAS
routines as follows:

the FORTRAN statement CALL SAXPY (N-K,T,A(K+1,K),
1,B(K+1), 1)
is replaced by the Ada sequence ¢

CONVRTM(N-K,K+1,K,A,X, 1)
CONVRTY (N-K ,K+1,B,Y)
RICONVRTMON-K,K+1,K AN, 1)
RECONVRTV(N=K,K+1,B,Y)

The structure of the Ada package that imple-
mented the LINPACK routines is listed below. The
package bodics were coded under ADAED, version
16,3, Beceaunse of the nature of ADAFD, extensive
testing is not possible. A simple svstem of five
equations in five unknowns took 30 minutes of CPU
time to compile and execute.

PACEACE LINPACK TS

FUNCTTON TSAMAX(N: INDEX;X:VECTOR) RETURN TNDEX;

FUNCTTON SASIMIN:TND :VECTOR) RETURN RFAL;

FUNCTTON SDOT(N:INDENSX,Y:VECTOR) RETURN REAL;

PROCENIRY SANDPY (N:IND S:REAL;X:IN OUT VECTOR);

PROCEDIRE SSCAL(N: INDEX(S:REALIN: TN OUT VECTOR):

PROCEDURE CONVRTMIN, K, L INDEX; AtMATRTYX;V:OUT VECTOR
INC:TNDEX) 3

PROCEDURE RECONVRTM(N,K,L: INDEX;A:QUT MATRIX;V:
VECTOR; INC:INDEX) ;

PROCEDURE CONVRTV (N, K: TNDEX; B:VECTOR; V:OUT VECTOR) ;

PROCEDI!RE. RECONVRTV (N, K: INDEX; B:OUT VECTOR:;V:VECTOR)

PROCI.DURFE SCEST.(A:TN OUT MATRIX;LDA,N:TNDEX; TPVT:
TN OUT INTVEC:B:IN OUT VECTOR;JOB:TNDEX)

PROCEDURESCEFA(A: TN OUT MATRTX;IDA,N:TINDEX;TPVT:
IN OUT INTVEC;TINFO:O0UT INDEX):

FEND LINPACK;

CONCLUSTONS

While it mav not be possible to retain all of
the characteristics of the LTINPACK routines in a
conversion to Ada, it has been demonstrated thar
such a conversion is possible. Because of the

103

AD-P003 429

John

ADA TASKING IN NUMERICAL ANALYSIS

Buoni*

Mathematical and Computer Sciences

Youngstown State University

Youngstown,

Abstract

~“Recentlv the interests in the use of iter-
ative methods for the solution of Partial Differ-
ential Equations has been revived, Also, the
advent of multiprocessor computer svstems, will
lead manv to reformulate much of the existing
theory of numerical analvsis. It is felt that
Ada's portability and rich resources will plav
an important role in this rekindled interest.
The purpose of this paper is to discuss three
different implementations of a classical iter-
ative methods for the solution of a numerical
problem using several Ada tasks.,

[. Introduction.

In this paper we shall comment on some

methods for solving linear systems of the form

Au=b (1)
where A is a given real NxN matrix and b is a
given real column vector of order N.

We shall describe three different implement-
ations of an elementary iterative method for sol-
ving (1) which uses Ada tasking. Such methods
appear to be ideally suited fo: problems involv-
ing large sparse matrices.

In order to illustrate our discussion we
shall consider the following model problem: let
G(x,v) and g(x,y) be continuous functions defined
in the interior, I, and on the boundary, B of
the unit square 0<x77,0<y<l, We seck a function
u(x,y) continuous in I+§,_which is twice contin-
wously differentiable in 1 and which satisfies
Pcissen's equation,

2 2 2

ac 3
b a2t 2B Gy ()
Gx” Axdy dy

where a is a constant.
On the boundary, u{x,y) satisfles the
condition
ulx,v)=g(x,v). (3)
If €¢{x,v)=0 and a=0, then (2) reduces to
Laplace's equation
2 2
Tu, 2u g,)
Ax av©
We shall be concerned with the linear system
arising from the numerical solution of the model

|

Pls

* Dedicated to Bernard .1. Yozwiak on the occasion
nf his sixtvfifth birthday, Julv 5, 1984,

104

e

Ohin 44355

problem using o+ five-point ditterence cquation,
We superimpose a mesh ot horizontal and vertical
lines over the revien with o anitors spacing,

b= M1, tor some intever Mo We sock to determine
approximiate values of uix, vy at the mesh peints
and use the anprewimation.
el
U . .y
N TN I TN R T e TR T TN
e i
» (Y
<_“ , "‘
P LT R L T B T R TR N N I
v

Replacing the partial derivatives in (M) and

multiplving by -h we obtain the ditforence equa-
tion

Aulx,vi—u{x+h,v)-u(x-th,) -nix,v+h)-uix,v-h)

=-h G(x,v) (h)

du(x,v)-ul(x,v+h)-u(x,v-h)-u(x+h,v)-uix=h,v)
=-h €{x,v)

To be specific, if Gix,v)=0 and if h=1/13,
we have the situation shown in Figure 1. We seek
approximate values of ul=u(x],v1) tor 1 =1 ...4.

The values of u at the points labeled 5,6,...
are determined by (3). Thus we have uTR

cete. From (A) we obtain
dus-ug -uo-u -y

1 3T 70

Auz— u 0

Y137 T YT
4”3_UA'UQ'“7’”1=O (@A

bu,~u, _-u__~u_~-u_=0,
4 2 10 2

12 3
II. Vector Preduct.

Let us consider the following example for a
moment and recall the multiplication of a matrix
A(i,j) by a vector u(j) where i=l...n,j=1...m
and perform the matrix operation Axu. This ma-
trix operation is performed bv multiplying each
row of the matrix A bv the vector u. It is part
of the folklore in mathematics that these opera-
tions can be performed in parallel.

A partial Ada solution is the following code
presented here only for a proper historical ap-
proach.

Example 1
tvpe Matrix Row is arrav(inteper range)
of float;
type Pointer is access Matrix_Row
task type Vector Product is
entry Receive Value(P :out {loat);
enery Send Value (Vectorl,Vector2:

in Matrix Row);
end Vector Product;
Task body Vector_Product is

Product @ fleat;

Vector Pointerl @ Pointer;

Vector Pointer2 @ Pointer;
hegin

accept Send Value (Vectorl,Vector2:
in Matrix Row) do

Vector_Pointerl := new Matrix_Row'
(Vectorl);
Vector Pointer? :=new Matrix Row'

(Vectorl);

end Send Values;

Product:=0.0;

for i in Vectorl atll'range
loop

Product:=Product+{Vectorl (i WWector2{(i))

end loop;

accept Receive Value(P : out float) do
P:=Product;)

end Receive Value;

end Vector_product;

Although such an algorithm is interesting,
for large matrix problems many of the entries are
zero (sparse) and the non-zero entries are banded
along the diagonal. This motivated Karush
et all® to derive a procedure for matrix multi-
plication by diagonals suitable to certain paral-
1el processors. See also Jordan’ and for other
related work Kowalik et al19.

IT1. Synchronous Approach,

The prospect of using a multiprocessing
computer svstem to solve linear problems is
quite appealing and appears to date back to
Rosenfeld et alll0. 1f one considers Figure 1,
one obtains a grid point stencil of the follow-
ing forms:

Figure (a).
If we generate 2s many tasks as there are interior
grid points, each interior point and its associ-
ated stencil of components could be assigned one
Ada task i.e. i=1,...,4, as in Figure 1. The
boundarv nodes are not assigned any tasks, but
instead their values are stored in the tasks that
need them, see Figure 1. The data rendezvous
between tasks is performed using other coordi-
nator tasks. Before considering a draft of the
algorithm necessarvy to solve this problem, let us
consider the following definition:

Definition. Assume T is a task assigned to
an interior node. Anv other task is said to be
a logical neighbor of T if and only if it shares
data with task T.

Notice that in the above example, refer to
Figure 1, the task at point 1 and at point 2 are
logical neighbors but the task at points 1 and 4
are not logical neighbars. An alporithm may now
be given

Algorithm. For k=1...iteration-limit

1.) Solve for u(T,k+i).
2.) Send u(l,k+1) to its logical neighbors.
3.) If there is no significant difference

between the present and past iterates
raise this node's convergence flag
ice. | [u(T,k+1)-u(T,k)! {<e for some
e>0.

4,) If all the tasks have raised their con-
vergeace flags, then it is finished else
continue.

5.) Accept u(N,k+1) from task T's logical
neighbors N.

The equations for the updates at the interior
nodes were given in (7). Notice how the tasks for
neighboring nodes located at 1 and 4 must send
their updated values to that task associated with
the node 3 etc...

The Ada code for such a system is for the
most part straightforward with the more chal-
lenging portion being the design of the commun-
ication paths between the various tasks and *ie
protection of the convergence flag. Figure 2 illus-
trate the communication channels used. Both of
these ideas ca:. trace their origins to Hibbard
et allb,

It is worth noting that it is necessary
for the coordinator to accumulate all the neces-
sary updated values from all neighboring tasks
before they are sent to the proper interior
node task which the coordinator is coordinating.
Furthermore, the convergence flag is maintained
in a protected task and it's code may appear as
follows:

Example 2.

task_type Protected Convergence-Counter is
entry Initialize Counter(Z : in integer);
entry Increment Counter(Z: in integer:=1);
entry Decrement_Counter(Z: in integer:=1);
end Protected Convergence Counter;
task body Protected Convergence Counter is
Convergence_ Counter: integer;
begin
accept Initialize Counter(Z: 1in integer)
do
Convergence_Counter
end;
loop
select
accept Increment Counter(Z: in
integer:=1) do
Convergence_Counter:=Convergence-
Counter + 7Z;
end;
or
accept Decrement Counter(Z: in
integer:=1) do
Convergence_Counter:=Convergence_
Counter - 7;

end;
or
accept Read Counter(Z; out integer:
=1) do
Z:=Convergence_ Counter;
end;
or

terminate;
end select;

105

coted vonvereonee Countaorg

fnitialice connter Is ovqual to the

er ot revions boiny waeds Inoonr model, ther
four resions,

ohvicaosly, the delav in Vigure 2 ocaused b
th sodiesovens with o neiyhboring tasks bhecomes
more neticable as the stencil becomes more com-
pley the cITiptic partial difter-
Gudat ian ot the torm () with a4 beine
Nenscere vichds o stencil of the form:

Figure (b).
whoere cach interior node has eight neighbors.
Henee, the rendezvous process hecomes more in-
volved and perhaps more time consuming depend-
iny on the cost of a rendezvous in Ada, t.e.,
there are cight logical ncighbors with which a
task coordinater must have rendezvoused prior to
redesvousing with the task for which it is
coordinating,

For more spacious problems, inner square
repions are used rather than nodes, The geo-
Tetric picture whivh would appedar as inFPigure 3
where the interior dots illustrate interior
nodes of the interior regions. Im our previous
example vach interior node is a region.

V. Asvnchronous Approach.

With the understanding that the above so-
lution was complicated by the extensive up-
dating of the boundaries of ghe region, a seccond
approach was taken by Baudet©.

Motivated hv previous werk on chaotic re-
]uxltiunl‘;, he developed an asynchronous
approach to the selution of (2). Briefiy, the
idea is to perform various computations in
parallel and to utilize shared memory in order to
aveid the manv *ask rendezvous. The bencfit of
such an approach is the avoidance of the over-
head used by tasks when a rendezvous is per-
formed. The cost is that one task may run sig-
nificantly faster than the other resulting in an
unususal number of extra computations.

With this in mind let us consider Baudet's
dlution of the LaPlace equation as modificd bv
Hibbard et all®. In this approach, access is
available to all the variables of the matrix
(sharced) and updates are done at will. An algo-
rithm for this approach is the following:

Algorithm. For k=]...iteration-limit do

1.) Solve for u(T,k+1),

2.3 If there is no significant difference
between the present and past iterate
raisc the convergence flag for that
regsion.,

.0 I8 all the region's convergence flaps
are raiscd then it is finished else
continue.

Sinee the arrav u(i,j) are shared variabhles
there is ro nced to communicate the updates be-

106

twern tasks. However, the tasks must communicate
with o ventral task where the protected-conver—
vence-counter resides. This fosters the need for
a ceoordinator task for cach task. Figure 4 exn-
plains this communication.

The communication with each of the coordi-
nators as depicted in Figure 4 can get more in-
volved as the stencil is more involved as in
Figure (b). Note that the coordinator task is not
required to rendezvous with the other region tasks
as in Figure 2, Since all the region tasks access
the shared discretized values u(i,j) without anv
additional protocol, this mav lead to some unfore-
seen difficulties. The effects of simultancous
access to a shared variable are discussed in
section 9,11 of the Ada languave reference manual®
where strong words of warning are given to those
who violate the assumptions given therein. Spec—
ifically, some shared variables while being read
by one task mav be read incompletely due to the
fact that it is also being written by another
task. Hence, the read may receive a value that
is neither the previous value of the variable nor
the new vatue. Obviously, for the solution to be
reasonable requires that the operation of reading
and writing the shared variable be indivisible
with respect to cach other. There are other dif-
ficulties with this shared variable approach.

See Hibbard ot allb,

Ve Multi-Coloring.

Consider the model problem (4), partitioned
dAs in Figure 1, the grid points by the Red/Black
schemes as shown in Figure 5. The Red points are
numbered from left to right, hottom to top fol-
lowed by the Black grid peints in the same fash-
fon. As in Youngl? [p.2711, the difference cqua-
tions mav be written in the partitioned matrix

form
n C Ur hr
CT 8] u = h (%)
b b
h

where is the diagonal matrix and v, and u

b
denote the vectors of unknowns associated with the
red and black grid point respectively. The iter-
ation scheme can be casily written as
Dub = —CTur+ ‘_\,’
' (9)

D”r = —Luh + hr

and cach part of (9) can be cifectively implement-
c¢d bv Ada task. Again, the coordinator approach
is adopted with a communication pattern as in
Figurce A where the usual centrally located pro-
tective counter is utilized.
An alporitim where € s a color and N is an
adjoining color is
Algorithm 3. ¥For k=1,2...iteration-limit do
1.) Solve for u(k+1,0).
2.) Send u(k+1,0) to a logical neighbor's
coordinator,
3.} Receive u(k+1,N) from the task's own
coordinator.,
40) 1t there is no significant difference
between u(k+1,0) and u(k,C) raise the
converyence tlag.

5.) 011 all tasks have
enee flags, then it is Tfinished else
continue.

fhe stencil of figure (b) mav also be color-
vd vith a red/black coloring while more compli-
cated stencils may require more complicated color-
ing patterns.

Of course, we have just touched the surface
of the coloring approach for more complicated
stencils one derives more complicated coloring.
The muti-coloring approach has been puursued by
I..Adams!. in what seems to be the start of a huge
project. In that thesis, various iteration meth-
ods, e.y. SOR and SSOR among others are consid-
vred. The Numerical experimentation was done
on the Finite-FElement Machine.

raised their converg-

Vi, Conclusion.

The above methods are intended for use with
an implementation of Ada on a multiprocessor
svstem, that will have some number P of preess-
ors. Our X Ada tasks (2r+1 where r is the num-
ber of regions/colors) will be scheduled onto
these processors by the underlving Ada svstem.
Suppose that P ois less than N, or cven that P
is vqual to 1. The above methods can be execut-
od correctly ggregardless of the number of pro-
cessors that are devoted to a program and even
executed on a single processor. Furthermore, if
this be the case then the results can be inter-
preted in such a wav as to guarantee the results
when the code is moved to another svstem,

VILI. References.

(1) Adams, L.M. (1982). Ttenative Avge
w(thms For Latge Spatwse Linear Sustems o1 Parat-
ted Compuitets. NOALS.A. Langlev Research
Center, Hampton, Virginia,

(2) Baudet, G. (1978). Aswachroncus Tten-
ative Metheds fet Mudtiprecessens. Journal Assoc-
iation of Computing Machinery, 25, pp. 226-234.

(3) Chazan, D., and Miranker, W. (1960).
Chactic Retaxaticn. Linear Algebra and Appl.

2. pp. 117-128.

(4) Department of Defense (1983). “Ada
Programming Language', Ada Joint Program Office,
Washington D.(.

(3) Donnellv, J.D.
Redaxat(os.
128,

(1971). Pewcedic Chaetic
Lincar Alpebra and Appl. 4, pp.il7-

() Hibbard, P., Hisgen. AL,
Shaw, M., Sherman, M. (19813).
Stvle', Springer-Verlag.

(7) Jordan, T.L. (1982). A Dudde te Panac-
ted Computation and seme Crae-1 Expesderces.
Parallel Computation, G. Rodrigue, Fditor, Aca-
demic Press.

(8) Karush, J.1., Madsen, N.K. and
Ridrigue, G.H. (1973) Matadx “Mudtpedcatoon bu
Deaaenat s on Veeten 'Paradcfetr Precessexs. Rep.
CIn 16899, lLawrence Livermortre National Lan-
oratory, lLivermore, California,

(9) Kowalik, J.S., Lord, R.E., and Kumar,
S.P. (1983). Desdan and Petfeamaice of Adae
w(thms fen MIMD Paqad el Computers. (preprint).

(10) Rosenfeld, J.1.0 and Driscoll, G.C.
(1969), Sctution of the Davdchtet Probtem

Rosenborg, .,
"Studies in Ada

ena Simaated Pasaliet
Sustem,
Publishing Co.
11 Varga, R.
Analysis."”
(12) Young, D. (1971).
of Large Linear Svstems.”

Paceess g

(1962).

York.

v

25

i

1

8 | 9 10 11

7 3 4 12

61 1 2 13

T

1

5 L » X
16 15 14

Figure 1

Region Task

\ '

—

Convergence

\Protccted
L Task |

Figure

A= ™
o e R

- . '
P

where the l I indicates an enclosed region

Figure 3

Coordinator Coordinator
Task 1 .
: Task

Information Processing 68, North Holland

“Matrix Iterative
Prentice-Hall. Englewood Cliffs, N,

J.

"Iterative Solution
Academic Press, New

107

108

Nepion Task Region Task

i

e]
Coordinator! 'Cnordinutuﬁ
Task ¢ Task
Protected
Convergence
Task
Figure 4
&
R B *® ey
*s *r ®3 *x
. [
*r *y R B
o
B °R b *:
Figure 5
 EEE—

Task Color ‘ Task Color
1
{

| e —

1

Coordinator Coordxnatnn
Color Color !
'
Protected
Convergence
Task
Figure 6

John J. Buoni

Department of Mathematical and Computer Sciences
Youngstown State Universitv
Youngstown, Ohio 44555

John J. Buoni is a Professor Of Mathematical and
Computer Sciences at Youngstown State University
where he is primarily enpgaped in the instruction
of Computer Science. After completing his doc-
torate at the University of Pittsburgh in 1970,
he joined Youngstown State Universitv. He spent
the "78-79 academic vear visiting Kent State
Universitv. Much of his research has been in
various aspects of Pure and Applied Mathematics.
He participated in the Armv Research Facultv
Program at Fort Monmouth, New Jersev where he
became involved with the Ada language.

Ada and Statistics

Arthur M.

Jones

Morehouse College

This demonstrates a method by which a small
college computer science department can intro-
duce Ada into the curriculum without the burden
of costly additions to its faculty. It is sug-
zested that such a department should enlist

the support of non-computer science departments
as convevors of Ada in the Problem domain.

The example cited here illustrates Ada as a
vehicle to describe a statistical problem in
data analvsis.

This is intended to address the challenge to the
computer science program of the small college
presented by the technological changes brought
forth by the Ada programming languages. Undoubt~
edly the introduction of Ada will spawn sweeping
changes in software technology, for otherwise

the Ada initiative will have been a massive fail-
ure. small colleges will be hard pressed to in-
stantly accommodate such program perturbations
without an increase in faculty size.

A cluse examination of the situation, however,
suggests that the outlook may not be as dismal

as it appears on the surface; to the contrary,
Ada mav indeed force us to develop a curriculum
which will hetter serve the interest of the stu-
dent and the nation at large. Traditionally the
computer science department at a small liberal
arts college has grappled with the dual mission:
1) to educate the student with sufficient breadth
and depth in the theoretical framevorx of computer
science o that he/she can cope with graduate
school; &) to provide practical experience in
ipplications sufficient to prepare the student
for jmmediate employment. Yet, in manv cases,
cach graduate tend to be strongly skewed toward

one of those two poles, despite the diligent
efforts of his department to promote some balunce
between them. By the time he graduates, the
student who prefers applications to theory is
usually a programmer delux, who hacks awav at his
stylized code in a dialect that only he can fully
comprehend. Now, if Ada can successfullv modify
such behavior among the practical softwarc de-
velopers, then surely it must be of some benefit
to the student before his poor habits are formed.

Tt is suggested here that, first and foremost, the
computer science major should he trained to be-
come a good problem-solver. He should be well-
informed that though his solution mav be cust in

a computer science context, his problem usually
has roots in mathematics, science, engincering,

or business. With this appreoach it not e¢nly will
encourage the computer science major to develop

a stronger appreciation for non-computer science
subject matter, but it may also pursuade the
computer science department to forge stronger ties
with other departments. The introduction of Ada
and software engineering techniques into th
undergraduate curriculum may provide the impetus
and the opportunity to implement this strategy.

It is suggested here that the computer science
department in the small college targets its
initial Ada training program to the mathematics,
business, and science faculty members. Emphasis
should be put on the design goals of Ada, with
some hands-on experience with Ada as a programming
language. The computer science department should
provide numerous examples from each area of pro-
blems to be specified in Ada. By so deing, the de-
partment, with the support of other faculty, can
immediately place Ada in the problem domain for
the student. The student would then bring to

the computer science course some knowledge of the
structure of Ada as well as a readiness to apply
Ada in the solution domain.

Statistics courses; which computer science majors
are generally required to take, are cited as an
example of fertile ground for this kind of appli-
cation. Ada may be used to describe the problem,
the data hase and the associated analytical
models. The instructor may do this without im-
pairing his freedom to specify a method of solu-
tion. He may specify that the problem be solved

109

manually, by 4 computer program written in OFR-
TRAN or some other suitable lanvuave, or hv o a
computerized statistical package. The point lere
is that the exposure to Ads in 4 aulti-discipline
problem-solving environment =ay produce a more
disciplined and resourceful ttware developer/
designer than the traditional vne-dimensional
prospective provided by the computer scivnce
department alone.

The following is an example ot problem specitica-
tion through Ada.

Program Unit specification

With DATA ENTRY; with DATA RANKS; with SUM oF
SOUARES; PACKAGE ANALYSIS, OF VARIANCE usc
DATA ENTRY S
Problem: statistical data analysis
diata svurce: tree population un a south cen-
tral feorgia plantation the ex-
periment span a 2l-year period
ohjeetive: Compare seedlots relative to
survivial and zrowth character-
istics
model: Rundomized Block bDesign

110

Type PLANTATION is

record

Plot NUMBER: INTEGER range 1..9999 ;

TREE : INTEGER range 1..99; tree no.
within plot

SEED _LOT INTEGER range 1..9999; sced
source

REPLICATE INTECER;

NPLOT : INTEGER; no. of seedlings
plated in plot

HETCUT 3 : REAL;. height in ft. at age 3
vears

HETGHT 5 : REALG; height in ft. at age 5
vears

HEITGHT 10 ¢ RFEAL; heivht in te. at age 10
Vedrs

HETGHT 21 : REAL;
21 years
DIAM 10 : REAL;S Chreast-high diameter in
in. at age 10 vears
DIAM 21 T REALS hreast-hiigh diameter in

cmoat o ape 21 ovears

height in meters at ape

end record;
PLOT NUMBIR §s cxperimental unit
suggested method: Analysis of variance
(assume normality)
suppested alterative: Friedman ANOVA by ranks
{(Conservat jve)
tupe fixed is DELTA 0.01 ..999.99

ANUVA L TEST STATISTIC: FIXED
PRIFOM TUST STATISTIC: FIXED

end ANALTSTSE OF VARTANCE;

AD-P003 430

Summary

~ Department of Defense requirements to use the higher order
language Ada* will create challenges to developers of mili-
tary software that encompass these major concerns: t1) de-
veloping a core of Ada sofiware personnel, (2) achieving
productivity and software gains that have been targeted as
Ada life-¢+ cle objectives, and 13) transitioning to a language
that embodies a capability to express software solutions elo-
quently, clearly, reliably and efficiently. Ada is more than a
programming language. it is the basis for a modern perspec-
tive of software design and engineering. The IEEE working
group on Ada as a PDL has been addressing the issues in-
volved with the use of Ada as a design mechanism for nearly
two yvears. This working group has recently generated a
draft guideline that addresses the key issues.

The extent of industry’s involvement with Ada PDLs and the
status and final form of the IEEE product will substantially
impact both the a.ceptance of the Ada language and the
efficiency and correctness of its use.~

Introduction — Program Design Languages and Ada

During the past several vears. industry has seen an explo-
sion in the cost of generating and maintaining software, cou-
pled with a decline in the quality and reliability of the soft-
ware product. A need for a radically different approach to the
development of software is readily apparent.

One of the first tools for documenting software—the flow-
chart— was developed from the belief that a program should
be documented after it is written. Today, the view is that
program design and documentation, at the very least, must
precede coding.

A current tool for software design and documentation is the
program design language (PDL). PDLs are based on a com-
mon theme of software engineering that complex,technical
developments require an iterative approach. Other noted
reasons for the use of PDLs include:

1. productivity is increased. since the PDL can be used asa
design documentation that can be used by ancillary
tools to check for completeness and consistency

*Ada 15 a registered trademark of the U S Government Ada Joint Pro-
gram Office (AJPO)

ADA AS A PROGRAM DESIGN LANGUAGE — HAVE THE MAJOR ISSUES BEEN
ADDRESSED AND ANSWERED?

hobert M. Blasewitz
RCA Government Systems Division
Missile and Surface Radar
Moorestown, New Jersey

2. communication complexity is reduced since the PDL fa-
cilitates communication at the proper level and in the
required detail throughout its use

3. a single notation can be utilized that expresses design
throughout all phases of the software life cvcle

4. software quality gains are facilitated by the early detec-
tion and correction of errors in the design process.

Although most PDLs consist of a mixture of language-ori-
ented control key words and English-like statements to con-
cretely describe an abstract design and concurrently support
the above goals, other support objectives can also be noted:

1. focus attention on appropriate levels of design detail
without becoming overwhelmed with minor issues

2. provide a process that is amenable to the creation of
well-structured programs

3. replace flowcharts and other difficult software tools
with an efficient approach to software production

4. provide a natural transition from high levels of logic
abstraction into detailed code

5. facilitate program logic documentation and mainte-
nance.

Although not all PDLs accommodate support by tools, some
provide listings indented according to the logic and program
structures, cross-reference listings for names and subpro-
grams, and detection of structure delimiters. In the past.
many different classes of design aids have been referred to as
PDLs. These include graphic approaches such as HIPO and
structured flow charts; requirements oriented tools such as
the Software Specification Language and the Problem State-
ment Language; mathematical representations of design
such as Higher Order Software Specification and the Pand V
notations; and programming language-oriented tools such as
the Caine, Farber and Gordon PDL. the IBM PDL, and the
Program Design and Documentation Language. Most of
these approaches can be eliminated from consideration as
true PDLs, except for the classes involving graphic represen-
tation and programming language-oriented methods.

Both of these methods place primary emphasis on describing
software algorithms or data. Programming language-ori-
ented PDLs are a special class in themselves, in that thev

are easily adapted to a computer-based development scheme.
PDL descriptions can be easily entered and refined with a
simple text editor. In fact, if the PDL is based on the imple-
mentations programming language, the source code can be
created directly from the PDL description using the text edi-
tor.

The work that has been initiated by the IEEE working group
on Ada as a PDL has focused on resolving the issues associ-
ated with using Ada as a program design language. Ada is a
prime candidate for a PDL since it meets most. if not all, of
our requirements for a PDL as stated previously. It is also of
importance because of recent government direction to use
Ada-based PDLs in responding to RFPs. The IEEE product,
at the present time, specifies the features or characteristics
of a design language that is based on the syntax and seman-
tics of the Ada programming language (ANSI/MIL STD
1815A). A design language. as deiined by the working group,
1s a textual language for the precise and concise expression
of program design and one which provides a friendly vehicle
for communicating and expressing software designs. The de-
sign language is a tool to be used throughout the life cycle of
the product; it must be simple, human engineered. precise,
verifiable, and supportive of existing program methodologies
to the same extent that Ada supports these design concepts.

The current Ada as a PDL guide includes direction on the
following major issues involved with program design:

e life cycle support

® methodology of support for life cycle
® features

® properties

¢ support mechanisms

® language issues

¢ development support environment

® human factors issues

® management 1ssues

® PDL alternatives
The present product does not specify the following elements:

® a single Ada design language syntax

® the programming language or group of programming
languages in which the system described in the design
language text is to be implemented

® any system methodology to be adopted under the Ada
design language

® the aystem or method by which design language text is
represented. stored or processed

The selection of either a guideline, recommended practice, or
standard 18 accomplished by means of a consensus of techni-
cal optnion within the IEEE working group

112

This group is directing its efforts to avoid any damaging
effects on present corporate investments in PDL design.
However, the IEEE guideline will be directly influenced by
the lessons learned from these developers and will hopefully
bring together the wide scope of work in the PDL area. The
availability of a PDL tool in the Ada Programming Support
Environment will also foster development of DoD software
throughout the life-cycle of the software, if such an end prod-
uct can be realized in a timely fashion. (Some of the technical
problems associated with the IEEE effort will be detailed
throughout this report.)

Program Design Languages — Why a Common Ada PDL?

The major issues of modern software development stem from
the costs of software development, use and maintenance. The
growth of the software development process has shown a
chaotic pattern from the beginning. Even now, after 25
years, we find little conformity in the specifics of software
development. It is also clear that there are not enough
trained software professionals to meet today's demand. And
this situation is steadily growing worse. These issues have
become increasingly clear in recent years, virtually crying
out for an intelligent, planned approach to the probiems. The
United States Department of Defense, largely because of the
visibility of its needs in this area, took the lead in the mid-
1970s by sponsoring development of the Ada language.
which directly addressed the major “software crisis” issues.
The objectives of the Ada language are summarized here to
illustrate the common thread of interest between the ration-
ale for the Ada language and a common program design
language based on Ada.

DoD initiated the Ada program to save taxpaver money
through standardization. These savings will come from the
portability of reuse of operational software, more effective
use of support software (such as program design language).
improved programmer productivity, and reduced software
maintenance. There is little question that the entire soft-
ware industry is in need of a modern, efficient, and highly
portable system-implementation language and toolset. Tech-
nical arguments about which language is best really miss
the point, for only Ada and its accepted toolset will benefit
from DoDs investment in standards enforcement.

Traditionally, a Program Design Language (PDL) has been a
means for program description and recording. It is now be-
lieved that a PDL need not be limited to these two activities.
The scope of the PDL should be expanded to include correct-
ness assessment and possibly the reusability of designs.
Ada’s strong typing. packaging mechanism for interface def-
inition, and scope and visibility rules provide for increased
checkability of design. Therefore. the increased analysis pro-
vided by an analyzer of a rigorously defined PDL based on

Ada should result in both increased reliability and main-
tainability of delivered systems, while fostering a superb
means of communicating the design process. The incorpora-
tion of increased analysis of a PDL emphasizes the incre-
mental validation or at least verification of a design during

the design process. The need for such aid need not be re-
peated here: it is obvious that early detection of design errors
in the software life cveles is critical to schedule and cost
constraints.

Ada is new and relatively untested as a PDL, but neverthe-
less meets most of the requirements of a design language.
Although Ada programs are not particularly easy to write,
the complexity of the language exists largely to enforce good
programming practices.

The major progam design features supported by Ada include:
® packages

subprograms

generics

tasks and task types

exception handling
comments
pragmas

types

stubs

These features are extremely important to the support of the
design process, but it should be noted that it is the total
collection of these features and their interaction that pro-
vides for potential improvement in the existing design proc-
ess. In the interest of brevity, only a few of these support
mechanisms will be explained here.

The concept of the Ada package is thought to be the lan-
guage’s principal contribution to the programming science.
Packages permit a user to encapsulate a group of logically
related entities. Through the use of two package components
(the specification and body), packages directly support the
software principles of data abstraction, information hiding,
modularity, and localization. Programmers can apply these
principles in other languages. but Ada packages encourage
and enforce these principles. Since the specification and body
may be compiled separately. it becomes an easy matter to
create the specification early in the software design process
and then later to add the body as details about the low level
operations are specified. Possibly most important. Ada pack-
ages aid 1n the process of controlling the complexity of soft-
ware solutions by providing a mechanism with which to
physically partition related entities into a logical groupings.

Ada's strong typing mechanism allows a user to define a set
of values that objects may assume as well as the set of opera-
tions that may be performed on them.

The effects of strong tvping enable both domain and opera-
tion checking at compile time. rather than at execution time.
The goals of strong typing for a language apply directly to
the design language also. These goals include factoring of
properties. abstraction, and reliability. The interested
reader may read of these goals directly from the DoD’s Ra-
tionale For The Design of the GGreen Programming Lan-
guage.

The generic is a reusable structure with an abstract parame-
ter list in its definition. It can be viewed as an extension of
the familiar "macro” concept. Generics provide a general
facility for establishing translation time parameters for pro-
gram units, thereby promoting reusability. The concept of
reusability portability promoted by generics is valuable for
many reasons. including:

1. tested generic programs are stable and reuseable
2. they provide the concept of an Ada components industry

3. generic programs need never be redesigned or retested.

All of these features illustrate their value in a design process
— designs tend to become more stable as the use of tested
and stable components are used as the basis for design.

Other features of Ada that support design include exception
handling and tasking. Exception handling provides a com-
plete description of a software system under error conditions
as well as the system’s response to these error conditions. It
encourages a designer to define and to handle error condi-
tions. The Ada tasking model, including rendezvous, task
elaboration and activation, and allocators, provides a natu-
ral means by which real-time systems can be described.

Tasks can be viewed as independent, concurrent operations
that communicate with each other by passing messages for
real-time applications. Ada provides this strong facility for
multi-tasking or for logically parallel threads of execution
that can cooperate in a controlled manner.

Last, but not least, is the Ada commenting mechanism
which provides an indispensable means for adding annota-
tions to the language. Extensions provided by the comment
mechanism have the advantage that an Ada compiler can be
used to process the design language text; the design docu-
mentation can also be combined with its implementation
and conveniently updated during maintenance and design.
In summary, the use of English within an Ada PDL provides
representation of high-level design information that can be
later refined to a more detailed description. There is, how-
ever, a substantial amount of debate remaining on both the
substance of allowable comments and their syntax. This is-
sue will be addressed in the "Outstanding Issues” section of
the paper.

This short overview has illustrated how the same features
that make Ada so desirable as a language also enforce its
choice as a design language. Ada is very rigorous: therefore
using it in the early phases of the life cycle provides the
capability of enforcing analysis and design compliance at a
time when the most costly errors are propagated. As far as
possible, the system architecture should be described using
the constructs provided by Ada instead of the less cohesive
form provided by comments.

There is a real danger that highly detailed commentary may
actually lull the reader into the dreaded “tar pits" of having
code that does not match the intent of the programmer —
that 1s. a design that can be interpreted in more than one

113

way and 1s termed ambiguous or imprecise. Since Ada is
machine analvzable. the svntax and static semantics speci-
fied by the language rules can be checked and analyzed by
an Ada compiler alone. A stronger statement along these
lines will illustrate that an Ada PDL also provides early
prototyping. dynamic semantic checking and automatic sim-
ulation since it 1s an executable language.

The final solution to the basic problems of the software crisis
lies in applyving modern software methodologies. such as
PDL.s. that are supported by a higher-order language, such
as Ada. that encourages and enforces these principles. The
coupling of Ada with an Ada-based PDL offers the software
industry a significant inroad into the solution of the software
crists and its inherent problems.

Qutstanding Issues Involving Ada-Based PDLs

It can be safely said that the current PDL efforts using Ada
as a base language vary in the degree of rigor with which
they use Ada. They vary in form from Ada with comments
iwhere the semantics and non-procedural description are in-
cluded in the comments! to Ada intensive descriptions. Al-
though there is clearly no agreement, as vet. on the exact
form of a unique Ada-based PDL. there is general enthusi-
asm and agreement that key elements of the Ada language
directly support program design.

Advocates for using a subset of Ada as a PDL usually en-
dorse the inclusion of English descriptive phrases in the PDL
descriptions. The syntax and semantics for the English de-
scriptions can vary greatly. thereby loosening the rigor and
increasing the possibility of ambiguity. The exclusion of fea-
tures from the subsets is also a touchy affair, for possibly the
very features eliminated in the subset may be required for a
particular design.

Another area of concern is the use of annotations. Annota-
tions usually fall into two distinct categories: those that sup-
port a methodology. and those that support a design tool. The
Ada PDL. descriptions with annotations generally try to stay
within the bounds of Ada syntax so that the PDL descrip-
tions can be compiled. The annotations are generally forms
of Ada comments and have semantic restrictions relative to
other Ada language elements. PDLs described with annota-
tions for tools are also specified such that the annotations
are 1n Ada comments. Processing can then be accomplished
by another tool as well as by an Ada compiler.

To summarize the IEEE working group's consensus at the
present time, the major issues facing Ada as a PDL revolve
around the use of Ada extensions. The alternatives for aug-
menting Ada with constructs fall into two distinct classes:
those that are compatible with Ada compilers (comments
and pragmas!, and those that are not (pseudo-code and free
text). Extensions that use comments and/or pragmas have
the advantage that an Ada compiler can be used to process
the design language text. and that the design documentation
can be combined with its implementation. Although pseudo-
code or natural language may have its place. such a lan-
guage will require special tools and will present an added
burden to the overall problem of software management.

114

In a design language that 1s to be compatible with Ada com-
pilers. comments provide an indispensable mechanism for
adding new constructs to the language. Two forms of com-
ments are possible:

® structured - identified by special characters to highlight
the comment as belonging to the formal structure of the
PDL

® unstructured - used for natural language explanation of
statements made in Ada

Associated with these issues are the semantic rules indicat-
ing which constructs, if any. are allowed after the identifica-
tion of a commen' Presented in a different manner, should
the Ada PDL exactly correspond to Ada syvntax and seman-
tics at all levels of design or not? That is, can the comment
fields be followed by text which in itself is Ada?

Or should it be fully conformant to Ada syntax? This very
issue is being discussed and analyzed with possible resolu-
tion occurring at the meeting to be held in April. Proponents
of the rigorous approach to Ada extensions contend that any-
thing that i~ inserted in the comment field resembling Ada
can be accomplished in the spirit of Ada via another Ada
mechanism such as procedures or packages. Others contend
that enforcing such rigor increases the level of effort to de-
velop the design, modify the design and maintain the design.

The present product of the group is a draft guideline that has
evolved over a period of two vears. It can be driven to a
recommended practice or even a trial standard. depending
on the group consensus. It is presently intended to be used as
a document that provides useful information during the
process of evaluating a design language and its associated
tools. It is alsc useful to devetopers of design languages and
tools in evaluating issues such as features to be included.
tool support, life cycle support, and management concerns
and practice.

Conclusions

The Ada programming language provides a means for bridg-
ing the gap in software development methodology. Ada. by
means of introducing formalized constructs such as pack-
ages. generics, concurrent tasks. exceptions, and separate
program unit specifications. provides design representation.
The use of Ada as a PDL s not only a realizable goal. but one
that has been achieved by a number of organizations at this
time.

The IEEE Ada as ¢ PDL working group has been chartered
o generate, at the very least. a guideline document for Ada-
based PDLts1. The derivation of a guideline by the IEEE
working group will add to the momentum of the Ada effort
and should help ensure both the acceptance of the Ada lan-
guage and its efficient use as a learning mechanism.

Faye

AD-P003 431

Grau and Ldward R.

ALY LESTAN LANGUAGEL CONCLRNYS

Lorer

Harris Corporation
MeTbourne, Florida

T I L T TR

conoerns re-
o qard o

R v .. \ LRI R A
HEN e Lot e e e Ada DU to
. S T Cor e Ddda languaqge
and
oy oand Ada De-
cadee of the rela-
batacles to
“tandard.

3 annotation,
v, e [e Lo eI

. e e . et . ot
Lk T . PR I)

GOLy,
tication

introduction

a5t 0t Ada to specify design information
ris seen recognized by the United States Depart-
rent of Uefense (Unl) and by industry, especially
e trat work on government contracts. The DoD
considers Ada as the first step in solving the
R 0ftware crisis. A large part of the
tware orisis 15 the soerinag cost of main-
LWttware, standardizing on Adae as an imple-
ion Tanguase is an initial attempt to cut
dinterarce (osts. However, maintenance of
ar s time-consuming and difficult without
o design and requivesents documentation.
this voint, each contractor uses their own
retnodoiogy, specification lanjuages, and tools
‘or aererating the desiun and requirvements docu-
sertation,

Lome Tovernment the deti-
finished
this lack

trying to

contracts require
the developrent tools with the
ers do not. result of
tzation, software engineere
spintarn software must dedl with many dif-
frrent vrethodologies and cecification lanquages
seretimes without the accornanying tools to assist

trpe,

AS o

[EIeTPIRS

a0 a regintered tradesark of the hovern-
ento- Ada Toint Program O¥4ce,
carar 19 s tradomarck of Irtermietrics . inc,

On the other hand, most government (ontractors
have proprietary methodologies, specification lan-
guaqges, and tools which give them a competitive
edge in bidding on government contracts. The pri-
mary goal of most methodologies is to rminirize ceost
by improving productivity. Checks and balances are
Tevied on the government contractors and their
methodologies by the Military Standards ard Uata
Iter Descriptions (DID's) specified in the cor-
tracts. However, the standards and DID's aenerally
define the information content of the deliverables
but not the methods, formats including specifica-
tion languacges, or tools that are to be used to
develop the deliverables.

use of Ada as a
being included

Aithin this environment, the
Desiyn Languaue (DI) is currently
in some qovernrent contracts as a regquirenent.
However, there is no standard tor the use of Ada ac
e Design Lanquace. As a result, many people who
work for the qovernment, industry, and utiversities
have studied, rroposed =uidelines, and used Ada as
a DL. This paper sampiss from current research and
reports key concerns which have become apparent n
cfforts to accomplish any level of standardization
of the usane of Ada as a 3l

Historical Perspective

dithin ¢ few short yeare of the definition nf
a Program Design Language (PDL) by Caine and Gordor
in 1975 [1]), PDL usaue had become an accented, if
not preterred, software development practice. The
origin of an Ada-based PDL, or Ada Design Language
(D). dates back to 1981 [2]. Yet three years
Tater, Ada DL's are still shrouded in controversy
and debate.

Over this three year period, there have beer
many serious efforts addressing Ada OL's. By early
1982, at Tleast four DoD contractors (IBM, Harris,
TRW, and Norden) had defined and were applying an
Ada DI to software developments. In May 1982, the
LELE Working Group on Ada as o PDL was organized to
address using Ada as a PDL. Judainag the Ada (L
issue te be too volatile to attewrpt a standard, the
LED Working Group set sbout to develop a quideline
rather than a stondard. Concurrent with organiza-
tion of the iFLL effort, a PDL/Ada Subcormittee
friow the Design Subcommittee} of the ACM AdaTEC was
announced. This subcommittee has since sponsored
numerous presentations, panel discussions and
"Birds of a Feather” gatherinas on the subiect.

115

Also in May 1982, the Naval Avionics Center
awarded a study to SofTech tor an "Ada Programming
Design Languaye Survey” (NOO163-82-C-0030). The
resulting report in Qctober of that year recom-
mended that "the Navy not adopt a single Ada PDL
but rather promote the use of an Ada-based POL and
adopt yuidelines for development of PDL's." [3]
This effort also determined that there was "no
congensus on what an Ada PDL should consist of or
row it should be used." [3]

Two years of debate since the flurry of ac-
tivity in May 1982 has not resulted in an Ada DL
standard being generated, nor even approved.
Guidelines are not emerging from the IEEE and Navy
efforts {(though work is continuing). The growing
Tist of Ada 0L dialects has grown to include those
of at least sixteen corporations and half a dozen
universities. Dozens of papers have been pub-
lished on the subject, elaborating, but rarely
introducing new issues.

Most blame these disappointing results on a
lack of maturity, indicating that "much more ex-
perience in the use of Ada-based PDL's is
reeded. .. [4] This paper reflects the authors'
concern over the seemingly siow progress in the
standardization of Ada DL's and examines key lan-
suage issues, focusing on areas of community di-
vergence. Finally tne paper will examine the
underlying reasons for the divergence and test the
hypothesis that Ada DL's are still tmmature.

Definition of an Ada UL

A single, concise definition of the phrase
"Ada Design Language" has not been accepted by the
Ada community. Since Ada Design Language (DL) is
a merger of two languages used by software en-
gineers, Ada and POL, a definition of "Ada DL" can
be determined by examining the definitions of Ada
and PDL.

Ada is a computer language which has been
developed by the United States Department of De-
fense. [t is defined by the Ada Language Refer-
ence Manual [4]. Druffel has identified the
qualities of Ada which support good software en-
uineering practices: "Since Ada was designed by
software engineers who intended to use the lan-
jquage, 1t 1s not surprising to find a number of
Ada features which support modern software engi-
neering practices. Specifically, Ada provides for
structured programming, strong data typing, sepa-
rate compilation, information hiding, data ab-
straction, encapsulation, separation of specifica-
tion from implementaticn, separation of logical
and physical concerns, and readability. Not sur-
prisingly, software engineers are discovering that
Ada provides for natural expression of design.”

[s]

PDL as defined by Laine and Gordon is a
"'pidgin’ language in that it uses the vocabulary
of one langucge (e.g., English) and the overall
syntax of another (i.e., a structured programming
language)." [6] Pressman in his book on software
engineering adds to this definition the following
statement: "The difference between POL and a real

116

high-tevel programming language lies in the use of
narrative text {e.q., English) embedded directly
within POL statements.” [7]

One can therefore conclude that the definition
of Ada DL should be a lanquage that combines the
vocabulary of English and the overall syntax of Ade
to provide a means for software engineers to com-
municate their design ideas.

Herein lies the problem. The term "Ada DL"
has been interpreted by many individuals and com-
panies to produce a widely varying set of Ada DL's
which range from very tnglish-like to exactly Ada.
Many of the Ada DL's have been used for the devel-
opment of deliverable code and have proven their
effectiveness. Several companies have developed or
purchased tools to support the usage of their Ada
OL.

This article summarizes the different inter-
pretations of the term "Ada DL" relative to several
key issues: life cycle applicability of an Ada DL,
information expressed by an Ada UL, relationship of
an Ada DL to the Ada language, extension of the Ada
langua: . through structured commentary and annota-
tion, anu relationship between methodology and Aca
DL.

Life Cycle Applicability of an Ada DL

The DoD has made a major investment in the
development of the Ada language and therefore
would Tike to encouraqge the application of Ada
throughout the development 1ife cycle rather than
Timiting its applicability to the implementation
phase. The dejree of Ada's applicability tn system
requirements, system design, preliminary software
design, detailed software design, and hardware de-
sign is a controversial issue. The application of
Ada early in the development of a system which will
not be implemented in Ada has also been contro-
versial.

Virtually everyone agrees that an Ada DL
should be used for detailed design of software.
Some feel that an Ada DL should be used strictly
for detailed design: "...designs should be ex-
pressed in Ada when they have reached a stage where
they will require no more restructuring, out only
refinements. For the structured analysis and de-
sign methodology, this stage is achieved after
structure charts have been developed, but not
before." [8)

Some authors have felt that an Ada DL is also
applicable to preliminary design: a DL may be used
during early design to "relate the emerging archi-
tecture to the mission and performance require-
ments" which "may require dynamic as well as
ctatic checking to compare design to performance"
which would result in "automated traceability to
mission requirements and system parameters.” |49]

ANNA, a language for ANNotating Ada programs,
extends Ada to allow the tormal specification ot
the intended behavior of Ada programs at all
stages ot program development. ANNA can be used
“not only for formal) veritication but also tor

.

specification of program parts during program de-
sign and development....Such specification may
aliow the simulation of interfaces at the develop-
ment stage and provide the basis for a proof of
correct use of a subprogram or package independent
of and prior to implementation, as well as a proof
of correct implementation.” [10]

Ada-based languages were used by General
Dynamics on a case study funded by the Army. Ada
was used for the specification of requirements,
design, and implementation of the system. In
particular, the Ada Requirements Methodology (ARM)
developed as part of the case study combined the
use of data fiow diagrams, a data dictionary, a
logical data structure model, and an Ada-based
structured fLnglish. They concluded that ARM could
be "used to state and graphically illustrate
system reguirements {(both tunctional and non-
tunctional)....From experience gained in this
sroject, tne researchers felt that ARM could re-
place tne old rilitary A-specification document,
whoch proved unsuitable in adequately documenting
the message switch modified by this project.” [11]

The use ot Ade as a system design language
varticularly tor embedded systems has been de-
seribed by Wheeler. He concluded that the use of
4da as 2 syster design language encourages de-
s1gners to use current practices to develop better
structures for their systems, and its subsequent
use to implement the systems preserves those
structures in the product. {12;

An Ada-based language has even been used to
design hardware. A Universal Asynchronous
Receiver Transmitter (UART) designed by SofTech
using an Ada-based language resulted in the follow-
ing conclusions: "Ada can describe hardware, Ada
can do hardware design.,” and "Ada can specify
interfaces without knowing the hardware software
boundary.” [13]

ks oa result of these experiences in applying
an Ada-besed language to various phases of the
life Lycle, the [EEt Working Group on Ada as a POL
nas concluded that the primary phases of the devel-
ovrent T1ife cycle which an Ada DL 1s intended to
curtiort are system design, software requirements,
and software design. The use of Ada DL's for
other purposes such as specification of cystem and
nardware requirements is not ruled out. [14]

virtually everyone agrees that an Ada DL
should be used when the implementation language is
Ada. The use of an Ada DL with other implementa-
tions languages has been supported by Hart:
‘Transliterations of Ada-based design {rather than
a4 design expressed in syntactically correct Ada)
into currently available languages will be easier
because the design contains less syntactic con-
struction which must be changed into the differing
syntex of another language; a tailored Ada PDL
wnuld even incorporate some syntactic construc-
tions of another implementation lanquage.” [15]

Problems which may arise when Ada is not the
irplerentation language have been described by

31
|

Alwtad: 'In many cases which may be expected to

arise in practice, a teature of Ada used in a de-
sign may not map at all cleanly into the 1mple-
mentation language. This will probably lead to
confusion or arbitrary choices during implementa-
tion, unless designers are prohibited from using
that feature of Ada; in that case, it is question-
able whether the PDL is still Ada." [16]

Implementation of an Ada-based DL in Jovial
has been researched by Bein. He recognized that
"certain Ada features do not translate ‘nicely’
into Jovial. [ither the use of these features
needs to be constrained, or the goal of close
correspondence between design and implementation
needs to be sacrificed to some extent." [17]

The IEEE Working Group on Ada as a PDL has
made the following recommendation: "While an Ada
OL must <upport the design of systems implemented
in Ada, it should not preclude developments not in
Ada. The Ada DL should support implementacions in
other languages provided that proper user instruc-
tions are available. A Coding Standards document
is recommended which describes in detail the recom-
mended implementation for the various DL statements
and constructs.” [14]

In summary, the degree of applicability of Ada
throughout all phases of the development 11fe cycle
is still being debated. VYet our research has shown
that Ada-besed specification languages including
Ada OL's have been demonstrated to be applicable in
most phases of the life cycle and with several
implementation languages.

Historically, PDL's have expressed only algo-
rithmic design information. Ada's influence a-1
advances in software engineering have led to a
broadening of the scope of information expressed in
a OL. The complexity and size of software systems
being destgned currently require expre:sing the de-
sign of parts of the system in comprehensible de-
sign units rather than in a monolithic design. De-
sign units stated in an Ada DL must contain two
types of information: connectivity with other de-
sign units and a description of the design unit.

The connectivity among design units describes
the interrelationships such as external data ref-
erences and external procedure calls. Explicit
expression of the coupling between design units
supports evaluation of the complexity of the de-
sign. The two types of connectivity which must be
expressed in design are horizontal connectivity
among units at the same level of design elaboration
and vertical connectivity between units at differ-
ent levels of design elaboration. [18]

Horizontal connectivity among units at the
same level of design elaboration summarizes ref-
erences to externally defined data, externally de-
fined process units (procedures, functions, and
tasks), and other external interfaces such as
interfaces with input/output devices and hardware
interrupts. Based on this information, the coup!-
ing of this design unit with the rest of the system
can be measured.

17

subset of @ programming language while still re-
taining the concepts needed for design (rather
than a programming) language." [1] In reality,
there is very little conceptual differences be-
tween the purist view and this, particularly if
one views coding as merely the final elaboration
of a design, "replacing abstractions with target
lanauaye statements." [1]

Whether by exclusion or convention, only cer-
tain Ada constructs are applicable to the early
stages of design. The problem arises on deter-
mining which ones. The Navy survey found "a
definite lack of consensus on the exclusion of
any language feature." [22] Because they found
that the "omitted teatures were small in number"
it was concluded that "there 15 little advantage
Jained, either in encouraging design level docu-
mentation or in reducing the complexity of a PDL
arocessor, by omitting these features." [2]

It one accepts that the subset issue is merely
one of application, the next major issue arises on
whether the Ada language alone 1s sufficient for
all levels of design.

"Deviations from full-syntax Ada for design
are mainiy founded on the expectation that ex-
cessive syntax restrictions will not be accepted
by the large veteran populations of software de-
signers. This will be particularly true when those
encumbrances (which support no role of software de-
sign) distract a designer's attention down to such
a zetty level of detail as tc remove his perspec-
tive from the needed global and abstraction planes.
Final design refinements and coding (which may be-
come synonymous using Ada) are proper times for
conversions of syntax simplifications into proper
Ada. and can be achieved by trained coders without
impacting basic, early-arrived-at design
decisions.” 115]

indeed most current Ada PUL's provide capa-
bitities to embed English narrative and mechanisms
for extending the Ada lanquage using annotations.
Lindley reports: "The inclusion of English narra-
tive is a key factor in the use of the PDL design
rather than code. [t is also important in pro-
viding the designer with the freedom to be cre-
ative. These advantages outweigh the fact that the
inclusion of English narrative in situations where
comments are not legal renders the PDL non-compil-
able." [22]

The primary issue regards the use of more
classic structured English to describe the function
ot a program unit's body in place of legal Ada syn-
tax. While ngt ritcoraus, this approach more
closely follows the original intent of PDL's to
describe a “level of design [which] can be under-
stood by people other than designers.” {6] "Anno-
tatijons aitfer from English narrative in being an
addition to legal Ada constructs rather than re-
placing them. Thus, they can be more formally de-
fired in both syntax and semantics. They are im-
uortant, as with tnglish narrative, in encouraging
desicge and in aiding the use of the PDL descoription
ay docurertation. Since annotations are frequently
implemented a5 specific forms of comments, they

118

normally do not prevent the POL from bein, ore-
cessible as an Ada compilers however, the compaler
will not be able to check the validity of the gnno-
tations.” [¢2]

Because the extensionsy and anngtations to Ade
represent a major point ot contention, g mwore
thorough discussion of structured commentary and
annotations is provided in a following section.

Because cf the potential automation advanta,e
1 using existing Ada language teols, tne compila-
tion and even execution of an Ada DL specificetio
seems attractive. Compilability of Ada DL is
currently the most commonly used contractual def-
inition of Ada DL's. Compilability is certainly
related to compatibility with Ada syntax and seman-
tics but the advantages and Jisadvantages of corm-
piling designs are still being discussed.

A requirement to be compilable can certainly
be met by Ada DL's which use exactly {(or a subset
of) legal Ada syntax. "This directly does not pre-
clude the use of Ada DL syntax which is not forwgl
Ada, but merely forces all such instances where the
DL departs from Ada to be coded as Ada comments.”
[14] Hence, a large number of those Ada OL's which
extend Ada with commentary and annotations are
indeed compilable.

“Execution of an Ada DL is indeed another
matter. This means that upon conclusion of the de-
sign specitication phase, a validated and verified
prototype proqgram already exists. [ndeed, the two
are largely one and the same." [20] White design
execution provides the ultimate in validating soft-
ware desiqns, opponents of executiorn of an Ada Do
cite the human factors problems involved in devel-
oping a rigorous executable design. “There is a
trade-off between ease of use and machine process-
ibility. In order to be machine processible, in-
formation must be expressed formally in a syntax
which may be unambiguously interpreted by the com-
puter. Yet as a syntax becomes more rigorous and
complete, the effort to learn and become proficient
in the syntax increases." [14]

The authors have previously cautioned: "It is
generally agreed that an intermediate design step
prior to coding promotes more accurate problem
analysis...would it not be just as foolhardy to
directly code Ada from scratch (as it was with
FORTRAN or PASCAL) without the benefit of this ir-
termediate step?” [18]

In summary., it appears that the major issues
regarding the relationship of an Ada DL to the Ada
language are clear. Subsets of Ada in an Ada Ol
should not be defined, thouuh conventions on usaJge
may not make full use of the languadge. Extensions
are also clearly needed. Compilation is recom-
mended, though the level of interpretation and
effectiveness of compiler output laraely depends o
other issues. More work 15 needed to assess Ada D
execution.

PREN L I U R T T AT T | [REER R
T T P S LT B SN T SO0 B S LN VRES LA IR
ETRIEE SN BT IS S IS TR I Det Qe

ol e e s e e ety ey decor oneed nta Tower-
S oo e e tatied antts. T decorpositior
SOl et elsenT A hieraroni el carert o ny
" CoLorrel by ity ahert e g nlarer gee
coaraete Cegr e pdrer !t ooy nested withnr o the
cventLwl e grent cnald o cennectivity nuet

Cooe o eairesced. o bottor-ul design, dictailed
T Lr Gt are syrtnes 1 2ed together ta torn
Cerceroand Tarder units until o the comp lete system
o vara bty e chtld iy desigmed before the parent
Lttt carentoontld connectivity must still be
stated, I edtner case, the traceability of re-
atreronts to desian units iy used to validate the
e garerert gt Too ttian whicn i inherently npart
oty carert o cnald relationani;

Tree tynse ot antoreation needed to describe
the destin ot the unit can be cateqgorized as data,
alsaritars . oand camplementary intorcation. The
Jata encassulated inoand operated upon by the de-
Ln unit must o be defined by type and object dec-
caraticns. Thne gliorithms which detine the step-
hy-step onerations performed on the data must be
copressed, Methodolonies and standards require
rdditional corplementary information which must be
stated tor each destan unit, The comulementary
nformation may include performance requirements,
Tirgtations, assumptions, assertions, state-
racnine renresentations, testing requirements.,
and any other pertinent information.

“eview of currently available Ada DL's indi-
cates that tne sc¢ope of a traditional PDL has been
broadened by the addition of information content.
The information which must be expressed by an Ada
UL includes not only algorithmic design but also
data, compiementary information required by method-
ologies prus connectivity information. The broad-
ening of the scope of PDL's to the scope of current
Ada DL's has resulted in confusion about termin-
oloyy and applicability.

Relationship of Ada DL
to the Ada Language

The Ada community has clearly diverged in
generating a standard pidgin language merging Ada
with English. The issue centers on how Ada-1like
or how £nglish-1ike an Ada DL snhould be. There
are two major issues:

a. intersection of the Ada DL with
Ada syntax and semantics

b. ability to compile and even execute
an Ada DL specification

The alterndatives in each of these areas are dis-
Lussed below.,

Ada Dyntdx and Lermantics

Aq depicted an Figure [, the intersection of
an Ada JL with the Ada Jandqua e may take many
fornma, The jmirioty who presor ibe that the syntax
and ecantios of an dda D koo dd be o evactly Ada

retlect 4 segment ot the population who feel the
Ada Tansudge already has sufficient capabilities
tor o elaborating desians in g reaningful, readable
“anner. The Ada Languayge Reference Manual in fact
states that "the svntax of the lanauajge avoids the
ase ot encoded forrs in favor of more tnglish-Tike
constructs™ [4] "The significant advantaae to this
approach s as follows: by adhering to ¢ prescrib-
ed set af conventiony, the program's design can be
subiected to veritication from its earliest stages,
and indeed, throughout its development.” [20)

Apa DL s ExACTLY Apa

Ana DU SussETs ADa

ADA PLus ExTensjoNs

ADA DL IS A SUPERSET oF Apa !

FIGURE 1
Ada OL and Ada Intersection Possibilities

Another group of authors feel that a subset of
the Ada Tanguage is appropriate as a DL. "Probably
the greatest advantage to a design language which
is a subset of a target language is that mainten-
ance of a design can easily (and probably must and
should) be part of maintaining the actual program.
Normal tools which support programming languages
are available for checking the syntax of the de-
sign, for modifying the design, etc.” [1] By using
(almost) pure Ada as our design language we can
enjoy many of the benefits provided by the Ada com-
piler and the Ada lLanquage System (ALS), as well as
integrating the DL program descriptions with other
software development tools....Standard compiler
options such as automatic indentation {('pretty
printing'). cross reference listing, and Ada syntax
checking are obvious benefits." [21]

it s questionable however whether every Ada
construct 1s needed during design. Sammet, Waugh
and Reiter report that in IBM's case “"there was a
clearcut decision to use Ada to obtain the dual
benefits of having 4 design Tanguage which wdas a

119

structured Commentary and Annotations

lhe IttE working Group on Ada as a PDL has
recognized that two types of comments are used to
extend Ada. "These are unstructured comments and
structured comments. Unstructured comments...can
be used to indicate any information required in
the design process without the need for a formal
structure. These comments cannot normally be pro-
cessed by a mechanical process. The structured
comment s a much more formal structure and is
ident1fied by having an 'escape character' imme-
diately following the Ada comment symbol '--'
e.g., '--3', '--0@', or '---'. Ihe escape character
has two functions. The first is to highlight this
comment as belonging to the formal structure of the
Ada DL and thus the information is easily obtain-
able by a reviewer or other people required to be
aware of DL information. The second function is
to indicate to DL tools that the comment is a
structured Ada OL comment and that the tool is re-
quired to act on this information." [14]

Across the realm of existing Ada DL's there
is a wide variety of structured commentary and
annotations defined. These serve to extend the
Ada language to better serve the design process in
the following areas:

a. deferred design features

b. keywords for structured English
descriptions

c. representation of complementary
design details

d. formal assertions and annotations
e. tool directives

The following subsections discuss the various
issues and approaches involved for the various
structured commentary mechanisms.

Deterred Design Details

Privitera suggests: "In design, and even
coding, there are often many decisions that one
would like to postpone. Devices for expressing
deferred decisions are used when Ada would nor-
mally require us to express more than we actually
know. The opposite situation can also occur! We
may know more than Ada allows us to express, or at
least express conveniently. In these situations
we usually rely upon comments. However, there are
situations that recur with such regularity that
they should be handled by uniform methods.” [8]

Gabber proposes to handle deferred design
through the addition of a new lexical element
called "escape" to the Ada syntax. "The escape
lexical element consists of any free text enclosed
in curly brackets..[t can replace almost any Ada
syntactic entities, except program structure key-
words ('ik PRICTDURE, WHILE, IF, END, etc.),
progra uni1° names and parameter lists. As the de-

sign -, 'resses. the user refines the crude design
of corlier stages by replacing escapes by more de-
120

tailed constructs. At the end of the design pro-
cess, when all escapes are refined to Ada code, we
have the equivalent of full syntax Ada POL." [23]
Similar approaches to embed English phrases using
the "¢ ;" notation may be found in many of the
Ada DL's defined in the industry today.

Privitera identifies the need to defer design
decisions on types, assignments, processing and
addresses. He proposes the addition of "certain
'TBD' declarations to the package STANDARD (hence
making them globally visible}).” [8] Specifically,
these include TYPE TBD, VALUE TBD, PROCESSION TBD
AND ADDRESS TBD. This convention provides for such
decisions to be deferred while still being legal
Ada.

Keywords are defined to augment Ada with two
primary mechanisms: to allow the use of structured
English body descriptions and to label important
sections of text and Ada declarations. Of those
Ada DL's which prescribe the use of structured
English, appropriate Ada keywords are combined with
English narrative in the classical pidgin language.
These naturally include Ada block constructs such
as:

begin ... end;

if ... then ... end if;
while ... loop ... end loop;
for ... Toop ... end loop;
case ... end case;

Additionally, application-specific keywords
(e.g., SORT, DISPLAY, POLL, TRANSFORM) may be de-
fined in many strucutred English approaches. The
Harris Ada PDL [18] formalizes these keywords to be
action verbs of the form:

-- verb NOUN/OBJECT (optional modifiers);

Structured English is defined in an Ada DL
either as a commentary {(as with Harris' above) or
by extending the Ada syntax with additional BNF
definitions. Norden's NPDL/Ada defines "an
ENGLISH EXPRESSION which parallels Ada's EXPRESSION
and an ENGLISH STATEMENT which is a SIMPLE STATE-
MENT alternative." {2]

Both Intermetrics' Byron and Harris' Ada PDL
define keywords to label important sections of a
design specification. Byron's keywords, labeled
directives, are recognized by the presence of the
following:

--! (keyword): ({text)

The (text) part of a directive 1ncludes any text
appearing on the same line as the keyword, as well
as Byron text from subsequent lines." [24] The
content of the text is defined by the keyword used
to identify it. Twelve Byron directives are de-
fined including ALGORITHM, EFFECTS, ERRORS, INVARI-
ANTS, MODIFIES, NOTES, OVERVIEW, RAISES, REQUIRES
AND TUNING.

Because the Harris Ada POL defines all commen-
tary in a rigid structure, special delimiters are
not necessary to distinguish between forms of anno-
tation. Keywords are defined to "efficiently or-
ganize the specification information while being
Ada language compatible in both syntax and order-
ing." [18] Here, the keywords serve to organize
subsections of both commentary and Ada language
definition. Harris specification keywords include
labeling of PRUGRAM REFERENCES, DATA REFERENCES,
EXTERNAL INTERFACES, SOFTWARE UNIT, IDENTI-
FICATION, DATA TYPE and OBJECT DEFINITIONS, and
EXCEPTION DECLARATIONS. OQther keywords define sub-
sections to enhance the definition to serve as an
on-line Unit Development Folder, including PRO-
GRAMMING LANGUAGE, TIMING AND SIZING INFORMATION,
SPECIAL TEST REQUIREMENTS and COMPLIANCE.

In addition to satisfying a set of functional
requirements, a software design must satisfy
numerous other complementary requirements as the
design is elaborated or tracing design elements or
details back to the source requirements.

Privitera, for instance, stated that "require-
ments tracing is an important part of design vali-
dation, but Ada includes no mechanism for relating
system modules to the requirements they are meant
to satisfy. " [8] As a result, many Ada DL's in-
clude provisions to support the allocation and
traceability of requirements. The I[EEE Working
Group identified several areas of potential impact:

a. Performance which includes critical
timeliness, frequencies, capacities,
ut1lizations and limits.

b. fault Tolerance which includes
error detection, diagnosis, handling,
backup and recovery, reliability and
redundancy.

c. Security which includes multi-level
security constraints, set/use access
restriztions, breach detection and
hand!ing.

d. Distribtuion which includes geo-
graphical distribution of processing,
data storage and access.

e. Adaptation which defines the need to
provide flexibility for environment
operation or user adaptation.

f. Quality including those requirements
relating to usability, integrity,
efficiency, correctness, reliability,
maintainability, portability, test-
ability, flexibility.

formai Assertions and Annotations

Alstadt noted: "Ada does not include a
method of making assertions. When intelligently
interspersed with algorithmic statements, asser-
tions about the state of the computation or about

the state of the external world can clarify the
function carried out by a processing segment. Fur-
thermore, assertions can state the effect of a pro-
cessing segment not yet designed; this ability is
surely an aid to a modular design methodology.

This problem may be restated as the inability of
Ada to specify requirements at a low level." [16]

ANNA (ANNotated Ada) by Krieg-Bruckner and
Luckham, is such a “proposed extension tu Ada to
include facilities for formally specifying the be-
havior of Ada programs (or portions thereof) at all
stages of program development. Formal comments in
ANNA consist of virtual Ada text and annotations...
the inclusion of Ada text as formal comments--
called virtua)l Ada text--gives a powerful comment
facility without affecting the execution behavior
of the underlying Ada program." [10]

ANNA defines Ada extensions in the form of a
formal first order annotation language. The lan-
guage includes:

a. declarative annotations (for variables,
subtypes, subprograms, and packages)

b. statement annotations
Cc. exception annotations
d. visibility annotations
e. state and state transition annotations

Both virtual Ada text and annotations are entered
in the form of structured Ada commentary.

IBM's PDL/Ada uses a similar annotation for
state machine representation and for specifying the
relationship of state variables.

Tool Directives

Virtually all Ada DL's prescribe the use of
Ada DL support tools in addition to an Ada com-
piler. As a result, the need often arises to pro-
vide a mechanism to embed tool directives within
the Ada DL specification {similar to pragmas in
Ada). Candidate impacts to the Ada DL syntax to
support automation are:

a. Inclusion of start/end delimiters.
b. Special embedded tool directives.
c. Formatting directives inline.

d. Special format requirements on Ada
DL presentation.

For example, Byron defines a set of flags to
provide directions to the Byron analyzer. "Byron
constructs are distinguished by the prefix “--!",
To the Ada compiler, this is a comment; to the
Byron processor, it indicates something of inter-
est. Flags take the form of a single special
character immediately following the prefix. They
include "“--!>" and "--! <" for code extraction,
"--1-" and "--14+" to control output formatting.[24]

121

The Navy study found that "no set of annota-
tions was the same and rarely did two sets provide
the sarme tunction 1n a PDL description.” [2] The
reed tor extensions and annotations is clear, but
ng Lonvergence on a standard set of extensions
seems possible due to influence by the host
~ethedolouy

Design Languages have historically been
metnodalogy independent. Current research indi-
cates that this may not be the case for Ada DOl's.
various relationships between methodology and Ada
Ol "o have been expiored by different authors.

Privitera has clearly stated that Ada itself
15 not a methodology: "In our experience, Ada does
not satisfy the requirements of a methodology. It
certainty provides no insight on how problems are
to be analyzed and, while there is guidance of a
sort i1n the desire to use Ada's system structuring
teatures effectively, Ada alone says nothing about
now to strucutre a system hierarchically, only
that hierarchy can be expressed; it says nothing
about where we should look to find our system
rodules, only that, once tound, they may be con-
veniently written as program units; and it says
rothing about what parts ot a module belong in its
interface and what parts in its implementation,
only that, once identified, these parts can be
kept separate.” [8]

METHODMAN clearly states that a methodology
is independent of the implementation language:
‘indeed, many of the requirements for a software
development methodology are largely independent
cf the target programming language." [25]

What then is an Ada-based methodology? The
one characteristic that clearly identifies a
methodology as Ada-based is the use of an Ada-
tased specification lanquage for recording design
and/or requirements information. Because of the
tlose relationship between a methodology and its
associated specification languages, the method-
oloyy may have a notable impact upon the syntax
and semantics of the specification languages. The
dependency of a specification language (Ada DL in
particular) upon its associated methodology has
been recognized by several authors.

for example, IBM's PDL/ADA was designed to
support their state-machine based methodology as
shown by the following quote: "The prime techni-
cal focus of the work has been to replace an ex-
1sting design language and notation which supports
a specific design methodology with a design lan-
juage based on Ada without impacting the method-
O]qu,” [1J

Clarke et al proposed a nest-free design
methodology using the Ada package feature. They
summarized their recommendation in the following
statement: "We contend that a nest-free program
organization also improves the readability of Ada
programs and facilitates program development.
Using packages and context specification to ex-

122

press o program unit's relationships, both to other
program units and to data objects, results 1n a
program organization in which program units can be
arranged in any desired order.” [19] This
approach certainly impacts the specification of
horizontal connectivity of design units.

A1l of the previously discussed types of in-
formation which must be describable by an Ada DL
may be affected by the host methousiogy. Vertical
connectivity is dependent upon the methodology's
technique for partitioning the system into design
units and whether a top-down or bottom-up approach
is used. Horizontal connectivity information is
impacted by the methodology's choice between nest-
free and nested program structures. Data descrip-
tions and algorithmic descriptions may be impacted
by a recommended style (e.g., naming conventions
for data types) and by the means for deferring de-
sign information (e.g., the use of { } as discussed
earlier). The complementary information typically
contains very methodology-dependent information
such as [BM's state-machine representations. A
methodology which supports stepwise refinement may
require the DL to support the use of English
statements early in the design which are progres-
sively refined into syntactically correct Ada.

The Navy survey concluded: "Many of the dif-
ferences in the definitions of a POL came from each
individual's or each company's appraoch to program
design." As a result, the following impact on the
DL was recognized: "For a highly structured,
tightly integrated methodology, changes to the PDL
may well affect the entire process so that the de-
sign of the PDL is to a large extent a result of
decisions made about other parts of the software
design process." [2] Due to the increased scope of
Ada DL's, the DL is no longer independent of the
methodology. 1In fact, the DL may be strongly de-
pendent upon its host methodology.

Conclusions

There is clearly an industry divergence on the
Ada design language issue which is perhaps even
widening after three years of intense study and
debate. This paper has investigated major lan-
guage concerns in five areas; our conclusions are
as follows:

LIFE CYCLE APPLICABILITY: There have been suffi-
cient investigations to demonstrate the feasibility
of applying an Ada DL over the entire life cycle.
Widespread acceptance of this evidence is due to a
Tack of maturity in applying Ada DL's early in the
life cycle.

INFORMATION EXPRESSED IN AN ADA DL: The continued
confusion in this area is due to a fundamental
resistance to change. The rescoping and redefi-
nition of a DL has naturally occurred. There is no
technical basis for significant debate.

RELATIONSHIP TO ADA: Ada subset debate is strictly
one of application with no inherent language con-
cerns. The need for compilability has been clear-
1y demonstrated; differences are primarily motiva-

ted by a resistance to change. Most Ada UL
definitions which are not compilable could use
other proven mechanisms which would provide equiva-
lent extensions without precluding compilation.
Maturity of application is an issue regarding
execution of an Ada Di.

STRUCIURED COMMENTARY AND ANNUTATION: Extensions
of this form are clearly needed. The current
diversity in approaches is largely due to differing
methodologies. Clearly the detail to which much
structured commentary is developed indicates con-
siderable maturity -- not immaturity. A level of
convention could be standardized which would allow
methodology-specific extensions.

METHODOLOGY RELATIONSHIP: A large amount of resis-
tance to an Ada DL standard is due to the method-
ology dependencies in the various approaches. An
Ada DL standard does have the potential to impact
one's way of doing business. Yet other successful
specification standards have been developed which
have not been unduly constraining. Objectiveness
could result in a workable standard being developed.

The autnhors conclude that the hypothesis that
Ada DL's are immature is largely false (save the
specific issues identified above). The primary
probiem Ties in a basic resistance to change and in
methodaology sensitivity. If anything, our maturity
in methodologies has hindered standardization of an
Ada DL.

Bogdan, representing the DoD's point of view,
“as stated: "From a government point of view, it is
imperative that we have one standard." [26] The
authors agree that an Ada DL standard is not only
feasible, but overdue.

Acknowledgments

The authors would like to acknowledge the many
sound technical contributions by numerous individu-
als on the topic of Ada Design Languages which has
lead to a conclusion that Ada DL technology is more
mature than previously recognized.

The opinions expressed herein are solely those
of the authors and do not necessarily represent the
views of Harris Corporation; the IEEE, the [EEE
Working Group on Ada as a POL, its participants or
sponsors; the ACM, AdaTEC, AdaTEC Design Method-
ology Subcommittee, its participants or sponsors;
the Department of Defense, Ada Joint Program Office;
or others who might chose to raise exception.

References

[1] 5. H. Caine and E. K. Gordon, “PDL--A Tool for
Software Design,” Proceedings of the National Com-

puter Comference, AFIPS Press, 1975, pp. 168, 169,
271.

(2] J. E. Sammet, D. W. Waugh, R. W. Reiter, Jr.,
"PDL/Ada--A Design Language Based on Ada," Ada
Letters, Volume [I, Number 3, Nov/Dec 1982, pp.
[1-3.19, 11-3.21--22.

[3] “Ada Proyramming Desiqgn Language Survey, Fingl
Report,” Naval Avionics Center, Jctober 1982, pp.
-1, 5-1, 6-1, 6¢-3.

(4] J. 5. Kerner, "The Purpose of a Working Group
on Ada as a POL," Ada Letters, Volume Il, Number 4,
Jan/Feb 1983, pp. 11-4.12, 12.

[5] Military Standard Ada Programming Language,

ANSI/MIL-STD-1815A, U.S. Department of Defense,
January 22, 1983.

{6] L. E. Druffel, "The Potential Lffects of Ada
on Software Engineering in the 1980's,” software
Engineering Notes, Vol. 7, No. 3, July 1982, p. 5.

{71 R. S. pressman, Software Engineering: A

Practiticner's Approach, McGraw-HiT1 Book Company,

1982, p. 253.

(8] Dr. J. P. Privitera, "Ada Desiyn Language for
the Strucutred Design Methodology." Proceedings of
the AdaTEC Conference on Ada, Oct. 1982, pp. 77,
78, 89.

[9] M. S. Gerhardt, "Description Languayes

Throughout the System Life Cycle.,” Notes of [LEt
Working Group on Ada as a PDL, January 1943.

[10] B. K. Bruckner, D.C. Luckham, "ANNA: Towards
a Language for Annotating Ada Programs.” SIGPLAN
Notices, Volume 15, Number 11, Nov. 1930, pp. 128,
129.

[11] H. C. Ferguson, M. B. Patrick. "Use of Ada in
System Design: A Case Study " General Oynamics
Data Systems Division, Ft. Worth, Tx.. 1%i:. pp.
3, 10.

[12) T. J. Wheeler, "Embedded System Design with
Ada as the System Design lLanguage," Journal of
Systems and Software, Volume 2, Number 1, Feb.

1981, pp. 11-21.

{13] C. Ausnit, "Ada Software Design Methods
Formulation--Case Study Example," AdaTLC Meeting,
Boston, June, 1982, p. 7.

[14] “Ada as a DL (Draft),” IEEE Working Group
on Ada as a PDL, October 1983, pp.4--9, 11.

[15] H. Hart, "Ada for Design: An Approach for
Transitioning Industry Software Developers,”
Ada Letters,, Volume 1l, Number 1, July/Aug 1982,

pp. I1-1.55--56.

[16] J. P. Alstad, "Problems With Ada as a Pro-
gram Design Language: A Position Paper,” Ada
Letters, Volume II, Number 6, May/June 1983,

p. 11-6.51.

[17] E. Bein, "Ada Design, Jovial Impiementa-
tion," Ada Letters, volume [I1I, Number 4, Jan/

Feb 84, p. TIT-4.62.

[18] J. K. Grau, E. R. Comer, H. Krasner and
P. B. Dyson, Ada Process Description Language

123

Guide, Harris Corporation, Melbourne, F1., March
1982,

(191 (. A. Clarke, J. C. Wileden, A. L. Wolf,
‘Nesting in Ade Programs is for the Birds,”
SiGPLAN Notices, Oec. 1980, p. 144.

7207 M. W. Masters, J. J. Kuchinski, “software
Jesign Prototyping Using Ada," Ada Letters,
volume 11, Number 4, Jan/Feb 83, pp. 11-4.70,
11-4.74.

{2l; P. G. Anderson, "A Design Language Based on
Ada," Rochester Institute of Technology, May 17,
1982, pp. 8--10, 13.

(2] L. M. Lindley, "Ada Program Design Language
survey Update," Ada Letters, Volume 11, Number 4,

Jan/Feb 1983, p. [1-4.62.

[23] £. Gabber, "The Middle Way Approach for Ada
Based POL Syntax," Ada Letters, Volume [I,

Number 4, Jan/Feb 1983, p 11-4.65.

[28] M. Gordon, “"The Byron(tm) Program Design
Language," Ada Letters, Volume II, Nubmer 4,
Jan/Feb 83, pp. [1-4.76--77.

[25] A. 1. Wasserman, P. Freeman, "Ada Method-
ologies: Concepts and Requirements,” DoD Ada
Joint Programming Office, Nov. 1982.

£26) W. R. Bogdan, "Ada Program Design Language
Issues," Navel Air Development Center, 1983.

BIOGRAPHICAL INFORMATION

Wads 3 tea nae e s
veedrehodstatant pno e

[ItR RN

Y RO L
Lolertice b trer)
2 Florada, Doree D,

HArY 1 vooovat

she is the primary author of the Harris Ada
Frocess Description Language Guide and has parti-
cinated in both ACM AdaTEC and the IEEE Working
“rouc on Ada as a PDL. She has participated in
the (reation of Harris' Progressive Project Docu-
ot (PPD and in definition ot Harris' Tools for
toe Automated Development of Software (TADS). She

124

is a major contributor in the development of Harris'
Integrated S0ftware METhodology (ISOMET). Currently,
she is Group Leader of the Harris Methodology Group
and is responsible for assisting software systems to
projects with the customization and application of
[SOMET, PPD, and TADS. She has recently been

selected editor of Ada Letters, a bi-monthly publi-
cation of ACM AdaTEC.

tdward R. Comer received a
B.S. degree in Mathematics
and a M.S. in Computer
Science and Applied Mathe-
matics from the Florida
Institute of Technology.

He currently leads a Soft-
ware Technology Section
within Harris' Software
Operations, performing
current research in ad-
vanced software methodol-
ogies and developing a highly automated software en-
gineering environment. The Section provides a wide
range of software technology support to development
projects throughout the Harris Government Systems
Sector.

Mr. Comer was the key individual in the devel-
opment of Harris' Integrated SOftware METhodology
(ISOMET). He is credited with inventing the Pro-
gressive Project Document (PPD) concept, Harris'
cookbook approach to software development. He is a
principal author of the corporation's Ada Process

Description Language Guide, the first of its kind
in the industry. Mr. Comer has been involved in

the development of software management standards,
including a sector-wide Computer Program Develop-

ment Plan.

Mr. Comer has project development experience
with various microprocessor and minicomputer appli-
cations in real-time systems. He has participated
in several computer system design projects, contri-
buting in areas of distributed architecture design,
database organization, and modular software develop-
ment. From 1979 to 1980, he was Group Leader of
Modeling and Simulation Group, where he pioneered
advanced simulation techniques applied to computer
systems. This group's work was accomplished on
both discrete and continuous systems using a
variety of simulation languages.

~——

SEEDING THE ADA ZCFTWAHE ZOMPONENTS INDUSTRY

Dr. Ken howles

Teleloft
10639 Roselle Ct., San Diego CA 92121

AD-P003 432

Jummary

“-The principal aim of the Ada effort is overhead of coordination and
zeonomis — particularly the enhancement communication among lead-design groups
of deaigner/programmer productivity in within a large design team.
111 parts of the software life-cycle. A
gaift in system design practice to The promotion of the Ada language by its
wilespreand use of off-the-shelf large principal sponsor, the U.S5. Department
scale Ada software corponents would of Defense, has emphasized standard-
resda.t in productivity gains exceeding a ization in the interest of reduced
factor of ten - far more than likely to duplication of effort. Ada is unusual in
result from use of productivity that a standard has been approved before
enhancing software tools. To achieve the appearance of widely accepted produc-
widespread use of ofrthe-shelf Ada tion compilers for the full language. By
components requires establishment of a promoting industry-wide use of Ada, the
software components industry, and a DoD is also helping to reduce duplica-
enift In attitudes about education of tion of training. This should help to
cystem lesigners to use Ada. This paper ensure that designers, managers, and

reviews progress to date._

‘

supporting programmers can all talk with
each other on the same terms.

Rationale
Component-Based Design

Ada Cbjectives
Jean Ichbiah, principal designer of Ada,

Headers of these proceedings are has said repeatedly that Ada was
familiar with the principal aims of the designed to become the basis of a new
Ada language development effort. Those software components industry. He refers
aims generally relate to improvement of to the introduction of this concept by
productivity in all aspects of planning, M.D.McIlroy at the NATO conference in
development, installation, and Garmisch in 1968. To date, the
maintenance of software intended to be components industry objective seems \
embedded in systems with life-cycles largely to have been ignored in DoD
peasared in years or decades. Even the planning and promotion of the language.
cbiective to make possible greater
reliability of the embedded system The concept of component-based design of
software translates into a productivity a large system can perhaps best be
aim, since improved reliability implies understood through analogy with
greater designer/maintainer effort, and electronic design as it is practiced
greater effort by those who manage the today, and as it has evolved over the
designers and maintainers. last 25 years. In the early 60's, most

electronic equipment was constructed
The design of the Ada language itself from scratch using discrete components
addresses especially the development of such as resistors, capacitors, and
systems large enough to require the transistors. The concept of plug-in
attention of teams of tens, hundreds or modules had been introduced with printed
“houzands of designers. This objective circuit boards, but there were no
led %o the FACKAGE -onstruct of Ada, and accepted standards on interconnection of
to rela*ed constructs which make circuit boards made by different manufac-
posaible the factoring of complex turers. The benefits of interconnection
iesigne intc modules %hat are nearly standards were, of course, understood by
independen* of each other. The better the industry, as illustrated by the
the fartoring, the better is the standards on electron tube models and
posaibility 4o minimize the high pinout conventions.

125

~—------------lIllIIIIIIIIIIIIIIIIIIIIIIIJ

Yoot Cioe Ty Uy
i M S | Yooy X
. T aleoint N
. S o ostandar FRERN
cteroonnectinn of theso
of tre deminance of o4

SrApToce

DORROTL n‘ntwd.

per co;y.
of off-the-ghelf
n experienceil in
¢ yariety ot

. amponen
ornection wotn o oa Wi

srneric aLgceritnoe used widely in
AT LWk Lens.

Tre ahlTY in practice of hardware
increasing use of large
components has resulted
improved preductivity of
2sigrers over 2% years. Lt
.iv@ to say that
fgital electronics
* ten times more productive
tre mid e0'=s.

of
irslign practices
antroninc design

bee f s +nman tnoase of tn
frogramzer practiced in the
. ; i~ moot likely to create from
Dot] modad u3ed in oa large

CYOtETL e can roupn.y equate the level
ntesratiar saelated with s singie
1 RAPSF RRATE crent o witn the
nte IR S *od with
T e T nents such as
tl Toaoong ', and trunsistors.

roooar Aty i E onew oand the older
conave made sreation
- ooamponents

e ntw beinin D Lo near o recent
‘apan rosuliting from large
inventories of 2ftf~the-

wre ocamponaents. In two
reports, produntivity gains
Ert ot Y 00f have been

Tram Japanese "software

r oore ~ase an inventory of
. re-usahle components is
in use, and more than 90 percent of each
rew major prodast Jesign conaistas of
reused eomponents.

126

,wf"‘wd corponent
siat e enananmic

nttained.

Ads Ctandard & Velidatiorn

0 arproval of i
7 rtly follow
t ¥ three ro

;"3g~nv has Sazen n ma

raturity. ot
policies requairing <he
that have been validated
agsure the rortability
among vari us proceasa
systems.

ong ndmin

u)-*!

Unfortunately, many designers
ctarted *o work witn early Aad
tations are fcoming to realize
IQngunge atandard leaves much

agi wation - particu]arlv in
related to real-time upplieca‘i
example, =z real-time 5 stem ma

require asynchronous
external events, yet t}
permits validation of compi
support only synchronous respo
be sure, there are substantial
Aifferences between operational
requirements on a large mainframeo
machine and thofe on a3 small machine
that migh* be used Tor real-time
ﬁontrol Perhaps fthe formal validation

ite needs to be extended to cover
optLonal tests for operational
characteriastice typically encountered
in real-time work.

An unfortunate conclusion is *hat merely
correct use of the Ada language in
writing a large application systen
program may nct be sufficient to aasure
the portability of that program. Common
module in*erconnection conven®tions or
atandards, whether mandated or evolveld
on a defacto basis, will also be needed.

. - . S R AT [
B B N S . R
L N I
o R e T'f‘ e
i o IPRIRER sl oWyt
T e A Dot
e L Sy . o {."h‘ it
Ceeemn L Te i P S R
- L T el .. Ly
- - . . <y £
. T . N o T,
- . : : . :
T . . ot o
! . . L Twm = Tw -
M oy s e
v - - DR f ‘
. progr: .
. - Fad A v . .
N I 1. N
; .
Lo e,
v boidy o
: .
—adyee
- !
N e
oo LN B ooy LT e
e P . P A :
N ey s © Ve Ve e RV LS .
o Co H ‘
. IS w . . . w1 e et 3
bays Syt e Tt e

127

Frecsent-d
Lenst
L.e long
Louse of
Tne
ively
ndy
Thege
aintenance

about the

lgned changes

aeveral FTE

Lenrner offort., owever, the

3ult ig that *he learner

Iliar with the design

T which Ada {s intended to be

»iodesigned case-ztudy will be
‘ng various off-the—gshelf Ada

2ntially usutle in

aram applications.

to winimize the time =
Spend in going through
wee/rodification exeroises
or assistance and
ine materiais.
ea of fthe learner's
study involve
tion methods such
roughs. Later stuges
sepinars in which the
similar components
ieht apply to their

orlens,

4ry to maxe the
training of all the
1o devalopment
ganeral, desip
ifFned to a emall
desigrers. Ttner
crting designers
“ *re final

: T cngly influence
foo Pionnt aopesss af the dosion.
ERis TEOApeTV ISR Yra wary off

128

STTNCTTLL A0STAL, AT LINAL

Tamg ey

T T e
. T, 4y

U
Tnall et temnt

Peronuy e i

RS TR SPR

~rag,

st R IPE
rrastieal anmng
ST hwgre e i
Pt g s gy

e N H Py, O
LT, r.othr 2}

A e D o mAar s A

Cogrm* T Sy vees

i Lt o
L 4

DT R R ar S 37 BRI

P N T

Ialu PERN GF2N RYSY

Jevel Taroaimre:

Tomman e T Tow
Lrcarr reepaem’
Troriertgny meer o e

o, YVt e

RN
' I

e e Vg b
T v PRy
-
e e b
s I
- L. N ., BN
FECIESRS O,
oo PRI
T s b

M Far Trrte
3 e "n]:‘-
oA L achron
Ay T tres T s ©
LAl twnare b

Ty e b A0 v
towee ol ano, T

L lieat A

hgre e A onrp
venre o Uh e
e T

arponie pmieet (4a
's'M)_ (20 5 PR R IR TTYW ‘1.]

the firtura?
T‘rl[)
trat have
* will eontinge tn
mic, cocial, ant legal
future, Tr this nmarner,
SR tre wayn
anl lova
cant e o

oo bed e
ac hieon pornons

nharren

nonss

aacial,
will

m e
,
er oA

b

pred

jvent nf fliyot

bor, Yo

~
Sor
21 ta perfopm cerialr

te el enft-

Aot wo nac

rm of onoratine eyotere
Pomore of the roatine

nusly merformad Ty

came bimo comnytera

in vawer @ndl de reasing
+

.
a4Yans the '['v(q' himha
sevre develoned, Theoe

Sl mavo nenale 40

", These Wierelovel

1 Yoo the bLeye)apment
L .
P AR N als) e

moname s Sarne

marvetnlacs

.
s oare o+ mart, e

Lo v paf e T bl

T tavpige i Tratitute
v SRS B S S
, BT R T

another marufacrturer's comnuier, Triie
there are methods of zetting
nrobilem, Howsver, the methols
exnensive, 211y, the

rot tify the method,
0 the anvortunity
coftware to finally btecoms

indenendent, Thin can only reluce tre
nresent niegh coxt of busines: nrogra~s.,
At last, econcmies of crale car be
Trsteadl nf producing

aroyr] the
can e
exrurce In.s

£

mAc i~

n*ilized,
rrnired or several thousand an~ies
program, we may se- oroductior
milliens, thereby avorecizbly rediecir-
“Fe development cos* per untt,

Software must reflect the fact *ra
tusinesses are Jitferan’,
mo:inles, whish car be easily moii
to roflect these differencen, wi

“SVETA]
o f

rocs of

moat

allow users to use thelr camputer
aquipment more »fTiniently, This, o°

will keepn the cort af =-ftware
reaconpable Toanidc,
Larce comvanies car af
epend vast cums of money oy
nardware/software cystems,
companies cannot, oSmaller
will he the nrimary heneicis
inereasine software cost,
Small meligm=sizod
rave heen the sources of technoleris
‘nrovation and jor creat’en for a
rimber of years, Thig has teer
necessary fo allow them to
larse husirecces, Tnereas i
sonhisticated apnlicntiorns

coursa,

o

Nilhin

s e

arni

compete wi
nely
sof tware,

at moisrate costs, will oraviie bvetter
ipTarmatior, for mana sormort decician,

« information will allow
treir limited, availatle
+a their advantaire,
At the same 1ime ac enfrware
jonreass throush ecornnries Af wralo,

theam to

-

nee

reEsource.”
Teot
[slal s

we will also he hetter a¥le tn takoe
advantace of the precontly unaoed

0f tndayte hariware,
hac Necurrs i
har iware technclory 1s some twensy o

capabilities

Tyt nrat 1om

T
] 1

twenty="1ve vears more advarced than
=oftware,
de o are only atle to use avont

A a romputer's availatle capac’ 'y,

v

129

Taftaare gilvacces w1l 410w g ¢

AT af bk

: vl
w
S
11 417 a0 e EALEISTE TSN
ttructare? e aee el
IR 1 narial Af v’.;v Qe
qA:r‘w.,-,ﬁ,{u'.\.} PIEE I
I R R R P R
Tavalntiaa, oAt we Craell
. e, Cram a rmAakes basl Yooy [- .
Seoheoname s owe have A prabilem T
Wittt cipemnlaymaen -, Rvots oare raxios HEIE
ver rthe npalictine Tire, Tha Amaricg- Coplenh
wartar T3 famed with the npallem o° T ower
1l atenlesceren, TRig menns that e i
o will hqus a lares rygmbier of tneenlaved . virtae:

woekers, Talvip s thie npatlesm reqairen w11 reqn’re that everyone use the
refrainty oA yreenlaved reanle, ard lar qace tre asnme way, Sontroversy will

fenine of onr educational s 11 exiot, (Ut should never be
’ Tt Tt will he constructive,

Trivany

fr

tiveneas w111 npeed neonle whooo

o .t . e e 1 iR e H 3

e liratinr streaces readine, writine, atont nrivacy? 7 feel that
qnithmatic o oand computer litaran:, Prin Terye de anire ta e discunsed wel
Tamagter adgeatiang ataptine in fne el aver Top o many yoars ko come,

rrTocary svades ar i oexteniine Shragoh Goeores Jrwell?

fateful vear Yore,

rnllore . w1l Seareasivcly Tencnme STLID b seeds Af agr mantaty ar
avadlalle - varcamsary Sor sucnes, Turiness apnl Tone raqnive eyl t o
Thaere anrartunities mget be made 5¢ preivary? TEoha alread s s o
avieilalle 44 a1l criliren ant not st Faopane, alresdy cnantyic
trore wha 1ive in mape ecanamicrally Sirnancinl nroabout many o7 e,
atabls sakan]l dimtpiate Do Snformation e aval it e ar
Tw s et tangl ~atbnads Snvalyving ~a e annteste v, o To et
FrRo aamng =3 *anl magat re deyelonaed, Caftuire oo Te fe vor 23
Aoin AT e fhgars matrndionlosy will "hide" inforration of a oay tie,
arvatlo BRI bs Vs gace A% nrasent We will rever know Tt 10 teine
we tave 1 hadreonadse af methnds and The rourtc bave yot +o poo Pro.
e nengerte et ieie nnl ey Thia status of procrams, Ta0 capyrd .
A B S fereranr i the combuter iefended? Are prosraco matertyi1a=7
T el A SR PILN Y I Came Who really krows 0 il Fi
Yo o ctegetare d s ame are not, Judess ard lawyers, Aow T
e Yaregne s b prers annacepts | ocomn hecomza a rew srowth e
e T Tame T youn:s attorney Unt©l P
Gyt 1o came ara cel ers are gettled, piracy of nroorams will
TR T - “inan, A computer continue tn be a praollem,
k i oY v sy ta lagren, Tre Lons Johr Dilver of
S R TR S ! lﬁnmml*ur lanenave rraosrams ecatce ke op b €
e Y, s e o leawetes grv ather afford them or feels that 1}
e A) worth the price ciapreepd Yy ot
T Y astpar te rattgoen Yo owith oy, trend will urnfortunate?

s T e e g b T AT b impartart thal o new lancuage
et worv ey a4 wi1Y he nerfarmed allow some cecnr'ty meacures o nrotect
B S T R TR ST LI AE S TR PEAT N VSR a notentinl Aauthor's irvestmant o0 time
R e cme oy eatiar of hgreblinlies ani e"fart,

Le ot Teaa Yame Sar wary Will rew proorasc e vy i
F S s R T o Ere Tutarae? Sap owe oot aimply mo ity
inogr syt i Lrcopars? Dome Tuturicts oay
Al we w1l ac !t reod praspammers e
ERTE IR Torowho w il make fhe maiifi-
AL New o nrosrees are alwaye
TR IR TN pree e b e f"»p.v‘awi' IR T CY - SRR PIL R
et e st vy T anhag e b

ST LT

R AP ST IS R SRS L RTRScd I SR IRV IS
Sy et ey F’Y' gmar m e beemt "‘l,

B . PRI B . H W
R A DS ToA =T EERTRNP IR TR B ST B

130

Lo,

. '

'

LA

. Sy
i ’

e

.
PR
AU
.

U
vt A

e

Tty

Tl I e

Toampnt

131

OFPRATING S

MOINTERFACE FOR ADA INSTRUCTORS

Donald C. Fuhr

Tuskegee Institute
Tuskegee, AL 36088

Show
. ENTRODUCTION o
. testive use oor Leaching o oprogramming
sde fequires moare than tacility with the
ctde fteelte 1t is alse necessary to o deal

This command allows the user to tind what is
going on in the svstem or obtain o bearing 11 Tose
in o file structure. It is used with one oy

larpe number of parameters to accomplish this
Wil the computer as personiticd by the operat- task.

e svstens The LOGIN procedure is only the
slr-t o hondshake with the svstem., Atfter a

‘i

Show
current

ime-Causes the svstem to g

splay the
stem time, This should be the same as
the wall clock time, but, for various reasons,
viten is not.

diccesstal LOGIN, the svstem will just stare
nk ostupidiv o trom the CRT unti! one enters a
the ~vsten knows how to handte. The

Show Default-Displays the name of the
current default directory. This ailows the
to pinpoint his current position in the file
structure,

Show Devic

arzat ton regarding the options available at

User
i< point Till= about six shelt-inches of re-
Sereitoe faok !

~y and Qs completely und

rut oo hy
¢ proportion of users s the Ada
sdee Retervonce Manual.

toout the .

s-Displays a 1ist of all devices
recoynized by the system and whether or not thev
are on=lipe or allocated to a process. It also

shows how many H12-byte blocks of storage are tree

S

with anv lanvuice
Bowever, Itois possible rather gquicklv to learn

Cooenable one to pet around Without embarras-

vent . Hopetully, the tollowing intormation will on a disk, and whether or not a tape drive is
ivsist nsers in dealing with the Divital VAX/ mounted.,
VMS sverating svstem, o St

-Displavs various inlormation
about vour terminal session. Such information
as elapsed time, CPU time, priovity, and
privileses is available.,

show Protection=Displays the level o

Ve oaeless

protection in eftect for o file, or that which
will be atrorded ony yiles created by the

DICTTAL COMMALD]

1 provess.,
e T 3 N It disk .
- —) . s R Show (ot a- dis uotas dre In eltect on
tollar siegn blinks back from the T) 4 . o
. , . the disk in use, this command will show how
! svstem 1w looking tor o Digital block et 1 't
. . many blucks of storape ave allowe Coprovess
(o8 pyuaee MICL) command. The user mav ' ¢ ® ! “ t l_ ;, e
. . . . R . . . and how many are currentlv charved. This i< the
fny ke e or the editors to bepin keving in a L, : . i
. ; A atfficial number tracked by the svstem, including
crowrarn, or o to madity oan existing one. One may . D lest 1il X) \
: A ; emporary and los tles not appearing in the
1o dnvoke one ot the utilities to perform X p P !
. ' . J . directory,
Sarious predetined vperat ions, One may even R . N .
o R . N Show stem-Praduces a displavy of resource
srite g o precran in DL, A tew of the DCL comm- o s .
| 3 : . consumpl ion inlornat jon about all processes
[t e vy one needs to know in o order to proper-
)

. Vs . . current Iv running. [the svstem is providing
vase tiles and directories are now des-— .) _ " N
slow response, this is one of the tocis

used to
find out which process is dominating the svstem,

r This displavean also be used to watch the pro-
vl
R . . rress of o batch job,
When all wlse vtails, this command provides B ,' _l ,]‘ i i .
to most of the an-line documentation re Show Users-Produces a display of all intee-
: ! . « ; - i .
nei The first screen is a bist of all active urers currently logped into the systen
nei.. sUosa s : ;
i M B i Ao . i v
ands and we o lities. The prompt "Topic$ and which terminal they are using.
user to explore any of the Tisted Sot
. N . « . sy
tuping in the one desired. "Subtopic?” - . , ,
i the ser a levn] s desired inte Thix command enables o user to chanye various
. . s cdeeplyoas))
P i lable Whett one hias secen e attributes of the process or files as desired,
et VU . - ¢ e T i . cope . 1
Returns will lead back to the dellag ’ The most usetul ot the SET parametors available
LY W 1 [e . e RN .
X S L to the norpal user are as follows:
tie. Fe b et the nrilitics hae o osimilar Help . i
S 1At imeladed w thin it Set Password=A gser mav change his password
P clided ! . o

Atoany time, without reterence to or permission

132

[ERRSTRT ST Thi- hoeuhd lwan o e
it ey atter revedvine o Dew doconnt o or any

E Atter iavonioe this

oD compronaed,

ity the svstem asks por the old password,

Che noew possword, and a0 repeat ot the new password,

Sone ot the passwords are echeod on the sereen,
And e new one becomes etftective immediately,
the password s not available in clear test to
myone, even the system manaer.

Set Default-Allows the user to change the
Jertanlt directory at will, 11 a user has a
Jirectory strocture including several sub-
dircctories, this climinates the necessity ot in-
cluding the divectory name when tvping in a file~
: o Provrams are often written so that the de-
tautt dircectory must be the same as the directory
vontaining the input and/ or output files.
cetion=Allows the user to restrict
or ss to anv files owned by the pro-
cesse IF o the command $SET PROTECTION/DEFAULT is
aiven, all tiles subsequently created by the pro-
vess WITD recelve the level of protection in-

divated.

Rename
This command atlows the user to rename any

tile or group of rifes owned by the process. [t
takes the torm: SRENAME old file name

new filte name.

Delete

T AT lows the user to delete a file or group
of files fram the directory. 1f the form
SDELETE/LOC 15 used, the svstem displays the
name ot cach tile deteted, If the form $DELETES
CONFIRM {5 used, the svstem will display the
name ot cach file before it is deleted and ask
for o Yes or No from the user as to whether it
should really be deleted. This command is made
more powerful by use of a "wildcard" character,
the asterisk (¥), It one wants to delete (or do
anv other applicable operation to) a group of
riles having some part of the filename in common,
the asterisk s substituted for the common part,
allowing the entire group ot files to be dealt
with using onlv one command. For example, the
SDELETE TEST.*;" will delete all
versions and all tvpes of tiles named TEST.

command

Purye

"7 This command deletes all but the highest
numbered (most recent) version of the tiles given
a5 0 parameter, or in the detault directory it

no parameter is given., I one wants teo keep more
than one version, the form $PURCE/KEEP=n mav be
used, where "n" signifies the number of versions
to be kept.

SYSTEM MESSAGES

In the process of working with the VMS
system, the user will receive svstem messages
from time to time. They always take the same
form, and are usually understandable, but some-
times thev cause more concern than necessary.,
The take the torm JFACILITY-{.-IDENT, TEXT
where the Facility is the utility, component, or

Which caused the Loas the Tevel
of severity which may be S Naocessy, 1 (Intorm-
wion), W (Warnio), £ (error) or ! (Fataly. The
Yisher the severity Tevel ol the me Sove, the
proeater the probabilitye that the action wa not
completed or vcompleted incorrectly.

IDENT is an abbreviation of the mewnapre test.
TEXT is the full message. Fvery VAX facilits
should have a Svstem Messapes and Recovery bro-
cedures Manual to assist in decoding svstem

provTran

MeSsSaPes,
LOGICAL NAMES AND SYMBOLS

Logical Names

- This concept is a form of information hiding
applicd by the VMS developers to svstem device
names. By consistent use of logical names, Lhe
user may access a tile or program anvwhere in the
system (if allowed by file protection) without a
need to know on which actual device it is stored.
Thy system manager mav thus, with no impact on
the user, move directories from one disk to
another merely by redefining the Jogical name o
the disk. 1f this capability did not exist,
every uscr program would have to be re-written it
the user directory were moved. Logical names are
established by using various forms of the

$DEFINE or $ASSIGN DCL commands.

Symbols

Mostusers find long command lines difficult
to type in without error, and the svstem insists
on a complete retvping if an error is committed.
This is particularly frustrating when the command
line is used frequently. A syvmbol can be defined
as a shorthand expression for the command line,
allowing it to be invoked by tyvping just a few
characters. for example, $CAT is much easier
than $DIRECTORY/SIZE/DATE/PROTECTION if a more
complete directory listing is desired. A svmbol
can alse be defined to execute an ontire command
procedure,

Login Command Procedure

The most convenient way to define useful
symbols and lowical names is by using a login
command procedure. ALl VAX installations use a
svstem-wide login command procedure to establish
tocal svmbols, ete. Among other things, the
system login procedure looks in the user directory
for a file called LOGIN.COM and executes it it
it is found. Anvy user may create a personal
LOGIN.COM which contains anyv instructions to the
system that are desired to be executed at login
time. An additional password or anv shorthand
symbols may be included to provide a customized
environment .

Sy

M SECURITY

" _Authorization File

Each user has one record in the User
Authorization File (UAF) which contains the
Username, password, privileges, resovrce quotas,
detault dircctorv, and all other user-~unique
information that poverns the actions the user may

133

Uhoe o ten. v conters o sovurity

the ke olemont roothe Joorname,

e wordhy nd oer Tdent i st ion Cote i Id, all

ool gre e toned by the o svstem manaeer when
the rocord d- v reated,
Coaorteme - Tl it boeoan alrhanumer i

crostrine e omore than 9 ocharacters lonys

hawe

wWitho Tettery NooLwoe apar

Vol phanumerd

aeomere than 30 characters

Tore. b e securite, ot shenbhd Beoat Teast
oo tere tons, o shonld not he a1
reolatoaeb bt wido iv—known attribatos o the

st The poccword never appoears inoclear test
ot swster and deomot cchocd on the sereen
when et ored, e sy tem mang vl

caeeaverl, hut cannot read them.o]

eoarser oo
RS
[he correet username/ password combinat fon

“hould) chanece Bis or hor own pas-wo

P vegquired in order tor gouser toowain aceess
oy L ~vstem,

Pmer Ddentitication Code=This is a 6-digit
cotal Gde which the : rl‘:‘?n_.ﬁ.sijx',na to a user
process basad oon the UV1C contained in the user's
UAY record. The svstem also oassipns the UIC Lo
11 v iles oreated by the users The ULC takes

the sorm Goevammn) where the tirst three digits

denotes the croup in which the user was placed
Beothe svsten manaser, and the Tast three digits
denote the user's Mewber number within the Group.
Both sets ot three digits may take values {rom
UO0 throush 377, Groups 8OO through 010 are
reserved for the various Svstem accounts and

it omat feally bestow the special privileges
Censary toopoerform svstem aanagement Easks,

¢ other Groaps and all Member numbers have no
e ial o wienificinee except that which a local

Sromaneeer sy asslen,

File protect fon is detined in terms of the
ot ions which tie vwner ot tile permits other
g-ers for) Lo take with regard to the
tide. v oawible actions are: Read, Write,

cute, and Delete. The user mav allow or pro-

it ant b These act ions by anvy user of the
ten, and has complete control over this

e riiote o tiles The classes of users with

reterence e oparticular file are: Svstem, Owner,

reup or Worlde A particular uscer or process is
shaced in one of these cateporicos by UTC as
alliws: A Svstem user fs oone whose Group number
o) threueh 010, The Owner is the one whase
ST ewae Uy matehes that of the tiles A Group

aner psoone whose Group aumber is the same as

that o the files A World user is anvone in the
wvsten, The default protect ion provided by VMS
sORIRWED, OIRWED, GiRE, Wi(no aceess), which

an= that the Dwner and Svstem users maw Read,
Write, Execute, or Delete the tile, Group uscers
mav only Read or Execute tine file, and no others

ve any access, The owner of g File may changoe
this protection at any time using the $SET
FROTECTION command and mayv change the defanlt
protect ion for the remainder ol the terminal
~ession by ousing SSET 7 THCTTON/DEFAULT. The

134

To v vood cand Dt Cro D G i

P TOGINLCONM tide tor the ceonrity=rinded ooy
PROCESS SCHEDUT TG

In anv time=-sharing -ve Pecal
situat fon o i- owhen e user o the —v-ten
b bected by the other neors, I the resd werid,
thds s true s Tons s the svetenr e not hean iy
loaded. When the overal D demand tor svstes re-
~ours s approaches the capacity o theo resoerce
crervone can osee the resalt. One' o procee s
Slow down,y or oy appear te ston ontivrcles o There

Peovers Titthe that an iodividoa! asor can de
absrat this, ond not o mach mere that thee svsten

et can Jdo, It io worthwhile, howorer, tor

the a-er to know somethinge abent how e

anerating covster Jdirects trattic cemens 1l the

u-~ors 10 order to ander-tand what

A process is the basico ent it

Sehedulor works on in apportioning oo -t Ui
CPUoand that the Job Controlloer oo Dot
o mory. Besides svstem processo, Phore ars

Sasieallyv three tvpes ol processe, cach o

ol

‘h is handled Jitterent Iy,
Real Time Processes-A process that

normal v started when the svsten i bocted o

oumend U aten

runs cont inuously, this tvpe

tasks as data acquisition trom lTaboratory in-
strumentat ion which demand instant res;

the data is ready without the necos-

wiait ing tor another process to o

time processes are normally tew in
required very small amounts o CPU

have o minimal impact on other asor

svstem.

Tnteract ive Processes-The sestem oreates

process for o wh interact ive tser at dosin t JRRTE
it continues until logpeut, regardles- o what
the user docs, It is possible Tor processes Lo
"spawn' subprocesses, but this sction will aot
be discussed hereo The process fe a=sined gl

the quotes, prioritievs, and privile; contined

in the user's { record. Interactive processe
are characterized by Larpe amount = o0 toerminal
1/0 compared to the amount of CPU iz consu

They are usually the greatest sonroe o svaten

TSN

content fon.

Batch Processes=11 a0 proce~- invels
; that re-
quires Tarpe amounts of CPU time or «lock time,

HoUNe

cut ing an image (excceutable provrae

ftois normally run as g batch processo Started
by means of the DCL SSUBMIT command, (U runs

to complet ion without further hompt intoervent ion,
AL 1/0 aperations must be to or tror disk i -
Bateh processes are guened tooran 0 Segnene e,
and cre normal T oset o up toovun in s ho b b
that thev vee only reconror s oot requited b
interactive jobs. They thus take Torcr tr pus
than thev would interactivelw, Yot e hoave

mucts Tess dimpact on other svestens voor.. It e
possible to establish ooltiple cocoes d o ron
aultiple jobs from cach guouce, fut thre must
done with coantion, wince too mans bbb tahey
will intertere with cach other fot oo it

t .
r et [ERONY 1
IR N A T LRI S DT TR BUS o § G S S TSI SN
e ' Woemnea, Phe sriorities
1 . (RN s Bivh ot oo dor
Pooo LA proc e s, the priorities range onoup
! loe o ol st interact ive processes

crevna !l e s bon 0 have a0 bose prierity or 4

st b e e s = have a4 hase priority or 3.
ol e S e sees nermalle o boave o hiphoer base
rierit
O T Y]

iLich process that is ready to nse the CPU
vencd P tirst~in-irst-out (FLIFOY queue

criovite. When the process current iy using

Crie o rU relinguishes ity the Scheduler o

D the priority gucues and assicns the tivst
proce it the highest priority aueue to the CPUL
pracess bosins toouse CPU, it cont inues
not Dot needs o ddooan input/output operat ion

rocamnet cont inue Tor some other veasons, or
dot il its allocated Cime (Quantum) has explired.
Moo time interval on the order of g tew
SEU i cconmds, is the simum time any given pro-
o can s the CPU at ene time. This pre-
ioe= o process which does heavy computat fon

monapolizing the UPUL When o process uses

o dts cuentam, itois gueued at the end ot the
netic por it priority. Quantum is oo svstem
iracvter which can be changed by the svstem
Tanaver, but o only with great care.

Privrity Promotion

The major problem with a simple round-robin

whiedulinge procedure 15 that most processes spend
Tore time deing faput /output than they do
conpatineg, and they must wain access to the CPU
s opoartientar time governed by the foput/out put
docloe thew are using. Otherwise, a character
Pt read tremoa disk, tor example, would be
Toot, WS vives these "1/0 baund™ processes a
rierits promot jon so that they may usce the CPU
when nocded, This does not impact other users

Lo sereepl ible degree because an 1/0 operat ion
oouire s conly g tioy fraction of g quantun, it
o thus possible tar a process having a base

pricrity o to have an instantancous priority

Cohiet o whiile 1w doing /0 operations,

reverting toe voor 5 owhen iU is doing mostly
it li\\”-

Provooan States

conmand,
State”
cach provess. This provides a wnapshot of the
activity ot the various processes and o clue to
toad. There are nine possible

contes o TSHOW SYST
arone other things displaved Is the

I e
" ol

the overall sv.ote
states in which & process mav be:
CUR=-There s alwavs exact v one "Current”

proces T that i-, the process current ly using
the CIUL Since the CFU is required to produce

the displav, the process calling the display will
tlwav s appear as the Carrent process,

COM=Whenr g process has evervthing it needs
U compute except dcce s Lo the CPU, fU ds
"Compatable™s Any process indicated as COM s in

aoqueue and will be o soheduled o use the PO
out Tined above, 1 too many processces are

Comput able, the CPU is at or near saturat ion, g
ne More users can be supported.,

LEF-When o process initiates an /0
speration or some other act ion that must be
completed before the process can go oon, o Local
Fvent Flae s turned on until the action is
completed, The process Is indivated as beine in
Wait state during this tis

Local Event Fla

1/0 bound process spends an overwhelming moiorite
of dts time in this state.

PFW=-0Occasionally a process requires anothet
pagy to be brought inte its working set and sust
walt for it. It is put in to Page Fault Wait
state during this time. Sce the Memory Manaeerncnt
section tor a mere complete discussion or this
topic.

HIB~-A process not showing anv activite for

caded Tenpth o time ooy be put into o
nate state by the Scheduter,
COMO, LEFO, HIBO-When memory becomes nearly

saturated, one or more processes must be MOut-

an
Hiber

swapped” trom memory to the disk. When tiiis
¢ooamsIaned

oceurs, one of these threo states will
dependin: on what the process was doing at the
time it was swapped out. A more complete
discussion of swapping will be Yound in the Memory
Manduement section,

MWALT-On rare occasions, a process wili
need a4 resource that is not available becinse 1t
is being monopolized by some other prucessies)
which will pot release it. This s called o
Miscel laneous Resource Wait and almost alwavs
signals that the svstem is about to lock up, it
it has not already done so. Otten, the only way
to ¢lear this condition is to shat the svstem
down and reboot i,

MEMORY MANAGEMI

Virtual Memory
T The VAX is oa "Virtual
means to the user that o program need not 1t
into the amount of main memory available in order
to run. In fact, it the program will it onto
the disk(s) available, it can be run without anv
special scheduling action by the programmer. The
Scheduler program ol the operating system will

aoary' machine. This

take care of moving pieces of the program in and
out of memory as needed. This does not mean,
however, that the programmer can forget entirely
about memory considerations, Memorv availability
is the single most important tactor in the per-
tornance of an application or ot o particular mix
of applications. A baste understanding of memory
mandyement will enable the user to help the
system manager achieve better performance ot the
application and of the syvstem as a whole.

B]n}‘k:;

N B program segments and data are moved
between disk storage and memory in blocks ot 510
byvtes ecach. In main memorv, thix quantity is
referred te as a Mpage'. Most measurements ot

135

Corane capacity are given in number ot blocks

Workin, o set

C The most important concept of memery manape-
ety Working Set is the amount ot main memory
ety used byoa oprocess gt oany given time. The
Wworat ing svstem automat ically adjusts a process's
wForkine set within established Timits according
;5 and the other

toothe needs ot the proce
activity on the svstem. The svstem manager can

casile control the working et limits at an over-

D svstem Jevel or at an individual process
level.

WSMAX-This s o svstem parameter that
controls the maximum working set that anv pro-
cess may have. Individual processes mav be
allowed a smaller working set, but thev may
never exceed WSMAX.

WSDEF-This UAF quota establishes the
working set that an individual Nrocess starts

with.
WSOUOTA-This UA¥ entrev estahlishes the
working set that o process may have

X imum
without regard to anv other processes on the
svstem. The user is guaranteed to be able to
use this much memorv if it is needed.

W D-This UAF entry establishes the
maximum wnTklng set available to a user if
sutticient memory resources are available. It

allows a4 user to "horrow” memorv it needed as

lomye as the svstem is light v loaded,

Paping vs Swapping
N I'(i‘lg',llﬂ_g-wil—("ﬂw\l pProcess needs g proagram

s(‘;;W\'l]E-:? data not currently in its working
set, the system executes a "Page Fault” and
brings in another page trom either the disk or
irom the bottom of the Free Page List or
Moditied Pave List in memorv. 11 a process is at
ane ot the size limits on working set, the
page which has peen in the working sct longest
will be pushed out to make room. It will be put
onto the top ot the Free or Moditicd Pape List
depending on whether it has been moditfied since
Being brought in from the disk. If that page
is still in the List when the program needs it
asrin, it can be obtained very quickly. It not,
a4 much longer disk I/0 operation is required.

Swapping-1f more processes are in memory
than it will hold, and they arc all using their
WSOUOTA so the system cannot reduce their working
sets, une or more of them must be Outswapped to
the disk. The system will normally select the
feast active processes to be swapped until the
ones left in memory can get ¢nough memory to
function,

To Page or to Swap?-A system manager is

tempted to simply give everyone all the memory
thev need, avoiding the memory management issuce
entirelv., This might be workable in a svstem
with a large amount of memory and users working
w.th FORTRAN which will run nicelv in 200-250
pages of memory, Fven at that, when one knows
that VMS needs 750-1000 pages of memory, it is
easy to see that a 4-Mbvte machine (8000 pages
ot memory) will accommodate only about J8-3)

136

users without going into paging or swapping.
When most of the users are working in Pascal ar
Ada, needing 500-1000 or more pages of memory,
the impossibility of giving evervone all the
memory they want can be seen. The cholce then
becomes one of paging or swapping. I working
sets are allowed to grow very large, an in-
dividual process can work more efficientlv as
long as it is in memory, but if it needs to be

outswapped, the entire process must be moved,
consuming great amounts of system resources with
no productivity except to frec up memory.
Furthermore, when the process gets to the head
of the CPU queue, it must be completely trans-
terred back from the disk, consuming more un-~
productive system recources. Swapping is
penerally undesirable if it can be avoided. If,
on the other hand, working sets are limited too
much, the syvstem will spend so much time paging
that no productive work gets done. Generally, a
good svstem manager will experiment with working
sets to obtain the best compromise between paging
and swapping. 1f this still does not produce
acceptable performance, the only remaining
solutionsare to limit the number of processes
allowed to run at any one time or to buy more
memory

SYSTEM UTILITIES

All systems have a library of programs
called utilities which exist for the convenience
ot the system manager or system users. Many of
them are integral parts of the VMS operating
svstem software, some are written locallv, and
many are obtained through the Digital Fquipment
Computer User's Society (DECUS). Following are
briet descriptions of a few of the standard
ut ilities:

Mail
77 The Mail utility allows a uscr to send
messages to oanother user or list eof users on
the system. 1t the addressee is currently
togped into the stem, a message announcing

the arrival of a mailgram apprars on his screen.
[f the addressee is not logged in at the time

of transmission, the announcement appears during
the next login. To invoke this utility, the
command is $MAIL, atter which the utility gives
a prompt for another command. At this point,
tvping HELP will retrieve the on-line documentat -
fon explaining the various MAIL tunctions.

Phone

T This utility allows Lwo users Lo carry on
a conversat ion hetween their terminals much as
thev would on the telephone. It is invoked
with the command $PHONE, atter which the normal
HELP tacility can be accessed. In the interest
o1 user-friendliness, the commands resemble
those used on the telephone: Dial, Answer,
Hangup, etce. The Phone utility should be usced
with constderation, When a user dials another,
the announcement ot the call {lashes on the

called partyv's soreen everv 10 seconds or so
unt i1 the call s answered or the caller stops

the ring. This can be most irritating if the
called party is in the middle of something
requiring concentration, 1t might be worth
knowing that if 1 user executes the command $SET
TERMINAL/NOBROADCAST, the announcement mes=ages
(and all others) will be inhibited.

Monitor

T This utility provides another way of finding
out what is poing on in the system. It is in-
voked as a DCL command with a wide variety of
parameters and qualifiers. Each command produces
a terminal displav giving a composite view o.
the activitvy of concern. A sequence to invest-
igate the cause of a system slowdown might pro-
1) Enter $MONITOR STATES to
find out if processes are being bottlenecked
waiting for the CPU as indicated by a large
number in COM or COMO state.) Enter

$MONITOR PROCESS/TOPCPU to find out which users
are monopolizing the CPU. 3) 1If the CPU

doesn't seem to be the problem, enter $MONITOR
PROCESS/TOPFAULT to find out if many processes
are doing an excessive amount of page faulting,
and which ones they are., Monitor can be used

to check a great many other system conditions.
$HELP MONITOR will show the other options.

ceed as follows:

Backup

" This is the utility used by the system
manager to take a "dump" of the disk period-
icall. to insure file integrity and restore-
abilitv. [n some systems, the user is res-
ponsible for backing up his files, in which
case detailed instructions should be available.

Backup is also the only way to copv files from
one disk to another in a multi-disk system,
Otherwise, the normal user needs to know that a
properly managed backup scheme will ensure that
at least one copy of every file exists on tape,
and that it can be found in a few minutes if
necessary.

Accounting

This utility is of very little use to the
normal user, because almost all the functions
require high privilege to look at the records
of ether users. It is worth while, however, to
know that the system manager can use this
utility to obtain detailed resource consumption
data for any user or group of users for any
length of time desired. This is useful to
someone responsible for managing a group of
users or to a user in a system in which resource
utilization is the basis for billing.

CONCLUSION

This has been a brief discussion of some
features of the VAX/VMS operat ing system that do
not appear in the Primer, but which someone
doing extensive work on a VAX might find
usetful. [t was not intended to be an exhaustive
treatment, but to provide pointers to
potentially useful functions and aid in under-
standing some of the performance-determining

actions ot the system, Svntax of the commands
and other options not discussed here can be

found in the Help library or in the complete
svstem documentat jon. Broad knowledge ot theseo
topics help any user to work more ofticiently

and participate effectively in the overall manage-
ment of the system {op the benefit of all users.

R

ENCE

1. Digital Equipment Corporation, V
Primer, Mavonard, MA, May 198

AX/VMS

2. Dbigital Equipment Corporation, VAX/VMS
Command Language Reference Manual,

Maynard, MA May 1982,

3. Digital Equipment Corporation, VAX/VMS
System Manager's Guide, Mavnard, MA
May 1982.

4. Digital Equipment Corpoation, VAX/
Utilities Reference Manual, Mavunard, MA,
May 1982,

AUTHOR

Donald C. Fuhr, Director of Computer Services,
Tuskegee Institute, Alabama 36088. Received
BS degree in Elcctrical Engineering from Oregon
State University in 1961, MS degree in Engincer-
ing Management from the University of alaska in
1973, Retired from the U.S. Air Force with the
rank of Major in 1981 after 20 vears in various
communications, system development, and data
communications positions. Has been a VAX/UMS
system manager for 2 vears. Attended the U.S.
Army-sponsored Ada Education and Training Summer
Program in 1983 1s Associate Principal
Iavestigator for Tuskegee lustitute's Ada
Fducation and Research Program.

137

AUTHORS INDEX
Bardin.B.M. ... 55 Hart, R
Blasewitz. R M. L. 111 Huling, G.
Bowles. K. 125 Jones, A.M. ..
Bozeman. R.E. 102 Lane,D.S..
Buoni. Jd. J. ... 104 Martin,B.J...... ..
Caverly. P. 35 Muennichow, l......
Cogan. K. J. 31 Parish,S.....
Comer. E.R. 115 Richman, M. S.
Crafts. R.E.... 70 Rudd.D.
Drocea.C. 35 Rudmik, A. ...
Feldman.l. 129 Snyder,G.........
Fuhr.D.C.. 132 Texel P. 5,
Gilroy. K. ... 74 Thall. RM.
Goldstein. P.. 35 Turner.D.J. ... e
Grau. J. K. . 115 Wuebker, F.E.
Hart, H. .. 89 Yee. D.
138

