
AD-A142 392 A PROBLEM EXPANDING PARAMETRIC PROGRAMMING METHOD FOR /IA
I SOLVING THE JOB SHO..(U) CAIRNEGIE-MELLON UNIV
I PITTSBURGH PA MANAGEMENT SCIENCES RESEAR.

UNCLASSIFIED G L THOMPSON ET AL. APR 84 MSRR-5ee F/G 5/1 NL

S..-

1 .0

...

.8

12

L60

'4_

I ROCOPY ESOLUT O N rEST H RT
-_-'-' '."*.1-

" %

.. -.. .,.

.0

,

.. . .I-..:

1- . .--. .1" 1 - -.-'1

4 .- - * ' . o . _ . " . d ' .' . , " , . " . . - , , - , . . . ' . - . . . ' . . -
. , . ' " '

. " '- .' -' .: .." : " -" :' -' "'-- -- '- .' .' '." " - -' - -" -. '-.I' . . -. " ". 11"
. . .-

1..
. • . .

--'- ' -; -

0Y)
""v)

-- A PROBL~l EXPNDING PARA!ETRIC

PROGRXAMING METHOD FOR SOLVING T1RE-

0 JOB SHOP SCHEDULING PROBLEM

by

Gerald L. Thompson

and

Daniel J. Zawack

Carnegie-Mellon University
PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON, FOUNDER5 DTIC

FLE CT E
LaJ ~JUN 26 1984

DISTRIUTION STATEMENTA
Approved for public teleoea

A Distribution UnlimitedIt, 06 ar01Y-.ro/
j - I

Management Science Research Report No. MSRR 500

A PROBLEM EXPANDING PARAMETRIC

PROGRAMMING METHOD FOR SOLVING THE

JOB SHOP SCHEDULING PROBLEM

by

Gerald L. Thompson

and

Daniel J. Zawack

April 1984A

.. *.

This report was prepared as part of the activities of the Management Science
Research Group, Carnegie-Mellon University, under Contract No. N00014-82-K-0329
NR 047-048 with the U. S. Office of Naval Research. Reproduction in whole or
in part is permitted for any purpose of the U.S. Government.

Management Sciences Research Group
Graduate School of Industrial Administration

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213 O TtO

FL ECTE

- DISTRIBUTION STATEMENT-AJ JUN26 1984
Appxoved fox public rnlea.s)

Distribution Unlirn od__ B
,. o

A PROBLEM EYPANDING PARAMETRIC PROGRAMEMING METHOD

FOR SOLVING THE JOB SHOP SCHEDULING PROBLEM

by

Gerald L. Thompson and Daniel J. Zawack

~ABSTRACT

A new zero one integer programmin model for the job shop scheduling

problem with minimum makespan criterion is presented. The algorithm consists

of two parts: (a) a branch and bound parametric linear programming code for

solving the job shop problem with fixed completion time; (b) a problem ex-

panding algorithm for finding the optimal completion time.

Computational experience for problems having up to 36 operations is pre-

sented. The largest problem solved was limited by memory space, not computa-

tion time. Efforts are under way to improve the efficiency of the algorithm

and to reduce its memory requirements.,f

%/

KEY WORDS:

job shop scheduling algorithm

branch and bound

zero one integer program , 'A

parametric linear rogramming

problem expansion

" L "r ,%. ' " " " '"'"' " *..

. ..- • . •.- . ° ° . . .

.,

1. INTRODUCTION

The literature on the job shop scheduling problem is extensive. Some

well known books devoted entirely to scheduling problems are: Muth and

Thompson [111, Conway, Maxwell, and Miller [61, and Baker [1]. More recently

an easy to read introductory text by French [7] has appeared and an in depth

survey of the mathematics of job shop scheduling is given by Bellman, Esogbue

and Nabeshima [4].

There are three well-known mathematical programming models for solving
J-

the job shop scheduling problem under the minimize makespan criterion. The

first to appear was by Bowman [5]. It was very cumbersome and no computational

testing of it has ever appeared in the literature. The second model was given

76 by Wagner [14]. Story and Wagner [11] provided the only computational testing of

.Z:' the Wagner model and concluded that it could not be relied upon to find optimal

* * solutions. The third model was stated as a general mixed integer program by Manne

[0] and this has become the most common notational representation of the problem.

Of the three models, Manne's is the most economical in terms of number of variables

and constraints. Unfortunately, its application has not yielded any signifi-

". cant computational success. Balas [3] has shown that the linear programming

.relaxation of this model is generally quite weak implying that often a large

gap exists between the linear programming optimum and the integer programming

optimum. Closing this gap is computationally very expensive. Balas [2]

recognized that the Manne formulation is a disjunctive program and has applied

disjunctive programming methods to strengthen the formulation [3], but no com-

putational experience with this has been reported.

In this paper a new model for solving the job shop scheduling problem

under the minimal makespan criterion is presented. It is a pure zero-one

4.o

* °.9,

a.,

°J -2-

mathematical program, in which a zero-one variable x(j,t) is set equal to 1 if

operation j starts its uninterrupted processing period at time t and is zero

for all other times. These variables are used to construct a model which admits

only schedules whose completion times are no greater than some prespecified

horizon time. The model is embedded in an algorithm whose approach is to start

with a known schedule which completes by time T. Then an instance of the model

is solved which admits only schedules completing by time T-l. Solving this

model means finding a schedule completing by time T-1 or proving that none

exists. The model is solved by applying parametric linear programming techniques

in the context of a branch and bound search. When it can be shown that no schedule

exists for some completion time T-1 then the previously found solution at T

is optimal.

If a horizon shortening technique is to be efficient then it is important

for the initial value of T to be a good upper bound on the optimal value. In

order to obtain good upper bounds a problem expansion technique is utilized

which yields a good upper and lower bound in each stage of the expansion process.

The problem is defined and notation given in Section 2. In Section 3

the model is given and in Section 4 a parametric linear programming procedure

for its solution is discussed. In Section 5 the problem expanding technique

is defined. The algorithm has been implemented and preliminary computational

experience is presented in Section 6. Finally, in Section 7 conclusions as to

the computational potential of this method are stated and areas for potential

improvement of the method are noted.

2. THE JOB SHOP SCHEDLING PROBLEM

The general job shop problem can be stated as follows. There are a set

of I items numbered from I to I that have to be processed on M machines

.4P

-3- -

which are numbered from 1 to M. The production of item i requires a

sequence of s. operations. The operations are indexed according to the fol- I

lowing scheme. Let no = 0, and index the operations for item i consecutively

from ni I + 1 to n. where n. = n + s.. For each item i let bi = ni +
Si = niI 1

Let the total number of operations be N so that nI = N. There are precedence

relationships between the operations on each item which are incorporated in the

indexing scheme in the following way. If j and k are indices of operations

on item i and if j<k then operation j must be performed prior to the start

of operation k. Each operation j must be performed on a specified machine

q(j). Define the set of operations on machine m to be J(m) = {j!q(j) = m}.

Finally each operation j requires time d(j) to complete. The objective of

the formulation to be discussed is to find a processing order on each machine

such that all operations are completed by time T.

The precedence relations between operations imply the existence of a lower

bound on the start time of any operation. The early start time for operation j
j-1

on item i can be expressed as E = Z d(k). By convention, if the sum is
j k=b.i

empty its value is zero. The precedence relations in combination with the

required completion time T also establish an upper bound on the start time of

any operation. The latest start time for operation j on item i can be ex-

ni

pressed as L. - T - Z d(k). Note that for each operation j on item iS k=j ni

the difference L. - E. - T - Z d(k) which is a constant.
] J k=b.

1

In order to complete all operations by time T three conditions must

be satisfied. First each operation j e N must begin its uninterrupted

processing period between E. and L., inclusive. Second, operation j on

item i cannot begin until all of its predecessor operations on item i are

O ,.I: '4 * AL . * . . .

-4-

completed. The third condition is that at most one operation can be performed

by a machine during any time period.

3. THE MODEL

These conditions are stated notationally in an integer constraint set.

The zero-one variables are K(jt) where

rI1 if operation j begins at time t

X(j,t) =
=0 otherwise.

The constraints which require that operation j be performed are

L

(1) Z X(j,t) = 1 for j = bi...,ni, i = 1,2,...,1
t=E.3

The second class of constraints requires that the precedence relations

are satisfied for each related pair of operations. The constraints of this

group take the following form

k k+d(j)

(2) - Z XUj-l,t) + Z X(j,t) :r0 fork = Ejj I,
t=mJ-1 t=Ej-i+d(j)

j - b. + l,...,ni, i

These constraints state that operation j cannot start until operation j-1

has been completed. They also allow operation j the freedom to start in

any feasible time period after operation j-1 is complete.

The third group of constraints guarantees that during a time period p at

most one operation is assigned to a machine. There will be a constraint in

this group for each period p in which the machine m may be in operation.

The potential periods in which a machine m may be operating are specified as

~-5-

follows. The earliest time that machine m may begin operating is at the

earliest start time of any operation which must be processed on machine m.

Let the early start period of m be S where
m

S = win E.
m jEJ(m) j

The last period in which machine m may be operating is the latest period during

which any operation which must be processed on machine m may still be under-

going processing. Let the last operating period of machine m be F wherem

F = max {L. + d(j) - 1}.
m jJJ(m) J

The set of machine constraints is

d (j)
(3) E Z X(j,t+p-d(j)) < 1 for p = Sm,...,Fm, m = 1,...,M.

jEJ(m) t=l

The inner sum over the indices t = 1,...,d(j) implies that if operation

j were to start being processed on machine m at some time in which its un-

interrupted processing period would include period p then this operation will

occupy machine m at that time. The outer sum over the index set jEJ(m) in-

cludes all operations j on machine m that might under go processing in

period p. Since the right hand side is one at most one operation of those

potentially available can be in process on machine m in period p.

4. PARAMETRIC LINEAR PROGRAMMING SOLUTION METHOD

Any zero one solution satisfying (1), (2), and (3) for an associated

job shop scheduling problem provides a feasible schedule which completes by

time T. In order to find such a feasible schedule it would be desirable

to find an objective function which could be imposed on the problem

7:1

so that the solution of the resulting linear program would yield a feasible

zero one solution. If an X vector were known which was a feasible zero one

solution then it could be used to define an objective for which solving the

constraint set as a linear program would yield the original X vector. %pecif-

ically, for each X(j,t) with value one in the known solution, set the cor-

responding objective function coefficients to one. Maximize this objective

function subject to (1), (2), and (3), allowing X(j,t) to be continuous.

However, a feasible solution is not known for the above problem so such

an objective function cannot be prespecified; instead we give a procedure which

can learn the appropriate objective function via parametric linear programming

techniques. The desired outcome of this learning process is either to find an

integer solution defining a schedule completing by time T or to prove no such

schedule exists.

The process begins by setting all objective function coefficients to

V zero and attempting to find a feasible solution to (1), (2), and (3) as a linear

program. If this linear program is found to be infeasible then there is no

schedule which completes by time T. If a feasible solution to the linear pro-

gram is found then it is examined to determine if it is integer. If the solution

is integer then no further work is required. If not, then the process of learn-

ing an appropriate objective function which will draw out an integer solution,

if one exists, is carried out via a branch and bound search procedure. Struc-

turing the learning process as a branch and bound search procedure makes certain

that if an integer solution exists it will be found, but also if there is no

feasible integer solution then that fact will be proved.

The search is carried out by "driving in" or "drivina out" a variable at

each stage to fix it at one or zero. Variables to be driven in or driven out are

.%\

-7-

those with fractional values in the current optimal solution to the linear

program. The operation of driving in a fractional basic variable is jone by

* setting its objective function coefficient to one and reoptimizing the !inear

program as a maximization problem. The operation of driving out a ractional

basic variable is done by setting its objective function coefficient to minus

one and reoptimizing. The variable driving in process is successful if the value

of the reoptimized linear programming solution is one unit greater than the

previous optimal value. The variable driving out orocess is successful if the

value of the reoptimized linear programming solution is the same as that of the

previous optimal solution. In the case of a variable driven in, the success

criterion means that after reoptimization the variable has reached the value of

one and the value of all other variables previously driven in or out remain

unchanged. In the case of a variable driven out the success criterion means

that after reoptimization the variable has reached the value zero and the values

of any other variables previously driven in or out remain unchanged. A success

in driving in or out means that the fixed variables may form a part of a feasible

integer solution. Failure means that the set of fixed variables cannot form a

feasible integer solution in the way they are currently fixed. This is evidenced

by the fact that failure implies one of the variables to be fixed at zero or one

remains fractional at the optimum even though it's fractional value adversely

effects the optimal solution value.

In order to formalize the driving in and driving out of variables process

into a branch and bound search, some notation is required. Let variable V be

the current target value which the reoptimized linear program should obtain if

the driving in or driving out operation is successful. Let K be the current

number of variables driven in or out. Let LIST be an ordered list of variables

:o J

-8-

X(j,t) where LIST(Z) is the variable in position of the list.

BRANCH AND BOUND SEARCH ALGORITHMk

STEP 0 Initialization

Set V- 0, K O, LIST -'@

Go to STEP 1

STEP 1 Test for Feasibility and Variable Selection

If the current solution to the linear program is all integer SE

FEASIBLE - 'TRUE' and STOP. Else find the largest fractional variab X(j,t).

If there are ties break them by selecting the X(j,t) with the largest _. Set

K - K + 1 and LIST(K) equal to the chosen variable. Go to STEP 2.

STEP 2 Driving in Variables

Set V - V + 1. Set the objective function coefficient of the variable

LIST(K) to plus one and reoptimize the resulting linear program. If the optimal

solution value is equal to V go to STEP 1. Else go to STEP 3.

STEP 3 Driving out Variables

Set V - V - 1. Set the objective function coefficient of the variable

LIST(K) to minus one and reoptimize the resulting linear program. If the optimal

solution value is equal to V go to STEP 1. Else go to STEP 4.

STEP 4 Drop Variable

Set the objective function coefficient of the variable LIST(K) to zero.

Remove LIST(K) from LIST Set K K - 1. If K > 0 go to STEP 5. Else set

FEASIBLE , 'FALSE' and STOP.

STEP 5 Backtracking

If the objective function coefficient of the variable LIST(K) is plus

one, go to STEP 3. Else go to STEP 4.

END.

• ,' . ., ,. '. -. . ' -. . - " -" "" .' . '. ' ": " - ' , ' , - - .- ' . ', . " .', - . ." -' .

If the algorithm stops at STEP 1, then a feasible : er solutidn has

been discovered which gives a schedule completing by time D U Lt stops

at STEP 4, then the problem has no solution completing by time T.

5. PROBLEM EXPANSION

Next this job shop scheduling model and the B..C. AND B,-M SEAR&H

ALGORITID are incorporated into an algorithm for finding an optimal makespan

solution. The model and BRANCH AND BOLN-D SEARCH ALGORITD provide a method of

proving whether or not there exists a feasible solution completing by time T

Hence the optimal completion time may be determined by beginning -4ith any

feasible schedule and cutting off the horizon incrementally until an infeasible

horizon is reached. If this horizon shortening procedure is to be efficient,

a good starting upper bound is needed to reduce the number of time horizons

examined.

In order to generate good upper bounds a problem expanding approach is

utilized as follows. Initially, the job shop scheduling problem with only the

first operation of each item is solved. This is a trivial problem since assign-

ing the jobs on the required machines in any order is optimal. At stage z

the problem P of optimally scheduling only the first z operations on eachzI
item is solved via horizon shortening. The optimal completion time for P isz

T . In order to find a good upper bound UB on problem P from which to be-
z z z

gin the horizon shortening, the optimal schedule from problem P is used as"z-1

a schedule for the first z-1 operations on each item. Then all of the zth

operations of the items are scheduled by secuentially appending them to the

optimal schedule for P accordin- to the rule that the operation with the
z-1

earliest feasible start time is scheduled next. The variable UB is assioned
z

the value of the resulting comletion time o this euuristic schedule. The

-10-

horizon shortening begins by applying the model to seek a schedule completing

by T = UB - 1. The optimal solution Tz_ 1 to problem P provides a
z z-l z-i

lower bound LB on problem P Hence if a schedule is found for problem P
z z z

which completes by LB = T 1 then no further shortening is necessary. Let
z 1

S = max s. When subproblem PS is solved, the optimal completion time
i=l,... ,I

for the entire problem is TS.

In order to formalize the problem expanding method define P (T) toz

be the model of the job shop scheduling problem which includes only the first z

operations of each item and admitting only schedules which complete by time T.

Then the algorithm for finding an optimal makespan solution can be stated as

follows:

PROBLEM EXPANDING ALGORITHM FOR JOB SHOP SCHEDULING.

STEP 1 Initialization

Set z - 1. Solve P . Go to STEP 2.z

STEP 2 Check for Inclusion of all Operations

If z = S STOP. The optimal completion time is T Else set z - z + 1
S,

and go to STEP 3.

STEP 3 Find Upper Bound and Lower Bound on Current Subproblem

Set LB - T and determine the heuristic upper bound LTB . Set
z z-1 z

T UB and go to STEP 4.
z

STEP 4 Determine whether there is a Schedule Completing by T-1

Solve the model P (T-l) via BRANCH AND BOUND SEARCH ALGORITHM. If0 z

FEASIBLE = "FALSE" set T - T and go to STEP 2. Else go to STEP 5.z

STEP 5 Horizon Shortening

Set T -T- 1. If T LB set T -T and go to STEP 2. Else
z z

go to STEP 4.

END.

• ..-. -II-

In the problem expansion solutic process for computation it is

necessary to generate S-I linear programs in order to solve the S-1 non-

trivial subproblems. Furthermore the computational cost of finding an initial

feasible solution to each linear program via a phase I procedure car. be elimin-

ated by the use of a crash start. The crash start for subproblem P is con-" z

sidered first. Then the method for solving P using a single linear program-

ming formulation will be indicated.

Begin the horizon shortening procedure at stage z by setting up the

model P (UBz). A feasible solution to P (UBz) is defined by setting X(j,t)
z z z z

to one for t equal to the start time of operation j in the schedule defining

the completion time UB and zero otherwise. Hence a feasible tableau for

P (UB) car. be obtained by pivoting into solution the variables with value one
z z

in the feasible solution corresponding to the schedule defining UB . This
z

crash start can be obtained by N pivot steps.

It is necessary to set up only S-1 linear programs, one for each non-

trivial subproblem P , because in general the model P (T-1) can be obtained
" Zz

- '- from the model P (T). This can be accomplished in either of two ways. One
z

way is to set the objective function coefficients of the variables X(ni,t.) for

ti T - d(n.) i i I corresponding to operations completing at time T

in model P (T) to minus one and reoptimize via a primal simplex algorithm.
z ()

Since the objective function is maximization these variables will only appear in

a basic optimal solution if there is no feasible continuous solution which

completes by time T-1. Such a situation will be evident if the optimal value

of the objective function is negative. The second way to obtain model Pz (T-1)

from P (T) is to add the constraint
ll z

'- •-12-

x(n i ti Q 0
i<"i=l,..., I

where again ti = T - d(ni). Then reoptimize the current linear program via

a dual simpley algorithm. Either of these methods of obtaining modEl P (T-1)
z

from model P (T) means that upor obtaining P (T-l) one already knows whether
z z

or not the linear program is feasible and if it is feasible, already has a basic

solution with which to begin BRANCH AND BOUND SEARCH ALGORITHM.

6. COMPUTATIONAL EXPERIENCE

The algorithm has been used to solve 44 test problems which had from four

-- to six machines and from four to eight items. In the thirty five problems for

which results are shown in Tables I - V, every item is processed exactly once

or each machine. The processing order for each item was chosen by a random draw.

Each operation required a unit time to complete. It should be noted that even

though all operations have unit times the problem is NP hard as long as the

number of machines is at least three, see [8]. Unit operation times were used

to hold down the sizes of the linear programs to be solved.

The dimensions of the linear programs depend upon the horizon time T

and the total processing time for each item. For item i the number of variables

required is

ni

(T - Z d(j) + 1) s.
j =b

corresponding to the number of possible starting times item i has. Note that for

an item with a long total processing time relative to T only a few variables are

needed, but for an item with a short total processing time relative to T many

variables are needed. For item i there are s. constraints of the form of
(

(1) needed and there are

,,f

%3 - .. . - . ..-

-13-

n. "1

(T - E d(j) + 1) (s.-l)
j=b.

constraints of the form of (2) needed. The number of constraints of the :orm of

(3) depends on T, the operation time data and the precedence relations. An

upper bound on the number of constraints of the form of (3) is TM. The memory

available on the computer used for testing the algorithm limited the testing to

linear programs having at most 350 variables and 400 constraints. The linear

programs for the problems in Tables II, IV and V all usually approached these

limits.

According to the algorithm, a series of models P (T) for z 1,2,...,S
z

must be solved in order to solve an entire problem. Such a model is solved by

either proving it is infeasible or else by learning a feasible integer solution

for it. For the thirty five problems of Tables I - V, the most common way in

which an infeasible model was shown to be infeasible was by proving that the

linear prograrming relaxation corresponding to the model was infeasible. In the

149 subproblems which were proven to be infeasible in order to solve this group

of 35 problems, there was only one subproblem for which the linear programming

relaxation had a feasible solution while the corresponding integer program was

infeasible. In this case tl.e driving in and driving out operations failed for

the first variable selected. This proved that while a feasible linear programming

solution existed there was no feasible integer programming solution. This oc-

curred in problem 4 of Table V.

For the problems in Tables I - V, the most common way of learning an

integer solution, in a model which contained one, was by carrying out a sequence

of driving in operations, without ever resorting to the driving out operation

or variable dropping. Furthermore, usually fewer than variables had to be
2

~ ~ ~ % -. ~ ~ *,*~**'.*.*%**. .~ * °*. , .'.

-...,

-14-

driven in before an integer solution emerged. Of all the models solved which

had integer solutions for the problems in Tables I - V, only S models required

the driving out operation and in only one model was it actually necessary to

drop variables and backtrack. The problems in which these operations were re-

quired are indicated in the notes associated with each table.

The CPU times in Tables I - V show that when the number of items is equal

to the number of machines the solution times are usually not long, but when the

number of items exceeds the number of machines the solution time increased

markedly. The long solution times are due to the fact that some of the linear

programs require a large number of pivots tD solve and the linear programming

code which was implemented was not very sophisticated. The long solution times

do not result from long branc& and bound searches. The largest branch and bound

search tree contained 16 nodes, but most had only 4 or 5 nodes.

In the nine problems for which results are shown in Table VI each item is

processed on a given machine at most once, but each item may not need to be

processed on every machine. The processing order for each item is again chosen

at random. The operation times for these problems were chosen at random from

the integers between one and nine. The first seven of these problems were

generated by the authors' code. The eighth problem is taken from Lenstra [9]

and the ninth problem is taken from Nemeti [12].

For the problems of Table VI every model instance which was infeasible

was proven to be infeasible by showing that the linear programming relaxation

of the model was infeasible. Also for every model instance which had a

feasible integer solution, an integer solution was learned by carrying out a

sequence of driving in operations, without ever resorting to the driving out

Noperation or variable dropping. Again, usually fewer than 7 variables had

to be driven in before an integer solution was learned. As with the unit time

*5"

-15-

problem the long solution times result from the inefficiency of the linear

programming code and not from long branch and bound searches.

7. CONCLUSIONS

The computational experience presented supports three observations which

provide encouragement in regard to the computational potential of this approach.

First, integer infeasibility of a constraint set defined by (1), (2), and (3)

is usually equivalent to infeasibility in the linear programming relaxation of

that constraint set. Second, when integer solutions to a constraint set defined

by (1), (2), and (3) exist, they frequently are learned by carrying out a se-

quence of consecutive driving in and/or driving out operations on variables.

The operation of dropping a selected variable and backtracking is seldom re-
N

quired. Third, usually fewer than T driving in or driving out operations need

to be carried out in order to learn an integer solution. Therefore while the

branch and bound search algorithm is, in the worst case, a complete enumeration

method, preliminary computational experience above indicates that for problems

of the sizes considered, the search trees are quite small and hence are not

computationally difficult for the method. In other words, the method given in

this paper has been limited to solving relatively small problems because of the

memory requirements of the resulting linear programming problems that have to be

solved and not by the computational effort.

In order to determine whether these results will hold up for larger problems,

future work will focus on reducing memory requirements and improving the ef-

ficiency of the linear programming solution method. Work on these problems is

" contemplated from two directions. The first is to study the possibility of re-

ducing the size of the problem by preprocessing. The number of variables can be

reduced by N if each of the equations of the form of (1) is solved and sub-

stitution is made. A search for redundant zonstraints may also be implemented.

I'

-16-

The second direction in which improvement will be sought is via the implementation

of the Pivot and Probe Algorithm [13]. This is an algorithm which attempts to

take advantage of redundancy in the constraint set to improve efficiency; by

updating only a relevant subset of the constraints when carrying out a pivot. The

Pivot and Probe Algorithm also reduces memory requirements. This algorithm has

yielded 80 percent reduction in computation time required for randomly generated

linear programming problems relative to codes which update the full tableau.

If these efforts are able to increase the efficiency of the linear program

solution process and to reduce memory requirements for the algorithms in this

paper then it will be possible to test them on larger problems.

-7:,

-17-

TABLE I

NOTES

PROBLE1 CPU TIME
M = 4, I = 5, N = 20 IN SECONDS

The processing order was chosen 1 6

at random and all operation times are 2 4

one. Problem 3 required the 3 21

dropping of 4 variables and 4 3

4 backtrack steps. No other 5 4

problem required variables to be

Avg. 7.6
dropped or driven out

TABLE II

NOTES

M 4, I = 8, N = 32 PROBLEM CPU TIME

IN SECONDS

The processing order was chosen 1 83

at random and all operation times 2 141

are one. None of the problems 3 840

required the driving out operation 4 171

or dropping of variables and 5 285

backtracking. Avg. 304

-18-

TABLE III

NOTES

.. M 5, I = 5, N = 25 PROBLEM CPU TIME

IN SECONDS

The processing order was chosen at 1 32

random and all operation times are 2 2

one. Problem I required the 3 10

driving out operation on one variable 4 9

and Problem 7 required it on two 5 5

variables. The remaining problems 6 29

did not require variable dropping 7 20

or driving out. 8 6

9 16

10 16

Avg. 14.5

TABLE IV

NOTES

M 5, F = 7, N = 35 PROBLEM CPU TIME

IN SECONDS

The processing order was chosen at 1 416

random and all operations times are 2 171

one. Problems 2, 4, and 5 each re- 3 843

quired the driving out operations on 4 1361

one variable. The other problems did 5 261

not require variable dropping or
Av.g 370.4

driving out.

t ._, - -" , -;.. . - .. - -_. , -* " - . .- " - -. ."" " ' ' - " -" " " "' " " '

-19-

TABLE V

NOTES

M = 6, I = 6, N = 36 PROBLEM CPU TIME

IN SECONDS

The processing order was chosen at 1 67

random and all operation times are 2 175

one. In problem 4 a linear program 3 116

in P6 was feasible while the corres- 4 168

ponding integer program was feasible. 5 137

The driving out operation was required 6 132

for one variable in problem 9. No 7 114

other problem required variable drop- 8 3

ping or driving out. 9 395

10 38

Avg. 134.5

TABLE VI

NOTES

M 4 PROBLEM ITEMS OPERATIONS CPU TIMES

IN SECONDS

Processing orders for each item 1 5 18 438

were chosen at random. The pro- 2 5 18 196

cessing times vary between I and 3 5 18 8

9. Neither the driving out opera- 4 5 18 174

tion nor dropping of variables was 5 6 22 57

required for any of these problems. 6 6 24 1212

Problem 8 is taken from [8] and 7 6 24 360

problem 9 is taken from [121. 8 4 13 1297

9 5 13 34

Avg. 386.2

..,..

."20-

8. REFERENCES

[1] Kenneth R. Baker, Introduction to Sequencing and Scheduling, John Wiley
and Sons, New York, 1974.

2] E. Balas, "Machine Sequencing Via Disjunction Graphs: An Implicit Enumera-
tion Algorithm," Operations Research 17: 941-957, 1969.

3] E. Balas, "Disjunctive Programming and a Hierarchy of Relaxations for
Discrete Optimization Problems," Management Science Research ReportMSRR 492, Carnegie-Mellon University.

4] R. Bellman, A. E. Esogbue and I. Nabeshima, "International Series in
Modern Applied Mathematics and Computer Science," Volume 4: Mathematical

Aspects of Scheduling and Applications, Pergamon Press, Oxford, 1982.

5] E. H. Bowman, "The Scheduling Sequencing Problem," Operations Research 7(5):
621-624, 1959.

[6] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Scheduling,

Addison Wesley, Reading Mass. 1967.

7] Simon French, Sequencing and Scheduling: An Introduction to the Mathematics
of the Job Shop, Ellis Horwood Ltd., Chichester, England, 1982.

81 M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to

the Theory of NP Completeness, Freeman, 1979.

9] J. K. Lenstra, Sequencing by Enumeration Methods, Mathematical Center Tract 67

Mathematisch Centrum, Amsterdam, 1974.

[10] A. S. Manne, "On the Job Shop Scheduling Problem," Operations Research 8(2):
219-223, 1969.

il] John F.Muth and Gerald L. Thompson (editors), Industrial Scheduling.
Prentice Hall Inc. Englewood Cliffs, New Jersey, 1963.

[12] L. Nemeti, "Das Reichenfolge problem in der Fertigungspragrammiersing und
Linearplanung mit logischen Bedigungen," Mathematika 6(29), 1964, 87-99.

[13] A. P. Sethi and G. L. Thompson, "The Pivot and Probe Algorithm for Solving a
Linear Program," Mathematical Programming, April 1984.

[14] A. E. Story and H. M. Wagner, "Computational Experience with Integer Pro-

gramming for Jobshop Scheduling," in [111, pp. 207-219.

[15] H. M. Wagner, "An Integer Linear Programming Model for Machine Scheduling,"

Naval Research Logistics quarterly 6(2), 131-140, 1959.

ii,, --- ' j ---. % -,'-% "-.% -.- .----. ' -"."v .". -.. '". : : ' ."..

- - - . -. - . '" .-. - . , . r % .
I

'. . . . -.

MSRR # 500 . ' "

A Problem Expanding Parametric Programminz Method Technical Renort

for Solving the Job Shop Scheduling Problem Aoril 1984

MSRR 500

Gerald L. Thompson N00014-82-K-0329

Daniel J. Zawack NR 047-o48

PEVOCOWIG ORGANIZATION .4AMI!AO 4QADOC5S IQ ~~AS 4AM :'-Ci Ps . AQ1

Graduate School of Industrial Administration NEA A WORK jP11T mUmBEAS

Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

:"'C A

Personnel and Training Research Programs April 1984

Office of Naval Research (Code 434) .

Arlington, VA 22217 20

",., 4AI!OTRING ^GiENCY 4i../iL A AOQJRZSS(II aUllei, r C.ntri.Uls O .e) 1. SECURITY CLiASL. (at thi

I =mOI

.-

'S O:Sqtgt,?U ON STA?![MENT of , !tq l .ps,")

DISTRIBUTION STATEMENT A

Approved for public relocsel
Distribtio Unitmited

1S. Q1$'ri8UTION STAT JdE4N r (it tie oerect slartop In pleo0 ;0. i dilf mw Iw Repo")
-P I

8.a sUPP0i.&1EMYARY mioras

-'-. pI

19. KCY WOROS CafflMuan rwoe0 s. d SI 3I eoor7 ild Iienit by lock nun~)

job shop scheduling algorithm, branch and bound, zero one integer program

parametric linear programming, problem expansion

2e. ASSTRACT (Csife n ,.vowe. side It ftesw a" iJmttp e ck mmoor

A new zero one integer programming model for the job shop scheduling

problem with minimum makespan criterion f pfesented. The algorithm consist9

of two parts: (a) a branch and bound parametric linear programming code for:

solving the job shop problem with fixed completion time; (b) a problem ex-

panding algorithm for finding the optimal completion time.

Computational experience for problems having up to 30 operations is pre-

sented. The largest problem solved was limited by memorv space, not computa

tion time. Efforts are under way to- imo r'v, the Affigiang--Qi the alzori. nml

.." V,'c,, an,"So redUCe its memory requirements.
D't1 1 0. 1 UOSTlOz. 0, wOV 4S iIOSOLZITt

tCCPSiN 0102-OI.- 4601 __________OF_______________ _0'7 lllllii~~iNlY ..ASSICAIi~lON4 O! TIl .tiGg rJ~ih l~..l dn.lia

IfAi

.~r a .. .

Ad~ 4 x

$3'IF
4A 't

JAL-

