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0. Introduction

In the original research proposal for the grant being

reported on, there were essentially three distinct, albeit

related, projects. This report, for ease of writing, reading,

and evaluation, is built around these projects in the following

fashion: For each project I have included a complete recapitulation

of what was presented in the original proposal. (A reader who

is familiar with, and still remembers the details of, the original

proposal can bypass the recapitulation.) Following this is, in

each of the three cases, a report on the progress made towards

realizing the goals of the proposal. The reports are generally

rather brief, since they merely summarize results already

presented in research papers, to which the reader can turn to

for more details. Following each report is a brief comment on

further research avenues (if any) opened up by work done to date.

Following the above three sections is a discussion of some

work on empirical processes that was not originally foreseen in

the proposal, but grew out of other projects in a natural way.

This concludes the main body of the report. Lists of papers and

conferences attended follow.

For the sake of completeness, we commence by including,

directly from the original proposal, some background material

on random fields.
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1. Sample functions of random fields

Random fields are simply stochastic processes, X(tj whose

"time" parameter, t, varies over some Euclidean space, rather than

over the real line. The simplest examples of these occur when

the parameter space in question is two-dimensional, so that X(t)

is simply some sort of random surface. When the parameter space

is three dimensional we have a ficid (such as ore concentration

in a geological site) that varies over space, while when the

dimension increases to four we are generally involved with space-

time problems.

The last decade and a half has seen a large amount of

scientific activity devoted to studying random fields - activity

that has divided the subject into two basically distinct areas.

The first covers problems in which the parameter t varies over

a lattice, or similar, subset of Euclidean N-space. The models

generally studied here, apart from being of intrinsic mathematical

interest, are closely related to models of Statistical Mechanics

such as the famed Ising model of magnetism. However, as interesting

and important as these problems are, we shall, throughout this

proposal, be concerned with the second class of problems - those

that arise when the parameter is allowed to vary continuously over

an appropriate region of N-space.

The theory of continuous parameter random fields is now

quite substantial, and a large portion of it has recently been

organised and coordinated in the monograph Adler (1). Roughly

speaking, this theory can be summarised by breaking it into two

distinct cases, as follows. In the first case, we assume that the

sample functions (realisations) of the field satisfy certain

regularity conditions, such as continuity, differentiability, etc.

It is then possible to study such problems as the (statistical)

distribution of the maximum value of the field, and the rate at

which the field acrosses" (a term which requires careful definition)

various levels. These problems turn out to be very important in

applications of random fields to the study of rough surfaces,
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as discussed in Section 2, below.

The second class of problems in the study of continuous
parameter random fields arises when regularity assumptions such

as those mentioned above are not imposed. Although the fields
studied in this case can also be used to model natural phenomena,
such as turbulence, geographical terrain and clusters of inter-
stellar matter (see, esp. Mandelbrot (11)) they are primarily of

mathematical interest, and are related to concepts such as local

time and Hausdorff dimension. Since this class of random fields
has only peripheral connection with the main subject of this

proposal we shall say no more about it.

Although, as we have already mentioned, the theory of
continuous parameter random fields with smooth sample functions is

already quite substantial, it is important to note that in one

sense at least it is still very restricted. This is a consequence

of the fact that throughout the literature it is nearly always

assumed that the random field being studied is Gaussian (normal),

an assumption that has a substantial simplifying effect on the

mathematics. There are two basic difficulties with such an assumption.
The first, which comes from purely practical considerations, is
that real life random fields, to which one might like to apply the

theory, are often not Gaussian. For example, the rough metallic
surfaces discussed in more detail in Section 2 are now known to

be distinctly non-Gaussian (Adler (2)). Assuming, incorrectly,
that they are Gaussian leads to the development of an unrealistic
theory of surface structure - a theory that often fails to tie

in with experiment. The second difficulty with the Gaussian assumption

is that it hamstrings the Mathematician by limiting the phenomena
available for his investigation to those that occur in this situation

only.

In the following three sections we shall describe three projects

in the study of random fields, ranging from the very applied to the
purely theoretical. The common thread that runs through the three

projects is the aim of extending both theory and applications of
random fields by allowing for the use and appropriate development

of non-Gaussian models..
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2. Random field models of rough surfaces

It is now a well established fact that all surfaces used in

engineering practice are rough when judged by the standards of

molecular dimensions. This fact has played a major role in the

development of the science and technology of Tribology, an area

that, among other problems, is concerned with the nature of contact

between surfaces under load and its relationship to problems such

as friction, wear, and the conduction of heat and electricity

between surfaces in contact.

Because of the difficulties inherent in observing what

happens when two surfaces are forced together, Tribology has made

substantial use of mathematical models. The basic idea underlying

this has been to develop models of surface structure (at the

microscopic level) and then apply these models, together with, for

example, a theory of surface deformation, to predict observable

(macroscopic) phenomena. Although substantial progress has been

made in this area over the past fifteen years (see Archard et. al.

(5) for a recent review) there is still very often disconcerting

disagreement between theory and practice. This is despite the fact

that very sophisticated random field models of rough surfaces have

been employed.

It is the writer's sincere belief that this disagreement has

a very simple explanation, and a reasonably simple remedy. Without

exception, the engineering literature on rough surfaces models these

random fields as being Gaussian, an assumption totally contra-

indicated by almost all available data. This point was made recently

in Adler and Firman (3), where both old and new data were presented

and analysed to support this zlaim. Given, then, the non-Gaussian

nature of true surfaces, it is not at all surprising that Gaussian

models, regardless of their level of sophistication, fail to yield

a theory that squares with practice.

The solution to this problem lies in the development of

more realistic, necessarily non-Gaussian, models of rough surfaces.

One such model, called the "inverted chi-squared" random field,has

already been introduced (Adler and Firman (3)) and applied, in a

much simplified form, and with surprising success, to the problem of

determining the relationship between the true area of contact of
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two rough surfaces and the force applied to bring them together

(Adler (2)). The success of this simple application bodes well

for further exploitation of this basic model. We propose to

undertake such an exploitation in two distinct steps.

In Adler and Firman (3) the basic properties of inverted

chi-squared random fields are derived in some detail. These properties

include the height distribution of local maxima, the curvature

distribution of maxima, etc., all of which form the basic building

blocks of future application. The formulae that arose in that

study are, however, extremely involved and awkward to manipulate.

Thus, before any serious application of these fields can be made,

it will be necessary to obtain simple approximations to these

formulae that make further investigation feasible. This is the

first step.

The second step involves applying the approximations to

build inverted chi-squared models of rough surfaces. In principle,

at least,this is reasonably straightforward, for all that really

needs to be done is to replace the Gaussian assumption in existing

models with the inverted chi-squared alternative. However, in

practice, it can be expected that this will be anything but

simple, for, along with substantial mdthematical analysis, the

non-Gaussian case can be expected to involve a substantial amount

of numerical (computer) work to evaluate formulae that were often

much simpler in the Gaussian case.

Finally, beyond the above application, there are a

number of properties of inverted chi-squared random fields that

are of substantial independent interest and that still remain to

be investigated. For example, it is already known that these

fields do not behave, in the neighbourhood of their local maxima,

in anything like a Gaussian fashion. (See Adler(2) for details.)

Thus it would be a most interesting, and undoubtedly worthwhile,

task to investigate such aspects of the sample function behaviour

of inverted chi-squared fields as their behaviour in the neighbour-

hood of high local maxima.

Thus, we have proposed here three sub-projects: the simplif-

ication of formulae describing local maxima, their application

to real problems, and the more detailed behaviour of local

maxima of chi-squared fields. We now describe

5



Progress

In late 1982 the general area of research outlined above was

given to a doctoral student, Michael Aronowich, as a doctoral

thesis problem. Since then, substantial progress, together with

Aronowich, has been made. We began with the problem of the

difficult formulae describing height distributions, etc., of

local maxima. Here we soon realised that, unfortunately, many of

the latter formulae in Adler and Firman (3) were incorrect, and

so had to begin this project from scratch. Nevertheless, we

were able to redo the calculations, and at the same time

discover that when the "degree of freedom" parameter of a chi-

squared process was odd, substantial simplification could be

realised in the above formulae. The results of this work have

been written up in a paper "Behaviour of X2 processes at extrema",

recently submitted for publication.

Before turning to the problem of exploiting these results

in an actual modelling application it seemed sensible to complete

the theoretical study of chi-squared process behaviour at extrema

by developing "Slepian model processes" for them. This turned

out to be rather difficult, for although the basic theory here

is precisely as in the Gaussian case, the computations and

manipulations required in the chi-squared analogue were horrendous.

Nevertheless, hard work and patience eventually yielded results,

which will be described in a paper under preparation. Basically,

the results obtained indicate that at high levels chi-squared

maxima, after appropriate normalization, are not too different

from their Gaussian counterparts. However, at low levels, extrema

take a noticeably different form. Since low levels of chi-suared

processes correspond to high levels of the "inverted" process,

and it is the latter that is important for the modelling of

rough surface behaviour, these results have potentially valuable

applied significance. They also, of course, indicate successful

completion of the third sub-project listed above.

Very little progress has been made in the application of these

results to actual modelling problems, such as the modelling of

rough surfaces. However the tools are now ready, and we hope to

carry out such applications in the coming year under a continuation

of the grant.



3. Differentiating between Gaussian and non-Gaussian fields

A very simple problem that arises as soon as one starts

thinking about non-Gaussian stochastic, processes and random fields
is the following: Given some data, the realisation of a process

or field, how does one determine if the data comes from a Gaussian

or non-Gaussian model? Despite the simplicity of this question

(and the ubiquity of Gaussian models) it is rather surprising that
there is no satisfactory answer to it in the statistical literature

other than that based on polyspectra.

The polyspectra approach to this problem (see, for example
Brillinger (6)) has not been, we feel, very successful. The

primary reason for this lies in the fact that the polyspectra

procedure relies on testing for departure from Gaussianess in

the cumulant structure of the process, and this is an aspect of
any process that is singularly uninteresting and uninformaative.

Usually, the practicioner, and, indeed, the theoretician, is far more
interested in the sample path structure of a process or field;

that is, basic sample path properties, how often a process reaches

a given level, and so forth.

Consequently, we propose a procedure for differentiating

between Gaussian and non-Gaussian processes and fields by looking

at their level crossing rates. (For information on these see, for
processes, Cramer and Leadbetter (7 ), and for fields, Adler(l).)
The basic idea here is that since Gaussian processes have a

characteristic level crossing rate, and that under appropriate

conditions numbers of level crossings are known to satisfy central

limit theorems (e.g. Cuzick ( 8)) level crossing rates can be
used as the basis of test statistics for Gaussianess.

Preliminary investigation shows this to be a powerful and

efficient method for testing for normality. However a considerable

amount of analytic work still remains to be done, as well as
application of this method to various data sets and to simulations,

before it can be used with confidence. Indeed, this problem is
probably substantial enough in its own right to be the subject

of an independent investigation. However, since it is intricately

related with the problem discussed in Section 2, it is most

likely best considered at the same time.
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Progress

Of the main projects of the proposal, progress on this

project has been the least satisfying, primarily because of

personnel problems. Early in the year it became clear that

although the idea of basing tests for Gaussianess on level

crossings was a promising avenue, it was unlikely that exact

statistical tests, which were powerful over a wide range of

processes (i.e. covariance functions), could be developed.

Thus the natural path to take was that of Monte Carlo testing;

i.e. Given a realisation of some stochastic process -,

hypothesis Gaussian, use it to generate a number o. laussian

processes with the same parameters (i.e. covarianc unctions)

and then compare the original realisation to the ( _ )nstruction

Gaussian) simulations.

Such a test procedure relies, naturally, on quick and

efficient computing procedures if it is to be useful. More

importantly, in order to determine whether or not the procedure

is statistically efficient, it is necessary in the early stages

to conduct a massive simulation study of its properties.

During the year a variety of computing assistants

developed a battery of computer programs to tackle the above

task. This took much longer than it should have since good

programmers tended to disappear quite quickly to better paying

jobs outside of the Technion and poorer programmers... (The less

said about these, the better.) In any case, by the end of the

year programs to conduct a simulation study were ready, and some

very early, preliminary, but promising, results obtained. I

estimate that at this stage I am no more than two-three assistant

months away from a set of nice results on testing for Gaussianess

in one-parameter processes, and a corresponding paper.

Similar results for random fields, beacause of added computational

problems, are probably another six-eight assistant months in

the future.



4. Some theoretical nrnhlas

The problems described in the previous two sections

were of an essentially applied r.ture, and the theoretical

problems that were raised there arose as natural spin-offs of

such investigations. However, it is envisaged that at the same

time as the more applied aspects of this proposal will be carried

out,fundamental, theoretical problems related to random fields will

also be investigated. These, by their very nature, cannot be

so well planned, for theoretical progress is always much more

spasmodic than its applied counterpart. Nevertheless, it is

envisaged that the following problems, at least, will be tackled.

It is often very easy to give the distribution of the

maximum value of a stochastic process X(t) as t varies over some

interval on the line. (The classic case, X(t) Brownian motion,

is a textbook problem.) However, rather surprisinqly, when we

move to the problem of the distribution of the maximum of a random

field it turns out that there is not a single non-trivial field

for which this distribution is known. Goodman (13) has used some

very elegant Banach space methods to obtain bounds on this

distribution for the case X(t) a multi-parameter Brownian motion,

and it seems most likely that his approach can be generalised to

cover a wider range of fields. We propose to use this approach,

among others, to attack this problem.

A recent extension of the idea of random processes and fields

has been to the notion of "set-indexed" processes, as discussed,

for example, in Dudley (9,10).Here, the notion of entropy has

been used to measure so-called "continuity classes" of sets for

Gaussian processes. It would be of considerable interest to extend

this theory from the Gaussian case to processes taking iadependent

increments over disjoint sets. We propose to in fact carry out

such an investigation, and construct and investigate such processes

by combining the work of Pyke (12) on Gaussian set-indexed processes

and Adler et.al. (4) on random fields with independent increments.

Progress

Progress on both of the above problems has been very

pleasing. As regards the maximum problem, we succeeding in

obtaining quite good upper and lower bounds to the probability



that the maximum of a two-parameter "pyramidal covariance

function" field exceeds a given value. The field in question

is a two-parameter version of the so-called "Slepian" or

"triangular covariance" process on the line. This was the

first tine that such results have been given for stationary

random fields, and the results will be published in the Annals

of Probability in the near future.

The problem of the existence and continuity of set indexed

processes with independent increments was also solved, in a

joint paper with Professor Paul Feigin, also to be published

in the Annals of Probability. We refer the reader to the paper

itself for details.

An unexpected development during the year was a

collaboration with Professor L. D. Brown of Cornell University,

which resulted in the solution of a very old problem on

empirical processes, described below.

5. Empirical processes.

Since none of the empirical process work has yet been

written up, we shall describe it in some detail. The problem

is as follows:

Let X1,X21 ...,Xn be a sequence of i.i.d. observations
from some k-dimensional distribution function F, and let Fn
be the multi-parameter empirical distribution function based

on the Xi. Then, under very weak assumptions on F,

n(F n - F) converges weakly to a limit process, say WF, that

is a multi-parameter generalisation of the Brownian bridge.

For statistical hypothesis testing, a statistic of interest

is the Kolmogorov-Smirnov statistic sup(F (x) - F(x)), whose
n

distribution, asymptotically, can be obtained from the distrib-

ution of sup(WF(x)). In the multi-parameter situation under

consideration the distribution of the Kolmogorov-Smirnov

statistic depends on F so that, unlike the one-dimensional

situation, it is not distribution free. However, the situation

is even worse than this, since except for the case of F uniform

on the unit square, nothing was known about the distribution

of sup(WF(x)).
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What Brown and I managed to show was the following: There

exist constants c(F,k) and C(k) such that for all A>0
(F 2 (k-1) e-2 X2 2( -1)2X

c(,k)X 2 e < Pisup WF(x) >X} < C(k)X 2 (kl)e2
x

When k=2 the constants can be more or less identified, thus

permitting the development of Kolmogorov-Smirnov tests for

bivariate problems. For general k the bound can be used to

obtain sharp upper-lower class results for the growth of

sup (n (x) - F(x)) with n.

These results are currently being written up in two

papers; one with the bounds above, their proofs, and the upper-

lower class theorems, and one explaining the significance of

these results to statisticians.

A rather surprising and pleasing off-shoot of this

work is that it seems that it will be possible to apply the

methodology of the proofs to study the tail behaviour of the

suprema of a wide class of Gaussian processes, and to

remove the E in the well-known Fernique-Landau-Marcus-Shepp

result that for large enough ? and all E>O,

log(P{sup X(t)>Xj) < 2{ c - (sup varX(t)) 1.
t t

This work is still in progress.



References

1. Adler R.J. 1981 The Geometry of Random Fields Wiley, London.

2. Adler R.J. 1981 Random iield models in surface science

Bull. nt. Statist. Inst. in press.

3. Adler R.J. & Firman D. 1981 A non-Gaussian model for random

surfaces Philos. Trans. Ro. Soc. in press.

4. Adler R.J., Monrad D. , Scissors R. & Wilson R.J. 1982

Representations, decompositions, and sample function

continuity of random fields with independent increments

Stoch. Proc. Appl. in press

5. Archard J.F., Hunt R.T. & Onions R.A. 1975 Stylus profilometry

and the analysis of the contact of rough surfaces. In

The Mechanics of Ccntact Between Deformable Bodies (eds.

de Pater & Kalker) Delft Univ. Press, Belgium.

6. Brillinger D. 1975 Time Series, Data Analysis and Theory

Holt, Rinehart & Winston, New York.

7. Cramer H. & Leadbetter M.R. Stationary and Related Stochastic

Processes Wiley, New York.

8. Cuzick J. 1976 A central limit theorem for the number of zeros

of a stationary Gaussian process Ann. Probability 4 547-556.

9. Dudley R.M. 1973 Sample functions of the Gaussian process

Ann. Probability 1 66-103.

10. Dudley R.M. 1976 Central limit theorems for empirical measures

Ann. Probability 6 899-929.

11. Mandelbrot B. 1977 Fractals: Form, Chance, and Dimension

Freeman, San Francisco.

12. Pyke R. 1977 The Haar function construction of Brownian motion

indexed by sets Technical Report #35 Mathematics Department,

University of Washington.

13. Goodman V. 1976 Distribution estimates for functionals of

the two parameter Wiener process Ann. Probability 4 977-982.

12



6. Publications prepared under the grant

1. Random fields, Invited survey article to appear in

Encyclopedia of Statistical Sciences, eds. N. Johnson

and S. Kotz, Wiley, 1984.

2. The supremum of a particular Gaussian field, accepted for

publication in Annals of Probability, 1984.

3. On the cadlaguity of random measures, (joint with P. D.

Feigin) accepted for publication in Annals of Probability, 1984.

4. Behaviour of X2 processes at extrema, (joint with A.

Aronowich), submitted.

5. Tail behaviour for the suprema of empirical processes,

(joint with L. D. Brown), in preparation.

6. Multivariate Kolmogorov-Smirnov tests, (joint with L. D.
Brown) , in preparation.

7. Conferences attended & visits

During the summer of 1983 I visited the following American

universities, to work with the following colleagues:

Cornell; Brown, Prabhu, Taqqu; 3 weeks.

MIT; Dudley; 3 days

University of Massachusetts, Amherst; Horowitz, Geman, Rosen, 3 days.

I also attended the following conferences, at which I

presented the following papers:

12th Conference for Stochastic Processes & Their Applications,

Ithaca, July 11-15, "Exact distributions of the maximum of

some Gaussian random fields".

185th INS Meeting, Toronto, August 15-18, "Some sample path

properties of random fields" (Invited paper).
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