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Introduction Equilibrium Statisticb and the Development of the Rate Constant

In a preceeding paper
I 

the transition state theory, as As was noted in Part I,
1 

the Marcus transition state theory

formulated by Marcus.
2 

was examined for the purpose of finding admirs Monte Carlo techniques for the purpose of carrying out

algorithms which can be used to develop computational forms for various averages, but it is not imediately evident how this

the theory. To that end, an arbitrary system was viewed as is possible. The abstract form of Marcus's original treatment

composed of a definite reactive subsystem which is surrounded disguises, to some extent, an underlying simplicity. This

by an environment. The local microscopic dynamics of the reactive simplicity is revealled by changing to a more model-dependent.

subsystem can be examined in isolation. Adjustments in these less abstract formulation. The work of Clyde
3 

on the self-

dynamics can be accounted for as the local subsystem is placed diffusion of argon suggests the essential steps one needs to take

into the remainder of the solution. Such a decomposition of an in order to establish contact with the Me te Carlo methods of

arbitrary system seems to imply the operation of weak to moderately averaging.

weak couplings. However, a reactive subsystem can be defined so In the following paragraphs the transition state theory is

that a sufficient amount of solvent is included with the reactant(s) outlined for both the adiabatic and diabetic limits. This sketch

to encompass all species which experience large displacements in of the theory immediately suggests the proper approach to take

the course of a reactive transition. Thus, a range of strengths it order to carry out the Monte Carlo methods of averaging or

of interaction between the reactant(s) and the local solvent in the optimization.

surroundings can be accounted for. The definition of an adiabatic transfer was considered in

In this paper we continue to consider the construction of a Part I. If a reaction proceeds through the transition state via

computational form of the transition state theory. We examine the an adiabae path. the transfer species then occupies a star of

transition state theory in a form which makes evident the mode of local, transient, and stable mechanical equilibrium for the instat
application of the Monte Carlo method in order to evaluate certain it resides in the configuration of the transition state. Further-

average values such as the energy of activation and the pre- more, an adiabatic path for a reaction is one on which the transfer

exponential factor. By examining a simple two-dimensional reactive species always occupies a state of local, transient, and stable

system, it is possible to see the emergence of some of the limits mechanical equilibrium at every point along the path. In other

on and limitations of a Monte Carlo method of simulating reactive words, in the adiabatic limit, fluctuations in the configuration

systems. of the entire system define new states into which the transfer

species moves. This movement can be defined, for the purpose

C
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oLf thermodynamic argument, to take place reversibly. Thus, for which H. is the Hamiltonian operator for the transfer species

the transfer-speciee adiabatically follows a migrating position and Hen v is associated with all other species The operator for

of equililrium. Changes in the configuration of the environment the transfer-species, Ht, is the sum of the kinetic and potential

carry the transfer-species from its initial to its final location, energy operators:

The diabatic limit, in contrast, applies to those configura-

tions for which it is impossible to define a state of local, Ht - T + V. (2)

stable mechanical equilibrium at the transition point. The

migrating species must then tunnel through the narrow remaining This operator is one-dimensional in the coordinate which coincides

barrier. As an example, one can consider the passage of an atom with the transfer-axis. The potential energy operator V spans

or ion through an annular opening in a cryptate.
4  

If the effective the initial and final configurations; it is, for example, a

radius of the annulus is less than a critical value, it is not potential energy function with a double minimum. Solutions in

possible for the migrating species to occupy a position of the Born-Oppenheimer approximation are constructed with the use

equilibrium at the centre of the ring-like structure. However, of basis functions 4av and #b6 which satisfy the local. model

if the effective radius increases, a stable position of equilibrium Hamiltonian operators

can result. For the diabatic limit, therefore, it is possible

to define a Born-Oppenheimer type of separation of the local Ka - T + Ve

reactive modes from the remaining modes of the environment. I Hb - T + Vb (3)

As will become evident for the Monte Carlo simulations, the use

of a Born-Oppenheimer type of separation of local reactive modes with

from the modes of the environment has a direct bearing only on

the evaluation of the maerix elements which are associated with Ha~a - 'esye

the transfer. The calculation of the activation energy with the Hb$b6 ' 'b6#ba (4)

use of Monte Carlo techniques is operationally the same in the

diabatic and adiabatic limits. and the indices a and b specify the physical locations of the

The total Hamiltonian operator for the system is divided into initial and final states. The indices i and 6 specify energy

two parts: states for the transfer-species at the locations a and b.

For example. Va and Vb can be local harmonic oscillator potentials

H Ht + Henv (1) Thus, #a, and 0b6 are the usual solutions to the one-dimensional

I -
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Schrtidinger equation for the oscillator. In terms of these solutions here S_ 
1

, is an element of the inverse overlap matrix. Roman

and in terms of the potential energy operators V. and Vb. one has indices cover the initial and final locations (a and b) while

Greek indices cover local energy states. The matrix element Vk-J
1

Ht - He + V Va is

- Hb + V - Vb

Vi 'kIV - VVnv (9)
where now the combinations V - V. and V - Vb operate as perturba-

tions. In defining the L-matrix elements, we have ignored the contribution

The complete eigenvalue problem is written from the kinetic energy operators of the environment which

operate in the space of the transfer species. It is not altogether

Nt - E? (6) clear that this is generally permissible for vibrational problems

as it may be for electron transfer.
5  

It is of course relatively

with the state function expanded in terms of a basis set in the simple to amend the formalism to include these T-operators in the

sa, and #b! definition of the L-matrix elements. indeed, one need only add

Tenv to V-Vj in eqn (9). Finally, the diagonal element H,, is

- i4ii, (7) given by

In the usual manner, it is now possible to find sets of equations HiYJ1 , E - - Lij~i - Tenv' (10)

with which to determine the expansion coefficients Xl. One

finds Adiabatic solutions X are defined by the solutions to the equation

H ,.t Xi, - L X (7) H X - 0. (111

where the prime on the sumnation excludes i- J6. The L-matrix The non-diagonal terms LiJ, account for the tunnel-transfer of

elements are defined by the migrating species when the transfer takes place in the diabetic

limit.

Li,.j 6  7S I.kV . (8) From the first order, time-dependent perturbation theory, the

quantum mechanical transition probability is given by

Sl
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h species in the system, Hi is now a classical Hamilton function
I . VQ Yf exp(-bEl)L f[(i Ef6) (12)iw . l for the system in its initial state. The energy difference in the

delta function. E -i " Ef
6
. is replaced by the difference in the

where the energies E and Ef6 are the total energies of the entire potential energy functions in the initial and final states as the

system in its initial and final states, and y and 6 specify the kinetic energy terms cancel.1,7

state of the transfer species. In eqn (12) :2 is the partition The integrations over the velocities in Q and kd can be

function carried out imediately. As there is no isolated velocity x'

in the expression, the contributions due to the kinetic energies
Q exp(-sEi. (13)11 cancel. The rate constant is

By virtue of arguments which have been presented in detail elsewhere.
6  

k Jd .xp(-6Vi)JLi f
6
15(V - Vf) (15)

it is possible to equate the transition probability in the diabatic

limit with the rate constant:
with

d q -dr exp(-bVi). (l)

where now kd stands for the rate constant in the diabetic limit. The At this point, we Isake the assumption, parallel to the

work of creating the initial state and various other energies assumption made by Clyde,
3 

that the major contributions to the

which enter the activation energy appear automatically in a general integral in eqn (16) come from terms in the exponent which are near

analysis, to Vi
0
, the initial equilibrium potential energy, Thus, on expanding

We now assume that the environment (which can include the non- about Vi
0
. one finds

reactive vibrational modes of the molecular framework in a molecule

which undergoes a transformation) can be treated in the classical so+(V
I
•Vi fA [Asfxm (17)

limit. Therefore, the summations can be replaced by integrations

with the result that the rate constant now is expressed as with

k d " Jdr dr exp(-BHi)ILi f 6 I (Vj - Vf) (14)

The integration involves the 3N velocities and coordinates of the

1.
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The integration over r yields for q

kd 2 T(
2
,/1)3N/2AJ ds expI-r(V(...x' ..) -V

q - (2 6 )3N/
2  
A V

4 
exp(-aVi0) 

(19) 
1

ILi,,f61' (23)

where ;AJ is the determinant of the matrix of second derivatives.

The expression for the rate constant is where ds is the surface element in the reaction hyperspace. For

this analysis it is easily defined; it is

d - I( 2 ,I)3N/
2
tAik Jdr expi-o(Vi - Vi0))ILi ,f6I

2
(Vi - Vf)

(20) ds - n'dx
5  (24)

Write the delta function as
7

where the prime excludes the single coordinate which is associated

6(Vi  Vf) -(1 .ft) (21) with the transfer coordinate, x.

We assume that the Condon approximation applies The matrix

with element ILi,,f61
2 
now can be removed from the integration. Further,

we assume that the major contributions to the integrals over the

&F1 - (Vi-Vf)/ax I0 (22) x, come from terms in the vicinity of the single minimum VI in the

transition state. Thus,

which is the difference in the slopes of the initial and final

potential energy functions evaluated at the transition point. V( ... Vf + %IA"mXID (25)

Lffectively, this quantity is the difference in force which is

experienced by the transfer species as it passes from one end the rate constant finally is

potential energy surface to the other in the transfer region. AI. yL i-2

The single coordinate which is involved in the integration over kd -- exp-e(V
-  

Vt

the delta function is x*-a The integration which involves the

delta function has the effect of freezing the value of x, for the By way of contrast, following Glyde's analysis 3 with the

transfer species at that value which corresponds to the transfer modifications introduced here, one finds kad, the rate constant in

point. Thus, the adiabatic limit, is given by
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The diabetic mass md is Just
6
a 2m I exp(.i(v+ - rio)}, (2?)

md ' 4me .  (31)

It Is necessary to note the fact that the ratio IAIkN/IA
4
1IkN

in the adiabatic limit will not be the same as the similar expression An Estimate of the Pre-exponential Factor

in the diabetic limit, cf. eqn (26). However. one expects the

difference to be (usually) relatively small. The simplest estimate of the size of the pre-exponential factor

Beacuse of the difference in dimensions of the ratio of is made with the use of the model of intersecting harmonic oscillator

generalized force constant determinants A, it is easy to see that potential energy functions. It is clear from our other investiga-

tions1.8 that the diabetic limit occurs, as mentioned, in those

JA k tA (m/2.) .E (28) instances for which stable mechanical equilibrium cannot be found for
3"N 3N-1 E

the transfer species in the transition state. It is equally

is effectively a single force constant. The frequency 'E is an clear from our investigations
8 

that these conditions depend strongly

effective frequency which can be assigned to the transfer. As upon the dominant contribution of repulsive forces for some particular

Glyde noted
3 

for the self-diffusion of srgon, it is an Einstein- configuration of the system. Thus, in more graphic, physical

like frequency. With the restriction that the ratio of force terms, it is easy to see that a model of intersecting harmonic

constant determinants is essentially the same for the diabatic oscillator potential energy functions is an adequate represents-

and adiabatic limits, it is possible to express the diabetic limit tion, in simple terms, of an actual interplay of potential energy

as functions in the region of strong repulsive interaction

For the simple one-dimensional oscillator, the potential energy

kd " (2-m.0 JI exp(-B(V Vio)) (29) function is

- (m/M d)4. EeXp (V+ - ViO)) V - km(z - 2 0)1 (32)

The effective mass is then defined by on the transfer axis. The force is

-ie API (30) F - - m,(z - zo) (31)

.,

I-
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ise ljcatan of the point of intersection, a cusp, is given by We found in Part 118 that

Zint -Z( l- "E V. 6(34) L f -e(40)

where In terms of this quantity, and in ten the estimate of LF

for the intersecting oscillator potent ine finds that the

- f/'i (35) effective mass, me. is given by

and - " 
/  

2 (41)

- Zfo - l0 (36) In view of the definition of the distance c. it is clear from

eqn (41) that the effective mass increases dramatically with

E, is the difference in zero-point energies for the two wells, increasing distance between the minimums of the potential and the

If f- ,. such that -~l. then maximun of the barrier. This. of course, is a result which is

well-established in the lore of chemistry. In addition, one sees

zint ii * 78 (2E,/mi -1 ), (37) that the effective mass increases with temperature as T
. 

This

result can be attributed to the increase in the mean displacement of

and if E,- 0. then zlnt - kRab. where Rab is the distance between an oscillating particle as the temperature increases.

the locations of the initial and final states.

In a similar manner, one finds that the difference Fi - Ff is Monte Carlo Methods Implied by the Formal Expression for the Rate

Constant

Fi - Ff - m.j(z int (.2-1) + ZI0 - zfo) (38)

To begin, a reactive transition evolves as a fluctuation from

For the case of a totally syametric system, the thermodynamic state of equilibriua. Thus, one prepares the syster

in an initial state according to the method devised originally

F- 2-.ii (39) by Metropolis, et al. 
9  

Given a centrally located reactant which

is surrounded by solvent, the entire system is allowed to come to

where is , a77Ue . and z is the distance from the minimum to equilibrium. Each atom in the entire system of reactant(s) and

the cusp

pS
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!%r.t :iodviduallv is displaced a random distance along an axis. followine, however, seems to be the stirplest arid rnt dir, tU;.

H t?.L dplacemr-nt results in a lower overall energy, it is kept and merely continues to execute Metropulis samples fe thr IMie Carl,,

it,,, s-apling prred t, the next coordinate and to subsequent atoms, simulation. The simulation continues beginning with the s t,::, in

in the other hand, the displacement results In an increase in its initial state of thermodynamic (and Monte Carlo) eoiuiihbricv

the energy, the displacement is kept only if the Boltzmann weighting It is apparent that there can be molecules of solvent which lie in thr

t.Ctor is less than a randomly generated number which lies in the region where one wants to create a vacancy. A test theretor, is

range of Zer, to one In this manner, a Markov chain is constructed.
9  

needed to see if any molecule must be moved If a molecule occupie.

Ihe process oi sait; ng continues until the average energy settles the space where a vacancy should be, then it is necessary t

on a stable, central value. At this point the system is in an determine whether a randomly generated displacement will move that

appropriate initial state for the reaction, molecule from the location of the required vacancy. In addition,

Consider as an example a simple two-dimensional reactive system the move can only occur if it satisfies the criteria imposed for

wich consists of a tion-linear ABA molecule which is immersed in the Metropolis sampling. On the other hand. if a vacancy alreods

a slent of dlsk-like atoms. The reaction involves a simple exists or nearly exists (i.., a molecule lies clse to) but nt over

inversion the location of the vacancy), then it is necessary to test ea.h

displacement for each molecule of solvent to make sure that n,

A A molecule moves into the location of the vacancy

IS B The Monte Carlo simulation is carried ciut with tie restrictlon

A A that a vacancy form until the energy of the system sLtabilizes

The state for which there exists a vacancy into whith the transfer-

in much the same manner as is the case for the inversion of ammonia.
1 0  

species can cigrate therefore defines the initial state for the

The preparation of the initial state for the system In all likely- reactive tran-ition.

hood places a molecule of solvent at or near to the location for The determination of the energy of the transition state is

the b-species in the final state. Thus, as is the case for the the final part of the simulation of the reaction. Again, there are

solid state.
3 

here as well it Is necessary to form a vacancy into several ways the simulation could be carried out One was.

which B can migrate The work which is required to form this vacancy theoretically the soundest, is to continue to generate configurations

Is part of the energy of activation for which the reaction is allowed, :.l. the vacancy remains

A Monte Carlo simulation of the formation of the vacancy can For such a configuration, assrming a linear traiect ,rv t, the

he carried out. in plinciple, in several different ways The final state through the transition state, the transrier-speces is
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placed at the point of maximum energy. This point should lie between In spite of the approximate nature of this approach to the

the initial and final positions and should also lie within the determination of the energy of the transition state, it is possitle

reactive species or system of reactants. With the reactive system that some adtustment of the reactive system can be made in order

"frozen" in this transition-configuration, the environment is allowed to obtain a more accurate value of the energy. For the ABA system,

to relax to a lowest possible energy. The energy which is determined for example, it is possible that a slightly bent configuration

in this manner corresponds to a transition state energy for the corresponds to the true transition state. Such a calculation can

single configuration. This process must be carried out a sufficient be carried out and tests can be included in order to ensure that

number of times in order to get a statistical sample. Moreover, the Monte Carlo simulation does not merely regenerate the thermo-

for each transition state configuration, it is necessary to determine dynamic initial or final states.

whether the transfer species is in a state of mechanical equilibrium. So far, only a brief mention has been made of the determination

Such a calculation clearly conssmes much more computer time than of mechanical stability for the transfer-species in the transition

either of the two preceeding preparatory computations, state. It is clear that for the last approach to the determination

A less accurate, approximate approach is the following; its of the energy of the transition state, each configuration which is

accuracy, as will be evident, depends upon the degree to which the generated as the system stabilizes about an energy can be tested

reactive system and its molecular framework is insulated or isolated for mechanical stability. Configurations which indicate a

from the environment. The technique is simple. Consider the mechanically unstable transition state correspond to cases for which

reactive system in the absence of the surrounding environment, a diabetic transition, with tunnelling, applies. It is a simple

Determine. on the basis of reasonable intuition and perhaps an matter to tally the diabatic versus adiabatic configurations. It

optimization, the location of a probable position for the transfer- is a less simple matter to remove the transfer-species to a position

species in the transition state. For the ABA example, a reasonable on the reactive trajectory for which a state of mechanical equilibrium

choice is to place the B-species on the A-A axis, thus creating a does exist and from there to determine the probability for tunnelling.

linear transition configuration. Now, with the reactant system However, such calculations can be carried out. It is possible,

"frozen" in this configuration, the environment is allowed to inter- therefore, to obtain an appropriate form for the pre-exponential

act and come to a new state of equilibrium. The energy which is factor.

found in this manner corresponds to the energy of the transition One should note the fact that the activation energy for a

state. configuration for which a diabetic transfer holds must be determined

The activation energy is simply the energy of the transition still with the transfer species in the transition state configuration,

state less the energy of the original, initial state of equilibrium. even though this configuration is mechanically unstable.

tC
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An interesting result of these simulations is the statistical in the transition state configuration, the test i
s 

carried out in

definition of an adiabatic , ros diabatic limit for a reaction, the classical limit. It is necessary simply to determine the

Consider an individual configuration for the transition state, sign of the second order coefficient in the Taylor expansion

From that which has been stated here, and in part I, it is clear that for the motion of the particle along the transfer axis. The expansion

the transfer corresponds to one either in the adiabatic or disbatic uses pair-wise interactions between the transfer-species and each

limit. At the microscopic level, there is no gradation of diabaticity; atom of the reactant(s) and the solvent.

the reaction is either diabetic or it is adiabatic. However, The symetry-adaptable Taylor series for a general scalar

in a statistical sense, for a given reactive system it is possible function g(r) is
1 2

that the Monte Carlo simulations will generate configurations for

which a fully adiabatic transfer applies part of the time and for g(r+R) .' O (rn/nl)F(-i)n+tAniP
t
(R.

r
)I

n
(R) (42)

- n.0 I
the remainder of the configurations a diabatic limit applies. The

overall value of the pre-exponential factor therefore must reflect in which12

a statistical balance between the two extreme limits. Thus, one

sees that a given reactive system can exhibit a type of transfer Ani - 0 for I n and n - odd

which corresponds overall to a statistical weight of the diabatic

against the adiabatic limit. That this is indeed the case is for I n lnnn-t lv (3(n-i+l) l(n+t+l)T1 for t n and n - !even (43)

already evident in a Landau-Zener type of analysis.
1 1 

The

difficulty in applying the Landau-Zener analysis to any system and

which undergoes a reaction which belongs between the extremes of

diabaticity and adiabaticity is well known. Monte Carlo methods of in(R) - dk k n
2
f(k)J,(kR) (44)

simulation and averaging, on the other hand, provide the means 
to

investigate the shades of diabaticity whitch one expects for real In eqn (44) J
5
(kR) Is the spherical bessel function of the first

systems. kind,
13 

and f(k) is given by
1 2

Algorithms for Determining Mechanical Stability in the Transition f(k) - 4.s dr r2g(r)j
0
(kr). (45)

State

In eqn (42), P,(R-r) is the Legendre polynomial of order i and

One can test for mechanical stability of the transfer-species R'r is the scalar product of the unit vectors for R and r. it is the

s--

Sm w
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the cosine of the angle between the vectors. The general expansion of a potential of the form I/i
q 
as

I

When the z-axis is specified to be the transfer axis. eqn (42)

reduces to A 1 A)( z/R)n j * ik A I (c
T
n

r+R
q  

(q-2)IR
q 
n, 7R ( n s i n

zn (50)
g(reR) 1 0 ( A-i)rAPt(osR)In(R) (46)(0

-n0 n-O The condition for stability is derived simply from eqn (50). it is

where now. v R is the angle between the location of the source and 92 liP ( 1, 6 cosO )]Ai - [2+5P c'RIII

the z-axis. i JRIR

Mechanical stability for the motion along the z-axis at the
>0,

location of the transition state is guaranteed if

2 An expression of this type is no more difficult to evaluate, andgR ,- .' (-i)t+
2
A2tP(coseR)I2 (R)( -0 tgt consumes about the same amount of computer time. as the evaluation

- (II,(R) 2P(cOSO R) I22(R? (47) of each of the individual pair-wise contributions to the energy
of the system.

is greater than zero.
Computational Aspects of the Monte Carlo Simulation of a Reactive

In order to determine if the transfer-species occupies a state
Transfer in the ABA System

which is mechanically stable it the transition state, it is necessary

to evaluate g2Ri for each species in the system. Thus.
The system is two-dimensional and consists of a bent A-B-A

molecule which is immersed in a solvent of uniform disks. The
g, g,(Ri) • 0 (48)

origin of the coordinate system is located initially at the mid-

point of the A-A axis. The B-species is located at a perpendicularly

where, clearly, the prime on the suammation excludes 
the transfer-

displaced point over this midpoint. The solvent is distributed
species. As an example, consider a system of particles associated

about the solute in concentric circles the radii of which are
through the interactir. 'If the Mie potential:

multiples of the solvent diameter; the first radius includes

an effective radius for the solute. No form of optimization is used
V(r) - -Airr + Bit' (49)

to construct this initial configuration.
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The system is equilibrated first at 4K. this step is suggested allowed to equilibrate about the solute and its vacancy with the

in a similar treatment which was carried out by Simons.
14 

The temperature at 300K

equilibration is accomplished in approximately 60.000 cycles of Once the vacancy Is created, an initial attempt to form the

the Monte Carlo simulation. The temperature is then raised to transition state is made. The transition state is prepared simply

300K. The simulation is allowed to proceed through approximately by moving the B-species to the origin of coordinates at the midpoint

20.000 cycles. At that point, memory of the initial energy and on the A-A axis. The A-species are allowed to equilibrate only

configuration of the system is erased and a new equilibration is along the bond axis; this is done in order to prevent the re-establish-

sought in approximately 60.000 cycles. At the end of the equilibra- ment of the initial state or the establishment of the final state

tion at 300K. the system is considered to be prepared in an initial The solvent equilibrates as usual. The entire process is again

state. It is evident that the system has reached a state of carried out at 300K. With the generation of each configuration in the

equilibrium at a given temperature when the fluctuations in the process of equilibration, the transition state is tested to see if

energy diminish and an essentially stable, almost constant value the transfer species occupies a position which Is mechanically

of the energy is reproduced every thousand cycles or so. stable. If the transfer species alone occupies a position within

Although emphasis has been placed on the process of forming a configuration and the species is mechanically stable in that

a vacancy into which the migrating species can transfer, this is position, the transfer is termed adiabatic. The average adiabaticity

not altogether a necessary step in the simulation. It is possible, is determined.

in fact, merely to seek good configurations for the transition The running average of any quantity is kept with the use of

state. The activation energy is simply the difference between the the simple recursion relation:

absolute energy of the transition state and the energy of the I

initial state. Nevertheless, it appears to hasten the convergence

of the simulation to optimal configurations and values for the where fN is the value of F (any measurable quantity) for the N-th

energy if the step to find the vacancy is included. This process individual configuration, and rN-1 and r N 
are the average values

is carried out as follows. To begin. a test is carried out to see after N-1 and N cycles respectively. With the use of this recurrence

if a molecule of solvent occupies a position in the eventual location relation for the average, it is easy to see the emergence of a

of the migrating B-species. If the test proves to be positive, the relatively stable value for any quantity which is averaged It

molecule of solvent is displaced along the y-axis (the transfer is also easy to see the effect of long-term memory, especially when

direction) until an appropriate void is created. With the molecule the simulation is programmed to evaluate averages over smaller

of solvent held rigidly in this position, the remaining solvent is aubcollections of randomly generated configurations.

1'
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In addition to the details of the calculation which have been energy decreases as the distance between the two A-spe~les increases.

described above, we included a circular boundary with a radius equal it becomes energetically less costly to move the migrating B-species

to the distance of the outermost molecule of solvent from the into the configuration of the transition state As the data indicate.

coordinate origin plus one solvent diameter. The interaction when the A-A bond distance is allowed to equilibrate in the transi-

between any species and the wall of this container was taken to tion state, the result is generally an adiabatic transfer It is

be infinitely repulsive. clear that the adiabaticity of the transfer increases as the

The potential energy which was used throughout the simulation fundamental A-A distance increases.

was the Lennard-Jones/Mlie potential: The question naturally arises with these types of simulations

as to whether the number of molecules of solvent which surround

V(r) - D((r0 /r)
1
- - 2(r0/r)6} (53) the solute is sufficiently large to account accurately for the

effect of the solvent on the activation. In order to test the

where D is the dissociation energy and r0 is a diatomic, equilibrium adequacy of the account of the solvent, an additional layer was

bond distance. The dissociation energy for the A-B bond was considered. The result of the simulation, which took more than

taken to be 5.0-10
1 9
J and the dissociation energy for the twice the time on the computer the original calculation took, was

A-A was half that value, 2.5-10-19J. For simplicity, the dissociation identical to the result with the smaller sample of solvent. It

energy for the interaction between solvent and between each atom appears, for the size of solute, A-B-A. which we considered, two

of the solute, A and B. and the solvent was taken to be 9-10
2 0
J. distinct layers of solvent in concentric circlesare sufficient

The equilibrium distance, r 0. for the A-B bond was kept a constant to estimate the energy of activation.

0.inm. In contrast, the bond distance for the two A-species The calculations also reveal more than Table I alone shows

was allowed to run from a minimum value of ,l.lnm (allowing, in It is clear in examining the evolution of the adiabaticity as the

vacuum, an almost equilaterially triangular molecule) to 0.2om. system moves toward an optimal value for the transition state

The solvent-solvent and solvent-solute atom distance was taken to that the initial adiabaticity is small this is illustrated in

be 0.3nm which is approximately the van der Weals separation for Table 2. Adiabaticity grows as the A-A bondlength expands to

water. accomodate the enclosed B-species. This occurence suggests that

if. for the reason of a constraint due to a larger and more

Results of the Calculation complicated, effectively rigid molecular geomet-y, a molecule cannot

easily expand to accomodate a transfer species in a state of

As intuition and experience leads one to suspect, the activation mechanical equilibrium in the configuration of the transition

S
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state, then the heavy-centre transfer will tend to be diabatic. is well-defined, this is also the case for the gas phase As

The relative inflexibility of a molecular framework, therefore, long as the Born-Oppenheimer approximation applies to a transfer.

is surely an obvious limitation on the adiabsticity of any heavy- the transition probability (from second order time-dependent

centre atom or molecular group transfer. perturbation theory) also applies. The classical limit for the

environmental contributions also applies. However. in the limit

Discussion of strong interactions, where quantal limits also apply. the

theory which is developed here is inappropriate This. it is

It is appropriate to consider at least briefly the comparison incorrect to attempt to apply our results to highly endo- or

between the theory which is developed in this paper and the exothermic reactions. It is well-known, also. from the theory of

transition state theory of reactions in the gas phase as formulated the electron transfer reaction that a more appropriate (but. perhaps

by several people, especially, Miller
15 

and Pechukas.
1
6 not yet entirely accurate) form for the rate constant arises from

First of all, an assumption is made here that there is sap- the proper consideration of the saddle point integration which

arability in the quantal limit in the sense of the Born-Oppenheimer enters the theory.
1 7 

Such an analysis has not yet been carried

approximation. This is an essential assumption, for it prescribes out for these heavy-centre transfers. Moreover, it is not imedlarely

the form which the expression for the transition probability clear how such an analysis should be carried out in order to derive

(and hence the rate constant) must take. The development of expressions for the rate constant which lend themselves immediately

each expression for the rate constant in the diabatic and adiabatic to Monte Carlo simulation.

limits proceeds strictly governed by the limitations which are It is evident, therefore, that the results which we have presented

dictated by assuming the classical limit for all degrees of freedom for the simulation of rate constants for heavy-centre transfers

which are associated with the solvent. The single quantum mechanical in the condensed phase must be considered in the context of the

contribution to the expression for the rate constant in the diabetic limits which define the problem. The transfers which we are able

limit arises from the need to consider tunnelling across the to consider are those for which the enthalpy of reaction is in the

residual barrier to the transfer. so-called "normal" range; the reactions can be neither highly

In principle, all the difficulties which are inherent in the exothermic nor highly endothermic. Finally. it is mandatory that

gas phase theory of the transition state are also contained in the reactions be considered to take place in the classical limit

the theory for the condensed phases as well. Because we have with reference to all the possible dynamical contributions from the

chosen to examine the classical limit for the environmental solvent.

contributions, the expression for the rate constant in that limit
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Table 1 the solute: DAA is the A-A dissociation energy. DAB is the A-B

A. (2.510.10015.0/0.100)* bond dissociation energy. RAA is the A-A equilibrium pairwilse

Eo - -54.87 (at 300K) separation in the gas phase, and fixally RAB is the equilibrium

E - -53.85 A-B separation. The energies are given in JouleselO
19 

and the

Et - -51.65 distances in nm.

Ea - 3.22 (448 k mol 1)

(final adiabaticity: 0.98) Table 2 The growth of adiabaticity for (2.5/0.180/5.0/0/100)

B, (2.510.125/5.0/0.100) Cycles £ Adiabaticity

E, - -54.36
2,625 -52.27 0.0015

Ev - -53.82
- 4.375 -52.89 0.39

£t " -51.55 6.125 -53.12 0.48

Ea - 2.86 (439 kJ mo-
1
) 7,875 -53.22 0.59

(final adiabaticity: 0.88)
9.625 -53.33 0 66

C, (2.5/0.180/5.0/0.100)
11.375 -53.36 0.71

-0 -54.42
13,125 -53.38 0.75

E- -53.85
v 14.875 -53.38 0.78
Et - - 53.43

E - 0.99 (153 M so1-1) 16.625 -53.40 0.80

18,375 -53.43 0.82

(final adiabaticity: 0.88)

D, (2.5/0.200/5.0/0.100)

EO - -54.33

E - -54.27

E, - -54.20

£ - 0.13 (20 kJ mo1-1

(final adiabaticity: 0.99)

*The notation (DAA/RAA/DAB/RAB) indicates the parameters used for

-L



-30- -31-

73. 1814, A. Banerjee and J Simons. I Am Chem Soc 1981.

This work was supported in part by the U S Office of Naval 103, 2150

Research, Arlington. Virginia. 15. W H, Miller. J. Chem. Phys., 1974. 61. 1823. . Chem Phvs

1975. 62, 1899
References 16 P. Pechukas. in Dynamics of Molecular Collision&, Part B

W. H. Miller. ad. (Plenum Press. New York. 1976) Chap 6

1. P. P. Schmidt, J. Chem. Soc. Faraday 2, in press (paper 734/1) 17 R. R Dogonadze, A. M Kuznetsov and M A Vorotyntsev.

2. R. A. Marcus, J. Chem. Phys., 1964, 41. 603 Zeit. f. Phys. Chemie N. F.. 1976, 100. 1

3. H. R. Glyde, Rev. Mod. Phys., 1967, 39, 373

4. J. M. McKinley and P. P. Schmidt, J. Chem. Soc. Faraday 2. 1982,

78. 867

5. P. P. SchmIdt, In Electrochemistry (Specialist Periodical Report.

The Chemical Society, London, 1975) vol. 5, p. 21

6. P. P. Schmidt. J. Electroanal. Chem. 1977. 82, 29

7. P. P. Schmidt, J. Chem. Phys., 1973. 58, 4384

8. P. P. Schmidt, J. Chem. Soc. Faraday 2 in press (paper 735/1)

9. N. Metropolis. A. W. Rosenbluth. M. N. Rosenbluth, A. H Teller.

and E. Teller, J Chem Phys.. 1953. 21. 1087

10. See, for example. J. D. Svalen and J. A. Ibers, J Chem. Phys..

1962, 36. 1914

11 L. D. Landau and E. M. Lifshitz Quantum Mechanics (Pergamon

Press, London, 3rd revised ed.. 1974. tranal. Sykes and Bell)

pp. 342-51

12. J. M. McKinley and P. P. Schmidt, Che. Phys. Letters, submitted.

and ref. (4)

13. G. Arfken. Mathematical Methods for Physicists (Academic Press.,

new York. 1970. 2nd ed.)

14. A. Banerjee. I. Shepard. and J. Simons, J. Chem. Phys.. 1980,

f.4

1.i



DATE


