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Abstract

. This paper contains a report of our comtinuing investigation<

into the application of the transition state theory to atom, ion

and molecular group transfers. —Im-ohie—pap L& Our
er s

~ m,\o'n the formulation of Monte Carlo methods of simulation.

Ve findthee 1t isiﬁéiﬁible to derive forms for the rate constant

in the diabatic and adiabatic limits which jmmedistely suggest

the wmanner in which Monte Carlo averages should be carried out.
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to a linear transition state, and we—~ererable to keep a tally ef ,4;4
the average adiabaticity of the reaction. These results indicate
that the extention of the method to more realistic systems ought

to yield valuable information about the mechanisms of reactions in

condensed phases.




Introduction

In a preceeding paper1 the transition state theory, as
formulated by Harcus,z was examined for the purpose of finding
algorithms which can be used to develop computational forms for
the theory. To that end, an arbitrary system was viewed as
composed of a definite reactive subsystem which is surrounded
by an environment. The local microscopic dynamics of the reactive
subsystem can be examined in igolation. Adjustments in these
dynamics can be accounted for as the local subsystem is placed
into the remainder of the solution. Such a decomposition of an
arbitrary system seems to imply the operation of weak to moderately
weak couplings. However, a reactive subsystem can be defined so
that a sufficient amount of solvent is included with the reactant(s)
to encompass all species which experience large displacements in
the course of a reactive transition. Thus, a range of strengths
of interaction between the reactant(s) and the local solvent in the
surroundings can be accounted for.

In this paper we continue to consider the construction of a
computational form of the transition state theory. We examine the
transition state theory in a form which makes evident the wmode of
application of the Monte Carlo method in order to evaluate certain
average values such as the energy of activation and the pre-
exponential factor. By examining & simple two-dimensional reactive

system, it is possible to see the emergence of some of the limits

on and limitations of a Monte Carlo method of simulating reactive )
systems.
|
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Equilibrium Statistics and the Development of the Rate Constant

As was noted in Part 1,l the Marcus transition state theory
adrwits Monte Carlo techniques for the purpose of carrying out
various averages, but it is not immediately evident how this

is possible. The abstract form of Marcus's original trestment
digguises, to some extent, an underlying simplicity. This
simpiicity is revealled by changing to & more model-dependent,
less abstract formulation. The work of Glyde3 on the self-
diffusion of argon suggests the essential steps one needs to take
in order to establish contact with the Mc' te Carlo methods of
averaging.

In the following paragraphs the transition state theory is
outlined for both the adiabatic and diabatic limits. This sketch
of the theory immediately suggests the proper approach to take
in order to carry out the Monte Carlo methods of averaging or
optimization.

The definition of an adiabatic transfer was considered in
Part 1. 1f a reaction proceeds through the transition state via
an adiabatic path, the transfer species then occupies a state of
local, transient, and s:table mechanical equilibrium for the instare
it resides in the configuration of the transition state. Further-
more, an adiabatic path for a reaction is one on which the transfer
species always occupies a state of local, transient, and stable
mechanical equilibrium st every point along the path. In other
words, in the adiabatic limft, fluctuations in the configuration
of the entire system define new states into which the transfer

species moves. This movement can be defined, for the purpose
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of thermodynamic argument, to take place reversibly. Thus,
the transfer-species adiabatically follows a migrating position
of equiliirium. Changes in the configuration of the environment
carry the transfer-species from its initial to its final location.

The diabatic limit, in contrast, applies to those configura-
tions for which it is impossible to define a state of local,
stable mechanical equilibrium at the transition point. The
migracting species must then tunnel through the narrow remaining
barrier. As an example, one can consider the passage of an atom
or ion through an annular opening in a cryptate.‘ 1f the effective
radius of the annulus is less than a critical value, it is not
possible for the migraring species to occupy a position of
equilibrium at the centre of the ring-like structure. However,
if the effective radius increases, a stable position of equilibrium
can result. For the diabatic limit, therefore, it is possible
to define a Born-Oppenheimer type of separation of the local
reactive modes from the remafining wmodes of the environment.1
As will become evident for the Monte Carlo simulations, the use
of a Born-Oppenheimer type of separation of local reactive modes
from the modes of the environment has a direct bearing only on
the evaluacion of the matrix eleménts which are associated with
the transfer. The calculation of the activation energy with the
use of Monte Carlo techniques is operatjonally the same in the
diabatic and adiabatic limits.

The total Hamiltonian operator for the system is divided into

two parts:
HowHe +Ho o a)
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for which H. is the Hamiltonian operator for the transfer species
is associated with all other spectes.

The operator for

and Henv

the transfer-species, Ht‘ is the sum of the kinetic and potential
energy operators:

Ht -=T+ V. (2

This operator is one-dimensional in the coordinate which coincides
with the transfer-axis. The potential energy operator V spans
the initial and final configurations; it is, for example, a
potential energy function with a double minimum. Solutions in
the Born-Oppenheimer approximation are constructed with the use
of basis functions Yay and ¢, which satisfy the local, model

lamiltonian operators

H. - T + V‘

Hy = T + v, &)
with

Hl‘l\ - t.“l'

Hytps = hetbe (%)

and the indices & and b specify the physical locations of the
initial and final states. The indices y and ¢ specify energy
states for the transfer-species at the locations a and b.

For example, V. and Vb can be local harmonic oscillator potentials

Thus, »

ay and *ps are the usual solutions to the one-dimensional
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Schrdinger equation for the oscillator. In terms of these solutions
and in terms of the potential energy operators Va and Vb, one has

Hl = H, ¢+ v - V.

= H + V- (5)

where now the combinations V - V- and V - Vb operate as perturba-
tions.

The complete eigenvalue problem is written
Hy = Ev (6)

with the state funccion expanded in terms of a basis set in the
Ya, and IS

v- iE xly‘iw' m
.y

In the usual manner, it is now possible to find sets of equations
with which to determine the expansion coefficients x". One
finds

H (€]

iv.lvxh - JIALIV.Jéij

where the prime on the summation excludes iy » js. The L-matrix

elements are defined by

L (8)

- -1 3
RTINS
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here S;:,ku is an elewent of the inverse overlap matrix. Roman
indices cover the initial and final locations (a and b) while
Greek indices cover local energy states. The matrix element Va‘,j,
is

Vi ge = <kelV - Vilges ¥ ckelVo g6 C @
In defining the L-matrix elements, we have ignored the contribution
from the kinetic energy operators of the environment which
operste in the space of the transfer species. It is not altogether
clear that this is generally permissible for vibrational problems

as it may be for elactron trnnsfer,5

It is of course relatively
simple to amend the formalism to include these T-operators in the
definition of the L-matrix elements, indeed, one need only add
Tenv to V—Vj in egn (9). Finally, the diagonal element Hi\,fy is
given by

H =E - ¢ - L

(10)

iv,iy iy iy.4y" Tenv'

Adiabatic solutions xg‘ are defined by the solutions to the equation

H 0. (11)

9 =
l‘,ivxiv
The non-diagonal terms Liy 36 account for the tunnel-transfer of
the migrating species when the transfer takes place in the diabatic
limit.

From the first order, time-dependent perturbation theory. the

quantum mechanical transition probability 1s given by
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- 2n ¥ - 2 -
v i i]%f:exp( bEiy)lLi\,fél é(Ei‘ E¢,) (12)
where the energies Ei, and Ef5 are the total energies of the entire
system in its inirial and final states, and y and ¢ specify the
state of the transfer species. In eqn (12) -} is the partition

function

Q- g exp(—bEi‘). (13)
Y

By virtue of arguments which have been presented in detail elsewhere.6

it is possible to equate the transition probability in the diabatic

limit with the rate constant:

where now kd stands for the rate constant in the diabatic limit. The
work of creating the initial state and various other energies

which enter the activation energy appear automatically in & general
analysis.

We now assume that the envitonment (which can include the non-
reactive vibrational modes of the molecular framework in & molecule
which undergoes a transformation) can be treated in the classical
limit. Therefore, the summations can be replaced by integrations
with the result that the rate constant now is expressed as

21

kg = f3jeF or exp(-eM) Ly g 1700V, - vy 1w

iv,fs

The integration involves the 3N velocities and coordinates of the

9.
N species in the system. Hi is pow 8 classical Hamilton function
for the system in its initial state. The energy difference in the
delta function, Eiy - Efé, is replaced by the difference in the

potential energy functions in the initial and final states as the
1,7

kinetic energy terms cancel.
The integrations over the velocities in Q and kd can be

carried out immediately. As there is no isolated velocity x:

in the expression, the contributions due to the kinetic energies

cancel. The rate constant is

2n 2
kg = gy [ar expC-v L, g1ty - v as
with
q= Idr exp(-6Vy). (16)

At this point, we make the assumption, parallel to the
assumption made by Glyde,3 that the major contributions to the
integral in eqn (16) come from terms in the exponent which are near
to V‘o, the initial equilibrium potential energy. Thus, on expanding
about Vip: one finds

a B
Vit Vip v N TA ngXi%n an

with

- a2 a8
Apa,ms™ PVl ax, 0%y (18
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The integration over r yields for q
a = @/oM2AY expi-sv, ) 19

where ;A| is the determinant of the matrix of second derivatives.

The expression for the rate constant is

2 2
kg = F@0 M 2IAlY [ar explos(uy - Vi ILy g l7e0v, - VP

(20)
Write the delta function as7
1 a a
eV - V) = ma(x“ - xg,) D
with
|aF} = a(V‘-Vf)/ax:lo (22)

which is the difference in the slopes of the initial and final
potential energy functions evaluated at the transition potnt.
Effectively, this quantity is the difference in force which is
experienced by the transfer species as it passes from one
potential energy surface to the other in the transfer region.

The single coordinate which 1s involved in the integration over
the delta function is x]. The integration which involves the
delta function has the effect of freezing the value of x: for the
transfer species at that value which corresponds to the transfer

point. Thus,

S11-
ky = K%T(z,/.,)”/zm*[d; expl-r(V(...x}, ..} - V)
fLy, gl @»

where ds is the surface element in the reaction hyperspsce. For

this analysis it is easily defined; it is
ds = 1'axd @9

where the prime excludes the single coordinate which is sssociated
with the transfer coordinste, x|

We assume that the Condon approximation applies. The matrix
element lLiy,folz now can be removed from the integration. Further,
we assume that the major contributions to the integrals over the
x; come from terms in the vicinity of the single minimum vt in the

transition state. Thus,
vi..xf o e v arat e 23)

and the rate constant fipally is

MY 1L gl
Ky - 28 —p —hufe expi-svt - v ). (26)
1AV 1381 1oFI

By way of contrast, following Glyde's analysis 3 with the
modifications introduced here, one finds k.d‘ the rate constant in

the adiabatic limit, is given by
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Ay

Kog= (2m)73

ad @n

expi~B(V* - Vil
147381
1t is necessary to note the fact that the ratio iAlgnllA*|§N_l
in the adiabatic limit will not be the same as the similar expression
in the diabatic limit, cf. eqn (26). However, one expects the
difference to be (usually) relatively small.

Beacuse of the difference in dimensions of the ratio of
generalized force constant determinants A, it is easy to see that

g iat i = @izote (28) }

is effectively a single force constant. The frequency wg 18 an
effective frequency which can be assigned to the transfer. As

Glyde nOted3 for the self-diffusion of argon, it is an Einstein-
like frequency. With the restriction that the ratio of force

cunstant determinants is essentially the same for the diabatic

and adiabatic limits, it is possible to express the diabatic limit

as
Y
ky = (@m) M expt-sevt - v, ) (29)
(A713x-1
- (m /Dd)hwEGKP(‘B(V* - Vi)l
The effective mass is then defined by
+
| aF)
im' - (30)
Z'JEILi',fal'
[
. —
P
)
L
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The diabatic mass my 1s just
(3D

L Ame.

An Estimate of the Pre-exponential Factor

The simplest estimate of the size of the pre-exponential factor
is made with the use of the model of intersecting harmonic oscillator
potential energy functions.

tionsl'8

1t ig clear from our other investiga-
that the diabatic limit occurs, as mentioned, in those
instances for which stable mechanical equilibrium cannot be found for

the transfer species in the transition state.
8

It is equally
clear from our investigations  that these conditions depend strongly
upon the domwinant contribution of repulsive forces for some particular
configuration of the system. Thus, in more graphic, physical
terms, it is easy to see that a model of intersecting harmonic
oscillator potential energy functions is an adequate representa-
tion, in simple terms, of an actual interplay of potential energv
functions in the region of strong repulsive interaction

For the simple one-dimensional oscillator, the potential energy

function is

Ve §mo?(z - 245)¢ (32)
on the transfer axis. The force is
F= - m?(z - 2p) (G2}
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8

The lucation of the point of intersection, a cusp, is given by We found in Part I1° that

T AR I LY SR o) (36 Lig = - = hece™ (%0
where In terms of this quantity, and in tern the estimate of |[:F]
for the intersecting oscillator potent . one finds that the
P Wf/.,l (35) effective mass, L is given by
2.2
and /ﬁ:- o -2 . (38
I3 13
¢ = 2zgg " 24 (36) ‘ In view of the definition of the distance i, it is clear frow
‘ eqn (41) that the effective mass increases dramatically with
E, is the difference in zero-point energies for the two wells. increasing distance between the minimum of the potentisal and the
If ugvu;. such that asl, then maximum of the barrier. This, of course, is a result which is
well-established in the lore of chemistry. In addition, one sees
zZe C %ro t fi(ZEulmui - 89), an that the effective mass increases with tempersture as T This
result can be attributed to the increase in the mean displacement of
and if E, = 0. then 240t T kRab, where R.b is the distance between an oscillating particle as the temperature increases.

the locations of the initial and final states.

In a similar manner, one finds that the difference Fy - Fg 1s Monte Carlo Methods Implied by the Formal Expression for the Rate
Constant
Fy - Fg = mué(zin[(u7~1) + 240 - u*zio) (38)
To begin, a reactive transition evolves as a fluctuation from
For the case of a totally symmetric system, the therwodynamic state of equilibrium. Thus, one prepares the syster
in an initial state sccording to the method devised originally
{aF| = 2uv/mf. ¢ 39) } by Metropolis, et a1.? Given s centrally located reactant which
is surrounded by solvent, the entire system is allowed to come tu
where ¢ is /m.7Rz,. and z. is the distance from the minimm to equilibrium. Each atom in the entire system of rveactant(s) and
the cusp
. - - -
-
,




Slvent andividually is displaced a random distance along an axis.

It the displacement

results in a lower overall energy,

Sl6-

it is kept and

the sampling proceeds to the next coordinate and to subsequent atoms.

i1, on the other hand, the displacement results in an increase in
the energy, the displacement is kept only if the Boltzmann weighting
factor is less than a randomly generated number which lies in the
range of zeru to une

The process of satpiing conti{nues until the average energy settles

un a stable, central value.

In this manner,

apprupriate initial state for the reaction.

Considuer as an example a simple rwo-dimensional reactive system

which consists of a non-linear ABA molecule which is immersed in

a svlvent ot disk-like atoms.

inversion

in much the same manner as is the case for the inversion of smmonia.
The preparation of the initial state for the system in all likely-
hood places a molecule of solvent at or near to the location for

the B-species in the final state. Thus, as is the case for the
sulid Sla(e‘3 here as well 1t is necessary to form 8 vacancy inro

which B can migrate

At this point the system is in an

The reaction involves a simple

1s part of the energy of activation

A Monte Carlo simulatfon of the formaciuon of the vacancy can

he carried out

-

in principle,

in several different ways

The

a Markov chain is construc[ed.g

10

The work which is required to form this vacancy

-17-

following, however, seems to be the simplest and tuat direct Liie
merely continues to execute Metropolis samples for the Monte Carle
simulation. The simulation contrinues beginning with the sv.ten 1n
its initial state of chermodynamic (and Munte Carle) eguilibriue
1t is apparent that there can be molecules of solvent which lie in the
region where one wants to create a vacancy. A test therefore is
needed to see if any molecule must be moved. 1If a nolecule occupies
the space where a vacancy should be, then it is necessary to
determine whether a randomly generated displacement will move that
molecule from the location of the required vacancy. In additien,
the move can only occur {f it satisfies the criteria imposed far
the Metropolis sampling. On the other hand, if a vacancv alreadv
exists or nearly exists (i..., a molecule lies cluse tu but not over
the lacatian of the vacancy), then it is necessary to test eavh
displacement for each molecule of solvent to make sure that no
molecule moves into the location of the vacancy

The Monte Carlo simulation 1is carried out with "he restriction
that & vacancy form until the enmergv of the system stabilizes.
The state for which there exists a vacancy inte which the transter-
species can nigrate therefore defines the initial state for che
reactive tran:ition.

The determination of the energy of the transition state is
the final part of the simulation of the reaction. Again, there are
several ways the simulation could be carried out One wav.
theoretically the soundest, is to continue to generate configurations
for which the reaction is allowed, :..., the vacancy remains
For such a configuration, assuming a linear tratectourv to the

finsl state through the transition state, the transfer-species 1s
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placed at the point of maximum energy. This point should lie between
the initial and final positions and should alsc lie within the
reactive species or system of reactants. With the reactive system
"frozen" in this transition-configurarion, the environment is allowed
to relax to a lowest possible energy. The energy which is derermined
in this manner corresponds to a transition state energy for the
single configuration. This process must be carried out a sufficient
number of times in order to get a statistical sample. Moreover,

for each transition state configuration, it is necessary to determine
whether the transfer species is in a state of mechanical equilibrium.
Such a calculation clearly consumes much more computer time than
either of the two preceeding preparatory computat lons.

A less accurate, approximate approach is the following; its
accuracy, as will be evident, depends upon the degree to which the
reactive system and its molecular framework is insulated or isolated
from the environment. The technique is simple. Consider the
reactive system in the absence of the surrounding environment.
Determine, on the basis of reasonable intuition and perhaps an
optimization, the location of a probable position for the transfer-
species in the transition state. For the ABA example, a reasonable
choice is tc place the B-species on the A-A axis, thus creating a
linear transition configuration. WNow, with the reactant system
“frozen'" in this configuration, the environment is allowed to inter-
act and come to a new state of equilibrium. The energy which is
found in this manner corresponds to the energy of the transition
state.

The activation energy is simply the energy of the transition

state less the energy of the original, initial state of equilibrium.

-19-

In spite of the approximate nature of this approach tu the
determination of the energy of the transition state, it is pussible
that some adjustment of the reactive system can be made in order
to obtain a wore accurate value of the energy. For the ABA system,
for example, it is possible that a slightly bent configuration
corresponds to the true transition state. Such a calculation can
be carried out and tests can be included in order to ensure that
the Monte Carlo simulation does not merely regenerate the thermo-
dynamic initial or final states.

So far, only a brief mention has been made of the determination
of mechanical astability for the transfer-species in the transition
state. It is clear that for the last approach to the determination
of the energy of the transition state, each configuration which is
generated as the system stabilizes about an energy can be tested
for mechanical stability. Configurations which indicate a
mechanically unstable transition state correspond to cases for which
a diabatic transition, with tunnelling. applies. It is a simple
matter to tally the diabatic versus adiabatic configurations. It
is a less simple matter to remove the transfer-species to a position
on the reactive trajectory for which a state of mechanical equilibriuc
does exist and from there to determine the probability for tunnelling.
However, such calculations can be carried out. It is possible,
therefore, to obtain an appropriate form for the pre-exponential
factor.

One should note the fact that the activation energy for a
configuration for which & diabatic transfer holds must be determined
still with the transfer species in the transition state configuration,

even though this configuration {s mechanically unstable.
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An interesting result of these simulations is the statistical
definition of an adiabatic »«rewe diabatic limit for a reaction.

Consider an individual configuration for the transition state.

From that which has been stated here, and in part 1, it is clear that

the transfer corresponds to one either in the adiabatic or diabatic

limit. At the microscopic level, there is no gradation of diabaticity;

the reaction is either diabatic or it is adiabatic. However,

in a statistical sense, for a given reactive system it is possible
that the Monte Carlo simulations will generate configurations for
which a fully adiabatic transfer applies part of the time and for
the remainder of che configurations a diabatic limit applies. The
overall value of the pre-exponential factor therefore must reflect
a statistical balance between the two extreme limits. Thus, one
sees that a given reactive system can exhibit a type of transfer
which corresponds overall to a statistical weight of the diabatic
against the adiabatic limit. That this is indeed the case is
already evident in a Landau-Zener type of analysis.l1 The
difrficulty in applying the Landau-Zener analysis to any system
which undergoes a reaction which belongs between the extremes of
digbaticity and adiasbaticity is well known. Monte Carlo methods of
simulation and averaging, on the other hand, provide the means to
investigate the shades of diabaticity which one expects for real

systems.

Algorjthms for Determining Mechanical Stability in the Transition

State

One can test for mechanical stability of the transfer-species

-21-
in the transition state configuration, the test is carried out in
the classical limit. It is necessary simply to determine the

sign of the second order coefficient in the Taylor expansion

for the motion of the particle along the transfer axis. The expansion

uses pair-wise interactions between the transfer-species and each
atom of the reactant(s) and the solvent.

The gymmetry-adaptable Taylor series for a general scalar

function g(r) 1612

B(r+R) ~ /&7 nzo(r“/nl){(-1)""‘.\“[?!(1.1-1")1“!(R) 53
in which12

A, =0 for t > nandn - ¢ odd

+ -1+
- ﬁfli nl :+:+1 l for t < nandn - t even 3

and

Tae(R) = -—l—[ A TOTRCY) (44)

(2n)¥,
In eqn (44) J,(kR) is the spherical Bessel function of the first

kind.13 and f(k) 1is given bylz

f(k) = A-I dr rig(r)ji,(kr). (45)
0

In egn (42), Pl(ﬁ-;) is the Legendre polynomial of order ¢ and

R'r is the scalar product of the unit vectors for R and r. it is the
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the cosine of the angle between the vectors.
When the z-axis is specified to be the transfer axis. eqn (42)
reduces to

- n
g(re) = /Zn T 0§ E ™ P (cosep)T (R) (46)
ek al

Ol_on ni nt

where now, "R is the angle between the location of the source and
the z-axis.
Mechanical stability for the wotion along the z-axis at the

location of the transition state is guaranteed if

2

- gy t2
g (R) = /& (Eo (-1)77%4, P, (cosep) T, (R)
- - B (1) - 28, (cosop) 1o (0] @n

is greater than zero.

in order to determine if the transfer-species occupies a state
which is mechanically stable ir the transition state, it is necessary
to evaluate SZ(Rx) for each species in the system, Thus,

g, - 1g.R) > O (48)

i

where, clearly, the prime on the summation excludes the transfer-
species. As an example, consider & system of particles associated

through the interactiry ~f the Mie potential:

V(r) = -A/r* + B/rl- (49)
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™
The general exparsion of a potential of the form 1/19 is

1 1 § n (gtn+2+4i) 11(g+n-2-1) 1
—_ e fAniP‘(cos:R)(-z/R) ‘QTI‘(E‘&T?DT‘—_L

[r+Ri% (g-2)1R9 n 1
(50)
The condition for stability is derived simply from eqn (50), it is

|

g: = - g R;B [5 + le;(cosuR‘)]Ai - [zz + 56P‘(cosekl)]

A
Rl
Psn

An expression of this type is no wore difficult to evaluate, and
consumes about the same amount of computer time, as the evaluation
of each of the individual pair-wise contributions to the energy

of the system.

Computational Aspects of the Monte Carlo Simulation of a Reactive

Transfer in the ABA System

The system is two-dimensional and conaists of a bent A-B-A
molecule which is immersed in a solvent of uniform disks. The
origin of the coordinate system is located initially at the mid-
point of the A-A axig. The B-species is located at a perpendicularly
displaced point over this midpoint. The solvent is distributed
about the solute in concentric circles the radii of which are
multiples of the solvent diameter; the first radius includes
an effective radius for the solute. No form of optimization is used

to construct this {nitial configuration.
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The system is equilibrated first at 4K, this step is suggested
in a similar treatment which was carried out by Simons.lé The
equilibration is accomplished in approximately 60,000 cycles of
the Monte Carlo simulation. The temperature is then raised to
300K. The simulation is allowed to proceed through approximately
20,000 cycles. At that point, memory of the intctial energy and
configuration of the system is erased and a new equilibration is
sought in approximately 60,000 cycles. At the end of the equilibra-
tion at 300K, the system is considered to be prepared in an initial
state. 1t is evident that the system has reached a state of
equilibrium at a given temperature when the fluctuarions in the
energy diminish and an essentially stable, almost constant value
of the energy is reproduced every thousand cycles or so.

Although emphasis has been placed on the process of forming
a vacancy into which the migrating species can transfer, this is
not altogether a necessary step in the simulation. It is possible,
in fact, merely to seek good confipurations for the transition
state. The activation energy is simply the difference between the
absolute energy of the transition state and the energy of the
initial state. Nevertheless, it appears to hasten the convergence
of the simulation to optimal configurations and values for the
energy if the step to find the vacancy is included. This process
is carried out as follows. To begin, a test is carried ocut to see
if a molecule of solvent occupies a position in the eventual location
of the migrating B-species. 1f the test proves to be positive, the
molecule of solvent is displaced along the y-axis (the transfer
direction) until sn appropriate void is created., With the molecule

of solvent held rigidly in this position, the remaining solvent is
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allowed to equilibrate about the solute and its vacancy with the
temperature at 300K.

Once the vacancy is created. an initial attempt to form the
transition state is made. The transition state is prepared simply
by moving the B-species to the origin of coordinates at the midpoint
on the A-A axis. The A-species are allowed to equilibrate only
along the bond axis; this is done in order to prevent the re-establish-
ment of the initisl state or the establishment of che final state
The solvent equilibrates &s usual. The entire process is again
carried out at 300K. With the generation of each configuration in the
process of equilibration, the transition state is tested to see if
the transfer species occupies a position which is mechanically
stable. If the transfer species alone occupies a position within
a configuration and the species is mechanically stable in that
position, the transfer is termed adiabatic. The average adiabaticicy
is determined.

The running average of any quantity is kept with the use of

the simple recursion relation:
H
FN - N(fN + (N'l)FN—l) (52)

where fN is the value of F (any measurable quantity) for the N-th
individusl configuration, and FN-I and FN are the average values
after N-1 and N cycles respectively. With the use of this recurrence
relation for the average, it is easy to see the emergence of a
relatively stable value for any quantity which is averaged It

is also easy to see the effect of long-term wemory, especially when
the simulation is programmed co evaluate averages over smaller

subcollections of randomly generated configurations.
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In addition to the details of the calculation which have been
described above, we included a circular boundary with a radius equal
to the distance of the outermost molecule of solvent from the
coordinate origin plus one solvent diameter. The interaction
between any species and the wall of this container was taken to
be infinitely repulsive.

The potential energy which was used throughout the simulation

was the Lennard-Jones/Mie potential:

V(r) = Di(rg/r)'< - 2(xry/x)8} (53)

where D is the dissociation energy and r, is a diatomic, equilibrium
bond distance. The dissociation energy for the A-B bond was

19J

taken to be 5.0x107 and the dissociation energy for the

A-A was half that value, 2.5-10-19J.

For simplicity, the dissociation
energy for the interaction between solvent and between each atom

of the solute, A and B, and the solvent was taken to be 92107203,

The equilibrium distance, 1y, for the A-B bond was kept a constant
0.Inm. In contrast, che bond distance for the two A-species

was allowed to run from a minimum value of 0.lnm (allowing, in

vacuum, an almost equilaterfally triangular molecule) to 0.2nm.

The solvent-solvent and solvent-solute atom distance was taken to

be 0.3nm which is approximately the van der Waals separation for

water.

Results of the Calculation

As intuition and experience leads one to suspect, the activation

bo
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energy decreases as the distance between the two A-species increases.
it becomes energetically less costly to move the migrating R-species
into the configuration of the transition state As the data indicate,
when the A-A bond distance is allowed to equilibrate in the transi-
tion state, the result is generally an adiabatic transfer 1t is
clear that the adiabaticity of the transfer increases as the
fundamental A-A distance increases.

The question naturally arises with these types of simulations
as to whether the number of molecules of solvent which surround
the solute 1s sufficlently large to account sccurastely for the
effect of the solvent on the activation. In order to test the
adequacy of the account of the solvent, an additional laver was
considered. The result of the simulation, which took more than
twice the time on the computer the original calculation toock, was
jidentical to the result with the smaller sample of solvent. It
appears, for the size of solute, A-B-A, which we considered, two
distinct layers of solvent in concentric circlesare sufficient
to estimate the energy of activation.

The calculations also reveal more than Table 1 alone shows.
It is clear in examining the evolution of the adiabaticity as the
system moves toward an optimal value for the transition state
that the initial adisbaticity is small; this is illustrated in
Table 2. Adiabaticity grows as the A-A bondlength expands to
accomodate the enclosed B-species. This occurence suggests that
1f, for the reason of a constraint due to a larger and more
complicated, effectively rigid molecular geomet-y, a molecule cannot
easily expand to accomodate a transfer species in a state of

mechanical equilibrium in the configuration of the transition
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state, then the heavy-centre transfer will tend to be diabatic.
The relative inflexibilitv of a molecular framework, therefore,
is surely an obvious limitation on the adiabaticity of any heavy-

centre atom or molecular group transfer.
Discussion

It is appropriate to consider at least briefly the comparison
between the theory which is developed in this paper and the
transition state theory of reactions in the gas phase as formulated

15 and Pechukas.16

by several people, especially, Miller
First of all, an assumption is made here that there is sep-
arability in the quantal limit in the sense of the Born-Oppenheimer
approximation. This is an essential assumption, for it prescribes
the form which the expression for the transition probability
(and hence the rate constant) must take. The development of
each expression for the rate constant in the diabatic and adiabatic
limits proceeds strictly governed by the limitations which are
dictated by assuming the classical limit for all degrees of freedom
which are associated with the solvent. The single quantum mechanical
contribution to the expression for the rate constant in the diabatic
limit arises from the need to consider tunnelling across the
residual barrier to the transfer.
In principle, all the difficulties which are inherent in the
gas phase theory16 of the transition state are slso contained in
the theory for the condensed phases as well. Because we have
chosen to examine the classical limit for the environmental

contributions, the expression for the rate constant in that limit

e
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is well-defined; this is also the case for the gas phase lo As
long as the Borm-Oppenheimer approximation applies to a transfer,
the transition probability (from second order time-dependent
perturbation theory) alsc applies. The classical limit for the
environmental contributions also applies. However, in the limit
of strong interactions, where quantal limits also apply, the
theory which is developed here is inappropriaste This, it is
incorrect to attempt to spply our results to highlv endo- or
exothermic reactions. It is well-known, also, from the theory of
the electron transfer reaction that a wmore appropriate (but, perhaps
not yet entirely accurate) form for the rate constant arises from
the proper consideration of the saddle point integration which

enters the theoryA17

Such an analyeis has not yet been carried
out for these heavy-centre transfers. Moreover, it is not immediately
clear how such an analysis should be carried out in order to derive
expresaions for the rate constant which lend themselves immediately
to Monte Carlo simulstion.

It is evident, therefore, that the results which we have presented
for the simulation of rete constants for heavy-centre transfers
in the condensed phase must be considered in the context of the
limits which define the problem. The transfers which we are able
to consider are those for which the enthalpy of reaction is in the
so-called "normal” range; the reactions can be neither highly
exothermic nor highly endothermic. Finally, it ts mandatory that
the reactions be considered to take place in the classical limit
with reference to sll the possible dynamical contributions from the

solvent.
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Table 1

A, (2.5/0.100/5.0/0.100)*
Eo = -54.87 {(at 300K)
E, = -53.85

™

. " -51.65

E, = 3.22 (448 kJ mol™!

)
(final adiabaticity. 0.98)

B. (2.5/0.125/5.0/0.100)

E, = -56.36

g = -33.82

m ™

- -51.55
E, - 2.86 (439 kJ mol™})
(final adiabaticity: 0.88)
(2.5/0.180/5.0/0.100)
Eo = -56.62

(2]

m

= -53.85
v
= - 53.43

™

E, - 0.99 (153 kJ mol™})
(final adiabaricity: 0.88)
(2.5/0.200/5.0/6.100)

Eo » -56.33

o = -56.27

. -54.20

E, = 0.13 (20 kJ mo1™h)

(final adiabaticity: 0.99)

°

m m
~

*The notation (DAA/RM/DAB/RAB) indicates the parameters used for
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the solute: DM is the A-A dissociation energy, DAB is the A-B
bond dissociation energy, RM is the A-A equilibrium pairwise
separation in the gas phase, and finally R, is the equilibrium

19

A-B separation. The energies are given in Joulesxl0 ° and the

distances in nm.

Table 2 The growth of adiabaticity for (2.5/0.180/5.0/0/100)

Cycles E Adiabaticicy
2,625 ~52.27 0.0015
4,375 -52.89 0.3%
6,125 -53.12 0.48
7,875 -53.22 0.5%
9,625 -53.33 0 .66
11,375 -53.36 0.71
13,125 -53.38 0.75%
14,875 -.53.38 0.78
16,625 -53.40 0.80
18,375 -53.43 0.82
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