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Abstract

We consider the use of a harmonic oscillator model to

investigate the tunnelling of atoms, ions, and molecular groups
The Transfer of Atoms, Ions and Molecular Groups

between positions of equilibrium for systems in condensed phases.
in Solution. II. Ttunnelling between harmonic wells The use of the oscillator model is warranted in many instances

for which one has reasonably accurate information about the

vibrational frequencies of atoms or molecular groups together with

information about the distance over which the species transfers
by

Thus, the harmonic oscillator model can be used in the absence

of more complete information to make estimates of the rates of

various kinds of heavy-centre transfers in solution. In this

paper we present a general treatment for the determination of
Parbury P. Schmidt

the tunnel-factors which are involved in the transfer. The
Department of Chemistry work constitutes an extention of the analysis of Wall and Glockler
Oakland University

who used a symsetric double potential well in order to investigate
Rochester, Michigan 48063 the resonance doubling of the vibrational spectrum of ammonia.

USA
We consider the general problem of the tunnelling between any

two vibrational states of the separate potential wells. As

an example, we apply the analysis to the consideration of a simple

ion-transfer between two centres of solvation.
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Introduction In this paper the Wall-GUockler analvi i, -,e .- I

applied to the general. asymmetric, harmonic d1uble Tptential

The transfer of an atom. ion or molecular group from ooe well. The results of the generalization are applied t. the

location to another in a condensed phase was considered in Part 1. determinalon of the rate constant for the tunnelliny ,f a heanv-

There, methods were developed which make use of accurate centre from one location to another. We present a general onalvsIs

pair-wise potential energy functions to determine the magnitudes which parallels that of Part I. The specific difference between

of the matrix elements which govern the transfer. For solution this work and that of Part I is the use of the double potential well

chemistry it is clear that it may not generally be possible to use instead of considering the specific pair-wise potential enerpv

accurate potential energy functions, as few accurate functions have functions which operate between the transfer-species and its surround-

been determined. Thus, it is difficult to construct rate constants ing solvent or ligand.

and to establish links between structural and kinetic factors In the next section, we summarize the Born-

of the kind considered
I 
without corroborating experimental data Oppenheimer-Holstein

4 
separation which was developed in Part I

of different kinds. Following that summary. we present specific forms for the matrix

In this paper we consider the use of the relatively simple elements which arise from the consideration of the double potential

double harmonic potential well in order to describe the parametric well. Finally, the results are applied to a model type of ion

interaction between a transferrable species at one location and transfer.

its eventual location at a physically removed side. We show that

it is possible to make an estimate of the size of the matrix elements Born-Oppenheimer-Holstein Analysis: Sumary

which couple the initial and final states of the system. These

estimates can be made with only the frequencies of vibration of the The Hamiltonian operator for the entire reactive system

transfer-species in its initial and final states and the distance Is expressed as

over which the species tunnels. As the analysis of Wall and

Clockler
2 

on the inversion tunnelling of aumonfa showed, the height H Ht Henv ()

of the energy barrier between the initial and final states can be

as much as 50. in excess of the true value. Yet, with the use in which Ht is that part of the total operator which applies to

of simple perturbation theory, Wall and Glockler's analysis is sur- the transfer-species and "env 's the remainder The operator Ht

prisingly accurate. The height of the barrier for the ammonia is expressed further as

inversion has been accurately estimated by Swalen and lbers.
3
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Th. S are elements of the inverse of the overlap matrix

H, T + V (2) The diagonal matrix element Hi).il is given by

in which T is the momentum operator and V is the potential. H iy.i - E - L i 1  -

These operators usually can be specified in one dimension for the

motion of the transfer-species along the transfer-axis. in which E, is the eigenvalue of the harmonic oscillator Hamiltonian

The complete eigenvalue problem is written as operator for the transfer-species at the location i. Finally.

the potential energy operator V
J
, which enters the matrix elements

Ho - Ek (3) V , in eqn (6). is defined as

with V
J 

- V - kkz
2  

(8)
(8

- X (4) for which z is defined to be the transfer-axis, and k is the

harmonic oscillator force constant which is defined with reference

in which the bssns functions #i, are harmonic oscillator functions to the coordinates at the origin J. This form for the potential

which are referred to coordinate origins at the locations i is used in order to isolate the local harmonic oscillator

(i - a or b, the labels for the initial and final locations of Hamiltonian operators.I

the transfer-species). The elements Xi, of the vector X are In the next section, the matrix elements VJJ 6 which contribute

in essence the vibrational wavefunctions for the environment, to the Li, 6 eqn (6). are determined for the general asymsetric

A particular element of the vector X is determined by the double harmonic potential well.

equation

Matrix Elements: evaluation

HiiXi - ' LI 1, 6X J (5)

The general form of the asysmmetric double potential well is

in which the L-matrix elements are defined by illustrated in Figure 1. The actual potential is specified as

L., " F .i ,.1 (6) V(z) - jkaz, - V-

L. i
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is used in

- 6kbZ6 Oz- (9)

Vb .- ,amj~Vb bnamb
in which -V0 is a constant displacement 

in energy of the left hand

well relative to the right. In terms of a Taylor series expansion, Z2

-V represents the difference Vb(zb) - Va(zo), the difference Jdzika a VDi. (za)#n(zb)

between the separate zeroth order terms of the expansion; note. V5  + kkbfrdz z2¢m(ze)Vn(zb hkbf. dz ze*(za)tn(zb)

can be negative, in which case the right hand well is lower in b

energy than the left. - dzk -z - - 2VO Iz(z b) (13)

The intersection of the two wells is defined to be the origin

of the system of coordinates. The distances from the origin to the The specific form is used here for the simple reason that there

minima of the two wells are 'a (to the left) and tb (to the right), are only two centres, a and b, and the exchange of indices converts

If Ib is known, for example, then one to the other.

The integrals in eqn (13) are evaluated with the use of

- bab + 2V0/ka) , (10) the one-dimensional harmonic oscillator basis functions-

With R - 'a + Lb , one finds *n(z) - (a 2n-nl)Hn(az)exp(-ha'z
2)  

(14)

a  l ± [kb/ks+ 2(1- kb/k.)V0/kaR)' ] . (11) in which Hn(az) is the Hermite polynomial. In the treatment of

the general form of matrix element, it is necessary to refer the

However, if ka - kb. then product of the wavefunctions to a single centre. This is

accomplished as follows. The exponential part combines as

a - hR + V0/kR. (12)

a + b'z'g)) "exp -(2+b2)y2 - A'b2 R; (15)

For the evaluation of the integrals, the distances 
t
a, tb and R a 2(&1+b

2
)

are specified individually. The relationships between these with y defined as

quantities are as given in eqn (10) to (12).

The modified potential energy operator V
J 

(J-ab), eqn (8), y x + d, (16)

y -__-z.+ d. (16)__
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with p - 0,1.2, must be evaluated. The addition theorem for the

Hermite polynomials is
5

a - h b(17)

a. ,* b-

For the single-centre matrix element, Ri 0, and eqn (15) reduces -2 k10 m- k

t. exp(-a'z) where (m) is the binomial coefficient. Further, the general form

The matrix element, eqn (13), can te written as of the Hermite polynomial is
6

amiv a'b
2  

S0n k(l " dy((k a - kb)mm (23)
k ,inl,, I t oo(- , I'd - (x) - 5-0 ((-1)'2.)s (23

2(kaRb + kbRa)Y + kR "20 the notation [m/2] indicates that the integer of m/2 is to be

taken.

-Hm(a(y-Rb))Hn(b(y+Ra))exp(-t(a2+b2)y2) (18) With the use of the expansions, the matrix element can be

expressed as

in wnich Soo is the ground state overlap:

a+bj'Jb a2b
2

n " (19) Am Ivb - 1 
( n l ) -

k - - (mk)(n)(- 1 )n-k
o-(......2 lexp(- 2 bk-0 1(19
SOD +blJ 2(a2+b2) J ~2k +

i

a/and)H (mn abR ) 22(.k+ ) a2b k+t kill

and -- R 2 - 1 a 18 a2+b
2  

--

( a
2

11b
2  

(+ a2b b_2 8 (2) (,-.12 '-r 8+ . ab l t (kb kb)+

a'+b
2

Rb 2b 
jkt .DJ + (kRa - kbR

2 
- 21J) --- a.Or(

It is apparent that the general integral -r --. 1L11. ,1 (4

where D2 - k(
2
+b

2
)d

2 
and the incomplete gamma function is

5

I'd dy yPHma(y-Rb))Hn(boy+Ra))exp(- (a2+b2)y2 )  (21)

r(a.x) - J dt ta-le-t (25)

-I.
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The single-centre matrix element can be obtained in principle

from the two-centre form, but it is actually simpler to consider -

the specific furm +b

0 and

.amnv - Jn (kZ- k z2 - 2Vo)H(az)
(2 m n tl)kf-- a bb

k+1-2(s~t) - even.

xHn (aza)exp(-a
2
Z2). (26)

The same type of analysis, as applied to the two-centre form, yields Model System Calculation. Asyetric ground-to-ground state transfer

S2 m +n 1 Im/21 [n/2j S 8
_T.T - j'a sm I) 4 The simplest direct application of the methods which have

- -- , been developed above is to the consideration of the ground-to-

(m-2s)T(n-Zt)ls- tl (1 - %/ka1)r[-Ij -s-tIq- j ground state transfer of a heavy-centre from one harmonic well tc

another. The wells need not be symmetric with respect to their

a widths nor with respect to their relative locations on the

+1 (2energy-axis, According to the transition state theory, the

+ 2Vo/liua~rt-- -s-t.q")J (27) convolution of environmental energies ensures the conservation of

total energy for the transfer; the energy deficit for the reactive
for which q. is subsystem is made up from contributions from the environmen,.

In this section attention focuses entirely upon the problem of

S~at determining the size of the matrix elements LaoDbD in the diabetic

limit. For the ground state transfer, we need specifically to

qb is defined similarly. consider the element

Finally, the general overlap integral is written as

(n! * A k LaObO ' (VSo bO - S100bO,bO)/( - (29)

k-0 1-0 ') 3~* - M;, nob)%u('ba

Ik 12] (-2 s k)l 2t)ls.tl(_l)S+t(2n)k +i-2(.+t) The matrix element Vbo,bO is

6-0 t-0

1S

I.s
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For integer n. the incomplete gamma function !(n.x) ts
5 6

Vb Ojh
aObO - <aovhlbOl

r(n.x
2
) - (n-l)le-X'ny x2s /sl (32)s=O

- bSCsb 
2 ( 1 

+ ks/kb)r(3/2.D)
while for half-integer arguments, n+k. one has

5
.
6

" 2fa / bi(k./kb)R + R (r(l D-) + 1(bRa)'

r(n+",.x
2
) . (2n-l)11f/ erfc(x) + 

1e - n - l
'

"
0 (33)

+ (ka/kb)(bRb)
2- 

2Vo/Lb)rt .D.)1 
(2$

in which erfc(x) is the compl~ent of the error integral:

- a1 [1+ (bR)
2  

• (30)

1+a
2
Ib2 1+a Ib

2 J erfc(x) - 2

The matrix element 
Vb is

bO,bO

- 1 - erf(x). (34)

Vb boIbobO.bO

In the limit as x vanishes,

- I (/ - l)r(3/2.q ) - 2(ke/kb)bRr(lq2)

lim r(a.x
2
) - r(a). (35)

+ [(ka/kb)(bR)2 -
2
V /I&b] (k.q'). (31)

Conversely, as x becomes large (x 3). erfc(x) 0,. and

The vibrational overlap element for the ground states is given by

eqn (l19. Jim r(n+kx
2
) - (Zn-l)II e 2nl 2S+1lxlx 3 

n  
s- s-'ET)N (3t)

eq 19.x 3 20 S. 0
The general formulae for the matrix elements can be simplified

in many instances with the use of various limiting forms. The The application of these limiting forms to the matrix elements

limits generally involve the consideration of large or small results in a considerable simplification In order to applv these

values of the arguments of the incomplete gamms functions, limiting forms, however, it is necessary to consider the phvsics.

The typical values of is, Ib, and the several R's, together with the distinctions within the system which will govern the types of

coefficients a and b. lead to terms, c.g.. qa. D. etc., which are limits which one may expect to use.

large or small in a limiting sense.



A I-., r "f p-sstlle limits can tie cosidttrd, thcs limit' ,x r whc. tl, tra,! att

ar alpeifed thrujzh the consideration of differences in the Studies cf thv fa-s! rd ('cIr of '.M ca::,

red-ued masse., in the initial and final states. differences ii of Group I. ::.. sodio, . . • . indicate a relat ivl. , al 1

the lengths ,a and ... and differences in the force constants. solvent-dependence.
7 
that is, the changv, fr oe sv I-ct a ctlet

For the consideration of the transfer of a simple solvated tonic resvlts in a shift of the spectral maximr " elarlvelo small

species (for example, a sodium cation) from one cage of solvent amount The changes in the reduced mass ' osln; fro- --ne

to another in a homogeneous, single solvent system. it is clear solvent to another are small as well Th, ,.: ::u ,,- t 1-

that (effectively) all quantities in the final state are the same reasonable, as a first approximation. to v to' diife-et-ces

as in the initial state. The double harmonic well representation in mas in considering the transfer matn s ,re-'ver

is svmsetric. Thus, clearly, the quantity D - 0. On the other if one can ignore the differences in mass. I . as oserved.'

hand, it is possible to use the harmonic oscillator repreaentation the spectra in several solvents are essentially the same. ther,

developed here to consider the matrix element for the transfer it is also reasonable to assume that the fer,. constants are

of a simple cation (again, sodium) from one solvent system to effectively similar for the initial and final states of the ion

another. In this case, as we now show. we can still obtain a transfer. With the us, of these two (apparentiv extreme) assumptions.

relatively simple limiting form for D and the other quantities. it is easy to show that D reduces to

We consider the hypothetical transfer of a simple cation

across the interface of two polar, but imiscible liquids, for D ; V,/2taR (37)

example. across the water-propylene carbonate interface. Although

in any interface there do not occur discontinuous changes in in which . is now the common frequency and P is still the total

composition, there may be aufficiertlo: different structures of distance for the transfer. V
0 

characterizes the relative displace-

solvation at some point to ensure that the ion-transfer between these ment of one potential energy function (from which the second

structures is rate-determining. We model such a situation, derivative yields the force constant) with respect to another.

The purpose in using the harmonic oscillator well model, as Thus, this quantity must necessarily reflect the total interaction

stated, Is to be able to make reasonable estimates of the transfer of the ion with its surroundings. As such, VO is effectively

matrix elements with the use of available data. The data which the change in free energy for the ion in one cage of solvent

are needed In order to consider the interfacial ion-transfer are compared to the other.

simply the fundamental frequencies for the oscillation of the If we assume, for sadism, that - 200 cm', and R. 0.6 A.

ion in its initial and final cages of solvent and the distance we find

9.



DI 3 2I I~a I/bl

5 t.es lie , 045hbo h - t, 1 l 1 , '.

it i apparent t,at large differences in the free energy of + 21-- 2 h ( /
1 1

,)Rb -

s, -r -o w ill r-soit in one limiting form (through the V
1 b

laOibO bR l

.at :tix letetit) and a vanish&ng difference in the free energy + + (hR)

l-,,!s t,. thL opposit limiting form.

It is also. lr r that any r-' syttem, even if modelled In contrast, the small D-limit is given by

e.it;smalls with the use of this double harmonic well Potential.

rut exhib:t a complicated collection of changes in all of the lim'aiivbbo . J S
, 

(ka/kb 1) 1____

quttities wlich we have considered. Thus. in fact, it siould Db

not generally be p-ssible to reduce most transfers to the limit - 2 (kI/kb)ia + ti bi + ((kathIa

eopressed itt e.t (37) Nevertheless, this limit is useful for

graphically showing how the quantity D can assume values which - i b- - 2V,/1bh ,-

,clid different limiting forms for the incomplete garmia functions.

In generil, the q-quanrtities satisfy the large-argument For an essentially syxmetric well, this reduces to

itit 1t- the incomplcte gamma functions. We conclude this

so i- cnosdersng tt two extreme limits D - 0 and D , 3 _)-bgtq.

1,r th L,,.bO matrix element as expressed by eqn (29)-31).

First. the large q-limit for the matrix element bOIvbbo, It is worth noting in eqn k40) the fact that although an

apparent, direct dependence on V0 disappears in the limiting process.

nevertheless. VO still plays a role in the matrix element through

li-bOlb = A b II 
q 
- (ka/kb)(q +2bR) Ie

- q
. (39) the quantity D.

Turning our attention to the tunnelling of a small cation,

In the limio of a symmetric well system, this simplifies further; such as lithium, from one cage of solvent to another In solutinn.

Ik'b - 1 The large D-limit for the two-centre matrix element we find the following. First, assume that the system satisfies

is given by the limits for a symmetric well model, that is. the initial and

final states are physically the same In this case. it is casy



I, find constants, which are us d in the calculatcicn, -. tair 0. r-iut.is'

information about the effect of the env:rnr:i ti !., ,ci x clrrer:f,

L Obo e- q, (42) for the transfer.

The experimental values of the force constants, h,)wever.

If, for lithiu, we assume that * 430 cm
- 

(which is a reasonable yield no direct information which can be used t,, es* is-ar

value based on the far infrared spectrvis of lithium in a number the energy of activation In order to estimate this enerev. it is

of solvents
7
) and i 0.3 A. then LaOb 0.05 h mol

~
. As necessary to resort to the usual cllection of m-dels of the

pointed out in Part I 
I
. this value satisfies the diabatic limit solvent for example, the polar continuum This ptoblem of the

for the transfer. It remains to be demonstrated whether a calculation of the energy of activation is important, it was

value for the transfer matrix element L aob which is obtained in not considered here. but shall be considered in a separate paper.

this fashion is an accurate estimate. It is clear that it is a The model which has been developed in this paper provides

reasonable and consistent value when it is compared with the a qethod which can be used to estimate the size of the pre-

values which were generated in Part I by means of the use of more exponential factors for rate constants for reactions which. one

complete and accurate potential energy functions. presmes, take place in the diabatic limit. In order to carry

out the calculations, one needs only the (observed) frequencies

Discussion and Sumary for the vibrations of the transferring species, polarized along

the transfer-zxis, in its initial and final states and an estimate

The effects of the environment on the matrix elements have of the distance over which the species must migrate It is not

not been specifically included here, as they were in Part I. necessary to have complete knowledge of the specific solute-

The reason is simple. As was argued in Part I, the specific solvent interaction potential energy functions.

consideration of the environmental contributions to the matrix As in Part I. this work also clearly indicates that the

elements for the transfer could be reduced to additional terms vibrational overlap between the states involved enters as the

which are of the same general form as V
J 
which is defined for principal factor which determines whether a transfer is likely

the reactive subsystem. For the model system, as we treat it here or not. Indeed, both Part I and this work suggest that a simple

in terms of the double harmonic oscillator potential, such estimate of the vibrational overlap in the ground state, eqn (19).

environmental contributions are implicitly contained in the values offers a qui'ck appraisal of the likelihood that a particular

of the force constants which are used for the initial and final configuration (with its specific transfer-distance) can contribute

states. Thus, one assumes, the experimental values of the force to the rate in a diabetic limit. Such an estimate can be carried

out with the use of the quantities a and b which are determined

LI
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with the use of the experimental frequencies.
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