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The Transfer of Atoms, lons and Molecular Groups

in Solution. I1. Tunnelling between harmonic wells

by
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Rochester, Michigan 48063
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Abstract

We consider the use of a harmonic oscillator model to
investigate the tunnelling of atoms. ions, and wolecular groups
between positions of equilibrium for systems in condensed phases.
The use of the oscillator model is warranted in many instances
for which one has reasonably accurate information about the
vibrational frequencies of atoms or molecular groups together with
information about the distance over which the species transfers
Thus, the harmonic oscillator model can be usec in the absence
of wore complete information to wmake estimates of the rates of
various kinds of heavy-centre transfers in solution. In this
paper we present a general treatment for the determination of
the tunnel-factors which are involved in the transfer. The
work constitutes an extention of the analysis of Wall and Glockler
who used a symmetric double potential well in order to investigate
the resonance doubling of the vibratrional spectrum of ammonia.

We consider the genersl problem of the tunnelling between any
two vibrational states of the separate potential wells. As
an example, we apply the anslysis to the consideration of a simple

ion-transfer between two centres of solvation,




Introduction

The transfer of an atom, ion or molecular group from one
location to another in a condensed phase was considered in Part I.l
There, methods were developed which make use of accurate
pair-wise potential energy functions to determine the magnitudes
of the matrix elements which govern the transfer. For solution
chemistry it is clear that it may not generally be possible to use
accurate potential energy functions, as few accurate functions have
been determined. Thus, it is difficult to comstruct rate constants
and to establish links between structural and kinetic factors

of the kind considez'ed1 without corroborating experimental data

of different kinds.

In this paper we consider the use of the relatively simple
double harmonic potential well in order to describe the parametric
interaction between a transferrable species at one location and
its eventual location at a physically removed side. We show that
it is possible to make an estimate of the size of the matrix elements
which couple the initial and final states of the system. These
estimates can be made with only the frequencies of vibration of the
transfer-species in its initisl gnd final states and the distance
over which the species tunnels. As the analysis of Wall and
Glockler2 on the inversion tunnelling of ammonia showed, the height
of the energy barrier between the initial and final states can be
a8 much as 50% in excess of the true value, Yet, with the use
of simple perturbation theory, Wall and Glockler's analysis is sur-
prisingly accurate. The height of tiie barrier for the ammonia

inversion has been sccurately estimated by Swalen and Iberl.3

3 —— — -
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In this paper the Wall-Glockler ana]vr-x:3 e extended and
applied to the general, asymmetric, harmonic deuble potential
well. The results of the generalization are applied tu the
determina _ion of the rate constant for the tunnelling of a heavy-
centre from one location ¢o another. We present a genersl analvsis
which parallels that of Part 1. The specific difference between
this work and that of Part 1 is the use of the double potential well
instead of considering the specific pair-wise potential energv
functions which operate between the transfer-species and its surround-
ing solvent or ligand.

In the next section, we summarize the Born-
Oppenhelmet-ﬂolsteinb separation which was developed in Part I
Following that summary., we present specific forms for the matrix
elements which arise from the consideration of the double potential
well. Finally, the results are applied to a model type of ion

transfer.

Born-Oppenheimer-Holstein Analysis: Sumuary

The Hamiltonian operator for the entire reactive systemw

is expressed &s
H~- Ht + Henv (1)

in which H, 1is that part of the total operator which applies to
the transfer-species and Henv is the remainder, The operator “t

is expressed further as

o — N




H, =T +v 2)

in which T is the momentum operator and V is the potential.
These operators usually can be specified in one dimension for the
motion of the transfer-species along the transfer-axia.x

The complete eigenvalue problem is written as
Hy = Ev »
with

v i;vxi]“‘ “
in which the busis functions 4, are harmonic osciliator functions
which are referred to coordinate origins at the locations i

(i = a or b, the labels for the initial and final locations of

the transfer-species). The elements Xgy of the vector X are

in essence the vibrational wavefunctions for the environment.

A particular element of the vector X is determined by the

equation

Hiv.ivxlw - jié Liv.Jéxjs (5

in which the L-matrix elements are defined by

-1
Liv.ge ” kf‘ siv.kva(,jo (O]

-5.
The S;f P elements of the inverse of the uverlap matrix

The diagonal watrix element H iy is given by

iy,

-E-E

Biyin ty "My 0T m

in which E:‘ is the eigenvalue of the harmonic oscillator Hamiltonian
operator for the transfer-species at the location 1. Finally,
the potential energy operator VJ, which enters the matrix elements

va:,ja in eqn (6), is defined as
vievy- xkz (8)

for which z is defined to be the transfer-axis, and k, is the

harmonic oscillator force constant which is defined uich reference
to the coordinates at the origin j. This form for the potential
is used in order to isolate the local harmonic oscillator
Hamiltonian operators.1

In the next section, the matrix elements Vi.,ja which contribute
to the Li1.jﬂ' egn (6), are determined for the general asymmetric

double harmonic potential well.

Matrix Elements: evaluation

The general form of the asymmetric double potential well is

fllustrated in Figure 1. The actual potential is specified as

V(z) = §kg2Z - Vo -=sz50
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is used in
= wkpzg O-2<= 9
v‘;m - <am|[VP|bn»
in which -V, is a constant displacement in energy of the left hand :
J
well relative to the right. In terms of a Taylor series expansion,
: \ = f dzisk,zZ - Volep(z e (2zp)
-V, represents the difference Vb(zb) - Va(za), the difference =
between the separate zeroth order terms of the expansion; note, V, + &kbf dz zé‘m(z,)'n(zb) _ 5kbj dz lé*m(l.>'n(=b)
can be negative, in which case the right hand well is lower in 0 b
left. °
energy than the le - ;I dz(k'zﬁ - kbzg - 2v°’°m(za)°n(zb)
The intersection of the two wells is defined to be the origin e
of the system of coordinates. The distances from the origin to the The specific form is used here for the simple reason that there
i 1 .
minima of the two wells are ta (to the left) and b (to the right) are only two centres, a and b, and the exchange of indices conve
1f ty is known, for example, then one to the other.
N The integrals in eqn (13) are evaluated with the use of
- 2
g = lkp/kgdty® + 2Ve/ky )", a0 the one-dimensional harmonic oscillator basis functions:
w - +
ith R 1, Ly, one finds ’n(z) - (a?Z“-nl)*Hn(nz)exp(-ynzz?)
- R . - 5
‘a [‘E.Jﬁbll h [kb/k' +a kb/ka)v°/k-R] ]' an in which Hn(nz) is the Hermite polynomial. In the treatment of
the general form of matrix element, it is necessary to refer the
However, 1f k, = k. then product of the wavefunctions to & single centre. This is
accomplished as follows. The exponential part combines as
t, = ¥R + V/kR. (12)
ab? .
exp(-i(.’z: + b’zé)} = exp|-§(a24b2)y? - ———;——;—‘
For the evalustion of the integrals, the distances t_, L and R 2(a?+b?)
sre specified individually. The relationships between these ! with y defined as
quantities are as given in eqn (10) to (12).
The modified potentiasl energy operator vl (j~a,b), eqn (8), ymz+d
'

(13)

Tts

(14)

(1s)

16)
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For the sing'e-centre matrix element, R = O, and eqn (15) reduces

to exp(-a<z’)

The matrix element, eqn (13), can be¢ written as

( N -

b a‘+b? N
<am{V-ibn, = §|—pmy——| Sgo(-1) dy{(k, - k) 2
e lz“”*” wmlnl] oe I-d y[ a 4

- 20y + kyRY + k,RE - kyRZ - 2Vo)
Hy (a(y-Ry ) (b(y+R,) ) exp (-5 (a?+b?)y?) (18)

in wnich S50 is the ground etate overlap:

£
SR (P2 L L I as
a‘+b? 2(a2+b?)
and
- .2
*a a2+b? R
b2
R, = —— R. (20)
b g

It is apparent that the general integral

I.d dy yPH_{a(y-Ry,))H_ (b(y*R,))exp(-4(a2+b?)y?) 21

-g-
with p = 0,1,2, must be evaluated. The addition theorem for the
Hermite polynomials iss

®
HplasR] = iy TG CDM Mg (Tarn (T 22)
where (:) is the binomial coefficient. Further, the general form

of the Hermite polynomial 156

{m, »
Hy(x) = sﬁo CLf 0™ Bl 23

the notation [m/2] indicates that the integer of m/2 is to be
taken.
With the use of the expansions, the matrix element can be

expressed as
m n
aalWibn = ipmian¥se, 18 @ et
2 Lot

My i (ZaRH, _ (/2bR)27 (K4 [_etb2 el

(k+e)
az+b2] h

lkfz] [l€2]

.1)5tt al+p? 18%C
x TE_Y_éTTl—Z_TT_T'T a3 k. -
8=0 tsp (k-28)1(1-2t)lslt [A/?n’b?] [ (Ka = )

f L
2 k+1+3 2
-[;;:;;]r(——z——-a-t,DzJ - 2(kgRy + kbR‘)l }

a+b?
{
-rltiaig -s-t,DZ] + (kgRE - kRZ - 2v°)r(5i;11 "'t'nlll 26)

where D? = §(a24b?)d? and the incomplete gamms function 13

r(a.x) = { dt ¢t 2%)
x

S
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The single-centre matrix element can be obtained in principle
from the two-centre form, but it is actually simpler to consider
the specific form

[

a
msj_-dz (ltazfa - k.bzg - 2V°)Hm(lz.)

cam{V¥jan> = }
-Hn(aza)exp(—azz;). (26)

The same type of analysis, as applied to the two-centre form, yields

)s+t 48"t

min

win 1y (/2] [n/2]
<am|V®|an> - ""“alz l IRS!

a=0

inl min+3 2
*T@-Zs mn‘—l tyTslt [(1 - kb/ka)r[__f-” "'t'qa]

- 20 /kdarr [BE2 Loee q1) - [ g /k,) (aB)?
+ zvo/nw.]r[“'—"“{—l -.-c,qg]] an

for which 9, is

qy is defined similarly.

Finally, the genersl overlap integral is written as

% o .-k
San = 1 L6 ;?ﬂ%'n Hy i (7Z8Ry)H,_ (/2DR,) !
k(21 (a2} el Dk 2o

0 thp TIDT-TOTATEY

1 —— ——— -
A\ ]
L 8
i —— e

-11.

k-2s, -2t - (k+t-2(s+t)-1)!}
a b D — (26
2(a-+b) (1727554

k+t-2(s+t) = even.

Model System Calculation. Asymmetric ground-to-ground state transfer

The simplest direct application of the methods which have
been developed above is to the consideration of the ground-to-
ground state transfer of a heavy-centre from one harmonic well tc
another. The wells need not be sywmetric with respect to their
widths nor with respect to their relative locations on the
energy-axis. According to the transition state theory. the
convolution of environmental energies ensures the conservation of
total energy for the transfer; the energy deficit for the rractive
subsystem is made up from contributions from the environmen..

In this section attention focuses entirely upon the problem of
determining the size of the matrix elements Lao,bo in the diabatic
limit. For the ground state transfer, we need specifically to

consider the element

b 7
L,0,50 = (Vao,b0 - S0o¥q po) /(A - So). @n

b
The wmatrix element vnO.bO is
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b b
vaO,bO = <a0|V |b0>

2

1
. e Seod-t 2
LI PR PP

(1 + ka/kb)r(3/2,D’)

¥
2 . .
-2 . . 2
[—_l+a-/bzl bi(k /k IR + RIT(1,D) + {(bR))

+

(ka/kb)(bRb)7- 2Vo/hey 11 L%, D)

'

D SN PR .5 L O (30)
1+a?/b? 148:/b?

b
The matrix element vbO,bO is

b b
Yoo.bo = “BOIVIbO>

1 3
" M»bl(ka/kb - 11(3/2,q)) - 20k, /kIbRI(1,q2

+ [y omz - zvn/n»b]r(s.qg)}, 630}

The vibrational overlap element for the ground states is given by
egn (19).

The general formulae for the matrix elemcnts can be simplified
in many instances with the use of various limiting forms. The
limits generslly involve the consideration of large or small
values of the arguments of the incomplete gamma functions.

The typical values of tar ty and the several R's, together with the
coefficients a ard b, lead to terms, c.g., q,. D. etc., which are

large or small in a limiting sense.

-13-
For integer n, the incomplete gamma function '(n,x') 155'6
_y2m=1
rn.x2) = (n-11e™ | x25/61 (32)
s=0
while for half-integer arguments, n+k, one hass'(’
: n-1 .8+l _2s+1)
2y « (2n-1)11 -xt Tt 287y
T (0t x2) ___;ﬁl__ Aertet + e [ S (33)

in which erfe(x) 1s the compl®ment of the error integral:

erfc(x) = 2 ! dr et
/Tlx
=1 - erf(x). (34)

In the limit as x vanishes,

lim r(a,x?) = r(a). (35)
x+0

Conversely, as % becomes large (x » 3), erfc(x) = 0, and

n-1)1t  -x20zl 25+1x2x¢l
lim r(n+k,x?) = Ga-lit, ST (36)
x»3 20 IZO s
The application of these limiting forms to the matrix elements
results in a considerable simplification. 1In order to apply these
limiting forms, however, it is necessary to consider the physice.
distinctions within the system which will govern the types of

limits which one may expect to use.
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A nunter of possitle limits can he considered, these limits
are specified through the consideration of diffcerences in the
reduced masses in the initial and final states, differences in
the lengths ¢, and he and differences in the force constants
For the consideration of the transfer of a simple solvated ionic
species (for example, a sodium cation) from one cage of solvent
to another in a homogeneous, single solvent system, it is clear
thatr (effectively) all quantities in the final state are the same
as in the initial state. The double harmonic well representation
i« symmetric. Thus, clearly, the quantirty D = 0. On the other
hand, it is possible to use the harmonic oscillator representation
developed here to consider the matrix element for the transfer
of a siople cation (again, sodium) from one solvent system to
another. In this case, as we now show. we can still obtain a
relatively simple limiting form for D and the other quantities.

We consider the hypothetical transfer of a simple cation
across the interface of two polar, but immiscible liquids, for
example, across the water-propylene carbenate interface. Although
in any interface there do not occur discontinuous changes in
composition, there may be sufficiertl- different structures of
solvation at some point to ensure that the ion-transfer between these
structures is rate-determining. We model such & situation.

The purpose in using the harmonic oscillator well model, as
stated, is to be able to make reasonable estimates of the transfer
matrix elements with the use of available data. The data which
are needed in order to consider the interfacisl ion-transfer are
simply the fundsmental frequencies for the oscillation of the

fon in its initisl and finsl cages of solvent and the distance

b

—
S
cver which the transfer tabes place
Srudies of the far-:infrarved spectra of solvated caticp
of Group I, »:i:., sodium indicate a relativelw small

solvent-dependence, ' that is, the chanpe from one sclvent t- anctber

resvlts in o shift of the spectral maximum ° celarively small
amount The changes in the reduced mass ~siny fror cone
solvent to another are small as well Tht world aryear to be
reasonable, as a first approximation, to ¢ the differences
in mas® in considering the transfer matr: *s Mirenver

i{f one can ignore the differences in mass. - .. &S nbserved.7

the spectra in several solvents are essentially the same, then

it is also reasonable to assume that the forc. constants are
effectively similar for the initial and final states of the ion-
transfer. With the us. of these two (apparentiv extreme) assumptions,

it is easy to show that D reduces to
D = V,/2huaR (37

in which « is now the common frequency and R is still the total
distance for the transfer. Vo characterizes the relative displace-
ment of one potential energy function (from which the second
derivative ylelds the force constant) with respect to another.
Thus, this quantity must necessarily reflect the total interactien
of the lon with its surroundings. As such, V, is effectively

the change in free energy for the ion in one cage of eolvent
compared to the other. R

1f we assume, for sodium, that « - 200 cm’', and R - 0.6 A

we find




i JoBy Vi eV) (38)

it 1~ apparent that large differences in the free enargy of
scivellon will resuit in one limiting form (through the V:O,bD
natr1x element) and a vanishing difference in the free energy
leads tu the opposite limiting form,

It is alsu cleur that any roa!l system, even if modelled
minamally with the use of this double harmonic well notential,
must exhibit a complicated collection of changes in all of the
quantities which we have considered. Thus, in fact, it snouvld
nut generally be possible to reduce wost transfers to the limit
expressed in egu (37) Nevertheless, this limit is useful for
graphically showing how the quantity D can assume values which
vicld difiurcn} limiting forms for the incomplete gamma functions.

In general, the g-guantities satisfy the large-argument
linit ter the ncomplete gamma functions. We conclude this
sectien bv cunsidering the two extreme limits D~ O and D » 3
ter the LaU,bO matrix element as expressed by eqn (29)-(31).

First, the large g-limit for the matrix element <b0|Vb‘b0>

Lim<b0 VP b0 =

; - Moy [q - (/i) (a #20m) 79 (39)
o e

In the limi» of a symmetric well system, cthis simplifies further;
ka/kb = }. The large D-limit for the two-centre matrix element

is given by

|
Lin a0 VP b0s = akns 4 A R )
D>3 lz.ruw/b e n
( Vi
+ 22— il R 4w o
{1+a-/p-f 2 al]
; )
s 4 SBRC } ot
}+a</b- l+a</b
}
In contrast, the small D-limit is given by
b 1
limead|Vo{b0> = xhopSco{(ky/ky - 1) -
D+0 1+a- /b
/ z[(k IR ]b‘ 2 + ((k 1%,
a/kprta t Yy ll+a-/b3 alky
!
. }tr ; 2v0mb‘ e

For an essentially symmetric well, this reduces to

-hupSooa.

It i1s worth noting in eqn (40) the fact that although an
apparent, direct dependence on V,; disappears in the limiting process,
nevertheless, V, still plays a role in the matrix elerent through
the gquantirty D.

Turning our attention to the tunnelling of a small cation,
such as lithium, from one cage of solvent to another in solution,
we find the following. First, assume that the svstem satisfies
the limits for a symmetric wcll medel, that is, the 1nitial and

final states are physically the same In this case, it is easy
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to find

1 -q°
Liobe = ° Fh‘qeq «2)

1f, for lithium, we assume that . - 430 e}

(which is a reasonable
value based on the far infrared spectrum of lithium in a number

of solvents’) and § - 0.3 X. then Ly o * 0.05 kJ mol ! as
pointed out in Part Il. this value satisfies the diabatic limit

for the transfer. It remains to be demonstrated whether a

value for the transfer matrix element Lao,bo which is obtained in
this fashion is an accurate estimate. It is clear that it is a
reasonable and consistent value when it is compared with the
values which were generated in Part 1 by means of the use of more

complete and accurate potential erergy functions.

Discussion and Summary

The effects of the environment on the matrix elements have
not been specifically included here, as they were in Part 1.1
The reason is simple. As was argued in Part I, the specific
consideration of the environmental contributions to the matrix
elements for the transfer could be reduced to additional terms
which are of the same general form as v which is defined for
the reactive subsystem. For the model system, as we treat it here
in terms of the double harmonic oscillator potential, such
environmental contributions are implicitly contained in the values
of the force constants which are used for the inirial and final

states. Thus, one assumes, the experimental values of the force

~.—

.1’«.
constants, which are used 1n the calculation, centarn the requisite
information about the e€ffect of the environment - n the ~atrix elements
for the transfer.

The experimental values of the force cunstants, however,
yield no direct information which can be used t. extimare
the enerygy of activation In order to estimate this energv, 1t is
necessary to resort to the usual ccllection of medels of the
solvent: for example, the polar continuum. This problem of the
calculation of the energy of activation is important, it was
not considered here, but shall be considered in a separate paper

The model which has been developed in this paper provides
a gethod which can be used to estimate the size of the pre-
exponential factors for rate constants for reactions which, one
presumes, take place in the diabatic limir. In order to carry
out the calculations, one needs only the (observed) frequencies
for the vibrations of the transferring species, polarized along
the transfer-zxis, in its initial and final states and an estimate
of the distance over which the species must migrate 1t is not
necessary to have complete knowledge of the specific solute-
solvent interaction potential energy functions.

As in Part 1, this work also clearly indicates that the
vibrational overlap between the states involved enters as the
principal factor which determines whether a transfer is likely
or not. Indeed, both Part 1 and this work suggest that s simple
estimate of the vibrational overlap in the ground state, eqn (19},
offers a quibk appraisal of the likelihood that a particular
configuration (with its specific transfer-distance) can contribute
to the rate in a disbatic limit. Such an estimate can be carried

out with the use of the quantities a and b which sre determined
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with the use of the experimental frequencies.

This research has been supported in part by a contract with

the Office of Naval Research, Arlington, Virginia.
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Figure Caption

The model potential energy for the asymmetric double harmonic

oscillator.
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