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1. INTRODUCTION

- This is the second yearly technical report on a three year

effort to study physical processes of relevance to the mass

spectrometric measurement of stratospheric ions. The effort

involves the development of a Monte Carlo model of the free -,et

expansion occurring within the mass spectrometer including the

effects of agglomeration onto, and fragmentation of, ionic

clusters.

The attempt to carry out in situ mass spectrometry in the

stratosphere is complicated by changes that may occur in the gas

stream as it expands after passage through the orifice. Both

positive and negative ions exist in the stratosphere with clus-

tered polar molecules surrounding the ion core. As these ion

clusters are carried along in the expanding gas stream, the

falling temperature will tend to favor the formation of larger

clusters. The charge-dipole interaction is characterized by

* large cross sections, so agglomeration of polar molecules may

change the cluster size distribution that the quadrupole sees

from the distribution that exists in the undisturbed stratos-

phere. Conversely, the measured cluster size distribution may

be driven towards smaller clusters via fragmentation. As the

ionic clusters are selectively accelerated by the electric field

within the mass spectrometer, high energy collisions with neutrals

may break apart the clusters.

The present effort involves a Monte Carlo simulation of

these processes, so that a model can be used to relate the

measured properties to those existing in the undisturbed atmos-

phere. The basic elements of the direct simulation Monte Carlo

method were described in the previous yearly report, 1and they

*Elgin, J. B., "Monte Carlo Calculations of Mass Spectrometer
Flow," Report AFGL-TR-83-0057, Air Forec Geotbh-Fic-cs Ikrr-ory,
February 1983. ADA 128069.
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will not be repeated here. There were substantial advancements

made in the past year which are described in detail in this

report. Section 2 describes the ability to treat separa-e spa-

tial segments of the flowfield in separate computer runs, pro-

viding a substantial increase in computational efficiency. The

formalisms for handling the simulation of internal molecular
energy and its interchange with the translational mode have been

generalized in terms of the classic Chi-Square distribution,

and this generalization is discussed in Section 3. Means of

- efficiently sampling from a Chi-Square distribution were devel-

* oped, and are discussed in Section 4.

The final new development for the past year is the inclusion

* of the accelerating effect of electric fields on charged species,

*and this item is discussed in Section 5. Section 6 presents a

summary of the code status and Section 7 discusses a test case
calculating the diffusive separation of a binary mixture of CO 2

and H.

*2. SPATIAL SEGMENTATION OF SOLUTION REGION

The code was generalized in the past year so that it has

*the ability to compute sequential spatial segments of the solu-

* tion starting from the orifice. (This new ability is merely an

* option and in no way affects the capability of handling the

* entire flow field at once.) The use of this option offers the

potential for a substantial decrease in the memory and computing

time required to solve a problem. Details of the spatial seg-

mentation scheme are discussed in the subsections below.

2.1 Justification for Segmentation

The first question that must be addressed is whether the

segmentation of the solution is physically and mathematically

7
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justified, and this question is critically related to the ques-

tion of boundary conditions. The physical laws that are embodied

in the Monte Carlo solution procedure, involving molecular trans-

lations and collisions, are as valid for a portion of the so.ution

region as they are for the whole region. In order to carry out

the solution in just a subregion, however, it is necessary that

the boundary conditions can be specified a priori alonc 'e

boundaries of the subregion in question.

For a Monte Carlo flow field calculation, the bo. iry

conditions are imposed by specifying the velocity dist. i .tion

function for incoming molecules alonc all boundaries, and then

selecting molecules from this distribution with the proper frequecy

and introducing them into the simulation. Usually this involves

*- extending the boundaries to a region of undisturbed (known) flow,

or to a region where molecular backflow into the solution region

is insignificant.

In the simulation of mass spectrometer flow, the upstream

boundary is taken to correspond to one dimensional sonic condi-

tions at the orifice, except that the mass flow is reduced by an

empirically determined discharge coefficient. The solution

region is extended far enough downstream and to the side so that

the flow of molecules into the solution region from these other

boundaries can be neglected. (An exception to this is the

incursion of background gas into the jet which will be treated

as an equilibrium gas at the side boundaries. This feature has

not yet been added to the code, but it does not affect the pre-

sent discussion since the distribution function for this gas will

be assumed known at the side boundaries.) Hence, a well defined

solution can be carried out downstream of the orifice as long as

the downstream boundary is far enough from the orifice to assure

that molecular backflow is negligible. Since rolecules have a

8
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thermal velocity which is on the order of the speed of sound,
backf low becomes negligible when the local Mach number is large

compared to unity. (It is interesting to contrast this to a

continuum calculation, which requires only that the local Mach
number be greater than one, perhaps by a very small amount, for

* there to be no upstream influence.) In a Maxwellian gas, the
~-. .~.probability of an individual molecule having an upstream velocity

direction is given by P, where

2er fc(M V7T)

and M and y denote Mach number and ratio of specific heats,

respectively. For sonic flow this probability is on the order

of 5%, but by the time the Mach number has become 2.0 the proba-
-4bility is on the order of 4xth and, for all practical purposes,

backflow can be ignored.

Hence, the imposition of the downstream boundary condition

neglecting backflow into the solution region is justified very

shortly after the orifice, since the flow rapidly becomes sub-

stantially supersonic. As long as this is the case, it is

perfectly proper to solve for a small segment of the solution

region. Once that solution is completed, then the derived

velocity distribution on the downstream boundary defines the

required upstream boundary condition for the next solution seg-
rment. This information is automatically written to a file which

is, in turn, automatically read as input for the next segment.

Segrmentation can be used in conjunction with the separation of

m-aor and minor species, if desired.

h2.2 Advantages of Segmentation

Although the physical justification for segmenting the
solution region has been demonstrated, there remains the question

9
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as to why one would want to "turn one problem into two or more

problems." Frequently the subdivision of a physical problem

into multiple subproblems reduces the total effort involved, and

- - this is no exception. Specific advantages are enumerated below.

* 2.2.1 Reduced Storage

* When the problem is broken up into segments, the total

number of cells and molecules required in any one segment is

less than required for the larger single solution. This trans-

lates directly into a decreased requirement for computer core.

2.2.2 Decreased Time to Achieve Steady Flow

The Monte Carlo technique is inherently a procedure which

solves an unsteady flow problem. For cases such as the present

one where the problem of interest is really a steady state flow,

this is solved by letting the unsteady solution relax to a steady

state. The computation time required to achieve a steady state

can be regarded as "computational overhead" for the present

problem, since useful steady state sampling of the solution

cannot begin until steady state has been achieved.

The time required to establish a steady flow can be esti-

* mated a priori as the length of the solution region divided

by the orifice flow velocity (times a safety factor). Hence,

- the longer the initial solution segment, the greater is the

period of unsteady flow. If the entire solution region is cal-

* culated at once, then the program may well spend most of its

effort in simply achieving steady state. If the solution recion

- is segmented, however, then the first segment can reach steady

state substantially faster than the whole solution region does.

This is of particular significance since the solution near the

10



orifice is the most collision dominated, requiring a large por-
tion of the computational effort needed in each time step. When

subsequent segments are solved, they still require a relatively

long time to achieve steady state (though the time is somewhat

diminished since the solution region is shorter), but the compu-

tational effort per time step is substantially less.

2.2.3 Increased Time Step for Latter Segments

The time step in a Monte Carlo simulation should generally

be small compared to the mean time between collisions for a mole-

cule, since the processes of translation and collisions are

treated separately in each time step. If the entire solution is

solved for at once, this implies that the entire solution is

* . constrained to the relatively small time step required by the

collisional region near the orifice. If that region is solved

for separately, then subsequent segments can have a substantially

larger time step since the mean time between collisions is larger

in subsequent segments. Hence, even though the latter regionE
still require a relatively large amount of simulation time to

achieve steady state, this time is more easily accomplished

since the allowable time step is much larger.

2.3 Segmentation Summary

These considerations strongly suggest that the first

spatial segment should be made within a few diameters of the

orifice, since: 1) The flow is by then already sufficiently

supersonic to justify the neglect of backf lowing molecules, and

2) The number of time steps required to achieve steady state is

small, which is particularly important in this collision domin-

ated region of the flow. Note that the question is completely

11.



unrelated to whether or not the flow is in equilibrium (as would

be the case if an initial region were to be calculated by the

method of characteristics). It is simply a matter of making

the calculation of the flow field more efficient by separating

the reiLatively long relaxation time which is required by the

latter portions of the flow field from the collision dominance

which is characteristic of the initial portion. Once the first

segment is calculated, then subsequent segments benefit computa-

tionally from the ability to take substantially larger time steps

in those regions.

3. IMPROVEMENTS IN INTERNAL ENERGY MODELING

3.1 Discussion

In the previous yearly report,1 the modeling of internal
-. energy of molecules and the interchange between the internal and

translational modes was discussed at length. In the past year,
significant progress was made in unifying and streamlining the

procedures for describing molecular energies, and a module was
* '. developed which is substantially more efficient in describing

equilibrium flow. These practical improvements are fundamentally

related to the theoretical result that all of these cases can be

related to sampling from a Chi-Square distribution. The theo-

-. retical developments are discussed in this section, and means of

sampling from a Chi-Square distribution are discussed in the

following scin

02 3.2 Initial Internal Energy Levels

The classical distribution of internal energy among mole-

cules with v degrees of freedom (Eq. (86) of Ref. 1) can be

*12



properly simulated if each individual molecule is assigned an

internal energy, E1, given by

E, 2 -R0TX ,(2)

where R 0 is the universal gas constant, T is the temperature and

X is a variable sampled from a Chi-square distribution with v
degrees of freedom. (A separate sampling is made, of course,

for each molecule whose internal energy is to be assigned.)

This relation applies to the initialization of molecules enter-

ing the solution region through the sonic orifice. The purpose

of Eq. (2) is merely to illustrate that the sampling described

in the last yearly report for initial internal energy levels

was essentially a sampling from a Chi-Square distribution,

although it was not labeled as such.

3.3 Inelastic Bimolecular Collisions

The relations used to define the post-collision state

vectors following an inelastic collision (Section 4.2 of Ref.

1) involve summing the total energy of the collision (internal

energy of the two molecules plus the translational energy of

their relative motion) and then redistributing it according to

the number of degrees of freedom for each of the three contribu-

ting parts. The procedure involves two samplings from a distri-

bution function, S, of the form:

1(vl/2-1) (V 2/2-1)
= N ~ 1 /2,v 2/2) ~ (- 1  3

where B denotes the beta function. Equation (3) statistically

describes the partitioning of a given amount of energy between

two modes, where vand vare the number of degrees of freedom

13
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of the two modes, and E3 is the fraction of the energy going to

the mode with v1 degrees of freedom. Equation (3) was first

sampled to partition the total energy between the translational

and internal modes, and then sampled again to partition the total

internal energy between the two molecules.

* The sampling of Eq. (3) was previously done via the

acceptance-rejection method, and this was complicated by the

presence of two parameters (v 1 and v 2), requiring that normali-

zation constants either be stored in two dimensional arrays or

- that they be recomputed at every sampling.

As discussed in Section 4.2, the sampling of Eq. (3) can

be achieved in a more basic fashion via

Xl

-. l X1 + X (4i)

where Xis selected from a Chi-Square distribution withv

degrees of freedom and X2is selected from a Chi-Square distri-

bution with v 2 degrees of freedom. This relation uncouples the

* sampling, so that it reduces the case of sampling from a two

parameter distribution to that of sampling twice from a one

parameter distribution. The latter approach is generally to

be preferred, since optimization of the sampling routine is

much easier for only one variable.

Equation (4) is a lot more signficant than merely indicating
a new way to sample from the necessary distribution. As was

shown in the previous section, a Chi-Square distribution describes

the energy allocation that is to be expected in an equilibrium

gas. Hence, Eq. (4) indicates that it is proper to first select

Chi-Square values as would be done for an equilibrun gas, and

* then normalize the Chi-Square values selected for the various

competing modes so that the available energy in a collision is

precisely conserved.

14



This concept leads directly to an even simpler method for

determining the post-collision energy distribution, namely each

of the three competing modes is given a fraction of the total

energy, Ci, given by

x.
- 1 ,(5)

X 1 + X2 + X3

where three Chi-Square samplings, each from a distribution with

the appropriate number of degrees of freedom, replace the two

samplings of Eq. (3). It is a relatively simple matter to show

that Eq. (5), arrived at here intuitively, is in fact formally

correct.

3.4 Equilibrium Collision Aftermath

One of the principal historic drawbacks of the direct simu-

lation Monte Carlo method is its inefficiency (as opposed to

invalidity) as collisions become more dominant and the flow

approaches equilibrium. The necessity of sampling a very large
number of collisions is time consuming and somewhat redundant

since, once equilibrium is achieved, further collisions have no
effect on the velocity distribution. This concept has been

utilized in the past to cut of f the sampling of collisions after

the simulation of a sufficient number to guarantee equilibrium

(Ref. 2), but it still required the simulation of a large number

of collisions and therefore resulted in a relatively inefficient

2 Bird, G. A., Molecular Gas Dynamics, Clarendon Press, oxford,
1976.
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simulation. Since the equilibrium limit is precisely the limit

in which continuum fluid mechanic descriptions become valid,

Monte Carlo simulations have not been extensively used in highly

collisional situations.

Using the relations of this section, with some extensions,
it is possible to bypass collision sampling altogether for cells

in equilibrium. New velocity and internal energy elements to

the state vectors can be selected directly from the distributions

resulting from many collisions (i.e., equilibrium) with the con-

straints that total momentum and energy be precisely conserved.

The result is that cells in equilibrium (i.e., those near the

orifice in a mass spectrometer) can potentially become the

easiest cells to simulate rather than the hardest; and the over-
all simulation efficiency can be substantially improved.

The procedure for sampling from the equilibrium aftermath

of many collisions is as follows:

1) Evaluate the following sums over all molecules in

the cell:

S = L Wimi  , (6)

1

S = Wimiu , (7)

iP

S3  = Wimiv i  , (8)
1

S4= Wimiw i  (9)

S5  1 1 Wiu +. Vi v+ W.2  , (10)
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and

S = WE (11)
6i

where Wi t mi and Eii are the statistical weighting

factor, the mass and the internal energy, respectively,

of the ith molecule, and ui , v. and w. are its velocity

components.

2) Compute the center of mass velocity components, u, v*

and w* via:

u* = S2/S1  , (12)

v* = ,3/S1  (13)

and

w* = 4/S . (14)

3) The total translational energy of the relative motion

between the molecules, Etrn , can be represented

t 1 WimiL(u ) 2+(viv,) 2+(wiw, 2]) (15)Etr n  T i [U-* -i
1

although it is more easily evaluated via the equiva-

lent expression

S2 2 + S32 + $42

Etrn = 1lSJ-* (16)

4) The total cell energy, Etot, is therefore given by

Etot = S6 + Etrn  (17)

e,0'.

17
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E tot, u*, v* and w* are the quantities which are to be conserved

in the equilibrium sampling of new velocity and internal energy

values for the cell molecules. The basic concept is to sample a

Chi-Square value appropriate to each available energy mode, and

then allocate the available energy in proportion to the assigned

Chi-Square values. Sampling a Chi-Square value for the internal

energy of each molecule is straightforward, but the translational

mode requires a little care. Since it is the energy of relative

* motion that we are considering, and amolecule can have no rela-

tive motion with respect to itself, all but one of the molecules

* .' should have a Chi-Square value sampled for its translational

degrees of freedom. (These Chi-Square values are sampled for

the three translational degrees of freedom.) Velocity compon-

ents of the molecules will be assigned one molecule at a time,

and when this is done the center of mass velocity components of

* the remaining molecules are implied via conservation of u*, v
and w*. When there is only one remaining molecule this means

that its velocity components are implied by the choices made

for the others, and it does not have independent translational

degrees of freedom. The identity of the "last" molecule is

arbitrary and has no effect on the assigned velocity components.

Let Xi represent the Chi-Square value sampled for the 'th

molecule's internal energy mode, and X ithe value sampled for

its translational mode. (The last molecule is assigned X ti = 0.)

The equilibrium post-collision sampling continues as follows:

5) A weighted sum of Chi-Square values is defined via:

S 7  W L W(X .i + Xt.) .(18)

6) The first molecule is assigned an internal energy

given by

18
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X EEII - $7 t (19)
Il S7

and a translational energy given by

x tlE tot
E - tSo7 (20)

7) The relative speed, qr, between the first molecule and

the center of mass velocity of all molecules (including

itself) which corresponds to Etl is given by

qr= 42EtI(SI - W1in)/(Slm1 ) . (21)

8) The direction for the relative velocity is selected at
random, giving the three relative velocity components

Url vrl and w via

A = - 2R , (22)

B = rl -A2 (23)r

C = 2nR , (24)

Url = qrA , (25)

Vr1  = Bcos(C) (26)

and

Wrl = Bsin(C) ; (27)

where each appearance of R denotes a distinct evalua-

tion of a random variable.

9) The updated velocity components for the first molecule

are then given simply by:

19
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u 1  = u + (28)

v = V + vrl (29)

and

w = w+ Wrl (30)

10) The first molecule's contribution to u*, v* and w* is

then removed via the replacements:

(u*)* u Furl (31)
(U)new

(V*) new = v* - Fvrl (32)

and

(w*)new = w* - rl (33)

where

. Wlm1
'. F = 1 1 (34)

11) The first molecule's contribution to Si is then removed

via the replacement

(Si)new = S1 - Wlm I  (35)

12) Steps 6 thrugh 11 are then repaated for each molecule

in the cell, except that when the last molecule is

reached its velocity comonents are simply the cen-er

of mass velocity componelLts, as discussed above.

Although the description of e(iuilibrium sampling with

strict conservation of total mass, momentim and energy may have

seemed somewhat long, the relations are quite fast computationally,
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andI the increased efficiency over the sampling of many individual

co. lisions can be substantial. The degree of increased effi-

ciency depends, of course, on the collision rate in a particular

* ce-..l

However, some caution must be exercised in the use of

th, equilibrium relations. They are only justified when
the number of collisions simulated in a given time step would

* be sufficient to guarantee equilibrium. For the translational

* modIe this is typically on the order of three collisions per

mo-ecule, but since internal modes (usually rotation for the

mas;s spectrometer problem) are also equilibrated, the number of

co-lisions should be somewhat higher (typically five or so).

Henice, the major disadvantage in using the equilibrium relations

is the decision process required to use it only when justified.

For that reason, these relations are not currently implemented

in the mass spectrometer code, although they have been coded

and could be inserted whenever required by a particularly col-

lision dominated case.

4. CHI-SQUARE PROBABILITY DISTRIBUTION

4.1 Physical Basis

Fundamentally, the Chi-Square function represents the dis-

tribution of energy in an equilibrium classical system with v

degrees of freedom. It is a well known classical result that

each degree of freedom for a molecule in an equilibrium gas will

have, on the average, an energy of kT/2, where k is Boltzmann' s

* constant and T is temperature. (For example, the translational

mode, with three degrees of freedom, has an average energy of

3kT/2 per molecule. The distribution of translational energy

among the various molecules follows a Chi-Square distribution
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with 3 degrees of freedom.) Other modes of energy (moleculaz

rotation and vibration) have their own characteristic number of

degrees of freedom, which may or ay not be fully excited in the

energy range of interest. If a mode is not fully excited, that

simply means that it is behaving as if it had a non-integer

number of degrees of freedom, within the classical approximaion.

The number of internal degrees of freedom is directly related to

the heat capacity of the gas and, essentially, v is selected to

match the known heat capacity of a given molecule in a given

energy range. The assumption of a constant number of degrees

of freedom is therefore equivalent to the assumption of a con-

stant heat capacity. A discussion of the implementation of such

a model allowing for a finite rate relaxation towards equilibrium

between translational and internal modes is given in Ref. l.

4.2 Definition and Mathematical Properties3

The Chi-Square probability density function, f(X;v), defines

a distribution of X in a domain of zero to infinity via

f (X; V) = X(v/2 - 1 )exp(-X/2) (36)

2(/2) r(v/2)

where v is a positive parameter of the distribution referred to
as the number of degrees of freedom. The Chi-Square distribution

results in a mean value of X equal to v. Figure 1 is a plot of

the Chi-Square probability density function for v equal to 1, 2

and 3.

3Abramowitz, M., and Stegun, I.A., Handbook of Mathematical
Functions, National Bureau of Standards, 1968, pp. 940, 944.
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The Chi-Square distribution has a fundamental addition

property such that if X1 is selected from a Chi-Square distribu-

tion with vi degrees of freedom, and X2 is selected from a Chi-

Square distribution with v2 degrees of freedom; then their sum

will be distributed according to a Chi-Square distribution with

V + v2 degrees of freedom. This property is of substantial

theoretical and practical importance.

If the variable Z is distributed according to a normal

distribution with zero mean and unit variance, then Z2 will

follow a Chi-Square distribution with one degree of freedom.

* It follows from the above addition property that, in general,

if ZI , Z2 , ..., Zn are n variables selected from such a normal

distribution, and X is defined as the sum of the squares of the

Zi, then the X's that result will be distributed according to a

Chi-Square distribution with n degrees of freedom.

Finally, if t is distributed according to a probability

desnity function g(t;p,q), where

g(t;p,q) t (37)
B(p,q)

and

1
B(p,q) = P-(t)q- r(P)r(q)ldPt) (38)

f r(p+q)
0

(B is the Beta function) then t can be sampled via

x1
t = Xl (39)

where X is selected from a Chi-Square distribution with

degrees of freedom, and X2 is selected from a Chi-Square distri-

bution with V2 degrees of freedom, with

24
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2p ,(40)

and

V 2  2q .(41)

The significance of Eq. (39) is that it reduces the sampling from

a two parameter distribution (Eq. (37)) to two samplings from a

one parameter distribution. The distribution represented by

Eq. (37) arises in cases where a constrained amount of total

energy is distributed among various modes, and its relaticn to

the Chi-Square distribution apparently has not been appreciated

by developers of techniques for Monte Carlo fluid mechanics.

4.3 Sampling From a Chi-Square Distribution

The need for sampling from a Chi-Square distribution comes

up when sampling initial values of internal energies, when

calculating inelastic collisions via the statistical collision

model 4or when calculating the equilibrium aftermath of many

collisions in a cell. Since these operations must be performed

repeatedly in the heart of a Monte Carlo simulation, it is import-

ant that the sampling be done efficiently and accurately.

For clarity, the result of each sampling method discussed
below will be denoted by a different letter subscript to X.

All sampling procedures make use of a random number generator

which returns a number, R, selected from a probability density

which is uniform on the interval between zero and one. Each

occurrence of R indicates a distinct sampling from the random

n-urber generator.

~Borgnakke, Claus, and Larsen, Paul S., "Statistical Collision
Model for Monte Carlo Simulation of Polyatomic Gas Mixture,"
Journal of Computational Physics, Vol. 18, 1975, pp. 405-420.

25



.- 7. . .7 7 -.

4.3.1 Analytic Sampling for Integer v

Direct sampling of Eq. (36) can be performed for integer

v, as shown below.

4.3.1.1 v = 0

As v (an intrinsically nonnegative quantity) approaches

zero, the distribution function approaches a delta function,

and a proper sampling is achieved by simply selecting

X 0 (42)

4.3.1.2 v = 1

For sampling with v = 1 (as well as for several other cases)

it is convenient to introduce the transformation Z X. Z is

then distributed according to the probability density function
p(Z) given by

p(Z) = Z (V-i)exp (Z 2 /2) . (43)2(/2 - 1) r(v/2)

For v = 1, this distribution is simply a normal distribution

adjusted to allow for positive only argument. Sampling from

this distribution is described in Ref. 3. When the result is

cast back in terms of X, the result is

A = 2nR (44)

and

Xb = -2log(R)sin2 (A) . (45)

6b
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4.3.1.3 v =2

When v = 2, the integral of Eq. (36) can be analytically

inverted, leading to the direct sampling

Xc = 2log(R) .(46)

4.3.1.4 v Equal to an Even Integer

The extreme simplicity of the above sampling for v =2,

together with the addition property of the Chi-Square distribu-

tion, means that sampling for v equal to an even integer is quite

direct. Let J =v/2, then a proper Chi-Square sampling is given

by

Xd -2log(R R2.. R) , (47)

where R 1 through R . denote jsamplings from the random number
generator. The fact that the log need only be taken once in

Eq. (47) means that the evaluation of Xd is quite efficient,

even for moderately large v.

4.3.1.5 v Equal to an Odd Integer

For v equal to an odd integer, the addition property of the

Chi-Square distribution allows the simple combination of the

results for v equal to one and v equal to an even integer, i.e.,

+e b (48)

where X b is given in Eq. (45) and Xd is given in Eq. (47) with

27
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4.3.2 Generalized Acceptance-Rejection Sampling P

For non-integer v, it is necessary to use a generalized

form of acceptance-rejection sampling. Before the application

to Chi-Square sampling is presented, the acceptance-rejection

technique and its generalization will be briefly discussed.

4.3.2.1 Standard Acceptance-Rejection Sampling

The usual acceptance-rejection technique for sampling from

a general distribution function, p(x), proceeds as follows:

1) The domain of x is approximated, if necessary, by a

finite sub-domain.

2) The maximum value of p(x), p*, is calculated.

3) A variable F is selected from the domain of x via

= Xmin + R(Xmax - Xmin) •

4) p( )/p* is calculated, and another random variable,

R is generatea. x is set equal to if R is less

than p(C)/p*.

5) Steps 3 and 4 are repeated until a value of x is

determined.

Note that the probability of acceptance of the random variable

in step 4 is proportional to the distribution function being

sampled, so the resulting x values will follow the desired

distribution function.

Although the generality of this approach makes it very

powerful, it does suffer from the following drawbacks:

o If the distribution function differs significantly

from its maximum value within a substantial portion of

the sampled domain, then the rejection rate may be

high. This ,.bvious-ly d to d pL mp±z, f)ocedure.
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* If the finite sub-domain is reduced to increase the

acceptance rate, then the sampling deviates from the

true distribution function.

e The procedure is incapable of sampling from an

unbounded distribution function.

4.3.2.2 Generalization of the Acceptance-Rejection Technique

The following procedure comprises a generalization of the

acceptance-rejection technique:

1) A second distribution function, q(x), which can be

sampled analytically is chosen. Conditions on q(x)

will be discussed below.

2) The maximum value of p(x)/q(x), (p/q)*, is calculated.

3) A variable, E, is sampled from q.

4) Q = [p(t)/q(E)]/(p/q)* is calculated, and another

random variable, R, is generated. x is set equal

to if R is less than Q.

5) Steps 3 and 4 are repeated until a value of x is
determined.

It should be noted that the probability density for a given
value of x is proportional to the product of the initial selec-

tion probability times the acceptance probability. Since the
former probability is proportional to q(x), and the latter is

proportional to p(x)/q(x), the distribution of accepted values

does indeed follow the distribution function p(x).

The usual acceptance-rejection technique is simply the

case where q(x) is constant, but it is evident that this is not

always the best (or even a possible) choice. All of the

29
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objections to the standard acceptance-rejection technique can

be removed or ameliorated by a suitable choice for q(x). In

particular:

o There is no need to approximate the domain of x with

a finite sub-domain. It is merely necessary that the

domain for q include the domain for p. The domain

for q can be larger than that for p, since whenever a

value is selected from outside the domain for p it

will always be rejected in step 4 above.

o If q is selected to be close to p, at least in the

region of highest probability, then the acceptance

rate of trial values will be large.

e Unbounded distribution functions can be sampled if

q is chosen to have the same type of singularity as

p, since the only requirement is that the ratio (p/q)

remain bounded.

For any gi-en situation, the choice of the function q is

a bit of an art, guided by the concerns highlighted above: q

must have a domain which includes the domain of p; p/q must

* remain bounded; and (p/q) should achieve its maximum in the

* vicinity of the maximum of p.

4.3.3 Exact Acceptance-Rejection Sampling for a Chi-Square
Distribution with Large v

The acceptance-rejection technique described above can be

used to achieve an exact sampling from a Chi-Square distribution P

for large v. (Actually, the approach is perfectly valid for

all v > 1, but the method to be described in Section 4.3.5 is

to be preferred for v < 45, or so.) The procedure utilizes the

transformed Chi-Square distribution, p(Z), given by Eq. (43) as

30

J.U



07 % 77 07 ..

the distribution to be sampled. A normal distribution is used

as the initial distribution which can be sampled analytically.

The normal distribution is chosen to have a unit variance and a

mean which corresponds to the location of the maximum of p(Z).

This maximum occurs at Z* given by

Z = (49)

The functional form of the normal distribution, q(Z), is

r2
q(Z) = expL-(Z - Z*)2 / -- F , (50)

which not only has a maximum at the same location as Eq. (43),

but has the same exponential factor as Z approaches infinity and

a domain which includes that of Eq. (43). The sampling of a

Chi-Square value proceeds as follows:

1) Z* = Yv - 1 is calculated.

2) A sample from the distribution given by Eq. (51)

is taken via:

A = 27R (51)

B = -log(R) (52)

Z-" Z* + YBsin (A) (53)

3) The acceptance probability, Q, is computed as

Q (Z/Z*1 - 1)exp[-Z*(Z- Z (54)

•.. (Q is taken to be zero for negative Z.)

4) Another random variable is generated, and Z is kept

if Q > R. If Z is rejected, then steps 2-4 are repeated

until a Z value is accepted.
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5) When a Z value is accepted, then the corresponding

Chi-Square value is given by

X =Z (55)

This procedure is illustrated in Fig. 2 which shows p(Z), q(Z)

and Q(Z) for v = 50. Note that the acceptance probability is

near unity in the vicinity of the maxima of the two distribution

functions, so a large fraction of the selected samples of q(Z)

will be accepted as samples of p(Z).

4.3.4 Exact Acceptance-Rejection Sampling for a Chi-Square

Distribution with (0 < v < 2)

For this domain of v it is convenient to introduce another

transformation to Eq. (36). If W is defined by

W = exp(-X/2) , (56)

:... then the probability density function for W is given by h(W),

where

".I-..:L [-log(w)]"v/ - 1)

h(W) = l (v/2) " (57)

The domain for W is finite (between 0 and 1), but h(W) becomes

infinite as W approaches unity. The generalized acceptance-

rejection technique can still be used, however, since the func-

tion q(W) given by

(v/2 - 1)
q(W) = (v/2) (1 - W) (58)

has the same type of singularity and can be analytically sampled.

The Chi-Square sampling for (0 < v < 2) proceeds as follows:

"%"3
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p (Z) FOR v=50 (Eq. 413)
- - NORMAL DIST. (Eq. 50)
... ACCEPTANCE PROBABILITY

LIJ (Eq. 5 4)

a:

CD

kL

M

:.-2-

go,

3.0 50 7. 9.011.0

nSAMPLED VARIABLE, Z .

Figure 2. A Representation of the Transformed Chi-Square
Distribution, p(Z), for v = 50 (solid line). p(Z) is
sampled by first selecting a variable from the shifted
normal distribution (dashed line) and keeping it with aprobability given by Q(Z) (dotted line).
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1) A sample from q(W) is generdted via

W = 1 - R( 2 /v) (59)

2) The acceptance probability, Q, is computed from

= [(W- l)/log(W)] (1 - v/2) (60)

3) Another random variable, R, is generated, and W is

kept if Q > R; otherwise steps 2 and 3 are repeated

until a value for W is accepted.

4) When a value for W is accepted, the corresponding

Chi-Square value is given by

Xf = -2log(W) . (61)

This procedure is illustrated in Fig. 3, which shows the two

distribution functions, h(W) and q(W), and the acceptance prob-

ability, Q(W), for v = 1. It can be seen that q(W) provides an

excellent choice for the initial selection of W, since the

acceptance probability remains high throughout the important

domain of W. This point will be discussed in more detail in

Section 4.3.6.

4.3.5 Exact Chi-Square Sampling for General v

Using the fundamental addition property of Chi-Square

distributions, it is possible to combine the procedure described

in Section 4.3.1.4 for v equal to an even integer with the pro-

cedure described in Section 4.3.4 for (0 < v < 2) to achieve an

exact general sampling technique for arbitrary v. This is given

simply by

Xg Xd + Xf (62)
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h(W) FOR v=1 (Eq. 57)
- _ q(W) (Eq. 58)
..... ACCEPTANCE PROBABILITY

* W (Eq. 60)

CD

> /

g/

Lj_
t/

z -:

..:0.0 0.2 0.4 0.6 0.8 1.0

SAMPLED VARIABLE, W =EXP-X/2)

Figure 3. A Representation of the Transformed Chi-Square
Distribution, h(W), for v = 1 (solid line). h(W) is
sampled by analytically selecting a variable from q(W)
(dashed line) and keeping it with a probability given by

Q(W) dottedl line) .
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where X d is calculated from Eq. (47) with J equal to the intEger

- portion of v/2, and Xf is calculated as in the preceding section

-with v being replaced by v - 2J.

It is to be noted that both the approach given in this

section (Eq. (63)) and that given in Section 4.3.3 (Eq. (55)/

*are exact and applicable for v > 1. In general, the approach of

this section is considerably faster, although as v gets large

the approach of Section 4.3.3 becomes more attractive. There

are two potential difficulties with Eq. (62) as v becomes very

large. Firstly, the product required in Eq. (47) gets more and

more cumbersome to compute as v increases, and, secondly, the

larger the number of factors in this product the greater is the

chance that it will yield a number so small as to produce a
* fi'oating point underf low on a computer. (Since Monte Carlo

* codes must be highly reliable, any such problem should be made

essentially impossible.) It turns out that the second problem

is more restrictive (at least for 32 bit computers), dictating

that the Eq. (55) should be used for v greater than 45, or so.

This keeps the probabilityof an underflow below 10 on any

given sampling.

4.3.6 Approximate Chi-Square Sampling for (0 < v < 2)

The procedure described in the preceding section is quite

* efficient, but it is nonetheless useful to consider approximate

methods for sampling from Ch..-Square distributions. While it

would be scarcely possible to improve on sampling for even

integer v discussed in Section 4.3.1.4, it is reasonable to

* investigate approximations for the (0 < v< 2) portion discussed

* in Section 4.3.4. A likely place to look for useful approxima-

6 tions in this procedure is in the calculation of Q (Eq. (60)),I
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which must be performed for every W selected in Eq. (59). (Note

that the calculation of Q involves more computational effort

than the calculation of W.)

The overall probability that the value chosen in Eq. (59)

will be kept as a sample of Eq. (57) is given by P, where

P = q(W)Q(W)dW P (1 + v/2) . (63)

0

Hence, as v approaches 0 or 2, all initially selected values of
W are kept as valid samples of Eq. (57) and the computation of

Q serves no useful purpose. In the worst case (v = 0.92) the

overall acceptance probability is 89%, and only 11% of the

initially selected variables are re3ected. The approximate

Chi-Square sampling involves approximatinq Q(W) by an easily

calculable function which c<iffers lattle from Eq. (60). The

current approximation is Qa : vea Lv

Qa((W) = 1- (1- /2)I - [. )(l - w)2 ] , (64)

where

a(v) = .2511v + .2073 ,65)

Qa was selected to match the value an,_i s.ope of Q at W = 1,

which is the region of highest probability density. The coeffi-

cient a(v) is a linear fit to values chosen to be optimal in the

least squares sense. A comparison of Q and Qa for v = 1.0 is

shown in Fig. 4, which demonstrates the substantial accuracy of

the approximation.

It is fundamentally more important, of course, to compare

the correct Chi-Square distribution with the distribution which

is effectively being sampled in the approximate technique. If

37
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EXACT. (W) FOR v=I
• -(Eq. 60)

LLI APPROXIMATE. O0 (W)

U(Eq. 64)
c:

0.0 0.2 0.4 0.6 0.8 1.0

o. SAMPLED VARIABLE. W - EXP(-X/2)

Figure 4. A Comparison of the Exact and Approximate
Acceptance Probabilities for v =1.
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ha (W) is the approximation analog of h(W), then ha (W) is pro-

portional to the product q(W)Q(W), i.e.,

Sha (W) = A(l - W) (v/2 -
1 )Qa(W) , (66)

-.. where the normalization factor, A, is determined by requiring

that ha (W) give unity when integrated between zero and one.

-.- . This results in

1 V 2 + 2v + 8 2()"•' -+ (67)
A 2 + 62v +4v

Once ha (W) is defined, the corresponding distribution function

for X, fa (X;v) is obtained by multiplying ha (W) by the magnitude

of dW/dX (=W/2), and substituting W = exp(-X/2). The comparison

between f(X;l.0) and f (X;1.0) is given in Fig. 5, and thea
agreement is excellent. The use of the approximate technique is

approximately 40% faster than the exact acceptance-rejection

technique, and the difference in the distributions being

sampled will probably always be negligible. Although the

ability to sample from an exact Chi-Square distribution will be

kept as an option, it is felt that the approximate technique

offers a substantial time savings for an inconsequential loss

of accuracy.

5. INCLUSION OF ELECTRIC FIELD EFFECTS

5.1 Acceleration of Charged Species

An essential element of the computational model is the

O[ accelerating effects of electric fields on charged species.

The program was generalized this year so that axial position

" and velocity elements of a molecular state vector are updated

to include the effect of electric fields in the portion of the
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'-4 - EXACT. .(X;v). FOR v'=1
S(Eq. 36) .

W *** APPROXIMATE. F,(X.b'))

4. 0-- -- 4

w

aa
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S I I I f i l I

0.0 2.0 4.0 6.0 8.0 10.0

SAMPLED VARIABLE, X
Figure 5. A Comparison of the Exact Chi-Square Distribution,
f(X;v) with the Approximate Distribution, fa(X;v) which is
Effectively Being Sampled by the Approximate Technique Pre-
sented in Section 4.3.6. v was taken to be unity for the
comparison.
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* program that advances the molecules along their trajectories.

* (The term molecule is used here in a general sense, and is meant

to apply to cluster ions as well.) If a molecule has an initial

axial position and velocity given by z 0 and v z0 , then after a
time t, its axial position and velocity will be given by z1 and

v where

z z0 + t(v 0 +-) (68)1 0 zo 2M

and

Z1 v (69)

In these relations, which replace Eqs. (58) and (61) of Ref.

1, q is the molecular charge, M is the molecular mass and E is

the local electric field strength. The electric field strength

is calculated from

E =-V4 (70)

where * denotes the electric potential. The electric field is

assumed to be one dimensional in the axial direction, and is

* calculated from input grid voltages and positions. (The assumnp-

* tion of one dimensionality is consistent with the geometry of

* the mass spectrometer and the primary interest of flow along

the axis of symmetry.) Note that for q = 0, the above relations
-~ reduce to Eq. (58) and Eq. (61) of Ref. 1 as applied to uncharged

species.

5.2 Neglect of Space Charge Contribution to E

The calculation of E from the input grid conditions, neglect-

ing the contribution from the ions in the flow, is a considerable

simplification which results in an uncoupling of the electric and
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flow field problems. The validity of this approximation for

the case of interest can be demonstrated via a simplified example.

Consider two grids of potentials 4i and 2' with the former being

* located at z = 0 and the latter being located at z = s. If

there is a uniform space charge density, p, between the plates,

then the potential between the plates is determined as the solu-

tion to Poisson's equation:

V2 = p 2 (71)

dz2  60

which is
z p

l + (2 - 0 ) s + -0 z(s - z) (72)

(In these relations, c0 is the permittivity of free space,

equal to 8.855xi0 farad/m.) The corresponding electric field

strength is then computed as

E - dz s 2 1 + H(2-zi) , (73)

dz s s

where the dimensionless parameter, H, is defined by

2
H P0 I _ (74)

The purpose of this exercise has been to determine the dimension-

less parameter which determines when space charge has a signifi-

cant effect on the electric field distribution. That parameter

is H, and it can be seen from Eq. (72) that the electric field

distribution is unaffected by space charge as long as H is small

compared to unity.

A conservative estimate of H for the problem of interest is

obtained by taking a typical potential difference of 10 volts
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existing between plates separated by a distance on the order of

0.01 meter. p can be grossly overestimated by taking the ambient
9 -3 -19ion density (-10 inm times the electronic charge (l.6x10

coulomb), neglecting the mitigating effects of charge balance

and the density reduction in a vacuum expansion. Even with this

substantial overestimate, H is on the order of 104 , and the
perturbation of the electric field due to space charge is quite

negligible.

6. SUMMARY OF CODE STATUS

With all the technical detail presented in this and the

previous yearly report, it is useful to give an overview of the

code current status. The program is (temporarily, at least)

called the EXPANDO code, and it currently has 36 subroutines

comprising over 4100 lines of FORTRAN. It is written in a

highly modular fashion, so that new capabilities can be included

* -. without major modifications of the code. There has been a sub-

- stantial effort to make the code efficient in its utilization of

* computational resources. As a result of this, all runs to date

have been performed satisfactorily on a micro-computer. The

performance on a larger computer is naturally expected to be

even better.

* The code implements and expands the direct simulation Monte

* . Carlo method for transitional gas dynamics, as applied to the

flowfield beyond the orifice in a mass spectrometer. By directly

simulating the molecular processes of translations, collisions

and chemical reactions it retains validity even though the forma-

lism of continuum fluid mechanics breaks down in this case.

Some of the specific features of the EXPANDO code are:Cr..
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* It can treat an arbitrary number of species and an

arbitrary number of chemical reactions between them.

e The species are allowed to have internal energy, and

the code describes the nonequilibrium process by

*which the internal modes go out of equilibrium with

- the translational mode.

o Species are allowed to interact with a velocity

dependent gas kinetic cross section. This is a

particularly important feature for the mass spectrom-

eter problem since the static temperature of the free

jet expansion changes so radically as the flow expands

from the orifice.

* It can treat the flowfield between the orifice and

the skimmer in one run, or it can break up the flow-

field into multiple segments and solve for them

separately.

o It can solve for the gas dynamic flowfield of the

major neutral species separately and then go back

and calculate the minor species solution as a

perturbation.

o Ionic species are allowed, and the accelerating

effects of electric fields produced by charged grids

can be simulated.

0 The code performs self checks, to make sure, for

instance, that the collision rate is being simulated

properly.

Only two major capabilities must be added to the program.

First, the reflection of jet molecules off the skimmer must be

simulated to make sure that there is no substantial skimmer
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interference in the molecular beam. Since the skimmer will be

cryogenically cooled, the code will allow for a fraction of the

molecules impacting the skimmer wall to stick. Those that do

not stick will specularly reflect off the skimmer. The second

new feature is the ability to describe a background gas within

the mass spectrometer which may intrude into the jet and degrade

the beam quality. (This background gas is also a result of a

sticking coefficient being less than unity.)

It should be stressed that merely writing a computer program

does not comprise the totality of the present effort. There is

also further work to be done in the characterization of the

cross sections for the critical agglomeration and fragmentation

processes that are to be simulated. The computer program can

only predict the macroscopic implications of these cross sec-

tions; the generation of the proper input requires sound scien-

tific judgement. This will be a major task for the final year

on this contract.

7. DATA COMPARISON FOR SPECIES SEPARATION

To serve as a test f the basic physics and numerics embodied

in the code, it was deemed desirable to make a calculational

comparison with published data as a verification. Naturally,

this comparison can only involve features of the code which have

already been instituted. The data that were chosen for compari-

son involve the separation of CO 2 and H2 in a free jet expansion,

as published in Ref. 5. The case selected involves a Reynold's

number which is in the relevant range for the mass spectrometer

flow problem.

5McCay, T. D., and Price, L. L., "Diffusive separation of binary
mixtures of C02-H2 in a sonic-orifice expansion," Physics of
Fluids, 26(8), August 1983, pp. 2115-2119.

45

-., .. . . . . . . .. . ,.& ~.



7.1 Problem Definition

The case of interest involves producing a free jet expan-

sion from a reservoir which has a CO2 mole fraction of 94.9%,

*with the remaining 5.1% being H 2. The stagnation temperature

was 286 K, and the stagnation pressure is estimated to be
3 2

1.48x10 dyne/cm .(It was necessary to estimate the stagnation
pressure since this quantity was not given by the experimenters.

The Reynold's number based on the stagnation speed of sound and

the orifice diameter was supplied, but the viscosity on which
the Reynold's number was based was not given either. Since the

* viscosities are well known for these gases, the error induced

'4 here is probably negligible.) The gas was expanded through a

sonic orifice of 0.32 cm diameter, and the species concentra-

tions were measured via electron beam fluorescence. The data

were presented as the ratio of CO 2 to H2 concentrations on the

* jet axis as a function of distance downstream from the orifice.

7.2 Computational Considerations

Effective cross sections for CO 2 and H 2, together with their

energy dependence, are given by Bird.6 In calculating the jet

C expansion, CO2 was taken to have 2.0 internal degrees of freedom,

since its vibrational energy rapidly freezes. The orifice con-

ditions were based on equilibrium, however, with CO 2 having 3.58

internal degrees of freedom. (H2 was taken to have 2.0 internal

degrees of freedom throughout the calculation.) The discharge

coefficient was calculated using the relations for 2 as being

6Bird, G. A., "Monte-Carlo Simulation in an Engineering Context,"
* Proceedings of the 12th International Symposium on Rarefied Gas

-~ Dynamics, Vol. 74, Progress in Astronautics and Aeronautics,
AIAA, New York, 1981.
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0.87. (Although this is certainly not precise, it is also an

acceptable approximation for the present purposes.) The grid

structure described in Ref. 1 was employed, with the orifice

radius being divided into six cells, and three additional cells

added beyond the outside of the orifice for a total of nine cells

in the radial direction. Subsequent downstream cells were

enlarged to keep pace with the expanding jet, until a total of

twenty axial stations (180 cells altogether) were utilized.

Since 95% of the flow was CO2 it was reasonable to perform

this calculation using the ability to separately compute major

and mino:- species. Accordingly, the CO 2 distribution was first
calculated assuming no H 2 to be present. After the CO 2 jet was

* defined, the calculation for H2 diffusing through the CO2 was

performed, allowing the H2 to suffer collisions with itself as
well as CO.

The calculation of the H 2 flow involved some special prob-

*lems which were fairly specific to its light molecular weight.

*Since the H2 is over 20 times lighter than CO2  its thermal

velocity is between 4 and 5 times as large as that for CO2
This has two implications of importance for the calculation.

A First, spatial segmentation of this solution was not feasible.
This was because the effective Mach number of the H 2 (considered

by itself) remained quite small. This can be seen by consider-

ing an equilibrium mixture flowing at high speed. If the flow

is in equilibrium, then the mean velocity and temperature of

each component of the mixture will be the same. For a lighter

gas, however, a given temperature translates into a larger

thermal velocity, and the Mach number of the lighter component

* considered alone is less than that for the mixture. The same

statement is basically true for the nonequilibrium. situation of

inteesthere. Although there were velocity and temperature

[47
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slips between the two components of the mixture, the effective

Mach number of the H2 remained small enough so that it was not

reasonable to truncate the solution region and neglect backf low

of H2 molecules. Therefore, the solution was carried out in one

segment to an axial distance of approximately ten orifice diam-

eters (the extent of the data).

The second problem of relevance was the time step involved.

*The time step should be sniall compared to the mean time between

collisions for a given molecule, and a molecule of H, with its

*much larger thermal velocity, suffers collisions at a much

faster rate than a molecule of CO. Hence, for the minor species

*run, the time step was reduced by a factor of Y22. It should be

noted that the ability to separate major and minor species

*enabled the major species to be treated with a much larger time

step than the minor speciEs. If one solution were carried out

*combining major and minor species, then the entire solution would

have to be limited by the time step required by the H2 '

The ability to compute minor species with a different time

step than that used for major species does have relevance to the

mass spectrometer flow prc-blem. In that problem, the minor

species of interest will include charged species which are

accelerated by electric fields relative to the rest of the flow.

Such molecules will have an elevated collision frequency and

will therefore require a smaller computational time step in

order to assure that the time step is small compared to the mean

time between collisions. With the ability to separate major

and minor species, the entire solution need not be computed .

under this restriction; it is only necessary to apply it when

determining the minor species solution.
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7.3 Results

The comparison of the calculational results with the

published data is shown in Fig. 6. The agreement is excellent.

This is felt to be a strong confirmation of the code's ability

to calculate a basic free jet flow field.
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Figure 6. A Comparison of Calculations with Published Data
for the Diffusive Separation of H2 and C02 in a Free Jet
Expansion From a Sonic Orifice. The orifice is 0.32 cm in
diameter, and the stagnation temperature and pressure are
286 K and 1480 dyne/cm 2 .
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