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Electromagnetic Penetration into a Finite Coaxial

Cylinder with a Recessed Inner Conductor

Larry Rispin and David C. Chang

Abstrnact

P
The electromagnetic penetration into a finite coaxial cylinden

ALluminated by a uniform plane wave of arbitrary incidence 48 investi-
gated by combining the results of several individual Wiener-Hopg
analyses. The circularn to coaxial waveguide junction within the cylinder
48 fully characterized through such a technique. A simple equivalent
cineudlt for this junction and the othen clements of the system are
combined into an equivalent Norton source and equivalent Load admittance
which 48 valid under most practical situations. The powen dissdipated
within the coaxial Eine section of the system is then easily calculated
gorn any given Load, except those in the vicinity of the "perfectly

matched" foad.
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1. Introduction

The study of the electromagnetic penetration into cylindrical
enclosures is of great practical concern due to the effects it may have
on the mechanisms or circuitry contained within the enclosure. The
most prevalent case of this high frcgquency electromagnetic penetration
takes place through intentional as well as unintentional apertures on
the enclosure, which are formed by cracks, seams, access doors, etc.
The study of this type of aperturc coupling is well documented, [1]-
[10]. Another form of electromagnetic coupling into a cylindrical en-
closure occurs through the open cnd of a circular cylinder. This has
been considered in the particular case of a finite-length thin cylinder
open at one end and illuminated by a uniform planec wave by Chang, Lee
and Rispin in [11]. This investigation showed the electromagnetic
penetration into the open end of the cylinder to be predominantly in
the form of evanescent circular waveguide TMON modes. Since these
waveguide modes are cut off, their effects at a sufficient distance
away from the end of the cylinder are usually quite small. However,
if an insulated conductor within the cylinder is near the open end,
the evanescent waveguide modes may couple into a TEM mode supported by
the insulated conductor and the cylinder. Energy may then travel
practically unattenuated along this two-conductor system to delicate
circuitry within the structure. In order to develop a quantitative
feeling for this type of electromagnetic coupling, the theoretical model

shown in Figure 1 was proposed. The two-conductor transmission line is
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simulated by a coaxial line whose center conductor is recessed from

the end of the cylinder. A load admittance is located at the opposite

end of the center conductor which simulates the lumped admittance of

the circuitry in the practical situation. For convenience we assume

the cylindrical enclosure to be open at only one end and capped by a

metal plate at the other.

The analysis of the model shown in Figure 1 may be conveniently
divided into three major parts. First the initial penetrating currents
at the end of the cylinder may be determined through the Wiener-Hopf
technique as demonstrated by Chang, Lec and Rispin [11]. The circular
waveguide-to-coaxial waveguide transition must be characterized next.
This characterization forms the bulk of this report, namely Sections 2,
3, and 4. And finally simple transmission line theory may be used for
the final section between the circular-to-coaxial junction and the
load admittance. In this manner we may determine the load current and
power due to the incidence of a uniform plane wave of known intensity
and angle of incidence.

As mentioned above, the major part of this report is devoted to
the complete characterization of the circular-to-coaxial waveguide

transition. We note that in the case of an incident wave propagating

toward the transition from the coaxial region, (instead of incident

R

waves propagating toward the transition in the circular waveguide region

<y .

which are due to the plane wave impinging upon the cylinder), the same
structurc also characterizes the problem of a typical coaxial open
circuit termination, [12] and [13]. Thus in Section 2 a "spectral"

equation and an auxiliary equation in the Fourier transform domain are
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developed for the transition region. Section 3 defines the solution

of the circular-to-coaxial waveguide problem in terms of a 'composite"
problem with waves incident from both sides of the transition. In

ﬁ Section 4, the Wiener-Hopf technique is utilized to obtain the scattered
currents from the transition. Equivalent circuit representations of

the circular-to-coaxial waveguide junction are given in Section 5. And

finally in Section 6, the characterization of the circular-to-coaxial
waveguide transition of the previous sections is applied to the system

shown in Figure 1.




2. lYormulation of the Spectral Lquation

Consider the coaxial system shown in Figure 2, in which we have
a perfectly conducting surface at p = b concentric about an arbitrary
(perfectly conducting or nothing) cylindrical surface of radius, a.
Leaving the surface at p = a arbitrary, allows the latter specification
of it as being either an infinitcly long perfectly conducting cylinder,
or a semi-infinitely long perfectly conducting cylinder, or no conducting

surface at all. We assume an exp(-iwt) time variation and define the

Fourier Transform pair as,

F = [ F)e'™d: 2.1)
F(z) = o [ Froye %% (2.2)

~00

Considering only axially symmetric fields and currents allows us

to write the transform of the z-directed electric field as,

CZAJO(CD) i 0<p<a
E_ (p,a)= (2.3)

t¥[BIy(50) + CYg(g0)] s a<o<b

where the unknown constants, A, B, and C, are determined by imposing

the appropriate boundary conditions, and,

=/ oo =i/ o2 e, 1) >0

for all o (2.4)

The other ficld quantities under the assumption of axial symmetry

may be given in terms of Ez(p,a) as,
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(2.5)

ik 9 =
= + E (p’a)
2
2n op 2z
(2.6)

H, (p,0) - (2.7)

For the system described in Figure 2, the af  r-iate transformed

boundary conditions are,

N . I (@)
Hya',0) - H S

(a ,a) =

¢

I (o)
27b

. N
Hy(b7,0) - Hy(b™,0) =

where (2.8)specifies that the z-directed electric field at p = b must
be zero, (2.9) enforces the continuity of the z-directed electric field
at p = a, (2.10) expresses the discontinuity in the ¢-directed magnetic
field at p = a in terms of a z-directed current there, and (2.11)
expresses the discontinuity in the ¢-directed magnetic field at p = b,
(note, ﬁ(b*,a) = 0) in terms of a z-directed current there.

The constants of (2.3) may be determined in terms of ia(a) by

utilizing the boundary conditions in (2.8), (2.9), and (2.10). With

the constants of (2.3) in this form, we may take p = a yielding the




"spectral'' equation,

E_(a,0) = Z%~E-QZM(a)N(a)ia(a) (2.12)
where,
M(@) = Ty (5a)Yy(Eh) - J(eb) Yo (za)] (2.13)
J,(Za)
0 (2.14)

@)= 5 @

(2.12) is the equation utilized in the Wiener-Hopf analysis for the

circular waveguide-to-coaxial waveguide transition to be discussed in

Section 4.
Alternatively the constants of (2.3) may be determined in terms of

1, (a) by utilizing the boundary conditions in (2.8), (2.9), and (2.11).
a in (2.3) we find the relation-

With this new set of constants and for p
= a and b conductors,

ship between the transforms of the =urrents on the p

I, (@ = -N(a)Ia(a) (2.15)

(2.15) will alow us to eventually solve for the scattered current on

b conductor for all z from only one equation,

the p =




3. Definition of a Composite Problem for the Circular Waveguide-to-

Coaxial Waveguidc Transition

3.1 The individual systems

To characterize the circular waveguide-to-coaxial waveguide transi-
tion we consider the three systems shown in Figure 3. Figure 3B illus-
trates an infinitely long circular waveguide of radius, b, with an
arbitrary source at z = -L. The incident current on the p = b conductor
for z > -L is given by,

z

-Y
(IS)ON e bN ; -L<z <<w (3.1)

It~ 8

Ig(z) =

N=1

where (Ig)ON is the coefficient of the TMON circular waveguide mode
current (at z = 0) and ibe is the propagation constant of the TMON mode

given by,

0 2 0 2
o N 2 _ [.2 (PN
lyyy = 1 (T;) -k =4k (t)) (3.2)
and PN is the Nth ordered zero of Jo(x), i.e.,

JO(pN) =0 N=1,23, ... (3.3)

Associated with this incident current is an incident z-directed electric

field at p = a given by,

Lo 4] -‘Y A
.B _ B . 'bN .
Lz(a,z) = Nzl (Ez)oN ¢ ; L< z<o (3.4)

The model coefficients of Eg(a,z) and IB(z) arc casily shown to be

related by,
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! Figure 3. (A) Semi-infinite circular waveguide to semi-infinite
coaxial waveguide, sources at z =-L and +L.

(B) Infinite circular wavepuide, source at z = -L,

(C) Infinite coaxial waveguide, source at z = +L.
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k (Ez)ON

B .
ol = Mmq o57— (3.5)
N .
(jS) M{vpy)
Also it is obvious that no current exists at p = a, thus,
B
Ia(z) =0 ; -L<z <™ (3.6)

In Figure 3C an infinite coaxial waveguide with an inner conductor
of radius, a, and outer conductor of radius, b, is shown with an arbitrary

source located at z = L. The incident current for z < L is given by

. b Y Z
C - C cM )
I(2) = MZO (I gy © i -w <z <L (3.7)

where (It)OM is the coefficient of the TM0M coaxial waveguide mode

0) and inM is the propagation constant of the TM

current (at z oM mode

2
2 |PcM
K° - (fg—) (3.8)

And pcM’ which is a function of the ratio a/b, is the Mth ordered zero

given by,

iy

t
-
—
©
U'n
=
) S———
[ %)
]
>
L2V
1}

cM

of the cross product of JO and YO, i.e.,

JO(VpCM)YO(pCM) - JO(pCM)YO(VpCMJ =0 ’ M= 192,39--~ (3'9)
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And the special case,

Peo = 0 (3.11)

corresponds to the TM00 or TEM mode.

Associated with the current on the p = b conductor is a current
on the p = a conductor given by,
[+ 53 +

C) YcMZ

C .
Ia(z) N MZO (oM © ’

~o <z <L (3.12)

The modal coefficients of the currents on the inner and outer conductors

are related by,

c . c <
(I gy = -NGY ) (1) oy (3.15)

And finally for the system of 3C it is obvious that,

Ez(a,z) a 0 ; -2 <z <L (3.14)

The system to be investigated is the circular waveguide-to-coaxial
waveguide transition shown in Figure 3A. The region for z < 0 is

identical (including the source at z = -L) to that of the circular wave-

guide in Figure 3B. And the region for z > 0 is identical (including
the source at z = L) to the coaxial waveguide of Figure 3C. The field
quantities in Figure 3A may be expressed in terms of the incident
quantities of Figure 3B and 3C plus scattered quantities due to the

transition at z = 0, i.e.,
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B S-
Ez(a,z) + Ez (a.z) ; -L<z<o0
A
l:z(a,Z) = (3.15)
0 ; 0<z <L
0 ; -L<z< 0
A
Ia(z) = (3.16)
C S+
[a(z) + Ia (z) H 0<z2<L
and,
B S-
Ib(z) + Ib (z) ; -L<z2<0
Ih() = ' (3.17)
It(z) + I§+(z) ; 0<z<L
1
where the "+'" and '"-" signs on the superscript '"s" designate the scattered

term for the regions, z > 0 and z < 0, respectively.
Since the inner conductor in Figure 3A would also carry circular

waveguide ™ (2 =1,2,3,...), mode currents on its internal walls in

oL’
addition to the coaxial waveguide ™oy mode currents on the outer wall,

it is convenient at this time to define the propagation constant for

0\ AN
iy, =i (—a&) N S (Tp“) (3.18)

where Py has the same definition of Py in (3.3).

these modes,

An additional comment, in the mode current definitions of this

section we have adopted the convention of indexing incident mode currents
and fields with capital letters, M and N, etc., and scattered mode

currents and fields with lower case letters, m, n, and &, etc.. This
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convention will be used throughout this report and should be understood

in Appendix B concerning the discussion of so-called ""well-coupled’” modes.

3.2 Construction of the composite problem.

The spectral equation in (2.12) and the supplementary equation in
(2.15) were derived under the assumption that all of the implicated
field quantities possessed Fourier Transforms. Unfortunately if we
move the sources at z = -L and z = +L to -~ and +», respectively,

(i.e., L > =), the incident fields and currents in (3.15)-(3.17) which
do not satisfy the radiation condition of an outgoing wave, will not in
general have Fourier transforms valid in the "analytic strip". This
analytic strip is defined as -Im(k) < Im(a) < Im(k) as depicted in

Figure 4, (note as usual in a Wiener-Hopf analysis we assume a slightly

lossy medium, i.e., k = k' + ik"), and contains the inverse Fourier

transform contour in (2.2) designated as FO. In order to circumvent -
this difficulty, we propose the simultaneous solution of three super-

imposed problems which features the standard inverse Fourier transform

contour, Fo, in Figure 4. By combining the field quantities of the

three systems in Figure 3 as,
"Composite'" = #3A - #3B - #3C (3.19)

the composite z-directed electric field at p = a is given by,

A B C
E (a,2) = E (a,2) - E (a,2) - E (a,2) (3.20)

The expressions for the other composite quantities are similar in form

to (3.20). Consequently we have,




POLES OF
M_(a)

Re (a)

POLES OF
[(a +iy, )N ()]

The complex a plane.
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Ez'(a,z) ; -L<z<0
E (a,z) = (3.21)
-E:(a,z) ; 0<z<Ll
-Ig(z) i -L<z<0
1,(z) = (3.22)
" .
Ia(z) ; 0<z<L
S- C
Iy (@) - Ij(z) ; -L<z<0
I (z) = (3.23)

>ty - Ig(z) i 0<z<lL

The composite quantities in (3.21) through (3.23) may be interpreted

as the "extended" scattered (z-directed) electric field at p = a and

the "extended" induced currents on the p = a and p = b conductors,
respectively, for the system in I'igurc 3A. The term, 'extended", refers

to, in the case of Ia(z) in (3.22), the extension of the induced current

at p = a from the coaxial region into the circular waveguide region.

This extended induced current combined with the incident current yields

the necessary result, that the total current at p = a for 2 < 0 is zero.
Ez(a,z) in (3.21) and Ib(z) in (3.23) may be similarly interpreted.
These "composite" or '"extended" quantities satisfy the radiation condi-
tion of out-going waves and may be used in the spectral equation in

(2.12) and the auxiliary equation in (2.15). Removing the sources of
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the composite system in (3.19) to an infinite distance away from the

transition at z = 0, (i.e., L = =), does not inhibit the Fourier

transformation of the composite terms in (3.21) through (3.23).
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4. Wiener-Hopf Solution

Allowing L + «in (3.21) through (3.23) and taking the Fourier
transform (2.1) of each quantity results in the following transformed

composite terms,

~ o« .
: E ) = E5 @ - J %) |
i ,(@:0) = E]_(a,0) NZI(LZ)oN [(ambN)] (4.1)
+
ot
‘o ° s E c i
; I (@) = IS (o) + Iy | (4.2)
- a a+ M=0 a’ M [}a chM;}
x s v c i v B i
L@ =Te+ ] Wylaat - L W || @3
b b Mg O M {f“'chM;] Ne1  DTON | (ativp) .
The '"+'" and ''-" subscripts appearing in (4.1) and (4.2) signify that the

function is analytic in either the upper half (-Im(k)<Im(a)<») or the lower

half (-«<Im(a)<Im(k)), respectively, of the transform plane shown in Fig. 4.

We note in passing that, in order to include incoming waves from the

region P<a and z >0 we need only to insert the term

T ..D i
szl (It [‘(a-'i'vaL)]_

into (4.2), (1)), being the coefficient of the
L-t—}l mode at z = 0. The regions of analyticity for the terms, Ez_(a,a)

and i:*(u) were determined using the procedure described by Mittra and Lee
in Section 3-3 of [14] with the known asymptotic behaviors,

. +Y. I
! § E: (a,z) ~ e bl ; as 2z + - ®

H and
) I:Yz) ~ ¢tk2 ; 88 z + +®

Additionally from acE S
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+Y YA
Iz'(z) ~ ¢ Dl ; as z > - (4.6)
and
I§+(z) - eikz : as z * + @ (4.7)

the same procedure reveals ;i(a) to be analytic within the analytic
strip, -Im(k) < Im(a) < In(k) .

Returning to the spectral equation (2.12), which will form the basis of
the Wiencr-Hopf  analysis, we express the factorization of the kernels

(see Appendix A) as,

M(a) = M (@) M_(a) (4.8)

and N(a)

N, (@) N_(a) (4.9)

The subscripts “+'* and "-" indicate the region of analyticity (upper
half plane and lower half plane, respectively) of the factor. Upon the
substitution of (4.1), (4.2), (4.8), and (4.9) into (2.12) and after

some rearrangement we arrive at a form of the Wiener-Hopf equation given by

@

1 =S B i
k=M _@N (@) §Fz- (%) - NZI €2 )ox ["‘(miyb'N')l

] (4.10)

i n 13 I :
-4 2 (k+0)M+(Q)N+(Q) Ia+(a) + MZO(Ia)OM[%W— -

Following a typical Wiener-Hopf decomposing procedure, the mixed functions

in (4.10) may be written in the form,

= B
E,(a,0) . E (E JoN [’ i ]
(k-a)M_{a)N_(a) Ne1 (k#ibe)M*(tbe)N*(inN) (a+ibe) )

e e - o -

[ -]
. i n Z C . . . i
4 k M-O(Ia)OM(k*chM)M+(IYcM)N’(IYCM)!:;u-iYcM{]_
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=R D (k)M (@N, (@)1 (@)
4anm k + + a
R . . . [ i ]
kMo Ua)ow s aM OV, Y [T 51 [,
B
E .
- ket ); (iON N, (Y, ) [(m; )] (4.1
N=1 KTV M, GV N Gy Ton' |
where we have used the properties from Appendix A,
M_(-a) = M*(a) (4.12)
N_(-a) = N, (a) (4.13)

and the definitions of the composite field Ez(a,a) and current ia(a)

as given in (4.1) and (4.2), respectively. Now since the LHS of (4.11)
is analytic in the lower half plane and the RHS of (4.11) is analytic in
the upper half plane, one can show by the use of Liouville's Theorem [14]
that both sides are equal to an entire function, P(a), which is analytic
for all a .

From the edge condition it is easily shown that
I:+(a) ~ 0(0—1) as |a| + « in the upper half plane (4.14)
From Appendix A,

M, (@)N, (a) ~ O(u_l/z) as |a| » o in the upper half planc (4.15)

Using (4.14) and (4.15) in the RUS of (4.11) yields

P(a) = O for all o (4.16)

Consequently we obtain from (4.11),




_ B
() on (k-a)

i E (a,0) = -iN=1 (e Ty M, Y, IN, (Y, ) (v, ) M (a)N_(a)
1n ¢ .- . . . (k-a)
E T ank MZO(La)Obi(k+1YcM)M+(IYCM)N+(1YCM)W M. (or.)N_ (@)
(4.17) F
and

3 o

7 _ . c . . . 1

I(@ =i MZO(Ia)OM(k 1ycM)M+(1ycM)N+(1ycM)(k+a)(a_iYCM)M+(a)N+(a)

© B
k (Ez)ON 1

- 4“"‘ v 3 0 0 [
N ooy Ry M Gy ON GYgy) (ke (ariy JM (N {a)

(4.1%)

The use of (2.15) and (4.18) and the inverse Fourier transform in
(2.2), now provide an explicit expression for the composite current on

the p = b conductor, which is given by

B -iaz
) =2 ] k+.(EZ)SN T e J k+N'(ai. - Sy
N o=y (kv IOM Gy N () ) (k+a) (a+iy \IM (o
o .
i §c . . . N @ e
- 5= MZI (Ia)OM(k+1YcM)M+(chM)N+(1YcM) { (k*a)(a—iYcM)M+(a) do

r
0

(4.19)
where the contour Fo is shown in Figure 4.

Ib(z) for z < 0 is obtained by deforming Fo upward enclosing the
poles (from the integrands of (4.19)) at a = iYcM and the poles of N_(a)
at a = inn' The residues of these latter poles are easily determined
by making the substitution, N (a) = N(a)/N*(a) from {(4.8), the end

result being

1,(2) = -1, (2)

, _ ® M Givg) o (keiyy ) M¢(-inn)eYbnz

Ly B ,
-3 (I) g (K=Y ) . :
2 yz;  DION BN N GYd 151 YonObn T YoN) N OYp,)
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+-1- E(Ic) (k+iy )M——"‘—"—*(lYCM) I (k-len) M+(_1Ybn) Ybnz
2 M=0 b7 OM cM N+(—1YcM) n=1 Ybn(Ybn-YcM) N+(1Ybn)
;32 <0 (4.20)

A comparison of (3.23) and (4.20) reveals the common incident term, -Ig(z),
leaving the remaining terms in (4.20) to be identified as the scattered
currents; the sum over N being the scattered currents due to the
incident circular waveguide TMON mode currents from z <0 and the sum

over M 1is the scattered currents due to the incident coaxial wavcguide
TMOM modc currents from z > 0.

To find the composite current, Ib(z), for z > 0 we return to (4.19)
and deform the contour, Fo, downward enclosing the poles, a = -k and
-inN, and the poles of [M+(G)]-I located at a = -iycm. The residues of
these latter poles are easily determined by making the substitution,

M+(a) = M(a)/M_(a), the end result being
B
I,(2) = -1, (2)

T B ikz
+ 7 I -
N=1 b’ ON M+('k)N+(1YbN)
. . . 2.
. l(k-iy )M+(T1YbN) (k+1ch) M+(1ch) N (chm) e'chz
2 bN N+(1YbN) m=1 Yem Yem™ Yo’ N, iy ) 1_NZ(ich)
) g (IC) M+(iYcM)N+(k) eikz
M=0 b’ OM M+(-k)N+(-1YcM)
. . . 2.
M Gy, = (kedy ) MGy ) | NGy ) |-y

1 .
+ =(k+iy ) —— - ]
2 cM N+(-IYcM) m=1 ch(ch+YcM) N+('1ch) 1—N2(iycm)

; 220 (4.21)

cm

Z

PRI

= b o

e

i
B




A comparison of (3.23) and (4.21) immediately reveals the common incident

term, -Ig(z). The remaining terms in (4.22) are thus the scattered
currents due to the circular-to-coaxial waveguide transition at z = O.
. . 2. 2 2
: = 5
We note in passing that N (1ycm) Jo(vocm)/JO(pcm) >1, form# 0 [15], so
that the term [1- N(ich]]_1 is always finite for m > 1. The situation
in which a mode in system B of Figure 3 (i.e., eigenvalues of tinn),

approaches the same distribution of a mode in system C of Figure 3,

(i.e., eigenvalues of iiycm) is discussed in Appendix B.
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5. Equivalent Circuits for the Circular-to-Coaxial Waveguide Junction

The circular-to-coaxial waveguide junction may be described in

terms of a current scattering matrix representation, i.e..
-~ +
(1] = [C]T] (5.1)

where [I+] is the incident current vector, [I ] is the reflected
current vector, and [C] is the current scattering matrix which contains
the interrelationships between the varicus incident and reflected currents.
Since an infinite number of modes may exist on both sides of the junction
the terms in (5.1) are in theory, infinitely dimensional, However in most
practical situations only the lowest order modes (most dominant modes) need
to be considered.

The simplest two-port version of (5.1) occurs when only the most
dominant modes in each region, the circular TMOl and the coaxial TM00 (TEM)
modes, are retained. This reduction requires a demonstration showing that
the effects of the higher order modes are indeed negligible. To proceed,
we assume that these higher order mode effects are minimal compared to
the retained dominant modes, and offer the equivalent circuit shown in

Figure 5a. For this equivalent circuit, (5.1) is reduced to

in which we have arbitrarily designated the circular TM01 mode currents

(incident and reflected) with the subscript "1" and the coaxial TMOO(TEM)

mode currents with the subscript "2". The current scattering parameters in

(5.2) are explicitly known from (4.20) and (4.21) to be:
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(a)
I I,
Y Yi2
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O— Y2| Yzz -O
(b)
_j[;. N
Co Ye
-0
(c)
Figure 5. Equivalent circuits for the dominant modes in the
circular-to-coaxial waveguide junction.
(a) Two-port current scattering parameter representation.
(b) Two-port admittance parameter representation.

(c)

One-port discontinuity capacitance representation.
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2
(5.3)

c .. (k-inl)ﬁ+(-in1):]
1 Ay N, vy,

o -k M) My, (5.4)
12 "y, N GKN Gy, ) )

M Giy ) N )

21~ M_(-k) N, Gy,)) (5.5)

M, (k) N, (k)

“22 7 " W O N0

(5.6)

In obtaining (5.3) through (5.6) we have replaced Yco by -ik, which
is a result from (3.8) and (3.11). The current scattering parameters in
(5.3) through (5.6) can be shown to be those of a lossless reciprocal
junction as would be expected on the basis of physical reasoning.

A more conventional equivalent circuit representation, using admittance
parameters may be defined for the circular-to-coaxial waveguide junction.

Figure 5b illustrates the admittance parameter network described by 1

= (5.7)

The currents in (5.7) are related to the incident and reflected currents

in (5.2) by the relations

+ +
Il = I1 + I2 5 YCl vl = Il - Il
+ - +
12 = 12 + I2 ; Ycz v2 = I1 - 12
where
. 4wk
Cl IYbln
and




are the characteristic admittances for the equivalent transmission line

representations of the circular and coaxial transmission lines respectively.
Using (5.7) through (5.11) with (5.2) we obtain the admittance

parameters in terms of the current scattering parameters, which are given

by
Ya
Y= LA+ 60 -Cp) +Cpy Gy (5.12)
Y
Yo
Y, = S22, (5.13)
Y
Ya
Y, = <L (2] (5.14)
Y YCZ
22 = Tp L =€)+ Ch) +CChl (5.15)
where
D= (1-CPU-C ) -ty (5.16)

As in the case of the previous current scattering parameters, the
admittance parameters in (5.12) through (5.15) describe a lossless
reciprocal junction.

The simplest form of (5.1) occurs when the circular waveguide contains
no "equivalent" sources or propagating modes, thus leaving the coaxial
TMOO (TEM) mode as the only incident mode upon the circular-to-coaxial
junction. This situation corresponds to the one-port network shown in
Figure 5c, consisting of a transmission line with characteristic

admittance, YCZ’ given in (5.11) terminated by the capacitance,

1+C
i 22
C.owi|l 22 1)y (5.17)
0 wll - sz c2
where w is the radian frequency and C22 as given in (5.6). In this
one-port case, C is the reflection coefficient of the TEM mode current

22

at the center conductor truncation. The capacitance, C arises from

ol
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the energy stored in the evanesccnt fields of the p =a and p =b
circular waveguides and the higher order fields in a coaxial waveguide.
The present equivalent capacitance (which is for a hollow center conductor)
is compared in Figure 6 to that determined through a variational technique
(which considered the center conductor as being solid) by Risley [13] for
a British 3/4" coaxial line. Due to the difference in the center con-
ductor specification, the diserepancy between the capacitances is not
unexpected. However, our value of the equivalent capacitance reaches a
finite limit of 11.408 x10"'3F at the circular ™y, mode cutoff fre-
quency. It cannot be determined from [13] whether the variational technique
of Risley also yields a finite equivalent capacitance at cutoff.

The electrical effects of the truncated center conductor may also
be expressed in terms of an effective lengthening of the center conductor
as shown by Marcuvitz [12]. The shift of the open circuit reference plane
may be given in terms of the present parameters as
1+ Sy

1y 22
k{1l - sz

d = (5.18)

Reference plane shifts given by (5.18) are identical to those given by
Marcuvitz in [12], who employed the same transform technique as used in
this analysis.

A very important observation to make at this point is that the
equivalent one-port network for the circular-to-coaxial waveguide transition
in Figure 5C may be simulated by terminating the "1' port of the two-port
equivalent circuit in Figure 5b into the characteristic admittance, YCl’
in (5.10), and looking into the "2" port. The input impedance of both

systems must be the same,

Thus we have that
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2
2
0 22 Yy *Yy

(5.19)

which is valid when there is no propagating modes in the circular wave-

guide region and when there are no obstacles too near the junction which

would cause additional reflections.

LS e N 78 T ]
eyttt outsitiitaninaes
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6. Electromagnetic Penetration into the end of a Finite-Length Thin Cylinder

Illustrated in Figure 1 is a finite-length thin (kb << 1) cylinder
illuminated by a uniform plane wave incident at an angle, Gi, with the
z-axis. Inside and recessed from the end of this hollow outer cylinder
is a hollow inner cylinder. We assume these cylinders to have infinitely
thin walls. The one end of the inner cylinder is terminated in an

arbitrary load admittance, Y Together the two cylinder comprise a

L
circular waveguide in the region, -h <z <-h +Zw and a coaxial waveguide
in the region, -h +2w <z <-h +2w + lc. The penetrating current on the
inner wall of a finite length hollow thin cylinder illuminated by a

uniform plane wave was derived by Chang, et al [11], and may be written

in the form of (3.1) with
(I gy = ~[1g(m -8,,WIT (8,) + C_(n-0,)1_(2h)T, (m) JE} (6.1)

The reader is directed to the above reference for the exact definitions
of the terms in (6.1). Using the incident current modal coefficients in
(6.1) with the scattering parameter characterization of the circular-to-
coaxial waveguide transition the current in the load may be determined
with certain restrictions. First the analysis in [11] requires kb << 1.
Thus all of the circular and coaxial modes are below cutoff except of
course the TM00 (or TEM) coaxial mode. Secondly, we do not wish to

do a detailed analysis of the physical make-up of the load and its effect
on the reflections and mode conversions at the load, thus we restrict

the analysis by assuming
Lc-i b (6.2)

so that the higher order coaxial modes at the load are negligible in

comparison to the TEM mode. And by requiri:.g that,

e e v - ——
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(6.3)

we need only to consider the TMO1 mode currents in the circular wave-
guide region, the effects of the higher order TMon mode currents being
negligible comparcd to the effects of the TM01 current. Also the

restriction in (6.3) permits thc multiply reflected TM01 mode currents
within the circular waveguide section to be neglected in almost all cases.
This subject is addressed mcre fully later.

The restrictions of (6.2) and (06.3) permit the use of the equivalent
two-port networks (C or Y parameters from Section 5) to simulate the
circular-to-coaxial waveguide transition. We choose the admittance para-
meter representation described in (5.7) over the current scattering para-
meters in (5.2) in order to achieve a conventional equivalent circuit in
terms of currents and admittanccs for the overall system.

Since the circular-to-coaxial waveguide transition is reciprocal
(implying le = YZI)’ we may represent this junction in terms of a simple
T network. The overall system is then expressable in terms of the circuit
configuration in Figurc 7a. The advantage of this type of representation
is that we may easily introduce equivalent circuits for such items as;
short circuiting plungers, abrupt changes in the inner or outer conductor
radius, multiple loads, etc., into the coaxial line section. Note also
in Figure 7a, that we have included the source admittance Ye . This
"end" admittance term corresponds to the equivalent admittance seen by a
TMOl mode current incident upon the open end of the cylinder. From
physical considerations, we would expect Ye to contain a small positive
conductance corresponding to the effects of radiation from the finite

length cylinder and for |Ye| to be quite small. In this section

we will not take the effects of Ye into account since under the condition




Ioer W

-Yi2

Figure 7.

(a)

(b)

(a)

(b)

Equivalent circuits for the simulation of the electromagnetic
penetration into a finite length coaxial cylinder.

Overall system, Note in general the coaxial line section of
length £., may include additional elements. End admittance,
Ye, is shown here but neglected in analysis.

Norton equivalent circuit.
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in (6.3), the input admittance to the circular waveguide at the circular-
to-coaxial waveguide transition is essentially YCl , the characteristic
admittance of the circular waveguides transmission line equivalent given
(5.10). Essentially we are neglecting the multiply reflected TM01
currents within the circular waveguidc section by assuming the circular
waveguide to be infinite in extent. With this approximation and bearing

in mind that in (6.1) is an incident (rather than a total)

B
(Ib )01
current we may lump the entire circuit (including the m network) to the
left of the coaxial line section into a Norton equivalent circuit as

shown in Figure 7b. The equivalent (total) current source is given by:

-2y -y [
N 12 bl “w _ B
U=ly—v_]¢ Oy Jor (6.

The Norton shunt admittance as shown in Figure 7b is found to be

N Y12 Y01
22 Yy Y

In obtaining (6.5) we have again neglected the multiple reflections
within the circular waveguide section by essentially taking the circular

waveguide to be infinitely long. Comparing (6.5) with (5.19) we find,
YN = -iwC (6.

This is not an unexpected result, since under our present approximations,
the Norton equivalent shunt admittance has the same definition as the

discontinuity admittance (from Co ) as used in Section 5.

The total power dissipated within the coaxial line section may be

in

4)

.5)

6)
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easily calculated from:

pu
: 2
1 N Y;n 1
P = = Re I —— (6.7)
2 YN R Yln Yln
2 2

(6.7) does not require any intricate circuit analysis, but only a know-
ledge of the Norton equivalent circuit parameters, IN in (6.4) and YN
in (6.6), and the input admittance, Y;n , of the coaxial line section.
The maximum power dissipated within the coaxial line section would occur
when a conjugate match is obtained between the source admittance and the

coaxial line section input admittance, i.e., an = (YN)* . Under this

conjugate match the power would be given by,

N,2
S (6.8)
mo o, gin
2
where Gin is the real part of Y:n . We immediately observe that (6.8)

predicts an infinitely increasing power dissipation for a conjugately
matched load as G;n + 0 . This is a direct consequence of neglecting the

end admittance, Ye , in the calculation of the Norton shunt admittance,
YN , in (6.5) with the ultimate result of YN being a pure imaginary
number. Actually had the exact form of YN been used in (6.7) the power

dissipated in the coaxial line section under conjugately matched conditions

would have been,

2 G
p = 1121 2 (6.9)
n G, Gﬁ]

where GN is the real part of YN . The maximum possible power occurs




38

for G2 = GN . However since GN is really quite small we may confi-
dently use (6.7) and (6.8) to calculate the power in the coaxial line

in

section except for conjugately matched cases in which 62

is also quite
small.
Utilizing the Smith chart as a means of illustrating all the possible

values of input admittances (normalized to ) of the coaxial line

YCZ
section, it is obvious that conjugate matching only occurs along the
constant susceptance contour Im[Yén] = (YN)* . And it can be shown
from (6.7) that the contours of constant power are circles tangent to

the point Yén = (YN)* . In both cases W is taken to be as given

in (6.6). To demonstrate this with a numerical example, we consider the
situation of a thin cylinder of length 2h = 1.30 m, which is illuminated

by a unit (Eé = 1.0 V/m) uniform plane wave incident at an angle

ei = 140° with the z-axis (see Figure 1). This particular incident angle
has been shown in [11] to provide the maximum penetrating current into the
open end of the cylinder. The cylinder investigated here has a finite

outer wall thickness: outer radius b0 = 5.08 cm and tnner radius

bi = 4,1275 cm and we assume the penetrating current into the circular
waveguide region to be equivalent to the infinitely thin wall case where

b = 5.08 cm. The center conductor which forms a coaxial line with the

inner radius of the larger cylinder is recessed by the distance,

lw = 4.6 cm, from the open end of the larger cylinder and has a radius

a = 0.71374 cm. 1In Figure 8 are shown contours of constant power calculated
from (6.7) as a function of the normalized input admittance, Y;“/YC2 ,

of the coaxial line section. Note, in Figure 8 we have expressed the

admittances in the form corresponding to the conventional time convention,

i : . . : . ‘s
¢’ | Thus the coaxial line section input admittances which are capacitive




CAPACITIVE SUSCEPTANCE
+j1

Figire 8.

-jt
INDUCTIVE SUSCEPTANCE

Contours of constant power dissipated in the coaxial line
section for the system in Figure 1 as a function of the
normalized input admittance, Y%"/Ycz, with the parameters;

EX = 1.0 v/m, ei 140.0°, f =300 Mhz, 2h =1.30m, a =0,71374 cm,

6
b, = 4.1275 cm, b, = 5.08 cm, and &, = 4.6 cm.
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in nature are in the upper half of the chart. And input admittances which

are inductive are in the lower half of the chart. Along the constant
susceptance (normalized) curve B = 'mco/ch = -0.068 in Figure 8, the power
dissipated in the coaxial line is secn to increase for decreasing values of
conductance. In Figure 9, the power dissipated in the conjugately matched
load of Figure 8 as calculated from (6.8) is shown as a function of the

input conductance of the coaxial line section. The power increases indefinitely
as the coaxial linc input conductance is made smaller and smaller. As
previously mentioned, this is the direct result of assuming the circular
wavguide to be infinitely long for the determination of the equivalent Norton
shunt admittance. In realistic terms, however, the circular waveguide section
is finite in length and terminated by the open end of the cylinder. Radiation
from the open end would produce a real component in the equivalent Norton
shunt admittance and thus limit the maximum power that could be dissipated
within the coaxial line section. The maximum possible power would then be

given by

N2
L (6.10)

where GN is the real part of equivalent Norton shunt admittance. Further
work will show this maximum possiblc power to be independent of the length
of the circular waveguide (i.e., the reccssion of the inner conductor).

Although for deeper recessions of the inner conductor, conjugately matched

conditions become increasingly difficult to obtain.
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7. Conclusions

Through the independent characterizations of the various eclements
comprising the finite coaxial linc (with recessed inner conductor and load)
illuminated by a uniform plane wave {(ligurc 1), we have constructed a simple
cquivalent circuit representation to yicld the total power dissipated within
the coaxial line scction. Under the mild restriction that the inner
conductor be recessed at least one outer cylinder radius, the power dissipated
within the coaxial linc scction under most situations will be quite small
compared to the maximum possible power dissipation. Higher power levels
become increasingly difficult to obtain due to the more exacting specifica-
tions for a conjugately matched situation. The maximum possible power is
limited by the real part of the equivalent Norton shunt admittance, which is
the admittance as viewed from the coaxial line side of the circular-to-coaxial

transition circular waveguide section terminated by the open end.
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Appendix A.  Factorization of M(a) and N(a)

Consider the kernel in (2.14),

Jo(ga)

LB (A.1)

N{a) = ———-
.]()((,I))

where ¢ is given in (2.4). We wish to factorize M(x) into the form,
N(a) = N (@)N_(a) (A.2)

in which N*(a) is analytic and frec of zeroes in the upper half plane,
-lm(k) < Im(a) <« , and N_(a) is analytic and frce of zeroes in the
lower half plane, -« < Im(a) < Im(k), (sec TFigurc 4). Actually N(u)
in (A.1) is characterized only by simple zeroes at o = # iyag, defined
in (3.18) and simplc poles at a = ¢ inn’ defined in (3.2). There arc
no branch cuts or other irrcgularities. Since both JO(Q“) and Jo(ch)
arc analytic functions of «, they may cach be expressed in terms of
infinite products of their respective zerocs. Following Whittaker and

wWatson |16],(A.1) may be expressed in terms of the infinite product,

(A.3)

where,

(A.4)
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After the introduction of a couple of cxponential factors in the infinite
product (which provide convergent individual products but cancel in (A.3)),

we may factorize (A.3) into the form of (A.2) where,

(A.5)

and N (o) has a similar form except that (a) is replaced by (-a) in
all terms.
To speed the convergence of (A.5) we follow the procedure of

Olson [17], which utilizes the relationship from Mittra and Lee [14],

: a B o
| I+ o Ry vk
I e 1 + = e (A.6)
n=1 An + B r(% .+ B, 1)
A A
where T (x) 1is the gamma function and vy = 0.5772156... . Choosing the

appropriate values of A and B in each product term of (A.5) and (A.6) and
incorporating (A.7) with these respective values in (A.5) and (A.6) results
in very quickly convergent infinite product expressions for N_(a) and

N_(a). For the former we have,

o 1 + _a__.
ab P(Z ] ia%) > (l ' iYan) iyég)
N (a) = N.exp[-iy = (1-v)}] I (A.7)
+ 0 b 3 . Qa a
r(Z - iod) ne1 1+ s (1 . —1——)
i iYan Ybn
=, (0) (0) . + oo
where v = a/b and Yan and Ypn 2T the asymptotic forms as n
of Yan in (3.18) and Ybn in (3.2), respectively, and are given by,
{
0) _ T 0 _ - ul
Yan = (n - 1/4) a ’ Ybn = (n 1/4) b
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Next consider the kernel, M{a), in (2.14),
M) = n[J“(&n)Y“(Ch) - J”(Qh)Y“(CH)] (A
We wish to factorice N(w) into the form,
M(a) = M+(a)M_(a) (A.10)

in which M_(a) and M_(«) are analytic and free of zeroes in the upper
and lower halt plancs, respectively.  Since M(a) in (A.9) is an

analytic function of o, possessing only simple zeroes at o = 4 iy

cm’
defined in (3.8}, we may follow the same steps that led to (A.11) for

N+(u). And we get,

o
w L+ W‘_)
M+(a) = Mocxp{ry%?(l—v)} —__aL_____ 1 ;m (\.11)
F—(“l?(l—\))) m=1 {1 + 7
em
where,
My = vV (ka)Y (kb)) - Ty (kMY (ka) (A.12)
and,
0. o (A.13)

Yem © (h-a)

YéU) is the asymptotic form of Yem in (3.8) as n > o, We also find

that M_(a} is of the same form as M+(u) in (A.10) except (a) is replaced

by (-a)
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The introduction of complementary entire functions into N+((l) and
N_(u) (i.e., these functions cancel in the product N{a) = N+(u)N_(u)) !
does not alter the regions of analyticity of the respective factors. The
same applies to the factors M, () and M (a) . Thus in order to obtain
the desired algebraic asymptotic behavior of the product M _(x)N () as
[«e] » = in the upper half planc, we may introduce the entite functions
cxp{-ingl-Y(l—v) +vin (V)] and exp{-i %?—(l-v)[y + Wn(l-v)}} into
N+(w) and M+(u), respectively.  The reciprocals of these functions are
introduced into the respective minus functions also, so that the original
kernels, N(a) and M(a), are still obtained from the product of their
respective plus and minus factors. With the above modification, we get

the final forms of the plus factors,

,'l-*-i.‘:) (1+~1Y“) o
A 1l an Ybn

. .ah
N¢(<1) = N”pr{—l—.;-v (vt S — fl — m ; 3 (A. 1)
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w 1+ lYa
, al 1 :
M, (1) = Moexpl-i =2 (1-v)en(1-v)} ST 3 I_Il TT*&LE (A.15)
( - g U=l m= @
cm

The corresponding minus factors are similar in form to the plus factors

cxcept (a) is replaced by (-a) throughout, i.e.,
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N («)

N+(—<1) (A 16)
and
M (n) = M+(—1t) (A17)

The desired algebraic asymptotic behavior of the product M+(aJN+(u)

is given by,
; N2 : ~ y
M_(N L) v 5 as o] > @ in the upper half plane (AIS)

It is worthwhile to mention that N+(u) is an apalytic function of

. even in the lower half plane cxcept at the poles located at o = -iyhn,
n=1,2,5,... . And [N+(d)]-l 1s also an analytic function of o in the
lower halti plance except at the poles located at a = _iYuQ , L= 1,2,3,...

Thus cvaluating N+(u) or 1N+(G)]-l in the lower half plane poses no real

difficultics. UEven cvaluating a plus factor at onc of the fore-mentioned
poles does not yield an unphysical result in the solutions for the current.
This situation is discussced in Appendix B. Similar arguments apply to the
cvaluation of M (a) and [M_(a]]_l in the lower half plane.

Finally, when using (A.14) to obtain N _(a) or {A.15) to find M+(a),
it is necessary to compute (depending on the magnitude of a) only a limited

number of products. This is duc to the rapidly convergent naturc of the

infinite products in both (A.14) and (A.15).




Appendix B, The "Well-Coupled' Modes

| In the calculation of the residuc terms for the integrals in (4.19)
!
1}
[ resulting in the expressions tfor lh(:); (14.20) for =<0 and (4.21) for
H 220, we have implicitly assumed (and correctly so) that the poles of the
i

integrands were not coincident, i.c., they were all separate first order

poles.  This leads to the observation of the questionable terms:
iy -y )_l in (1.20) and  (y -y )_l in (4.21), which scemingly
bhn oM i bN ’ ‘
make the current "blow up” it p = p and p z 0., respectively.
v Ul i P eM Pem oy o l ’

Fortunately, this does not happen since the terms M ) and M+(-ith)
i

+(‘1Yhn

are zero at by R and  p = Actually both of the above situa-
1

)
cM cm Y

tions will occur at the same time, that is, whenever a Zero (pn or p\)

of J”(x) coincides with a zero (p or pn) of [J“(vx)\“(x)—JU(x)\“lvx)J.

cM
We denote these coincident zeroes as =p and = , which
e d te t ¢ cide c pq oo QQ pcp

ditfer only in their individual relationships to the incident (capital
letters in subscript, I and Q) and scattered (lower case letters in sub-
script, p oand ) modes.

The cexpressions for lh(:) in Scction 4, (4.20) tor z<0 and (4.21)

tor z:0 , are perfectly valid in the "well-coupled” mode case it the

following limits arc obscrved,
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Simi larly,
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(B.1) and (B.2) contain the terms, 7 s e
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The substitution of the limits in (B.1) through (B.1) into (1..20) and
{4.21) whenever coincident zereoes occur will yield the correct result tor
lh(z) in the "well-coupled' mode casce.

Mathematically these "well-coupled” modes occur whenever an eigenvalue
(fith or fiYhQ) of the circular waveguide corresponds exactly to an
ecigenvalue [tiycm or ﬁinM) of the coaxial waveguide. Physically the
"well-coupled” modes amount to a circular waveguide mode {(cither incident
from z<0 or scattercd due to the coaxial source for o=>0) having a zcro
z-directed clectric ficld at p=a (the center conductors radial position).
The particular "well-coupled™ circular and coaxial waveguide modes then
match fairly wetl, although not cxactly, at the transition at :z=0 . We
note that there is nothing discontinuous in the "well-coupled" mode pro-
cess and the closely matched situation between the circular and coaxial

wavepuide modes is approached from both sides of the "well-coupled” con-

dition. The lowest order modes for which this effect may be observed

arc the circular TM“, and the coaxial 'l'M()l modes. In this situation,
r'4

p,=ocl=5.5:01.... . The coaxial TMUO {or TEM) mode, however, will never

he "well-coupled” to any of the circular waveguide modes.







