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Electromagnetic Penetration into a Finite Coaxial

Cylinder with a Recessed Inner Conductor

Larry Rispin and David C. Chang

Abttact
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The etect~omagnetic penetration into a finite coaxiat cylinder

£Uuminated by a uniform pfane wave o6 abittary incidence is inve-6ti-

gated by combining the resuts of sevetat individuat WieneA-Hopf

anaLyse. The ci'culta to coaxiaa waveguide junction within the cylindeA

iA 6ully characteized thtough such a technique. A simple equivatent

circuit for this6 junction and the other etements o6 the system ate

combined into an equivalent Norton source and equivatent load admittance

whieh is valid unde most p'iactica situatin. The powe dissipated

within the coaxial fine section o6 the system is then eaztZly cateutated

6o4 any given load, except those in the vicinity o6 the "peAdectty

matched" oad.
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1. Introduction

The study of the electromagnetic penetration into cylindrical

enclosures is of great practical concern due to the effects it may have

on the mechanisms or circuitry contained within the enclosure. The

most prevalent case of this high frequency electromagnetic penetration

takes place through intentional as well as unintentional apertures on

the enclosure, which are formed by cracks, seams, access doors, etc.

The study of this type of aperture coupling is well documented, [1]-

[10]. Another form of electromagnetic coupling into a cylindrical en-

closure occurs through the open end of a circular cylinder. This has

been considered in the particular case of a finite-length thin cylinder

open at one end and illuminated by a uniform plane wave by Chang, Lee

and Rispin in [11]. This investigation showed the electromagnetic

penetration into the open end of the cylinder to be predominantly in

the form of evanescent circular waveguide TION modes. Since these

waveguide modes are cut off, their effects at a sufficient distance

away from the end of the cylinder are usually quite small. However,

if an insulated conductor within the cylinder is near the open end,

the evanescent waveguide modes may couple into a TEM mode supported by

the insulated conductor and the cylinder. Energy may then travel

practically unattenuated along this two-conductor system to delicate

circuitry within the structure. In order to develop a quantitative

feeling for this type of electromagnetic coupling, the theoretical model

shown in Figure 1 was proposed. The two-conductor transmission line is
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Figure 1. Model for the electromagnetic penetration into the end of

a finite-length thin cylinder.



3!I
simulated by a coaxial line whose center conductor is recessed from

the end of the cylinder. A load admittance is located at the opposite

end of the center conductor which simulates the lumped admittance of

the circuitry in the practical situation. For convenience we assume

the cylindrical enclosure to be open at only one end and capped by a

metal plate at the other.

The analysis of the model shd'i.i in Figure 1 may be conveniently

divided into three major parts. First the initial penetrating currents

at the end of the cylinder may be determined through the Wiener-Hopf

technique as demonstrated by Chang, Lee and Rispin [11]. The circular

waveguide-to-coaxial waveguide transition must be characterized next.

This characterization forms the bulk of this report, namely Sections 2,

3, and 4. And finally simple transmission line theory may be used for

the final section between the circular-to-coaxial junction and the

load admittance. In this manner we may determine the load current and

power due to the incidence of a uniform plane wave of known intensity

and angle of incidence.

As mentioned above, the major part of this report is devoted to

the complete characterization of the circular-to-coaxial waveguide

transition. We note that in the case of an incident wave propagating

toward the transition from the coaxial region, (instead of incident

waves propagating toward the transition in the circular waveguide region

which are due to the plane wave impinging upon the cylinder), the same

structure also characterizes the problem of a typical coaxial open

circuit termination, [12] and [13]. Thus in Section 2 a "spectral"

equation and an auxiliary equation in the Fourier transform domain are

I .-!--
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developed for the transition region. Section 3 defines the solution

of the circular-to-coaxial waveguide problem in terms of a "composite"

problem with waves incident from both sides of the transition. In

Section 4, the Wiener-Hopf technique is utilized to obtain the scattered

currents from the transition. Equivalent circuit representations of

the circular-to-coaxial waveguide junction are given in Section 5. And

finally in Section 6, the characterization of the circular-to-coaxial

waveguide transition of the previous sections is applied to the system

shown in Figure 1.

I
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2. Formulation of the Spectral Lquation

Consider the coaxial system shown in Figure 2, in which we have

a perfectly conducting surface at p = b concentric about an arbitrary

(perfectly conducting or nothing) cylindrical surface of radius, a.

Leaving the surface at p = a arbitrary, allows the latter specification

of it as being either an infinitely long perfectly conducting cylinder,

or a semi-infinitely long perfectly conducting cylinder, or no conducting

surface at all. We assume an exp(-iwt) time variation and define the

Fourier Transform pair as,

F(a) = 4 F(z)e o'Zdz (2.1)
-00

F(z) = -L (2.2)
2aYCO

Considering only axially symmetric fields and currents allows us

to write the transform of the z-directed electric field as,

2AJo0( P) ; 0 < p < a

E Z(,a)= (2.3)

C2[BJ 0 (p) + CYo(4p)] ; a < o < b

where the unknown constants, A, B, and C, are determined by imposing

the appropriate boundary conditions, and,

k k2 - = i / - ; i.e., Im( > 0

for all a (2.4)

5The other field quantities under the assumption of axial symmetry

may be given in terms of Ez (p,a) as,I'i t
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E P(p,ca) = - E K(p,) 11 (p,cx) =0(2.5)

ik a
E(p,ca) = 0 11 (P'a) = -27Ez(p,t)

(2.6)

H( (p,a) (2.7)

For the system described in Figure 2, the ar  ,--iate transformed

boundary conditions are,

Ez (bo') = 0 (2.8)

E z(a ,c) = (a-,a) (2.9)

(a+,c) - (a-,c) I 2(a (2.10)

II~(bcL) 'bcO b (a")
I - =

(b - ' )  2Trb (2.11)

where (2.8)specifies that the z-directed electric field at p = b must

be zero, (2.9) enforces the continuity of the z-directed electric field

at p = a, (2.10) expresses the discontinuity in the O-directed magnetic

field at p = a in terms of a z-directed current there, and (2.11)

expresses the discontinuity in the O-directed magnetic field at p = b,

(note, Ii(b ,a) = 0) in terms of a z-directed current there.

The constants of (2.3) may be determined in terms of I a(a) by

utilizing the boundary conditions in (2.8), (2.9), and (2.10). With

the constants of (2.3) in this form, we may take p = a yielding the
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"spectral" equation,

i 2E (aa) M(a)N(a)1 (a) (2.12)
z 4,,Tk a

where,

M(a) = 7[J 0 (Ca)Yo( b) - Jo(Vb) Yo( a)] (2.13)

Jo( a)

N(a) = (2.14)
J (Cb)

(2.12) is the equation utilized in the Wiener-Hopf analysis for the

circular waveguide-to-coaxial waveguide transition to be discussed in

Section 4.

Alternatively the constants of (2.3) may be determined in terms of

Ib(a) by utilizing the boundary conditions in (2.8), (2.9), and (2.11).

With this new set of constants and for p = a in (2.3) we find the relation-

ship between the transforms of the .urrents on the p = a and b conductors,

Ib(aL) = -N(0)la (a) (2.15)

(2.15) will alow us to eventually solve for the scattered current on

the p = b conductor for all z from only one equation.
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3. Definition of a Composite Problem for the Circular Waveguide-to-

Coaxial Waveguide Transition

3.1 The individual systems

To characterize the circular waveguide-to-coaxial waveguide transi-

tion we consider the three systems shown in Figure 3. Figure 3B illus-

trates an infinitely long circular waveguide of radius, b, with an

arbitrary source at z = -L. The incident current on the p = b conductor

for z > -L is given by,

B (Z) = Y (I)oN ebN ; -L < z < c (3.1)
b N=I bO

B
where (Ib)0N is the coefficient of the TM circular waveguide mode

current (at z = 0) and iybN is the propagation constant of the TMON mode

given by,

iYbN = i - = -

2 (- J(3.2)

and pN is the Nth ordered zero of J0 (x), i.e.,

J0(PN) = 0 ; N = 1,2,3, ... (3.3)

Associated with this incident current is an incident z-directed electric

field at p = a given by,

E (a,z) = (E ) C ; -L < z < (3.4)
z I~ z ON

N=I

The model coefficients of Ez (a,z) and I (z) are easily shown to be

related by,

4
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!z=-L z-O z L
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z=-L Z1O

2b (C) 2 a
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Figure 3. (A) Semi-infinite circular waveguide to semi-infinite

coaxial waveguide. sources at z =-L and +L.

(B) Infinite circular waveguide, source at z = -L.

(C) Infinite coaxial waveguide, source at z = +L.
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(IB) i4k (EZ (3.5)
'b ON n~i N) 2____

) Lb2M (iYbN)

Also it is obvious that no current exists at p = a, thus,

* BI (z) = 0 • -L < z < (3.6)
a

In Figure 3C an infinite coaxial waveguide with an inner conductor

of radius, a, and outer conductor of radius, b, is shown with an arbitrary

source located at z = L. The incident current for z < L is given by

Ib(Z) = O (IC)O e ;c _z < z < L (3.7)
l:0

where (Ib)0M is the coefficient of the TM coaxial waveguide mode

current (at z = 0) and iycM is the propagation constant of the TMOM mode

given by,

2\ NI2

iYcm i -k 2  Ik2 _ bP N (3.8)

And p cm which is a function of the ratio a/b, is the Mth ordered zero

of the cross product of J0 and Y0, i.e.,

J O(VPcM)YO(PcM) - JO(PcM)YO(VPcM) : 0 M H = 1,2,3,... (3.9)

where

v = a/b (3.10)

i -I I I-A
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And the special case,

0cO = 0 (3.11)

corresponds to the TMO0 or TEM mode.

Associated with the current on the p = b conductor is a current

on the p = a conductor given by,

IC z) [ C +YcMz
a Ia)0M e -C < z < L (3.12)

M=0

The modal coefficients of the currents on the inner and outer conductors

are related by,

(Ib)OM = -N(iYcM)(I) M (3.13)

And finally for the system of 3C it is obvious that,

Ez (a,z) = 0 ; -< < z < L (3.14)

The system to be investigated is the circular waveguide-to-coaxial

waveguide transition shown in Figure 3A. The region for z < 0 is

identical (including the source at z = -L) to that of the circular wave-

guide in Figure 3B. And the region for z > 0 is identical (including

the source at z = L) to the coaxial waveguide of Figure 3C. The field

quantities in Figure 3A may be expressed in terms of the incident

quantities of Figure 3B and 3C plus scattered quantities due to the

transition at z = 0, i.e.,
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E B(a,z) + E S-(a z) ; -L < z < 0

A
Ii (a, z) = (3.15)

; O<z<L

S r + 
< z < L

and,

I(z) + Ib(z) ; -L < z < 0

A (Z) 
(3.16)

(Z) + I (Z) ; 0 < z < L

I where the "+" and "-" signs on the superscript "s" designate the scattered

term for the regions, z > 0 and z < 0, respectively.

Since the inner conductor in Figure 3A would also carry circular

waveguide TM0t, (k = 1,2,3,...), mode currents on its internal walls in

addition to the coaxial waveguide TMOM mode currents on the outer wall,

it is convenient at this time to define the propagation constant for

these modes,

iY - (3.18)

where p. has the same definition of in (3.3).

An additional comment, in the mode current definitions of this

section we have adopted the convention of indexing incident mode currents

and fields with capital letters, M and N, etc., and scattered mode

currents and fields with lower case letters, m, n, and X, etc.. This
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convention will be used throughout this report and should be understood

in Appendix B concerning the discussion of so-called "well-coupled" modes.

3.2 Construction of the composite problem.

The spectral equation in (2.12) and the supplementary equation in

(2.15) were derived under the assumption that all of the implicated

field quantities possessed Fourier Transforms. Unfortunately if we

move the sources at z = -L and z = +L to -- and +-, respectively,

(i.e., L c), the incident fields and currents in (3.15)-(3.17) which

do not satisfy the radiation condition of an outgoing wave, will not in

general have Fourier transforms valid in the "analytic strip". This

analytic strip is defined as -Im(k) < lm(a) < Im(k) as depicted in

Figure 4, (note as usual in a Wiener-lopf analysis we assume a slightly

lossy medium, i.e., k = k' + ik"), and contains the inverse Fourier

transform contour in (2.2) designated as rO. In order to circumvent

this difficulty, we propose the simultaneous solution of three super-

imposed problems which features the standard inverse Fourier transform

contour, rO, in Figure 4. By combining the field quantities of the

three systems in Figure 3 as,

"Composite" = #3A - #3B - #3C (3.19)

the composite z-directed electric field at p = a is given by,

A B az C
E (a,z) = E (a,z) - E- (az- E (a,z) (3.20)z z z z

The expressions for the other composite quantities are similar in form

to (3.20). Consequently we have,

rI
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Im(a)
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Figure 4. The complex a plane.
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E z ~ a~z )  E 
((a21}

-Lz<

E B(a,z) 0 < z < L

1 a(z) = (3.22)

I (z) ) ; -L < z < 0

1 =) tbbz (3. 23)

-S+(z) ) ; 0 < z < L

The composite quantities in (3.21) through (3.23) may be interpreted

as the "extended" scattered (z-directed) electric field at p = a and

the "extended" induced currents on the p = a and p = b conductors,

respectively, for the system in Figure 3A. The term, "extended", refers

to, in the case of Ia (z) in (3.22), the extension of the induced current

at p = a from the coaxial region into the circular waveguide region.

This extended induced current combined with the incident current yields

the necessary result, that the total current at p = a for z < 0 is zero.

E (a,z) in (3.21) and Ib(Z) in (3.23) may be similarly interpreted.

These "composite" or "extended" quantities satisfy the radiation condi-

tion of out-going waves and may be used in the spectral equation in

(2.12) and the auxiliary equation in (2.15). Removing the sources of
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the composite system in (3.19) to an infinite distance away from the

transition at z - 0, (i.e., L + ), does not inhibit the Fourier

transformation of the composite terms in (3.21) through (3.23).
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4. Wiener-Hopf Solution

Allowing L + in (3.21) through (3.23) and taking the Fourier

transform (2.1) of each quantity results in the following transformed

composite terms,

E(aa)= E (a,a) - I (E) L +bNJ (4.1)

z N= z ON

I (+) = a Ia + -cM (4.2)a a M=O a

b(a ) = ~b(aO + I(Ib)M aic~ (Ib)oB+Ybi (4.3)

M=O I c N=1 L(a+iYbN)i+

The "+" and "-" subscripts appearing in (4.1) and (4.2) signify that the

function is analytic in either the upper half (-Im(k)<Im(a)<-) or the lower

half (-<Im(a)<Im(k)), respectively, of the transform plane shown in Fig. 4.

We note in passing that, in order to include incoming waves from the

region P <a and z > 0 we need only to insert the term

LI ( I sa ) ° L -ia _

L=1 7lL]

into (4.2), (IoL being the coefficient of the

L -mode at z = 0. The regions of analyticity for the terms, is (a,c)
z-

and is (a) were determined using the procedure described by Mittra and Leea+

in Section 3-3 of [141 with the known asymptotic behaviors,

E: (a,z) - ebl as z * - (4.4)

and

1 90-( e ; as z + (4.5)
Aa

." ~Additionally from 10 1
FA9 DjAX . .. .. __



20

I I - (z) e+Yblz ; as z - (4.6)

and

I ~(z) e;ikz as z + + (4.7)

bS

the same procedure reveals I (ca) to be analytic within the analytic
b

strip, -Im(k) < Im(a) < In(k)

Returning to the spectral equation (2.12), which will form the basis of

the Wiener-Ilopf analysis, we express the factorization of the kernels

(see Appendix A) as,

M (C) = MC() M_(a) (4.8)

and N(a) = N(a) N (a) (4.9)

The subscripts "+"1 and "-" indicate the region of analyticity (upper

half plane and lower half plane, respectively) of the factor. Upon the

substitution of (4.1), (4.2), (4.8), and (4.9) into (2.12) and after

some rearrangement we arrive at a form of the Wiener-Hopf equation given by

(k-a)M Ca)N a z(a~c) - ZN (E N(arYbN)
~ -~ N= +,c F

n is c  oMc
47 k k ct)14(c)N 4(a) {sa) C +I( =a) H LaiycM) (.0Ma

Following a typical Wiener-Hopf decomposing procedure, the mixed functions

in (4.10) may be written in the form,

Ni (a(N-(b N)l (E )ON F 1
l + Ck (YbN)o+ybN )N(iYbN) L (a+iYbN) J

i n I (I C ) (k~iyc)M.CiYc)N+(iyc)-_Tc _
40 k M ao, O M c + mc 0 YC l
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={, . (k+a)M (a)N (a)Ia )TTk+ +
i4 k a(Ic)0k+iYM)M (iY )N (iYcM)LCaiY)J +

= ON(k+iyb)M+ ON)N (i() (4.11)
N1 bN bN + N L a+1YbN)J +

where we have used the properties from Appendix A,

M (-L) = M+(0) (4.12)

N (-a) = N (a) (4.13)

and the definitions of the composite field E (a,a) and current I (a)

as given in (4.1) and (4.2), respectively. Now since the LHS of (4.11)

is analytic in the lower half plane and the RHS of (4.11) is analytic in

the upper half plane, one can show by the use of Liouville's Theorem [14]

that both sides are equal to an entire function, P(a), which is analytic

for all a

From the edge condition it is easily shown that

I (a) 0(a -1 ) as lal + in the upper half plane (4.14)

From Appendix A,

M+(a)N (a) '. O(a- 11) as lal in the upper half plane (4.15)

I

Using (4.14) and (4.15) in the RItS of (4.11) yields

P(a) M 0 for all a (4.16)

Consequently we obtain from (4.11),
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~ (E kON (k-ct) M
Ez(a,0x) = -i bN 0 b Y+iYb) M(a)N (a)

N=l (k+iybN)M+ (iybN )N (iybN

O ( (k-a)
-4 kl , M " " ((k+iyc)M)(iYcM)N ) (k-ct) M (a)N_( )

(4.17)

and
OD

I () = i I (1C)0M(k+iyM)M(iyM)N+(iYM)(
a M=0(k+a)(-iy )M (cx)N (a)

B

S I (EON
4k N=I (k+iy )M (iY )N (k+o) (o+iYbN)M (o)N (Cx)

bN + bN + ybN) (x + (4. I)

The use of (2.15) and (4.18) and the inverse Fourier transform in

(2.2), now provide an explicit expression for the composite current on

the p = b conductor, which is given by
0 (EB )N (a) e- iaz

Ib(Z) = Ok (E N ( d

I() 2- X IOb T -1(k+iYbN)M+(iYbN)N+(iybN) (k+a)(o+iYbN)M+(X)
0 -io~z

cc j N_ (a) e

-1 +-cI (Ic)0M(k+iy)M+(iy)N+(iyM)f (k+c)(ciYc)M (c) da

o (4.19)

where the contour r is shown in Figure 4.

Ib(z) for z -<- 0 is obtained by deforming r0  upward enclosing the

poles (from the integrands of (4.19)) at cx = iYcM and the poles of N (c)

at a = iYbn. The residues of these latter poles are easily determined

by making the substitution, N (a) = N(a)/N (a) from (4.8), the end

result being

Ib(Z) = -Ib(Z)

1 00+ (-iYbN) G (k-iYbn) M+(-iYbn) eYbnz

N-I b O N N+(iybN) n=l bnybn b N ( )
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c0M+(Y0 ki bn M+ -ibn) eb
+ -f (r')o(k+iycM) Ne-i

M=O bO cm N+ ( YcM n=l Yb~b-c N~ +ibn

;z< 0 (4.20)

A comparison of (3.23) and (4.20) reveals the common incident term, -1Ib(z),

leaving the remaining terms in (4.20) to be identified as the scattered

currents; the sum over N being the scattered currents due to the

incident circular waveguide TM ON mode currents from z <0 and the sum

over M is the scattered currents due to the incident coaxial waveguide

TNMOM mode currents from z > 0.

To find the composite current, I b(z), for z > 0 we return to (4.19)

and deform the contour, r09 downward enclosing the poles, a~ = -k and
01

-iY, and the poles of [M (at)] located at cL = -1y .The residues of
bNP cm*

these latter poles are easily determined by making the substitution,

M +(t) = NM(a)/M (a), the end result being

I(z) =-I B(Z)b b

00 M )N (k)
+ I) 'bN + ikz

N-1b ON M -) (iy b e

M (-iy o (k+iy) M(iY) N 2iy) -ycz
+ !Ikiy + bN cm + cm cm cme

2 bN N+ (YbN) m=l Ycm~ycm-bN~ N +(-iyCM 1-2 ic

M= 0 M{iM+ (-)N + (-iy CM)cmLN (icl

1 M+ (iYcm) o (k+iy C) M +(jY cm N(iy m) e-Y cmz
N -L'~i L) 1 Y2 MN (i m m~ c~cm CN (icm) Ll-N2(iY)7(k~iYM) cm +cm ec

z >0 (4. 21)
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A comparison of (3.23) and (4.21) immediately reveals the common incident

B
term, -I b(z). The remaining terms in (4.22) are thus the scattered

currents due to the circular-to-coaxial waveguide transition at z = 0.

2 )=J( 2We note in passing that N2(iy ) = J0(Vp )/J (p ) > 1, for m j 0 115], so
cm 0 cm 0 cm

that the term [1- N(iy cm)] - is always finite for m > 1. The situation

in which a mode in system B of Figure 3 (i.e., eigenvalues of ±iYb),

approaches the same distribution of a mode in system C of Figure 3,

(i.e., eigenvalues of ±iy e) is discussed in Appendix B.

Ia
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5. Equivalent Circuits for the Circular-to-Coaxial Waveguide Junction

The circular-to-coaxial waveguide junction may be described in

terms of a current scattering matrix representation, i.e..

[1- ]  = [C]II + 1  (5.1)

where [I+] is the incident current vector, [I is the reflected

current vector, and [C] is the current scattering matrix which contains

the interrelationships between the various incident and reflected currents.

Since an infinite number of modes may exist on both sides of the junction

the terms in (5.1) are in theory, infinitely dimensional, However in most

practical situations only the lowest order modes (most dominant modes) need

to be considered.

The simplest two-port version of (5.1) occurs when only the most

dominant modes in each region, the circular TM 01 and the coaxial TM 00 (TEM)

modes, are retained. This reduction requires a demonstration showing that

the effects of the higher order modes are indeed negligible. To proceed,

we assume that these higher order mode effects are minimal compared to

the retained dominant modes, and offer the equivalent circuit shown in

Figure 5a. For this equivalent circuit, (5.1) is reduced to

[ I, [C 11 1211
C2 2  (5.2)

in which we have arbitrarily designated the circular TM01 mode currents

(incident and reflected) with the subscript "1" and the coaxial TM00 (TEM)

mode currents with the subscript "2". The current scattering parameters in

(5.2) are explicitly known from (4.20) and (4.21) to be:

i
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C11  Cl2 +

C 2 1  C2 2

TI 12

0 Y1, YI 2

VI V 2

Y2 o(b)

COT YC2

T0

(c)

Figure S. Equivalent circuits for the dominant modes in the
circular-to-coaxial waveguide junction.

(a) Two-port current scattering parameter representation.

(b) Two-port admittance parameter representation.

(c) One-port discontinuity capacitance representation.
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t2

r (k -iy bl )M + iy bl) (5.3)
b2Yb N+(iybl) (5

-ik M + (k) M +(-iybl)C 12 =Ybl N+ (-k)N + (ibl) (5.4)

M+(-i Yb ) N+ (k)
bi R (5.5)21 NIM+(-k) N+(iYbl)

M+(k) N+(k)
C = - M+(-k) N+(-k) (5.6)

In obtaining (5.3) through (5.6) we have replaced yco by -ik, which

is a result from (3.8) and (3.11). The current scattering parameters in

(5.3) through (5.6) can be shown to be those of a lossless reciprocal

junction as would be expected on the basis of physical reasoning.

A more conventional equivalent circuit representation, using admittance

parameters may be defined for the circular-to-coaxial waveguide junction.

Figure Sb illustrates the admittance parameter network described by

: (5.7)
1 12 Y 21 Y 22 V 2

The currents in (5.7) are related to the incident and reflected currents

in (5.2) by the relations
- 4

I1 = I1 + I2 Y V = I - I (5.8)
1 1 2Cl I I I

12 =1 2 + 12 YC2 V2 ' 1 2 (5.9)

where

Y iYbl (.10)

and

=C2 n Ln (b)J (S.11)

LI
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are the characteristic admittances for the equivalent transmission line

representations of the circular and coaxial transmission lines respectively.

Using (5.7) through (5.11) with (5.2) we obtain the admittance

parameters in terms of the current scattering parameters, which are given

by
Y C1

Y1 = --- [(1 + C11 )( - C2 ) + C C (5.12)

Y12 [2C12 1 (5.13)

Y C1 [2C 21 ] (5.14)
Y21 D -- 1-

= -Y-[(1 - ClM)(1 + C2 2 ) + C12C21 ] (5.15)
22 D11 2 122

where
D = (I - C1 1 )( C) - C1 2C2 1  (S.16)

As in the case of the previous current scattering parameters, the

admittance parameters in (5.12) through (5.15) describe a lossless

reciprocal junction.

The simplest form of (5.1) occurs when the circular waveguide contains

no "equivalent" sources or propagating modes, thus leaving the coaxial

TM00 (TEM) mode as the only incident mode upon the circular-to-coaxial

junction. This situation corresponds to the one-port network shown in

Figure Sc, consisting of a transmission line with characteristic

admittance, YC2' given in (5.11) terminated by the capacitance,

Co 1 + C22 C2 (5.17)

where w is the radian frequency and C22 as given in (5.6). In this

one-port case, C2 2  is the reflection coefficient of the TEM mode current

at the center conductor truncation. The capacitance, Co, arises from

I-1
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the energy stored in the evanescent fields of the P = a and P = b

circular waveguides and the higher order fields in a coaxial waveguide.

The present equivalent capacitance (which is for a hollow center conductor)

I' is compared in Figure 6 to that determined through a variational technique

(which considered the center conductor as being solid) by Risley [131 for

a British 3/4" coaxial line. Due to the difference in the center con-

ductor specification, the discrepancy between the capacitances is not

unexpected. However, our value of the equivalent capacitance reaches a

finite limit of 11.408 xlO13 f at the circular TMh0 1 mode cutoff fre-

quency. It cannot be determined from [13] whether the variational technique

of Risley also yields a finite equivalent capacitance at cutoff.

The electrical effects of the truncated center conductor may also

be expressed in terms of an effective lengthening of the center conductor

as shown by Marcuvitz [12]. The shift of the open circuit reference plane

may be given in terms of the present parameters as

d = I (.18)

Reference plane shifts given by (5.18) are identical to those given by

Marcuvitz in [12], who employed the same transform technique as used in

this analysis.

A very important observation to make at this point is that the

equivalent one-port network for the circular-to-coaxial waveguide transition

in Figure SC may be simulated by terminating the "1" port of the two-port

equivalent circuit in Figure 5b into the characteristic admittance, YCI,

in (5.10), and looking into the "2" port. The input impedance of both

systems must be the same,

Thus we have that

1 II : 
9 '-

/,J ;
'
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I r" 31

Y Yi CO 12 21 (5.19)

0 2 Y +YcI

which is valid when there is no propagating modes in the circular wave-

guide region and when there are no obstacles too near the junction which

would cause additional reflections.

~, t

I

sJ
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6. Electromagnetic Penetration into the end of a Finite-Length Thin Cylinder

Illustrated in Figure 1 is a finite-length thin (kb << I) cylinder

illuminated by a uniform plane wave incident at an angle, 6i, with the

z-axis. Inside and recessed from the end of this hollow outer cylinder

is a hollow inner cylinder. We assume these cylinders to have infinitely

thin walls. The one end of the inner cylinder is terminated in an

arbitrary load admittance, YL Together the two cylinder comprise a

circular waveguide in the region, -h <z <-h +X and a coaxial waveguidew

in the region, -h +Z. <z <-h +X. + X. . The penetrating current on the

inner wall of a finite length hollow thin cylinder illuminated by a

uniform plane wave was derived by Chang, et al [11], and may be written

in the form of (3.1) with

(IB)0N = -[Is(T -0i,h)TN(0.) + C (w-0i)I (2h)'r ()]E 0  (6.1)

The reader is directed to the above reference for the exact definitions

of the terms in (6.1). Using the incident current modal coefficients in

(6.1) with the scattering parameter characterization of the circular-to-

coaxial waveguide transition the current in the load may be determined

with certain restrictions. First the analysis in [11] requires kb << 1.

Thus all of the circular and coaxial modes are below cutoff except of

course the TM0 0 (or TEM) coaxial mode. Secondly, we do not wish to

do a detailed analysis of the physical make-up of the load and its effect

on the reflections and mode conversions at the load, thus we restrict

the analysis by assuming

it -- (6.2)

so that the higher order coaxial modes at the load are negligible in

comparison to the TEM mode. And by requiri:_g that,

- kQK Fu'I __ __ _I____ __ _
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Iw> b (6.3)

we need only to consider the TM0 1 mode currents in the circular wave-

guide region, the effects of the higher order TM0o mode currents being

negligible compared to the effects of the TM current. Also the

001restriction in (6.3) permits the multiply reflected TM 01 mode currents

within the circular waveguide section to be neglected in almost all cases.

This subject is addressed mere fully later.

The restrictions of (6.2) and (6.3) permit the use of the equivalent

two-port networks (C or Y parameters from Section 5) to simulate the

circular-to-coaxial waveguide transition. We choose the admittance para-

meter representation described in (5.7) over the current scattering para-

meters in (5.2) in order to achieve a conventional equivalent circuit in

terms of currents and admittances for the overall system.

Since the circular-to-coaxial waveguide transition is reciprocal

(implying Y12 = Y2 1), we may represent this junction in terms of a simple

it network. The overall system is then expressable in terms of the circuit

configuration in Figure 7a. The advantage of this type of representation

is that we may easily introduce equivalent circuits for such items as;

short circuiting plungers, abrupt changes in the inner or outer conductor

radius, multiple loads, etc., into the coaxial line section. Note also

in Figure 7a, that we have included the source admittance Y . Thise

"end" admittance term corresponds to the equivalent admittance seen by a

TM 0 mode current incident upon the open end of the cylinder. From

physical considerations, we would expect Ye to contain a small positive

conductance corresponding to the effects of radiation from the finite

length cylinder and for lYe to be quite small. In this section

we will not take the effects of Y into account since under the condition
e
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b 0o1

c, m i a Y a
,e C ', C2 L:

0 --0 -OI

I N

_ 2
Figure 7. Equivalent circuits for the simulation of the electromagnetic

, penetration into a finite length coaxial cylinder.
(a) Overall system, Note in general the coaxial line section oflength Ec, may include additional elements. End admittance,

Y is shown here but neglected in analysis.

(b) Norton equivalent circuit.
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in (6.3), the input admittance to the circular waveguide at the circular-

to-coaxial waveguide transition is essentially YC1 P the characteristic

admittance of the circular waveguides transmission line equivalent given in

(5.10). Essentially we are neglecting the multiply reflected TM0 1

currents within the circular waveguide section by assuming the circular

waveguide to be infinite in extent. With this approximation and bearing

B
in mind that (I in (6.1) is an incident (rather than a total)

current we may lump the entire circuit (including the n network) to the

left of the coaxial line section into a Norton equivalent circuit as

shown in Figure 7b. The equivalent (total) current source is given by:

I N (e- Yb1 zw (IB )0(6.4)

The Norton shunt admittance as shown in Figure 7b is found to be

yN Y12 V21 (6.5)

22 Y11 + Y Cl

In obtaining (6.5) we have again neglected the multiple reflections

within the circular waveguide section by essentially taking the circular

waveguide to be infinitely long. Comparing (6.5) with (5.19) we find,

yN = -i WC0 (6.6)

This is not an unexpected result, since under our present approximations,

the Norton equivalent shunt admittance has the same definition as the

discontinuity admittance (from C0 ) as used in Section 5.

The total power dissipated within the coaxial line section may be
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easily calculated from:

P Re 4 (6.7)

(6.7) does not require any intricate circuit analysis, but only a know-

ledge of the Norton equivalent circuit parameters, IN  in (6.4) and YN
.in

in (6.6), and the input admittance, Y2 , of the coaxial line section.

The maximum power dissipated within the coaxial line section would occur

when a conjugate match is obtained between the source admittance and the

in Ncoaxial line section input admittance, i.e., Y 2YUnder this

conjugate match the power would be given by,

P m= 2 i (6.8)
2m 2 Gin

in in
where C2  is the real part of Y2  We immediately observe that (6.8)

22

predicts an infinitely increasing power dissipation for a conjugately

matched load as G in - 0 . This is a direct consequence of neglecting the

end admittance, Y , in the calculation of the Norton shunt admittance,
e

Y , in (6.5) with the ultimate result of Y being a pure imaginary

number. Actually had the exact form of YN been used in (6.7) the power

dissipated in the coaxial line section under conjugately matched conditions

would have been,

G in
P-jll 2 _in_2_2 (6.9)
m 2 nGI

N N
where G is the real part of YN. The maximum possible power occurs

g
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in N Nfor G = G However since G is really quite small we may confi-

dently use (6.7) and (6.8) to calculate the power in the coaxial line

in
section except for conjugately matched cases in which G2  is also quite

small.

Utilizing the Smith chart as a means of illustrating all the possible

values of input admittances (normalized to YC2 ) of the coaxial line

section, it is obvious that conjugate matching only occurs along the

constant susceptance contour I = (yN), And it can be shown

from (6.7) that the contours of constant power are circles tangent to

in N N
the point Y2: (Y ), In both cases Y is taken to be as given

in (6.6). To demonstrate this with a numerical example, we consider the

situation of a thin cylinder of length 2h = 1.30 m, which is illuminated

by a unit (El = 1.0 V/m) uniform plane wave incident at an angle

8. = 1400 with the z-axis (see Figure 1). This particular incident angle

has been shown in [11] to provide the maximum penetrating current into the

open end of the cylinder. The cylinder investigated here has a finite

outer wall thickness: outer radius b = 5.08 cm and inner radius
0

b. = 4.1275 cm and we assume the penetrating current into the circular

waveguide region to be equivalent to the infinitely thin wall case where

b = 5.08 cm. The center conductor which forms a coaxial line with the

inner radius of the larger cylinder is recessed by the distance,

E = 4.6 cm, from the open end of the larger cylinder and has a radiusw

a = 0.71374 cm. In Figure 8 are shown contours of constant power calculated

from (6.7) as a function of the normalized input admittance, Y2 /Y2

of the coaxial line section. Note, in Figure 8 we have expressed the

admittances in the form corresponding to the conventional time convention,

iWte . Thus the coaxial line section input admittances which are capacitive

, . . ,-.. . .
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CAPACITIVE SUSCEPTANCE
+jl

0 00

INDUCTIVE SUSCEPTANCE

Fig ire 8. Contours of constant power dissipated in the coaxial line
section for the system in Figuye 1 as a function of the
normalized input admittance, yin/y ,wt h aaees

2 c2'wt th paaers
1.0 v/rn, 0. 140. 00, f = 300 Mhz, 2h =1. 30 m, a = 0. 71374 cm,

h. 4.1275 cm, bo = 5.08 cm, and Zw = 4.6 cm.

1 0



40

in nature are in the upper half of the chart. And input admittances which

are inductive are in the lower half of the chart. Along the constant

susceptance (normalized) curve B = -wC0/Y = -0.068 in Figure 8, the power

dissipated in the coaxial line is seen to increase for decreasing values of

conductance. In Figure 9, the power dissipated in the conjugately matched

load of Figure 8 as calculated from (6.8) is shown as a function of the

input conductance of the coaxial line section. The power increases indefinitely

as the coaxial line input conductance is made smaller and smaller. As

previously mentioned, this is the direct result of assuming the circular

wavguide to be infinitely long for the determination of the equivalent Norton

shunt admittance. In realistic terms, however, the circular waveguide section

is finite in length and terminated by the open end of the cylinder. Radiation

from the open end would produce a real component in the equivalent Norton

shunt admittance and thus limit the maximum power that could be dissipated

within the coaxial line section. The maximum possible power would then be

given by

P = (6.10)
m 8GN

where GN is the real part of equivalent Norton shunt admittance. Further

work will show this maximum possible power to be independent of the length

of the circular waveguide (i.e., the recession of the inner conductor).

Although for deeper recessions of the inner conductor, conjugately matched

conditions become increasingly difficult to obtain.
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7. Conclusions

Through the independent characterizations of the various elements

comprising the finite coaxial line (with recessed inner conductor and load)

illuminated by a uniform plane wave (Figure 1), we have constructed a simple

equivalent circuit representation to yield the total power dissipated within

the coaxial line section. Under the mild restriction that the inner

conductor be recessed at least one outer cylinder radius, the power dissipated

within the coaxial line section under most situations will be quite small

compared to the maximum possible power dissipation. Iligher power levels

become increasingly difficult to obtain due to the more exacting specifica-

tions for a conjugately matched situation. The maximum possible power is

limited by the real part of the equivalent Norton shunt admittance, which is

the admittance as viewed from the coaxial line side of the circular-to-coaxial

transition circular waveguide section terminated by the open end.

'I o
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Appendix A. Factorization of M(ct) and N(a)

Consider the kernel in (2.14),

0 (A.1)N(a) = -Orh

where , is given in (2.4). We wish to factorize M(() into the fort1,

N(u) = N+(a)N_(ax) (A.2)

in which N+(a) is analytic and free of zeroes in the upper half plane,

-lin(k) < !m(oJ) , and N (ax) is analytic and free of zeroes in the

lower half plane, -, < Im(ca) < lin(k), (see Figure 4). Actually N(U)

in (A.I) is characterized only by simple zeroes at a = +_ ia defined

in (3. IS) and simple poles at a = ± ibn' defined in (3.2). There are

no branch cuts or other irregularities. Since both .J0(, a ) and

are analytic functions of u, they may each be expressed in terms of

infinite products of their respective zeroes. Following Whittaker and

Watson IIc),(A.1) may be expressed in terms of the infinite product,

N~a) = an)~ lyan)Na N(A.3)
n=0 1+ i 01

'Y In) 'Ybn)

where,

N oa) (A.4)
= Jo(kb)

'1 IIII'
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After the introduction of a couple of exponential factors in the infinite

product (which provide convergent individual products but cancel in (A.3)),

we may factorize (A.3) into the form of (A.2) where,

o 1 + a exp -i

(- 01a
N1 (a N I =B e(A.5)

n ~ n= I'A+xp

and Nt) as a simla faNtior nj e Ka t () is rep.aced by (-A)in

all terms.

To speed the convergence of (A.5) we follow the procedure of

Olson [17y , which utilizes the relationship from Mittra and Lee [141,

An + A (A.)A n + (nX B) - B e(A6

A A J
where F(x) is the gamma function and y 0.5772156... Choosing the

appropriate values of A and B in each product term of (A.5) and (A.6) and

incorporating (A.7) with these respective values in (A.5) and (A.6) results

in very quickly convergent infinite product expressions for N +(ai) and

N- (ai). For the former we have,

OL

r( + 0' Y()
N(z) = N CX [-iy. V)] (- 4 (A.7)

= IT r(3~ - = 0+.1) i+'bn A7

whr v ab n (0) andbn

weev=ab an ()adyo are the asymptotic forms as n -

of Y an in (3.18) and Ybn in (3.2), respectively, and are given by,

Y(0) (n 14 y(0) (n 1/4) (A.8)
Yan - a ; bbn
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Next consider the kernel, M((x), in (2. 14),

f~~ l ( )~ = I . l C ' : ) Y l C b J l .' .b) ) Y r a f 1  ( A . 9 1

We wish to factorize N(oh) into the forlm,

M (0t) = M+ (a) M (00 (A. 10)

in which IN+ (ro) and NI -(u) arc analytic and free of zeroes in the upper+-

and lower half planes, respectively. Sin-ce Nj(I ) in (A.9) is an

analytic function of , possessing only simple zeroes at a = iYcm

defined in (3.8), we may follow he s.me steps that led to (A.11) for

N+ (). And we get,

I+

b (1 _ V
I~(U) M Mcxp{ jy TT-~(-) mil co

whe re,

S (k)Y(kb) 0 (kh)Y(ka) (A. 12)

id,

MR (A. 13)
t - (h-a)

Y (0) is the asymptotic form of in (3.8) as n -o We also find
cm cm

that M(,x) is of the same form as M+(() in (A.l(6) except (a) is replaced

by (-ot)



'The introduction of colmplementary entire funictions into N +(t) and

N (a) (i.e., these functions cancel in the product N(a) = N+ ((t)N _ (ex

does not alter the regions of analyticity of the respective factors. The

same al)pI eS to the factors M+ (,x) and NI () . Thus ill order to obtain
+l

the desired algebraic asymptotic behavior of the product Ml + N( 0 aS

II . i the UlpplC," half plane, we may introduce the entire functions

exp{-i 1-Y(l-v) + v9n (v) 11 and exp{-i '-- (I-vfl + Zn(l-v) I into

N , ) and M (a ) , respect ively. The reciprocals of these functions are

introduced into the respective mims functions also, so that the original

kernels, N (x ) and M (x) , are st ill obta i ned from the product of thei r

respective pilus and mi nuis factors. With the above modification, we get

the final forms of the plus factors,

A, I +

{d - ian bnN. 0 N. v CX ,1 _.. - V 1 V (A. 11)

II) =i ] +- ~ (+ ,

an

and

M+(xlh = NIoeXp{-i - )Zn (l-)} - Icm (A. I5)

+ 01 'b mI-V l + O

The corresponding minus factors are similar in form to the plus factors

except It) is replaced by (-ot) throughout, i.e.,
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N_ (x) N +(-) (A. 16)

and

M ) (- ) (A. 17)

The desired algebraic asymptotic behavior of the product M + (a N+ ((X

is given hy,

M + (t)N ) a 1/2 . as I,% j in the upper half plane (A.181

It is worthwhile to ment ion that N + s an analytic function of

rx even in the lower half plane except at the poles located at I = -1n-1n

n=1,2,,... And [N (a)I is also an analytic function of ax in the

lower half plane except at the poles located at ui = -iy U , . = 1,2, 3,...
-1

Thus evaluating N+ (u) or IN+(c)I in the lower half plane poses no real

difficulties. E'ven evaluating a plus factor at one of the fore-mentioned

poles does not yield an unphysical result in the solutions for the current.

This situation is discussed in Appendix B. Similar arguments apply to the

evaluation of M (u) and [M_(x) in the lower half plane.

Finally, when using (A.14) to obtain N+(o.) or (A.15) to find N+(cO,

it is necessary to compute (depending on the magnitude of a) only a limited

number of products. This is due to the rapidly convergent nature of the

infinite products in both (A.14) and (A.15).

I-I

I.
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jp1endix t lhe 'e) -Coupled' Modes

In the calcIIlat ion of the residue terms for the integrals in (4.19)

re-ultini in the expressions for Ih(z); (4.20) for z-() and (4.21) for

_.) , We have impIlic itly :assumed (and correctly so) that the poles of the

inte .i rands ,erc not coincident, i.e., the)' were all separate first order

poles. ih, I eAids to the observ;ition l tlhe questionahl)e terms:

i) - -YM) i n 11. 20 ) and LC1 - Y N )  in (4.21), which seemingly

make the current "hlm, up" it 1 cNI and p cru p N ' respectively.

lForttnatel , this does not happen since the terms M1+(-i\ bnI and M+ (- I

are zero at , clM and 7 l N * Actual ly hoth of' the above situa -

t ions wi II occur at the same t ime, that is, Ishenever a :ero (p or IN

of J 0(x) coincides with a zero We,. or pnI of [.)(vX)Yo{X)-J ((X)Y() J.

We denote these coincident zeroes as p l = and pq Pep I which

differ only in their individual relationships to the incident (capital

letters in subscript, I' and Q) and scattered (lower case letters in sub -

scri pt, p and q) modcs.

ilie expressions for I (z) in Section 4, (4.2)) for zd() and (4.21)

for z I , are perfectly valid in the "we) I-coupl)ed" mode case i f the

fo lIowi ig I imi ts a)re observed,

I i, I

li t ,l ( i bq -. __.1)- Ycl---- -21 -I1 It( . I

P 2y - 1+ icl' ) ( i y ) p,2 . ( i IN(i I
c ' -Ycl' c cI' q bq)  hq

SI imi la r I

.

I m \ - h- " ! 'h IYh

II Hl (_ f -l b Q ~ imHI\1+~ ii NC I i CHI N +( 'ib L\'7  B 2)

( Ii. I anid IV. -1 contam i n thle termis ,--

-~ ~ ims LAW 1
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O l ir NI. P= l .I (p C , I o - (P bq) 1.:Noci" i " £VI,=Is Yh (B."31

and

1 N/ci) = v 1~J hQ.

S.1 ( .I

Ca. I C])= { e 1 Q(PbQ

The subst i tit ion of tile limits in (B. I) through (1. 1) into .1.20) and

(4.21) whenever co inc ident zeroes occur will yield t he correct result for

I (zI in the "well-coupled" mode case.

Mathematically these "well-coupled" modes occur thenevcr an ei genvalue

(tiy or .iy bQ of the circular waveguide corresponds exactly to an

eigenvalue (±iy or ±iy ) of the coaxial waveguide. Physically the
cm CNM

"well-coupled" modes amount to a circular waveguide mode (either incident

from z<O or scattered due to the coaxial source for :41) having a zero

z-directed electric field at p=a (the center conductors radial position).

"he particular "well-coupled" circuilar and coaxial wavegouide modes then

match fairly well, although not exactly, at the transition at z=( . We

note that there is nothing discont i nuol1 in the ''well -coiipiled" mode pro-

cess and the closely matched situation hetween the circular and coaxial

waveguide modes is approached from both sides of the "well-coupled" con-

dition. The lowest order modes for which this effect may he observed

are the circular 1IM 02 and the coaxial TM0 1 modes. In this situation,

=.' ' ...1he coaxial Tm (or TLM) mode, however, ill never

he "well-coupled" to aliy of the circular waveguide modes.

a-- ' , -




