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(, 1. INTRODUCTION
:: -
i During the last 30 months, our technical work consisted of providing
;ﬁ ' RADC scientists with mathematical and programming support in the following
j areas: magnetostatic wave transducer analysis; antenna analysis and design
o
td studies; conversion, implementation, and execution of ionospheric propaga-
\ tion programs; radar data analysis; electromagnetic scattering from rough
'ﬁ terrains, etc. This work resulted in the development of mathematical models
.ﬁ and computer programs. When desired, we functioned in a collaborative manner
}: to assist with the physical formulation of problems of interest. This report
S presents a representative selection of our efforts.
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2. MSSW Transducer Analysis

2.1 Introduction

The development of mathematical models for describing the response fea-
tures of magnetostatic surface wave (MSSW) devices has been of considerable
interest to the Air Force. Despite previous successes at predicting the
behavior of transducers lifted off a YIG substrate, the models have proved
to be inadequate for describing, with sufficient accuracy, the response of
multi-element transducer arrays very near or on a magnetically biased YIG
slab. Strong coupling effects appear to become important in these situa-
tions. Our efforts during this contract were aimed at developing models

for predicting transducer characteristics under strong coupling conditioms.

In keeping with the initiator's objectives, a sequence of investiga-
tions was undertaken to develop current density models for multi-element
arrays on or near a YIG slab. The first study entailed determining current
density over mutually coupled conducting strips near a ground plane; no
YIG material being present to influence the distributions. The Fourier
transforms of the resulting current profiles were incorporated into the
Weinberg programs [Ref. 1] for prediccing, among other things, transducer
insertion loss. The details of the analysis as well as the results have
been previously described in Ref. 2. The current distributions did not
lead to some of the insertion loss features that appear experimentally.
Even when replacing the ground plane with a highly permeable (u + «)
magnetic half-space, the insertion loss predictions did not improve.

From the investigations it was concluded that mutual coupling among the
strips and ground plane (or magnetic half-space) does not by itself appear
to be the key mechanism for causing some of the dominant response features

observed in the surface wave passband.
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The results noted above led us to several Green's function analyses.
By posing (and solving) a sufficiently well modeled boundary-value problem
describing the field about a time-harmonic line current source near a YIG
slab, in principle one can obtain the current density on a planar array
of infinitely long, thin, perfectly conducting strips on or near a ferrite
slab. The current density on each strip can be thought of as arising from
a continuum of line currents. Obtaining the Green's function, or total in-
fluence function, of the magnetically biased slab on the vector potential
field about the line source became the focus of most of the work to be re-

ported in this section.

2.2 Transducer Green's Function Analysis - Introduction

The geometry of MSSW transducers is often such that source and field
quantities can be assumed to vary much more strongly with x and y than
z. A two-dimensional field theory approximation was, therefore, invoked
for determining the Green's function of an array between a ground plane and
YIG slab. (See Fig. 2.1.) The strips were also assumed to be sufficiently
close to the YIG and each other so that

o< kR <«<1; o

kl is the electromagnetic wave number in the medium (GGG) above and below
the YIG, and R is the distance from any line current element on a strip
to any field point of interest. Field points on nearby strips or on the
nearest regions of the YIG slab surfaces are most important regarding mutual
coupling and generation of MSSWs. It was assumed, therefore, that all field
points required for a current density analysis were located in the quasi-
static zone of the rf field of the line currents. At frequencies between
2.5 - 3.5 Ghz, this assumption appears to be reasonable for typical MSSW

arrays composed of a few strip elements.

2.3 Derivation of Two-Dimensional Field Equations

The two-dimensional approximation discussed above leads to a consider-

able simplification of the analysis. Maxwell's equations must be satisfied
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in the 3 regions as must the boundary conditions at the surfaces y = (D+d),

y =0, and y = -h. With
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and (8 ) becomes

VA -TA =T ven B

Inserting the expression for E(l) into the above gives

V(7-8")-

Applying the Lorentz condition:

G
Y. A(D + é‘,/u, Q—-? =0 - an

leaves

®

V’.A 'é%‘o S = "/a J (18)

Similarly, for region (3):
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A
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For region (2), since

The desired guage requires the condition

AT A7) e p e F(347) =0,
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5 A, = Ae,-‘wt (27)

and

~<ot

™ L=- Je (28)

the exact, linearized wave equations governing the vector potential fields in

Ll - .

the 3 regions reduce to
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Expanding the wave equations in Cartesian components leads to the féllowing
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equations for a line current at x = 0, y = d:
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A + A, t €T A= - feL Seey Sw-y (32)

® ® A o
Au + Ayyos /u-————-’?w A =0, @33

A%t + A% + po€3 A® =0 . (34)

As noted earlier, the current on any strip can be expressed as a continu-
ous density of line currents. It follows that the total vector potential for
a strip can be regarded as a superposition of the vector potentials caused by
a weighted density of line currents. The.vector potential for a single line
current, i.e., the Green's function of the system, can be found by solving
the system of wave equations subject to the boundary conditions. The Green's
function, G, is proportional to the vector potential and contains all of the
influences that affect the current densities. The boundary conditions that

A (or G) must satisfy will now be derived.

Since
)
gxe=3A,—j.A,‘_, (35)

it follows that

t!@ - @ = /""/‘ & (36)




withm=1,3 for regions 1 and 3. For the slab region

1®

H® - _|_ /-l & (37)
— o /=
/s -A,
Y - A., A, s+ A,
|
= =, (38)
, -—
ST W _
Lé Ar - b A“
The boundary conditions at the ground plane and YIG surfaces may be summar-
ized as follows:
(0]
B, =0 ot  y=Ded ; (39)
‘B? = EE and (40)
(0] @
He= HD &t veo | @)

s .
2 -5 and (42)
H? T, N (43)

Using the relationships among B, H and A, the boundary conditions may be

written in terms of the A@ alone:

®
ot ys Dd A, o (44)

®
at Y=o Ax = A,‘ (45)
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The propagation constants for the 3 regions are given by equations (29-31):

kl‘. = /I°€| L"’.

P

k: '=/tla €. w‘/f

and

k: 2/“0 63 LO‘.

At frequencies within the surface wave passband, k? is negative and is
2

denoted by k: = -k:. In the quasi-magnetostatic approximation the wave
equations are approximated by

® ®
Axx + AN = "/UoI gln g(r—-.«) 5
Ao

A@,.,+ AC:? &0 .

This is equivalent to neglecting the displacement current,

©
A,., x O

i.e., radiation
term, in the curl H equation for each region.
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2.4 Extended MSW Analysis

We found that it was important to retain the term involving (k: A®)
for the YIG region. That term has very little effect on the MSW's wave-
number over most of the surface wave band; however, it introduces a long
period surface wave in addition to the MSSW and other important effects.
The extended quasi-magnetostatic surface wave equations way thus be sum-

marized as follows:

o @
Ag‘ + Ayy ~ -/U.I Q‘i) S‘Y"d) by (55)

@ ® ® .
A“ + A” - k: A =0 3 (56)

@ ®
A’“‘ + A"' ®=O. (57)

Upon solution, B and E follow from (2,14) and similar formulas for the other
regions: since V¢ = -g% fz = 0 in a pure, two-dimensional formulation where

there is no z-variation, ¢ is not required in the expression for E.

The solutions for each region that satisfy the extended MSW equations
may be written as:
G oQ

(G) : ch — ikl
Q-:-.(/"A:I/“)z /Z[xuu-as‘] +|dk e &[3.8 ’

(58)

+Bzemv]

0
chx TIXTS -y v
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& A® kx (r+ k)R

a = ~ dh e‘ :D e o | (60)

l,a.::/4vr)

For region @, the direct field due to the line source alone has been
separated out of the general solution, i.e., the unbounded Green's function

term

.
,4,—,?—)2. Lx*+ (v-4y]"

(61)

il S O

All potentials are then made dimensionless by dividing out the factor (uOI/lnr)
for convenience. The normalized vector potential or Green's function for
each region is to be found for a line source at (o0,d). The |k| - factors
in the expressions for A® and A@ are rigorously correct only for pure

static fields. The implications for a quasistatic analysis become apparent

shortly. Also, while the Green's function for a quasistatic’line source

varies as

/L kc'R (XJY‘J)
l ko + A'Rlx,-v--l) ,

the term 2n k, may be dropped now (or later) because all the boundary con-

(62)

ditions involve spatial derivatives in x and y. The vector potentials
are thus arbitrary to within a constant level of potential. Bl’ BZ’ Cl,

Cz, and D, are all, as yet, unknown functions of k. Inserting the solu-

1
tions into the boundary conditions, and solving for the unknown spectral

amplitudes, we arrived at the following expression for a® in the
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important limiting case for D= :

0
a®= ,Z [x*+ (v-dy* 1] +§dh e“w;:(h)

< 2 (x)
(63)
oo
a(l)
+E"Cc§dk e _
o Rkl B(k)
wvhere
o(k) = chx - IRl1Cr+d), (64)
-l . - a
3—(” = |kl [L - (l=C €& ssn(0)) '], 5
2 IRl B
and |
Sz [+ £ @)+ 81 ] 66)

+ 2T k] Vess cd(k\)h‘“'} ).

One of the findings of the extended MSW formulation was that U—(k) possesses

zeros at

k=t h’ and (67)
k=t Ry . (68)
14
< aratan
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The poles of the integrands at =*k, are very near the origin and lead to

very long period surface waves. Earlier MSSW analyses do not reveal such

poles because of their simpler characteristic equation; naﬁely,

,Z—«é(h‘) =0 = ("”é“'" I‘) +25 C&d(’k/‘!). (69)

k. > o

The poles near the origin are located to an excellent approximation at

k.zi'é_lill:,h. (70)

Gerson and Nadan [Ref. 3 ] report other "dynamic" modes in their plane wave
analysis involving the exact set of Maxwell's equations. A comparison be-
tveen their results and ours in this regard is by necessity incomplete as

of this writing.

The problem that remains for determining the Green's function is the
evaluation of the two Fourier integrals shown in (g3 ). They contain the
effect of the YIG on the total vector potential and are denoted by

o
o ot(k)
am= gdk e Jl| G (k)
- D (k)
eD (71)
- k)
+ Ew)gdh 80“ .
—0 Ikt B(k)

-2 -
Since b k: = J(o), and taking into account that with an exp(-iwt) varia-

tion fields propagating in the * x directions correspond to exp(*ikx),
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we can express d?IG as follows:

00
ck kI (YH)
O.G) = S’cUL ez i e kR 3+

° | B(k)

b4

oD
ek _jRl(YH)
+ §Ak e’ e 215 (72)
(]

t————

Ikl B(x)
z A,

d + is to be evaluated for a field point at +x and source point at x=0;
d_ for the field point at -x and source at x=0. For a low loss YIG
slab, E (k) possesses zeros at k = * k_, :kHSSW’ none of which are at the
origin; all of which are very near the real k axis.

The 2n_d integral in particular requires special treatment as will now

be discussed. Note that it is equal to

od
sckx _pord) - B
faw &7 em B |
o | el B
oD (73)
. i‘.hx _‘L(Y""‘)
+ é, .‘.dk e e
- -
c Ik |

The l-g'i part is non-singular at k=0, and the ZE‘- may be related to the

Exponential integral of complex argument. Let k = egev. It follows that

o o
-
«*aTaTea R
..........
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For g~+o,

Eoar— -3 - Lz + oo

i

- Ye ..,4 E - ﬁ(x‘ﬂy«u‘ e

-Ye - ,Z € (v+4cd =i1xl) 4200

+.- L3

LD (S )

gfg"’ ial { y
uniform Terms

z_,Z‘[x 4+ (v4d Y] +Lfﬂ«<IX| )“'"')

(74) |

(75)

(76)

an

(78)

(79)

(80)
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with Yg = Euler's constant. Since spatially uniform terms, however large or

oA

small, contribute nothing of physical consequence to the vector potential,

o

Y

such terms may be discarded. Collecting physically meaningful terms leads
to

S e
e

v

—_ -] (81)

For an analysis based on the exact equations (32-34) and €; = €, ]kl
would be replaced by v k2 - k:. In the quasistatic approximation, one must

think in terms of propagating fields with

ow— Lo Vik = Lo Veme’ » Jkle- (82)

k.o E2o

hence the need for the limiting process in ( 73 ). For a pure static analysis,

k, = 0 identically. No resolution into separate propagating fields in either
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the +x or -x direction is to be made in this case. One encounters,

rigorously, an integral of the form

)
chx _ rl(y+d)

ScUZ. e e (83)

- lle|

that holds for all x and y and whose "value", in the sense of generalized

functions, is given by

= A Ler oray] + Contt

See Lighthill [Ref. 5 ]. Assembling terms and making the following change

of variables, the integrals comprising a’YI are then ready for evalua-

tion. Let ‘
k, = Russw, (85)
U = hkh, a-d (86)
g = Ly+d -i1x13/h (87)
=k”[yg-£lil]/(‘tn’*3 (88)

= [@g-:i1%\] [Onm . (89)
The total vector potential becomes

©

Q

,Z [x*+ (v-4)*) + Q. (90)

where o rt
(o
Yo Uss g.—')' - |
Q, =JdV e — + B
T e B (V) ®)
- (s1)
- X
I X 2 : . ' ( _ )
zZ[X sy +dr] a¢ e g/,
19
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with
N
~ e L G -
[u B(u)z oy 4 v2(1+e+3 )-rZLUJU"—H); Cgﬂ(\}()'{»b’;) (92)
A . P
e
N and -— _a A a
m B(o) b = L (ksh), (93)
1::.-"
2.5 Evaluation of at '
"\‘ A direct numerical evaluation of (¢, was accomplished using the methods
_::f::: of Real Axis Integration [Refs. 6,7]. For a nearly lossless medium there are
- 2 poles along the path of integration which is infinitesimally near the real
il U-axis. The pole locations are at
.\'_:*-
N LTt
U= U, =23 )b1U; (94)
S
. and
L O = Un= kuh, 53
where U=kh, U, = k,h, and Us = ksh. To evaluate the one-sided Fourier inte-
:-;\ grals in the sense of Cauchy Principal-Value, the semi-infinite range (o0, ®)
Y
:‘:.': is partitioned into the ranges (0,2U,) and (2 U,»®). The two poles are
- )‘ .
S, located in the first interval and satisfy the relationship
AN
e 2V (96)
.\' e
-
The problem reduced to the evaluation of
)
o b = -1
S =30 g C‘ -F0 Uzt Bv)
) = = +
dV e (o) = Ve (o) S) (97)
]
]
SUQ‘ Q
.::. _,Ug‘ A -3V ¢0)
73 = Ydv e (vy +\cv e . (98)
Ll
.~ ‘

o 20U
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2.6 Integration Over the Interval (O,ZUM)

The singularities at Uo and Uk were analytically removed from the 1

integrand, and their contributions added back into the final answer separately,

viz.,
PV -7V [ Lo  Cnm ]
do ™ g = Ja0 & [ &, - £ 1
o o
 aum (99)
-0 ._C_.——- _S_A__—-—
+ 1du e U-U, ¥ 0 —0m | j
o

The 29-g integral, although singular, is easily evaluated; the 12t integral is

now non-singular. To determine C° and CM' express f(u) as

g(u) = ﬂ_(u) > (100
D)

where n(u) is a numerator function.

Then, as u+u |

Co
oo (101)

or

It follows that
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C, = é: (v =Uo) NCY) (103)

Q> Uo 9‘ v)
(U-Ue) N(V)
- v — =7 _ T - (104)
VY Buey +(u-u)Dlua+ ‘.._—-—-"1:""” BD(voy +-- -
N L)
— (105)
ptve)
since 5(110) = () at the pole. Similarly,
(Un
Cu = n ) (106)
M - 4 o
2 (vn)
A 32-point Gauss quadrature evaluation of the nonsingular integral
b XU)%
dv e (V3= Gove ~ v-Ua (107)
o
compared well with 64-point Gauss quadrature evaluation in the sense that
discrepancies between the two appeared at the 1(}1:—tl significant digit. It
proved crucial to evaluate Co and CM using analytical expressions for
D°(U). Finite difference approximations gave poor results. The evaluation
of the singular integrals must now be considered.
One can express the 15E  of the singular integrals as follows:
_fu C -Yu. CO d _]’U CO
e —— dv e _ ~Ue * (108)
X U-Ve v-Ue vve
o o 20,

Taking into account that |YU°|<< 1 for any conceivable transducer, and

letting W = P—U;&'- , one is led to the excellent approximation that
p LE Y
(a4 eos @
dve —- = Ce (7%) + (109)

o
22
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For the 222 integral,

(20, ~ Uo)/U,

20U
-V _v0. (1+M)
Sdu e . - C. de e (110)
O - UQ w
a2y, !

_ Co e.‘},UoiE‘ [.'9”‘] - E. [f(iU,-Uo)]} e (111)

Collecting terms one finally arrives at

Py -?7%
de 70 C° = C’ {-2900 + E :L9U°] - E' [1(20”‘ UO)]}e ¢ (112)

e UV -Us

The other singular integral was cast into the form
1

22Uy ) 90 & YU W
Jo € —““C'b =Cue ",Jw%‘ > )
o UV=0Un -

which was easily and accurately evaluated using an e#en—point Gauss yuadrature.

This completes the evaluation of the integral
:-oﬂ

-YyU
Sdu e -S:(u). (114)

o

2.7 Integration Over the Semi-infinite Interval (2U,,x)

For a line current residing on the YIG film, the integrand can fall off
as slowly as 1/U for large U. We therefore "subtracted off" the asymptotic

behavior of the integrand and then "added" its effect back into the final
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answer as shown:

D

o0 o YU :
-3V "yu 4 - &do e‘
do e wy = \du e C&or+ “] ] (115)
2V, 2U, V) 2 U
w .
- &c’u e 9y - E, L20a7] (116)
2AUp "
«° JU v
= Xdu e [%“’"Z}“’] * J‘l" e %Y am
AU, 22U

-E L2071 .

s;w(U) is an asymptotic form of E? (U) and its use as indicated above speeds

the convergence of the integral. Since

gy = Loy + & (118)
= Y% _Sf_‘f.’.- (119)

3w bt o Bw
it follows, after some algebra, that
4 ié(a)()'ﬁ] 53‘4
FLe) = [U?: 60 (120)
U* - Eo B
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where

Iuﬁlf“'f’“

-

E.=(1-151)181Vs (121)

) r3
.
200,00,

)
-
Fd

and

‘l..l'
PV A g

B, = C 1+ &+ 1 +2E8). (122)

7y

Y

AR

g
Pl

\ It can be seen that g}m(ﬂ) is expandable in partial fractions and that one
S is led to

g P Ju -7h
< SC(U e g.w=F E.[27v4] +F e E, [1(oa-F)1 (23

20U,

XN

5
+ e E [Yant )]

J‘.l. .
R A

*

where

F=-8w/Es (124)

-t -]
F. = { Lz’-’- Qo + s") Eab J . (125)

F, - VE. &2 . | (126)

3,

,.

?bﬁk?

I

and

l ’ ‘ ":"-:';\’c."-.'

2.8 Half-Period Integration

s ey
« ‘\’_\' :.':\ R

The only integral remaining to be evaluated is

-,

0
T = &JU e-fu l’_ca.(u)-qp(u) _S. (127)

2V,

1 [ ,\I_xf:'f_*.“_. f{ t' ! L

QD (v) = GV = Yptv) (128)
v = So/li/vnl + 20, (129)
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and replace y with (B - il§|)/UM in the integral.
This leads to

ol g '
I- ('J:‘ e-x(l3~cl"|) 3330 e 1% e Q[u(&")] (130)
o

The procedure adopted for its evaluation was to integrate over N half-periods
of the sine and cosine functions integrals separately. 4 sets of partial sums

were thus obtained:

od

. left half-period integrations
SJT(A‘.?)Q«- = { , (131)
o

right half-period integrations

and

o0
left half-period integrations

2.) SJ?(ca‘-!)Qm = (132)

right half-period integrations

Each sequence of partial sums was then extrapolated to N-+® using a Shank's
transformation [Ref. 9 ]. A modified Shank's transformation, was actually
implemented [Ref. 10] but it did not do better than the simpler version.

With .

P = +Cn-n)m - (133)
o O ¢ T a~d ﬂ”a‘)"':”

it follows that

T =0, @E) S L[9+("""']
i—ﬁe G Z: ‘!de e 121

(134)

ce Lo+ ta-i] Qlv (Fo3) ]

showing that each term in the partial sum involves a half-period. For the

actual computations over each half cycle, it was useful to let O = ; (t + 1)
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I - ¢ ‘.’_‘ e ( ! >
n=1t (135)
Q [ome]
where
U= \x'/u.. Y_rw—-._({-—')] +2Un - e

Each integral was calculated using 32-point Gauss quadrature. The total
expression for a is thus given by

-t %)
a /é[x Y(v-4)’]-% AP G (5=
+C,e’yu‘{‘,“"’° +Elye] -E,[(z0.-v.)] g

(137) ,.
20, 5

RN | _yuw _3v G " Cu 1
+Cne ﬂfclw g;.’_. -+ Sd\) e [ VIt 50,

o

+(F-1)E [29u.]+E {éﬁf'[?(am-ﬁ)_] +€i§fn RACA *5)]1

No® - ' -
_Zb’Up‘ A= _.E.(-u\-l) La -3 %lt
+HTlxe Z(--) em™ Xéte e M Q.
. = -
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2.9 Results and Discussion

—

The quantity a9 , the normalized Green's function, was programmed and

t
PR )

Y put through a series of tests. As Fig. 2.3-2.21 shows, the Green's function
has real and imaginary parts as depicted by solid and dashed lines respectively.

The real and imaginary components are off by a physically irrelevant complex

ntctonthuade S s o

constant in the figure. The amplitude in the -x direction is larger than
in the +x direction, as would be expected based on the direction of H, x n.

See Fig. 2-1 and [Ref. 8]. Furthermore, the *x amplitudes are not uniform.

S bl e

From the tests we were able to perform, this does not appear to be numerical
error: there seems to be a small, spatially dependent transient near the-

line source at the origin. At large distances from the source, harmonic surface

WOTE 1L ENE e

waves dominate; very near the source, as seen in Fig. 2.2, there is a logarithmic
variation in the field, as well as discontinuity at the source; and between the )

two extremes a region of transitiom.

For distances of 150 microns or less from the source, and using the
same parameters noted earlier, the integral I in (127) was found to be
negligible. At considerably larger distances the half-period integratioms

and gxtrapolations become important: the algorithm showed convergence to

9 or 10 significant digits at distances of about A!‘ or less; whereas, at

3 AH 6-8 significant digits were obtained for I at several frequencies.

1
)
A

For large distances, pure harmonic surface waves of the form

(LR ixl -t -vs] !

S: (138)

strongly dominate the Green's function.

The usefulness of the Green's function for calculating the surface cur-

AU Phe SN I R B

rent distributions on one or more strips depends to a large measure on the

LR 38 T4 J008 F AT T RTINS, SN, X COR S L D SRR EEVARYE, X,




A

time, i.e., expense, of its computation. For a given frequency and a given
distance (positive or negative) of the field point from the line source, it
took less than 0.15 seconds to evaluate the Green's function. Additional
programming refinements and/or a loosening of some of the accuracy tolerances
would reduce the computation time even further; however, the program appears
to be a useful tool in its present form especially when used in conjunction
with a cubic spline interpolation code. The next stage of work is to imple-
ment the Green's function for obtaining the current density on a strip re-
siding on the YIG. This involves inverting an integral equation, and is in

progress.
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3. MODESEARCH and FASTMC Program Conversions and Implementations

MODESEARCH and FASTMC are a tandem set of computer programs written
in the UNIVAC version of ASCII FORTRAN. ARCON successfully converted these
programs for use on the CDC 6600 computer. A full description of the pro-

grams, including the theoretical background, may be found in References [1,2].

The MODESEARCH program is guided by control cards which allow the user
to specify ionospheric profiles and ionospheric collison frequency profiles.
The FORTRAN NAMELIST definition is used to enter other specifications, e.g..
the geomagnetic field, the ground conditions, the distance of this slab
from the transmitter. [See Appendix I}

Various output options are available. The FASTMC-compatible output is
a card image file, in which the first card identifies the slab conditions.
It is followed by the mode constants, two cards per mode, ending with a
blank card. Appendix I illustrates a typical stream of control code, input

data and output data.

FASTMC implements a mode-summing technique which calculates field
strength at user-specified transmitter and receiver altitudes. [See Ap-
pendix II for control cards and sample input/output data]. Output optionms

include the vertical and horizontal components of the amplitude and the cor-

responding distance from the transmitter, the results of which may be printed
or plotted. In this instance, plots were obtained by using the TEKTRONIX

Graphics Terminal (off-line mode) and its Hard Copy unit. [See Appendix III Ej
for examples of plots]. ' G
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o APPENDIX I

<TOP OF FILE>.
HOLST,T3#9,CH120808, 3334 HOLST
_ ATTACH,XX,HODESEARCH, ID=HOLST.
L FINS(I=XX,L=8)
REQUEST, TAPE1,sPF.
Lsno )
CATALOG,TAPET ,NOPESEARCHOUTPUT,1D=HOLST,HR=1.
RETURN,XX,LGO, TAPE1.
EOR

o NANE
e IDATUM

. AZIN=283.8, CODIP=21.4, NAGFLD=5.44E-5,

EPSR=16.8, SIGMA=16.9E-3,

BETA=8.5, SCLHTS=4.9, ENNIN=6.1, HPRINE=87.9,
- FREQ=23.8, RHO=#.8, REFLHT=50.8,
= RANGER=78.6,87.6, RANGEI=9.4,-1.8,
- END
L, QuIT
<BOTTOM OF FILED

s

e

P

4
abaeti s 4

H \- {
-
a . 4
{
. <TOP OF FILE>
- R 0.008 F 23.0000 A 283.009 C 21.0808 N .S44E-94 S 1.906E-02 E 18.8 T 87.8
o 1 89.91283 -6.582712-3.33252194E-95-2.37283889E-4-1.29396632E-89-1.55444857E-19
.. 2 89.91283 -6.582712-4.13869031E-87-3.78898638E-07 9.98872854E-91 6.71432292E-62
L -. 1 89.74584 -5.585621 5.58719615E-94-4.78885872E-03-6.42842801E-19-5.42580297E-11 i
2 89.74584 -5.505621 1.16726717E-86 1.33227612E-06 9.88844736E-81 6.61828827E-92
A 1 87.88375 =-.913771-5.32683379E-83-2.38771489E-02-4.32628737E-09-3.35977677E-09
o 2 87.88375 -.913771-6.4827541BE-$4-9.45516889E-F6 9.85849639E-91 4.38126194E-92 ;
“h 1 85.91288 -.378342 4.24848636E-83-8.759208736E-93-2.23193224E-08 2.38319225E-69 b
o 2 85.91208 -.370342 8.94973443E-P4 1.19811255E-65 9.8347423BE-91 6.3¢287850E-92 !
N 1 81.32118 -.445981-5.66746234E-23-1.91768894E-02-2.37875989E-98-1.73385229E-98 I
= 2 81.32118 -.445981-1.47369354E-85-1.96120402E-05 9.76634392E-41 5.82415272E-92
i 1 80.16598 -.383952 5.81933423E-03-9.44696655E-03-6.33511688E-08 1.68567308E-68 f
o 2 88.10598 -.393952 1.67737623E-05 2.14987653E-85 9.73579686E-01 5.67294411E-82 ]
- 1 76.27959 ~-.359472-7.38935438E-03-1.01423447E-02-1.01874771E-87-5.39628850E-08
o 2 76.27959 -.359672-2.97935702E-05-2.46164992E-95 9.61396854E-81 4.85786981E-092 b
- 1 75.23789 -.451541 7.98421382E-83-1.59733251E-082-7.39162415€-98 5.24671924E-08
A 2 75.23709 -.451541 3.18594953E-85 2.59897426E-05 9.5731684E-01 4.52424947E-82
4; 1 71.59467 -.281662-5.24635889E-03-3.32464239E-83-2.50195109E-97-6.83767735E-08 ‘
- 2 71.59467 -.281662-3.51979908BE-85-1.60890849E-05 9.37188159€-91 3.21784217E-02 ]
& }
- <BOTTON OF FILED ~
<
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APPENDIX II

EDIT.
Ps

<TOP OF FILE>

HOLST,CN1£@B88,T108. 3334
ATTACH,XX,FASTHC,ID=HOLST.

FINSCI=XX,L=8)

ATTACH, TEK, TEKOFFLINE.

L IRKARY(TEK)

ATTACH, TAPES,FASTNCDATA, 1D=HOLST.
REQUEST,T48140, sPF.

L60. :

CATALOG,T4#140,FASTNCPLOT, ID=HOLST.

RETURN, TAPES.

RETURN, XX, L60.

<BOTTON OF FILED
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fn NAME
$DATUN

.‘\,

g NPRINT=1,
ot TALT=8.8,
.i\:_

RN IEND

Dath

R 0.680 F
1 8%.71283
2 8%.91283
8%.74584
89.74584
87.88375
87.88373
85.91288
85.91209
G1.32118
81.32118
89.18598
Be.18598
78.27959

X AAS
:"/‘.'n‘ ,
PP ) ’.’

S
xA

N
1

1
2
1
2
1
2
i

76.27959
75.23709
75.23709
71.59467
71.59467

R 49.

NANE
SDATUN
1CONP=2,
SEND

START

-

R 3.000 F 23.0000 A 283.086 C 21.848 N

.......

YTV LR LY 4"
RPN

APPENDIX II (continued)

<T0P OF FILE>

1CONP=1, NRCURV=2,
RALT=8.8,

ANFNIN=-_7E+02, SIZEY=7.9,

FASTAC TEST RUN

23.90080 A 283.800 C 21.908 N .S44E-94 S 1.PPPE-92 E 10.86 T 87.9
~6.562712-3.33252104E-85-2.3728388FE-04-1,29396832E-89-1.53444837E-18
~6.582712-4.13669931E-067-3.7889863BE-87 9.90672854E-981 6.71432292E-62
=3.585621 5.58719615E-04-4,.78805072E~03-6.42842881E-18~5.42588297E-11
=J3.503621 1.16728717E-86 1.33227612E-96 9.88844736E-01 6.61828827E-42
= F13771-5.32683379E-83-2.30771489E-$2-4.32628737E-€9-3.35977677E-89
~.9137721-6.48275418BE-86~9.45516889E-P6 9.85649639E-01 6.38126194E-92
=.378342 4.24848638E-83-8.75920738E-03-2.23193224E-98 2.38319225E-99
~.376342 8.94973443E-06 1.19811255E-85 9.83474238E-91 6.39287850L-42
=.445981-5.68746234E-83~1.91768894E-902-2.37875989E-88-1.73385229E~98
=.445981-1.47349354E-85~1.9612P4P2E-85 9.76634392E-81 5.82415272E-92
=.303952 5.81933423E-03-9.44696655E-83-8.33511608E-08 1.68567388E-88
. 383952 1.67737623E-85 2.14987653E-85 9.735794686E-01 5.67294411E-82
-.359672-7.38935438E-03~1.01423447E-02-1.01874771E~-87-5.39626859E-98
~.359672-2.97935702E-85~2.46164902E-85 9.61396854E-81 A.85726981E-82
~.451541 7.98421382E-03~1.59733251E~062-7.39162419E-08 5.26871924E-88
=.451541 3.18594953E-65 2.59897428E-05 9.57316904E-91 4.52494947E-02
-.281662-5.245635889E-93-3.32464239E-03-2.58195189E-97-6.83767739E-68
-.281662~3.81979888E-05-1.6PB9DBATE~BS 9.37188159E-81 3.21784217E-82

«544E-84 S 1.000E~P2 E 18.6 T 87.9

R 7.200 F 23.0808 A 283.#86 C 21.008 M .544E-04 S 1,090f-P2 E 1.8 T 87.9

<BOTTOM OF FILED
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APPENDIX III (Continued)
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4, OTH Radar Data Analysis

4.1 Introduction

The Over-the-Horizon Experimental Radar System (ERS) operated from
June 1980 to June 1981. Data from this period was made available in com-
pressed form on magnetic tapes. ARCON was requested to provide programming

support for the analysis of the data.

The purpose of this effort was to make recommendations for improving
the assessment of clutter by studying the clutter behavior. A detailed
presentation of the background and design of the analysis, with results of
the initial phase, and proposal for further work, may be found in an in-

house report [Ref. 1 ].

The discussion below will focus on the programming effort, in particular
on four programs. Each program comprises a tandem set of subprograms, the
first of which performs the required data sort. The remainder provide

options for presenting the data sort in printed displays.

1. POWERLEVEL/POWERDISPLAY
2. BINSORT/BINDISPLAY

3. SPEEDSORT/SPEEDDISPLAY
4. SPREADSORT/SPREADDISPLAY

The summary data is stored in unformatted (binary) form on magnetic tapes,
separately by season. Each data record contains a header with information such
as date and time, transmitter power, operating frequency, wave repetition fre-
quency, and.range-azimuth values. The corresponding range-azimuth array fol-
lows, in which the 32 cells for each combination represent the doppler-

shifted power return to the radar.

Figure 4-1 shows a sample record. Note that the actual ERS array element

is the negative of the printed element.
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4.2 Program POWERLEVEL

For each spectrum, the program POWERLEVEL counts the occurrence of power
above a specified value for each range-azimuth element in three doppler bin
groups. The counts are separated further by operating frequency, Kp value,

and time of day.

it dedesdenddemiaa
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[
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] ¥
00 P>-105 P>-100
The counts are separated according to

Azimuth (7 levels): 10 to 80 deg

Range (8 levels): 1380 to 3000 km

Bin group (3 levels): 7-9, 15-17, 23-25

Kp value (3 levels): 0-6, 7-15, 16-27
Frequency (3 levels): 6~11, 12-16, 17-21 Mhz
Time (3 levels): 0-8, 8-16, 16-24 UT

The sorted data is saved in a permanent file. POWERDISPLAY reads this

file and prints range-azimuth arrays for combinations of doppler group, Kp

value, frequency, and time of day. Each printed element includes the number
of counts made and the number of findings of power above the specified level.
Another display option provides data counts combined over all Kp values, all

frequencies, etc.

Figure 4-2 shows a diagram.

4.3 Program BINSORT

For each spectrum, the program BINSORT applies a filter to the ground
clutter level (bins 15-17). A count is made of the number of occurrences of
average power greater than a specified value. This count is placed in the

category Looks, separated by azimuth, range, and time (24 levels, each 1 hour).
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If the filter condition is satisfied, then the doppler shifted power average
is computed for bins 7-9 and bins 23-25, respectively. This sample is placed

in one of the categories

1. Approach
2. Recede
3. Flat

(or counted as "other") based on a comparison of the power averages.
Figure 4.3 shows a diagram.

Filter and sort levels, as well as the power difference are inputs to the

program.

The sorted data is saved in a permanent disk file. A set of DISPLAY
programs prints the data counts in range-azimuth arrays for each category
(Approach, Recede, Flat). Each array element includes the number of Looks

and the number of findings for the category.

The range-azimuth arrays of data cocunts may be printed for l-hour time
intervals or for 24 hours combined. In addition, the arrays may be printed

for 4-hour time groups, shifted by l-hour increments:

Time Group 1: 0000-0400 UT
2; 0100-9500
23: 2200-0200
24; 2300-0300

Another variation provides the number of "hits" of Approach, Recede and
Flat in percent relative to the total number of Looks. The 4-hour time groups

are used, as above, but with no separation into range-azimuth arrays.

4.4 Program SPEEDSORT

The program SPEEDSORT implements a formula for associating each bin

with a speed value, as follows:

v = - VMAX x- A (m/s]) (r
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L where

VMAX = (WRF/4) x (c/fop) (2)
WRF = wave repetition frequency (Hz)

fOP = operating frequency (Hz)

¢ = velocity of light = 3 x 108 m/s

and
= - - 3
A (X, 2(K 1)]/1(0 (3)
Ko = number of bins = 32
K = bin number (1-32)

so that K =1, 2,004, 16, 17, 18, ..., 32
yields A =1, +.937, ..., +.0625, 0, -.0625, ..., -.937
[Note: currently, bin 1 is omitted to provide symmetry.]

This calculation is performed for each data record. A search is then
made for speed values within a specified interval [e.g., (-125 teo -75) or

(75 to 125)]. The corresponding bin numbers, if any, are retained.

¥or each spectrum, a filter is applied to the power im bin 17. A count
is made of the number of occurrences of power greater than a specified value.

This count is placed in the category Looks, separated by azimuth, range, and

time (24 levels, each 1 hour). If the filter condition is satisfied, then ‘
tl.e doppler-shifter power average is computed. The bins are selected ac-

cording to their corresponding speed value.
This sample is placed in one of the categories

1. Approach
2. Recede
3. Flat

or counted as "other" based on comparison of *the power averages (as in

BINSORT).
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The sorted data is saved in a permanent disk file. Display options are

the same as for BINSORT.

The speed interval is an input to the program along with the filter

and sort levels, as well as the power difference.

4.5 Program SPREADSORT

The program SPREADSORT calculates the difference between the power in
bin 17 and the average power over bin groups corresponding to a specified
speed interval. That is, no filter is applied at the ground clutter level
or the doppler-shifted level. The placement of spectra into categories is
determined by the spread between these levels. The bin groups are selected
according to the speed formula described for SPEEDSORT. A count is made for
occurrences of differences greater than a specified quantity (e.g., 40 dBw).

This sample is placed in a category as follows:

1. Double - if the condition is satisfied on both sides of the spectrum

2. Approach - if the condition is satisfied on the left side of the
spectrum *

3. Recede - if the condition is satisfied on the right side of the

spectrum
Display options are the same as for BINSORT and SPEEDSORT.

The speed interval and power differeac: are inputs to the program.
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u=x sin¢ - y cos¢ (7)

el

v = -X cosB cosd - y cosf sind + z sinb (8)

Calculate restrictions.

S5

v

A

\_,:

- 5. Meteor Scatter Model

~ ARCON was requested to provide programming support to demonstrate the !

I\.U

:; operation of an experimental meteor-scatter model. An outline of the basic

N

:1: computation flow follows:

™

{ I. Determine, from the geographic location of the stations, the quantities

f and a. (For Thule-Sondrestrom, f = 600 km, a = 6400 kn.) h, = 80,

A h = 120.

u

:J::' I1. Choose a direction of meteorite flow,

o 6 = 135°, ¢ = 45°.

=

::: III. Produce a series of "b-sheets", one for each value of b (for testing,

A

:.: b = 130 to 400, in 10 km steps).

_. IV. For a given b, x varies in the interval:

-~ -

:: -b <x<b [l km steps].

.

N

:-: Calculate quantities: vy, z, u, v.

w9 -ABx + ABx - CD

y = - ) (1)

~

\ A = sin® cos¢ (2)

= B = —,—zbz sin8 sing (3)

: b + £

::':' C = b? b2 sin?6 sin%¢ + cos?6 (4)

o b* + £4\b* + £°

":.‘ D = (sin20 cos2¢ + cos?9) x2? - b2 cos?9 (3)
{

--'.v bz -

A =/ 12 _ 2 _ 42

= 2 /bt - gyt - x (®)

3
i

IR

4.

0O AL

)
1
69 |
:
i

.................................................
.....................................................

------



....... -~ e

e CPRC AT sk atyecuin o Sie i pre SR IACIRC IR SR P A .]

Tangent Plane @R z > f (f-y) (9)
a*- f '
£
Tangent Plane @ T z2 > ——== (fty) (10)
T Va? - £2
Lower Zone - Boundary z > V= hz)2 - (X? + Y?) - /a? - f? . (1
Upper Zone - Boundary z > /(a+ hu)2 - (%% + y?) - /2% - £2 12)

V. Plot a restricted hot-line u vs. v fore each value of b.

VI. The extrema of the restricted hot-lines define an area (“cross-section')

in u~v space. Measure this area in square km, and tabulate vs
e’ ¢¢

VII. Repeat, starting at II, using a new meteorite direction 6,¢.

The programming effort has progressed through Step V. Printed output

was obtained for each b value.
A plotting structure provides various options:
1. Plot u,v corresponding to 2z values that satisfy the given restrictionms.

2. Plot all u,v; use special symbol to indicate those in restricted area.

3. Plot x,y; use special symbol to indicate those corresponding to restricted
u,v, \

The TEKTRONIX Graphics Terminal and its Hard Copy unit were used for

plot output. Examples of the plotted output are shown in Fig. 5-1 - 5-3.
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6. Direct and Multipath Communications Data Analysis

6.1 Introduction

The task was to provide software support for reading, processing, and
plotting communications data representing signal amplitude as a function of

several variables. 1In particular the work centered about the investigation

of the following dependencies:

(a) amplitude as a function of atmosphere conditions;
(b) amplitude as a function of the transmitting antenna's elevation;
(c) amplitude as a function of the time between the initial signal

transmission and corresponding signal reception.

Data was studied as a function of two variables by combining dependence (a)
with dependence (b) or (c). The first combination is known as angle-of-
arrival data, or AOA data, and the second combination as time-of-arrival

data, or TOA data.

The data were invariably written on magnetic tapes with each tape con-
taining approximately 24 hours of data, i.e., each tape was associated with
data for exactly one day of the given year. Since for every day of the
Gregorian calendar, one can find the Julian calendar day, we labeled the
tapes using Julian dates. For example, tape BA2256 represents angle-of-
arrival date for 1982, day #256, i.e., September 13. Letter B was used

to indicate the data tape was a backup copy of the original tape.

6.2 Data Tape Content and Task Orientation

Each tape contained approximately 200 records, usually from 150 up to
220 records. Each record contained 64 signals, with each signal display
referred to as a signal scan. The length of the scan - the number of points
in the scan - was different: 64 for angle-of-arrival, and 192 for time-of-
arrival data. The time interval between two sequential signals equaled 6

seconds.
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The first main task was to produce perspective on (pseudo-) 3-dimensional
plots. Because technical details such as length of axes, tickmarks, headers,
labels and so on were different from AOA and TOA data, 2 sets of programs
were prepared. Thus, program AQATHREED produced 3-dimensional plots for
angle-of-arrival data, and program TOATHREED produced 3-dimensional plots
for time-of-arrival data. These programs used logarithmically transformed
data. We also prepared slightly modified programs, LINAOA and LINTOA, in
order to accommodate a request to use linear data. Detailed description of

all control cards and input cards is given in Appendix A.

The next task was to perform cross-correlation analysis between angle-
of-arrival data. Program ADACOR was constructed and consisted of two logi-
cally independent parts: the second part for making 3-dimensional plots, as
usual, and the first part for performing cross-correlation analysis via Fast

Fourier Transform technique (FFT).

In general, we used the second scan from the first record of the cur-

rent tape as a standard signal and during the cross-correlation process all
other scans from the same tape were compared with this standard signal.
(Note: Of course, it would be even more natural to use the first scan as a
standard signal, but the first scan was always defective.) We also had to
provide for the case, when the second scan was not desired as a standard
signal. So, program CORWRITE prepared a permanent file, containing a stan-
dard signal, and program CORREAD then used this standard signal for correl-

ation purposes.

6.3 Correlation Analysis

The cross-correlation function of two sets of random data describes the
general dependence of the values of one set of data on the other. Consider
the pair of time history records =x(t) and y(t). An estimate for the

cross—correlation function of the values of x(t) at time ¢t and y(t)

N
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at time (t + 0) may be obtained by taking the average product of the two

o values over the observation time T. For stationary data, the resulting
A
fﬁﬁ average product will approach an exact cross-correlation function as T
I approaches infinity. That is,
.','-_;; T
- |
R (o) = hm-,f x(t)y(t+0)dt. (N
xy T
o
:if 1f ny(c) = 0, x(t) and y(t) are said to be uncorrelated. For a faster
:Ci implementation of this process, we used the Fast Fourier Transform Technique
. instead of the direct (standard) method.
f;* 6.4 Fast Correlation
::2 An infinite-range Fourier Transform of a real-valued or a complex-valued
N record x(t) 1is defined by the complex-valued quantity
@
-j2w
X(f) = I x(t) e 32ME 4 (2)
" -
c Theoretically, this transform X(f) will not exist for an x(t) which is a
representative member of a stationary random process when the infinite limits
~§}§ are used. However, by restricting the limits to a finite time interval of
"}k} x(t), say in the range (0,T), then the finite-range Fourier Transform will
-:if exist as defined by
g T
e i
X(£,T) = J x(t) e 12ty (3)
o
T o
J‘:;::
o The discrete version of this equation is
MO
o Nl
':\':q = _: .
S X(£,T) hz x, exp [-327f h] (4)
‘-‘.':-‘ n=o0
ho
NN
-
)
L
2 76

¥ '-._\:‘- .\_.'. o -'_n

AT L R S - . :
R R R TS L.
mﬁ;ﬁ_‘ gl T, Y, S i R S e Y R




€

s

LA A [ Sl T S S N SR e e e e T ST TR EFORTLUWLUVAVWE LW B W P A it SR G A G

o adae b LL.'L

-

The usual selection of discrete frequency values for the computation of j
X(f,T) is 2
1

-

g

3

k k !
fk=kf=-'1—‘=ﬁ R k=20,1, ..., N-1. (5) .
E

Fast Fourier Transform (FFT) methods are designed to compute the quantities, j
Xk, and can also be used to compute the coefficients for a standard Fourier 1
series. }
K

Returning to cross-correlation functions, there are two approaches to -]

the estimation of cross-correlation functions, namely, the direct approach 4

and the FFT approach.
The procedure for the second case is briefly described below.

Let

N-2
1
Ry (M =gz ) % Yo > TTOL o m 6)
n=1
(If N >> m, it may be more convenient to divide by N instead of dividing

by N-r.)

The initial sample size for both x(t) and y(t) is assumed to be

NSZP. Here, x(t) is the standard time signal against which all others

are to ue cross-correlated; y(t) 4is the time signal to be cross-correlated.

Two separate FFTs are involved in these computations; one for x(t)
and one for y(t). We computed the product of the two transforms, then their
inverse transform again using the FFT procedure. it yielded an unnormal-
ized cross-correlation, and the normalization was tailored to the initiator's

needs.

In summary, we operated with 3 sets of 3-dimensional programs.

TOATHREED and LINTOA are for tapes with time-of-arrival data. AQOATHRE"D
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and LINAOA are for tapes with angle-of-arrival data. AOACOR, along with
CORWRITE and CORREAD, are for obtaining cross-correlograms for angle-of-

arrival data only.

Plots for certain days showed unusual features and led to the making
of separate plots for each of the scans, belonging to the area of interest.
This led us to make standard (2-dimensional) plots. Again, 3 different
sets of programs were made: time-of-arrival; angle-of-arrival; and cor-

relograms, respectively. "Single scan" plots were also produced.
Using the same system for filenames as before, we created 3 programs:

AOASCAN - for angle-of-arrival data.
TOASCAN - for time-of-arrival data.
AOACORSCAN - for correlograms.

All programs are written in FORTRAN extended version 4. for the CDC 6600
computer. All plots were made on the CALCOMP off-line pen plotter. During
the debugging process, the TEKTRONIX display terminal and its hard copy

machine were used to check the pictures.
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APPENDIX A

f For "single scan" programs:
CM = 150K (not including correlation)
#1 Blue card <
For 3-D programs:
CM = 230K for angle-of-arrival tapes
\CM = 250K for time-of-arrival tapes a
4
#2 ATTACH, XX, {program name} Main program and subroutines ]
ID=...,MR=1 (See list of program's names) h
i
-
#3 FIN, ... . Compilation 3
#4 VSN(TAPEl == Tape with data

({tape number})

PR Farwr Ly

#5 REQUEST, TAPEl, HI for angle-of-arrival tapes

[:],L, NORING, NR. [:] HY for time-of-arrival tapes

adado ot

v o—
laa Aadla

({tape numbers})

.o o
o’

v Y

#6  REQUEST, TAPE78,*qQ. Only for EEPLOT plotter. j

-]

#7  DISPOSE, TAPE78,*HR. Only for EEPLOT plotter. {Q

N #10  ATTACH,X,THREED- Can be excluded for "single scan' pro- by
2WAY, ID=WIK,MR=1. gram, but then #13 has to be changed, -

|-
Y Wa? PN

i.e. not contain X.

iy

#11  ATTACH,PEN,EEPLOT. For EEPLOT plotter 3
or :j
ATTACH, TEK, TEKOFFLINE. For TEKTRONIX display S
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. #12  REQUEST,T40140, *PF.

- #122  ATTACH,AAA,PLOTLIB.

#13  LDSET(LIB=X/TEK)
LDSET(LIB=X/PEN)

ot LDSET (LIB=X/TEK/AAA)

LDSET(LIB=X/PEN/AAA)

f: #15 LDSET(PRESET=ZERO)
#16 LGO.

o #162 CATALOG,T40140,
- SCANPLOT,ID= ...

o
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For TEKTRONIX only

Only for "single scan” plotting

See #13 also.

For "3-D" plotting

For "single scan"” plotting

For TEKTRONIX only

- e e e e e e Er A am w em e e e e e e s e wm = am e e em e e @ e e em e em e e wm =

ISWITCH (see main program)
1 - to make transformation of data

0 - to use data as is for plotting

ISW6465 (see main program)
1 - for "early" tapes

0 - for regular tapes

Both 172 and 172 for angle-of-arrival tapes ONLY
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#18 NEW
#19 [] - any
not O
#20 Example:
256 18 00
or
12 00
#21 1 86
#22 6 6.
#23 10. 15.
#24  Angle of arrival
13 Sept. 1982
#25 O

R g 30 B
" " g

integer number

256 18
060.
-_,._;_. ~~:~\/~ ._

05
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Actually we don't use this card,
we only read it.

IISTEP. See main program
If we want to plot each scan, 1ISTEP=1
If we want to plot first scan, then skip
some of them, then plot atain, we use

this parameter.

Start time - end time card
In this form it means : we want to start
from the beginning of the tape and plot

during 12 hours, or until end-of-file

mark.

Actually we don't use this card, we only
read it, for "single scan' program we

don't use it at all.

Actual and nominal spacing of data
signals. (each 6 seconds we received
next signal.)

Length of X-axis for 3-D plotting.
Usually 10. for time-of-arrival and
correlation routines,

5. - for angle-of-arrival routines.
15. - angle of tilt for x-axis

For "single scan' plotting we don't

use, only read it.

Label card

Number of gaps in data.




S Example:
. #252 256 17 42 51 Special "time of the beginning" for
,_.‘ time-of-arrival tapes ONLY. To know
.‘.. this time, we read it from corresponding
b angle-of-arrival tape
2

)

726 6/7/8/9-

AT

R green card

c'.\':a
{ #32  ATTACH, TAPE2, Only for run program CORREAD. File
NN SIGNAL, ID=..., SIGNAL has to be created before. We
~:'~ MR=1. created file SIGNAL during the execu-
R ¥

N tion of the program CORWRITE. See below
.:\;_

i #52  REQUEST, TAPE2,*PF. Only for run program CORWRITE

o |
s #1162 caravoc, TAPE2, Only for run program CORWRITE. ‘
( SIGNAL, ID= ....

V5

\‘-.- ----------------------------------------
S0

, Tape CC0340 contains all programs:

e
\:'
B ACATREED TOATHREED

Y LINAOA LINTOA

> AOACOR TOASCAN
o AOASCAN

E-.: AOACORSCAN.

3 2

A CORWRITE

' CORREAD

o

N

..\l

N

wY

o

o1

o

D

-.".

N
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A . A .

LU R A

.-
AOATHREED TOATHREED = TESTLOS 3
-4
.j{
LINAOA LINTOA x
AOACOR 1
::‘
AOASCAN TOASCAN . ]
3
AOACOR SCAN H
_4
CORWRITE
CORREAD
T Tape CC0340,

.
v "y Y

s

contains all programs.
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MISSION
of

Rome Avr Development Center

RADC plans and executes reseanch, development, tesi and
selected acquisition programs in support of Command, Conttrol
Communications and Intelligence (C31) activities. Technical
and engineening support within areas of technical competence
48 provided to ESD Progrnam Offices (P0s) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic gudidance and control, suwt-
vecllance of ground and aerospace objects, intelligence data
collection and handling, {nfomnmation system technofogy,
{onospheric propagation, sofid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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