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/ ABSTRACT

&(A sdimple theony based upon trnaveling wave concepts and the
Wienen-Hop§ technique is developed which describes the cuwuvient
distributions on tubulan cylindrical receiving and trhansmitting antennas.
A close examination of the conditions necessany to obtain sufficiently
accurate asymptotic solutions fon neflected cwwrent distributions is
given along with several numerical examples for cooboration. This
along with cornresponding modifications to other nelevant tenms in the
traveling wave solution for a finite Length cylindrnical antenna allow
§on the consideration of a much wider nange of cylindnical antennas

than nonmally possible under the traditional thin-wire approximationse -f-——

ka << 1 and kh 21. Specific examples discussed include electrically
shont, (kh = 0.4 and Q(h) = 2 2n(2h/a) = 10), practical half§-wave,

(kh = w/2and Q(h) = 2 n(2h/a) = 10), and electrical thick, (ka = 1

and kh = 3m), nrecediving and transmitting antennas. Comparnisons with
existing theonies in these cases and othens yield very acceptable agree-
ments. Funthen, the neceiving antenna fonmulation allows for an arbitrany
angle of incidence, 0 < 6, < 0f the uniform plane wave and the
tansmitting antenna formulation gives excellent input conductance data
over an extremely wide range of antenna parametens. Discusdions are given
forn such nelated topics as the cuwent distributions on the internal wall
0f a cylindrical antenna, Loaded cylindrical antennas and the far field
nadiation pattemn of a cylindrical trhansmitting antenna.
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1. Introduction

As is well known, thin-wire conductors are commonly used as radia-
tors in the design of antenna systems. The radius, a, of each wire
is typically much smaller than its half length, h , which for most
applications is of the order of a wavelength, A. Only in limited situ-
ations, such as the case of probing an unknown field, will the length be
much smaller than a free-space wavelength, (i.e., 2h << A), or as in
the case of a trailing antenna behind an aircraft, will the length be much
greater than a free space wavelength, (i.e., 2h >> XA ). Consequently
most linear antenna theories, both analytical and numerical, are
developed with an explicit or implicit asshmption that a << A and
2h > \/2, which is commonly referred to as the thin wire assumption.
On the other hand, theories not in this general category, usually have
a much more limited range of application, such as for the very short
antenna and the very long antenna.

More recently, the time-transient response, as well as the broad-
band frequency response of a thin~wire structure has become a problem of

considerable importance. For instance, in order to access the suscep-

tibility of a long thin cylindrical metallic enclosure, one must obtain
statisiical information concerning the performance of the cylinder as a

receiving antenna, over an extremely wide frequency range as well as an

arbitrary angle of incidence (referring to illumination by an incident
plane wave). Computations not only become excessive when conventional
theories are utilized because virtually thousands of responses are

needed, but also very awkward since different methods have to be used

in different frequency ranges. A similar statement, of course, can also

be made for studying the impulse response of an antenna.
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Beginning with Hallén's [1]) integral equation formulation for

the current on a cylindrical antenna and including the work of many

others [2] - [10], the thin-wire approximations mentioned above have

nearly always been employed. Weinstein [2] did, however, observe that
his final approximate solutions, which were derived under the thin wire '

assumptions, could be applied to cylinders having larger values of ka

if the electrical length, kz, were very much larger. In contrast, the
theory of King and Middleton [11l, Chap. II], however, which involves the
iterative solution of an integral equation for the current on a finite
length cylinder, requires explicitly that the parameter, § = 2 in(2h/a),
to be large, h being the half-length of the cylinder. Although the
parameter, , relates only to the physical length and radius of the
antenna, this approach still requires the electrical radius, ka, to be
small compared to unity and the electrical length, kh, cannot be very
small nor very large. King also developed a receiving theory [11, Chap. IV]
for antennas having a large Q. A large Q was also the basis for two
electrically short (kh < 1) antenna theories developed by King [11,
Sec.II.31 and IV.8] and [12, Sec. 3.7] which were developed by making

approximations relevant to the short antenna situation in the integral

equation formulation of the problemn.
Another means of analysis for the cylindrical antenna problem is
the numerical method of roments technique [13], which has the capability
of computing antenna characteristics without invoking the thin wire
approximations. Realistically, however, the computation time is con-
siderable if the antenna is not thin or the length is more than a few

free space wavelengths.
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In this paper, our aim is to develop a simple unified theory for
computing the broadband characteristics of a transmitting and/or receiving
antenna when the parameter, £ = 2 2n(2h/a) 1s large. For a typical
thin-wire antenna where = 2 n(2h/a) = 10, our theory is applicable
for antenna lengths as short as 2h % 0,12 and as long as 2h x 23) (where for
Q = 10, ka is almost equal to 1), whiah in terms of frequency covers well
over two orders of magnitude and is more than adequate even for
transient computations. We also show that our formulation may be applied

to an electrically thick (up to ka = 1) cylindrical transmitting

antenna or the electrically thick receiving antenna (for the angularly
independent current) and obtain favorable agreement with existing
theories even when the parameter {Q = 2 2n(2h/a) 1is not large.

We begin with a re-examination of the conditions necessary to
obtain simple approximate solutions to cylindrical antenna problems via
the Wiener-Hopf technique. Section 2 discusses a pair of canonical
integrals which characterize cylindrical antenna problems. Approximate
expressions for these canonical integrals are derived subiect to the
condition, £(z) = 2 2n(2z/a) >> |2n[2kzsin2(ei/2)] | . The angle, 8,
refers to the incident angle of the incoming wave and is more fully
described later. In Section 3 the various currents on both infinite
and semi-infinite cylindrical receiving and transmitting antennas are
given and their relationships to the canonical integrals established.
Data obtained from the approximate expressions is then compared with

numerically evaluated "exact" data in Section 4. A most important

observation in this section is that the parameter, Q(z) = 2 n{(2z/a) ,
in the basic condition of our analysis, need not be very much larger

than |£n[2kzsin2(91/z)]|, especially when thicker antennas (ka 2 0.1)

| -
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are involved. Utilizing the process of summing multiple reflections,
approximate expressions for the receiving and transmitting currents and
the input admittance for finite length cylindrical antennas are formu-
lated in Section 5. Expressions for the currents flowing on the internal
walls of receiving and transmitting tubular antennas are given in

Section 6. In Section 7, numerical results from our theory for specific

antennas are compared with the results of other authors using different

approaches, with acceptable agreement in all the cases considered. The
special case of the electrically short antenna is discussed in Section 8.
General conclusions as well as extensions of our theory to loaded
antennas and the determination of the far field radiation from a trans-
mitting antenna are given in Section 9.

The exact integral expressions appearing in Section 4 are for the
most part, based upon the Wiener-Hopf technique (see for example Nobel
[14]), Weinstein [2] and Mittra and Lee [15]). The assumed time variation

is e-iwt and the implied PFourier transform pair is given by,

F(a) = I F(z)el® 4z (1)

-0
and

F(z) = 'z‘lif Fla)e 19% 4o

B S
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2. The canonical integral in cylindrical antenna problems

As will be shown later, the external current distributions on both
the receiving and transmitting cylindrical antennas can be written in terms

of the canonical integral,

K e—iaz
U(ei;Z) = -i'; (1 - cos Gi) I (k+a) (k cos 61+a)K(u) da

I

0
3 0sz<w, 0g 6, s 3)

The contour, FO’ is shown in Figure 1 and,
- (1)

K(a) = i"Jo(Ea) H, (£a) (4)

where

£ = Yké-qa? = i/a% -k*

ei is the incident angle of the incoming current wave when (3) is used to

describe a particular current distribution reflected from an end of a cylinder

and z i3 a numerical distance along the axis of the antenna. k = 21/) and

n are the plane wave wavenumher and the intrinsic impedance, respectively,
of the medium surrounding the antenna. The antenna to be considered is
assumed to have an infinitely-thin, perfectly-conducting wall concentric about
the 2-axis at a radius, a. The suppressed time factor is exp(-iwt), where w
is the operating frequency in radians/sec.

We shall also find it useful to define the auxiliary canonical integral,
H(ei;z), which 1s similar to U(ei;z) in (3) except for the appearance in the

integrand of the additional function, K+(a), defined as the factor of K(a) in

(4) which is analytic and free of zeroes in the upper half complex a-plane,




6
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Figure 1. The complex a-plane
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K+(-a)e-iaz
(k+a) (k cos 61+a) K(a)

cr) = -4 K (1 -
w(ei,z) i n (1 - cos 61) J da

r
0

H 3 0sz s =, 0g ei <m (6)

? Properties of K+(a) are discussed in Appendix C. We note that the

integral W(ei;z) usually occurs in problems concerning the currents re-

; flected from the ends of cylindrical antennas. As shown in (A8) of

Appendix A, when 2z >> a, we may approximate (6) by

W(ei;z) z K+(k)U(61;Z) 7

where U(ei;z) is our original canonical integral given in (3). Thus
with W(ei;z) given in terms of U(ei;z), our particular use of the form
of W(ei;z) in (6) will be limited to providing exact date (from the
numerical integration of (6)) to compare with the approximate solutions
to follow.

Subject to the condition,

22 2 ei
2(z) = 2 | T7| > {en[2kz sin > 11 (8)

an approximate solution to the canonical integral, U(ei;z), is obtained
to order [Q(z)]~2 in Appendix A. From (Al7) of Appendix A, this approxi-

mate solution may be stated as

i ikz

U(ei;z) =5 {Zn[f(ei;z) - in} - En[f(ei;z) + in]}) (9)

where

-iv
f(ei;z) = 2Cw + vy 4+ 15/2 + in(2kz) + e

0
El(-ivo) (10)




is a slowly varying function of =z . Cw is defined as
]

Cw = - gn(ka) -y ;v = 0.57721..... ' (11)

which is usually taken as a large parameter in the typical thin wire appli-

cation and,

1 i e
' Vg = Vo(8,,2) = 2 kz sinz[Tl] (12)

The function, El’ appearing in (l0) is the exponential integral of the
first kind defined in Equation 5.1.1 of [16]. We note that the antenna
parameter, (z), is defined in the same way as in [11] where it has been
used as a large parameter for the iterative solution of the antenna prob-
lem,

Another approximate form of the canonical integral, U(ei;z), which
stems from a Taylor series expansion of (9) subject to the basic restriction

stated in (8) is given in (A18) of Appendix A and repeated here,

o eikz
U D) (4

Even though (9) and (13) are equivalent with respect to the order of approxi-

mation (i.e., [R(z)]7?), we shall find (13) to have a more desirable

behavior in the near-grazing, 6, ~ 0 , and near the end, z ~ 0, situations.

i
[}
Otherwise, (9) will appear to be a more accurate result than is (13) for
. U(ei;z)-

It is interesting to compare our approximate forms of U(ei;z) to

! . similar expressions derived by other authors. For the current on aan infinitely

long transmitting antenna (e1 = 1), Shen, Wu and King [6] by a semi-




analytical, semi-curve fitting technique found a result similag to our

U(63z) in (9), except that the term, tnlkz + v(kz)2 + exp(-2Y), replaces

our terms, £&n(2kz) + exp(-iZkz)El(-12kz). Thus for large kz , our approxi-
mate solution for U(m;z) in (9) and that of Shen, et al. [6, Eq. 6] are
quite similar. Weinstein [2] found an approximate solution to an integral
similar to (3), (he called it the "key" integral), but having a different
coefficient outside the integral. Apart from this coefficient (our approach
introduces this term at a later time), Weinstein obtained, through a com-
plicated variational approach, an approximate result equivalent to our

second approximate form of U(8,3;z) in (13). Also, in a more recent work

by Chang, Lee and Rispin [17], a further approximation of (13) was obtained ;
and used in a receiving antenna analysis. However, the analyses of Shen,et al.,
Weinstein and Chang, et al., mentioned above, all assumed the conventional

thin wire restrictions,

ka << 1 (and kz > 1) (14)

Although in [2], Weinstein did observe, a posteriori,that the approximate
form of his "key'" integral (similar to (13)) could be used for larger
values of ka if at the same time, kz was very much larger. Thus, the
importance of our work is not so much contained in the approximate formulas
for U(ei;z) in (9) and (13), but rather in the realization of a less
restrictive condition (given in (8)) for the validity of these approximate
formulas. In fact, it will be shown in Section 4 that the approximate
formulas for U(ei;z) in (9) and (13) yield remarkably good agreement with
numerically obtained "exact" results even when (z) 1is of the same order
as Iln(vo)l . Hence, even the "much greater" restriction appearing in

(8) can be significantly relaxed.
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o 3. Currents on cylindrical antennas
In this section, the currents on infinite and semi-infinite cylindri-
cal receiving and transmitting antennas, given in terms of the canonical
integral, U(ei;z) in (3) of Section 2, are described.
: 3.1 Primary receiving current
;, 1 The longitudinal current averaged over the circumference on an

infinitely long cylindrical antenna due to a plane wave polarized in the
same plane as the antenna and incident at an angle, 61, with respect to

the cylinder axis (which is also the z-axis as shown in Figure 2a), may be

written as [8, eq. 10],
R i .
Im(ei’z) Ee v(eivz) (15)
where,
J (kagin6,) ikzcosd
: ) w4 0 1 1. _,
; V(ei,z) 1 kn sin ei K(kcosei) e ’ <z <®,
| 0<6, s (16)
Jo is the zero order Bessel function and K(a) 1s given in (4).

k = 2n/XA and n are the plane wave propagation constant and intrinsic
impedance, respectively, of the surrounding medium. Higher order varia-
tions of the z-directed current with respect to the azimuthal angle, ¢,
and the ¢-directed currents on the cylinder are not treated in this report.
R é Thus, while V(ei;z) represents the total longitudinal current on an
; infinitely long electrically thin (ka << 1) antenna very well, it corresponds
f | only to the azimuthally uniform longitudinally directed current on an

! infinite cylindrical antenna in general.
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Figure 2. Infinitely long tubular cylindrical antennas

a. receiving; uniform plane wave incident at an angle, © {
with respect to the z (antenna) axis.
b. transmitting; delta function voltage source of strength, L

Vo volts, located at z = zZg -
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In the special case of a thin cylinder, i.e., ka << 1, the Bessel
function and‘kernel, K(a) in (4), may be approximated by the leading

terms in their respective small argument expressions to yield,

ikz cos ©
4n e !

kn sin 0. ]] ° k8 << 1 (17)
sin 6 2C + inm - 2 n —1
i w 2

where Cw is given in (11).

V(ei;z) = -1

3.2 Primary transmitting current

The longitudinal current on an infinitely long hollow cylinder due to
a uniform (with respect to the azimuthal angle, ¢ ) delta function voltage
source of strength, VO’ at z = z, (see Figure 2b), may be written as

[6I Eq. 1]’

*iulz—zol

T, ..y =42k e . e o< w©
Im(zovz) i n VO J (k2 'GZ)K(G) da ; z < (18)

To

where the contour, Fo, is shoﬁn in Figure ! and K(a) 1is given in (4).
Comparing (18) with the canonical integral definition in (3), we may write

the driven infinite cylinder current as

Im(zo;z) = VOU(n;Iz-zol) ; ~® <z< ™ (19)

and use either approximate form of U(n,z) in (9) or (13) to determine
this current provided the restriction in (8) is satisfied. This procedure,
however, does not yield a good result at the source since the condition on
Q(z) 1is violated. In particular, the real part of the current at the

source needs to be evaluated very accurately, since physically it
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corresponds to the input conductance and hence the power that can be radiated
from the antenna. To this end, it is shown in Appendix B, how an approximate
expression for primary transmitting current similar to that of Shen, et al.

[6] may be constructed. This current expression denoted as Us(lz-zol) re-

places the term U(n;|z-zol) in (19) and is given by

ik|

i z—zol
Us(|z_20|) =Ce {zn[fs(lz-zol) - in] - zn[fs(lz-zol) + inl} (20)

where

£ (|z-zy]) = 26 + v +1n/2+zn[(klz-z01)+ /(k[z-2.[)2 + exp(-2y - 28) }

J |
(21)

Cw and y are given in (11) and,

g = 33.88 (ka)? exp (7 -3—1(%@) (22)

From (18) and (20), the input conductance of an infinitely long cylinder

is then given by

G_(ka) = Re (US(O)} = Re{[%-ln(zcw - g - in/2) - !Z.n(2Cw - g+ 137/2)]}

(23)

It will be shown later in Section 4 that (23) yields a very good input con-

ductance for an infinitely long cylinder as thick as ka = 1.0. Also, we
note that Us(z) in (20) is asymptotic to both forms of U(n;z) in (9)

and (13) for large kz and differs only in the vicinity of the source,

3.3 Secondary current on a semi~infinite receiving antenna
The secondary current on the external wall of a semi-infinite receiving

cylinder (see Figure 3a), arises from the reflection of the current

S R v v vt IPIEOGO PN o SO STASA SRR |
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(a) (b)

Figure 3. Semi-infinite tubular cylindrical antennas

b.

receiving; uniform plane wave incident at an angle, 91.
with respect to the z (antenna) axis.
transmitting, delta function voltage source of strength,

Vo volts, located at z = z,-
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I: (Si,z) in (15) from the end of the cylinder. From a Wiener-Hopf analysis

this reflected current may be expressed as [17, Eq. 27],

R 1 ik
Les1(8g22) = Eg V(6,50) 5 (1-cos 0,)K, (-kcos 8,)
K+(-a) e-iaz
J (k+a) (kcos 8, +a)K(x) da ; 0<z<w (24)
Po 0<6, <

The contour T is shown in Figure 1, and as previously noted, K+(a) comes

0
from the factorization of K(a) in (4) into functions analytic in the upper
and lower halves of the complex o plane, i.e., K(a) = K+(a)K_(a). This
factorization is more fully discussed in Appendix C. The superscript R in
(24) signifies the receiving situation. We may write (24) in terms of the

auxiliary canonical integral W(ei;z) in (6), and by virtue of (7), we have

the approximate expression,

R i
Loeg1(04028) = = Eg V(O 500R(8,)U(B,52); 0 <z <=,
0 < b, s 7 (25)
where we have defined the "reflection coefficient”,
= L -
R(ei) 27 K+(k)K+( kcosei) (26)

The approximate expression for the reflected current in (25) is valid if the
basic condition in (8) is satisfied. We note that the reflected current
distribution considered here is, as in the primary receiving current dis-
tribution in Section 3.1, the total z-directed current averaged over the
circumference of the cylinder.

One of the obstacles, which in the past has prevented the practical




. X

application of the Wiener-Hopf technique to thicker antennas, has been the
absence of a tractable expression for K+(a) in the range -k < a < k
which appears in (26). It is shown in Appendix C, that a curve fitting
procedure involving the factor, K+(a), with compensation for its dominant

irregularity, yields the approximate formula,

Kg(a)

a
[a{[1 + Br(i)]

K (a) = (27)

Kg(a) |
s ka0

a 2
a1 + 8,6 +cE’)

where Kg(c) is the small argument form of K+(a) based upon the assump-

tions that ka << 1 and aa << 1 I, Sec. 38] given by

0 1 k+a
K, (a) /2cw + in [1 - ¢+ in un(n)l . (28)

]Al is the magnitude of A given by,

0 a1 -1/2
A= x+(0)[1nJo(la)no (ka)] . (29)

Br is given by

B, ~ 5% G (ka) - Re{[2C_ + 17 + tn(2)}™}) (30)

and is the real part of a more complicated function, B, given in (C19) in
Appendix C. Here G, (ka) 1s the input conductance of an infinite
cylindrical antenna having an electrical radius, ka, for which we have the

approximate formula given in (23). Appendix B gives a detailed discussion
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of the exact and approximate forms of G_(ka). And finally, the coeffi-

cient C 1is given in terms of |A| and B_ by,

1 - |al2(1-B82)
[A[Z (1 +B)

Cc = (31)

Although (27) is basically a curve-fit solution for K+(u) in the range,

-k < a £ k, the coefficients lAI and Br were obtained in much the same
manner as those in a two-term Taylor series expanion of Kg(a)/K+(a) in 1
the upper-half of the complex a-plane. The coefficient, C, was obtained
by requiring that the approximate constructed quantity K(a) = K+(a)K_(u)
(see (C5) and (C6) of Appendix C) using (27) have the same limiting form

as the exact K(a) in (4) as a > * k.

3.4 Secondary current on a semi-inf[inite transmitting antenna

The secondary current eminating from the end at z = 0 of a semi-
infinite, 0 £ 2z < », cylinder having a delta function voltage source of
strength V. at z = z is usually approximated by the reflection of a

0 0

wave incident at ei =1 [6], as illustrated in Figure 3b. Hence, from

(24) we may write,
17 (z,32) = -18(z.;0)R(m)U (n;2) 0O<z<m (32)
ref1 %o’ = (g} ’ ’

where we have replaced the neceiving incident current, E; V(ei;O) by

the transmitting incident current, I:(zo;O).
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4, Numerical comparisons: infinite and semi-infinite antennas

4.1 Primary transmitting current

As discussed in Section 3.1, we sha!l use the modified Shen, et al.
[6] formula denoted as Us(z) in (20) for thz primary current on a
cylindrical transmitting antenna. And since Shen has already compared his

"exact" data in [6] for values of

approximate expression with numerically
ka up to 0.08 with good agreements, we shall only consider cases in which
0.1 < ka £ 1.0 to justify the extension of the theory to this range. 1In
Figure 4, we show the real and imaginary components of the current distri-
bution on an infinitely long cylinder as predicted by the modified Shen

formula in (20) with V_ = 1 volt, for the particular values of the electri-

0
cal radii, ka = 0.1, 0.5, and 1.0. '"Exact'" data for these cases obtained
from the numerical integration of (18) is also shown in Figure 4 (as
circles). And it may be observed that the real component of the current
distribution predicted by (20) compares very favorably with the exact
numerical data over the entire range of kz shown especially for the
smaller values of ka. The imaginary component of the current distribution
predicted by (20) compares favorably with the exact data only when the
ratio, 2z/a, somewhat exceeds unity.

As mentioned earlier, the purpose of Shen's and our curve-fitting pro-
cedures leading to (20) for the primary transmitting current was to obtain a
good value for the real part of the current at the source, i.e., the input
conductance of an infinitely long cylindrical antenna. To demonstrate the
level of success attained in this respect we offer Figure 5, which shows
the input conductance of an infinitely long cylinder as obtained from the
real part of US(O) in (23) and the "exact" numerically evaluated input

conductance from the exact integral exprvssion stated in (Bl) of Appendix
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B as functions of ka over the range 107" < ka < 1. Obviously, excellent
agreement is obtained. In fact, the error, which is also shown in Figure

5, never exceeds 2% over the entire range.

4.2 Reflection coefficient R(Oj)

The behavior of the "exact'' numerically evaluated (using the formula
of Mittra and Lee [15, Sec. 5-2.(3)]) K+(a) is shown in Figure 6 as a
function of o 1in the range -k < a < k for the specific cases ka =
0.01, 0.05, 0.1, 0.5, and 1.0. This variation in o when o = -k cos Gi
corresponds to the range 0 < %.<n. The behavior of our approximate form
of K+(u) in (27) is so close to the exact we have not included this data
in Figure 6 but have elected to show, in Figure 7, the error between the
approximate and "exact" values of K+(a) for the same range and set of
parameters as those in Figure 6. The magnitude and phase error illustrated
in Figure 7 is seen to be quite small, typically below 1% and *5°, respec-
tively. And it should be noted, that this magnitude error is many times
smaller than the magnitude error of the normally accepted small argument
approximation, Kg(u) in (28). For example, at ka = 0.0l Kg(k) differs
from the exact value of K+(k) by about 1.5%, while our approximate form
of K+(k) from (27) possesses an error of less than 0.1%. And as the
value of ka increases, the error in Kg(k) increases quite rapidly,
reaching over 200% at ka = 1.

Obviously, the quantity of more crucial importance is the so-called
"reflection coefficient", R(ei) in (26). Figure 8 shows the magnitude
and phase of R(ei) as calculated using the "exact" numerically determined
values of K+(k) and K+(-k cos ei) (again from the formula of Mittra
and Lee {15, Sec. 5-2.(3)]) as a function of ka over the range

10™% < ka < 1 for the incident angles Bi = /36, n/4, n/2, 3n/4 and =.
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4.0 \

\ ka=0.0l
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1.O— |K+(Q)I —
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Figure 6. Magnitude and phase of K+(a) in the range, -k <a <k, calcu-

X lated from the exact formula for K+(a) in [15, 5-2,(3)],
(See eq.(Cll) of Appendix C of this report.)
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in eq. (27) for the range -k < a < k.




- b e

24

120 I l l

80

©
o
A
§ 60
(0 o
40

20

o .
Figure 8. Magnitude and phase of the "reflection coefficient,"
R(ei) = (n/21r)l(+(k)l(+(-k cos 61). calculated from the exact
formula for K+(a) in [15, Sec 5-2.(3)] (See eq. (Cll) of
Appendix C of this report.)
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Data for R(ei) using the approximiate fuormula for K+(u) in (27) is not

included in Figure 8 because of the very close agreement it has with the

exact data. Instead, we show the error of this approximation with regard

—

to the exact in Figure 9 for the same range and set of parameters as in
Figure 8. The magnitude error is seen to be at most about 3% and typically

o much less while the very small phase error is never more than *5°.

k * 4.3 Reflected current distributions

Denoting the reflected current due to a unit incident current of the

f form explikz cos Bi] as 5 fl(6 ;z) , we have from (6) and (24) the ex-
pression,
N L . w
refl(ei’z) K (-k cos § ) H(Si,z) 3 0 <2z <
0<96, < (33) :

in both the receiving and transmitting situations. We note that (33) is

an exact expression for the normalized reflected current in the receiving
: situation (0 < ei < ®) and is a very good apoproximation for the normalized

reflected current in the transmitting situation (ei-n) when the delta

function voltage source is located sufficiently away from the end. From

(7) and (26), the approximate form of (33) is given by

refl(e ,2) = -R(ei)U(Bi;z) ; 025 =
' ‘ Oseisw (36)
- To demonstrate the accuracy attained with our approximate formulas,
Figures 10~14 show the behaviors of the "exact" reflected currents in (33) %

(with K+(-k cos ei) numerically determined using the formula of Mittra

and Lee [15, Sec. 5-2.13] and W(6,3z) 1in (6) numerically integrated) and

41
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Legend for Flgures 10-14

N
” [1] 3 -
o) 61’" Exact" numerically determined Irefl(ei’Z) from (33)
O =n/2 found by using the formula of Mittra and Lee [15, Sec.
O =/4 5-2.(3)] for K,(a) and by the numerical integration of

L =n/36 W(ei;z) given in (6).

. N . . . .
Approximate form of Irefl(”i’z) given in (35), with

R(Gi) from (26) determined by the approximate K+(a)
formula in (27) and the approximate formula (13) used for
U(ei;z).

N
~— —— —— Approximate form of Irefl

R(Gi) from (26) determined by the approximate K+(a)

(ei;z) given in (35), with

formula in (27) and the approximate formula in (9) used

for U(ei;z).

ikz

Note: 1In Figures 10-14, the traveling wave phase factor, e

has been suppressed to aid in improving the clarity of

the information presented.




Figure 10. Magnitude and phase of the current reflected from the end
of a semi~-infinjte tubular cylinder where ka = 0.0l.
(See accompanying Legend for further details.)
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\ ‘ Figure 11. Magnitude and phase of the current reflected from the end
| , of a semi-infinite tubular cylinder where ka = 0,05.

: (See accompanying Legend for further details.)
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Figure 12. Magnitude and phase of the current reflected from the end
of a semi-infinite tubular cylinder where ka = 0.1. (See
! accompanying Legend for further details.)
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Figure 13. Magnitude and phase of the current reflected from the end
\ of a semi-infinite tubular cylinder where ka = 0.5, (See

| accompanying Legend for further details.)
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the approximate reflected currents

for R(ei) and using both (9) and (13) for U(ei;z) as function of kz

in which Oi = /36, n/4, n/2, and
0.01, 0.05, 0.1, 0.5, and 1.0, res
the data obtained from the use of

to the numerical data than does re

somewhat misleading, since in the finite length cylinder situation where

multiple reflections of currents from the end are characterized by waves

incident at an angle, Oi =n, and

13

in (34) using (27) for K+(a) in (26)

n  for the values of ka equal to

pectively. We note that in every case,
(9) for U(Si;z) appears to be closer

sults using (13) for U(ei;z). This is

subsequently summed (see Section 5)

slightly better results are obtained witn (13) used for U(ei;z). This

apparent incongruity must be a result of the summation procedure producing

an error which is more compensitive for the error in (13) for U(ei;z)

than it is for the error in (9).

point will be forthcoming.

A more detailed clarification of this




34

Section 5. Approximate expressions for the external currents on finite-
length cylindrical antennas

Expressions for the currents on finite length cylindrical antennas
are constructed by summing the primary and subsequent secondary currents

reflected from the ends of the antenna.

5.1 Finite receiving antenna

Our theory can now be applied to the finite length receiving antenna
with the understanding that only the average (over the circumference) z-
directed current is obtained. As noted by Kao [18] specifically for normal
incidence of the plane wave, this zero-order curreant is not coupled to any
higher order variations of the current with respect to the azimuthal angle,
¢, and may be considered independently from these higher order currents.
Rispin and Chang [19] have also moted this to be true for arbitrary polari-
zation and arbitrary incidence of the uniform ﬁlane wave.

The constituative currents on a finite length (-h < z < h), cylindri-
cal receiving antenna with radius, a, are shown pictorially in Figure 15.
Beginning with the plane wave induced primary current, E;V(ei;z), shown in
Figure !5a, the reflections of this current from the end at z = -h and
the z = +h end are determined to bhe —V(n—Oi;h)R(Gi)U(Oi,h+z) and
-v(ei;h)R(n-ei)U("-ei’h-z)’ respectively, as illustrated in Figure 15b.
These reflected currents then propagate toward opposite ends of the cylin-
der (analogous to waves incident at an angle 7 with respect to a parti-
cular end) at which point they reflect again as —V(n-ei;h)R(ei)U(Oi;Zh)
R(w)U(B;h-z) and —V(Gi;h)R(n-Oi)U(n—ei;2h)R(n)U(n;h+z), respectively.
Continuing this procedure leads to an infinite number of reflected currents

eminating from each end of the cylinder, as suggested in Figure 15c. The

infinite series expressing the current reflected from a particular end of
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the cylinder are in the form of simple geumetric series which may be readily
summed. Hence, we arrive at the followiny expression for the total exter-

nal current on the finite length cylindrical receiving antenna,

IR(ei;Z) = Eé{V(Gi;z) - V(n-ej,h)R(~i)U(ei;h+z) - CR(n-ei)R(n)l;(ﬂ,h+z)

- V(8 shR(1-0 DU (-0, h-2) - CR(ei)R(n)U(n,h-z)} (35)

where

Ry = [V(Gi;h)R(n-ei)U(n~ei;Zh)R(ﬂ)U(ﬁ;Zh)-V(n—Gi;h)R((i)U(ei;zh)]
1 1 - [R(DUGm;2m]2

(36)

represents the total incident current (with an analogous wave incidence of
ei = 7) upon the end z = +h due to current reflections eminating from the
end at z = ~h. CR(W—Gi) has a similar interpretation with the ends
interchanged. The terms involving R(ei)U(ei,h+z) and R(n—ei)U(n-Gi;h-z)
represent the initial reflections of the primary current wave incident at
the angles, ei and T - 91, respectively. Thus, except for the primary
term, V(Gi;z), all the other terms in (35) represent reflected currents
from the ends of the cylinder. Our expression for the receiving antenna
current in (35) agrees in form with that of Weinstein [2] and can be shown
to be consistent with our earlier result in [17] under the conventional
thin wire approximations. A complete formal agreement between our result
and that of Shen [7] occurs only when the terms U(ei;z) and U(n—ei,z)

in (35) are approximated by Us(z) in (20) with the constant, g, deleted.

The approximation of these terms in this manner is implicit in Shen's [7)

analysis.
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The limiting form of the current on o finite length receiving antenna
as the angle, ei, approaches grazing incidence, i.e., ei + 0 or 7m, based
upon both approximate forms of U(ei;z) in (9) and (13) is discussed in
Appendix D. And it is found that, while our theory is not expected to be
valid in this range because of the upparent violation of the restriction,
Q(z) >> |1n(v0)t in (8), the approximate jorm of U(Oi;z) in (13) actually
produces the very physically acceptable result of a vanishing current as
ei+o or w. Also a smaller, magnitude-wise, result for the current near r
the ends of a cylinder for a fixed incident angle, 61, is obtained in
Appendix D, when (13) is used for U(Oi;z) rather than (9). These con-
siderations are very important in tie cases when the incident angle Fi

is near grazing, i.e., ei =0 or m, and when the length of the antenna

becomes electrically short.
And, finally, we note the symmetrical behavior of (35) with respect

to the incident angle of the uniform plane wave and the position, z,
R R
T(0,5-2) = T (=0 ;42) (37)

5.2 Finite transmitting antenna

In much the same manner, the current on a finite length (-h < z g +h)
cylindrical transmitting antenna of radius, a, due to a delta function
voltage source of strength, VO’ at z =z, (see Figure 16) may be
expressed in terms of a primary current and the multiply reflected currents
from thc ends. Figure l6a illustrates the primary current, which we shall
approximate by Us(lz-zol) from (20), eminating from the delta function
voltage source at z = 2. These waves are incident upon the ends of the

cylinder at an angle of 7 respective to the particular end. Hence, the

initial reflections of the primary current from z = -h and 2z = +h are,
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—VOUs(n,h+zO)R(n)U(n,h+z) and -V Us(n,h—zo)R(n)U(ﬂ,h—z), respectively, as is

]
shown in Figure 16b. The reflections of these currents from the respec-
tive opposite ends and the subsequent reflections which follow (Figure

16¢c) lead to a pair of infinite series, which are again summable. The

ke e o 0o e .

final result for the transmitting current distribution is given by,

T
1 (zo;z) = VO{US(lz—zol)
_ Us(h+zo)R(n)U(n;h+z) - CT(h+zo)R(n)U(n;h+z)

= U_(h-z JR(MU(n3hz) - cT(h-zO)R(n)u(n;h—z)} (38)

where
\
U (2)[R(m)u(n;2h)]2 - U _(2h-z)R(m)U(n;2h)
CT(Z) = =2 - : (39)
1 - [R(m)U(n;20)]?2
represents the sum of the currents incident upon the 2z = -h and +h ends

of the antenna when 2z is taken as h+z0 and h-zo, respectively, due to
current reflections eminating from the opposite end. Note that the initial
reflection of the primary current from each end is explicitly stated in
(38), the overall form of the transmitting current expression being the
same as that for the receiving current in (35). Our transmitting current
expression in (38) can be shown to be equivalent in form to those of many
other authors [1, Sec. 35.7], [2], [6] and others.

However, unlike the expressions of these authors, our expression is
more general and flexible, since we claim it may be used for electrically

short as well as electrically thick antcnnas as long as the basic condi-

tion in (8), Q(z') = 2 1In(2z'/a) <= lln(Zkz')I is satisfied (note here
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z' refers to the distance to the source, z-zo, and the distances to the

cylinder ends, h+z and h-z) and appropriately accurate values of R(m)

are used. And in this report, we often take the nominal measure, z'= h.
We note the symmetry in (38) with respect to the source and observa-

tion points, i.e.,
T T
I (zo;—z) =1 (—zo;z) (40)

An approximate formula for the input admittance of an asymetrically
driven cylindrical antenna of length, 2h, obtained by setting z=z0 and
V0 = ] volt in (38) is given by

Y = - =
yn =~ G - 1B US(O)

- Us(h+zo)R(n)U(n;h+zo) - CT(h+zo)R(n)U(n;h+zo)
- Us(h-zo)R(n)U(n;h-zo) - CT(h-zo)R(n)U(n;h-zo) (41)

Here G 1is the input conductance and B is a "relative" input suscep-
tance. The qualification to a "relative' input susceptance is necessary,
due to the fact we employ a delta function voltage source for the excita-
tion and the mathematically predicted behavior of the imaginary part of
the input current for this excitation should exhibit a logarithmic singu-
larity [20] and [21]. This singularity would indicate an infinite capaci-
tance, the so-called "knife-edge capacitance" [22]. However, the parti-
cular way in which the primary current term, Us(z), was derived (discussed

in Section 3.2) does not allow the possibility of such a singularity in

this current at the source. In a realistic sense, though, this glice
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capacitance is due to an idealization in the mathematical model rather
than a physically occurring phenomenon in the practical situation and in
general does not pose any difficulties in experimental studies. Thus,

the absence of such a singularity in our formulation is not unwelcomed.




6. Approximate expressions for the intcrnal currents on cylindrical
antennas

Thus far our theory has considered only the external current distri-
butions on cylindrical antennas, hence, it is appropriate at this time to
include a complementary discussion of the current distributions on the
internal walls of receiving and transmitting cylindrical antennas. By

combining the external and internal current distributions, the total cur-

rent on the antenna may be found. But a more important use of a knowledge

of the internal current occurs in some electromagnetic compatibility
studies where it is desirable to know the amount of penetration into a
long thin metallic enclosure. In many cases, the penetration is into the
end of a cylinder and one needs to know the induced current on the inter-

nal wall of the cylinder.

6.1 Internal current on a semi-infinite receiving antenna

The TMOn mode currents on the internal wall of a semi-infinite

(0 £ z £ =) cylinder due to a plane wave incident at an angle, 6,, are

i
easily determined by a Wiener-Hopf analysis [17, Eq. 27) to be given by

R . o el . 29. 9 : -
{Ism(ei,z)}int = Ee V(ei,O) [Zn (l-cos .l)K+( k cos 91)]

A
8

K (_Q)e—iaz
R “da;0<z
¢ (k+a)(kcosei+u)K(a) > s

1 0

A
@
1A
E}

(42)

where E;V(ei;o) is the incident current at the end and is given in (15).

The contour, Fl, is shown in Figure 1 and K, 1is the "plus" factor of

K(a) 4in (4), which 1s discussed in Appendix C. Since the contour, T

l’

encloses only simple poles of [K(a)]-!, the integral may be easily
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evaluated and (42) may be written in the form,

R i © “Yon?

{Isw(ei;z)}int = E; V(8,;0) n=z-1 T,,(8,)e (43)

where TOn is a transmission coefficient given by,

k (YOn—ik)
T0n(ei) = +i 0} (l-cosei)K+(-kcosei) (v +ikcoss ) K+(1y0n) 44)
On " On i
and,
= i 2 _ k2

iy , = 1 7, /a)2 - k (45)

is the propagation constant of the TM circular waveguide mode. And

On

finally, is the nzh ordered zero of the Bessel function, J

Pon 0’
Several approximations are possible to allow us to state the internal
current in a more convenient form. The first of which is from the approxi-

mate splitting of the asymptotic form of the kernel, K(a), for large aa

and is given by

K+(a) = Vi/(k+a)a ; for oaa large (46)

Numerical data comparing (46) with the exact value of K+(a) from the
formula of Mittra and Lee [15, Sec. 5-2.(3)] has shown good agreement
for a 2 1y,, up to ka = 1.0 . Also for e-YOnZ <<1, the infinite sum
may be truncated at n=N and the subsequent loss of information for the
smaller values of z may be somewhiat compensated for, by approximating

the summation in (43) at 2z=0 wusing relcvant Taylor series expansions

for ka £ 1 in the manner described in Appendix E. The summation in (43)
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may then be approximately written as

4
1 - (ke ika)™. =
5 (1-cos0)K, (~kcos ) ) §,(8,)(ika)"; 2z=0

m=1
L -] —'\( V4
On~ _
) Toy © = (47)
n=1 N -Y. z -Y_ z
On . On
Z Ton(8:)e ;e << 1
n=]
where
sl(ei) = 0.5831 (48)
1
sz(ei) = -0.1364 [2 + cos ai] (49)
S,(8.,) = -0.0498 [l'— 1 cos 6, ~ cos?¢,] (50)
3Vi 8 2 i i
- S 11 _ L 20 - 3
Sa(ei) = 0.0198 [16 + 5 cos 0, 5 €0s°6. - cos Bi] (51)

which is sufficiently accurate for most cagineering applications up to

ka = 1.

6.2 Internal currents on a semi-in! inite transmitting antenna

The current which penetrates into the end of a semi-infinite

(0 £ z £ ») cylindrical transmitting antenna having a delta function

voltage source of strength, V_ volts, at z=z is associated with T™ n

0 0 0

circular waveguide modes and may be written in an analogous manner with

respect to the receiving case as,

-iaz
K (-a)e
T T. . - ik _* .0 < ©
{Ism(z)}1nt = Iw(zo,o) p. K+(k{J J 07=aD)K(a) da ; 0 <2z ¢ (52)

n
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where Iz(zo;o) is the incident current from (19) at the end. Again
the contour, Fl, is given in Figure 1 and K+ is the plus factor of

K(a) 1in (4) discussed in Appendix C. The integral may be evaluated ex-

actly by finding the residues of the poles of [K{a)]~™! enclosed by Fl

and (52) may then be approximated by,

T _ = -YOnz
{ISw(z)}int B VOUS(ZO) nZI TOn(n) ¢ (53)

where we have replaced the exact incident current, Iz(zo;o) with the

approximate quantity, V Us(zo) from (20). T and vy have been de-

0 On On

fined in (44) and (45), respectively. Again, as in the receiving formula-

tion, we may approximate the summation in (53) with the expression in (47,.
It should be noted that there would also be internal wall currents

on the semi-infinite transmitting antenna which would not come from pene-

tration at the cylinder end but rather would be excited directly by the

source. For a delta function voltage source, this internal current can
be shown to possess a logarithmic singularity at the feed-point similar
to the logarithmic singularity of the external current at the input. For

a more realistic excitation, such as a finite gap, however, the internal

current would be well-behaved everywhere and would be directly related to
a capacitive susceptance component (assuming there to be negligible radiation

-y..z
01’0 . 1)

from the open end of the cylinder which in turn implies, e
of the overall input admittance. And since we have not addressed ourselves
to the task of specifically defining a "realistic" input susceptance, the

internal current in the vicinity of the voltage source and its effect on

the input admittance will not be pursued any further in this report.
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6.3 Internal current on a finite-l.ngth receiving antenna
From the external receiving current oxpression in (35), we mav write
the internal penetrating current near =z - -h wusing the transmission

characterization in (43) as,

. (h+z)

R “Yon

i , , R : ‘
18552 = Eg Zl WVm=0,,+h) Ty (1) + C(1=0,) Ty (1)} e

3 2 = -h (54)

while the penetrating current near the opposite end at z=+h 1is obtained
by replacing ei with W—Gi and (h+z) with (h-z) in the above ex-
pression. The first term in the {brackets} above corresponds to TMOn
mode currents on the internal walls of the cylinder due to the primary
current term, E; V(n—@i;+h), while the second term corresponds to TMOn
mode currents due to the total external current incident upon z=-h
arising from reflections eminating from the opposite end at =z =+h.
These latter currents are analogous to waves incident at an angle,
ei = 1., Hence, the transmission coefficient for these incident currents
is evaluated at ei = n, The expression in (47) may be used to approxi-
mate the summations in (54), thereby reducing the computational efforts
required to find the internally penetrating current. Note, it is implicit
in this formulation, that there is no internal interaction between the
Yo 2h

ends of the cylinder, thus implying that e << 1,

6.4 Internal current on a finite~length transmitting antenna

The internal penetrating current near the ends of a finite length

(-h s z £ h) cylindrical transmitting antenna may be obtained by applying

the transmission characterization in (53) to the respective incident

currents from (38) with the result,




o N VT r

Yy (h*z)
YT (n) e VP (55)

n=1 On

Analogous to the receiving case, the rirst term in (55) corresponds to

TMOn mode currents on the internal walls of the cylinder due to the
primary current, VO Us(lz - zOI) at z=7h while the second term
corresponds to TMOn mode currents duc to the total external current

incident upon z=7h arising from reflections eminating from the opposite
end. Again, (47) may be used to approximiate the summations in (55) and
“Yo1(h*2() .

the restriction, e << 1, is also implied in this formulation.

6.5 End conductance of a finite length cylindrical antenna

A quantity related to the internally penetrating current on a cylin-
drical antenna is the input conductance for a TMOn mode incident upon
one of the ends of the antenna. Unlike the cases treated by Weinstein
[2, Chap. 1], Levin and Schwinger [23], Jones [24] and others, our analysis
for the end conductance, discussed in Appendix F, deals with a TMOn mode
under cut-off, the radiation in this casc necessarily coming from tunneling.

\

The end conductance in this situation is relevant and very important to
EMC studies involving the penetration into the end of a cylindrical en-
closure [25]. A detailed discussion of this quantity is left to Appendix
F, where the end conductance as seen by an evanescent TM mode inside

On

and near the end of a finite length cylinder based upon Wiener-Hopf

analyses and the multiple reflection concept is derived.
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Section 7 Numerical results for the finite length cylindrical antenna

Due to the restriction our theory places upon the electrical radius
of ka <1, the currents on the internal wall of the finite length
cylindrical receiving or transmitting antenna are, in general, very much
smaller in magnitude than the currents on the external wall, except in
the near vicinities of the ends. From Section 6, it may be ascertained,
that the internal current is significant only within a distance, 2a,
(equal to one cylinder diameter) from cither end. And since we cannot
rely upon results from our external current expressions so close to the
ends, where the internal currents are significant, the formation of total
current distributions from the combinations of our receiving and trans-
mitting external current distributions in (35) and (38), respectively,
with the corresponding internal current distributions in (54) and (55)
would be of little advantage. Hence, in mest cases. the external current
formulas in (35) and (38) will be sufficien. to describe the current
distribution, whether it be the total or external only, on finite length
receiving or transmitting antennas, respectivelv. Un the other hand, the
internal current distributions given in (54) and (53) for the finite
length receiving and transmitting cylindrical antennas may be accurately
calculated using the approximate formula in (47) at practically . v point

on the antenna.

7.1 Current distribution on a receiving antenna

In order to examine differences in our receiving theory resulting

from the use of either approximate form of U(Si;z) in (9) or (13) we

have included Figure 17 which shows the magnitude of the induced current

at the center of a receiving antenna where (h) = 10, illuminated by
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a normally incident (ﬁi = TM/2) plane w.ve polarized parallel to the
antenna as a function of the electrical length, using both {(9) and (13)
in the finite length receiving antenna current expression in (35). As

expected, the agreement between both results is very good except near

rntiar s - ——— o gt et

resonances and anti-resonances. And comparisons with existing analytical r
and numerical results for cylindrical antennas in which the condition,
Q(h) >> ]Zn(v0)| in (8), is satistied, have indicated that our theory
yields slightly better results in almost every case when (13) is used
for U(Gi; 7. For these reasons, in what follows we shall present only
results obtained from the use of (13) for U(Gi;z) in the receiving
and transmitting expressions in (35) and (38), respectively.

The current distributions on a half-wave, kh = 7/2, receiving

antenna where Q(h) = 2 2n(2h/a) = 10 for the incident angles,

ei = 7/36, w/6, /3 and T/2 as calculated from (35) are shown in
Figure 18. For comparison, first order results from the King-Middleton
theory [11, Chap. IV, Sec. 7] and results from King's three term theory
[5] for the normal incidence case, ei = 7/2, are also shown. The
agreement between the latter King theory and ours in this particular case
is excellent. And the overall agreement between all theories is quite
acceptabla. We note that in spite of the condition in (8) which requires
(h) = 2 2n(2h/a) >> IQn(vo)I » the current distribution predicted by our
formulas in the near-grazing situation, ei = n/36 , is at a physically
anticipated small level. This is further exemplified in Figure 19, where
for the same antenna as in Figure 18 the currents at z =0, h/3 and
2h/3 are illustrated as a function of the incident angle, 61 . And we
note the near sinusoidal variation of the current with respect to the

incident angle, 6

g as would be expected for a thin haif-wave dipole.
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Figure 18.

Current distribution on a thin half-wave receiving antenna

normalized to the incident electric field and the wavelength,

i.e., IR(ei;z)/AEé .

%

—— —— —— —

— —— = -

n/2
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[11, Sec. 1V.7]
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The currents on the internal walls of 1he same receiving antenna

(kh = /2, Q(h) = 10) at the end, 2z = -h, and slightly away from the
end, z = -h + 2a, as calculated from (54) with (47) are shown in

Figure 20 as a function of the incident angle, Gi . The internal current

at the end, z = -h, represents an infinite summation of all the TMOn
mode currents at this point and is equal in theory to the negative of the
external current at this end. While the internal current at =z = -h + 2a
is predominantly associated with the TMOl circular waveguide mode, all
the higher order modes being much more attenuated at this point. Thus
beyond z = -h + 2a , the internal current will decay essentially as
e-yOl(h+z).

The current distribution on an electrically thick (ka = 1.0)
receiving antenna three wavelengths in length as calculated from (35) is
shown in Figure 21 for the incident angles, 8i =n/36,n/6 ,n/3, and

m/2 . Note that this distribution corresponds only to the external

azimuthally uniform z-directed current on the cylinder. Note also that

since Q(h) = 2 fn(2h/a) = 5.87 and IZn(vo)l = 2.64, 0.93, 2.24, and g
'; 3.63 for the respective angles considered, the condition that
Qh) >> Iln(vo)l as originally required in the analytical development,
no longer holds. However, the correspondence with the data from Wu, et al.,
[35) based upon the integral equation and product integration formulation
of Kao [18] for the azimuthally uniform z-directed current also shown in
Figure 21 for the same antenna with a normally incident plane wave is
surprisingly good. Again we briny attention to the relatively small level
of current on the antenna predicted by our theory at near-grazing
incidence, 6i = 1/36. The behavior of the current at z = 0, h/3 and

2h/3 with respect to the incident angle, 6:l » 18 shown in Figure 21 and
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Figure 20. Internal current at thc end and slightly within the end
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incident angle, 61, calculated from eq. (35) with (13)
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is seen to exhibit the physically expected result of zero current atc

grazing incidence, ei =0 and ¥ . The currents on the internal walls

of this receiving antenna (kh 3m, ka = 1) at the end, z = ~-h, and

slightly away from the end, z = ~h + 2a, as calculated from (54) with

(47) are shown in Figure 23 as a function of the incident angle, 61 .
Comments similar to the ones given for the internal currents illustrated

in Figure 20 are also applicable to this much thicker and longer antenna.

7.2 Current distribution on a transmitting antenna

As discussed at the beginning of this section, the total (internal
+ external) current distribution on those cylindrical antennas (both
transmitting and receiving) for which out theory is applicable is for all
practical purposes given by the external current distributjion alone,
except in the near vicinity of the ends. An additional exception to this,
which is particular to the transmitting antenna, is the region very close
to the source where internal currents are directly excited by the source,
itself. A brief disucssion of this localized internal current has
already been given in Section 6.4, where it was deemed inappropriate to
pursue an in depth study of this current, which is of secondary importance.

The current distribution on a center-driven half-wave antenna where
f2(h) = 2 &n(2h/a) = 10 as calculated from (38) is shown in Figure 24
along with corresponding data from the three-term theory of King [5] and
the approximate second order iteration procedure of King and Middleton
[11, Chap. II, Sec. 22]. The agreement between our results and the latter
theory with regard to the real component of the current is excellent.
And although the agreement between the imaginary components is acceptable,

the discrepancy here was not totally unexpected since in the process of
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Figure 24. Curreat distribution on a Lhin, center fed, half wave

transmitting antenna.
from eq. (38) with (13) used for U(TW ;z).

—_—— approximate sccond order King-Middleton theory
[11, Chap. II, Sec. 22]

~— — — — King three-tera theory [5]




60

achieving an accurate value‘fqr the real component of the primary current
discussed in Section 3.2, a less accurate 'physically acceptable" value
of the imaginary current near the source resulted. The correspondence
between the three-term theory of King (which may be judged to be less
accurate [5] than the King-Middleton results) and our theory is also
quite acceptable.

Perhaps more important than the transmitting current distribution,
is the input admittance to the antenna. Therefore, in Figures 25 and 26
we show the input conductance and susceptance, respectively, as calcu-
lated from (41) for a center-driven cylindrical antenna where
(h) = 2 gn(2h/a) = 10, as a function of the electrical length, kh .
Corresponding admittance data from the three-term theory of King [5] and
second order results from the iterative method of King and Middleton
(11, Chap. II, Sec. 30] are also shown in these figures. The agreement
between the conductances predicted by all three theories in Figure 25 is
seen to be very good. The agreement between the input susceptances is
also very good for the smaller values of kh where the "realistic"
imaginary component of the primary current is small compared to
imaginary current arising from the multiple reflections from the ends.
At the larger values of kh, where ka 1is proportionally larger, we
find larger discrepancies between our results and the King three term
and King-Middleton results. Here the imaginary component of the primary
current significantly affects the overall input susceptance. And since
our approximate expression for the primary transmitting current in (20)
is not expected to accurately estimate the "realistic" value for the

imaginary input current, this discrepancy will also appear in the finite

length antenna susceptance calculated from 741) in which (20) is used.
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However, in practical situations the input susceptance may be eliminated

by appropriate matching leaving the input conductance essentially

unchanged and the most important quantity of consideration.

§ To provide further comparison of our theory with existing approaches

; we offer Figure 27 which shows the input conductance to a center—driven
cylindrical antenna where the rztio of antenna half-length to radius is
h/a = 100 as calculated by (41) and the corresponding numerically
evaluated (via the moment method) results of Harrington and Mautz [26].
The agreement between our results and the accurate numerically-determined
data is excellent. Further evidence to subsfantiate our theory is given
in Figure 28, which is the same as the previous figure except the driving
point is now located at =z = th/2 . Excellent correspondence with the
numerically determined data of Harrington and Mautz [26] is once more
attained.

We extend our considerations to much thicker antennas with Figure

29, which shows the input conductance of cylindrical antennas as calcu- 1
lated from (41) for the radii normalized to wavelength, a/X = 0.0159,
0.078, and 0.164 (ka = 0.1, 0.49 and 1.03, respectively) as a function i

of the normalized half-length, h/A, between 0.1 and 0.5 . And

3 although these antennas are out of the applicable range of our theory due
to the basic condition in (8), we find behavior still consistent with the
numerically-obtained results of Chang [27] and [28] (one-sided delta
function excitation data), and the experimental results of Hartig [29].
This further enhances the feeling that thederived result actually has a

. much wider application than had been assumed analytically. And we note the
very good agreement between our theory and the others for the larger values

of h/), where the ratio of h/a is also larger.
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However, in practical situations the input susceptance may be eliminated
by appropriate matching leaving the input conductance essentially
unchanged and the most important quantity of consideration.

To provide further comparison of our theory with existing approaches
we offer Figure 27 which shows the input conductance to a center-driven
cylindrical antenna where the rztio of antenna half-length to radius is
h/a = 100 as calculated by (41) and the corresponding numerically
evaluated (via the moment method) results of Harrington and Mautz [26].
The agreement between our results and the accurate numerically-determined
data is excellent. Further evidence to subsfantiate our theory is given
in Figure 28, which is the same as the previous figure except the driving
point is now located at z = th/2 . Excellent correspondence with the
numerically determined data of Harrington and Mautz [26] is once more
attained.

We extend our considerations to much thicker antennas with Figure
29, which shows the input conductance of cylindrical antennas as calcu-
lated from (41) for the radii normalized to wavelength, a/X = 0.0159,
0.078, and 0.164 (ka = 0.1, 0.49 and 1.03, respectively) as a function
of the normalized half-length, h/A, between 0 1 and 0.5 . And
although these antennas are out of the applicable range of our theory due
to the basic condition in (8), we find behavior still consistent with the
numerically-obtained results of Chang [27] and [28)] (one-sided delta
function excitation data), and the experimental results of Hartig [29].
This further enhances the feeling that thederived result actually has a
much wider application than had been assumed analytically. And we note the

very good agreement between our theory and the others for the larger values

of h/), where the ratio of h/a 1is aiso larger.
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The application of our theory to the thicker cylindrical antennas is
more successful when the antenna length is significantly larger than the
antenna radius. Hence, the input admittance to a center-driven cylin-
drical antenna having a half-length to radius ratio of h/a = 10 as
calculated from (41) is shown in Figure 30, as a function of the nor-
malized length, 2h/\A . Comparison of this data to the numerically
obtained results of Harrington and Mautz [26] also included in the
figure is very good, even near 2h/A = 2.0 where the electrical radius
approaches ka = 1.256. This value of electrical radius is slightly
beyond the range of our formulas, however, because the attenuation rate
of the secondary currents on an electrically thick cylinder is so pro-
nounced, as may be observed in Figure 14, the input conductance for the
finite length electrically thick antenna is predominantly determined by
US(O) in (20), which obviously still predicts the input conductance of
an infinite cylindrical antenna to a sufficient degree of accuracy.

Further, we offer Figure 31, which is similar to the previous
figure except the feed point is taken to be at zy = +h/2 . Again the

agreement with the numerical moment method results of Harrington and

Mautz [26] is quite good.
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Section 8 Electrically short cylindrical antennas
T

8.1 Short receiving antenna

The current distribution on an electrically short (kh = 0.4) thin
(R(h) = 2 %n(2h/a) = 10) cylindrical receiving antenna calculated from
(35) with (13) is shown in Figure 32 for the incident angles of the
uniform plane wave of Si =7/36,71/6 ,%/3, and T7T/2 . For comparison
the current distribution for normal incidence (Oi = m/2) predicted by
the short antenna theory of King [11, Chap. IV, Sec. 7] is also shown.
The agreement between the two normal incidence magnitude distributions
is quite acceptable, especially in light of the fact that the basic con-
dition in (8) is only moderately satisfied, i.e., Q(h) = 10 while
|2n(2kh)] = 0.92 . On the other hand, the phase of the current predicted
by our theory is less than 90° along most of the antenna as opposed to the
phase predicted by King which is always slightly more than 90°. However,
since the phase of the receiving current is quite inconsequential compared
to the magnitude in most applications, this slight inconsistency is not
seen as a serious drawback to our receiving theory.

The behavior of the current at the positions z =0, h/3, and
2h/3 on the same electrically short (kh = 0.4 and Q(h) = 10) receiving
antenna just discussed is shown in Figure 33 as a function of the incident
angle, 61 . The sinusoidal variation of the current at each position,

with respect to the angle, 6 is readily apparent in this figure and

i ?
is consistent with the expected behavior.

8.2 Short transmitting antenna

Figure 34 illustrates the current distribution on an electrically

short (kh = 0.4) thin (Q(h) = 2 2n(2h/a) = 10) center driven cylinder
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calculated from (38). Also shown in this figure is the current distri-
bution on the same antenna as predicted by the short antenna theory of
King [11, Chap. II, Sec. 31]. The agreemeat between our result and that
of King is, in general, fairly good, especially since we have again only
moderately satisfied the basic restriction in (8). Of particular
interest here is the inability of our formulation to predict an accurate
real component of current at the source. This situation results from
the fact that our transmitting current formulation in (38) is good only
to (Cw)'2

antennas is given by higher order terms. We may easily recover the input

for short antennas, while the input conductance for these

conductance, however, by turning to the input conductance formulation of
Chang and Rispin in [30} which is based upon the effective aperture of the
antenna and requires a knowledge of only the magnitude of the receiving
current on the same antenna illuminated by a normally incident uniform
plane wave. Their approximate result for the electrically short receiving

antenna may be written as
k2 R i,2
6= ngr [T(n/2,2y)/E] (56)

where IIR(n/Z ,z)/Eé[ is the magnitude of the receiving current nor-

malized to the incident field, at the feedpoint, zg due to a normally

incident (6i = 1/2) plane wave. As seen in the previous sub-section,
the magnitude of our receiving current is of sufficient accuracy for these
short electrical lengths to permit the above calculation. Figure 35 shows
the input conductance predicted by (56) using our receiving current
formula in (35) along with comparable data from the short antenna theory
of King [11, Chap. II, Sec. 31] for electrically short antennas charac-

terized by Q(h) = 2 ¢n(2h/a) = 10 as a function of the electrical
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length, between kh = 0.1 and 1.0. Obviously the rwo theorics appear
to be in relatively good agreement. Thus, even though our transmitting

current formula in (38) failed to yield an acceptable input conductance

for the electrically short cylindrical antenna, the alternate procedure

described above that relies upon our complementary receiving current

formula in (35) has yielded successful results.




9. Concluding remarks

! Through a re-examination of the conditions necessary to obtain =imple
asymptotic solutions based upon a Wiener-Hopf analysis for the reflected
i current distribution on semi-infinite tubular cvlindrical antennas, we have
broken away from the traditional "thin wire" assumptions, ka << 1 and
3 kh > 1, and extended these asymptotic Wiener-Hopf solutions to include
antennas as thick as ka = 1 and as short as kh = 0.4 . These extended
solutions have been derived subject primarily to the satisfaction of the
' condition, Q(h) = 2 fn(2h/a) >> | %n[2kh sin’ (0,/2)]}. Although for the
thicker antennas, we have observed a significant relaxation of tl is condi-
tion. Our simple receiving current formula is applicable for all angles of
; incidence of a uniform plane wave, i.e., 0 < Oi < 7, and we have con-
structed our simple transmitting formula in such a way so that an accurate
input conductance is obtained over our entire range of interest. Numerical
comparisocis of our theory with the work of many other authors have shoun
very good overall agreement. Hence our theory, which requires primarily
only arithmetic calculations, permits easy and inexpensive calculations of
the current distribution on cylindrical transmitting and receiving antennas, i
thus providing an excellent basis for statistical and transient studies.

As a corsequence, the transient aspects of a cylindrical antenna based upon

™~

our present theory shall be covered in a forthcoming report.

yé Although only the unloaded transmitting and receiving antenna has been h
; analyzed in this report, the extension to the loaded situation in both cases 1
;ﬁ is straightforward. The voltage developed across a load admittance. Y , '
% located at =z = z, along a cylindrical transmitting or receiving antenna ﬁ
?} would be given by VE = -IE(ZO;ZQ)/YQ or Vs = —I?(Ui;zq)/T' , respectively, g
where IE(ZO,ZQ) and I?(Oi;zg) are the transmitting and receiving currents, H
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respectively, at z = zy in the loaded situation. The potential difierence
across z = zg in either the transmitting or receiving situations acts as

a voltage generator for which ‘our transmitting antenna theory can be used to
obtain the current distribution. Adding this current distribution to the
unloaded current distribution yields the total (external) current distribu-
tion which may in turn be solved at z = z, to obtain IE(ZO;ZQ) or
Ig(ei;zg) . Subsequently the loaded receiving and transmitting current
distributions may be written as [11, Sec. IV.7],

R T, ..
I (ﬂi’zg) L (ZQ.&)

R R -
I(6.52) = 1(6,;52) - — (57)
g7 i Y!I,+Yin(ZQ) VO
and,

1 T

I1'(z.:z.) 1 (z_ :z)
T T 0°'71 £
1 (z.,;2) = I (2,32) - g— & (58)
2% 0 Y, R () Vg

respectively. The unloaded receiving current, IR(Ui;z) is given in (35)
and the unloaded transmitting current, IT(ZO;z) in (38). The term,
IT(zl;z)/V0 , corresponds to the transmitting antenna current distribution
due to a voltage source of unit strength at =z = zQ . And Yin(zﬁ) is the
input admittance to the antenna at = = z, which is approximately given by
(41). Although (41) has been shown to give an excellent result for the
input conductance, i.e., Re{Yin} , the input susceptance, —lm{Yin} from
(41) is subject to error. Thus in some cases a more accurate expression for

the input admittance Yin(z may be desired. The error in our admittance

Y
formula in (41) comes mainly from the inaccurate prediction of the input
susceptance by US(O) for an infinitely long antenna. For the smaller values

of ka (ka < 0.1) the imaginary part of the term, —US(O) in (41), may be

replaced by the susceptance formula of Fanté [21], which has been shown to bhe

a good approximation for the input susceptance by Miller [32] and may be




written as,

B = - 3‘;3 20 (ks) (59)

oo

where & 1is the physical width of the load region and is assumed to be very
small. As noted by Miller [32], the input conductance to an infinite
cylinder is relatively insensitive to variations in the gap width, &, when
§ 1is small compared to the cylinder radius, a . Hence, Re{US(O)} may

be retained in (41) to determine the infinite cylinder input conductance.
The current distributions on antennas with multiple-loads can be found by
generalization of the single-load approach outlined here.

Another quantity of interest for which our approximate cylindrical
antenna theory proves useful is the far field radiation pattern of a
cylindrical transmitting antenna. It is well known that the far field
radiation pattern of a transmitting antenna bears the same angular de;en-
dencies as the received current at the same feed point when the antenna is
used as a receiving element. A derivation of this principle as applied to
the cylindrical antenna is contained in Appendix H. From Appendix H, we
have the far field radiation from a finite length, -h < z < h, cylindrical
transmitting antenna with a delta function voltage source of strength, V

0

volts, at z = z0 given in terms of,

, ikr L(1-03;20)
- *ikn e S U
Ee(r,6,¢) = - VO Ei 1 kr >> 1 (60)
9

(r,0,¢) refers to a spherical co-ordinate system coincident with the
cylindrical co-ordinate system implied in Figure 16 , i.e., the positive
z-axis corresponds to © = 0 . And IR(ﬂ-G ;zo)/E; is the received current

at z = 2z

g ©n the same antenna when illuminated by a uniform nlane wave of
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unit amplitude incident at an angle, 7T-60 |, with respect to positive
z-axis. Hence the far field radiation from a transmitting antenna ma_ be
approximately determined from (60) using our approximate formula for the
receiving current distribution in (35) for the same antenna parameters.
For example, for a center-fed, zy = 0, transmitting antenna where
f(h) = 2 &n(2h/a) = 10 and kh = 7/2 (the approximate current distribution
of which is shown in Figure 24), the far ficld radiation is shown in the
z = 0 curve (apart from the constant ii%? exp(ikr) ) of Figure 19 with
Gi replaced by w-6 . Similarly all of the receiving antenna current
distributions shown in graphical form in this report may be related to the
far field of the same antenna when it is used as a transmitting element.

The basic approach utilized in this report to develop a simple approxi -
mate cylindrical antenna theory is currentlv being applied to other types
of linear antennas, such as the co-axial and pargllel thin-wire antennas.
Results of this research should appear in the not-too-distant future.
In the same respect, since our present theory deals only with the azimuthally
uniform axial current on cylindrical antennas, a further extension of our

theory which also considers the higher-order variations of axially-directed

currents as well as the circumferentially-directed currents is currently

being prepared.
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Appendix A. Approximate solutions for the canonical integral. U(Ui;z)

Before the "so-called" canonical integral for U(Oi;z) in (3) is
considered, let us first of all begin with the closely related auxiliary

canonical integral, W(Gi;z) , given in (6) and repeated here,

K (‘a)e-iaz
-ik +
W(0y32) === (L-cos 6,) L, (k39 (k cos 8, +oR(o) *
0
0<z<w, 00, < (A1)
where,
- s (L
K(a) = 1nJO(Ea)HO (£a) (A2)
and
£=/k®-0? = ih? K2 (A3)

K, is the "plus" factor of K(a) which is analytic and free of zeros in
the upper half o-plane, (see Appendix C), and the contour, FO , 1is
shown in Figure 1. We ghall find approximate solutions for W(ai;z) in

(Al) and a similar integral for U(Bi;z) ,which is stated later, that

require the satisfactiosn of the condition,
(2) = 2 tn(22/a) >> |tnl2kz sin®(0 /2)]] (AL)

Actually, the restrictinn in (A4), which will be referred to as the
"basic condition" on our analysis, expresses the most severe restriction
encountered in the derivation of the approximate solutions for the
canonical integral, U(ei;z) » and the auxiliary canonical integral,
W(Gi;z) . Many of the approximations to follow require lesser restric-

tions than the one in (A4) and, therefore, are automatically satisfied
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when (A4) is true.
Since K+(—a) is analytic in the lower half a-plane, combiiing
the contributions from both sides of the branch cut, which is due to

the term [l((o:.)]“l in the integrand, allows (Al) to be written as,

iu
el
E Ya(u - 12kz) ‘
q

1 1
+ du (AS)
e E /mﬂ N [% /'u(u—i2kz>”

ikz

e 1 1 1

W(e . ;Z) = f - = -—:—T“'— M
i 0 u u 1vUJ Jo

where the change of variable, a = -k - iu/z , has been utilized. Vo

is defined by,

vy = vo§ei;z) = 2kz sinz(Oi/Z) (A6)
and, \
-1/4 < arg(/G{u~12kz) ) < O (A7)

Due to the exponential decay of the integrand in (A5), the meaningful
range of integration is limited to the values of u of order unity or
less. And since the term K+(a) depends only upon the parameters, ka
and oaa, (see Appendix C for a discussion of K+(a) ) , then under the
basic condition in (A4) (which implies a/z << 1) the term

K+(k + iu/z) appearing in (A7) may be accurately represented by the
first term of its Taylor series expansion about u =10, i.e., K+(k)

This term may then be removed from the integrand in (A5) yielding,

W(ei;z) = K+(k)U(61;z) (A8)
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where U(Gi;z) is the canonical integral given by,

ikz > -u
e 1 1 e
U(ei,z) = IO 3

(u-1vg) 3o [% /u(u-iZkzv)-I

1
(AY)
(1) ( /h(u-—kaz) (2) {7 /h(u 12kz)] J

and is equivalent to the expression for U(ei;z) in (3) of Section 2.
The evaluation of U(ei;z) in (A9) requires numerical integration,

since an exact analytical solution to the integral involved ‘s not

known. Hence, we seek a simple approximate solution for U(Gi;z)

which possesses a wide range of applicability. To this end, we assume

the satisfaction of the basic condition on 2(z) in (A4), which allows

the Bessel functions in (A9) to be approximated by the leading terms

of their respective small argument expansions. The resulting approximate

expression for U(Gi;z) can be written as,

U(ei;z) T u(0;z) - u(d,;2) (A10)
where,
w(b,3z) = il R ] : LN
i’ n 0 (u-iv0) Qz) =2y +im - nfuu ~i2kz) ]
.
- 1. d (Al1
(z) = 2y - i7 - ‘nlu(u-1ikz)] | 9 )

and (Q(z) 1is given in (A4). The [bracketed] term behaves essentially
like a slowly-varying function, both magnitude and phase, over the
integration range, 0 < u < 1, where the incegrand has its major

contribution, except of course very ncar u = 0 . Thus, provided v

0
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)

is not very small, we can approximate (All) up to order [{(z)] ~ by,

jel*? 1
W@y32) = =5 [Q(z) - 2y - n(2kz) + i3n/2

1 -1V0 '
T Q@) - 2y - n(Zkz) - i'n'/“z] e El-ivy) (A12)

where El is the exponential integral of the first kind defined in
[16, Eq. 5.1.1].

The situation is somewhat different for the case when vy = 0
because the integrand now blows up at u = 0 . To evaluate tuis
integral properly, we must retain the logarithmic behavior of the
integrand near u = 0, while approximating the term n(u-1i2kz) byv
fn(-i2kz) . This procedure can be shown to lead to a solution for

u(0;2z) good to order [Q(z)]"2 consistent with the U(Oi;z) solution.

Proceeding, we obtain,

ikz p© -u
u(0;2z) = ie e 1
’ n o U Q(z) - 2y - n(2kz) + i37/2 - &n(u)

1 .
T Q@ - 2y < In(Zkz) - 172 < (W ] du (A1)

\

which has been previously given by Shen [6] whose subsequent solution
was based upon the observation that the integration of a smooth function
weighted by an exponential decay over an infinite interval can be
approximated by the unweighted integrarion of the same function over a

judiciously chosen integration range. The same result, however, can be

' obtained in a more straightforward manner if we replace u_l by
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o2}

J e-wu dw and interchange the order of integration in (Al3) which
1

yields,

ikz ® {°°
(032) = e dw e't N S
H(o; nol, v, 0(2) 2y ¥ Qu(w) ~ in(2kzt) ¥137r/2

)

1 ] dr b (A14)
i
J

T z) - 2y + en(w) - In(Zkzt) - in/2

Now since the term |fn t] is typicallv small compared with [Q(z)]
for t < 1, except very close to t = () where the integration is
rather insignificant, a two term Taylor series expansion followed by

straightforward integrations on t vyields,

w

ieikz ® dw
u(0;z) = [
1

1 Y
{Q(z) -2y +a W) -en(~-i2kz) +in [1 T Q(z) -2y + L w)-tn(-i2Kkz) +iT]

1 , _ Y ]
- Q(z) ~ 2y +n W)-An(-12kz) ~in [ 1 Q(z) ~2y +en w)-gn(-i2kz) - iq J}

(A15)

Now taking the [bracketed] terms in (Al15) as being the first two terms
of a Taylor series expansion of a function of the form [1-{—:(]—1 for
small x, the integrals in (Al5) can be evaluated to order Q)1 -,

with the result for yu(0;z) being given by,

ikz

Loy . e Qz) - y - in - fn(-12kz)
u(0:z) = —=— gn {Q(z) Iy ¥ in - Q,n(-iZkz)} (A16)
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(A12) and (A16) may be combined to give a solution for (A10) good to

order [Q(z)]—i which is given by,
~iv0
i ikz Q(z) -y -im - in(-i2kz) +e El(-ivo)
V(O 52) = S5 fn | o iy

g (A17)

)

‘z
Q(z) -y +1irv - 2n(-i2kz) +e OEl(-ivo) f
Note that, although this approximate expression for U(Oi;z) was
derived under the assumptions that Vo = 2kz sinz(Gi/Z) cannot be too
small and that [Q(z)| >> |&n( vo)l , the particular method of combining
u(0;z) and u(@i;z) into U(ei;z) in (Al7) actually gives a smooth
function as 2z + 0

Although U(ei;z) is expressed in fairly simple terms in (AI7).

a simpler form (also good up to O[Q(z)]_2 ) may be obtained by expressing
the A&n in terms of an arctangent, which in turn may be approximated
by the leading term of its Taylor series expansion when the basic
condition in (A4) is satisfied. This procedure yields the alternate
formula for U(Gi;z) given by,

L 2m e e R
U(e;,2) = g . (A18)

Q(z) - vy - n(~i2kz) + e

0 .
El(-lvo)
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Appendix B. Input conductance of an infinitely long cylinder

The input conductance (which is associited with radiation from the
external surface) of an infinitely long hollow cylindrical antenna may bhe
formulated by means of considering the real part of the source current for

a delta function voltage source of unit strength (i.e., 1.0 volt). [22].

The resulting expression may be written as,

ka
Qw(ka) = g%% J ‘_”“—'ij;:; mf—_“jbim?“' (B1)
+y2
xv?ka)z —x2 Jo(x) Yo(x)
where n is the intrinsic impedance of the surrounding medium., . 1is the

cylinder radius, and JO and YO are the zero order Bessel and Neumann
functions, respectively. Although several asymptotic solutions (which
assume ka << 1) for G _(ka) exist, [3], (4], [20] and [21], an exact
solution to the integral in (B1l) is not known to the authors. However, in

their Wiener-Hopf approach to thin dipole antennas Shen. Wu, and King (6]

constructed the surprisingly accurate formula for G (ka) given by,

G (ka) = Re {% [en(2C, - im/2) - tn(2c, +131/2) ) (B2)

which agrees with the asymptotic expressioa of Wu {3] to order C;j.

(Cw = -¢n(ka) - vy, Y = 0.577...) . However, the constructed expression for
G,(ka) 1in (B2) is fairly accurate even when 1Cw} is not larze. 1n

Figure Bl, we have illustrated the input conductance predicted bv botn
Shen's [6] curve~fitting formula and the exact expression in (B1l) over tne
range of electrical radii, 10—4 < ka < 1.0 . This figure reveals the

remarkable ability of Shen's approximate formula to predict an acoe, o

input conductance not only in the conventional thin-wire vegions
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for cylinders as thick as ka * 0.7, where Cw = -0.22 ! Furthermore, as

ka +~ 0, the approximate formula given in (B2) becomes asymptotic to,
G, (ka) A (c )“l : as ka + 0 (B3)
00 n W M

which corresponds to the asymptotic behavior of the results of many other
authors, [3], {4], [20] and [21].

In order to further extend the applicable range of the basic approxi-
mate formula in (B2) to include values of ka as high as unity, we have

employed a curve-fitting procedure to produce the modified formula,

G_(ka) = Re {% [2n(2C -g~in/2) - n(2C, - g +1i3n/2) ]} (B4)
where

g = 33.88(ka)Z exp [- 226

T (B3)

Obviously the insertion of g in (B5) into the approximate expression for
G, (ka) 1in (B2) has little effect below ka X 0.5, however, above this
point, all the way up to ka = 1.0, this modification allows for a quite
accurate prediction for the input conductance as can be observed in Figure 5,
which is discussed in the text of this report.

Consequently, in order to achieve this accurate value of input conduc-
tance from our primary transmitting current formula in (19) at 2z = zg» We
follow the lead of Shen, et al. [6] and restate the approximate form of

U(m;2z) 1in (9) in the modified form,

i 1ikz
Us(z) - n e

{ln[fs(z) -im] - 2n[fs(z) +im]} (B6)




fs(z) = 2cw + v+ in/2 + n[kz + /(kz)2 + exp(-2Y-2g) ] (B7)

As given in (B6), Us(z) corresponds exactly to Shen's Eq. 6 in [6] except
for the additional term, -2g, in the square root, which enables (B6) to
yield a very accurate value for the real component of the input current up

| to ka = 1.0 . And we note that U(m:z) in (9) and the modified form

denoted by Us(z) in (B6) differ insignificantly for kz > 1 .

- e -
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Appendix C. The kernel, K(a), and the factorized functionglik+ggl

and K_(a)

Consider the Wiener-Hopf kernel,

K(a) = 1n30<sa>uc“%sa> (1)

where

£ = vk2-a¢ = jv/a2-k2 (C2)

A small argument approximate form of (Cl) which proves useful when dealing

with conventionally thin (ka<<l) cylindrical antemnas is given

by.
\
K(a) = 2C_+ im - 2 &n —E~:E——) ; ka, aa<<l (C3)
W 2k

where

Cw = - ¢n(ka) - vy , vy = 0.57721566 (C4)

In the Wiener-Hopf procedure, the kernel in (Cl) is factorized into
the form,

K(a) = K (a)K_(a) (C5)

in which K+(a) is analytic and free of zeroes in the upper half a-
plane, -Im(k) < Im(a) < » , and K_(a) is analytic and free of zeroes
in the lower half a-plane, == < Im(n) < Im(k) . We assume a symmetrical

factorization which gives the relationship,

K_(-a) = K, (a) (c6)
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Thus the "minus factor", K_(a), is known once K+(a) is found. Another

property imposed upon the factorization of K(a) is the asymptotic be-

haviors,

K+(a) ~ a_% ; as ]a]-» © in the upper half a-plane
«<n

and

_1
K (¢) ~ a % as |a| > ® in the lower half a-plane

(C8)

For the special case where ka and aa are much less than unity,
K+(a) may be approximated by the leading term of Hallen's exact formula

for K+(u), [1,Sec.38], given by,

xf (@) = Y2C +in [1 kta )] ka, aa<<l (C9)

1
T “’“( 2K
where G 1is given in (C4). The superscript "0" is used here to signify
this as being the small argument (i.c., thin wire) approximate formula
for K+(a) . And we note that K:)(a) in (C9) may also be identified as
the plus factor in the approximate factorization of the small argument

approximation of K(a) 1n (C3) given by:

X 1 k+a 1 k-a
K(a) = (2("'+i1r) [1 - 2Cw+i1r in (21( )][1 - 2Cw+i1r 9~n( TR )]

; ka, aa<<] (C10)

which is valid to order (qw)'z.

On the other hand, the exact value of K+(a) may be obtained

numerically from the formula of Mittra and Lee [15,Sec.5-2.(3)] which
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is given by

K, (a) = Yin [Jo(ga)]+ [uo(” (:‘,a)]+ex(a) (cl1)

where ¢ 1is given in (C2). The plus factors of Jo(ga) and Hél)(ﬁa)

are given by

® té-a
[J.(a)], = VI (ka) I (1 +-=~Y)e ™ (C12)
0 + 0 n=1 ( 1Y0n)
and
[flo(l)(f:a)]+ = /Hom(ka) exp { -1 -kf- + %é En(%g-) + q(a)} (c13)

respectively. Here iYOn corresponds to the propagation constant of the

THon mode within a circular waveguide of radius a and is given by

P 2
iy [__o:l - k2 ;p =n"™ ordered  (C14)
n
zero of JO'

The convergence factor eX(a) in (Cll) insures the correct asymptotic

behavior described in (C7) and is given by

a 27 . T
x{a) -1 . u[—l +vy "m(ka ) -~ i 2] (C15)
where y = 0.577215...... . And finally q(a) is given by

1 J 2 1 (v’(ka)z-x2 + aa)
q(a) = 1 - n dx
L e JHR) + ¥ 2(x) Y (ka)2=x 2

(cl6)

The specific application of K+(u) in this paper is to calculate

the reflection coefficient R(ei) - (n/2w)K+(k)K+(-k cosei) in the range
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0 s 6i S 7 ; thus we require an accurate lormula for K+(a) for the
corresponding range -k < o £ k . Such a formula may be ob-

tained by observing the behavior of the ratio of the small argument
approximation, K:)(a) in (C8), with respect to the exact form of K+(a)
in (C11) over the range -k < a £ k . Since the behavior of the small
argument formula could be qualitatively argued as being at least partially
inherent in the exact formula for K+(a) for these values of o , the
ratio, K:)(a)/K+(u), would be expected to be a fairly smooth function of

a . This preassumption is verified in Figure Cl in which we show the real
and imaginary parts of the ratio K:)(a)/K+(a) for ka = 0.01, 0.05,

0.1, 0.5, and 1.0, as a function of o between =~k and +k . Noting

the behavior of this ratio and its predominantly real nature, we may assune

the approximate relationship,

0 Al + B(a/k)] ; 0<ac<k
K, (a)
St 0= c17)
K, () All + B(a/k) + C(a/k)?]; -k s a < O

where A, B, and C are coefficients yet to be determined. The above

linear relationship for 0 < a < k appears to describe the behavior of

the imaginary component of K:)(a)/K+(a) for the cases where ka < 0.1

in Figure Cl, while it appears that higher order terms in a/k are

necessary above ka : 0.1. However, due to the relatively large linear
real component of K:)(a)/K+(u) , neglecting this higher order variation
in the imaginary component will not produce a significant error. The

constant A is found by setting o =0 in (C17) yielding H

Al
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Real and imaginary components of the ratio of the small

argument formula for K+(a) in (C9) to the exact formula
for K+(00 in (Cll1).
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¢20w+iﬂ 1 + Ln(2)
ZCw+in
A= , (c18)
' Fo(1)
] )
inJo(ka) HO (ka)

The coefficient B 1is found by differentiating (Cl7) with respect to

and setting o = 0 , the result being i

ika L 1 ika 1
B m ) [ ay. n ] - x®) ST - e A 2n(2)
n=1 On w

(C19)

® 1 2 1
M pe— [1‘3&' '2'“-’—“5—J dx

0 Jfka)z._xz Jo(x) + Yo(x)
As it stands, it appears as though a numerical integration is necessary
in (C19) to evaluate B . However, one may recognize that the real part
of the integral in question is directly related to the integral contained
in the expression for the input conductance of an infintely long cylinder,
G _(ka) , in (Bl) of Appendix B. And since a very good approximation for

G_(ka), good up to ka = 1.0, has been found and is stated in (B4), we

know the real part of B in (C19) to a very good degree of approximation. ‘

Furthermore, noting from Figure Cl that the imaginary component of

K:)(a)/K+(a) for all the values of ka considered is relatively small,
we may conclude that the imaginary part of B and the neglected higher

order imaginary components are not important. Specifically for the con-

:;gﬁi

stant B we may state that,

n
e

Bf << (1 + Br)2 (c20)

where Br and B, are the real and imaginary parts of B in (Cl9).

i
Thus, we shall approximate B in (C19) by its real part given by

——aibininy i i o F AR A ST TRy
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= 1 } :
B, = 27 Oulka) “Re{zcw ¥ in + tn(2) (€21

The above approximation of the coefficient B does introduce some phasc
error in our final formula (to follow shortly) which may be partially
compensated by taking the absolute value of A in (C18) in the final
formula. This compensation, however, is not seen until our curve-fit
formula for K+(a) is used in the context of the reflection coefficient
R(ei) = n/2n K+(k)K+(-k cosei)

With the above approximation for the coefficients A and B duly

noted, we may write from (C17),

( K:)(a) 0w
|A] [l+Br(%)]
K, (o) = 4 o (€22)
K+ « ; "k <a <0
L laln s (2 (D)

which leaves only the coefficient C undetermined. An expression for

C 1is easily obtained by matching the singularity at o = -k in (C22)
with the actual singularity in K(a) at o = -k . Using the relation-
ship
lim K(a) = K, (k) lim K (a) (C23)
+ +
a> -k a> -k

it 18 not difficult to show that

1 - |Al?2 (1 - Bf_)
C = IAlz (l T Br) (C24)
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...-2.1.,.‘, PSR ¥

Numerical comparisons between our approximate expression for K+(a)
in (C22) and the exact formula in (Cll) as well as between the subscquent
approximate and exact reflection coefficiunts (R(Oi) = n/f2n K+(k)

K+(—k cosei)) are found in Section 4 and show (C22) to be a very good

| approximation for K+(a) in the range -k < a £ k for ka as large

as 1.0.
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Appendix D.

Limiting forms of the currents on cylindrical antennas ncar

grazing incidence and near the ends

It is interesting to examine the limiting forms of our current
expressions for semi-infinite as well as finite length cylindrical
antennas as the incident angle of the uniform plane wave approaches
grazing incidence in the receiving situation or as an end is approac:ed
in either the receiving or transmitting situations, even though thesc
limits will violate the basic condition placed upon our theory in (&8).
It is noted that in the limits to follow, the value of the electrical
radius, ka, has been necessarily taken to be small. This condition was
imposed to avoid complicgtions which would only serve to obliviate cor

original purpose of seeking a qualitative feeling for the behavior of cur

formulas beyond their expected analytical ranges.

D.1 Semi-infinite receiving antenne

The internal current on a semi-infinite (0 < z < w) c¢ylindrical
receiving antenna predicted by (43) in the near-grazing situation, 4 U
may be expressed as,

(1R (6.:2)},  ~ EYf (n;2)6.; as 6, 20, 0 <z <o (0. 1)

SV’ int g1 i? i : :
where,
oo
£ (h;z) = [ -i4q ] 1keikz (YOn - ik) K. (iy )e-YOnz (D.2
1 kn 4K+(k) s yon(yon-+1k) +770n

The internal current given in (D.1) is well behaved near 91 = 0 and goes

to the physically anticipated limit of zero at ei = 0 . This may be

attributed to the fact that the internal current expression in (43) upon
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which (D.1l) is based is an exact expression and must possess the correct
physical behavior.

The external current on a semi-infinite (0 < z < ©) receiving

antenna is given by the combination of the primary receiving current,

R

R, . .
Im(Si,z) in (15), and the reflected current, Irefl

(Oi;z) in (25), i.e.,

R = i . - . - . <
Ig(6432) = Eg{V(852) = V(O;00R(IDUCB32) ;3 0 <8, <1,

0 <z < w (D.3)

Using (9) for U(ei;z) , (16) for V(Oi;z) and (26) with (27) for R(Oi).

we find in the near-grazing situation,

0 <z <o (D.4)

which "blows up" at 61 = 0., Because of the violation of the condition
in (8), this behavior should not be unexpected. However, numerical data
in this instance has shown that the misbehavior is limited to quite small

values of 61 ~ 10°. Similarly, near the end of a semi-infinite receiving

antenna we have from (D.3) with (9), (16), and (26) with (27),

R g. 1 .
Ieo(8,52) ~ EgV(8,50) { F,(8))

0

o e 2 |0 in(2kz)
[1-F (8] [Fz(ei) 12kz sin [ 2 ]ch+in-2 in(s1nd/2) ]

s as z~+0 (D.5)
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2
Br(l -cosei) - C(1 - cos 61)

~_...t-.n.fM‘ ST SRR OV

5 i 0<8, < n/2
1 ~B_ cosb, + Ccos” 9, -
r i i

Fl(ei) = (D.6)

Br(l —cosei) -C

s W2 < 61 <m

1 - Br cos6i

and,

® -1)" . 2n
Fp0) = I 2757 2€, ¥ 17 - 2 in(sin 6,/2) (0.7)
n=1

Under the assumption that the electrical radius, ka, is smai' compared
to unity, the above quantities, Fl(Gi) and F2(6i) , will also be quite
small. Hence, the current in (D.5) will be at a relatively small level
at z =0,

Turning to the other form of U(ei;z) in (13), we have for the

behavior of the external current in (D.3) using (16) and (26),

ikz [ B_-2C )
: R ] 1} =147 | e . r [ i
| Ism(ei’Z) ~ "Ee [ kr] ] 4 l‘-liﬂcz + 1 < Br +C } l an ei 1

s as 0

i»o,0<z<oo' (D.8)

which goes to zero at ei = 0 . So even though the basic condition in (8)

] is violated here, the correct physically expected result is still obtained.
Near the end of the semi-infinite cylinder, we have from (13) with (16)
' and (26) in (D.3),
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R .z) ~ EI .

‘ 0
- - _ 2 i n(2kz)
[1-F (8))] [ 12kz sin” - 2C_+17 -2 In(sind,/2) } }
sy as z + 0 (D.9)

where Fl(ei) is given in (D.6). At 2z = 0, the external current

predicted by (D.9) is typically a very small value.

D.2. Semi-infinite transmitting antenna

The external current on a semi-infinite (0 < z E.m) cylindrical

transmitting antenna with a delta function voltage source at 2z = 2 is
given by the combination of the primary current, Iz(zo;z) in (19), and
T . .
the reflected current, Irefl(ZO'z) in (32), i.e.,
1¥ (z,32) = 13(z032) ~ 1(z;00R(MU(T2) 3 0 <z <o (D.10)
S°° 0! 00 O, o0 0’ L] * 4

The behaviors of the current near the end using both forms of U(m;z) in

(9) and (13) are found to be,

IT(zo;z) ~ IT(zo;O) gpl(n) - [1-F(m] LFz(n) 'u;éwlfﬁm H

sas z-+0 (D.11)

and,

IT(ZO;Z) ~ IT(ZO;O) iF(ﬂ) - [1-F(m]} [—iz;g %rlliITZTkzl ] }
w

s as z >0 (D.12)
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i i e

respectively. At the end, z = 0, the currents predicted by (D.11) and
(Ds12) avre small, the latter which employed (13) for U(m;z) being
smaller than the former which employed (9) for U(m;z) .

Although small values of current were obtained at the end in both

the receiving and transmitting cases above using both forms of U(Oi;z)

in (9) and (13), none of these results agree with the negative of the
internal penetrating current at the end, discussed in Section 6, which

is a function of powers of ka . This is not an unexpected result, since
our theory is based upon the condition that,

Q(z) = 2 in(2z/a) >> |&n[2kz sin2(91/2)| , which is violated 1u these
limits. Nevertheless, the above limiting forms are for the most part
sufficiently well-behaved to permit useful data to be obtained in the
finite length cylindrical antenna formulas (discussed in Section 5) over
most of the antenna length and for a major portion of the possible angles

of incidence.

D.3 Finite length receiving antenna

The internal current near the z = -h end of a finite length
(-h < z < h) cylindrical receiving antenna predicted by (54) with (9)
used for U(ei;z) in the near-grazing, 8y ~ 0° , situation behavgs

essentially as,

R 1 1)
I (6,52) ~ Ef (hj2) | ——— | ; as 8, >0, z = -h (D.13)
int Vi 81 [ 91’“‘391 J 1
where,
2 _ikh ) ® -Yn. (h+z)
£,(hiz) = [L:l] e ROUm) 5 1, (me © (D.14)
n 1 - [R(mMU(n;2h)] "
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Hence, the internal current near the 2z = -h end of a finite length
receiving antenna predicted by (54) with (9) "blows up" at grazing,

61 = 0, incidence in much the same manner as the external current given
in (D.4) in which (9) was also used for U(ei;z) in the grazing incidence
limit. A similar functional behavior to that in (D.13) is obtained in

the other near-grazing situation, Bi >, i.e.,

1
(m - ei)xm3(n -6,)

R - i -
Iint(ei’z) ~ Eefz(h,z) [

, 2 ~-h (D.15)

where,

0

i4m
fy(h;z) = [ BTy

] _"2 e—ikh 1 )‘ -Yon(h+2)

38 Rmuman)® Ton (™ w10
n=1

The behaviors of the internal current near the opposite end of the antenna,

z -h, may be obtained from the above limits with appropriate re-

interpretation of the incident angle of the uniform plane wave.

The limiting behavior of the external current distribution on a
finite length receiving antenna given in (35) with (9) used for U(ei;z)
as 6i + 0 1is given by,

1

3

eiin 61

] s as 6i +0; -h<z<h (D.17)

where,

22 ekh i -1k(h-2) R(m) U(n; 2h)
3 e +

1 - [R(MU(T;2h) )2

R(MU(m;h +2)

- 1 3 R(mM)U(m; h- z)i

1~ [R(m)U(m;2h)]
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The current distribution near-grazing stated above shares the same
functional behavior with respect to Gi as the semi-infinite cylindrical
antenna limiting formula in (D.4), i.e., it "blows up" at ei =0 .
Although, the physically expected result is a zero current at grazing
incidence, 6i = 0, the above misbehavior of the receiving current
formula using (9) for U(Bi;z) does not invalidate this formulation, but
can be shown in most cases to limit the range of applicability to incident
angles in the range, 10° < Gi < 170°. Because of the symmetry of the
receiving formula noted in (37), a similar behavior for the receiving
current is obtained in the limit as 6i T

Also to be considered is the limiting form for the finite length

cylindrical antenna current at the ends. Again using (9) for U(Gi;z)

in (35) we obtain,

R * i -
1°(832) ~ Eg iV(ei, h) [Fl(ei)

6
- [1- - 2 1 gnf2k(h +2)]
[1-Fy(8p)] [FZ(ei) 12k(h+z) sin” 5 3¢ +1in-2 in(sing /D)

+ cR(n - 0,) [ Fy ()

- [1-F,(m] [ Fo(m) - 12k(h +2) &liMi_ZLl] ] }

ch +in

; a8 z-+-h, 0« Bi <7 (D.19)
\

where Fl(ei) and Fz(ei) are given in (D.6) and (D.7) and are small for
values of ka that are small compared to unity. The current at 2z = -h
predicted by (D.19) is typically a small value, although it will not

correspond to the negative of the internal penetrating current at the end
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discussed in Section 6. The behavior of the current near the opposite
end, 2z = +h, may be obtained by means of the symmetry relationship in
(37).

Repeating the limiting procedures for the receiving antenna current
in (35) using (13) for U(Si;z) , first of all for the internal current

near the z = -h end in the near-grazinyg situation, yields,

0.

R i i . . _
Iint(ei’z) ~ Eefl(h;z)ei +0 3 T Gi f 3 as ei +0, z=x~-h (D.20)

where fl(h;z) is given in (D.2). Hence, the dominant behavior of the
internal current near z = -h on the finite antenna is essentially

given by the behavior of the current near the end of a semi-infinite
antenna near grazing as given in (D.1). A zero current is thus obtained
at ei = 0 . The behavior of the internal current near z = -h on a
finite length receiving antenna from (35) with (13) as the incident angle,

tends to the other grazing angle, 61 + %, is given by,

R 1 (-89 ]
Iint(ei;z) ~ Eefs(h;z) m’:*e—p- : as 61 +n, z X <h (D.21)

where,

B_-2C
{16kh -L ]

£.(h;z) = [ -i4m ] EiEE 1+ 1 + 12k _ Br - 1-Br+C
5 - |
kn 4 ZCw+in Yon ik l+Br 1—[R(n)U(n;2h)]2 |
> Y, (h+z)
I Tou(me 1 (D.22)
n=1}

The behavior of the external current on a finite length cylindrical

receiving antenna predicted by (35) using (13) for U(ei;z) is given by,
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R 0
i’ 1(ei;z)~1-: (hz){ —-e—]; as 61-»0.-h<z<h (D.23)
where,
i B_-2C
vy o —dém 1) dkz -
f6(h z) o 4)° 13k(h +2) T-8 +C “B_+C
[ B_-2C . .
+ b | jexn - —F R(MU(T;2h)R(MU(T;h +2)
i 1-B, +C 1 - (R(T)U(T;2h) ]2
i B_-2C |
- e | gpkn - g | RO oa) (D.24)
i r 7Y | 1 - [R(MU(T;2h) ]

The functional behavior of the current in (D. 23) with respect to the

incident angle, Gi , 1s the same as the behavior noted in (D.8) which

also employed (13) for U(Biaz) . Consequently, the physically anticipated

zero current 1s obtained in (D. 23) at grazing incidence, 91 =0 . This

must be judged as a fortunate happenstance, since our theory is not

expected to hold for very small incident angles. Also by means of the

symmetry relationship in (37), a similar functionmal behavior can be

observed as the opposite grazing incidence angle, Gi = T, 1is approached.
The external current near the end of a finite length cylindrical

receiving antenna predicted by (35) with U(ei;z) given by (13) has the

limiting form,

R i .
‘ 1%6,52) - Eg { V(O :-h) [Fl“’i’

8
- [1- - 2 (74 en[2k(h +2)]
[1-F,(8)] [ 12k(h +7)sin ( 3 } 2C, +1m - 2 Ln(sing, /2) }]

ZCw +1in

+ cRn-0)) [Fl(ﬂ) - [1-Fy(m)] ( 12k (b 2nl2KCht2)] ]J

(D.25)
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where Pl(ei) is given in (D.6). (D.25) typically predicts a very small
value at z = ~-h . Although it will not correspond to the negative of
the internal penetrating current at the end discussed in Section 6. The

functional behavior of the current near the opposite end at =z = +h , can

be shown to be similar to that in (D.25) via the symmetry relationship !

in (40). j

Comparing the limiting forms of the currents in (D.13), (D.15),
(D.17) and (D.19) with those in (D.20), (D.21), (D.23) and (D.25) corres-
ponding to the use of (9) and (13), respectively, for U(Oi;z) in the
finite length receiving antenna formula in (35), the latter fo.n of
U(Gi;z) must be judged thte more attraccive in the near grazing as well
as the end vicinity situations. Not only is the correct zero current
specified at grazing incidence when (13) is used for U(ei;z) in (35),
but the current at the ends is smaller and thus more manageable. Both
of these characteristics are particularly important in the case of the

electrically short antenna discussed in Section 8.

D.4 Finite length transmitting antenna

Finally we consider the limiting forms of the external current at

the ends of a finite length (-h < z < h) cylindrical transmitting

antenna. First using (9) for U(m;z) in (38) we find,
IT(z z) ~ V [U (h+2,) + CT(h-+z )]
0’ 0'"s 0 0

12k(h +2) n[2k(h +2) ]
ch+in

Fo(m -[1-F(m] | Fy(m) -

s as 2z + -h (D.26)
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where Fl(ﬂ) and Fz(ﬂ) are given in (D.6) and (D.7) and are normally
small for values at ka sufficiently less than unity. Aad using (13)

for U(W;z) 1in (38) yields the behavior,
IT(z 32) ~ V. [U (h+z.)) + CT(h-+z )]
(V) 0'"s 0 0

-12k(h +z)¢n[2k(h +2) ]

Fl(“) - [1-F1(TT)]

2Cw-+in
\ .
: as z -+ -h (D.27)
Both of the above forms of the transmitting current at the end, =z = -h,

are typically small, the second one using (13) for U(m;z) being the
smaller. Although neither limit approaches the negative of the internally
penetrating current at the end predicted by the relationships

discussed in Section 6. A functional behavior similar to the above for
the current near the opposite end of the antenna, 2z = +h, may be

obtained via the symmetry relationship in (40). r
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Appendix E. Approximation for the summation in the expression for the

current at the cylinder end

Consider the summation from (43) of the text with z = 0,

ik(yon - 1ik)
(Yo +ikcos 0 )

) K, (i, ) (E1)
n=1 YOn

Numerical data reveals that the asymptotic form of K+(a) in (46) may be

used for K+(IY01) with little error provided that ka < 1. Then (El)

may be rewritten as
3
© [ayOn - ika]

S = ika z 7 ; (E2)
n=1 aYOn\aYOn-+1ka cos Oi)

Since we are considering ka < 1 and since > 2.4048 ....,

Pon

appropriate Taylor series expansions may be performed on the terms in (E2),

leading to
s ~{(ika) Z 3/2 - (ika)z[%+cosel -3/2
i & On
n=1 n=1
7.1 2 S =7/2
-(1ika ) [ cos 6 cos Gi] Z. pOn (E3)
n=1
1 1 2 3 S -9/2
..(1k8)4[ - g cos Bi + 5 cos 91 + cos 61] n);l P00 4+ .00}

The summations in (E3) involving the zeroes of the Bessel function, JO,
may be approximated by

oo

) Oo-:/z S Z p'm/2+ I [x-10m™2ax 5 m=3,57,... (54)
n=1 20.5
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The integral in (E4) approximates the original summation above n =20 and

utilizes the asymptotic form for the zeroes, ~ (n~=1/4)m, For values

pOn
of ka less than unity, S 1is fairly well approximated by the first four
summations shown explicitly in (E3). Performing these summations in the

approximate manner of (E4) allows us to write § in the approximate form,

4

m
S = mzl Am(ei)(ika) (E5)

where

Al(ei) = 0.5831 (E6)

1
Az(ei) = —0.1364[§ﬂ+cos(9i)] (E7)
A,(B,) = -0.0498[Z - cos 8, -cos’6.] (E8)
31 ' 8 2 i i ,

and

- 9
A,(8,) = -0.0198]

11 1 2 3
168 cos ei+ cos Bi + cos ei]

2

(E9)

e e L - g S /
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Appendix F. The end conductance of a finite length cylindrical antenna

An interesting quantity worth mentioning is the conductance seen by
a TMON mode inside and near one of the ends of a cylindrical antenna.

Employing the Wiener-Hopf technique, the reflected current due to an

Y An 2
. ON® | .
internal curreat, which is of the form, e , incident upon the end

of a semi-infinite (0 < z < ®») cylinder is approximately given by, [31],
1 k+1YON 2 2 K+(1Y0n) “Yon 2

150 (2) * 3 K, (iv ) ) 9 e U0
refl 2 + ON On Yon (YON +Y0n )
n=1

PoN

- R(GON)U(OON;Z) i 0<z<w (F1)

where K+(a) is discussed in Appendix C, 1Y0N is the propagation

constant of the TMON

Nth ordered zero of the Bessel function, JO , and finally R(OOV) and
I\

circular waveguide mode given in (45), OON is the

U(e N;z) are the reflection coefficient and ranonical integrzl evaluated

(0)
at eON = cos-l(—iYON/k) given in (26) and (3), respectively. The

first term in (Fl) corresponds to internally reflected T%h] circular
waveguide modes, while the second term corregpoands Lo the externally
transmitted current which in this form is valid under the condition in (8).

From (Fl1) the TMON mode current refleciion coefficient at the point,

z = £, inside the cylinder is simply,

k +1iy 12 -2y..2
4] )
ON R, (1Y) | e ON (F2)

Yoy

s
FON(Q) =

Through a transmission line analogy [25], we may write the end admittance

of the TMON mode at 2z = £ as,
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1+T° () |
Yo = ~h—~~{?l—- Yon (F3)
L= Ty
where,

4k
= i n=120" (F4)

Y()N iy ONn

is the analogous transmission line characteristic admittance for the
TMON circular waveguide mode.

By instituting the multiple reflection concept utilized in this
report (see Section 5), we may formulate an expression for the external
current on a finite length (-h < z < h) cylinder from the initial
externally transmitted current in (Fl). This first component of the
external current as well as all of the higher order reflections propa-
gate approximately as eikz s, so that the corresponding wave incidence

is 6i = 7. The constructed external current distribution on a finite

length cylinder due to an incident internal TMON mode current,

Yoy (hH2)
e ON » 18 given by,

ext _ .
1 (z) = -R(GON)U(GON sh +2)
R(O..)U(O . 32h)
+ ON ON 3 R(M)U(m s h -2)
1-[R(mM)U(m;2h)]
R(8,. . )U(8 .. ;2h)R(m)U(7w;2h)
- ON ON > R(MU(T ; h +2) ;

1 - [R(m)U(m;2h)]
-h <z <h (F5)

With the knowledge of the external current incident upon the end,
z = -h, from (F5), the penetrating current near this end may be formu-

lated from the transmission characterization in Section 6 and is

given by,
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R(O _HYU(O __ ;2h)R(m)U("m;2h) Y. (h+z)
Iext—»int(z) - ON ON 5 X Ton(")e On :
1-[R(M)U(T;2h)] -
n=1
2z > -h (F6)

. where TO (0,) and iy are given in (44) and (45) of the text. The
n i On

L combination of the penetrating TMON mode current in (F6) and the

original internally reflected TMON mode current from (Fl) with respect

Yontht2)
to the incident current, e , Yyields the TMON mode current
reflection coefficient, a distance, £, from the end, z = -h, given by,
. R(6 DU __:2h)R(MYU(T;2h) ~2Y .9
_ 8% i2m k ON ON® ’ ON
FON(Q)-TON(Z) +— R(@ON)e (F7)

N Yon 1 - [ROMU(T; 2h) 12

~

The equivalent transmission line analogous end adwittance corresponding
to the TMON mode reflection coefficient in (F7) for the finite length
cylinder is,

1+FON(z)"Y )

Y (R) = T T
e l-.ON(l)J ON

where YON is given in (F4). Figure Fl shows the TM

01 mode end conductance
at z = 2a-h, i.e., #=2a, for a finite-length (-h < z < h) cylindrical
antenna where Q(h) = 2¢n(2h/a) = 10 as a function of the electrical

length between kh = 0.05 and kh = 3.5 . Also shown is the end
conductance of a semi-infinite cylinder for the corresponding electrical
radii between ka = 0.00067 and ka = 0.0472. Note that the end
susceptance at this depth with the semi-infinite as well as the finite

length cylinder is nominally given by -lm{YOI} from (F4). As could be

expected the end conductance in both situations is quite small and the |

j
{
1
by
|




TFigure F1. End conductance for the TM_ . circular waveguide mode at a
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01
depth equal to one diameter, i.e., 2a, inside the end of

a tubular cylinder.

Effective aperture end conductance
from eq. (F9) using (54) with (13).

_——_——— Direct (Wiener-Hopf) end conductance
from eq. (F8) with (13) used for
U(6,.;z).
i
e e e s e e e Semi-infinite cylinder (electrical radius,

shown in top scale, corresponds to the
electrical radius of the finite length
cylinder for Q(h) = 10) end conductance

from the effectijve aperture relation in

eq. (F9) using (43) or the direct (Wiender-
Hopf) relation in eq. (F3), both formulations
yielding similar results.

the exact value of the term, K+(iYOl), calculated using the
formula given by Mittra and Lee [15, Sec. 5-2,(3)] has been

used in all of the above formulations. Otherwise, eq. (27) has

been used to calculate K+(a) for -k < a < k.
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finite length end conductance oscillates above and below the semi-infinite
end conductance beyond the first resonant length, kh = 1/2 . At the
smaller values of kh , the finite length end corductance takes an
interesting although unlikely diversion from the expected smoothly
decreasing behavior. The end conductance may also be calculated {rom the
formula of Chang and Rispin [30) which is based upon the effective

aperture of the antenna and in the present situation may be written as,

Ezn m sc i2
Ge = en [O IIOI(Gi;Z)/EOI 31nﬁi dei (F9)
llg;(ei;l)/Eé| is the magnitude of the short circuit TM mode current

01
at ¢ and is equal (if we neglect the multiple reflections in the

region, -h < z < -h+{) to twice the magnitude of the internally
penetrating TMOl mode current given in (43) for the semi-infinite
cylinder and in (54) for the finite length cylinder. In order to neglect b
the perturbation of the external current and the multiple reflections

of the TM , mode within the end of the cylinder due to the short circuit

01

at z = ¢-h 1t is necessary to require that { > 2a in this conductance

formulation. The semi-infinite and finite length end conductances obtained
from (F9) for an antenna where Q(h) = 29n(2h/a) = 10 1is also included

‘ in Figure F1. The semi~infinite cylinder end conductances from both the

direct and effective aperture methods in (F3) and (F9) with (54), respec-
tively, are for all practical purposes, the same. And the agreement

between the two finite length end conductances in Figure Fl at the larger
values of kh 18 very good. However, at the smaller values of kh, the ﬁ
effective aperture end conductance from (F9) with (54) continues to

\ decrease smoothly for shorter electrical lengths as opposed to the odd
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behavior of the directly formulated end conductance in (F8). We accept
the validity of the effective aperture result on the grounds that it
depends only upon the magnitude of the associated current which is
assumed to be fairly accurate, since the magnitude of the receiving
current on the electrically short cylindrical antenn- pr=:di te.. by ocur
formulas compared very well with an accepted existing theory in

Section 8. On the other hand, the direct formulation in (F8) depeunds oun
the phase of the reflected current, which we know is not accurately

determived by our formulas applied to the electrically short cylindrical

antenna.
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Appendix G. Electrically thick antennas on the order of a few wavelengths

in length

The application of our theory to the electrically thick (up to ka = 1)

cylindrical antenna whose length is on the order of a few free space

wavelengths is based upon observations in Section 4 which imply that the
basic condition in (8) may be relaxed for the larger values of ka to
the point where Q(z) = 2 n(2z/a) need only be somewhat larger than
|£n[2kz sin2(61/2)1| to achieve reasonably accurate results for the
primary and secondary currents on the antenna. Although the application
of our theory (using (13) for U(ei:z) ) has already been demonstrated
for the electrically thick antenna in Section 7, we shall present results

in this appendix for similar and even shorter antennas, based upon our

formulas using (9) for U(ei;z) . And again we note, that for all of the
antennas to which our theory is applicable, the total (external and
internal) current distribution is, for all practical purposes, given by
the external current distribution alone, except in the near vicinity of

the ends.

G.1 Electrically thick receiving antenna

The current distribution on an electrically thick, ka = 1, finite

length, kh = 37, cylindrical antenna as calculated from (35) using (9)

for U(Bi;z) is shown in Figure Gl for the incident angles (of the
uniform plane wave) of 0y = n/6, n/3, and 7/2 . Normal incidence
data given by Wu, et al. [35] based upon the theory of Kao [18] for the
azimuthally uniform z-directed current is also shown in this figure

for comparison. And the resulting agreement between the two sets of

normal incidence (e1 = 1/2) data is excellent (except, of course, near
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Figure Gl. Current distributions on a three wavelengths long, electrically

thick, cylindrical receiving antenna normalized to the incident
electric field and the wavelength, i.e. IR(Gi;z)/AEi .

91 = /2
= 7/3
————— = 7/6

(o} 6i =T1/2

from eq. (35) with (9)
used for U(ei;z)

Numerically evaluated data
from Wu, et al. [35].
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the ends) and better than the agreement which was previously obtained and
shown in Figure 21 in which the other approximate form of U(Oi;z) in (13)
was ysed in the receiving current expression given in (35). And even
further, Figure G2 shows the receiving current distribution, as calculated
from (35) using (9) for U(ei;z) , on an electrically thick, ka =1,
antenna whose electrical length is one half that of the antenna in the

previous figure, i.e., kh = 3n/2 . The agreement between our normal

incidence (6i = n/2) result and the numerically obtained normal incidence
data of Kao [18) is again excellent. An attempt to apply our theory to
this antenna, (ka =1 and kh = 371/2 ), using the other apprc:imate
formula for U(ei;z) , which is given by (13), met with much less success.
However, of all the many examples studied in the preparation of this report,
it was only for these electrically thick antennas did the use of (9) for
U(Bi;z) show a decided advantage over the use of (13) for U(ei;z) in
our finite length antenna formulas. Hence, our theory involving the use
of (13) for U(ei;z) was featured in the text of this report. And
although a near-grazing incidence, 61 = m/36 , distribution was included
in the receiving antenna examples in the text, no near grazing results
have been shown in Figures Gl and G2, due to the misbehavior of our

receiving current formula for small incident angles (see Appendix D) when

(9) 1is used for U(ei;z) .

G.2 Electrically thick transmitting antenna

A recalculation of the input conductance for the tubular antennas
considered in Figure 29 (which used (13) for U(m;z) in (41) for the
calcylation), this time using (9) for U(w:z) in (41) results in the
curves shown in Figure G3. Data from the numerical approach of Chang [27]

and [28] and the experimental method of Hartig [29] which were used for

—-—— S e = e

Y2 R
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Figure G2. Current distributions on a three-halves wavelength long,
electrically thick, cylindrical receiving antenna normalized
to the incident electric field and the wavelength, i.e.,

R i

I (Gi,z)IAEe.

e —— 9i = 5/2
- /3 from eq. (35) with (9)
used for U(ei;z)

—_——— - = /6

(o) e1 = n/2 Numerically evaluated data
from Kao ([18].
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Figure G3. Input conductance of three clectrically thick, center fed,

cylindrical antennas as a function of the normalized half-
length, h/X .




- 127

comparison in Figure 29 is also included in Figure G3. A close inspection
and comparison of Figures 29 and G3 reveals about the same level ot agreement
between our theory and the others in the latter figure where (9) was used

for U(m;2z) . However, as explained in the previous sub-section, (13)

TP

was used for U(m;z) in the text cxamples, since it had shown a wider g
range of applicability.

Further, in Figure G4 we have repeated the conductance data from
Figure 30 for a center-fed tubular antenna where h/a = 10 and included

results obtained from (41) in which (9) has been used for U(m;z) . We

note that in this figure the two forms of U(m;z) (given by (9) and (13))

when used in the admittance formula given in (41) yield slightly different

—

results, although both conductance curves are consistent with the numerical

data of Harrington and Mautz [26]. Figure G5 is identical with Figure 31

which showed the input conductanc2 for an off-center fed, 2z, =*h/2,

v t 0

tubular antenna where h/a = 10, except for the additional conductance

data obtained from (41) this time using (9) for U(m;z) . And again all

three sets of data are consistent.
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Appendix H. Far field radiation from a cylindrical transmitting antenna

The far-field radiation pattern of a finite length, ~h <z < h,

cylindrical antenna having a delta function source of strength, VO volts,

at z =z
0

terms of [33, Sec. 2-10],

(similar to the antenna shown in Figure 16c) can be written in

_ ikr (h T i
Ee(rser¢) = Z};ﬂ sin er J J J:(a,@',z')e ikz'cosl
=h /=1

e—1k351n6cos¢ ads'dz'; kr +> | (H.1)

where J:(a,¢,z) is the z-directed component of current density on the
cylinder. Ee(r,e,¢) is the 6-directed ( 0 is measured from the positive
z axis in Figure 16c) electric field at the far field point (r,0,¢) 1o a

spherical coordinate system coincident with the implied cylindrical coor-

dinate system of Figure 16c. Since J:(a,¢,z) is uniform about the cylin-
der, we take the total current as IT(zo;z) = 2naJ:(a,¢,z) and performing

the ¢' integration, we get,

T -ikz'cost

dz'

ikr :h
j I

Ee(r,e,q;) = _'_%‘?!1 sin SJo(ka sin ) _e_;__ (zo;z')e

~h
kr >> 1 {H.2)

where JO is the Bessel function of the first kind. Although our approxi-
mate expression for IT(zo;z) in (38) may be used in (H.2) to determine
the far field, the integration of some of the terms requires further
approximations and leads to a more complicated result than is actually
necessary.

The far field expression in (H.2) may be stated in a more convenient

manner if we first consider a similar receiving antenna. The current dis-

tribution on an antenna used as a receiving element can be found by
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integrating the response of the antenna to a unit voltage impulse. i.e.,

IT(Z';Z)/V with the differential voltage,

0!
: L
Eé(a,e,z')dz' = shleJO(kasine)Egelkz cos (7-0) dz' (H.3)
over the range, -h <z <h . Here Eé(a,e,z’)dz' corresponds to the
azimuthally uniform differential component of voltage applied to the
antenna when illuminated by a uniform plane wave having a f~directed com-
ponent of electric field, Eé , and incident at an angle., m-96 , with
respect to the positive z-axis. Noting that the exact form of IT(z';z)
would satisfy the reciprocal relationship, IT(z';z) = IT(Z;Z') , [34,

Sec. 9-10], the receiving current distribution can be written as,

i
E h -
IR(ﬂ-e 3 Z) =-sin.6J0(ka sin 8) VQ [ IT(z;z')e-1kz cosg dz' (H.4)
0 -h
!
Using (H.4) with z = z, in (H.2) allows the far field to be written as,
fkn olkT R(n-9, 20)
Ee(r,6,¢) = - VO Ei s kr >> 1 (H.5)

]
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