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( ABSTRACT

A zimpte theo~ty ba~ed upon tkavetig ~we concepts6 and the

Wiene/t-Hop6 technique i4 devetoped which ducibe4 the cu.Vten-t

d.Za'Libuton& on tubuia& cytindicat iteceiving and t~anmtting antennau.

A cto~e examination o6 the condition.6 nece66a'Ly to obtain .6u6icientty

accuuate a~tjiptotic &6ofwtion,6 6o4t teitected cwtment di ztbutionA iL.6

given along Y. th .6eve.'ui numeAicat exam pte 6ot coo boton. ThiZ6

atong with covr~e6ponding modi6ication46 to otheA 4etevan-t tet in the

t~uiveting cwe sotution 6oi4 a 6inite Length cytind~icat antenna ateow

6o4 the cor~ideuation o6 a much wideL 4ange o6 cytindcicat ant enna6

than no'wtatty po.6.ibte undeA the tzaditionat thuin-wZ'Le appLoximation6v

«a< 1 and kh Z i. Speci~ic exampea d*.~cuzied inctude etect'ricatty

ahoAt, (kh = 0.4 and 0~(h) = 2 tn(2h/a) = 10), p'Lactica hat6-u.awe,

(kh =ir/2 and 11(h) = 2 tn(2h/a) = 10), and etectcaL thick , (ka1

and kh = 37r), i~ecevig and tLan.6mitting an-tennaa. CompanihonA with

exi..ting theo'uie6 in the~e ca. and otheu yietd v~e~y acceptabte ag,%ee-

menta. FuttheA, the teceiving antenna 6o4mufation attow 604 an a~bZt'UVUJ

angte 06 in cidence, 0 < 6i 7, 06 the ugo'w ptane waxve and the

t'umnrrting antenna 6o'imuJatiZon give,4 excetten~t in put conductance data

oveL an ext~emety woide 4ange o6 antenna pameteAu. Diacu&&ion6 Me given

604 uc 6WJ4eated top&6 a6 the ewment di&ttibutionA on the inte'wat mxtU

06 a cytindhieat antenna, Loaded cytndwicat antena and the 6a4 jieML

udiation pa~t wi o6 a dgi tcat t'an~mwting antenna.
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1. Introduction

As is well known, thin-wire conductors are commonly used as radia-

tors in the design of antenna systems. The radius, a , of each wire

is typically much smaller than its half length, h , which for most

applications is of the order of a wavelength, X. Only in limited situ-

ations, such as the case of probing an unknown field, will the length be

much smaller than a free-space wavelength, (i.e., 2h << X) , or as in

the case of a trailing antenna behind an aircraft, will the length be much

greater than a free space wavelength, (i.e., 2h >> X) . Consequently

most linear antenna theories, both analytical and numerical, are

developed with an explicit or implicit assumption that a << X and

2h Z X/2 , which is commonly referred to as the thin wire assumption.

On the other hand, theories not in this general category, usually have

a much more limited range of application, such as for the very short

antenna and the very long antenna.

More recently, the time-transient response, as well as the broad-

band frequency response of a thin-wire structure has become a problem of

considerable importance. For instance, in order to access the suscep-

tibility of a long thin cylindrical metallic enclosure, one must obtain

statisLical information concerning the performance of the cylinder as a

receiving antenna, over an extremely wide frequency range as well as an

arbitrary angle of incidence (referring to illumination by an incident

plane wave). Computations not only become excessive when conventional

theories are utilized because virtually thousands of responses are

needed, but also very awkvIrd since different methods have to be used

in different frequency ranges. A similar statement, of course, can also

be made for studying the impulse response of an antenna.

*; "
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Beginning with Halln's [1] integral equation formulation for

the current on a cylindrical antenna and including the work of many

others [2]- [10], the thin-wire approximations mentioned above have

nearly always been employed. Weinstein [2] did, however, observe that

his final approximate solutions, which were derived under the thin wire

assumptions, could be applied to cylinders having larger values of ka

if the electrical length, kz, were very much larger. In contrast, the

theory of King and Middleton [11, Chap. II], however, which involves the

iterative solution of an integral equation for the current on a finite

length cylinder, requires explicitly that the parameter, Q - 2 kn(2h/a),

to be large, h being the half-length of the cylinder. Although the

parameter, a, relates only to the physical length and radius of the

antenna, this approach still requires the electrical radius, ka , to be

small compared to unity and the electrical length, kh, cannot be very

small nor very large. King also developed a receiving theory [11, Chap. IV]

for antennas having a large 9. A large Q was also the basis for two

electrically short (kh : 1) antenna theories developed by King [11,

Sec.II.31 and IV.8] and [12, Sec. 3.7] which were developed by making

approximations relevant to the short antenna situation in the integral

equation formulation of the problem.

Another means of analysis for the cylindrical antenna problem is

the numerical method of itments technique [131, which has the capability

of computing antenna characteristics without invoking the thin wire

approximations. Realistically, however, the computation time is con-

siderable if the antenna is not thin or the length is more than a few

free space wavelengths.

-WW 
61,
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In this paper, our aim is to develop a simple unified theory for

V computing the broadband characteristics of a transmitting and/or receiving

antenna when the parameter, Q - 2 tn(2h/a) is large. For a typical

thin-wire antenna where 2 - 2 in(2h/a) - 10 , our theory is applicable

for antenna lengths as short as 2h z 0.12X and as long as 2h z 23A (where for

= 10, ka is almost equal to 1), which in terms of frequency covers well

over two orders of magnitude and is more than adequate even for

transient computations. We also show that our formulation may be applied

to an electrically thick (up to ka - 1 ) cylindrical transmitting

antenna or the electrically thick receiving antenna (for the angularly

independent current) and obtain favorable agreement with existing

theories even when the parameter 2 - 2 kn(2h/a) is not large.

We begin with a re-examination of the conditions necessary to

obtain simple approximate solutions to cylindrical antenna problems via

the Wiener-Hopf technique. Section 2 discusses a pair of canonical

integrals which characterize cylindrical antenna problems. Approximate

expressions for these canonical integrals are derived subject to the

2condition, R(z) - 2 9n(2z/a) >> I 1n[2kz sin (6t/ 2 )] • The angle, 0i

refers to the incident angle of the incoming wave and is more fully

described later. In Section 3 the various currents on both infinite

and semi-infinite cylindrical receiving and transmitting antennas are

given and their relationships to the canonical integrals established.

Data obtained from the approximate expressions is then compared with

numerically evaluated "exact" data in Section 4. A most important

observation in this section is that the parameter, i(z) - 2 in(2z/a) ,

in the basic condition of our analysis, need not be very much larger

than I n[2kz sin2 (0/z)]1 , especially when thicker antennas (ka Z 0.1)
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are involved. Utilizing the process of summing multiple reflections,

approximate expressions for the receiving and transmitting currents and

the input admittance for finite length cylindrical antennas are formu-

lated in Section 5. Expressions for the currents flowing on the internal

walls of receiving and transmitting tubular antennas are given in

Section 6. In Section 7, numerical results from our theory for specific

antennas are compared with the results of other authors using different

approaches, with acceptable agreement in all the cases considered. The

special case of the electrically short antenna is discussed in Section 8.

General conclusions as well as extensions of our theory to loaded

antennas and the determination of the far field radiation from a trans-

mitting antenna are given in Section 9.

The exact integral expressions appearing in Section 4 are for the

most part, based upon the Wiener-Hopf technique (see for example Nobel

[14], Weinstein [2] and Mittra and Lee [15]). The assumed time variation

is e"'t and the implied Fourier transform pair is given by,

F(a)- IF(z)ei ~Z dz()

and

F(z) - F(a)e -igz do . (2)

2 f
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2. The canonical integral in cylindrical antenna problems

As will be shown later, the external current distributions on both

the receiving and transmitting cylindrical antennas can be written in terms

of the canonical integral,

i -iaz

u(ei;z) = -i (1 - Cos e) edn (k+a)(k cos 6 +a)K(a) d

; 0 z < , 0 (3)

The contour, ro, is shown in Figure 1 and,

K(a) = iwJ 0 (Ea) H 1) (&a) (4)

where

6 is the incident angle of the incoming current wave when (3) is used to

describe a particular current distribution reflected from an end of a cylinder

and z is a numerical distance along the axis of the antenna. k = 2r/X and

n are the plane wave wavenumber and the intrinsic impedance, respectively,

of the medium surrounding the antenna. The antenna to be considered is

assumed to have an infinitely-thin, perfectly-conducting wall concentric about

the z-axis at a radius, a. The suppressed time factor is exp(-iwt), where w

is the operating frequency in radians/sec.

We shall also find it useful to define the auxiliary canonical integral,

* W(ei;z), which is similar to U(ei;z) in (3) except for the appearance in thei

integrand of the additional function, K+(a), defined as the factor of K(a) in

(4) which is analytic and free of zeroes in the upper half complex a-plane,

I
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G CK+(_ -ia

- - (k+a)(k cos e +a) K(a) d

0

0 e.z S6 : T (6)

Properties of K +(a) are discussed in Appendix C. We note that the

integral W(Oi;z) usually occurs in problems concerning the currents re-

flected from the ends of cylindrical antennas. As shown in (A8) of

Appendix A, when z >> a, we may approximate (6) by

wOei;z) z K+(k)U( ;z) (7)

where U(Oi ;z) is our original canonical integral given in (3). Thus

with W(e ;z) given in terms of U(Oi;z), our particular use of the form

of W(O ;z) in (6) will be limited to providing exact date (from the

numerical integration of (6)) to compare with the approximate solutions

to follow.

Subject to the condition,

Q~)= 2 Zn{~A >> in[2kz sin2  (8)

an approximate solution to the canonical integral, U(6i;z), is obtained

to order [Q(z)]- 2 in Appendix A. From (A17) of Appendix A, this approxi-

mate solution may be stated as

U(6 ;z) - eikZ, n[f(O ;z) - in] - Xn[f(ei;z) + ir]) (9)n i

where

f(Oi;z) - 2C + y + iw/2 + In(2kz) + ei 0 EI(-iv0 ) (10)



is a slowly varying function of z . C is defined as
wIC =- £n(ka) - y ; y = 0.57721 ... (11)

which is usually taken as a large parameter in the typical thin wire appli-

cation and,

Vo v0 (ei,z) = 2 kz sin2[OL (12)

The function, E1, appearing in (10) is the exponential integral of the

first kind defined in Equation 5.1.1 of [16]. We note that the antenna

parameter, Q(z), is defined in the same way as in [II] where it has been

used as a large parameter for the iterative solution of the antenna prob-

lem.

Another approximate form of the canonical integral, U(6i;z), which

stems from a Taylor series expansion of (9) subject to the basic restriction

stated in (8) is given in (A18) of Appendix A and repeated here,

u(e ;z) = 21T eikz (13)
i r f (E)%;z)

Even though (9) and (13) are equivalent with respect to the order of approxi-

mation (i.e., [((z)]- 2), we shall find (13) to have a more desirable

behavior in the near-grazing, ei - 0 , and near the end, z - 0, situations.

Otherwise, (9) will appear to be a more accurate result than is (13) for

U(0i;z).

It is interesting to compare our approximate forms of U(8i;z) to

similar expressions derived by other authors. For the current on an infinitely

long transmitting antenna (80 - w), Shen, Wu and King [61 by a semi-

fi
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analytical, semi-curve fitting technique found a result similar to our

U(O;z) in (9), except that the term, £n[kz + V(kz) 2 + exp(-2y), replaces

our terms, tn(2kz) + exp(-i2kz)E (-i2kz). Thus for large kz , our approxi-

mate solution for U(f;z) in (9) and that of Shen, et al. [6, Eq. 6] are

quite similar. Weinstein [2] found an approximate solution to an integral

similar to (3), (he called it the "key" integral), but having a different

coefficient outside the integral. Apart from this coefficient (our approach

introduces this term at a later time), Weinstein obtained, through a com-

plicated variational approach, an approximate result equivalent to our

second approximate form of U(8,;z) in (13). Also, in a more recent work

by Chang, Lee and Rispin [17], a further approximation of (13) was obtained

and used in a receiving antenna analysis. However, the analyses of Shen,et al.,

Weinstein and Chang, et al., mentioned above, all assumed the conventional

thin wire restrictions,

ka << 1 (and kz > 1) (14)

Although in [2], Weinstein did observe, a posteriori,that the approximate

form of his "key" integral (similar to (13)) could be used for larger

values of ka if at the same time, kz was very much larger. Thus, the

importance of our work is not so much contained in the approximate formulas

for U(Oi;z) in (9) and (13), but rather in the realization of a less

restrictive condition (given in (8)) for the validity of these approximate

formulas. In fact, it will be shown in Section 4 that the approximate

formulas for U(Oi;z) in (9) and (13) yield remarkably good agreement with

numerically obtained "exact" results even when Q2(z) is of the same order

as jIn(V 0)I . Hence, even the "much greater" restriction appearing in

(8) can be significantly relaxed.
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3. Currents on cylindrical antennas

In this section, the currents on infinite and semi-infinite cylindri-

cal receiving and transmitting antennas, given in terms of the canonical

integral, U( i;z) in (3) ofSection 2, are described.

3.1 Primary receiving current

The longitudinal current averaged over the circumference on an

infinitely long cylindrical antenna due to a plane wave polarized in the

same plane as the antenna and incident at an angle, 61, with respect to

the cylinder axis (which is also the z-axis as shown in Figure 2a), may be

written as [8, eq. 10],

IR(etz) - E i V(O ;z) (15)

where,

V(6;z) -i 4n J0 (ka sin 8i) ikzcosOi <
i) - sin i K(kcosei)

0 1 6ir (16)

J0 is the zero order Bessel function and K(a) is given in (4).

k - 2w/A and n are the plane wave propagation constant and intrinsic

impedance, respectively, of the surrounding medium. Higher order varia-

tions of the z-directed current with respect to the azimuthal angle, €,

and the *-directed currents on the cylinder are not treated in this report.

Thus, while V(ei;z) represents the total longitudinal current on an

infinitely long electrically thin (ka << 1) antenna very well, it corresponds

only to the azimuthally uniform longitudinally directed current on an

infinite cylindrical antenna in general.

J-
4€~
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-a 020 a- -2o

k

z=E

Figure 2. Infinitely long tubular cylindrical antennas

a. receiving; uniform plane wave incident at an angle,e.

vith respect tp the z (antenna) axis.

b. transmitting; delta function voltage source of strength,

V 0 volts, located at z z20.
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In the special case of a thin cylinder, i.e., ka << 1, the Bessel

function and kernel, K(a) in (4), may be approximated by the leading

terms in their respective small argument expressions to yield,

ikz cos o

V(6 ;z) = -i 4- e
1 k sn[n k (17)

i 2
sine in-2£

where C is given in (11).
w

3.2 Primary transmitting current

The longitudinal current on an infinitely long hollow cylinder due to

a uniform (with respect to the azimuthal angle, O ) delta function voltage

source of strength, V0 , at z - z0 (see Figure 2b), may be written as

[6, Eq. 1],

T(z; z) = i 2k Vo f e - mIZ z

IT(zO) (k2 _2)K(0 d ; - < z < (18)

r0

where the contour, r 0 , is shown in Figure 1 and K(a) is given in (4).

Comparing (18) with the canonical Integral definition in (3), we may write

the driven infinite cylinder current as

I.(z 0 ;z) - V0 U(ir;iz-zo[) ; - <z< (19)

and use either approximate form of U(n,z) in (9) or (13) to determine

this current provided the restriction in (8) is satisfied. This procedure,

however, does not yield a good result at the source since the condition on

Q(z) is violated. In particular, the real part of the current at the

source needs to be evaluated very accurately, since physically it
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corresponds to the input conductance and hence the power that can be radiated

from the antenna. To this end, it is shown in Appendix B, how an approximate

expression for primary transmitting current similar to that of Shen, et al.

[6] may be constructed. This current expression denoted as Us(Iz-z01) re-

places the term U(r;jZ-Zo) in (19) and is given by

(jz z~j .. ikl'- o1
Us(z---n, = e en[f s z-z0o) - in] - kn[fs(Iz-zoJ) + 17) (20)

where

fs(Iz-z0 1) = 2C + y +i7r/2+ n[(kIz-z 0)+ /(kjz-z 0 j) 2 + exp(-2y-2g)]

(21)

C and y are given in (11) and,
w

g - 33.88 (ka)2 exp 3 .) (22

From (18) and (20), the input conductance of an infinitely long cylinder

is then given by

G -(ka) Re (U (0)} = Re{[- Xn(2C - g - iw/2) - tn(2C - g + i3w/2)1}
sD w w

(23)

It will be shown later in Section 4 that (23) yields a very good input con-

ductance for an infinitely long cylinder as thick as ka - 1.0. Also, we

note that U (z) in (20) is asymptotic to both forms of U(ir;z) in (9)

and (13) for large kz and differs only in the vicinity of the source,

kz = 0.

3.3 Secondary current on a semi-infinite receiving antenna

The secondary current on the external wall of a semi-infinite receiving

cylinder (see Figure 3a), arises from the reflection of the current

- A,



1.4

z z

2Zo 2a

Z z 0  + V0

0
"0

z:O,--zzO - - -.,

(a) (b)

Figure 3. Semi-infinite tubular cylindrical antennas

a. receiving; uniform plane wave incident at an angle, 0i,

with respect to the z (antenna) axis.

b. transmitting, delta function voltage source of strength,

V0 volts, located at z - zO.0 0
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I R (ei,z) in (15) from the end of the cylinder. From a Wiener-Hopf analysis

this reflected current may be expressed as (17, Eq. 27],

iR i 1k
IfR (0t9 z) = E0 V(01 ;0) - (1-cos 0 )K+(-kcos 0t)

reli2n i

-icizf K+ C-ct) e - e

(k+0)(kcos 8--tKOc) dc ; 0 a (24)

The contour r0  is shown in Figure 1, and as previously noted, K+(c) comes

from the factorization of K(a) in (4) into functions analytic in the upper

and lower halves of the complex a plane, i.e., K() - K+(a)K_(c). This

factorization is more fully discussed in Appendix C. The superscript R in

(24) signifies the receiving situation. We may write (24) in terms of the

auxiliary canonical integral W(i;z) in (6), and by virtue of (7), we have

the approximate expression,

I fl (0i,z) z - E0 V(OI;O)R(0M)U(ei;z); 0 < z < ,

0 1 0 i  (25)

where we have defined the "reflection coefficient",

R(Oi) = -. K+(k)K+(-k cos )  (26)

The approximate expression for the reflected current in (25) is valid if the

basic condition in (8) is satisfied. We note that the reflected current

distribution considered here is, as in the primary receiving current dis-

tribution in Section 3.1, the total z-directed current averaged over the

circumference of the cylinder.

One of the obstacles, which in the past has prevented the practical
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application of the Wiener-iopf technique to thicker antennas, has been the

absence of a tractable expression for K+(a) in the range -k ! a < k

which appears in (26). It is shown in Appendix C, that a curve fitting

procedure involving the factor, K+(c), with compensation for its dominant

irregularity, yields the approximate formula,

0
B (x ; 0 _< ( < k

IAIE1 + B(K)]

K4-(c) (27)

K;- (ax)
a L 2 ] ; - k _< c < 0

IAI[I + Br() + C(k)

0where K4 (a) is the small argument form of K + (a) based upon the assump-

tions that ka << 1 and %a << 1 (1, Sec. 38] given by

0 ) - /2C + i [ - I k+a(2K( " 2C + ls 2k . (28)

]AJ is the magnitude of A given by,

A - K+(0) [inJ0 (ha) H(1)(ka)] -1/2 (29)

Br is given by

Br Cir C(ka) - Re(12C + i + In(2)j-1) (30)

and is the real part of a more complicated function, B, given in (C19) in

Appendix C. Here G.(ka) is the input conductance of an infinite

cylindrical antenna having an electrical radius, ka, for which we have the

approximate formula given in (23). Appendix B gives a detailed discussion



17

of the exact and approximate forms of G,.(ka). And finally, the coeffi-

cient C is given in terms of JAI and B by,r

1 - JA 2 (1 - B 2)

C --=- _ (31)C AI2 (1 + B r

Although (27) is basically a curve-fit solution for K(a) in the range,

-k < a I k, the coefficients JAI and B were obtained in much the same-- r

0manner as those in a two-term Taylor series expanion of K (c)/K+(a) in

the upper-half of the complex a-plane. The coefficient, C, was obtained

by requiring that the approximate constructed quantity K(a) = K +(a)K_(a)

(see (C5) and (C6) of Appendix C) using (27) have the same limiting form

as the exact K(a) in (4) as a ± k.

3.4 Secondary current on a semi-infinite transmitting antenna

The secondary current eminating from the end at z - 0 of a semi-

infinite, 0 ! z < -, cylinder having a delta function voltage source of

strength V0 at z = 0  is usually approximated by the reflection of a

wave incident at ei = 7r [6], as illustrated in Figure 3b. Hence, from

(24) we may write,

Iefl (zo;Z) - -IT(z 0 ;0)R(7r)U(n;z) , 0 < z < (32)

where we have replaced the i eceiving incident current, Ee V(8i;0) by

Tthe transmitting incident current, I(z ;0).

I
f.A0
%nw...
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4. Numerical comparisons: infinite and semi-infinite antennas

4.1 Primary transmitting current

As discussed in Section 3.1, we shalL use the modified Shen, et al.

[61 formula denoted as U (z) in (20) for the primary current on a

cylindrical transmitting antenna. And since Shen has already compared his

approximate expression with numerically "exact" data in [61 for values of

ka up to 0.08 with good agreements, we shall only consider cases in which

0.1 < ka < 1.0 to justify the extension of the theory to this range. In

Figure 4, we show the real and imaginary components of the current distri-

bution on an infinitely long cylindcr as predicted by the modified Shen

formula in (20) with V0 = 1 volt, for the particular values of the electri-

cal radii, ka - 0.1, 0.5, and 1.0. "Exact" data for these cases obtained

from the numerical integration of (18) is also shown in Figure 4 (as

circles). And it may be observed that the real component of the current

distribution predicted by (20) compares very favorably with the exact

numerical data over the entire range of kz shown especially for the

smaller values of ka. The imaginary component of the current distribution

predicted by (20) compares favorably with the exact data only when the

ratio, 2z/a, somewhat exceeds unity.

As mentioned earlier, the purpose of Shen's and our curve-fitting pro-

cedures leading to (20) for the primary transmitting current was to obtain a

good value for the real part of the current at the source, i.e., the input

conductance of an infinitely long cylindrical antenna. To demonstrate the

level of success attained in this respect we offer Figure 5, which shows

the input conductance of an infinitely long cylinder as obtained from the

real part of U (0) in (23) and the "exact" numerically evaluated input
c

conductance from the exact integral expr.ssion stated in (Bi) of Appendix
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Figure 4. Current distribution on an infinitely long cylindrical trans-

mitting antenna with a delta function voltage source at zz -z 0.

Approximate distribution from the modified Shen [6]

formula denoted by Us(1z -z01) in eq. (20).

0 "Exact" numerically evaluated data from -q.(18).

Note: The traveling wave factor, eikz, has been sL, ces -(d.
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B as functions of ka over the range 10- 4  ka S 1. Obviously, excellent

agreement is obtained. In fact, the error, which is also shown in Figure

5, never exceeds 2% over the entire range.

4.2 Reflection coefficient R(0.)

The behavior of the "exact' numerically evaluated (using the formula

of Mittra and Lee [15, Sec. 5-2.(3)1) K+ (a) is shown in Figure 6 as a

function of a in the range -k < a < k for the specific cases ka =

0.01, 0.05, 0.1, 0.5, and 1.0. This variation in a when a = -k cos e.1

corresponds to the range O< 6. < Tr. The behavior of our approximate form1

of K +(a) in (27) is so close to the exact we have not included this data

in Figure 6 but have elected to show, in Figure 7, the error between the

approximate and "exact" values of K+ (a) for the same range and set of

parameters as those in Figure 6. The magnitude and phase error illustrated

in Figure 7 is seen to be quite small, typically below 1% and ±5, respec-

tively. And it should be noted, that this magnitude error is many times

smaller than the magnitude error of the normally accepted small argument

approximation, K (a) in (28). For example, at ka = 0.01 K (k) differs

from the exact value of K +(k) by about 1.5%, while our approximate form

of K+ (k) from (27) possesses an error of less than 0.1%. And as the

0
value of ka increases, the error in K (k) increases quite rapidly,

reaching over 200% at ka - 1.

Obviously, the quantity of more crucial importance is the so-called

"reflection coefficient", R(6 in (26). Figure 8 shows the magnitude

and phase of R(O i ) as calculated using the "exact" numerically determined

values of K +(k) and K+ (-k cos 6 ) (again from the formula of Mittra

and Lee [15, Sec. 5-2.(3)]) as a function of ka over the range

10- 4 < ka s I for the incident angles 0, a w/36, 7/4, n/2, 3%/4 and i.

€.
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000

I00

Figure 6. Magnitude and phase of K (cx) in the range, -k <(k, calcu-

lated from the exact formula for K +(ax) in (15, 5-2,(3))l,

(See eq.(C11) of Appendix C of this report.)
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Figure 7. Magnitude and phase errors of the approximate form of K (a)

in eq. (27) for the range -k < aL < k.
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Figure 8. Magnitude and phase of the "reflection coefficient,"

R(e ) (n/2ir)K (k)K (-kcoei) calculated from the exact

formula for K (ci) in [15, Sec, 5-2.(3)] (See eq. (Cli) of

Appendix C of this report.)
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Figure 9. Magnitude and phase errors of the "reflection coefficient,"

R(e i) - (f/21)K+(k)K+(-k cos 0l), calculated using the

approximate formula for K (ra) in (27).
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Data for R(Oi) using the approximice formula for K +(a) in (27) is not

included in Figure 8 because of the very close agreement it has with the

exact data. Instead, we show the error of this approximation with regard

to the exact in Figure 9 for the same range and set of parameters as in

Figure 8. The magnitude error is seen to be at most about 3% and typically

much less while the very small phase error is never more than ±50.

4.3 Reflected current distributions

Denoting the reflected current due to a unit incident current of the

N
form exptikz cos 0.]i as I efl(0 ;z) , we have from (6) and (24) the ex-

pression,

Iefl (i'z) R (- k cos Oi) W(6i;z) ; 0 < z _

0 1 0i 1 (33)

in both the receiving and transmitting situations. We note that (33) is

an exact expression for the normalized reflected current in the receiving

situation (0 S 8 S w) and is a very good approximation for the normalized

reflected current in the transmitting situation (0inw) when the delta

function voltage source is located sufficiently away from the end. From

(7) and (26), the approximate form of (33) is given by

Irefl(8iz) - -R(Mi)U(Oi;z) ; 0 £ z I

0 ei  (34)

To demonstrate the accuracy attained with our approximate formulas,

Figures 10-14 show the behaviors of the "exact" reflected currents in (33)

(with K +(-k cos 61) numerically determined using the formula of Mittra

and Lee (15, Sec. 5-2.13] and W(0 ;z) in (6) numerically integrated) and

ii

-* |6"/,
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Legend for Figures 10-14

o e 1=7 "Exact" numerically determined IN (Ei;z )  from (33)

o =/2 found by using the formula of Mittra and Lee [15, Sec.

o =-/4 5-2.(3)] for K+(a) and by the numerical integration of

L. =/36 W(ei;z) given in (6).

Approximate form of IN (i ;z) given in (35), with

R( i ) from (26) determined by the approximate K+(a)

formula in (27) and the approximate formula (13) used for

u(ei;z).

Approximate form of If(a;z) given in (35), with

R(Bi) from (26) determined by the approximate K+(a)

formula in (27) and the approximate formula in (9) used

for U(ei;z).

ikz
Note: In Figures 10-14, the traveling wave phase factor, e ,

has been suppressed to aid in improving the clarity of

the information presented.

I.
K i
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Figure 10. Magnitude and phase of the current reflected from the end

of a semi-infinite tubular cylinder where ka - 0.01.

(See accompanying Legend for further details.)
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Figure 11. Magnitude arnd phase of the current reflected from the end

of a semi-infinite tubular cylinder where ka - 0.05.

(See accompanying Legend for further details.)
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Figure 12. Magnitude and phase of the current reflected from the end
of a semi-infinite tubular cylinder where ka -0.1. (See
accompanying Legend for further details.)
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Figure 13. Magnitude and phase of the current reflected from the end

of a semi-infinite tubular cylinder where ka - 0.5. (See

accompanying Legend for further details.)
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the approximate reflected currents in (34) using (27) for K (a) in (26)
+

for R(ei) and using both (9) and (13) Cor U(6i;z) as function of kz

in which 6. = 1/36, 1/4, w/2, and i for the values of ka equal to1

0.01, 0.05, 0.1, 0.5, and 1.0, respectively. We note that in every case,

the data obtained from the use of (9) for U(6i;z) appears to be closer

to the numerical data than does results using (13) for U(e0;z). This is

somewhat misleading, since in the finite length cylinder situation where

multiple reflections of currents from the end are characterized by waves

incident at an angle, 0. =n , and subsequently summed (see Section 5)1

slightly better results are obtained witn (3) used for U(A.;z). This
1

apparent incongruity must be a result of the summation procedure producing

an error which is more compensitive for the error in (13) for U(ei;z)

than it is for the error in (9). A more detailed clarification of this

point will be forthcoming.
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Section 5. Approximate expressions for Llie external currents on finite-
length cylindrical antennas

Expressions for the currents on finite length cylindrical antennas

are constructed by summing the primary and subsequent secondary currents

reflected from the ends of the antenna.

5.1 Finite receiving antenna

Our theory can now be applied to the finite length receiving antenna

with the understanding that only tho average (over the circumference) z-

directed current is obtained. As noted by Kao [18] specifically for normal

incidence of the plane wave, this zero-order current is not coupled to any

higher order variations of the current with respect to the azimuthal angle,

and may be considered independently from these higher order currents.

Rispin and Chang [19] have also noted this to be true for arbitrary polari-

zation and arbitrary incidence of the uniform plane wave.

The constituative currents on a finite length (-h , z h), cylindri-

cal receiving antenna with radius, a, are shown pictorially in Figure 15.

Beginning with the plane wave induced primary current, E V(6i;z), shown in

Figure 15a, the reflections of this current from the end at z = -h and

the z = +h end are determined to be -V(n-0 ;h)R(O i)U(Oh+z) and

-V( i;h)R(n-6 i)U(R-6i,h-z), respectively, as illustrated in Figure 15b.

These reflected currents then propagate toward opposite ends of the cylin-

der (analogous to waves incident at an angle n with respect to a parti-

cular end) at which point they reflect again as -V(n-Oi;h)R(Oi)U(Oi;2h)

R(n)U(8;h-z) and -V( i;h)R(O-0i)U(O-8 ;2h)R(i)U(n;h+z), respectively.

Continuing this procedure leads to an infinite number of reflected currents

eminating from each end of the cylinder, as suggested in Figure 15c. The

infinite series expressing the current reflected from a particular end of
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the cylinder are in the form of simple gometric series which may be readily

summed. Hence, we arrive at the followii:.; expression for the total exter-

nal current on the finite length cylindrical receiving antenna,

R Ei{R(iz)V) -)U(i;h -
( R

S(;Z) = e V(;z) - V(-C-,h)R( )U h+z) CR.7-0 )R(n)[;(;,h+z)

- V( i;h)R(ir- i)U(n-O'h-z) - C R(6i)R(n)U(Th-z)} (35)

where

[V (6 ;h)R(T-0 .)U(-f-0. ; 2h)R(T)U0(T;2h)-V(-i;h)R(C'i)U (0i;2h) ]

cR(ai) 1 1
1 I - [R(C)U(ir;2h)] 2

(36)

represents the total incident current (with an analogous wave incidence of

e. = R) upon the end z = +h due to current reflections eminating from the1

end at z = -h. C R(rr- i) has a similar interpretation with the ends

interchanged. The terms involving R(e )U(oi,h+z) and R(7t-6.)U(7-0i;h-z)

represent the initial reflections of the primary current wave incident at

the angles, 0. and 7 - 0i, respecLively. Thus, except for the primary

term, V(6i;z), all the other terms in (35) represent reflected currents

from the ends of the cylinder. Our expression for the receiving antenna

current in (35) agrees in form with that of Weinstein [2] and can be shown

to be consistent with our earlier result in [17] under the conventional

thin wire approximations. A complete formal agreement between our result

and that of Shen [7] occurs only when the terms U(i ;z) and U(7-0i,z)

in (35) are approximated by U (z) in (20) with the constant, g, deleted.

The approximation of these terms in this manner is implicit in Shen's [7]

analysis.

-i,..-, . .. , 1., . ,,
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The limiting form of the current on a finite length receiving antenna

as the angle, OL, approaches grazin, incidence, i.e., Ei -* 0 or Tt, based

upon both approximate forms of U(Oi;z) in (9) and (13) is discussed in

Appendix D. And it is found that, while our theory is not expected to be

valid in this range because of the apparvint violation of the restriction,

Q(z)>> 1in(vO)1 in (8), the approximate form of U(O.;z) in (13) actually

produces the very physically acceptable result of a vanishing current as

0.-0 or n . Also a smaller, magnitude-wise, result for the current near

the ends of a cylinder for a fixed incident angle, 6i, is obtained in

Appendix D, when (13) is used for U(O .;z) rather than (9). These con-1

siderations are very important in tile cases when the incident angle t

is near grazing, i.e., eL = 0 or 7, and when the length of the antenna1

becomes electrically short.

And, finally, we note the symmetrical behavior of (35) with respect

to the incident angle of the uniform plane wave and the position, z,

I R(0i;-z) IR(7-ei;+z) (37)

5.2 Finite transmitting antenna

In much the same manner, the current on a finite length (-h : z S +h)

cylindrical transmitting antenna of radius, a, due to a delta function

voltage source of strength, V0 , at z = z0  (see Figure 16) may be

expressed in terms of a primary current and the multiply reflected currents

from thc ends. Figure 16a illustrates the primary current, which we shall

approximate by Us(z-zoj) from (20), eminating from the delta function

voltage source at z = zO . These waves are incident upon the ends of the

cylinder at an angle of w respective to the particular end. Hence, the

initial reflections of the primary current from z = -h and z = +h are,
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-V0Us(r,h+z0 )R(-n)U(-n,h+z) and -V0U S(,1-z 0 )R()U(,h-z), respectivelN,, as is

shown in Figure 16b. The reflections of these currents from the respec-

tive opposite ends and the subsequent reflections which follow (Figure

16c) lead to a pair of infinite series, which are again summable. The

final result for the transmitting cucrenL distribution is given by,

IT (zo;Z) = Vo{U (IZ-Z 0 1)

- U s (h+z0 )R(r)U(r;h+ z) - cT (h+z0)R(0)U(;h+z)

- Us(h-z 0 )R(n)U(iT;h-z) - cT(h-z 0 )R(n)U(n;h-z)} (38)

where

U (z)[R(i)U(n;2h)] 2 - U (2h-z)R(n)U(n;2h)CT (z) = s s (9
1 - [R())u(r;2h)] 2

represents the sum of the currents incident upon the z = -h and +h ends

of the antenna when z is taken as h+z and h-z , respectively, due to
0 0

current reflections eminating from the opposite end. Note that the initial

reflection of the primary current from each end is explicitly stated in

(38), the overall form of the transmitting current expression being the

same as that for the receiving current in (35). Our transmitting current

expression in (38) can be shown to be equivalent in form to those of many

other authors [I, Sec. 35.7], [2], [6] and others.

However, unlike the expressions of these authors, our expression is

more general and flexible, since wt, claini it may be used for electrically

short as well as electrically thick antennas as long as the basic condi-

tion in (8), Q(z') = 2 ln(2z'/a) - lln(2kz')l is satisfied (note here

7
°

'
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z' refers to the distance to the source, z-zo, and the distances to the

cylinder ends, h+z and h-z) and approprLately accurate values of R(w)

are used. And in this report, we often take the nominal measure, z' = h.

We note the symmetry in (38) with respect to the source and observa-

tion points, i.e.,

IT (z0;-Z) T(-z0;Z) (40)

An approximate formula for the input admittance of an asymetrically

driven cylindrical antenna of length, 2h, obtained by setting z=z 0 and

V0 = I volt in (38) is given by

Y - G - iB = U (0)in s

- U s(h+z0 )R(Tr)U(ir;h+z 0 ) - CT(h+z0 )R()U(n;h+z0 )

- U s(h-z 0 )R(n)U(Tr;h-z 0 ) - cT(h-z 0 )R(w)U(n;h-z 0 ) (41)

Here G is the input conductance and B is a "relative" input suscep-

tance. The qualification to a "relative" input susceptance is necessary,

due to the fact we employ a delta function voltage source for the excita-

tion and the mathematically predicted behavior of the imaginary part of

the input current for this excitation should exhibit a logarithmic singu-

larity (20] and [21]. This singularity would indicate an infinite capaci-

tance, the so-called "knife-edge capacitance" [22]. However, the parti-

cular way in which the primary current term, Us (z), was derived (discussed

in Section 3.2) does not allow the possibility of such a singularity in

this current at the source. In a realistic sense, though, this slice
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capacitance is due to an idealization in the mathematical model rather

than a physically occurring phenomenon in the practical situation and in

general does not pose any difficulties in experimental studies. Thus,

the absence of such a singularity in our Cormulation is not unwelcomed.

i
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6. Approximate expressions for tho internal currents on cylindrical
antennas

Thus far our theory has considered only the external current distri-

butions on cylindrical antennas, hence, it is appropriate at this time to

include a complementary discussion of the current distributions on the

internal walls of receiving and transmitting cylindrical antennas. By

combining the external and internal current distributions, the total cur-

rent on the antenna may be found. But a more important use of a knowledge

of the internal current occurs in some electromagnetic compatibility

studies where it is desirable to know the amount of penetration into a

long thin metallic enclosure. In many cases, the penetration is into the

end of a cylinder and one needs to know the induced current on the inter-

nal wall of the cylinder.

6.1 Internal current on a semi-infinite receiving antenna

The TMOn mode currents on the internal wall of a semi-infinite

(0 ! z ®) cylinder due to a plane wave incident at an angle, 81, are

easily determined by a Wiener-Hopf analysis [17, Eq. 27] to be given by

:R R= i 0 ik (~o

{I (0 ;z)}int E V(6tO) [ CI-cos )K +(-k cos 0

K +(-a)e

1 (k+a)(kcosei+u'ZKa" 0 8 (42)

where E V(e ;0) is the incident current at the end and is given in (15).
0i

The contour, rl, is shown in Figure 1 and K+ is the "plus" factor of

K(a) in (4), which is discussed in Appendix C. Since the contour, F,

encloses only simple poles of [K(a)] - , the integral may be easily
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evaluated and (42) may be written in the form,

jR (6i 
O

{I (e.;z)} E V(6 ;0) T (e)e On(43)s£ i int Ee T On 14
n= 1

where TOn is a transmission coefficient given by,

k (Tn-ik)
Tone.) = +i k (1-cose.)K (-kcosei) On K (iyn) (44)
on i- 2 1 + ' Y on (Y O +ikcos6 ) + On

and,

iY = i '/(P n/a)2 - k (45)

is the propagation constant of the TMOn circular waveguide mode. And
tOn

finally, On is the n-- ordered zero of the Bessel function, J0"

Several approximations are possible to allow us to state the internal

current in a more convenient form. The first of which is from the approxi-

mate splitting of the asymptotic form of the kernel, K(a), for large aa

and is given by

K +(a) , i/(k+a)a ; for aa large (46)

Numerical data comparing (46) with the exact value of K+(c) from the

formula of Mittra and Lee [15, Sec. 5-2.(3)] has shown good agreement
-n

for a Z iy0 1 up to ka - 1.0 . Also for e << 1, the infinite sum

may be truncated at n=N and the subsequent loss of information for the

smaller values of z may be somewhat compensated for, by approximating

the summation in (43) at z-O using relcvant Taylor series expansions

for ka S 1 in the manner described in Appendix E. The summation in (43)
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may then be approximately written as

1 4

2 (-csi )K+(- sOi )  Y Sm (6 )(ika)m; z=0
m=lm

LA T _n e YonZ Y nz( 7
e e (47)

In =

where

Si(ei) = 0.5831 (48)

1

S2(e i) = -0.1364 [- + cos ] (49)2 12 1

$3(6i ) = -0.0498 [ - cos 0. - cos 2 0.] (50)3 8 2i
9 1 1

S (6 ) = 0.0198 [ + 1- cos 8. - - cos6Oi - cos 3 e.] (51)
4 1 16 8 i 2 1

which is sufficiently accurate for most cagineerinR applications up to

ka 1.

6.2 Internal currents on a semi-inlLnite transmitting antenna

The current which penetrates into the end of a semi-infinite

(0 < z < -) cylindrical transmitting antenna having a delta function

voltage source of strength, V0 volts, at z-z0  is associated with TMn

circular waveguide modes and may be written in an analogous manner with

respect to the receiving case as,

T z IT ( K K (-a)eiaz d ; 0 s z (52)SaI i tz) ( 00 ~ K,.(fk)J_2)~
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where I T(z ;O) is the incident current from (19) at the end. Again

the contour, ri, is given in Figure I and K+ is the plus factor of

K(a) in (4) discussed in Appendix C. The integral may be evaluated ex-

actly by finding the residues of the poles of [K(a)] -1 enclosed by FI

and (52) may then be approximated by,

T YOn z

{I (z)}in t  = V U s(Z ) T ( ) e (53)

n=l

where we have replaced the exact incident current, l(z ;0) with the

approximate quantity, V0 Us(z 0 ) from (20). TOn and y On have been de-

fined in (44) and (45), respectively. Again, as in the receiving formula-

tion, we may approximate the summation in (53) with the expression in (47).

It should be noted that there would also be internal wall currents

on the semi-infinite transmitting antenna which would not come from pene-

tration at the cylinder end but rather would be excited directly by the

source. For a delta function voltage source, this internal current can

be shown to possess a logarithmic singularity at the feed-point similar

to the logarithmic singularity of the external current at the input. For

a more realistic excitation, such as a finite gap, however, the internal

current would be well-behaved everywhere and would be directly related to

a capacitive susceptance component (assuming there to be negligible radiation
-Y01z0

from the open end of the cylinder which in turn implies, e << 1)

of the overall input admittance. And since we have not addressed ourselves

to the task of specifically defining a "realistic" input susceptance, the

internal current in the vicinity of the voltage source and its effect on

the input admittance will not be pursued any further in this report.

It
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6.3 Internal current on a finite-1,i.gth receiving antenna

From the external receiving current !xpression in (35), we may write

the internal penetrating current near z --h using the transmission

characterization in (43) as,

6 ; R On (I i iTV(I-oi,+hT) i  + cR(P-0 ) )j e
n=l

z - -h (54)

while the penetrating current near tile opposite end at z =+h is obtained

by replacing 0. with 7-0. and (h+z) with (h-z) in the above ex-

pression. The first term in the {bracketsl above corresponds to TMOn

mode currents on the internal walls of the cylinder due to the primary
i

current term, E V(o-0i;+h), while the second term corresponds to TM06 On

mode currents due to the total external current incident upon z=-h

arising from reflections eminating from the opposite end at z=+h.

These latter currents are analogous to waves incident at an angle,

60 = 71. Hence, the transmission coefficient for these incident currents

is evaluated at 0i = i. The expression in (47) may be used to approxi-

mate the summations in (54), thereby reducing the computational efforts

required to find the internally penetrating current. Note, it is implicit

in this formulation, that there is no internal interaction between the
-y 0 2h

ends of the cylinder, thus implying that e << 1.

6.4 Internal current on a finite-length transmitting antenna

The internal penetrating current near the ends of a finite length

(-h i z h) cylindrical transmitting antenna may be obtained by applying

the transmission characterization In (53) to the respective incident

currents from (38) with the result,
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IT (z h) = V0 IL (h ) T (h

, - 0 (haz)

n On O(n ) (55)
n = 1

Analogous to the receiving case, the rirSL term in (55) corresponds to

TM mode currents on the internal walls of the cylinder due to the
On

primary current, V U (IZ - z01) at z = h while the second term

corresponds to TMOn mode currents due to the total external current

incident upon z = Th arising from reflections eminating from the opposite

end. Again, (47) may be used to approximate the summations in k55) and
-y 0 1 (hiz 0 )

the restriction, e < 1, is also implied in this formulation.

6.5 End conductance of a finite length cylindrical antenna

A quantity related to the internally penetrating current on a cylin-

drical antenna is the input conductance for a TMOn mode incident upon

one of the ends of the antenna. Unlike the cases treated by Weinstein

[2, Chap. 1], Levin and Schwinger [231, Iones [24] and others, our analysis

for the end conductance, discussed in Appendix F, deals with a TM mode
-On

under cut-off, the radiation in this case necessarily coming from tunneling.

The end conductance in this situation is relevant and very important to

EMC studies involving the penetration into the end of a cylindrical en-

closure [25]. A detailed discussion of this quantity is left to Appendix

F, where the end conductance as seen by an evanescent TMOn mode inside

and near the end of a finite length cylinder based upon Wiener-Hopf

analyses and the multiple reflection concept is derived.



pL

48

Section 7 Numerical results for the finite lengthcylindrical antenna

Due to the restriction our theory places upon the clectrical radius

of ka < 1 , the currents on the internal wall of the finite length

cylindrical receiving or transmitting antenna are, in general, very much

smaller in magnitude than the currents on the external wall, except in

the near vicinities of the ends. From Section 6, it may be ascertained,

that the internal current is significant only within a distance, 2a

(equal to one cylinder diameter) from either end. And since we cannot

rely upon results from our external current expressions so close to the

ends, where the internal currents are significant, the formation of total

current distributions from the combinations of our receiving and trans-

mitting external current distributions in (35) and (18). respectively,

with the corresponding internal current distributions in (54) and (55)

would be of little advantage. Hence, in mest cases, the external current

formulas in (35) and (38) will be sufficien to describe the current

distribution, whether it be the total or external only, on finite length

receiving or transmitting antennas, respectively. On the other hand, the

internal current distributions given in (54) and (55) for the finite

length receiving and transmitting cylindrical antennas may be accurately

calculated using the approximate formula in (47) at practically ny point

on the antenna.

7.1 Current distribution on a receiving antenna

In order to examine differences in our receiving theory resulting

from the use of either approximate form of U(Oi;z) in (9) or (13) we

have included Figure 17 which shows the magnitude of the induced current

at the center of a receiving antenna where 0(h) - 10 , illuminated by

a ' '
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a normally incident (0i = 7/2) plane w.ve polarized parallel to the

antenna as a function of the electrical length, using both (9) and (13)

in the finite length receiving antenna current expression in (35). As

expected, the agreement between both results is very good except near

resonances and anti-resonances. And comparisons with existing analytical

and numerical results for cylindrical antennas in which the condition,

Q(h) >> 19n(v 0 )1 in (8), is satisfied, have indicated that our theory

yields slightly better results in almost every case when (13) is used

for U(6i; ). For these reasons, in whet follows we shall present only

results obtained from the use of (13) for U(Oi;z) in the receiving
1

and transmitting expressions in (35) and (38), respectively.

The current distributions on a half-wave, kh = 7T/2 , receiving

antenna where Q(h) = 2 kn(2h/a) = 10 for the incident angles,

0. Tr/36, 7/6, n/3 and 7/2 as calculated from (35) are shown in1

Figure 18. For comparison, first order results from the King-Middleton

theory [11, Chap. IV, Sec. 7] and results from King's three term theory

[5] for the normal incidence case, 0. = 7r/2 , are also shown. The1

agreement between the latter King theory and ours in this particular case

is excellent. And the overall agreement between all theories is quite

acceptable. We note that in spite of the condition in (8) which requires

Q(h) = 2 tn(2h/a) >> Iin(v0 ) , the current distribution predicted by our

formulas in the near-grazing situation, 0i = Tr/36 , is at a physically

anticipated small level. This is further exemplified in Figure 19, where

for the same antenna as in Figure 18 the currents at z = 0 , h/3 and

2h/3 are illustrated as a function of the incident angle, 0i . And we

note the near sinusoidal variation of the current with respect to the

incident angle, 0i , as would be expected for a thin half-wave dipole.

i • .. . . ...
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The currents on the internal walls of the same receiving antenna

(kh = n/2 , Q(h) = 10 ) at the end, z -h , and slightly away from the

end, z = -h + 2a , as calculated from (54) with (47) are shown in

Figure 20 as a function of the incident angle, 0. . The internal current

at the end, z = -h , represents an infinite summation of all the TMOn

mode currents at this point and is equal in theory to the negative of the

external current at this end. While the internal current at z = -h + 2a

is predominantly associated with the TM01 circular waveguide mode, all

the higher order modes being much more attenuated at this point. Thus

beyond z = -h + 2a , the internal current will decay essentially as
-Tol(h+z)

e

The current distribution on an electrically thick (ka = 1.0)

receiving antenna three wavelengths in length as calculated from (35) is

shown in Figure 21 for the incident angles, 0 = 7/36 , Tr/6 , n/3 , and

ff/2 . Note that this distribution corresponds only to the external

azimuthally uniform z-directed current on the cylinder. Note also that

since SI(h) = 2 tn(2h/a) = 5.87 and jzn(v0)1 = 2.64, 0.93, 2.24, and

3.63 for the respective angles considered, the condition that

(h) >> lin(v0)1 as originally required in the analytical development,

no longer holds. However, the correspondence with the data from Wu, et al.,

[351 based upon the integral equation and product integration formulation

of Kao [18] for the azimuthally uniform z-directed current also shown in

Figure 21 for the same antenna with a normally incident plane wave is

surprisingly good. Again we bring; attention to the relatively small level

of current on the antenna predicted by our theory at near-grazing

incidence, Oi = 1/36. The behavior of the current at z - 0 , h/3 and

2h/3 with respect to the incident angle, 0 , is shown in Figure 21 and
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is seen to exhibit the physically expecLed result of zero current aE

grazing incidence, 6i = 0 and U. The currents on the internal walls

of this receiving antenna (kh = 3lT, ka =1) at the end, z = -h , and

slightly away from the end, z = -h + 2a, as calculated from (54) with

(47) are shown in Figure 23 as a function of the incident angle, i .

Comments similar to the ones given for the internal currents illustrated

in Figure 20 are also applicable to this much thicker and longer antenna.

7.2 Current distribution on a transmitting antenna

As discussed at the beginning of this section, the total (internal

+ external) current distribution on those cylindrical antennas (both

transmitting and receiving) for which out theory is applicable is for all

practical purposes given by the external current distribution alone,

except in the near vicinity of the ends. An additional exception to this,

which is particular to the transmitting antenna, is the region very close

to the source where internal currents are directly excited by the source,

itself. A brief disucssion of this localized internal current has

already been given in Section 6.4, where it was deemed inappropriate to

pursue an in depth study of this current, which is of secondary importance.

The current distribution on a center-driven half-wave antenna where

Q(h) - 2 kn(2h/a) - 10 as calculated from (38) is shown in Figure 24

along with corresponding data from the three-term theory of King [5] and

the approximate second order iteration procedure of King and Middleton

[11, Chap. II, Sec. 22]. The agreement between our results and the latter

theory with regard to the real component of the current is excellent.

And although the agreement between the imaginary components is acceptable,

the discrepancy here was not totally unexpected since in the process of
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achieving an accurate value f9r tlie real component of the primary current

discussed in Section 3.2, a less accurate "physically acceptable" value

of the imaginary current near the source resulted. The correspondence

between the three-term theory of King (which may be judged to be less

accurate [5] than the King-Middleton results) and our theory is also

quite acceptable.

Perhaps more important than the transmitting current distribution,

is the input admittance to the antenna. Therefore, in Figures 25 and 26

we show the input conductance and susceptance, respectively, as calcu-

lated from (41) for a center-driven cylindrical antenna where

Q(h) - 2 tn(2h/a) = 10 , as a function of the electrical length, kh

Corresponding admittance data from the three-term theory of King [5] and

second order results from the iterative method of King and Middleton

[11, Chap. I, Sec. 30] are also shown in these figures. The agreement

between the conductances predicted by all three theories in Figure 25 is

seen to be very good. The agreement between the input susceptances is

also very good for the smaller values of kh where the "realistic"

imaginary component of the primary current is small compared to

imaginary current arising from the multiple reflections from the ends.

At the larger values of kh , where ka is proportionally larger, we

find larger discrepancies between our results and the King three term

and King-Middleton results. Here the imaginary component of the primary

current significantly affects the overall input susceptance. And since

our approximate expression for the primary transmitting current in (20)

is not expected to accurately estimate the "realistic" value for the

imaginary input current, this discrepancy will also appear in the finite

length antenna susceptance calculated from '41) in which (20) is used.

A-- , .
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However, in practical situations the input susceptance may be eliminated

by appropriate matching leaving the input conductance essentially

unchanged and the most important quantity of consideration.

To provide further comparison of our theory with existing approaches

we offer Figure 27 which shows the input conductance to a center-driven

cylindrical antenna where the ratio of antenna half-length to radius is

h/a = 100 as calculated by (41) and the corresponding numerically

evaluated (via the moment method) results of Harrington and Mautz [261.

The agreement between our results and the accurate numerically-determined

data is excellent. Further evidence to subst antiate our theory is given

in Figure 28, which is the same as the previous figure except the driving

point is now located at z = ±h/2 . Excellent correspondence with the

numerically determined data of Harrington and Mautz [261 is once more

attained.

We extend our considerations to much thicker antennas with Figure

29, which shows the input conductance of cylindrical antennas as calcu-

lated from (41) for the radii normalized to wavelength, a/X = 0.0159,

0.078, and 0.164 (ka = 0.1, 0.49 and L.03 , respectively) as a function

of the normalized half-length, h/A , between 0.1 and 0.5 . And

although these antennas are out of the applicable range of our theory due

to the basic condition in (8), we find behavior still consistent with the

numerically-obtained results of Chang [271 and [28] (one-sided delta

function excitation data), and the experimental results of Hartig [29].

This further enhances the feeling that the derived result actually has a

much wider application than had been assumed analytically. And we note the

very good agreement between our theory and the others for the larger values

of h/X , where the ratio of h/a is also larger.
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However, in practical situations the input susceptance may be eliminated

by appropriate matching leaving the input conductance essentially

unchanged and the most important quantity of consideration.

To provide further comparison of our theory with existing approaches

we offer Figure 27 which shows the input conductance to a center-driven

cylindrical antenna where the ratio of antenna half-length to radius is

h/a = 100 as calculated by (41) and the corresponding numerically

evaluated (via the moment method) results of Harrington and Mautz [26].

The agreement between our results and the accurate numerically-determined

data is excellent. Further evidence to substantiate our theory is given

in Figure 28, which is the same as the previous figure except the driving

point is now located at z = ±h/2 . Excellent correspondence with the

numerically determined data of Harrington and Mautz [26] is once more

attained.

We extend our considerations to much thicker antennas with Figure

29, which shows the input conductance of cylindrical antennas as calcu-

lated from (41) for the radii normalized to wavelength, a/X = 0.0159,

0.078, and 0.164 (ka = 0.1, 0.49 and 1.03 , respectively) as a function

of the normalized half-length, h/A , between 0 1 and 0.5 . And

although these antennas are out of the applicable range of our theory due

to the basic condition in (8), we find behavior still consistent with the

numerically-obtained results of Chang [27] and [28] (one-sided delta

function excitation data), and the experimental results of Hartig [29].

This further enhances the feeling that the derived result actually has a

much wider application than had been assumed analytically. And we note the

very good agreement between our theory and the others for the larger values

of h/A , where the ratio of h/a is aiso larger.
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The application of our theory to the thicker cylindrical antennas is

more successful when the antenna length is significantly larger than the

antenna radius. Hence, the input admittance to a center-driven cylin-

drical antenna having a half-length to radius ratio of h/a = 10 as

calculated from (41) is shown in Figure 30, as a function of the nor-

malized length, 2h/X . Comparison of this data to the numerically

obtained results of Harrington and Mautz 1261 also included in the

figure is very good, even near 2h/X = 2.0 where the electrical radius

approaches ka = 1.256. This value of electrical radius is slightly

beyond the range of our formulas, however, because the attenuation rate

of the secondary currents on an electrically thick cylinder is so pro-

nounced, as may be observed in Figure 14, the input conductance for the

finite length electrically thick antenna is predominantly determined by

Us (0) in (20), which obviously still predicts the input conductance of

an infinite cylindrical antenna to a sufficient degree of accuracy.

Further, we offer Figure 31, which is similar to the previous

figure except the feed point is taken to be at z0 = ±h/2 . Again the

agreement with the numerical moment method results of Harrington and

Mautz [26] is quite good.
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Section 8 Electrically short cylindrical antennas

8.1 Short receiving antenna

The current distribution on an electrically short (kh 0,4) thin

(Q(h) - 2 kn(2h/a) = 10) cylindrical receiving antenna calculated from

(35) with (13) is shown in Figure 32 for the incident angles of the

uniform plane wave of 6i = 7T/36 , 7/6 , i/3 , and T/2 . For comparison

the current distribution for normal incidence (0. = T/2) predicted by

the short antenna theory of King [11, Chap. IV, Sec. 7] is also shown.

The agreement between the two normal incidence magnitude distributions

is quite acceptable, especially in light of the fact that the basic con-

dition in (8) is only moderately satisfied, i.e., Q(h) = 10 while

lkn(2kh)l = 0.92 . On the other hand, the phase of the current predicted

by our theory is less than 900 along most of the antenna as opposed to the

phase predicted by King which is always slightly more than 900. However,

since the phase of the receiving current is quite inconsequential compared

to the magnitude in most applications, this slight inconsistency is not

seen as a serious drawback to our receiving theory.

The behavior of the current at the positions z = 0 , h/3 , and

2h/3 on the same electrically short (kh = 0.4 and Q(h) - 10) receiving

antenna just discussed is shown in Figure 33 as a function of the incident

angle, 8i . The sinusoidal variation of the current at each position,

with respect to the angle, 6, . is readily apparent in this figure and

is consistent with the expected behavior.

8.2 Short transmitting antenna

Figure 34 illustrates the current distribution on an electrically

short (kh - 0.4) thin (Q(h) I 2 in(2h/a) = 10) center driven cylinder

II I I " A -'
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calculated from (38). Also shown in this figure is the current distri-

bution on the same antenna as predicted by the short antenna theory of

King [11, Chap. II, Sec. 31]. The agrcemeat between our result and that

of King is, in general, fairly good, especially since we have again only

moderately satisfied the basic restriction in (8). Of particular

interest here is the inability of our formulation to predict an accurate

real component of current at the source. This situation results from

the fact that our transmitting current formulation in (38) is good only

-2
to (Cw) for short antennas, while the input conductance for these

antennas is given by higher order terms. We may easily recover the input

conductance, however, by turning to the input conductance formulation of

Chang and Rispin in [30] which is based upon the effective aperture of :he

antenna and requires a knowledge of only the magnitude of the receiving

current on the same antenna illuminated by a normally incident uniform

plane wave. Their approximate result for the electrically short receiving

antenna may be written as

G Z * IIR(7/ 2 zO )/Ef2 (56)

where IR(ir/2 , z)/Ell is the magnitude of the receiving current nor-

malized to the incident field, at the feedpoint, z0 , due to a normally

incident (0i = r/2) plane wave. As seen in the previous sub-section,

the magnitude of our receiving current is of sufficient accuracy for these

short electrical lengths to permit the above calculation. Figure 35 shows

the input conductance predicted by (56) using our receiving current

formula in (35) along with comparable data from the short antenna theory

of King [11, Chap. II, Sec. 31] for electrically short antennas charac-

terized by Q(h) = 2 Zn(2h/a) = 10 as a function of the electrical
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76

length, between kh = 0.1 and 1.0. Obviously the two theiorics appear

to be in relatively good agreement. Thus, even though our transmitting

current formula in (38) failed to yield an acceptable input conductance

for the electrically short cylindrical antenna, the alternate procedure

described above that relies upon our complementary receiving current

formula in (35) has yielded successful results.
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9. Concluding remarks

Through a re-examination of the conditions necessary to obtain :limple

asymptotic solutions based upon a Wiener-Hopf analysis for the reflected

current distribution on semi-infinite tubular cylindrical antennas, we have

broken away from the traditional "thin wire" assumptions, ka << I and

kh Z 1 , and extended these asymptotic Wiener-ilopf solutions to include

antennas as thick as ka = 1 and as short as kh = 0.4 . These extended

solutions have been derived subject primarily to the satisfaction of the
9

condition, 0(h) = 2 kn(2h/a) >> I Zn[2kh sin2 (0i/2) ] 1. Although for the

thicker antennas, we have observed a significant relaxation of L is condi-

tion. Our simple receiving current formula is applicable for all angles of

incidence of a uniform plane wave, i.e., 0 _< 0i < 7 , and we have con-

structed our simple transmitting formula in such a way so that an accurate

input conductance is obtained over our entire range of interest. Numerical

comparisois of our theory with the work of many other authors have shoen

very good overall agreement. Hence our theory, which requires primarily

only arithmetic calculations, permits easy and inexpensive calculations of

the current distribution on cylindrical transmitting and receiving antennas,

thus providing an excellent basis for statistical and transient studies.

As a consequence, the transient aspects of a cylindrical antenna based upon

our present theory shall be covered in a forthcoming report.

Although only the unloaded transmitting and receiving antenna has been

analyzed in this report, the extension to the loaded situation in both cases

is straightforward. The voltage developed across a load admittance. Y',

located at z = z along a cylindrical transmitting or receiving antenna

would be given by V= Iz 0 ;z9) /YQ or V V respectivelv,

T R
where I (z 0 'Z Q) and 1 9 ((O.i;z k are thle transmitting aind receiving currents,
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respectively, at z z k in the loaded situation. The potential difference

across z = z in either the transmitting or receiving situations acts as

a voltage generator for which'our transmitting antenna theory can be used to

obtain the current distribution. Adding this current distribution to the

unloaded current distribution yields the total (external) current distribu-

tion which may in turn be solved at z = z to obtain lT(zo;z ) or

l(aiz) . Subsequently the loaded receiving and transmitting current

distributions may be written as [I, Sec. IV.7],

R R I R(i ;z,) iT (z z;z)
iz) = R(0Z) - y+Yi(Z) V (57)

9. 1 9 in (z 0
and,

1 (ZoZ 9 ) IT(z ;z)

IT(z0;Z) = T(z0 ;z) - (5 )

k 0 V9 + in (zQ. V

respectively. The unloaded receiving current, I (i;z) is given in (35)

and the unloaded transmitting current, IT(z 0 ;z) in (38). The term,

I T(z ;z)/V 0 , corresponds to the transmitting antenna current distribution

due to a voltage source of unit strength at z = z And Y in(z ) is the

input admittance to the antenna at z which is approximately given by

(41). Although (41) has been shown to give an excellent result for the

input conductance, i.e., Re{Y in} , the input susceptance, -Im{Y in from

(41) is subject to error. Thus in some cases a more accurate expression for

the input admittance Yin(zz) may be desired. The error in our admittance

formula in (41) comes mainly from the inaccurate prediction of the input

susceptance by Us (0) for an infinitely long antenna. For the smaller values

of ka (ka < 0.1) the imaginary part of the term, -U (0) in (41), may be
5

replaced by the susceptance formula of Fant6 [21], which has been shown to be

a good approximation for the input susceptance by Miller [321 and may be

-I Ii
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written as,

2ka
B . Zn(k6) (59)00 n

where 6 is the physical width of the load region and is assumed to be very

small. As noted by Miller [321, the input conductance to an infinite

cylinder is relatively insensitive to variations in the gap width, 6 , when

6 is small compared to the cylinder radius, a . Hence, Re{Us (0)) may

be retained in (41) to determine the infinite cylinder input conductance.

The current distributions on antennas with multiple-loads can be found by

generalization of the single-load approach outlined here.

Another quantity of interest for which our approximate cylindrical

antenna theory proves useful is the far field radiation pattern of a

cylindrical transmitting antenna. It is well known that the far field

radiation pattern of a transmitting antenna bears the same angular de;'en-

dencies as the received current at the same feed point when the antenna is

used as a receiving element. A derivation of this principle as applied to

the cylindrical antenna is contained in Appendix H. From Appendix H, we

have the far field radiation from a finite length, -h < z < h , cylindrical

transmitting antenna with a delta function voltage source of strength, V0

volts, at z = z0  given in terms of,

ikr I R( -0 ; z)
E+(r,, iK e r V0 kr > 1 (60)

(r,0,p) refers to a spherical co-ordinate system coincident with the

cylindrical co-ordinate system implied in Figure 16 , i.e., the positive

z-axis corresponds to 0 = 0 . And I R -O ; z0 )/E1 is the received current

at z = z0  on the same antenna when illuminated by a uniform plane wave of

l , 7
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unit amplitude incident at an angle, T -0 , with respect to positive

z-axis. Hence the far field radiation from a transmitting antenna ma be

approximately determined from (60) using our approximate formula for the

receiving current distribution in (35) for the same antenna parameters.

For example, for a center-fed, z0 = 0, transmitting antenna where

i2(h) = 2 Zn(2h/a) = 10 and kh = 7/2 (the approximate current distribution

of which is shown in Figure 24), the far fiL~id radiation is shown in the

+ik r
z = 0 curve (apart from the constant 4ur exp(ikr) ) of Figure 19 with

0. replaced by i-0 . Similarly all of the receiving antenna current1

distributions shown in graphical form in this report may be related to the

far field of the same antenna when it is used as a transmitting element.

The basic approach utilized in this report to develop a simple approxi-

mate cylindrical antenna theory is currently being applied to other types

of linear antennas, such as the co-axial and parallel thin-wire antennas.

Results of this research should appear in the not-too-distant future.

In the same respect, since our present theory deals only with the azimuthally

uniform axial current on cylindrical antennas, a further extension of our

theory which also considers the higher-order variations of axially-directed

currents as well as the circumferentially-directed currents is currently

being prepared.
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Appendix A. Approximate solutions for the canonical integral. U( i;z)

Before the "so-called" canonical integral for U(0 i;z) in (3) is

considered, let us first of all begin with the closely related auxiliary

canonical integral, W(Oi;z) ,given in (6) and repeated here,

-1k 
K+-Ie-it

W(0i;z) (1 -cos 6 a
T - J, (k+a)(k cos. + a)K(a)1
0

0 < z < C, 0 < O. < TT (AI)

where,

K(a) = i r10 (a)H ( (tFa) (A2)

and

2k2-(V2 = i2 -k 2  (A3)

K+ is the "plus" factor of K(a) which is analytic! and free of zeros in

the upper half a-plane, (see Appendix C), and the contour, F. is

shown in Figure !. We ,hall find approximate solutions for W(Oi;z) in

(Al) and a similar integral for 1(0i;z) ,which is stated later, that

require the satisfaction of the condition,

Q(z) - 2 kn(2z/a) >> ltn[2kz sin 2 (0./2)11 (A4)

Actually, the restriction in (A4), which will be referred to as the

"basic condition" on our analysis, expresses the most severe restriction

encountered in the derivation of the approximate solutions for the

canonical integral, U(6i ;z) , and the auxiliary canonical integral,

W(ei;z) . Many of the approximations to follow require lesser restric-

tions than the one in (A4) and, tlierefore, are automatically satisfied

J... .. _ -, ,_ , , , , ,,_ , ... . .. _ J -" ' -- , a
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when (A4) is true.

Since K+(-(%) is analytic in the Lower half a-plane, combiing

the contribution& from both sides of the branch cut, which is due to

the term [K(L)]- I  in the integrand, allows (Al) to be written as,

w(.;) ikz 00 1 + k3-1 e
W(1;Z) - u- e

7M 0 ~ uj-i J C) ,/uu- i~k z

1

H V ,77 i 2k + u1 H(-)z[Aj dt- (AS)

where the change of variable, a = -k - iu/z , has been utilized. v 0

is defined by,

v0 = v (6.;z) = 2kz sin2 (0./2) (A6)

and,

-7/4 < arg(IJu:1i z ) < 0 (A7)

Due to the exponential decay of the integrand in (A5), the meaningful

range of integration is limited to the values of u of order unity or

less. And since the term K+ (a) depends only upon the parameters, ka

and aa , (see Appendix C for a discussion of K +(a) ) , then under the

basic condition in (A4) (which implies a/z << 1 ) the term

K+(k + iu/z) appearing in (A7) may be accurately represented by the

first term of its Taylor series expansion about u = 0 , i.e., K +(k)

This term may then be removed from the integrand in (AS) yielding,

W(i ;z) = K +(k)U( i;z) (A8)

: : _-..--., I ,.4.. ,., 71 . L I : meu ":' ' ' " ' : +
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* where L(Oi;z) is the canonical integral given by,

U(O;Z)  - e ik OD 
e-

T r 0o u ( u - i v O0 )  J O a x _u - i k

1*
1+ _ du (A9)z z

H ) /u(u - i2kz) /u(u -i2kz)j

and is equivalent to the expression for U(Oi;z) in (3) of Section 2.

The evaluation of U(O;z) in (A9) requires numerical integration,
1

since an exact analytical solution to the integral involved ;s not

known. Hence, we seek a simple approximate solution for U(.i;z)

which possesses a wide range of applicability. To this end, we assune

the satisfaction of the basic condition on Q(z) in (A4), which allows

the Bessel functions in (A9) to be approximated by the leading terms

of their respective small argument expansions. The resulting approximate

expression for U(6i;z) can be written as,

U(8i;z) oi(O;z) - i(Oi;z) (AlO)

where,

,(a ieikz eu

1(Oiz) -e__d(A 1(Siz) n 0(u ivO) (z-2y+i r-2n[u(u-i2kz)]

W ( - 2y - iuT - 'Qn[u(u-i2kz)] du (All)

and 11(z) is given in (A4). Thv [bracketed] term behaves essentially

like a slowly-varying function, both magnitude and phase, over the

integration range, 0 < u < 1 , where the inzegrand has its major

contribution, except of course very ne'r u = 0 Thus, provided v0

* , I
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is not very small, we can approximate (Al1) up to order jQ(z)] by,

P(0;z) z ie z ) 1

~ T Sl(z) 21 2- £n(2kz) + i37T/2

1 -iVo
Q(z) - 2y - kn(2kz) - iin/2 El(iVo) (A2)

where E is the exponential integral of the first kind defined in

[16, Eq. 5.1.1].

The situation is somewhat different for the case when u. = 0
I

because the integrand now blows up at u = 0 . To evaluate t, is

integral properly, we must retain the logarithmic behavior of the

integrand near u = 0 , while approximating the term Zn(u-i2kz) by,

kn(-i2kz) . This procedure can be shown to lead to a solution for

p(0;z) good to order [Q(z)] - 2  consistent with the ji(0i;z) solution.

Proceeding, we obtain,

iikz e u F _1 _ _

i(O;z) __ _ e_
f 00 u L (z) - 2- 9n(2kz) + i37/2- Zn(u)

-(z) - 2y- n(2kz) - in/2 - Zn(u) du (A13)

which has been previously given by Shen [6] whose subsequent solution

was based upon the observation that the integration of a smooth function

weighted by an exponential decay over an infinite interval can be

approximated by the unweighted integration of the same function over a

judiciously chosen integration range. The same result, however, can be

obtained in a more straightforward manner if we replace u by
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e- dw and interchange the order of integration in (A13) which

yields,

P( :) eT I jo e-v'Oz i w 0  LQ-n(W) -n(-2kzt-)-+i-3r2

Q(z) - 2y + Rn(w) - n(2kzt - i7/2 dt (A1I)

Now since the term 1kn tj is typically small compared with 12(z)I

for t < 1 , except very close to t 0 where the integration is

rather insignificant, a two term Taylor series expansion followed by

straightforward integrations on t yields,

(O;z) eieikz w

{(z) - 2y + 9, (w)-Zn(-i2kz) + ir -(z) -2;+ iu (w)-kn(-i2kz) + I,

(z) - 2Y + n (w)-Zn(- 12(z) -- 2 + Zn (w)-Zn(-i2kz) - in

(A15)

Now taking the [bracketed] terms in (AI5) as being the first two terms

of a Taylor series expansion of a function of the form [I +x] - I  for

small x , the integrals in (AI5) can be evaluated to order [Q(z)] ,

with the result for i(O;z) being given by,

iek Jz) -_ -i i- 9n(-i2kz)

11(0; z) zn 1ei20z)- -(i2kz (A16)r) Q(Z) -y + -in Zn(-12kz)l
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(A12) and (A16) may be combined to give a solution for (AO) good to

order [Q(z)]- which is given by,

ikz Q(z)'y - i- n(-i2kz) +e iU(Oi;Z ) = le Zn -l(-i-o) i (A-7I
I rl -iv 0o

S (z) -Y +iT- ?n(-i2kz) +e E1 (-iv 0 ) i

Note that, although this approximate expression for U(O ;z) was

derived under the assumptions that v0 = 2kz sin 2(0i12) cannot be too

small and that jQ(z)l >> jln( v0 )t , the particular method of combining

p(O;z) and p(i;z) into U(Oi;z) in (A17) actually gives a smooth

function as z - 0

Although U(Oi;z) is expressed in fairly simple terms in (.\17)
1o

a simpler form (also good up to O[(z)]-) may be obtained by exPre..S 'i

the kn in terms of an arctangent, which in turn may be approximated

by the leading term of its Taylor series expansion when the basic

condition in (A4) is satisfied. This procedure yields the alternate

formula for U(i;z) given by,

U(0iz) z_ k 08)r) -iv(A)
r(z) - - Zn(-i2kz) + e E (-iv0 )

'~~~~~~ ~ ~~~~ ~~~~~ 0 1I IIII -iIP ,::... ----i --.-. __-, ,
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Appendix B. Input conductance of an infinitelylogc _linder

The input conductance (which is associated with radiation from the

external surface) of an infinitely long hollow cylindrical antenna maY hLe

formulated by means of considering the real part of the source current fk,r

a delta function voltage source of unit strength (i.e., 1.0 volt). 122].

The resulting expression may be written as,

C (ka) 4k ka 1 dx

0 ka2 2 J (x) + Yo2xW
xv(ka) -x 0

where n is the intrinsic impedance of the surrounding medium, is the

cylinder radius, and J0  and Y0 are the zero order Bessel and Neumann

functions, respectively. Although several asymptotic solutions (which

assume ka << 1) for G,,(ka) exist, [3], [4], [20] and [211, an exact

solution to the integral in (BI) is not known to the authors. However, in

their Wiener-Hopf approach to thin dipole antennas Shen. Wu, and King [6]

constructed the surprisingly accurate formula for G.(ka) given by,

Go,(ka) = Re {- [ Zn(2C - i7/?) - Qn(2C + i/2)] (B2)
fl w w

-3
which agrees with the asymptotic expressio.a of Wu [3] to order C

w

(C w = -Zn(ka) - y , y = 0.577...) However, the constructed expression for

G (ka) in (B2) is fairly accurate even when !cw is- not large. In

Figure Bl, we have illustrated the input conductance predicted by botn

Shen's [61 curve-fitting formula and the exact expression in (i) over t:i,

range of electrical radii, 10 - 4 < ka < 1.0 . This figure rf've;ils thet

remarkable ability of Shen's approximate formula to predict an , .

input conductance not only in the conventional thin-wi re r C I-I<
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for cylinders as thick as ka z 0.7 , where C = -0.22 ! Furthermore, as
w

ka - 0 , the approximate formula given in (B2) becomes asymptotic to,

Go,(ka) - - (C) ; as ka - 0 (B3)n w

which corresponds to the asymptotic behavior of the results of many other

authors, [3], (4], [20] and [21].

In order to further extend the applicable range of the basic approxi-

mate formula in (B2) to include values of ka as high as unity, we have

employed a curve-fitting procedure to produce the modified formula,

i

G (ka) z Re {[tn(2Cw-g-iw/2) -n(2Cw-g+i3Tr/2)} (B4)

where

g 33.88(ka)2 exp 3-26 (B5)ep ka ](5

Obviously the insertion of g in (B5) into the approximate expression for

G ,(ka) in (B2) has little effect below ka Z 0.5 , however, above this

point, all the way up to ka z 1.0 , this modification allows for a quite

accurate prediction for the input conductance as can be observed in Figure 5,

which is discussed in the text of this report.

Consequently, in order to achieve this accurate value of input conduc-

tance from our primary transmitting current formula in (19) at z - z0 , we

follow the lead of Shen, et al. [61 and restate the approximate form of

U(7;z) in (9) in the modified form,

U = W e ikz {Un[fs(z) -i ] - kn[fs(z) +inrJ} (B6)-s (z)

* I-,.
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where,

f5 (z) = 2C + y + it/2 + .n[kz + /(kz) 2 + exp(-2y-2g) ] (B7)

As given in (B6), Us (z) corresponds exactly to Shen's Eq. 6 in [6) except

for the additional term, -2g , in the square root, which enables (B6) to

yield a very accurate value for the real component of the input current up

to ka - 1.0 . And we note that U(w;z) in (9) and the modified form

denoted by Us(z) in (B6) differ insignificantly for kz > 1

!S

I'
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Appendix C. The kernel. K(ca). and the factorized functions. K+(a)

and K (a)

Consider the Wiener-Hopf kernel,

K(a) - inJo0 (ta)H(1)( a) (CO)

where

=a- i v'a2 2  (02)

A small argument approximate form of (Cl) which proves useful when dealing

with conventionally thin (ka<<I) cylindrical antennas is given

by.

K(a) z 2Cw + in - 2 kn (2i k ); ka, aa<<l (C3)

where

C - - kn(ka) - y , y - 0.57721566 (C4)w

In the Wiener-Hopf procedure, the kernel in (Cl) is factorized into

the form,

K(a) , K +(a)K(a) (C5)

in which K+(a) is analytic and free of zeroes in the upper half a-

plane, -l3(k) < Im(a) < and K ('t) is analytic and free of zeroes

in the lower half a-plane, -- < Im(f) < Im(k) . We assume a symmetrical

factorization which gives the relationship,

K_(-a) K +(0) (C6)
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Thus the "minus factor", K_(), is known once K+(a) is found. Another

property imposed upon the factorization of K(a) is the asymptotic be-

haviors,

K+ (a) - c-  ; as jal -0 in the upper half c-plane

(C7)

and

K_(Q) ~ a ; as lai + in the lower half a-plane

(cM)

For the special case where ka and aa are much less than unity,

K+(c) may be approximated by the leading term of Hallen's exact formula

for K+ (a), [1,Sec.38], given by,

K0 (ci) -/2-C+ilIr - 1 ~ ( k+i a a< 0
+O (V2w 2C.Iir ,n k)J ; ka, 2ak< (C9)

where is given in (C4). The superscript "0" is used here to signify

this as being the small argument (i.e., thin wire) approximate formula

0
for K+(a) . And we note that K+ (a) in (C9) may also be identified as

the plus factor in the approximate factorization of the small argument

approximation of K(a) in (C3) given by:

K[a (2 +i0 n Nk ]1 .j,__ in .I
K(w) (2q+ii) 2C +ii 2k 2C +in\2kJ

w w

ka, ca<<l (C1O)

which is valid to order (C )-2.
V.

On the other hand, the exact value of K+(a) may be obtained

numerically from the formula of Mittra and Lee [15,Sec.5-2.(3)] which
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is given by

K+(a) r i [Jo(Ea)]+ (H0() (,,a)]+ eX (a )  (Cl)

where & is given in (C2). The plus factors of Jo(a) and H0 (1)(Ca)

are given by

Jo (Ea)]+ = J0 (ka) (1 + e Tl (C12)00 n=l lYOn

and

[H0 '(Ea)]+ - A'Nika exp { -i + Z n(c+i' + q~c) (C13)
002 2 'k

respectively. Here iY0n corresponds to the propagation constant of the

ThOn mode within a circular waveguide of radius a and is given by

POn) 2 th
Iyni - k2 ;POn=n ordered (C14)

zero of J0

The convergence factor eX a )  in (Cl) insures the correct asymptotic

behavior described in (C7) and is given by

X(a) a -i I aI +y -En kaa - i (C15)

where y = 0.577215 ........ And finally q(a) is given by

t q(a) I'  f 1 . 0
2(x) 1 ]02 ( 2) 2I+ ca dx

(C16)

The specific application of K+(a) in this paper is to calculate

the reflection coefficient R(Oi) - (n/2w)K+(k)K+(-k cosei) in the range
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0 : 0 < r ; thus we require an accurate lormula for K+ (a) for the

corresponding range -k < a < k . Such a formula may be ob-

tained by observing the behavior of the ratio of the small argument

approximation, K0 (a) in (C8), with respect to the exact form of K (a)

in (Cli) over the range -k < a < k . Since the behavior of the small

argument formula could be qualitatively argued as being at least partially

inherent in the exact formula for K +(a) for these values of a , the

0
ratio, K (a)/K (a), would be expected to be a fairly smooth function of

a . This preassumption is verified in Figure Cl in which we show the real

and imaginary parts of the ratio KO (a)/K (a) for ka = 0.01, 0.05,
+ +

0.1, 0.5, and 1.0, as a function of a between -k and +k . Noting

the behavior of this ratio and its predominantly real nature, we may assu::)e

the approximate relationship,

0  A[1 + B(a/k)] ; 0 _ a _ kKO+ ( - S (c17)

K+ (a) A1 + B(a/k) + C(a/k)2] ; -k <ot s 0

where A, B, and C are coefficients yet to be determined. The above

linear relationship for 0 <_ a :s k appears to describe the behavior of

the imaginary component of KO (a)/K (a) for the cases where ka < 0.1

in Figure Cl, while it appears that higher order terms in a/k are

necessary above ka z 0.1. However, due to the relatively large linear
~0

real component of K (a)/K (a) , neglecting this higher order variation

in the imaginary component will not produce a significant error. The

constant A is found by setting a = 0 in (C17) yielding

K:L !A *~
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Ie K+ (a) 25-ko a1.0

2.0-

1.5--0.5
0.1
0.05

0.01

0.55

ka .
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0.0.01
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Figure Cl. Real and imaginary components of the ratio of the small

argument formula for K+(ct) in (C9) to the exact formula

for K (a) in (Cli).



-/2C+i +__in (2)

A =(C18)
V/ i J0 (ka) HO(I (ka)

0 0

The coefficient B is found by differentiating (C17) with respect to x.

and setting a = 0 , the result being

00 1' ika 1______
B= 4 1 

i - I X(k) +--
S ay On n ) 7 2C + ir + Zn(2)
n=w

(C19)

+ k a ii -_ 2 . 1d0 1 1-0a2_x 2 1(x) + Y O(

As it stands, it appears as though a numerical integration is necessary

in (C19) to evaluate B . However, one may recognize that the real part

of the integral in question is directly related to the integral contained

in the expression for the input conductance of an infintely long cylinder,

G,(ka) , in (Bl) of Appendix B. And since a very good approximation for

G.(ka), good up to ka = 1.0, has been found and is stated in (B4), we

know the real part of B in (C19) to a very good degree of approximation.

Furthermore, noting from Figure Cl that the imaginary component of

K 0 )/K+(a) for all the values of ka considered is relatively small,

we may conclude that the imaginary part of B and the neglected higher

order imaginary components are not important. Specifically for the con-

stant B we may state that,

B2 << (1 + Br)2 (C20)
i r

where Br  and Bi  are the real and imaginary parts of B in (C19).

Thus, we shall approximate B in (C19) by its real part given by
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B G~ G(ka) Re!-(C21
r 271 2C + iii + 7n(2) (C21)w

The above approximation of the coefficient B does introduce some phase

error in our final formula (to follow shortly) which may be partially

compensated by taking the absolute value of A in (C18) in tile final

formula. This compensation, however, is not seen until our curve-fit

formula for K+ (a) is used in the context of the reflection coefficient

R(6i) = n/2n K (k)K (-k cosi).
1 + +1
With the above approximation for the coefficients A and B duly

noted, we may write from (C17),

K0 (a)
;0 < < k

JAI [I + B (1)]
K +(a) = (C22)

; (-k< a < 0[AJ[1 + B ( 2) + 2]

r k k

which leaves only the coefficient C undetermined. An expression for

C is easily obtained by matching the singularity at a = -k in (C22)

with the actual singularity in K(a) at a = -k . Using the relation-

ship

lim K(a) = K +(k) lim K +(a) (C23)
a- -k a- -k

it is not difficult to show that

1 - Al2 (I - B2 )
C= JA 2 (1 + B ) (C24)

rr
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Numerical comparisons between our approximate expression for K +(I)

in (C22) and the exact formula in (CII) as well as between the subsequent

approximate and exact reflection coefficiL-nts (R(0) 9l/2N K +(k)

K +(-k cosei)) are found in Section 4 and show (C22) to be a very good

approximation for K+ (a) in the range -k < a <_ k for ka as large

as 1.0.
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, Appendix D. Limiting forms of the currents on cylindrical antennas It,,.ir

grazing incidence and near the ends

It is interesting to examine the limiting forms of our current

expressions for semi-infinite as well as finite length cylindrical

antennas as the incident angle of the unifoym plane wave approacli-.<

grazing incidence in the receiving situation or as an end is approaC ;ed

in either the receiving or transmitting situations, even though tilest.

limits will violate the basic condition placed upon our theory in (8).

It is noted that in the limits to follow, the value of the electrical

radius, ka , has been necessarily taken to be small. Thi s conditiu:i was

imposed to avoid complications which would only serve to obliviate cir

original purpose of seeking a qualitative feeling for the behavior ot tt -

formulas beyond their expected analytical ranges.

D.1 Semi-infinite receiving antennc

The internal current on a semi-infinite (0 < z n) cylindrical

receiving antenna predicted by (43) in the near-grazing situation, "i

may be expressed as,

{I (6 ;z)}tn - E f (h;z)0i ; as 0 i - 0 , 0 < z < C (D.1)

where,

fOh;z) = n(k) K+ n)e (D.2)

+. n1 On(Y~n +i) iy e

The internal current given in (D.1) is well behaved near 0 = 0 and goes

to the physically anticipated limit of zero at 0i = 0 . This may be

attributed to the fact that the internal current expression in (43) upon
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which (D.l) is based is an exact expression and must possess the correct

physical behavior.

The external current on a semi-infinite (0 < z < -) receiving

antenna is given by the combination of the primary receiving current,

IR( i;z) in (15), and the reflected current, TRefl(0 i;z) in (25), i.e.,

ISG,(Oi;z) = EM{V(ei;z) - V(Oi;0)R(9i )U(Oi;z)} 0 < ai < 7 ,

0 < z < 00 (D.3)

Using (9) for U(Oi;z) , (16) for V(0i;z) and (26) with (27) for R(i.),

we find in the near-grazing situation,

RO; _47 1 .2 ; as Oi 4 0,IS ( i z ) - E e  -- 3 .2 8 0 . k n 3 0 .

0 < z < (D.4)

which "blows up" at 0, = 0. Because of the violation of the condition

in (8), this behavior should not be unexpected. However, numerical data

in this instance has shown that the misbehavior is limited to quite small

values of ei ~ 100. Similarly, near the end of a semi-infinite receiving

antenna we have from (D.3) with (9), (16), and (26) with (27),

IR (0;z Eiv(ei;O) F F(0i

- [I -FI(0i)] F2(0 i) -12kz sin 2 w  Zn(2kz) I

as z 0 (D.5)

where,
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B (Il-COs8 CO-o 2a

1i-B rcos 6+C o 2 'a ; O< 8 <r/2

Fi( 1 = 1-cs (D.6)

B(1 ~Cosi~

and,

F( _)f IT___ 2n
F2(Oi) 2n +l 2C+ liT -2 (D.si 7.))

Under the assumption that the electrical radius, ka ,is sinai' compared

to unity, the above quantities, F I a .) and F 2(6.) will also be quite

small. Hence, the current in (D.5) will be at a relatively small level

at z - 0

Turning to the other form of U(O.;z) in (13), we have for the

behavior of the external current in (D.3) using (16) and (26),

R i -4t ikz B B-2C
S_(6 i;z) -i -E 0 L i3kz + - IBr __!I I~l

as 0, 0 , 0 < z < (D.8)

which goes to zero at = 0 . So even though the basic condition in (8)

is violated here, the correct physically expected result is still obtained.

Near the end of the semi-infinite cylinder, we have from (13) with (16)

and (26) in (D.3),

fd , P.- 
_ _
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I R "(z) E V(6 ;0) f (0

r1-F( [ (i2kz sin 2 0 9n(2kz)
-l- i) ikzs 2 2C +ilT-2 2 n(sinOil2)

as z + 0 (D.9)

where F1 (0i) is given in (D.6). At z = 0 , the external current

predicted by (D.9) is typically a very small value.

D.2. Semi-infinite transmitting antenna

The external current on a semi-infinite (0 < z < Go) cylindrical

transmitting antenna with a delta function voltage source at z = z0  is

given by the combination of the primary current, IT (z0;z) in (19), and

the reflected current, I Tl(ZO;z) in (32), i.e.,

IT (z ;z) I T(z0;z) - IT(z0;0)R( )U(7;z) 0 < z < (D.10)

The behaviors of the current near the end using both forms of U(r;z) in

(9) and (13) are found to be,

I T(zo;Z) I T(zo;0 ) FI() - FI 1 F2(T -i2kz n(2kz)

w

as z - 0 (D.1I1)

and,

IT(Z0;z) I T(zo; 0 ) F(T) - [1-F()] L 2k +in[

as z - 0 (D.12)

rMo
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respectively. At the end, z = 0 , the currents predicted by (D.11) and

(Dl2) are small, the latter which employed (13) for U(n;z) being

smaller than the former which employed (9) for U(fr;z)

Although small values of current were obtained at the end in both

the receiving and transmitting cases above using both forms of U(Oi;z)

in (9) and (13), none of these results agree with the negative of the

internal penetrating current at the end, discussed in Section 6, which

is a function of powers of ka . This is not an unexpected result, since

our theory is based upon the condition that,

I(z) - 2 tn(2z/a) >> I[n[2kz sin 2 (0/2)1 , which is violated 1,, these

limits. Nevertheless, the above limiting forms are for the most part

sufficiently well-behaved to permit useful data to be obtained in the

finite length cylindrical antenna formulas (discussed in Section 5) over

most of the antenna length and for a major portion of the possible angles

of incidence.

D.3 Finite length receiving antenna

The internal current near the z - -h end of a finite length

(-h < z < h) cylindrical receiving antenna predicted by (54) with (9)

used for U(6i;z) in the near-grazing, e 0* , situation behaves

essentially as,

I Rn(ei;z) - E fn(h;z)j ; as e 0 0 z z -h (D.13)

where,

f4 4w r 2 eikh Rr)U(r;2h) -YOn(h+z)flhk)= "n 3 8 1 R(70U (7';2h) 2O

t nl

II.-*---*
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Hence, the internal current near the z -h end of a finite length

receiving antenna predicted by (54) with (9) "blows up" at grazing,

I =0 , incidence in much the same manner as the external current given

in (D.4) in which (9) was also used for U(Oi;z) in the grazing incidence

limit. A similar functional behavior to that in (D.13) is obtained in

the other near-grazing situation, 0i  7 1 , i.e.,

(0 E~ 2(h;z) ;as .

t(i;z) - Elf j; asi t 16 2(7 T - i ) n 3 ( Tr - i

z -h (D.15)

where,
00

i4 ) 7T2 e-ikh 1 T______YOn (h+z)

2 z  k 3 8 1- [R(R)U(r;2h)12 On
nl

The behaviors of the internal current near the opposite end of the antenna,

z -h , may be obtained from the above limits with appropriate re-

interpretation of the incident angle of the uniform plane wave.

The limiting behavior of the external current distribution on a

finite length receiving antenna given in (35) with (9) used for U(O.;z)

as 0 0 is given by,

I R (6;z) E Ef (h*-z) rOn3 i);as ei +*0; -h <z <h (D.17)

where,

f (hz) [ 4 r2 e e- ik(h-z) R(a)U(r;2h) R(Tr)U(7r;h+z)
3' krj 3 8 1- [ (r)2U(; 2h)]2

1- 1 2 R(T)U(; h- z) (D.18)
-I R(rUn h-
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The current distribution near-grazing stated above shares the same

functional behavior with respect to 0 as the semi-infinite cylindrical

antenna limiting formula in (D.4), i.e., it "blows up" at 0. = 01

Although, the physically expected result is a zero current at grazing

incidence, 6i - 0 , the above misbehavior of the receiving current

formula using (9) for U(Oi;z) does not invalidate this formulation, but

can be shown in most cases to limit the range of applicability to incident

angles in the range, 100 < 0 i < 1700. Because of the symmetry of the

receiving formula noted in (37), a similar behavior for the receiving

current is obtained in the limit as 0 1 * .

Also to be considered is the limiting form for the finite length

cylindrical antenna current at the ends. Again using (9) for U(Oi;z)

in (35) we obtain,

IR(ei;z) - E IV(0i,-h) [Fl(ei)
-l-F()] 2( - i2k(h+z) s i [2k(h+z)

sin2 (6nFi 2k(h + z) ],L~
Ii F2(01) 2 2C w +i-2 Zn(sin0 /2)

+ cR (r- 0i) [Fp)

- ( ~ TOJ I F (r) - i 2k(h +z) Zn [2~ + z)

as z - -h , 0 < 0 < 7T (D.19)
ti

where F1(Oi) and F2(6i ) are given in (D.6) and (D.7) and are small for

values of ka that are small compared to unity. The current at z - -h

predicted by (D.19) is typically a small value, although it will not

correspond to the negative of the internal penetrating current at the end

- -- V* .-.---
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discussed in Section 6. The behavior of the current near the opposite

end, z - +h , may be obtained by means of the symmetry relationship in

(37).

Repeating the limiting procedures for the receiving antenna current

in (35) using (13) for U(Oi;z) , first of all for the internal current

near the z = -h end in the near-grazing situation, yields,

nt (6,z) - EfI(h;z)0 i  9n 0. ; as e 0 , z : -h (D.20)

where f1 (h;z) is given in (D.2). Hence, the dominant behavior of the

internal current near z = -h on the finite antenna is essentially

given by the behavior of the current near the end of a semi-infinite

antenna near grazing as given in (D.1). A zero current is thus obtained

at 0 0 . The behavior of the internal current near z = -h on a

finite length receiving antenna from (35) with (13) as the incident angle,

tends to the other grazing angle, 6i 8i , is given by,

I Rn(t;z) - E fs(h;z) n _Oas 0, -*, z Z-h (D.21)

where,

r B -2C
i6kh - r

4r i'kh 1 2 B rl-B r+Cf (h;z) -i7 e 1 + -- + - r_5 k n4 TC~ i~t YOn-  ik  I+B r  1 -_[R( 7)U ( I;2h)]

STOn(7r)eOn (D.22)

nil

The behavior of the external current on a finite length cylindrical

receiving antenna predicted by (35) using (13) for U(6i;z) is given by,
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I R(O -z) ~ -f(h'z) i 0 , -h < z < h (D.23)

where,

f6(hz)1 ikz B -2C

fhz)  e - 13k(h +z) r

f~k (h'rU(T2)

1k 4 1 - r +C

ik B r -2C [ R ( ) U ( yj -2"- ) R ( m') U ( Tr; h + z )

+ e~k  16kh - -- Br +C J - ( R (f) U (1;2h) ] 2

ikh Br -2C (11)LU(T;h-_)

16kh~ ~ - -E-- I )---I ;(.-z4
1 -B r +C l-[R(r)U(T;2h)]2  (D.24)

The functional behavior of the current in (D. 23) with respect to the

incident angle, 01 , is the same as the behavior noted in (D.8) which

also employed (13) for U(Oi;z) . Consequently, the physically anticipated

zero current is obtained in (D. 23) at grazing incidence, 0i = 0 . This

must be judged as a fortunate happenstance, since our theory is not

expected to hold for very small incident angles. Also by means of the

symmetry relationship in (37), a similar functional behavior can be

observed as the opposite grazing incidence angle, 0i = 7T , is approached.

The external current near the end of a finite length cylindrical

receiving antenna predicted by (35) with U(Oi;z) given by (13) has the

limiting form,

IR( 6 ;z) Ee V(8i;-h) FI(Oi)

l- 1F~O ( f -12k(h + z) sin 2 ( X 2 n12k(h +z))J 2

+CR Of [6F,(r -F,(n)1 12kii~h+z) in 2k (h + z)J In-)[u F()12 +i JJ

a, z -,-h, 0 < O < 7 (D.25)

!£
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where F1(6i) is given in (D.6). (D.25) typically predicts a very small

value at z = -h . Although it will not correspond to the negative of

the internal penetrating current at the end discussed in Section 6. The

functional behavior of the current near the opposite end at z = +h , can

be shown to be similar to that in (D.25) via the symmetry relationship

in (40).

Comparing the limiting forms of th, currents in (D.13), (D.15),

(D. 17) and (D. 19) with those in (D. 20), (D. 21), (D. 23) and (D. 25) corres-

ponding to the use of (9) and (13), respectively, for U(Oi;z) in the

finite length receiving antenna formula in (35), the latter fo,.n of

U(Oi;z) must be judged the more attractive in the near grazing as well

as the end vicinity situations. Not only is the correct zero current

specified at grazing incidence when (13) is used for U(ai;z) in (35).

but the current at the ends is smaller and thus more manageable. Both

of these characteristics are particularly important in the case of the

electrically short antenna discussed in Section 8.

D.4 Finite length transmitting antenna

Finally we consider the limiting forms of the external current at

the ends of a finite length (-h < z < h) cylindrical transmitting

antenna. First using (9) for U(v;z) in (38) we find,

IT(z0,z) ~ V0 [Us(h +z 0 ) + cT(h +z 0 )]

F(Tr) -1 -F(7) F 1 2k(h +z)Qn 2k(h +z))~

{ 1 - (f) LF2( Tr) 2C + iir I I
, as z 4 -h (D.26)

I
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~ I where 1(T an F2 %f are given in (D.6) and (D.7) and are normally

small for values at ka sufficiently less than unity. Aad using (13)

for UQT;z) in (38) yields the behavior,

T T-

I T(z0 ;z) V0(Us(h +z0 ) + C T(h +z0)]

.!.
12 k~ zt[kh+

as z - ah (D.27)

Both of the above forms of the transmitting current at the end, z -h

are typically small, the second one using (13) for U(7;z) being the

smaller. Although neither limit approaches the negative of the internally

penetrating current at the end predicted by the relationships

discussed in Section 6. A functional behavior similar to the above for

the current near the opposite end of the antenna, z = +h , may be

obtained via the symmetry relationship in (40).

I
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Appendix E. Approximation for the summation in the expression for the

current at the cylinder end

Consider the summation from (43) of the text with z = 0,

00 ik(y0  - ik)
__ KO(yn (El)

n=l On + kcosn i ) K+(iYon)

Numerical data reveals that the asymptotic form of K+ (a) in (46) may be

used for K+(iy01) with little error provided that ka 1. Then (El)

may be rewritten as

00 [ay0 n - ika]
S z ika I 'E2)

nl aynOaYon+ika cos 8.)

Since we are considering ka < 1 and since pOn > 2.4048 .....

appropriate Taylor series expansions may he performed on the terms in (E2),

leading to

00 (3/2)2-3/O 
-5/2

S POD _ (ika) [l+cos 81 l POrt

n=l n=1

37 1 2 -7/2-( 8a3 2 1 os -cos e] I. POn (E3)
n=l

9 1i1 o -9/2
16 8 Cosei 2 i 1 1 n

n=l

The summations in (E3) involving the zeroes of the Bessel function, Jos

may be approximated by

'2 20 -m2

X P/2 I P -M/2 + f (x-l/4)T] dx/ ; m = 3,5,7,... (E4)
nil n-l 20.5

- -
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The integral in (E4) approximates the original summation above n = 20 and

utilizes the asymptotic form for the zeroes, P0 n ~ (n-1/4)1T. For values

of ka less than unity, S is fairly well approximated by the first four

summations shown explicitly in (E3). Performing these summations in the

approximate manner of (E4) allows us to write S in the approximate form,

4 m

S = Am (0 1)(ika) (E5)

m=l

where

A 1(0) = 0.5831 (E6)

A2(0i) = -0.1364[lf+cos(0.)] (E7)

71 21.

A3(e ) = -0.0498[ -_Cos e.-cos 0e] (E8)

and

A4 (6i) = -0.0198[- 9 1OB +1 COB 0. + cos3e.1
16 8 os i 2  2

(E9)
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Appendix F. The end conductance of a fi.ite, lengt_.c'ylindrical antenna

An interesting quantity worth mentioning is the conductance seen by

a TMoN mode inside and near one of the ends of a cylindrical antenna.

Employing the Wiener-Hopf technique, the reflected current due to an

'ON 
z

internal current, which is of the form, e , incident upon the end

of a semi-infinite (0 < z < -v) cylinder if; approximately given by, [31],

SOO 1 k+iYON 2 2 K+(iYon )  -On Z

refi z 2 P0 K~ + 2i ON(iy 0 0n e O
1+(O kON) On Thn(YON +YOn)

nl

- R(O N)U(ON ;z) 0 < z < - (Fl)

where K+ () is discussed in Appendix C, IYON is the propagation

constant of the TM circular waveguide mode given in (45), n is theON O
N th ordered zero of the Bessel function, J0 t and finally R(6ON) and

U(ON ;z) are the reflection coefficient and canonical integral evaluated

at 0ON = cos-l(-iYON/k) given in (26) and (3), respectively. The

first term in (Fl) corresponds to internally reflected T!{n circular

waveguide modes, while the second term corresponds to the externally

transmitted current which in this form is valid under the condition in (8).

From (Fl) the TMON mode current reflection coefficient at the point,

z = 2, inside the cylinder is simply,

so{ lON jK+(i-YONj e (F2). ON(£ 2y + ON

Through a transmission line analogy [25], we may write the end admittance

of the TMON modeat z as,aON s

V



116

1+F
ySo() = 1 ON F3)

e S -(9O( ON
e YON

where,

~4rrk
N= 120 (F4)

is the analogous transmission line characteristic admittance for the

TMo circular waveguide mode.
TON

By instituting the multiple reflection concept utilized in this

report (see Section 5), we may formulate an expression for the external

current on a finite length (-h < z < h) cylinder from the initial

externally transmitted current in (Fl). This first component of the

external current as well as all of the higher order reflections propa-

ikzgate approximately as e , so that the corresponding wave incidence

is a = IT. The constructed external current distribution on a finite

length cylinder due to an incident internal TM mode current.
ON

YON(h+z)
e , is given by,

I eXt(z) = -R(6ON)U(OoN ;h+z)

R(@ON ) UON;2h

+R(6ON)MeN; 2 R(r)U( T h - z)

1 - [R(7T) U(Tr; 2h) I

R(OON) U(ON; 2h) R(n) U(r; 2h)
12 R(rr)U(ir ; h+z);

1- [R(7) U(r; 2h)1
2

-h < z < h (F5)

With the knowledge of the external current incident upon the end,

z - -h , from (M5), the penetrating current near this end may be formu-

lated from the transmission characterization in Section 6 and is

given by,
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extint~z= R(6OoN)U(o N ;2h)R()U(n;2h) (-yOn(h+z)

I (Z)=T(7)
I- [R(Tr)U(T2h) ] 2TOn

n=1

z e -h (F6)

where TOn(6i) and iYOn are given in (44) and (45) of the text. The

combination of the penetrating TMON mode current in (F6) and the

original internally reflected TMON mode current from (Fl) with respect

YON(h+z)

to the incident current, e , yields the TMoN mode cuirent

reflection coefficient, a distance. k, from the end, z = -h, given by,

+ i2,r k R(OON)U(oON; 2h)R(IT)U(u;2h) -2yON (
ON FON(£) 7 Y ON i - [R( )U(Tr;2h) 12 R(ON)e (F7)

The equivalent transmission line analogous end adfuittance corresponding

to the TM mode reflection coefficient in (F7) for the finite length
ON

cylinder is,

- [ ION(i)1O
O0N

where YON is given in (F4). Figure Fl shows the TM mode end conductance

at z = 2a-h, i.e., 9.=2a, for a finite-length (-h < z < 1) cylindrical

antenna where (h) = 2kn(2h/a) = 10 as a function of the electrical

length between kh = 0.05 and kh = 3.5 . Also shown is the end

conductance of a semi-infinite cylinder for the corresponding electrical

radii between ka - 0.00067 and ka = 0.0472. Note that the end

susceptance at this depth with the semi-infinite as well as the finite

length cylinder is nominally given by -Im{Y from (F4). As could be

expected the end conductance in both situations is quite small and the

TI
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Figure Fl. End conductance for the TM circular waveguide mode at a

depth equal to one diameter, i.e., 2a, inside the end of

a tubular cylinder.

Effective aperture end conductance
from eq. (F9) using (54) with (13).

Direct (Wiener-Hopf) end conductance
from eq. (F8) with (13) used for
U(6i ;z).

............ Semi-infinite cylinder (electrical radius.

shown in top scale, corresponds to the
electrical radius of the finite length
cylinder for i(h) = 10) end conductance
from the effectJve aperture relation in
eq. (F9) using (43) or the direct (Wiender-
Hopf) relation in eq. (F3), both formulations
yielding similar results.

Note: the exact value of the term, K+(iyo1), calculated using the

formula given by Mittra and Lee [15, Sec. 5-2,(3)] has been

used in all of the above formulations. Otherwise, eq. (27) has

been used to calculate K+(a) for -k < a < k.

Ky-
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finite length end conductance oscillates above and below the semi-infinite

end conductance beyond the first resonant length. kh z r/2 . At the

smaller values of kh , the finite length end conductance takes an

interesting although unlikely diversion from the expected smoothly

decreasing behavior. The end conductance may also be calculated from the

formula of Chang and Rispin [30] which is based upon the effective

aperture of the antenna and in the present situation may be written as.

2 Trl
k sc

e = 81T Ol(8i ; R)/E j2 sin0. d. (F9)

JISoc(6i ;Z)/E j is the magnitude of the short circuit TM mode current
I a 01

at X and is equal (if we neglect the multiple reflections in the

region, -h < z < -h +k) to twice the magnitude of the internally

penetrating TMO1 mode current given in (43) for the semi-infinite

cylinder and in (54) for the finite length cylinder. In order to neglect

the perturbation of the external current and the multiple reflections

of the TM01 mode within the end of the cylinder due to the short circuit

at z = k-h it is necessary to require that k > 2a in this conductance

formulation. The semi-infinite and finite length end conductances obtained

from (F9) for an antenna where Q(h) - 2tn(2h/a) = 10 is also included

in Figure Fl. The semi-infinite cylinder end conductances from both the

direct and effective aperture methods in (F3) and (F9) with (54), respec-

tively, are for all practical purposes, the same. And the agreement

between the two finite length end conductances in Figure Fl at the larger

values of kh is very good. However, at the smaller values of kh , the

effective aperture end conductance from (F9) with (54) continues to

decrease smoothly for shorter electrical lengths as opposed to the odd

f
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behavior of the directly formulated end conductance in (F8). We accept

the validity of the effective aperture result on the grounds that it

depends only upon the magnitude of the associated current which is

assumed to be fairly accurate, since :he magnitude of the receiving

current on the electrically short cylindrical antenn: pr.di te.. by our

ormulas compared veiy well with an accepted existing theory in

Section 8. On the other hand, the direct formulation in (F8) depends un

the phase of the reflected current, which we know is not accurately

determined by our formulas applied to the electrically 3hort cylindrical

antenna.
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Appendix G. Electrically thick antennas on the order of a feu wavelengths

in length

The application of our theory to the electrically thick (up to ka z 1)

cylindrical antenna whose length is on the order of a few free space

wavelengths is based upon observations in Section 4 which imply that the

basic condition in (8) may be relaxed for the larger values of ka to

the point where Q(z) = 2 kn(2z/a) need only be somewhat larger than

19n[2kz sin2 (Oi/2)]I to achieve reasonably accurate results for the

primary and secondary currents on the antenna. Although the application

of our theory (using (13) for U(Oi;z) ) has already been demonstrated

for the electrically thick antenna in Section 7, we shall present resu]ts

in this appendix for similar and even shorter antennas, based upon our

formulas using (9) for U(6i;z) . And again we note, that for all of the

antennas to which our theory is applicable, the total (external and

internal) current distribution is, for all practical purposes, given by

the external current distribution alone, except in the near vicinity of

the ends.

G.1 Electrically thick receiving antenna

The current distribution on an electrically thick, ka = 1 , finite

length, kh - 3w , cylindrical antenna as calculated from (35) using (9)

for U(8i;z) is shown in Figure Gl for the incident angles (of the

uniform plane wave) of 8 7r/6 , w/3 , and 7r/2 . Normal incidence

data given by Wu, et al. [35] based upon the theory of Kao [18] for the

azimuthally uniform z-directed current is also shown in this figure

for comparison. And the resulting agreement between the two sets of

normal incidence (ei M n/2) data is excellent (except, of course, near
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Figure Gi. Current distributions on a three wavelengths long, electrically

thick, cylindrical receiving antenna normalized to the incident

electric field and the wavelength, i.e. 1 (0 1;z)/AE

e, 7T/2
- -/3 from eq. (35) with (9)

?r/6 used for U(6O ;Z)

0 e, r./ Numerically evaluated data
i from Wu, et al. [35].
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the ends) and better than the agreement which was previously obtained and

showq in Figure 21 in which the other approximate form of LJ(O.i z) in (13)

was used in the receiving current expression given in (35). And even

further, Figure G2 shows the receiving current distribution, as calculated

from (35) using (9) for U(6i;z) , on an electrically thick, ka = I

antenna whose electrical length is one half that of the antenna in the

previous figure, i.e., kh = 3ir/2 . The agreement between our normal

incidence (e, M n/2) result and the numerically obtained normal incidence

data of Kao [18] is again excellent. An attempt to apply our theory to

this antenna, (ka 1 1 and kh = 37T/2) , using the other apprc :imate

formula for U(Oi;z) , which is given by (13), met with much less success.

However, of all the many examples studied in the preparation of this report,

it was only for these electrically thick antennas did the use of (9) for

U(Oi;z) show a decided advantage over the use of (13) for U(Oi;z) in

our finite length antenna formulas. Hence, our theory involving the use

of (13) for U(O1 ;z) was featured in the text of this report. And

although a near-grazing incidence, Oi = ir/36 , distribution was included

in the receiving antenna examples in the text, no near grazing results

have been shown in Figures Gl and G2, due to the misbehavior of our

receiving current formula for small incident angles (see Appendix D) when

(9) is used for U(Oi;z)

G.2 Electrically thick transmitting antenna

A recalculation of the input conductance for the tubular antennas

considered in Figure 29 (which used (13) for U(n;z) in (41) for the

calculation), this time using (9) for U(7r;z) in (41) results in the

curves shown in Figure G3. Data from the numerical approach of Chang [271

and [28] and the experimental method of Hartig [29) which were used for

-I
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Figure G2. Current distributions on a three-halves wavelength long,

electrically thick, cylindrical receiving antenna normalized

to the incident electric field and the wavelength, i.e.,I R :(6i;z)/AE .

M/3 from eq. (35) with (9)
ft /3 used for U(ei;z)

- i/6

0 e - w/2 Numerically evaluated data
from Kao (181.
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.4_

EQ. (41) WITH (9) USED

FOR U(;z).

20 - - MOMENT METHOD, CHANG
[271 and [28].

( EXPERIMENTAL, IIARTIC [29].

0 J5I on I\

015 I\ \II\

I - \

z ji,

C) I

0
z I
o I '

5 - IV

I

O0 0.1I 0.2 0.3 0.4 0.5

h/X

Figure G3. Input conductance of three electrically thick, center fed,

cylindrical antennas as a function of the normalized half-

length, h/ .

4,
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comparison in Figure 29 is also included in Figure G3. A close inspection

and comparison of Figures 29 and G3 reveals about the same level ot agreement

between our theory and the others In the latter figure where (9) was used

for U(1T;z) . However, as explained in the previous sub-section, (13)

was used for U(iT;z) in the text examples, since it had shown a wider

range of applicability.

Further, in Figure G4 we have repeated the conductance data from

Figure 30 for a center-fed tubular antenna where h/a = 10 and included

results obtained from (41) in which (9) has been used for U(T;z) . We

note that in this figure the two forms of U(w;z) (given by (9) and (13))

when used in the admittance formula given in (41) yield slightly different

results, although both conductance curves are consistent with the numerical

data of Harrington and Mautz [261. Figure G5 is identical with Figure 31

which showed the input conductanca for an off-center fed, z0 = ±h/2

tubular antenna where h/a = 10 , except for the additional conductance

data obtained from (41) this time using (9) for U(n;z) And again all

three sets of data are consistent.

I
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Figure G4. Input conductance of a center fed cylindrical antenna as a

function of the normalized length, 2h/A
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Appendix H. Far field radiation from a cylindrical transmLtting_ ntnns

The far-field radiation pattern of a finite length, -h z h

cylindrical antenna having a delta function source of strength, V0  volts,

at z = z0 (similar to the antenna shown in Figure 16c) can be written in

terms of [33, Sec. 2-10],

ikI eikr ;h Tr Te- ikz'cos0

E8 (r,6, ) = - sinG er 7 jT( t ea.k',z'4n r -h -

-ikasinocos0 addz' kr - ] (i. I

where J T(a,O,z) is the z-directed component of current density on the

cylinder. E0 (r,0,0) is the 8-directed ( 6 is measured from the positive

z axis in Figure 16c) electric field at the far field point (r,o,,p) 1:: a

spherical coordinate system coincident with the implied cylindrical coor-

dinate system of Figure 16c. Since JT(aq,z) is uniform about the cylin-

der, we take the total current as IT (zo;z) = 2ffajT(a, ,z) and performing

the ' integration, we get,

= -ikr) ik Fh iT(z0z )e ikz costdE a(r,6,0) - , s in 6J 0o(ka sin U) - - z0z)ed

kr >> 1 (H.2)

where J0 is the Bessel function of the first kind. Although our approxi-

mate expression for IT (z0 ;z) in (38) may be used in (H.2) to determine

the far field, the integration of some of the terms requires further

approximations and leads to a more complicated result than is actually

necessary.

The far field expression in (H.2) may be stated in a more convenient

manner if we first consider a similar receiving antenna. The current dis-

tribution on an antenna used as a receiving element can be found by

- C
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integrating the response of the antenna to a unit voltage impulse. i.e.,

IT(z';z)/V0 with the differential voltage.

i(a,O,z')dz' = sinOJ 0(ka sin0)E eikz'cos(- dz' (H.3)

over the range, -h < z < h . Here E0 (a,O,z')dz' corresponds to the

azimuthally uniform differential component of voltage applied to the

antenna when illuminated by a uniform plane wave having a 3-directed com-
i

ponent of electric field, E0 , and incident at an angle. ii-0 . with

respect to the positive z-axis. Noting that the exact form of IT(z ' ; z)

would satisfy the reciprocal'relationship. I T(z';z) = I T(z;z ') , 134.

Sec. 9-10], the receiving current distribution can be written as,

RE 0  f h T -ikz'cosdI (Tr-O ;z) =-sin J0 (ka sinG) 0- h IT(z;z' dz' (H.4)
0 a-h

Using (H.4) with z = z0  in (H.2) allows the far field to be written as,

eik r  IR( -a ' 0 )Ea(r,0,0) =4- r V0 i kr >> I (H.5)
E0
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