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vvery effective in the extraction of granite regions when (1) data were
' in ratio format, (2) feature variables included both tone and texture

4 x information, and (3) the classifier is capable of handling non-normally |
| distributed data. Classification errors occurred when there exists pixels l

of non-granite category whose spectral and textural properties are '
i statistically similar to that of granite pixels. Two cases of errors can

be noted: Type 1 pixels located at the periphery of the granite regions,
and Type 2 pixels located far away from the core of the granite areas.
To reduce the error rate, an unsupervised classification method
based on the concept of reagion growing and texture clustering analysis
was employed to segment the scene in rnultiple stages and thus depict
edge patterns by the scene content and a gradual mathematical generali-
3 zation process. ldentification of the grantie regions becomes a labeling
process using the training sets information. Since the Regions algorithm
is based on an additional constraint on spatial contiguity, the above-
mentioned two types of errors can be effectively reduced bacause sharp
edges exist between the granite and non-granite pixels in the study area
The final decision regarding the delineation of the granite regions
is based on the intersection of two classification maps using a simple
map overlay analysis. The result yields a correct classification rate
of about 95 percent based on a visual comparision between the composite
classification map and the ground truth information given in the U.S.G.S

! , geological map of the study area.

To improve the developed techniques for lithological analysis, it
is recommended that additional experiments be conducted using other

: regions in the United States centering around the following tasks:

] (1) developing algorithms for merging supervised and unsupervised
classification methods; )

(2) firetuning the Region algorithm by adding subroutings to output
digital information of each segmented region;

(3) developing a color prediction model for rock types identification
using the texture and tone informaticn in the color domain with a
color monitor; and

(4) developing change detection methods for monitoring purposes based
on the extensicon of the above three methods.

The above discussions apply to our Phase | effort. The Phase Il
investigation is designed to test the generalizability of the methodolo-

I gies developed from the Phase | experiments. in general, it has been
proven that they are indeed generalizable with the following qualifica-
r tions:

(1) The ratio bands are not an absolute requirement;
(2) Our unsupervised classification method has been improved substantiald
ly to the point that it can be used as a smart processor for extract-
ing alluvium automatically: and
(3) Quarternary geologic maps are more appropriate than the ordinary
geologic maps for serving as the ground truth information of the
LANDSAT data.
The directions of future research should be centered around the
development of smart algorithms based onour thorough understanding of
the physical processes by which the terrain units were derived.
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Executive Summary

It has been determined in the literature on seismology and geophysics
that the recorded seismic wave energy from nuclear explosions is highly depen-
dent upon the actual yield of the explosion and its interaction with the envir-
onments in which the detonation occurs. These environmental factors can be
characterized by the depth of explosion balow the surface, the degree of coupl-
ing between the charge and the adjacent medium, and the lithological nature of
the test sites. Therefore, the analysis of rock type at the test sites is the
first step in nuclear monitoring.

The LANDSAT data have becn determined effective for terrain analysis.

The choice of the LANDSAT imagery for rock types analysis at the nuclear test
sites is also based upon the fact that it can provide world-wide coverage %ith
repetitive observatoins for monitoring purposes. And in certain cases, only a
combination of seismic and LANDSAT imagery can yield significant information
on geology and tectronics that either alone would not provide (Pavlin and
Langston, 1983). The goal of this study is to test the generalizability of
utilizing LANDSAT's digital, multispectral information for rock types discrimi-
nation at the nuclear test sites, based on the texture-tone analysis algo-
rithms of the image processing systems at Susquehanna Resources and Environ-—
ment, Inc. in two complementary approaches: supervised classifaction and
unsupervised training methodology.

The experiments were based on two subframes of LANDSAT MSS data covering
two geological quadrangles: Site | located in the Duffer Peak Quad, Nevada,
and Site 2 uses the NE quarter of the Willow Spring and Rosamond Quads of
California. 1In addition to determining the general capability and generaliza-
bility of the texture analysis algorithm from Site 1 to Site 2, this study

also tests the appopriateness of using a general geologic map as the ground
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truth for judging the feature extraction capability of the LANDSAT data based

particularly on Site 2 where a quarternary geologic map happens to be avail-
ahle to the researchers.

The task was accomplished by using two separate but complementary image
processing techniques. The first technique, a supervised classification, was
designed to extract granite regions using four ratio bands (4/7, 4/6, 5/7, and
6/7) for the Duffer Peak Site, and four original bands for the Rosamond Site
based upon four manually selected, but automatically pre-processed training
sets. The non-granite regions were extracted as well using the reject cate-
gory of the classification model. The second method, an unsupervised classifi-
cation procedure based on the concepts of the stable structure of scenes (Hsu,
1983), was designed to detect the contact zones between granite regions anq
the algorithm using one ratio band (4/7 is most effective) of the Duffer Peak
Site, where the supervised method failed.

For Site | (Duffer Peak, Nevada), the final granite regions were defined
by the intersection of two granite images produced by two different image anal-
ysis techniques. The result indicates that a very high level of correct
classification rate--95 percent or better-—has been achieved, based on an
overlay analysis using the classification result against the geologic map
produced by the U.S. Geological Survey.

For Site 2 (Rosamond, California), the granite regions are successfully
extracted using the raw LANDSAT MSS information based upon the same variables
and classifier employed in Site l; and thus proving the generalizability of
the developed methodologies for rock types discrimination. 4

On the appropriateness of using the general geologic map as the ground

A

truth for judging the performance of the LANDSAT system, we have determined

TN TR

that a Quartenary geologic map where information on the properties of surfi-
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cial (so0il) material is availabe is much more appropriate than the general
geologic map where the distributions of rocks is mapped according to mainly
the interpretation of the distribution of the bedrocks by the particular field
geologists. Moreover the LANDSAT system is really not designed for detecting
sub-surface material although the sub-surface information can sometimes be
inferred from the surficial expression of the terrain characteristics as cap-
tured in the LANDSAT imagery through image processing and analysis.

Though the defined task of extractiny; granite regions has been success—
fully accomplished, it is necessary to test the developed image processing and
analysis techniques using additional test sites. The reasons are (1) fine
tuning of the methods are usually required to handle diverse patterns of litho-
logical associations, and (2) the LANDSAT imagery can be exploited further for
detecting environmental and man-made changes before and after nuclear explo-
sions, but it has not been fully investigated by the researschers at Susque-

hanna Resources & Environment, Inc.
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Applications of Texture Analysis for Rock Types Discrimination: Phase II

Section A: Introduction

Ever since the Soviet Union's detonation of its first nuclear device pro-
totypes, both the realities of an arms race and the requirement to maintain
scientific/technological advantages have [orced the United States to expend
significant resources in monitoring of foreign nuclear tests. Sophisticated
technologies that have evolved about the framework of seismology and geophy-
sics have made significant contributions in satisfying the national require-
ment to detect, locate, identify and yield-quantify world-wide nuclear detona-
tions. Yet, there is room for improvement using non-seismic methods, particu-
larly in the area of yield estimation. To this end, this study is intended to
develop image processing and analysis methodologies for the discrimination and
identification of rock types at nuclear test sites. The rationale of this
approach is based on the fact that the recorded seismic wave energy resulted‘_
from nuclear explosion depends on the following environmental/lithological
factors:

(1) the actual yield of the explosion:

(2) depth of the explosion below the surface;

(3) the degree of physcial coupling between the charge and the

adjacent medium; and

(4) the geological nature of the median in which the detonation occurs.
Indeed, rock types analysis is the first step in yield estimation.

To accomplish the goal of rock types discriminated at the nuclear test
sites, LANDSAT's multispectral data were used. The choice of the LANDSAT
imagery is based on the fact that it is capable of providing a world-wide and

repetitive coverages and thus a basis for monitoring nuclear test activities.
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The thrust of this study is to exploit the digital information of LANDSAT data
in the context of texture-tone analysis for such purposes.

The feasibility of the SR&E's image processing system for lithological
analysis has been proven in our Phase 1 effort based on two test sites in
Nevada: the Antler Peak Quadrangle, Nevada at the scale of 1:62,500 (ANAl)
and the Duffer Peak Quadrangle, Nevada at 1:48,000 (ANA2) as analogs to
foreign nuclear test sites. Specifically, the first site (ANAl) was used as a
testbed for methodological development; whereas the second site (ANA2) was
designed as an analog area for extracting granite regions used in the Phase 1
studies. To this end, another site was sclected from the Willow Springs and
Rosamond Quadrangles, California, particularly to possess these properties for
testing the generalizability of the developed methologies:

(1) exposure of granite, but not always in high grounds;

(2) cxistence of contact zones between granite and alluvium;

(3) availability of both general geologic map and a special Quarternary .

geologic map where information on surficial material is given.

Phase II effort was designed to test the generalizability of the devel-
oped methodologies used in Phase I studies. To classify granite versus non-
granite regions, two complementary image analysis techniques were employed.
For Site 1, first a supervised classification analysis was conducted to delin~-
eate granite areas based on manually selected, but digitally pre-processed
training sets, and to reject non-granite regions based on a pre-set statisti-
cal model/probability level for identifying pixels which are significantly
different from the training sets. Second, an unsupervised clustering analysis
based on SR&E's Region Growing Texture Clustering algorithm was performed to
extract granite areas by region growing from the cores of the granite training

sets. The final definition of granite regions can be either based on the




intersection of these two sets of "granite maps,"” or removing alluvium from
the supervised classification map based on the contact zone information given
by the unsupervised classification method. For Site 2, the analysis is much

more straightforward since a very accurate classification was generated by

] { using our supervised classification methodologies using the same parameters/

variables applied to Site 1.
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Section B: A Brief Review of Relevani Literature on Lithologic Analysis
with Image Data

Prior to 1972 and the launch of LANDSAT, pioneer work on reflective prop-
erties of minerals was accomplished by Hunt and Salisbury at the USAF Cam-
bridge Research Laboratories (1970, 1973). Their study and explanation of
reflective/transmission properties of both minerals and rocks in the visible
and near-infrared regions serves as a basis for semi-automatic rock discrimina-
tion techniques that exploit the spectral (tone) parameters of multi-spectral
imagery. Rather than being a simple empirical result, it turns out that miner-
als and rocks spectral charcteristics are a direct function of the physics and
theory associated with crytal-field theory (Burns, 1970), as evidenced from
theoretical and laboratory analyses of the rocks and minerals of the moon
(McCord, 1968; further McCord, G =Dk TGN

Since then, scientists at the U.S. Geological Survey, Jet Propulsion
Laboratory and NASA/Goddard Space Flight Center, have attempted to exploit
LANDSAT MSS data for rock *ypes analysis as evidenced from Goetz, et al
(1973), Goetz, et al (1975), Vincent, et _al (1975), Rowan,et al (1976), Rowan,
et al (1977), Abrams, et al (1977), and Podwysocki, et al (1977). Recent
works by other researchers including Lyon (1977), Lyon, et al (1978), Hunt
(1977), and Siegrist et al (1980), also emphasized digital processing of LAND-
SAT and other types of multispectral scanner data for optimal combination of
spectral channels for rock discrimination.

While the majority of the work cited above emphasized rock types analysis
and identification with color enhancement techniques with LANDSAT images, our
study is devoted exlusively to extracting rock types using the digital informa-
tion of the LANDSAT MSS data in the context of texture analysis, which has

been largely neglected by previous researchers.




Section C. A Brief Review of Texture Measures and Testing of the RADC/Hsu

: Texture-tone Analysis Algorithms

) For years, texture has been recognized as one of the important criteria

i for identifying objects and scenes by a photointerpreter, along with other
variables such as tone, size, shape, associated features, etc. Here texture
means the apparent minute pattern of detail of a given area, described ordi-

§ narily by these terms: smooth, fine, rough, coarse, and the like. 1In digital
data processing, texture can mean the spatial distributions of tones of the
pixels of a given area. Its attributes have to be specified by the investiga-
tor--a specific field of study termed texture feature extraction.

Texture analysis is a rather recent but rapidly growing field of inqu}ry,

i though its importance relative to visual perception was recognized by Gibson

as early as 1950. Over the past 20 years, many texture measures hve been

proposed. This body of literature has been reviewed by Rosenfeld in 1975, In
general, these measures can be grouped into two categories: Fourier-based

(power spectrum) features and statistical features. Furthermore, it has been

found that statistical features perform mich better than the others (Rosen-

| feld, 1975).

Haralick (1975) noted further that there have been six basic approaches:
autocorrelation functions (Kaizer, 1955), optical transforms (Lendaris and

Stanley, 1970), digital transforms (Gramenopoulous, 1973; Hornung and Smith,

1973; Kirvida and Johnson, 1973), edgeness (Rosenfeld and Thurston, 1971) and
related measures (Schachter, Lev, Zucker, and Rosenfeld, 1977; Lev, Zucker,

and Rosenfeld, 1977), structural elements (Matheron, 1967; Serra, 1973), and

spatial dependency probabilities (Haralick et al, 1973), as well as an ex-

2 tended method (Haralick, 1975). In general, Weszka and Rosenfeld (1975) con-




4 cluded that statistical features perform.much better than Fourier-based
features.

Texture analysis has also been approached from the human perceptual point
of view. Indeed, the human eyes coupled with the brain are very effective in
identifying and interpreting imagery patterns. The only drawback is the slow-
ness of data processing using manual operations. Though this system works
Wi empirically, the mechanism by which visual detection and recognition is
achieved is still largely unknown, as noted by Barlow, Narsimhan, and Rosen-
feld (1972) and Julesz (1975). This field of study has been termed psycho-
pietories, as summarized in Lipkin and Rosenfeld (1970).

With respect to texture perception, Whitman Richards (of MIT) has been
conducting experiments under the sponsorship of the Advanced Research Projgcts
Agency (1977). He has concluded that ﬁost uniform textures can be simulated
by three or four variables, provided that three variables contain the basic
elemental tokens of the graphic display. His approach to texture perception
has employed a "generalized colorimetry"” technique analogous to that used so
successfully in studying human color vision. Early work on the perception of
visual texture using mainly random dots includes that of Pickett (1967), Polit
(1976), and Purks and Richards (1977). Perceptually based texture measures
have been developed by Mitchell et al (1977), and Hsu (1977). Thus, we see a
convergence emerging between human visual processing and machine-oriented ;
image processing methods. As will be discussed below, we have developed a tex-
ture analysis system that indeed is capable of integrating visual processing
into a machine-oriented image analysis system.

Under the sponsorship of U.S. Air Force/Rome Air Development Center, this
author developed a new texture measure with 17 and 23 variables derived from |

(3 x 3, Model I) and (5 x 5, Model II) windows, respectively (Hsu, 1977). 1In
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| the analysis, the window moves from one pixel to another with an overlapping
h i region between two adjacent pixels; and only the center point is classified.
|
!
|1
; TABLE I
The Texture-Tone Variables of Model I
Code Description of computational funds
: 1. MEAN Average
i 2. STD Standard deviation
3. SKEW Skewness the four central moments
4. KURT Kurtosis
5. MDEVN |xi - x}/n, where X = tone value of individual pixel
X = mean
6. MPTCON bx; - xcl/n, where X, = tone value of the center point
7. MPTREL (xc — xi)/n
{ 8. MINCON lxi - x.¥/n, i and j are adjacent pixels
] 9. MINSQR (xi - x3)*/n
! : 10. MZ2NCON X, - xil n, 1 and k are second neighbors
11. M2NSQR (xi - xk) /n
: 12. MADATI Mean area above datum 1 (50)
q 4 13. MADAT2 Mean area above datum 2 (100)
' 14. MADAT3 Mean area above datum 3 (150)

15. MBDATI Mean area below datum 1 (50)
16, MBDAT2 Mean area below datum 2 (100)
17. MBDAT3 Mean area below datum 3 (105)

In Model I, the seventeen texture variables are as follows: (1) through
(4) are the four central moments; (5) is the absolute deviation from the mean;
(6) is the contrast of the center point from its neighbors; (7) is the mean
brightness of the center point relative to its background; (8) is the contrast
between adjacent neighbors; (9) is the sum of the squared values of (8); (10)
is the contrast between the second neighbors; (l1) is the sum of the squared

values of (10); and (i2) through (17) are the mean area above and below three

]

:f'

datum planes having tonal values of 50, 100, and 150, respectively, on a scale
of 0 for black and 255 for white. Thre code names and computational formulas

of these 17 variables are given in Table 1.

4
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In Model II, with a (5 x 5) design, in addition to the above 17 wvari~
ibles, three measures are extracted to characterize the oscillatory nature of
the scan lines obtained along both the x and y axes of the data matrix; thus,
six variables are available for analysis. They are: (1) sum of the contrast
values from peak to trough; (2) sum of the distances of peak positions from
the origin; and (3) sum of the numbers of peaks and troughs (see Table 2).
This means that there are altogether 23 texture variables in Model 1T.

TABLE 2

Additional Variables in Model II

Code Description or Formula
| ‘ 18. XCONT (distances from peaks to troughs) along x-axis
= 1 19. XPEAK (peak positions from the origin) along x-axis
f A 20. XPANDT (number of peaks and troughs) along x—axis
i 3 21. YCONT (distances from peaks to troughs) along y-axis
i ‘ 22,  YPEAK (peak positions from the origin) along y-axis
! : ; 23. YPANDT (number of peaks and troughs) along y-axis

In our work for the Air Force Office of Scientific Research (Hsu, 1979
and 1980; Hsu and Burright, 1980), we developed and proved the existence of a
perceptually-based three-variable texture analysis system with these measure-
ments: (1) average tone, (2) the first neighbor contrast, and (3) mean devia-

tion from the average tone in our Model | described earlier.
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Section D. A Brief Note on the Testing of the RADC/Hsu Texture Analysis

Algorithms for Terrain Analyses

The testing of the effectiveness of the RADC/Hsu texture analysis algo-
rithm has been conducted mainly at The Pennsylvania State University at
ﬁ College Park, Pa., and at the State University of New York at Binghamton in

addition to the current research performed at Susquehanna Resources and

Environment, luc.

The Hsu texture measure algorithm was implemented at the Pennsylvania
Stiate lniversity (Geophysics Department) by G. Pavlin in 1979; it was docu-
mented as "Computer Programs: HSUDRIVE, TEXE3 and TEX 2." Several theses
have been written at the Pennsylvania State University using the algorithm to
discriminate lithologic types with very promising results in arid regions (see
parker, 1980; Ravenhurst, 1980).

At the State Unlversity of New York at Binghamton, Kiracofe (1983) went a

step further to test its effectiveness for the discrimination of vegetation

types in addition to rock types in the Adirondack region of New York State and
proved the algorithms are also effective in terrain analyses in both arid and
temperate regions.

Finally, we shonld note that the U.S. Air Force/Rome Air Development
Center and the Defense Mapping Agency have implemented these algorithms and

used them for both terrain analysis and target cueing for years.

‘ Reproduced from
| ] best available copy.
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Svction E: Smmnacy and Results of the Phase T Effort

I. Tasks Determined for the Phase-1 Effort

From a discussion session held among Mr. Best of AFOSR, Col. Lowrey of

DARPA, Mr. Rachlin and his colleagues of U.S. Geological Survey, aud Dr. lsu,
16 was determined that the tasks of Phase T effort should he aimed at
answering the following three questious:

I How well can we map the pranite areas versus non-granite regions
wsing our supervised and mnsupervised classification methods in the
context. of texture analysis?

2. What ave the factors aftfecting the classification results--slope,
drainage pattern, data used, methodologies ntilized?

}. What are the potential contribution of image processing techniques
and methodologies towards the discrimination and even identification of
rock types using LANDSAT data?

For data analysis, a study area within Duffer Peak Quadrangle, Nevada was
selected by Mr. Dempsie of U.S. Geological Survey. Furthermore, based on the
peologic map, 22 training sets were selected manually to cover four major rock
types: (1) granite, (2) metamorphic, (3) volcanic, and (4) unconsolidated.

2 The Data Set

To remove the shadow effect of the original LANDSAT data, and to extract
information from four MSS bands simultaneously, the following data sets are
generated.,

(1) First, second and third components from the four MSS bands;

(2) Six ratio bands from the Eour MSS bands: 4/5, 5/6, 6/7, 4/6, 4/7,

and 5/7;

(3) The first component map from 4 selected ratio bands.

Therefore, fen derived image data sets are available for analysis in addi-

P




tlon to the original four MSS bands. The location of the training sets with

respect to these derived data sets remain the same.

}. Image Processing and Data Analysis Methodologies Utilized

To analyze the relationship between the selected training sets, and to
classify the granite areas versus non-granite regions, the following analyti-
cal techniques are utilized.

a. txtraction of texture-tone information of the training sets and the

entire data set.

g Using the texture—tone cxtraction algorithm, 29 texture-tone-ratio
! variables have been generated for any given pixel from four multi-spectral
bands using (3 x 3) moving grid. They are composed of 4 tone variables,
L2 texture variables (3 from each band), 6 ratio variables, and 6
correlation variables.

For data analysis, the analyst is able to select a portion of the
following 29 variables:

BRIGHTA4 BRIGHTS BRIGHTO BRIGHT? MINCON4 MINCONS

MINCONG MINCON7 MDEVN4 MDIEVNS MDEVNG MDEYN7
STDDEVA STDDEVS STDDEVH STDDEV7 MAXLIN LOGRATAS

LOGRAT46 LOGRAT47 LOGRATS7 LOGRATS7? LOGRAT 67 CORR4 S
CORR4G CORR47 CORRS56 CORRS7 CORR67

b. Analysis of the Training Sets

Based upon the selected variables from 29-variable system, typically
we use three variables, the training sets will be analyzed and edited so
that each training set will mect the following two criteria:

(1) single mode; if two modes exist in one training set, the set

T N PR ey e —————

will be split into subsets;
(2) extreme outliers are to be removed based on a statistical

confidence level.
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c. Discriminant Analysis of the Training Sets

After the training sets are edited or preprocessed, they will be ana-
Lysad in terms of how close they are between pairs of training sets using
the means of selected tone-texture variables. The distance is generally

4 e : ; : 2 .
measured by statistical distance ealling Mahalanobis D7 with or without a
log~=determinant term.
4 2 . 5 . ] - :

While the D distance is indicative of the degree of similarity and
digsimilarity between Lwo training sets, the analyst usually uses a con-
fusion matrix-—-classification result using only the training sets—-to
examine how well these training sets are separated. The analyst will then
decide whether he should proceed with a classification analysis of the
entire test set. [n geueral, it dissimilar training sets are confused, a
classification analysis should not be conducted.

d. Supervised Classification Methods

As mentioned earlier, a supervised classification analysis can be
made only when the traiing sets are well separated. To achieve this goal,
the following steps can be taken:

(1) purify the training sets as in (h);

(2) change the location of the training sets;

(3) increase the power of the feature extractor by using

(i) more texture—tone variables, and (ii) using different
spectral-band combinations; and

(4) increase the power of the classifier by using a non-Gauseian

model if the data are essentially non-multi-variate normal.

In the analysis, we have done all these image processing techniques

axcept step (2), changing the location of the training sets.
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=, The Actunal Supervised Classification Procedures Applied to the Duftfer

Peak Quad

Step 1. Four ratio bands (45,56,67,47) were generated as the basis
for generating 29 tone-texture-logratio—correlation
variables for each pixel.

Step 2. Preprocessing of the manually-selected Training Sets,

As noted training sets were selected as calibration samples of four
major rock types. Using information from bands 4/5 and 4/7, these origi-
nal 22 sets were processed into 25 sets as illustrated in page 13 of the
Phase 1 Report. This antomated preprocessing technique is desigaed to
purify the training sets by two methods:

L. split a bimodal distribution into two sub-sets; and

2. remove outliers of the distribution from the training

sets.
Step 3. Analysis of the Preprocessed Training Sets.

After these 25 derived training sets werc generated, we pro-
ceeded to analyze the separation pattern among them using
only 12 variables from the 29-variable system. These ]2
variables are composed of 4 tones and 8 texture measures from
4 spectral bands as follows:
Tone variables are from the 4 spectral bands;

Texture variables are the lst neighbor contrast and the Mean

Deviation measures derived from a (3x3) moving grid from all 1
4 spectral bands. ?

The result of a confusion analysis was given in Table 4 of

the Phase T Report.




step b

This step is to se

training sets from granite.

cej
Step 5.
Step O.

Since it was evident trom this analysis that the training

sets of graanite were confused only among themselves except

Gl, but not with others (see Table 5 of the Phase T Report),

we then procecded Lo generate only training sets for granite

including preprocessing of the sets using G2, G3, G4 and G5

data. (see Table 3)

t up a supervised classification using only the

The rest of rock types will be treated as

ects using a probability cutofl criterion.

After Step 4, we proceeded to generate a classification map

using only 7 featurce

3 texture measures selected from the original 28-variable

system as follow:
Brightness 475 Ist neighbor contrast 5/6

Brightness 5/6 Mean Deviation 4/5
Brightness 6/7
Brightness 4/7
of the

printing of the Decision Map as given in Figure |

Phase I and Phase I1 Reports.

" T s gl ol S < 2 Erey
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variables in the classifier-4 tone plus

Standard Deviation 6/7 (see Table 4)




TABLE 3
Confnsion Matrix Showing only the Granite Sets

(Note that G2 through G5 are confused only among themselves)

From Set Gl w2 (iR} Gh G Sum

Gl 34 2 3 4 3

13.18 0.00 .00 0.00 1.16

G2 0 1.34 0 38 71
.00 48.20 0.00 13.67 25.54 87

03 0 0 61 0 1.14
0.00 0.00 312.80 0.00 61.29 94

Gh 0 173 1 66 56
0.00 0] 0.56 37.08 31.46 76

(63 0 0 | 0 1.61
0.00 0.00 0.62 0.00 99. 38 100

TABLE 4
The 7-variable Texture-Tone Analysis System

STEP 1 VARIABLES: BRIGHTA  BRIGHTS BRIGHT6 BRIGHT7 MINCON5S MDEVN4 STODEV6

Rank of ecach set:
TRANSTG2 = 7 TRANSTG3 = 7 TRANSTG4 = 7 TRANSTGS = 7

Confusion Matrix from a Non—-Gaussian Class.fier

TRANSTG2 TRANSTG3 TRANSTG4 TRANSTGS
TRANSTG? 211 0 63 5
TRANSTG? 0 164 2 20
TRANSTGA 62 2 113 2
TRANSTGS - 11 19 102

Total Correct Classification = 73.02 percent.
Actual Correct Classification = 73.02 percent.

This indicates that even granite sets are well separated.

f. The Experimental Results

From three experimental data sets, it can be concluded that:

{1) For rock type analysis, data Set 3 composed of these 4 ratio hands:

7
I
i
:
i
!
1
|
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a/6, a/7, 5/7, 6/7 is most elfective. Data Set | with the 4 original 4 LANDSAT
MSS bands is least affeetive. TFigure 1, a decision map, indicates that the
vast majority of granite areas are correctly identifled, except

(a) the primite area, within which the training set G1 (which was not

used itn the analysis is located, is largely classified as non-
granite, and

(b} one "metamorphic rock™ area as labeled in the geologic map was

largely classified as "granite.”

These two reglons will be investigated further using our unsupervised |
segmentation algorithm in the next seetion.

(2) Regarding the classifiers, our non—-Guassian classifier with 7 texture-
tone variables is superior to the Guassian classifier no matter whether it
atitizes 7 or 16 texture-tone variables,

(3) There is littte difference between 7-variable Gaussian classifier and }
lh-variahle Gaussian classifier in terms of the confusion matrix using the 1
training sets data.

(4) In terms of correct classification of the granite versus non-granite

regions (areal distribution), both our Gaussian and non—-Gaussian classifiers

-

achieved a level of over 90 percent hit-rate. The Non—-Gaussian Classifier is

slightly better than the Gaussian Classifier in these experiments.

i}
.l
|
t

e Feature Extraction with an Unsupervised Training Approach

(1) Experimental besign

The goal of these analyses is to extract homogeneous regions in the study

area from varions LANDSAT ratio bands using our region-growing texture cluster-

ing analysis algorithm. Tdentification of the granite regions becomes a labeli-

iug process using training sets information and other related statistical and

tervain chardcteristics data. 1t was our intention to use the results from
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this unsupervised classification method to investigate the areas of misclassi-

fication by the supervised classifier. Seven data sets were used in the

analysis.

2) the Resnlts of the Analyses

By examining the results from the cxperiments, it was concluded that the
results from Log Ratio of Band 4 and Band 7 (Figure 2 of Phase T and TI
Reports) yielded the best overall result. Using the location of the training
sets Gl through G5, the major granite areas were identified, corresponding
well to the bedrock regions of granite. Particularly, by comparing the
results from this unsupervised classification against the supervised classi-
fication, we derived that (1) the rejected granite Gl area can be delineated
by the Region algorithm, and (2) the confused area in supervised classifica-
tion between G2 and G3 can be discriminated as well. Similar to the super-—
vised classifier, the Region algorithm failed to distinguish the bedrock gran-
ite from the surficial granite in the are near training set G4. As it was
determined in other experiments, this boundary can be detected in the analysis
with the data set of log ratio of Band4/Band 6.

h. Classification Analysis by a Combination of Supervised and Unsupervised

Training Approaches

From the results giveun earlier, we used a multiple map overlay analysis
to delineate the final granite regions as given in Figure 3 of Phase 1 and
Phase 11 Reports with the following conclusions:

(1) In the areas where training sets informat{on exists, there is a re-
markable correspondence between Figure 1 (supervised classification) and
Figure 2 (unsupervised classification);

(2) From a manual editing process, we can place the granite Gl area from

Pigure 2 onto Figure 1;

FEEE & 2 B — g R e, - %,
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(3) The areas of misclassification in Figure |--

i. region between G2 and 3, and
ii. pixels located outside the boundaries of labeled granite
reglons of Gl, G2, G3, G4, and G5 in the northeast, southeast and
southwe st quadrangles—-—

can be removed from Figure t.

(4) Since there is no information regarding ground truth in the arca

between the location of Gl and G2, we used the result as given in Figure 1 for

granite identification; and

(5) Comparing the results as described above in reference to Flgure 3, it

can be concluded that an extremely high level of eorrect classification of
sranite and non—-granite has been achieved. {t should be noted that we were

able to edit this map further using additional ground truth information and

the segmentation results given by other ratio bands.
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Section F: The Phase [I Effort

Tasks Defined.
a. To test generalizability of the developed methodologies.

With the successful results obtained through the Phase T
effort, it was determined that the tasks for the Phase II effort
should be centered around testing the generalizability of the
developed methodologies for rocik types discrimination using another
test site. To this end, a test site located in the Willow Spring
and Rosamond Quadrangles, California, was selected.

During the Phase 1 effort, both Dr. Smith of AFOSR and Dr. Hsu
folt that it is not really proper to use geologic maps as the ground
truth to evaluate the ability of the LANDSAT data and the effective-
ness of given Lmage Jnalysis techniques for the lithologic analysis
despite the fact that it was employed that way in the Phase 1 analy-
sis as specified by the researchers at U.S. Geological Survey serv-
ing as consultants and evaluatore of the project. Consequently, a
special effort was made to select a site for which both the standard
U.$.G.S. geologic map and surficial material map are available in
addition to the basic criterion for conducting a generalizability
study-—comparability between the first test site and the second

regarding the general lithologic characteristics and environmental

conditions. Based upon the following conditions, the Rosamond,

California Site was selected:

(1) Exposure of granite at a much lower ground for testing the
effectiveness of the developed texture analysis algorithms
on extracting granite where the high-ground, well-exposed

bedrock condition does not exist.
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This eriterion was derived from a reneral feeling that the
3 <3

success at the Dulfer Peak Site can be attributed to the
condition of granite: good cxposure of the bedrock due to a
high-ground location lor casier detection by the LANDSAT
system.

(2) Availability of a surficial material map for the test site:
Quarternacy geologic maps were located for several sites in
the U.S. where granite can be found. The Rosamond Site was
finally determined as the second test site based on another
criterion on the similarity in climatic conditions; namely,
they are located in arid climatic zones.

b. To evaluate the appropriateness of using the general geologic
map as ground truth €or LANDSAT data analysis.

Although we were advised by the U.5.G.S. officials serving as
advisors and evaluators to onr project to use the general geologic
maps as the ground truth maps for the study areas, both Dr. Smith
and Dr. Hsu could not totally accept this approach based upon the
fact that:

(1) The general geologic maps were made according to the inter—
pretation of the tield geologist(s) regarding the distribu-
tion of the bedrocks; but

(2) the LANDSAT system was designed to detect primarily the sur-
ficial material, and thus cannot detect sub-surface material
and features although such information can sometimes be
inferred from the surficial information.

llonca, the best way to resolve this question (dispute) is to

treat the first opinion as a working hypothesis, and test it against

e TR e— e e




cmpirical data. With the availability of a Quarternary geologic map
for the second test site, it is feasihle to carry out this task. |
Co To evaluate the contribution of the unsupervised classification

method to the extraction of lithologic information.

we concluded from the Phase 1 eftort that both supervised and
unsupervised classifieation nethods should he used in mapping litho-
logic features. Since then, the unsupervised training method was !
developed further nsing artificial intelligence approaches by the
researchers at Susquehanna Resource & Environment, Inc. According-
Iy, a portion of the Duffer Peak test site was used to demonstrate
the coffectiveness of the new approach. This experiment indeed sup-
ports further the conelusion derived from the Phase | effort that a
combination of supervised and unsupervised classification approaches
are needed to extract lithologic features and related tectonic
informatlon.

2. The Data Sets
A frame (256%x256) pixels from the Los Angeles, California Landsat

Frame was extracted to represeant the second test site located at Rosamond

(andrangle), California. Since it is determined that the shadow effect
of the image data is not significant, the original MSS bands were used as
the basis for data analysis. Note that ratio bands served as the basis of
data analyses For the Duffer peak Site because of the presence of shadow
ofFect in the image data.
Ba Supervised Classification of the Second Test Site

To test the generalizability of the developed methods, identical

procedures used in the phase 1 effort will be employed to the sccond test-

ik.!:m e Ao b —ﬂ.-u
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cite data. The following gsections described the methods by which roek
types wetre extracted from the Rosamond Site.
(a) The characteristics of the training sets
As mentioned earlier, we treat the geologic map of the test
| site as the hypothesized ground truth. Hence, the training sets
: 1
! were sclected according to the information given by the geologic
? map. Figure 4 is a portion of the Willow Spring and Rosamond ‘
H <
! 1 Quadrangles, California, from which eleven training sets were !
AN
f extracted to represent five rock terrain types as follows:
1 ) . .
] (i) Al, A2 and A3 for alluvium;
A
] , (ii) Gl, G2, G3 and G4 for granite;
.
E (iii) S! for sehist;
! (iv) T1 and T2 for tuff; and
E‘ ’ (v) DL for drybed.

(b) Generation of 79 texture-~tone variables

Follow the same procedure used in the Duffer Peak study; twenty-

nine texture—tone variables were generated for each pixel in the

(256x256) frame from the form LANDSAT MSS bands based on the origi-

nal (3x3) moving grid and texture analysis model .

(¢) Pre-processing of the training sets

To purify the training sets such that cach set is uniform, out—

T

liers in each training set (distribution) were removed automatically

In addition, if a bimodal

using information from Band 4 and Band 7.

it will be split into two subsets. Analyses

distribution is found,

of the training sets indicate that only a few outliers exist in cach

of the training sets as witnessed from the following data (Table 5).
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TABLE 5

Pre-processing of the Framing Sets

No. of Pixels (original)

No. Pixels after

Editing

Al 256 251
A2 256 246
A7 256 242
Gl 256 249
G2 256 249
G3 336 324
Gh 256 248
Sl 208 242
Tl 171 168
T2 209 209
Dl
(d) Selection of the best discriminators from the 29-variable
System
To determine a subset from a large number of variables as the
best discriminators, a stepwise discriminant analysis is generally

employed. However, it should be noted that the results of the anal-

ysis are highly dependent on the way the discriminant function is

set up. TFor instance, in one case the hest discriminator can be
designed to discriminate the closest pair of the training sets; on
the other, it can be devised to separdte training-set classes in-
stead of individual sets in the classes.,

Since the goal of this project is to separate granite from
alluvium, the step-wise discriminant Aanalysis utilized here follows

the second approach--discrimination of classes. The analysis
indicates that the hest ten variables follows closely with our
original coneept of texture-tone variables as follows:
(1) Bright 5 (Band 5 tone)
CO) By el 4

(3) Bright 7

(4) Bright 6

e
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(5) Standavd Deviation 0
{6) Mean Beviation 5
(7) lst Neighbor Contrast 7

(8) Mean Deviation 4

(9) Standard Deviation 5

(10) Mean Deviation 7.
(e) Confusion analyses of the training sets

To determine how well the selected variables can separate the
training sets, analyses of the training by means of a confusion
matrix is generally nsed. This is achieved by classification of
individual pixels into the mean vectors of the training sets. Table
6 is the confusion matrix from the l0-variable system with a correct
classification vrate of 9Y9.13 percent. The separation between train-
ing sets can also be measured by means of the Mahalanobis distance
(Dz) as shown in Table 7.

(f) Classification of the study area (test site)

To be consistent to the procedures used in the Duffer Peak
experiment, we used the identical seven feature variables to analyze
the traiing sets again, and proceed to classify the entire second
test site. These seven variables are:

(1) Bright 4, (2) Bright 5, (3) Bright 6, (4) Bright 7,

(5) 1st Neighbor Contrast 5, (6) Mean Deviation 4, and

(7) Standavd beviation 6.

[t turns out that these seven variables is a subset of the 10-

variable system derived from the stepwise discriminant analysis.

Corresponding to Tables 6 and 7, Table 8 and Table 9 indicate the

confusion matrix awd the Mahalanobis distance hetween training sets,




9
G2

G4

D1

Sl

rl

2]

0

28

respectively. Note that the hit-rate with respect to the classiti-

cation of the five rock types 1is 99 percent.
TABLE 6

Confusion Matrix from the l0-Variable System (SR&E)

A2 A3 1 G2 G3 G4 D1 Sl Tl
0 3 0 1 0 0 0 0 0
246 0 0 0 0 0 0 0 0
0 223 0 0 1 0 0 0 3
0 0 225 5 17 1 0 1 0
0 7 18 207 U 17 0 0 0
0 ] 70 0 253 0 0 0 0
0 8 30 54 1 155 0 0 0
0 0 0 0 0 0 242 0 0
0 0 0 0 0 0 0 204 1
0 0 0 0 0 0 0 0 153
0 0 0 0 0 0 0 0 8

Classification = 99.13 percent.

182

0

0

15
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TABLYE 7

Mahalanobis distances [rom Row Set to Column Set from 10-Variable

Al

\3

Gl

(o

Al A2 A3 Gl G2 G3 G4 D1 S1
0.0 92.3 10.6 56.4 29.3 62.0 24,9 279.8 195.7
67.1 0.0 45.9  53.1 50,3 72.8  44.7 298.8 168.0
20,1  48.4 0.0 32,0 7.6 36.2 3.1 t78.t 122.!
43.3 46,2 28.0 0.0 8.5 316, SpeqlEr 531 32.8
51387/ A9.1 17.2 1401 0.0 24.9 Dally D | S
88.0 57.9  36.5 D% RS 5L () Do) Ll =SS, pY/8GE
S iRiad (4.0 14.8 3.8 30.4 0.0 415.7 200.9
430.2  251.9 435.6  466.3 500.1 437.7 4068.7 0.0 412.3
202.7  58.8 110.6  43.6  88.8  31.7 T74.9 349.1 0.0
Siats L ISXIL 7T ISR CHESE D S s W 3HeA . BB @F.Y

84.9 36.9 17/ 2R BISEY/ 29.9 399.4  37.7

(0
o
.

o

System (SR&E)

1l

115.7

275.0

32 )

34.06

149.5

44,7

/el

634.4

T2

170.0

470.6

252.0

66.0

R

82.9

338.2

With such a high hit-rate in the training sets classification,

we proceed to classify the entire study based upon these (edited)

training sets. The result is given in Figure 4, showing the deci-

sion on the distribution of granite and other rock types.
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Featare

Rank of

Al

A3

Gl

G2

G4

D1

Sl

Tt

T2

A2

D

Al

243

0

0

0

Variables:

cach set:

0

0

Classification

With a Seven-Variable System

BRIGHT4

Gl

TI

Gl

30

It

0

0

99 percent with respect

30

TABLE 8

17

0

239

0

0

Confusion Matrix of the Training Sets (Rosamond, California test site)

BRIGHTS BRIGHT6 BRIGHT7 MINCONS MDEVN4 STDDEV6

0

0

to five rock types

ey




The Mahalanobis Distance Between

Al

A2

A3

Gl

G2

G3

G4

D1

Sl

Al

0.0

60.6

16.8

46,5

2.1%19

86H.0

1.6

193.1

49.5

DB

TABLE 9

RS A3 Gl G2
91.9 10.1 54.7 27,0
0.0 42 .4 SHIlwr/ 44.9
46.9 0.0 BI80 17.7
43.0 24.8 0.0 8.1
47.7 15.9 153040) 0.0
54.8 36,2 5.0 33.4
40.1 12.6 14.6 3.6
240.1 412.8 439.1 478.0
56.6 104.7 38.4 82.1
137.1 28.2 1535 38.1

84.7 34.5 31.6 32.0

G3

57.8

35.6

3.6

24.7

0.0

29.3

419.9

29.2

BV ot

G4

22.8

40 .4

20.8

0.0

448.9

68.2

the Training Sets from the

Dl

290.3

284.7

169.7

525.1

461.2

602.8

395.7

0.0

341.7

832.06

394.9

7-Variable Systems

si

195.6

168.4

115.6

33.2

128.4

72.2

200.8

383.1

0.0

63.0

37.4

Tl

113.4

276.4

113.2

30.1

148.0

38.1

174.1

582.5

9.8

0.0

5.2

Discussions on the Correspondence Between the Decision Map from

T2

161.1

467.1

208.5

the

LANDSAT Data and the General Geologic Map and the Quarternary Geologic

Map, Respectively.

Since the goal of our lithologic analysis is to separate granite from

non-granite regions, we will concentrate our analyses on the distribution

of granite in the decision map against that delineated in (1) the geologic

map, and (2) the Quarternary geologic map as follows.

a. A comparison against the 1943 geologic map

To provide a basis for comparative analyses, a (10x10) grid was
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constructed for the study area. Figure 5 is a portion of the Willow
Spring and Rosamond Quadrangles, Californiaj the granite region was
located in cells along rows #4, #5, #6, #7 and #8. Alluvium is
located mainly on the northern side of the granite region.

Figure 6 is the decision map derived from the LANDSAT data
based on the above-discussed training sets and image processing
methods. For a better display; it is broken up into three portions
with Figure 6a showing the granite region at the middle portion of
the map, and Figure 6b and Figure 6c indicating the upper and lower
segments of the classification results, respectively. 1In addition,
the outline of the granite regoin from Figure 5 was traced onto
Figure 6 for an casier visual analysis.

In general, the computer decision map (Figure 6a) corresponds

rather well to the geologic map in terms of the distribution of

ranite. Discrepancy between them occnrs mainly at three subregions:
7 I S
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In case (1), those cells were designated as granite in the
geologic map; whereas, they are classified essentially as alluvium.

In case (2), a versed pattern of case (1) is witnessed.

Case (3) is similar to case (1) with a less degree of
discrepancy.
b. A comparison against the Quarternary geologic map

(1) Note on characteristics of the Quarternary Geologic Map.

The Quarternary Geologic Map of the study area was made by

researchers (D.J. Ponti, D.B. Burke, and C.W. Hedel) of U.S5.G.S.
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in 1981, documented as Open-File Report 81-737, and entitled
“Map Showing Quarternary Geology of the Central Antelope Valley
and Vicinity, Califorufa.” Along with the map, "discussion” .nd
“explanation” sections were given to help readers understand how
the map was compiled from field work, aerial photos, soil sur-
veys, and other source material, which included nineteen refer-
ences. The discussion section is given in Appendix 1.

The researchers noted that: "all the upper Quarternary map
anits are unconsolidated, they have similar, primarily granitic,
clast Llithologies, and they remain some or all of their original
depositional surfaces. These characteristics distinguish the
deposits Lrom older Quarternary and pre-Quarternary formations
of diverse lithology which are weakly to firmly consolidated and
deformed and which preserve none of their original depositional
surfaces.”

From this explanation, we should treat upper—Quarternary
depositional material the same as its parent material in the
image data because it still maintains the original characteris-
tics of the bedrock lithology. Since eight layers of Quarter-
nary datings were used to differentiate the relative ages of the
material, it is fairly ecasy for the users to understand which
map units belong to Upper Quarternary, and which is Lower Quar-
ternary. 1ln addition, each map unit is described in detail
regarding the characteristics of stratification, degree of con-
solidation, grain size, and other morphological and locational
information. We have to conclude that this map is much more

appropriate for serving as the ground truth information for the

LANDSAT imagery of the study area.



(2) A comparison between the LANDSAT decision map and the

quarternary geologic map.

First, we should not: that the Quarternary geologic map
covers only a portion of the study area; tortunately, the major
portion of the granite region Ls included as given in Figure
7, and referenced by the same (10x10) grid. For an easier,
comparative analysis, the bedrock granite was retraced with a

dark line. Now let us compare Figure 6a agaiunst Figure 7 in

terms of the three cases of discrepancies noted between the |
computer decision and the general (1943) geologic map as follows. !
GCase 1, In Cells #(6,2) and (6,3), there is a close correspon- ‘

dence between these two maps. This clearly indicates

R

that the (1943) geologic map did not indicate the sur-—
ficial material of that locale, which is composed of

sand dunes (Qds).

PR L P

Cells #(6,3) and (7,3) were classified as alluvium. 1
The 1981 Quarternary geologic map shows that the area
has been highly altered by human actions via construe-
tion of transportation routes such as highways and

railroads. Therefore, it s difficult to assess that

the original granitic material still exists today and
can be detected by LANDSAT.

Case 2. The northern border of granite in the Quarternary
geologic map along row 4 is located Ffurther nor:h as

compared to the 1943 geologic map because it encom-

passed the upper Quarternary deposits (Qébm). This
boundary actually eorresponds well with the decision

map of the LANDSAT data.

ETTT  dte~ s e e R
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Case 3.  The material in the upper portion of Cells #(8,8),

(8,9), and (8,10) were classified as alluvium by the

LANDSAT data. 1t was mapped by the 1943 geologic map
as "granite.” Tn the Quaternary geologic map it was
mapped as non-granite bedrock (or outside gr m).
However, a proper labeling cannot be determined. A
field check is needed to determine the precise charac-

teristics of the material at this location.

DE Conclusions
from the analyses given in previous sections, we have derived
the following conclusions:
e Our developed texture analysis algovithms are indeed general -
izable in terms of their effectiveness in extracting granite
versus non-granite lithologic features in arid regions.
h. Analyses from the second test site clearly demonstrate that_.
Quarternary geologic maps are much more appropriate than the
general geologic maps for serving as “"ground truth” to the
LANDSAT image data. Although it is desirable to extract bedrock
informatfion from the LANDSAT image data, it is definitely not
correct to conelude that the LANDSAT data are not effective when
the classification map (based on the image data and 2 certain
set of image analysis algorithms) cannot match perfectly to the
general geologic map regarding the distribution of lithologic
(bedrock) features.
c. The success of our experiments may be attributed to three
Image analysis alorithms that are uot generally available to

other researchers:

|
|
!
§
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(1) "Training set pre-processor" for purifying the train-
ing set data so that each set 1s uniform internally.
(2) "Non-Gaussian Classifier” for improving the classifica-
tion result when the training sets data are not really
normally distributed.
(3) "Repion Growing Texture Clustering Algorithm” for
processing the image data in an unsupervised training
classification mode. This algorithm is capable of detect-
ing the contact zone between granite and alluvium regions,
and thus extracting the feature according to an additional
parameter—-—-spatial characteristics of the interaction among
lithologic units. Although this algorithm was not necded
For the analyses of the Rosamond, California test site, it
was necessary for editing out "granite pixels” that are
distributed beyond the limjit of the granite boundaries in
the Duffer Peak, Nevada test site.

With newly developed capability in the "Region" algo-
rithm, we will demonstrate its ability to extract alluvium

including the contact zones.,

;
4
:




Section G: The Duffer Peak Site Revisited

o Introduction
In our Phase 1 effort, we employed an iterative scene segmentation algo-

rithm to depict the evolutionary patterns of the imagery structures of the

1 study area, starting from each pixel as a group, and ending with a few thou-

sand groups in the (256x256=65,536) frame. Since the grouping distances are

‘

5 designed to progress linearly with an even increment of one unit from one iter—

k| § ation to the next, interior pixels are grouped first, and the boundary pixels
(having a larger neighbor contrast) should remain distinctive for a while

‘ during the continuous grouping process, revealing the contact zone hetween two

g

M . h .

: lithologic units.

]

I

| To a certain degree, we were successful in identifying granite pixels

v

(trom the supervised classification) that should be removed from the original

T Oy

decision map because they were located beyond the "contact zones.” Nevertha-

| less, we now feel that a better algorithm can be employed to identify the

contact zone directly, instead of relying on a continuous, iterative segmenta-

tion process, the oviginal region algorithm. The new algorithm is called
“Edge" algorithm becanse it defines feature edge (versus spurious edge) accord-
ing to certain spatial characteristics corresponding to the physical proper-
ties of modeled features. And from these feature edges, we should be able to
extract the alluvium first because the particles of alluvium are much more
uniform than those of granite, and the contact zone hetween granite and allu-
vium should be stronger than the internal edges of alluvium.

2o Demonstration of the Capability of "Edge" Algorithm.
For this experiment, only the NW quarter of Figure 1 (Decision map from

the supervised classification) will be used in view of the fact that it repre-

gents the major area of misclassification by the supervised method due to the




fnability of the supervised method to detect the contact zone. Note that a
supervised classification approach is essentlally an aspatial processor. Now
we present Figure 1 again as Figure 8 with the contact zones marked by thicker
lines. For better discussions, the NW Quarter is subdivided further into the
four sections as indicated in Figure 8; and we will concentrate our analyses
in the lower half of the test area, particularly the SE cell, where alluvium
is located.

Let us recall that the bedrock boundary and the granite regions are
nmarked by “diagonal strikes,” the numerals are classfied granite pixels and
"blanks" are non—granite areas.

with respect to the SE cell of the NE quarter of Figure 8, it is essen=
tially a non—granite country according to the geologlic map; however, a major
portion of that cell was classified as “granite” according to the LANDSAT data
and our algorithms. Without field work, it {s difficult to conclude which
decision is right. Tt is entirely possible that they are alluvium in terms of
the graln size particles, but they were possibly derived from the parent mater-
ial (granite) situated at higher grounds .

We will attempt to answert the above question particularly by means of a
decision map generated by our "Edge"” algorithm. particularly, we would like
to point out that the decision map was derived by using a two-band simulta-
neous segmentation method: the first band is represented by the first compo-—
nent scores of the original four MSS bands, and the second band is the ratio
between Band 4 and Band 7. The result is shown in Figure 9 (a region map) and
Figure 10 (an edge map of Figure 9).

By comparing Figure 9 against NW Quad. of Figure 7 (classification map
with a supervvised classification method), we can immediately notice that the

contact zone between the granite unit and the alluvium area (as indicated in

T—————




the geologic map) was clearly detected by the Edge Algorithm with a very high
degree of accuracy. 1In addition, the alluvium area was determined as one uni-
form region, whereas the granite area was determined as a composition of a
great number of highly texturalized local features. This phenomenon corre-
sponds closely to our earlier prediction that finer particles would group
together sooner than coarser particles.

From the decision map of Figure 9, we can conclude that the particles in
the SE quarter of Figure 9 and its continguous part in the NE and SW quarter
are finer than those in the rest of the study area particularly the NW
quarter. However, it is difficult to conclude that the pixels in the SE
quarter are definitely alluvium in the general sense of lithologic classifi-
cation. From the terrain data, it is entirely possible that those fine part-
icles were derived from the parent material called granite. TIf those mater-
ials are of upper Quarternary period, they could still maintain the property
of the parent rock. Yet, one thing is sure: the contact zone between granite'
and non-granite is still detectable by the two—-band simultaneous segmentation
meth 1 of our "Edge" algorithms. This eontact zone is clearly shown in Figure

10, the edge version of Figure 9.
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Section H: General Conclusions

From Phase I and Phase 11 research efforts on rock types analysis with
LANDSAT MSS data and our texture analysis algorithms, we have come a long way
on the understanding of the interaction between lithologic material with the
LANDSAT sensing system on one level, and the spatial iunteraction among indi-
vidual pixels and groups of pixels on another. Only from these two aspects of
"vertical-and-horizontal” interactions, would we have a better handle on rock
types discrimination and identification with remote sensing technologies and
methodologies.

At the beginning of this project, we were told that no one in the U.S. in
the past twenty years had been able to correctly extract granite versus non-
granite from the Duffer Peak test site. As demonstrated in this technical
report, researchers at SR&E have accomplished the task that has been extremely
difficult for other researchers to handle. We would like to share our
thoughts with scientists having interests in lithologic analyses with image
data on what we have learned from these experiments as follows.

l. Technical advisors and evaluators to our project have insisted on

using the general geologic maps as "ground truth” information for the

corresponding image data because in many cases they are the best avail-
able material to the research. We consider this position as too rigid;
and properly, geologic maps should be treated as one of the many informa-
tion sources for obtaining real ground truth that can be detected by the

SeNSOrs .

2. It is a well-known fact that the characteristics of training sets

affect significantly the final classification results. However, in the

past, it was difficult to pre-process the training set automatically with

sophisticated algorithms because of hardware limitations, such as not

et PO A e TG PN DL
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enough core capaelty to perform clustering analyses. Our success at the

Duffer Peak site can be partially attributed to good training sets after

b

they were pre-processed.

e

By The final classification results can also be affected by the mathe-

matical model that the classifier uses. If the training sets data are

Gaussian, the Gaussian model is the best; if not, other models based on

S —
e

t non-parametric distributions are better thau a Gaussian model. 1In the

: past and even today, the majority of researchers are still using Gaussian

1 model for the classifier because it is easy to program, or readily avail-

able. However, if the data are not Gaussian even after pre-processing,

you most likely will increase the error rate by five to ten percent 1in

the decision map. This is precisely the case for the Duffer Peak site:
: : .

: Our non-Gaussian classifier is capable of removing a substantial amount
r’ . of "granite” pixels in the non-granite area that are present in the

.

r decision map generated by a Gaussian classifier.

i

g With respect to the Rosamond, California test site, both the

Gaussian and the non-Gaussian classifiers produced the same result,

| Thus, either model is acceptable,

4. Future research efforts should be centered around developing unsuper-

vised classification methods for extracting lithologic features. As

demonstrated in this project, this approach can be effectively used in

conjunction with a well-designed supervised classification to determine

the contact zones among various lithologic units, and thus remove the

ecrrors made by the classifiers based on the supervised training method.
These unsupervised classification methods can be developed into

smart algorithms once certain decision rules are implemented into the

feature extraction processes. Artificial intelligence can therefore play

an important role 1in the next phase or generation of image exploitation.
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Tnis map 18 one of tnres an thne U.S. teological Survey npen-files that cuphasize the natwee and gisteibutinn of
upper Quaternary deposits 1o the Antelope Vatley and the adjacent canyons of the Transverse Ranges and Tehachapi
Mountalns 1 souti-central Calitornia {(see andex mgp).  The ares covered by the set of three maps encampdsses ahout
4200 square kilemeters of northern Lus Angoles {ounty and parts of Saa Bernardinn and hern Countics, excluding Angeles
Hational Forest ang parts of Lawaras Arr fource Base, lopugrephy in the arca ranges from ruyged semiarud maantaing and
steep canyons Lo broad valleys and arig desert flatlanasg olevations range tros abonst 300 meters in valley Iﬁw?‘nds to
wore Lhan 1,800 meters on mountain peass.  About 150,000 penple 1ive in the area, with most of the population in Vhe
Cities and towns ot Lancaster, Palmaale, Resamond, Quart? Hill, Littlerock, Sauqus, and Newhall,

The wiap serves two purposes. Valley and canyon deposits of Quaternary age are those that must atfect and are most
attected by land-use decisions, and su this auap should be useful to planners and engineers as an aid in assessing
areas subject to 1lanh floods, foundation ang drainage problems, severe groond metian during earthquakes, ang ather
qealngic hazards.  The arstribution, gye, and paktern ot faulting and folding of the depnsits of this map alsn provide
earth scien® ~t, with an uverview of the nature ol sediment depnsition am! leforaat ion in nne of the mnst tectonically
gt tive regi of the world.

This 1w designed a5 o regional appreisial ot the distribution and propertics b late Quaternary materials, |
iy accurats or 1S scale and purpose as an 41d to earthguake hazaro zonation, land-use planning, and reqgional
tectomc analysis.  However, it shnald be considered only 4s background infarmation and not ds a suhstitute for
large-sca'e, site-specific studies whoere land-use and engineering dncisions requive more detailed geotachnical
wiformataion.,

Opper Quaternary atluvial, colluvial, lacustrine, awl enlian depnsits are difteenntiated nn the map,  These
materials have accumylated 1 the valleys gud canyons af the area in responsce to uplift gnid erncion of the Transverse
Ranges and Tehachapi Hountains and to subsideace of the Antelope Valley Basin during the 1ast half-millinn years or
oo, ALD the upper Guaternary map units are unconsolidated, they have similar, primarily granitic, clast litholngies,

nl they retain some or @1l af thewr nriginal gepositional surfaces, These characturistics distinguish the depnsits
from older Guaternary and pre-Quaternary formations of diverse lithology which are weakly tn firmly eonsolidated and
geformed and which preserve none nf their original depnsitional surfaces, N

Alluvial deposils nf seven major episndes of depasition gre the most widely xpnsed upper Quaternary materials in

e areo, Cnerelative cobluyium with genevally similar textural cheracteristics and alluvium whose texture has been

moditied by the ggdition of windblown sand are shown an the map w1th gistinguishing patterns. Materials depositen

during the tign stands of shallnw Takes, alluvaom that has been moditied by the additio., of large amounts nf calcium

“IFEUHULP around the lane shivelines, and gunes of waiform sand that migrate during dey lake perinds nccupy the valley
Alatds,

Cgeternined the relative ages of the upper Quaternary deposits andg the distribution of textural facies n
deymsits by compilation of 0.5, Se1l Conservation Service sovls maps, by interpretation ot eerial photographs, and by
Study o the fields Preliminary waps were faest produced by coapiling soils meps of Wnodruff and others (1970).

Ustpy their descriptioas ot the wajor so1l series w the region, we were able to identify varioas sges ot the deposits
and Lo obLatn gpproxamate yrain size distributions ia soil parent materiels, We could dn this because for deposits
that still retain some of their urigimal surfaces, the uegrees of profile develnpment and teatures of the snils
girectly retluct tne relative ages dand testures of the deposits upon which the suils fnrmed, lhe comnilation of sails
mapping then served as 3 quide to Freld inspection of soil samples from channel edge exposures, road cuts, 2o
thousanus ot shallow auger hotes throughout the study area, From this information we determined a sequence £ snils
200 deaosits of seven aistinct ages. Other criteria such as superpnsitinn of deposits, topographic positicr, and
geyree nf fan surfaece dissection were alsn nseful for relative dating of deposits, particularly in areas nt nigh

relef, Strqc!ural conplexity, and windt ©osand vengers,
The grain size distributions with o tie nlogic units aiffer significantly in some localities from the arain size
mterpreted Trom soils descriptinons, anc b rofare relied on field reconnaissance and the examination nf several

pndred collected and sieved samples L0 @se. xch the Iocations of the facies. Wide variatinns in grain size over
anall distances in some of the materials make ace ot it lineation of facies mpnesible 3t map scale, and contacts
between factes within units should be constdered ay only s o 2te's Incater.

Radiometric ages of the upper Qusternary units ere unweties - guts et T material iy wvery (oo in depasits of
the area, but we can estimgte their asges from stratigraphic e = a paeig e weth datea depnsits = lsewhera.
lhe Pleistacene Harald Formation, containing iang mammal fossiis ot Ra SR BB ank . MR s Ve Gndar | RoRttE a2 s

01 geposits in the snoutheastern part of the area (Noble, 1063; A, G. barrows, orzi comsuriigtt e, WL fetimgte
age of the oldest Rancholatrean fossils is 450,000 years (Repenning, 1980), and the late Quatere s o y
deposits on this map is tiws provshly ao older than about 400,000 years. The ages of upper Quaternary attls « °*
the alluvial seguence are estimasted on the assumption that the depnsits result from climatically controlled epd
of alluviation that are essentially synchronous over broad regions (Ponti, 19803 Ponti and others, 1980). The uoits
aro quite extensive and can be rocognized along hath the Transyerss Ranges and Tehachapi mountain fronts in diverse
rectanc settings and acrnss the various micrnclimates of the Antelape Valley and adjarent highlands, They appear to
have their origins as putses of sediment produced during fluctuat inns nf climate from glacial tn interglacial times
and can be tentatively correlated with climatically contrnlled depostits in nther reginns., Good correspondence 0CCurs
Lotween Lhe mitelope Valley wiits and the Riverbank and fodesto Toraations in the San Joaquin Valley. Q1, Q2, and (3
Aepns 1LS dppiar equivalent to the upper, midnle and lower meabers of the Riverbanh Formation, which liave estimated
ages from 450,000 to IJU.OU{ years (Marctiand and Allwardt, 1980). Onits (4, @5, and QG appear egquivaleot to the
Modestu Formatinn, which hab an age estimdted Lo span the pering from 90,000 tn 9,000 years aqn (Marchand and
Allwardt, 1980). Lacustrine dgeposits (Upl) ana calcium carbonate affected alluvium (Quca) result Trom depnsition in
and groundwater influences of pluvial lakes which filled the Antelope Valley basin during the most recent {pnst-03)
nlacial periods. Lnits (7, present stream heds (Qs). and sand dunes {Qds) ~re in part historic and change each season
wiln winter rainlall, samer ttash rloons, and springtime winds.

Lontacts between units neneath upper Quaternary materiats are compiled and sjuplified from large- and
interaediote-scale mapping by toe U.S. S0il Conservation Service (Woodruft and nthirs, 1070), and from Barvows (1977
and 1980), barrows ano nthers {1976), Beeuy (1977), Dibblee (1960, 1961, 1963, 1967), Jahns and Maehlberger (1954),
Lanle (1477), am Kahle ang nthers {1975),

Leologic structures in tin Antelope Valley are from unpublished mapping by D. B. Burke and C.W, Medel, those in the
rift zone of the San andreas fault are from recent studies by the California Division of Mines and Genlngy (Barrows,
V7 anu 19603 Barvows ang uthers, 1976; Berby (1977); Kahle, 1977; Kahle and others, 197%), those in the Garlock
tanlt zame are fram Clars (1473), and those in the Sao Gubried Mountains, are from Jahns _and Munhlherqer (1054,
Copy available to DTIC does
’ ~ permit frlly l:gible repicductio
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