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PREFACE 

This research was sponsored by the Advanced Research Projects Agency 

under the monitorship of Mr. William Best of Air Force Office of Scientific 

Research. Dr. Shin-yi Hsu is the principal investigator. Research scientists 

of the project include Dr. Timothy Masters and Ms. Jane Huang of Susquehanna 

Resources and Environment, Inc. 

Mr. Jack Rachlin and his associates at U.S. Geological .urvey served 

as the reviewer of the effort. Lt. Colonel James Smith of AFOSR served as 

technical adviser; his assistance to the project is highly appreciated. 

Phase I technical report has been read by Dr. Mark Settle of the NASA 

Headquarters, and Dr. Jack Paris of Jet Propulsion Laboratory, California 

Institute of Technology. This technical report has taken into consideration 

their comments regarding particularly the use of the ordinary geologic maps 

as the ground truth information of the LANDSAT data, and background infor- 

mation on textural algorithms for lithologic analysis. 
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Nvery effective in the extraction of granite regions when (l) data were 
in ratio format, (2) feature variables included both tone and texture 
information, and (3) the classifier is capable of handling non-normally 
distributed data. Classification errors occurred when there exists pixel 
of non-granite category whose spectral and textural properties are 
statistically similar to that of granite pixels. Two cases of errors can 
be noted: Type 1 pixels located at the periphery of the granite regions, 
and Type 2 pixels located far away from the core of the granite areas. 

To reduce the error rate, an unsupervised classification method^ 
based on the concept of region growing and texture clustering analysis 
was employed to segment the scene in multiple stages and thus depict 
edge patterns by the scene content and a gradual mathematical generali- 
zation process. Identification of the grantie regions becomes a labeling 
process using the training sets information. Since the Regions algorithm 
is based on an additional constraint on spatial contiguity, the above- 
mentioned two types of errors can be effectively reduced bacause sharp 
edges exist between the granite and non-granite pixels In the study area 

The final decision regarding the delineation of the granite regions 
Is based on the intersection of two classification maps using a simple 
map overlay analysis. The result yields a correct classification rate 
of about 95 percent based on a visual comparision between the composite 
classification map and the ground truth Information given In the U.S.G.S 

geological map of tht study area. 
To improve the developed techniques for 1!thologlcal analysis, It 

is recommended that additional experiments be conducted using other 
regions In the United States centering around the following tasks: 
(1) developing algorithms for merging supervised and unsupervised 

classification methods; 
(2) finetuning the Region algorithm by adding subroutings to output 

digital information of each segmented region; 
(3) developing a color prediction model for rock types Identification 

using the texture and tone information in the color domain with a 

color moni tor; and 
(M developing change detection methods for monitoring purposes based 

on the extension of the above three methods. 

The above discussions apply to our Phase I effort. The Phase II 
investigation is designed to test the genera 1izabiIity of the methodolo- 
gies developed from the Phase I experiments. In general, it has been 
proven that they are indeed genera Iizable with the following qualifica- 

tions : 
(1) The ratio bands are not an absolute requirement; 
(2) Our unsupervised classification method has been improved substantial 

ly to the point that it can be used as a smart processor for extract 

ing alluvium automatically; and 
(3) Quarternary geologic maps are more appropriate than the ordinary 

geologic maps for serving as the ground truth information of the 

LANDSAT data. 
The directions of future research should be centered around the 

development of smart algoriIhms based onour thorough understanding of 
the physical processes by which the terrain units were derived. 
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Executive Summary 

It has been determined In the literature on seismology and geophysics 

that the recorded seismic wave energy from nuclear explosions is highly depen- 

dent upon the actual yield of the explosion and its interaction with the envir- 

onments in which the detonation occurs.  These environmental factors can be 

characterized by the depth of explosion b^low the surface, the degree of coupl- 

ing between the charge and the adjacent medium, and the llthologlcal nature of 

the test sites. Therefore, the analysis of rock type at the test sites is the 

first step in nuclear monitoring. 

The LANDSAT data have been determined effective for terrain analysis. 

The choice of the LANDSAT imagery for rock types analysis at the nuclear test 

sites is also based upon the fact that it can provide world-wide coverage with 

repetitive observatoins for monitoring purposes.  And in certain cases, only a 

combination of seismic and LANDSAT imagery can yield significant Information 

on geology and tectronics that either alone would not provide (Pavlin and 

Langston, 1983).  The goal of this study is to test the generalizabillty of 

utilizing LANDSAT's digital, multispectraL information for rock types discrimi- 

nation at the nuclear test sites, based on the texture-tone analysis algo- 

rithms of the image processing systems at Susquehanna Resources and Environ- 

ment, Inc. in two coraplementary approaches:  supervised classifaction and 

unsupervised training methodology. 

The experiments were based on two subframes of LANDSAT MSS data covering 

two geological quadrangles:  Site 1 located in the Duffer Peak Quad, Nevada, 

and Site 2 uses the NE quarter of the Willow Spring and Rosamond Quads of 

California.  In addition to determining the general capability and generaliza- 

billty of the texture analysis algorithm from Site 1 to Site 2, this study 

also tests the appopriateness of using a general geologic map as the ground 

— —-— 
■■ ' ~~~ 
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t 
truth for judging the feature extraction capability of the LANDSAT data based 

particularly on Site 2 where a quarternary geologic map happens to be avail- 

able to the researchers. 

The task was accomplished by using two separate but complementary image 

processing techniques.  The first technique, a supervised classification, was 

designed to extract granite regions using four ratio bands (A/7, 4/6, 5/7, and 

6/7) for the Duffer Peak Site, and four original bands for the Rosamond Site 

based upon four manually selected, but automatically pre-processed training 

sets.  The non-granite regions were extracted as well using the reject cate- 

gory of the classification model. The second method, an unsupervised classifi- 

cation procedure based on the concepts of the stable structure of scenes (Hsu, 

1983), was designed to detect the contact zones between granite regions and 

the algorithm using one ratio band (A/7 is most effective) of the Duffer Peak 

Site, where the supervised method failed. 

For Site I (Duffer Peak, Nevada), the final granite regions were defined, 

by the intersection of two granite images produced by two different image anal- 

ysis techniques.  The result indicates that a very high level of correct 

classification rate—95 percent or better—has been achieved, based on an 

overlay analysis using the classification result against the geologic map 

produced by the U.S. Geological Survey. 

For Site 2 (Rosamond, California), the granite regions are successfully 

extracted using the raw LANDSAT MSS information based upon the came variables 

and classifier employed in Site 1; and thus proving the generalizability of 

the developed methodologies for rock types discrimination. 

On the appropriateness of using the general geologic map as the ground 

truth for judging the performance of the LANDSAT system, we have determined 

that a Quartenary geologic map where information on the properties of surfi- 

:; ( 
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cial (soil) material is availabe is much more appropriate than the general 

geologic map where the distributions of rocks is mapped according to mainly 

the interpretation of the distribution of the bedrocks by the particular field 

geologists.  Moreover the LANDSAT system is really not designed for detecting 

sub-surface material although the sub-surlace information can sometimes be 

inferred from the surficial expression of the terrain characteristics as cap- 

tured in the LANDSAT Imagery through imag.? processing and analysis. 

Though the defined task of extracting granite regions has been success- 

fully accomplished, it is necessary to test the developed image processing and 

analysis techniques using additional test sites.  The reasons are (1) fine 

tuning of the methods are usually required to handle diverse patterns of litho- 

logical associations, and (2) the LANDSAT imagery can be exploited further for 

detecting environmental and man-made changes before and after nuclear explo- 

sions, but it has not been fully investigated by the researschers at Susque- 

hanna Resources & Environment, Inc. 

i ( 
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Applications of Texture Analysis for Rock Types Discrimination:  Phase II 

■ 

Section A:  Introduction 

Ever since the Soviet Union's detonation of its first nuclear device pro- 

totypes, both the realities of an arms race and the requirement to maintain 

scientific/technological advantages have Lorced the United States to expend 

significant resources in monitoring of foreign nuclear tests.  Sophisticated 

technologies that have evolved about the framework of seismology and geophy- 

sics have made significant contributions in satisfying the national require- 

ment to detect, locate, identify and yield-quantify world-wide nuclear detona- 

tions.  Yet, there is room for improvement using non-seismic methods, particu- 

larly in the area of yield estimation. To this end, this study is intended to 

develop image processing and analysis methodologies for the discrimination and 

identification of rock types at nuclear test sites.  The rationale of this 

approach is based on the fact that the recorded seismic wave energy resulted 

from nuclear explosion depends on the following environmental/lithological 

factors: 

(1) the actual yield of the explosion: 

(2) depth of the explosion below thu surface; 

(3) the degree of physcial coupling between the charge and the 

adjacent medium; and 

(4) the geological nature of the median in which the detonation occurs. 

Indeed, rock types analysis is the first step in yield estimation. 

To accomplish the goal of rock types discriminated at the nuclear test 

sites, LANDSAT's multispectral data were used.  The choice of the LANDSAT 

imagery is based on the fact that it is capable of providing a world-wide and 

repetitive coverages and thus a basis for monitoring nuclear test activities. 

j&WtfaM^^^^^H 
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The thrust of this study Is to exploit the digital information of LANDSAT data 

in the context of texture-tone analysis for such purposes. 

The feasibility of the SR&E's image processing system for lithological 

analysis has been proven in our Phase 1 eflort based on two test sites in 

Nevada:  the Antler Peak Quadrangle, Nevada at the scale of 1:62,500 (ANA1) 

and the Duffer Peak Quadrangle, Nevada at 1:48,000 (ANA2) as analogs to 

foreign nuclear test sites.  Specifically, the first site (ANA1) was used as a 

testbed for methodological development; whrreas the second site (ANA2) was 

designed as an analog area for extracting granite regions used in the Phase I 

studies. To this end, another site was selected from the Willow Springs and 

Rosamond Quadrangles, California, particularly to possess these properties for 

testing the generallzability of the developed methologies: 

(1) exposure of granite, but not always in high grounds; 

(2) existence of contact zones between granite and alluvium; 

(3) availability of both general geologic map and a special Quarternary 

geologic map where information on surficial material is given. 

Phase II effort was designed to test the generallzability of the devel- 

oped methodologies used in Phase I studies. To classify granite versus non- 

granite regions, two complementary image analysis techniques were employed. 

For Site 1, first a supervised classification analysis was conducted to delin- 

eate granite areas based on manually selected, but digitally pre-processed 

training sets, and to reject non-granite regions based on a pre-set statisti- 

cal model/probability level for identifying pixels which are significantly 

different from the training sets.  Second, an unsupervlsed clustering analysis 

based on SR&E's Region Growing Texture Clustering algorithm was performed to 

extract granite areas by region growing from the cores of the granite training 

sets.  The final definition of granite regions can be either based on the 

. 
/ 
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intersectiün of tliese two sets of "granite maps," or removing alluvium from 

the supervised classification map based on the contact zone information given 

by the unsupervised classification method.  For Site 2, the analysis is much 

more straightforward since a very accurate classification was generated by 

using our supervised classification methodologies using the same parameters/ 

variables applied to Site 1. 



Section B:  A Brief Review of Relevani. Literature on Lithologlc Analysis 

with Image Data 

Prior to 1972 and the launch of LANDSAT, pioneer work on reflective prop- 

erties of minerals was accomplished by Hunt and Salisbury at the ÜSAF Cam- 

bridge Research Laboratories (1970, 1973). Their study and explanation of 

reflective/transmission properties of botli minerals and rocks In the visible 

and near-Infrared regions serves as a basis for semi-automatic rock discrimina- 

tion techniques that exploit the spectral (tone) parameters of multi-spectral 

Imagery.  Rather than being a simple empirical result, it turns out that miner- 

als and rocks spectral charcteristlcs are a direct function of the physics and 

theory associated with crytal-fleld theory (Burns, 1970), as evidenced from 

theoretical and laboratory analyses of the rocks and minerals of the moon 

(McCord, 1968; further McCord, et al, 1972). 

Since then, scientists at the U.S. Geological Survey, Jet Propulsion 

Laboratory and NASA/Goddard Space Flight Center, have attempted to exploit 

LANDSAT MSB data for rock -ypes analysis as evidenced from Goetz, et al 

(1973), Goetz, et al (1975), Vincent, et al (1975), Rowan,et al (1976), Rowan, 

et al (1977), Abrams, et al (1977), and Podwysockl, et al (1977).  Recent 

works by other researchers Including Lyon (1977), Lyon, et al (1978), Hunt 

(1977), and Slegrlst et al (1980), also emphasized digital processing of LAND- 

SAT and other types of multlspectral scanner data for optimal combination of 

spectral channels for rock discrimination. 

While the majority of the work cited above emphasized rock types analysis 

and identification with color enhancement techniques with LANDSAT images, our 

study is devoted exlusively to extracting rock types using the digital informa- 

tion of the LANDSAT MSB data in the context of texture analysis, which has 

been largely neglected by previous researchers. 
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Section C. A Brief Review of Texture Measures and Testing of the RADC/Hsu 

Texture-tone Analysis Algorithms 

For years, texture has been recognized as one of the important criteria 

Cor identifying objects and scenes by a photointerpreter, along with other 

variables such as tone, size, shape, associated features, etc.  Here texture 

means the apparent minute pattern of detail of a given area, described ordi- 

narily by these terms:  smooth, fine, rough, coarse, and the like.  In digital 

data processing, texture can mean the spatial distributions of tones of the 

pixels of a given area.  Its attributes have to be specified by the investlga- 

tor-a specific field of study termed texture feature extraction. 

Texture analysis is a rather recent but rapidly growing field of inquiry, 

though its importance relative to visual perception was recognized by Gibson 

as early as 1950. Over the past 20 years, many texture measures hve been 

proposed.  This body of literature has been reviewed by Rosenfeld in 1975.  In 

general, these measures can be grouped into two categories:  Fourier-based 

(power spectrum) features and statistical features.  Furthermore, it has been 

found that statistical features perform much better than the others (Rosen- 

feld, 1975). 

Haralick (1975) noted further that there have been six basic approaches: 

autocorrelation functions (Kaizer. 1955), optical transforms (Lendaris and 

Stanley, 1970), digital transforms (Gramenopoulous. 1973; Hornung and Smith. 

1973; Kirvida and Johnson. 1973). edgoness (Rosenfeld and Thurston. 1971) and 

related measures (Schachter. Lev. Zucker, and Rosenfeld. 1977; Lev, Zucker, 

and Rosenfeld, 1977), structural elements (Matheron, 1967; Serra, 1973), and 

spatial dependency probabilities (Haralick et al. 1973), as well as an ex- 

tended method (Haralick. 1975).  In general. Weszka and Rosenfeld (1975) con- 

> .: ■ : ■ 



eluded that statistical features perform much better than Fourier-based 

features. 

Texture analysis has also been approached from the human perceptual point 

of view.  Indeed, the human eyes coupled with the brain are very effective in 

identifying and interpreting imagery patterns. The only drawback is the slow- 

ness of data processing using manual operations.  Though this system works 

empirically, the mechanism by which visual detection and recognition is 

achieved is still largely unknown, as noted by Barlow, Narsimhan, and Rosen- 

feld (1972) and Julesz (1975).  This field of study has been termed psycho- 

pletories, as summarized in Lipkin and Rosenfeld (1970). 

With respect to texture perception. Whitman Richards (of MIT) has been 

conducting experiments under the sponsorship of the Advanced Research Projects 

Agency (1977).  He has concluded that most uniform textures can be simulated 

by three or four variables, provided that three variables contain the basic 

elemental tokens of the graphic display.  His approach to texture perception . 

has employed a "generalized colorimetry" technique analogous to that used so 

successfully in studying human color vision. Early work on the perception of 

visual texture using mainly random dots includes that of Pickett (1967), Polit 

(1976), and Purks and Richards (1977).  Perceptually based texture measures 

have been developed by Mitchell et al (1977), and Hsu (1977).  Thus, we see a 

convergence emerging between human visual processing and machine-oriented 

image processing methods. As will be discussed below, we have developed a tex- 

ture analysis system that indeed is capable of integrating visual processing 

into a machine-oriented image analysis system. 

Under the sponsorship of U.S. Air Force/Rome Air Development Center, this 

author developed a new texture measure with 17 and 23 variables derived from 

(3 x 3, Model I) and (5 x 5, Model II) windows, respectively (Hsu, 1977).  In 
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the analysis, the window moves from one pixel to another with an overlapping 

region between two adjacent pixels; and only the center point is classified. 

TABLE I 

The Texture-Tone Variables of Model I 

Code Description of computational funds 

. 1 

1. 
2. 
3. 
A. 
5. 

MEAN 
STD 
SKEW 
KURT 
MDEVN 

6.  MPTCON 
7. MPTREL 
8. MINCON 
9. MINSQR 

10. M2NC0N 
11. M2NSQR 
12. MADATI 
13. MADAT2 

MADAT3 
MBDAT1 

16. MBDAT2 
17. MBDAT3 

1A. 
15. 

Average 
Standard de 
Skewness 
Kurtosis 

viation | 
the four central moments 

|x  - x|/n, where x. = tone value of individual pixel 
x = mean 

tone value of the center point Ix, - x l/n, where x 
', i   c;, '      c 
(x - x )/n 
|x. - x.l/n, i and j are adjacent pixels 
(xj - x^r/n 
ix1 - xrjl/n,   i  and k are  second neighbors 
(xi" V /n 
Mean area above datum 1 (50) 
Mean area above datum 2 (100) 
Mean area above datum 3 (150) 
Mean area below datum 1 (50) 
Mean area below datum 2 (100) 
Mean area below datum 3 (105) 

In Model I, the seventeen texture variables are as follows:  (1) through 

(4) are the four central moments; (5) is the absolute deviation from the mean; 

(6) is the contrast of the center point from its neighbors; (7) is the mean 

brightness of the center point relative to its background; (8) is the contrast 

between adjacent neighbors; (9) is the sura of the squared values of (8); (10) 

is the contrast between the second neighbors; (11) is the sum of the squared 

values of (10); and (12) through (17) are the mean area above and below three 

datum planes having tonal values of 50, 100, and 150, respectively, on a scale 

of 0 for black and 255 for white. The code names and computational formulas 

of these 17 variables are given in Table 1. 

"V 
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Section I).  A Brief Note on the Testing of the RADC/Hsu Texture Analysis 

Algorithms for  Terrain Analyses 

The testing of the effectiveness of the RADC/Hsu texture analysis algo- 

i itinn has been conducted mainly at The Pennsylvania State University at 

College Park, Pa., and at the State University of New York at Blngharaton in 

addition to the current research performed at Susquehanna Resources and 

Envi ronraent, Inc. 

Tlie Hsu texture measure algorithm was implemented at the Pennsylvania 

State University (Geophysics Department) hy G. Pavlin in 1979; it was docu- 

mented as "Computer Programs:  HSUDRIVE, TEX13 and TEX 2."  Several theses 

have been written at the Pennsylvania State University using the algorithm to 

discriminate llthologlc types with very promising results in arid regions (see 

Parker, 1980; Ravenhurst, 1980). 

At the State University of New York at Blnghamton, Kiracofe (1983) went a 

step further to test Its effectiveness for the discrimination of vegetation 

types in addition to rock types in the Adirondack region of New York State and 

proved the algorithms are also effective In terrain analyses in both arid and 

temperate regions. 

Finally, we should note that the U.S. Air Force/Rome Air Development 

Center and the Defense Mapping Agency have implemented these algorithms and 

used them for both terrain analysis and target cueing for years. 

I 
I 
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Section '•::  Summary and Results of the Phase I Effort: 

1 .  Tasks DiitermineJ for the l'hase-1 Effort 

From a discussion session held among Mr. Best of AFOSR, CoL. Lowrey of 

DARPA, Mr. Rachlln and his colleagues of U.S. Geological Survey, and Dr. Hsu, 

It was determined that the tasks of Phase I effort should be alined at 

answering the following three questions; 

1. How well can we map the granite areas versus non-granite regions 

using our supervised and unsupervised classification methods in the 

context of texture; analysis? 

2. What are the factors affecting the classification results—slope, 

drainage pattern, data used, methodologies utilized? 

i.  What are the potential contribution of image processing techniques 

and methodologies towards the discrimination and even identification of 

rock types using LANDSAT data? 

For data analysis, a study area within Duffer Peak Quadrangle, Nevada was 

selected by Mr. Dempsie of U.S. Geological Survey.  Furthermore, based on the 

geologic map, 22 training sets were selected manually to cover four major rock 

types:  (1) granite, (2) metamorphic, (1) volcanic, and (4) unconsolidated. 

2.   The Data Set 

To remove the shadow effect of the original LANDSAT data, and to extract, 

information from four MSS bands simultaneously, the following data sets are 

generated. 

(1) First, second and third components from the four MSS bands; 

(2) Six ratio bands from the four MSS bands:  4/5, 5/6, 6/7, 4/6, 4/7, 

and 5/7; 

O) The first component map from 4 selected ratio bands. 

Therefore, ten derived image data sets are available for analysis in addi- 



14 

tion to the original four MSS bands.  The location of the training sets with 

respect to these derived data sets remain the same. 

'•   Image Processing and Data Analysis Methodologies Utilized 

To analyze the relationship between the selected training sets, and to 

classify the granite areas versus non-granite regions, the following analyti- 

cal techniques are utilized. 

!i'       Extraction of texture-tone information of the training sets and the 

entire data set. 

Using the texture-tone extraction algorithm, 29 texture-tone-ratio 

variables have been generated for any given pixel from four multi-spectral 

bands using (3 x 3) moving grid.  They are composed of 4 tone variables, 

12   texture variables (3 from each hand), 6 ratio variables, and 6 

correlation variables. 

For data analysis, the analyst is able to select a portion of the 

following 29 variables: 

BRIGHT4   BRIGHT5   BRIGHT6   BRIGHT?   MINCÜN4   M1NCON5 

MDEVN5 MINC0N6   MINC0N7   MDEVN4 MDEVN6 

STDDEV4   STDDEV5   STDDEV6   STDDEV7   MAXLIN 

MDEVN? 

LOGRAT45 

LOGRAT46  L0GRAT47  LOGRAT57  LOGRAT57  LOGRAT67  CORR45 

CORR46    CC)RR47    CORR56    CORR57    CORR67 

h-   Analysis of the Training Sets 

Based upon the selected variables from 29-variable system, typically 

we use three variables, the training sets will be analyzed and edited so 

that each training set will meet the following two criteria: 

(!) single mode; if two modes exist in one training set, the set 

will be split into subsets; 

(2)  extreme outliers are to be removed based on a statistical 

confidence level. 
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c. ptscriminant Analysis oF the Training Sets 

After the training sets are edited or preprocessed, they will be ana- 

lyzed In terms of how close they are between pairs of training sets using 

the means of selected tone-texture variables.  The distance is generally 

2 
measured by statistical distance calling Mahalanobis D with or without a 

1 oj;-determinant term. 

While the D distance Is indicative of the degree of similarity and 

dissimilarity between two training sets, the analyst usually uses a con- 

fusion matrix—classification result using only the training sets—to 

examine how well these training sets are separated.  The analyst will then 

decide whether he should proceed with a classification analysis of the 

entire test set.  In general, it dissimilar training sets are confused, a 

classification analysis should not be conducted. 

d. Supervised Classification Methods 

As mentioned earlier, a supervised classification analysis can be 

made only when the traiing sets are well separated.  To achieve this goal, 

the following steps can be taken; 

(1) purify the training sets as in (b); 

(2) change the location of the training sets; 

(3) Increase the power of the feature extractor by using 

(1) more texture-tone variables, and (li) using different 

spectral-band combinations; and 

(4) Increase the power of the classifier by using a non-Gauselan 

model if the data are essentially non-multi-varlate normal. 

In the analysis, we have done all these image processing techniques 

except step (2), changing the location of the training sets. 

; 
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e •   The Actmal Siiptit-y Lsed Class L f ic-ation Procedures Applied Lo the Puffer 

Peak Quad 

Step I.      Four ratio bands (45,56,67,47) were generated as the basis 

For generating 29 tone-texture-logratio-correlation 

variables for each pixel. 

Step 2.      Preprocessing of the manually-selected Training Sets. 

As noted training sots were selected as calibration samples of lour 

major rock types.  Using Information from bands 4/5 and 4/7, these origi- 

nal  I  sets were processed into 25 sets as illustrated in page 13 of the 

Phase 1 Report.  This automated preprocessing technique is designed to 

purify the training sets by two methods: 

1. split a blmodal distribution into two sub-sets; and 

2. remove outliers of the distribution From the training 

sets. 

Step '3.     Analysis of the Preprocessed Training Sets- 

After these 25 derived training sets were generated, we pro- 

ceeded to analyze the separation pattern among them using 

only 12 variables from the  29-variable system.  These 12 

variables are composed of 4 tones and 8 texture measures from 

4 spectral bands as follows: 

Tone variables are from the 4 spectral, bands; 

Texture variables are the 1st neighbor contrast and the Mean 

Deviation measures derived from a (3x3) moving grid from all 

4 spectral bands. 

The result of a confusion analysis was given in Table 4 of 

the Phase T Report. 

J 
«SB  ™——     i        —.  
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Step A. 
Since Lt was evident Erora this analysis that the training 

sets of granite were contused only among themselves except 

G1> but not with others (see Table 5 oP the Phase I Report), 

we then proceeded to generate only training sets tor granite 

including preprocessing oE the sets using G2, G3, GA and G5 

data, (see Table 3) 

This step is to set up a supervised classification using only the 

training sets from granite.  The rest of rock types will be treated as 

rejects using a probability cutofE criterion. 

step 5.     After Step A, we proceeded to generate a classification map 

using only 7 feature variables In the classifler-4 tone plus 

3 texture measures selected from the original 28-variable 

system as follow: 

Step b, 

1st neighbor contrast 5/6 

Mean Deviation A/r) 

Standard Deviation 6/7  (see Table A) 

Brightness A/5 

Brightness 5/6 

Brightness 6/7 

Brightness A/7 

Printing o£ the Decision Map as given in Figure 1 of the 

Phase 1 and Phase T.I Reports. 
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TABLE 3 

Confusion Matrix Showing only the Granite Sets 

(Note that G2 through G5 are confused only among themselves) 

Sum From Ret 

Gl 

Gl 
)4 

13.18 

G2 
2 

0.00 

G3 
3 

0.00 

C4 
4 

0.00 

G5 

3 
1.16 

.;■ 0 
0.00 

1.34 

4 8.20 

(1 

0.00 
38 

13.67 

71 
25.54 

G3 0 
0.00 

I) 

11.00 
61 

32.80 

0 

0.00 

1.14 

61.29 

r.h 0 
0.00 

13 
, 30 

1 
0.56 

66 
37.08 

56 
31.46 

G5 0 
0.00 

0 

0.00 

I 

0.62 
0 

0.00 
1.61 

99.38 

87 

94 

76 

100 

TABLE 4 
The 7-Variable Texture-Tone Analysis System 

STEP 1 VARIABLES:   BRIGHT4  BRIGHT5 BRIGHT6  BRIGHT7 MINC0N5 MDEVN4 STODEV6 

Rank of each set: 
TRANSTG2 = 7   TRANSTG3 = 7  TRANSTG4 = 7 TRANSTG5 = 7 

Confusion Matrix from a Non-Gaussian Classifier 

TRANSTG2 TRANSTG3 TRANSTG4 TRANSTG5 

TRANSTG2 211 0 63 5 

TRANSTGi 0 164 2 20 

TRANSTGA 62 2 113 2 

TRANSTG5 12' 31 19 102 

Total Correct Classification - 73.02 percent. 
Actual Correct Classification = 73.02 percent. 

This Indicates that even granite sets are well separated. 

f.  The Experimental Results 

From three experimental data sets, It can he concluded that: 

(1)  For rock type analysis, data Set 3 composed of these 4 ratio bands: 

( 

.1 
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4/6, 4/7, 5/7, b/7 is most effective.  Data Set 1 with the 4 original 4 LANDSAT 

MSS bands is least affective.  Figure 1, a decision map, indicates that the 

vast majority of granite areas are correctly identified, except 

(a) the granite area, within which the training set GT (which was not 

used in the analysis is located, is largely classified as non- 

granite, and 

(b) one "metamorphic rock" area as labeled in the geologic map was 

largely classified as "granite." 

Those? two regions will be Investigated further using our unsupervised 

segmentation algorithm in the next section. 

(2) Regarding the classifiers, our non-Guassian classifier with 7 texture- 

tone variables is superior to the Guassian classifier no matter whether it 

utilizes 7 or 16 texture-tone variables. 

O) There is little difference, between 7-variable Gaussian classifier and 

lb-variable Gaussian classifier in terms of the confusion matrix using the 

training sets data. 

(4) In terms of correct classification of the granite versus non-granite 

regions (areal distribution), both our Gaussian and non-Gaussian classifiers 

achieved a level of over 90 percent hit-rate.  The Non-Gaussian Classifier is 

slightly better than the Gaussian Classifier in these experiments, 

g.   Feature Extraction with an Unsupervised Training Approach 

(1 ) Experimental Design 

The goal of these analyses is to extract homogeneous regions in the study 

area from various LANDSAT ratio bands using our region-growing texture cluster- 

ing analysis algorithm.  Identification of the granite regions becomes a label- 

ing process using training sets Information and other related statistical and 

terrain characterlsttcfl data.  it was onr Intention to use the results from 
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this unsupervised classlElcation method to investigate the areas of mlsclassi- 

Etcatton by the supervised classifier.  Seven data sets were used in the 

analysis. 

(2) The Results of the Analyses 

By examining the results from the experiments, It was concluded that the 

results from Log Ratio of Band A and Band 7 (Figure 2 of Phase 1 and Tl 

Reports) yielded the best overall result. Using the location of the training 

sets Gl through G5, the major granite areas were identified, corresponding 

well to the bedrock regions of granite.  Particularly, by comparing the 

results from this unsupervised classification against the supervised classi- 

fication, we  derived that (1) the rejected granite Gl area can he delineated 

by the Region algorithm, and (2) the confused area In supervised classifica- 

tion between G2 and G3 can be discriminated as well.  Similar to the super- 

vised classifier, the Region algorithm failed to distinguish the bedrock gran- 

ite from the surficial granite in the are near training set G4.  As It was 

determined in other experiments, this boundary can be detected In the analysis 

with the data set of log ratio of Band4/Band 6. 

h.  Classification Analysis by a Combination of Supervised and Unsupervised 

Training Approaches 

From the results given earlier, we used a multiple map overlay analysis 

to delineate the final granite regions as given in Figure 3 of Phase I and 

Phase 11 Reports with the following conclusions: 

(!) In the areas where training sets information exists, there is a re- 

markable correspondence between Figure 1 (supervised classification) and 

Figure 2 (unsupervised classification); 

(2) From a manual editing process, we can place the granite Gl area from 

Figure 2 onto Figure 1; 

/_ 
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(3) The areas of misc.LasslfIcatlon in Figure 1 — 

1.  region between C2 and G3, and 

ii.  pixels located outside the boundaries of labeled granite 

regions of Gl, G2, G3, G4, and G5 in the northeast, southeast and 

southwe^t quadrangles— 

can be removed from Figure I. 

(4) Since there Is no Information regarding ground truth in the area 

between the location of Gl and G2, we used the result as given in Figure 1 for 

granite identification; and 

(5) Comparing the results as described above in reference to Figure 3, it 

can be concluded that an extremely high level of correct classification of 

granite and non-granite has been achieved.  it should be noted that we were 

able to edit this map further using additional ground truth information and 

the segmentation results given by other ratio bands. 

SKfli 
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Section F:  The Phase II Effort 

I.  Tasks Defined. 

a.       To test generallzahl1ity of the developed methodologies. 

With the successful results obtained through the Phase T 

effort, it was determined that the tasks for the Phase II effort 

should be centered around testing the generalizability of the 

developed methodologies for cock types discrimination using another 

test site.  To this end, a test site located in the Willow Spring 

and Rosamond Quadrangles, California, was selected. 

During the Phase I effort, both Dr. Smith of AFOSR and Dr. Hsu 

felt that it is not really proper to use geologic maps as the ground 

truth to evaluate the ability of the LANDSAT data and the effective-- 

ness of given image analysis techniques for the lithologic analysis 

despite the fact that it was employed that way in the Phase I analy- 

sis as specified by the researchers at U.S. Geological Survey serv- 

ing as consultants and evaluator- of the project.  Consequently, a 

special effort was made to select a site for which both the standard 

U'.S.G.S. geologic map and surficial material map are available in 

addition to the basic criterion for conducting a generalizability 

study—comparability between the first test site and the second 

regarding the general lithologic characteristics and environmental 

conditions.  Based upon the following conditions, the Rosamond, 

California Site was selected: 

(1) Exposure of granite at a much lower ground for testing the 

effectiveness of the d-veloped texture analysis algorithms 

on extracting granite where the high-ground, well-exposed 

bedrock condition does not exist. 

: I 
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: 

This criterion was derived from a general Eeeling that the 

success at the Duffer Peak Site can be attributed to the 

condition or granite:  good exposure of the bedrock due to a 

high-ground location Lor easier detection by the LANDSAT 

system. 

(2) Availability of a surliciaL material map tor the test site: 

Quarternary geologic maps were located Cor several sites in 

the U.S. where granite can be found. The Rosamond Site was 

finally determined as the second test site based on another 

criterion on the similarity in climatic conditions; namely, 

they are located in arid climatic zones, 

b.  To evaluate the appropriateness of using the general, geologic 

map as ground truth for LANDSAT data analysis. 

Although we were advised by the U.S.G.S. officials serving as 

advisors and evaluators to our project to use the general geologic 

maps as the ground truth maps for the study areas, both Dr. Smith 

and Dr. Hsu could not totally accept this approach based upon the 

fact that: 

(1) The general geologic maps were made according to the inter- 

pretation of the field geologist(s) regarding the distribu- 

tion of the bedrocks; but 

(2) the LANDSAT system was designed to detect primarily the sur- 

ficial material, and thus cannot detect sub-surface material 

and Features although such Information can sometimes be 

Inferred from the surflclal information. 

1!  -e, the best way to resolve this question (dispute) is to 

treat the first opinion as a working hypothesis, and test it against 



■-■rV-n^v[ih"-'-*^r--^ hi- I, ,       *-*-———" 

: 

24 

empirical data. With the availability of a Quarternary geologic map 

for the second test site, it is feasible to carry out this task. 

c.  To evaluate the contribution of the unsupervised classification 

method to the extraction of Lithologlc information. 

We concluded from the Phase 1 effort that both supervised and 

unsupervised classification methods should be used in mapping litho- 

Logic features.  Since Chen, the unsupervised training method was 

developed further using artificial Lntelligence approaches by the 

researchers at Susquehanna Resource & Environment, Inc.  According- 

ly, a portion of the Duffer Peak test site was used to demonstrate 

the effectiveness of the new approach. This experiment indeed sup- 

ports further the conclusion derived from the Phase I effort that a 

combination of supervised and unsupervised classification approaches 

are needed to extract lithologlc features and related tectonic 

in format: Ion. 

2.  The Data Sets 

A frame (256x256) pixels from the Los Angeles, California landsat 

frame was extracted to represent the second test site located at Rosamond 

(Quadrangle), California.  Since It is determined that the shadow effect 

of the image data is not significant, the original MSS bands were used as 

the basis for data analysis.  Note that ratio bands served as the basis of 

data analyses for the Duffer Peak Site because of the presence of shadow 

effect In the Image data. 

3.   Supervised Classification of the Second Test Site 

To test the general inability of the developed methods, identical 

procedures used in the phase 1 effort will be employed to the second test- 
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sue data. The following sections described the methods by which rock 

types were extracted from the Rosamond Site, 

(a)  The characteristics of the training sets 

As mentioned earlier, we treat the geologic map of the test 

site as the hypothesized ground truth.  Hence, the training sets 

were selected according to the Information given by the geologic 

map.  Figure 4 Is a portion of the Willow Spring and Rosamond 

Quadrangles, California, from which eleven training sets were 

extracted to represent five ruck terrain types as follows: 

(l)  Al, k2  and A3 for alLuvium; 

(ii) Gl, G2, 03 and GA for granite; 

(ill)  Si for schist; 

(iv) Tl and T2 for tuff; and 

(v) Dl for drybed, 

(b)  Generation of 29 texture-tone variables 

Follow the same procedure used in the Duffer Peak study; twenty- 

nine texture-tone variables were generated for each pixel in the 

s r    c   M, > Fnrin r ANDSAT MSS bands based on the origi- (256x236) frame from the form LANUSAJ nao 

nal (3x3) moving grid and texture analysis model, 

(c)  Pre-processing of the training sets 

To purify the training sets such that each set is uniform, out- 

liers in each training set (distribution) were removed automatically 

„sing information from Band 4 and Band 7. In addition, if a bimodal 

distribution is found, it will be split into two subsets. Analyses 

of the training sets indicate that only a few outliers exist in each 

of the training sets as witnessed from the following data (Table 5). 

L / . / ;S 
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TABLE 5 
Pre-processing of the Framing Sets 

Training Set ID     No. of Pixels (original)  No. Pixels after Edltin 
ig 

Al 
A 2 
A3 
Gl 
G2 
G3 
G4 
SI 
Tl 
T2 
»1 

256 
256 
256 
256 
256 
336 
256 
208 
171 
209 

251 
246 
242 
249 
249 
324 
248 
242 
168 
209 

(d)  Selection of the best discriminators from the 29-variable 

system 

To determine a subset from a large number of variables as the 

best discriminators, a stepwise discriminant analysis Is generally 

employed.  However, it should be noted that the results of the anal- 

ysls are highly dependent on the way the discriminant function Is 

set  up.  For instance, In one case the best discriminator can be 

designed to discriminate the closest pair of the training sets; on 

the other. It can be devised to separate training-set classes in- 

stead of Individual sets in the classes. 

Since the goal of this project is to separate granite, from 

alluvium, the step-wise discriminant anales utilized here follows 

the second approach-discrimination of classes.  The analysis 

indicates that the best ten variables follows closely with our 

original concept of texture-tone variables as follows: 

(1) Bright 5 (Band 5 tone) 

(2) Bright 4 

(3) Bright 7 

(4) Bright 6 
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(5) Standard Deviation 6 

(6) Mean Dovia lion 5 

(7) Ist Neighbor Contrast 7 

(8) Mean Deviation 4 

(9) Standard Deviation 5 

(MJ) Mean Deviation 7. 

(e) Confusion analyses of the training sets 

To determine how well the selected variables can separate the 

training sets, analyses of the training by means of a confusion 

matrix Is generally used.  This Is achieved by classification of 

individual pixels into the mean vectors of the training sets.  Table 

6 Is the confusion matrix from the lO-variable system with a correct 

classification rate of 99.13 percent.  The separation between train- 

ing sets can also be measured by means of the Mahalanobls distance 

(D") as shown in Table 7. 

(f) Classification of the study area (test site) 

To be consistent to the procedures used In the Duffer Peak 

experiment, we used the identical seven feature variables to analyze 

the traiing sets again, and proceed to classify the entire second 

test site.  These seven variables are: 

(I) Bright A, (2) Bright 5, (3) Bright 6, (4) Bright 7, 

(5) 1st Neighbor Contrast 5, (6) Mean Deviation A, and 

(7) Standard Deviation 6. 

[t turns out that these seven variables Is a subset of the in- 

variable system derived from the stepwlse discriminant analysis. 

Corresponding to Tables 6 and 7, Table 8 and Table 9 indicate the 

confusion matrix and the Mahalanobls distance between training sets. 
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respectively. Note that the hit-rate with resp 

cation oF the five rock types is 99 percent. 

TABLE 6 

Confusion Matrix from the lO-Vari.able System (SR&E) 

ect to the classifi- 

Al A 2 A3 Gl G2 G3 G4 1)1 SI Tl T2 

Al 24 7 0 3 0 1 0 0 Ü 0 0 0 

A2 0 246 0 0 0 0 0 0 0 0 0 

A3 L5 0 223 0 0 1 0 0 0 3 0 

Gl 0 0 0 225 5 17 1 0 1 0 0 

G2 0 0 7 IK 207 0 17 0 0 0 0 

G3 0 0 1 70 0 253 0 0 0 0 0 

G4 0 0 8 30 54 1 155 I) 0 0 0 

Dl 0 0 0 I) 0 0 0 242 0 0 0 

SI 0 0 0 0 0 0 0 0 204 1 0 

n 0 0 0 0 0 0 0 0 0 153 15 

T2 0 0 0 0 0 0 0 0 0 8 201 

Classification = 99.13 percent. 
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TABLE 7 

Mahalanobia distances Erom Row Sot to Column Set from lO-Varlablo System (SR&E) 

M 

A2 

\l 

Gl 

G2 

03 

Dl 

SI 

Tl 

T2 

Al 

0.0 

67.1 

20.1 

48.3 

r)}.7 

88.0 

79.5 

4 31.2 

202.7 

5 7.8 

55.2 

\2 

92.3 

0.0 

48.4 

46.2 

4 9 • 1 

57.9 

\3.\ 

251.9 

58.8 

136.7 

84.9 

/\3 

LO. 6 

4 5.9 

0.0 

28.Ü 

17.2 

36.5 

14.0 

4 3 5.6 

110.6 

31.3 

36.9 

Gl 

56.4 

53.1 

32.0 

0.0 

14.1 

5.5 

14.8 

466.3 

43.6 

3 5.4 

31.7 

G2 (13 G4 Dl S! Tl T2 

29.3 62.0 24.9 279.8 195.7 115.7 170.0 

50.3 72.8 44.7 298.8 168.0 275.0 470.6 

17.6 36.2 13.1 178.1 122.1 132.2 252.0 

8.5 3.6 5.1 537.1. 32.8 34.6 66.0 

0.0 24.9 2.1 469.5 129.7 149.5 279.8 

35.0 0.0 21.6 629.5 73.3 44.7 82.9 

3.8 30.4 0.0 415.7 200.9 173.1 338.2 

500.1 437.7 468.7 0.0 412.3 634.4 775.1 

88.8 31.7 74.9 349.1 0.0 10.7 22.2 

4 5.1 36.3 38.2 908.9 67.9 0.0 7.8 

32.1 35.7 29.9 399.4 37.7 5.1 0.0 

With  such  a  high hit-rate   in  the   training sets  classification, 

we  proceed   to  classify the entire  study  based  upon  these   (edited) 

training sets.     The   result  is given  in  Figure 4,   showing  the  deci- 

sion on  the  distribution of granite  and  other   rock  types. 
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TABLE 8 

Confusion Matrix of the Training Sets (Rosamond, California test site) 

With a Seven-Variable System 

Feature Variables:  BRIGHT4 I5R1GHT5 BRICHTfi BRIGHT? MINC0N5 MDEVN4 STDDEV6 

Rank of each se !t: 

A2 = 7 A3 = 7 Gl = 7 G2 = 7 G3 = 7 

1)1 = 7 SI = 7 Tl = 7 T2 = 7 

Al A 2 A3 Gl G2 G3 G4 Dl SI Tl T2 

\l 243 0 6 1 0 i) 1 0 0 0 0 

A 2 0 246 0 0 0 0 0 0 0 0 0 

A3 19 1 0 2 0 0 0 0 0 3 0 

Gl 0 0 1 225 3 17 2 0 1 0 0 

G2 0 0 8 26 194 0 21 0 0 0 0 

G3 0 0 0 82 0 239 2 0 0 L 0 

G4 0 0 7 30 50 2 159 0 0 0 0 

Dl 0 0 0 0 0 0 0 242 0 0 0 

SI 0 0 0 0 0 0 0 0 203 2 0 

Tl 0 0 0 0 0 0 0 0 2 149 17 

T2 0 0 0 0 0 0 0 0 0 11 198 

Classification = 99 percent with respect to five rock types 
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TABLE 9 

The Mahalanobis Distance Between the Trnlnlng Sets from the 7-Variable Systems 

• 

Al 

A 2 

A3 

G] 

G2 

G3 

G4 

Dl 

SI 

Tl 

T2 

,\l A2 A3 CA G2 G3 G4 Dl SI Tl T2 

0.0 91.9       10.1 54.7 27.0 57.8 22.8 290.3 195.6 113.4 161.1 

60.6         0.0       4?.4 51.7 44.9 71.5 40.4 284.7 168.4 276.4 467.1 

16.8 46.9         0.0 31.9 17.7 35.6 12.9 169.7 115.6 113.2 208.5 

46.5 43.0       24.8 0.0         8.1         3.6         5.3 525.1 33.2 30.1 60.2 

51.9 47.7   15.9 13.0   0.0 24.7   2.1 461.2 128.4 148.0 272.4 

86.6 54.8  36.2 5.0 33.4   0.0 20.8 602.8 72.2 38.1 70.2 

74.0 40.1   12.6 14.6   3.6 29.3   0.0 395.7 200.8 174.1 334.0 

Ml.6 240.1 412.8 439.1 478.0 419.9 448.9 0.0 383.1 582.5 717.6 

193.1   56.6 104.7 38.4 82.1 29.2 68.2 341.7 0.0 9.8 22.5 

49.5 137.1   28.2 35.5 38.1 37.4 35.7 832.6 63.0 0.0 6.5 

52.3  84.7  34.5 31.6 32.0 35.1 29.7 394.9 37.4 5.2 0.0 

4.  Discuss tons on the Correspondence Between the Decision Map from the 

LANDSAT Data and the General Geologic Map and the Quarternary Geologic 

Map, Respectively. 

Since the goal of our litholopic analysis is to separate granite from 

non-granite regions, we will concentrate our analyses on the distribution 

of granite in the decision map against that delineated In (1) the geologic 

map, and (2) the Quarternary geologic map as follows, 

a.  A comparison against the 1943 geologic map 

To provide a basis for comparative analyses, a (10x10) grin was 



mmmKmmmmMmmmmmmmm  ■    ■«■.,■—..MN^^M— 

32 

constructed lor the study area.  Figure 5 is a portion of the Willow 

Spring and Rosamond Quadrangles, California; the granite region was 

located in cells along rows #4, //5, //&, //7 and //8.  Alluvium is 

located mainly on the northern side of the granite region. 

Figure 6 is the. decision map derived from the LANDSAT data 

based on the above-discussed training sets and image processing 

methods.  For a better display; it is broken up into three portions 

with Figure 6a showing the granite region at the middle portion of 

the map, and Figure 6b and Figure 6c indicating the upper and lower 

segments oE the classification results, respectively.  In addition, 

the outline of the granite regoin from Figure 5 was traced onto 

Figure 6 for an easier visual analysis. 

In general, the computer decision map (Figure 6a) corresponds 

rather well to the geologic map in terms of the distribution of 

granite.  Discrepancy between them occurs mainly at three subregions; 

(1) Cells #(6,2), (6,3), (6,4), and (7.4); 

(2) Cells #(4,7), (4.8), (4,9), (4.10); and 

(3) Cells //(8,8), (8,9), and (8,10). 

In case (1), those cells were designated as granite in the 

geologic map; whereas, they are classified essentially as alluvium. 

In case (2), a versed pattern of case (1) is witnessed. 

Case (3) is similar to case (1) with a less degree of 

discrepancy. 

b.  A comparison against the Quarternary geologic map 

(I)  Note on characteristics of the Quarternary Geologic Map. 

The Quarternary Geologic Map of the study area was made by 

researchers (l).,I. Ponti, D.I5. Burke, and C.W. Hedel) of U.S.G.S. 
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in 1981, documented as Open-File Report 81-737, and entitled 

"Map Showing Quarternary Geology of the Central Antelope Valley 

and Vicinity, California." Along with the map, "discussion" and 

"explanation" sections were given to help readers understand how 

the map was compiled from field work, aerial photos, soil sur- 

veys, and other source material, which Included nineteen reEer- 

ences.  The discussion section is given in Appendix 1. 

The researchers noted that: "all the upper Quarternary map 

units are unconsol Idated, they have similar, primarily granitic, 

clast Lithologies, and they remain some or all of their original 

depositional surfaces. These characteristics distinguish the 

deposits from older Quarternary and pre-Quarternary formations 

of diverse lithology which are weakly to firmly consolidated and 

deformed and which preserve none of their original depositional 

surfaces." 

From this explanation, we should treat upper-Quarternary 

depositional material the same as its parent material in the 

image data because it still maintains the original characteris- 

tics of the bedrock lithology.  Since eight layers of Quarter- 

nary datlngs were used to differentiate the relative ages of the 

material. It is fairly easy for the users to understand which 

map units belong to Upper Quarternary, and which is Lower Quar- 

ternary.  In addition, each map unit is described in detail 

regarding the characteristics of stratification, degree of con- 

solidation, grain size, and other morphological and locational 

information.  We have to conclude that this map is much more 

appropriate for serving as the ground truth information for the 

LANDSAT Imagery of the study area. 
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(2)  A comparison between the LANDSAT decision map and the 

quarternary geologic map. 

First, we should nota that the Quarternary geologic map 

covers only a portion of the study area; fortunately, the major 

portion of the granite region Is Included as given In Figure 

7, and referenced by the same (10x10) grid.  For an easier, 

comparative analysis, the bedrock granite was retraced with a 

dark line.  Now let us compare Figure 6a against Figure 7 in 

terms of the three cases of discrepancies noted between the 

computer decision and the general (1943) geologic map as follows, 

Case 1.  [n Cells //(6,2) and (6,3), there is a close correspon- 

dence between these two maps.  This clearly indicates 

that the (1943) geologic map did not indicate the sur- 

ficial material of that locale, which is composed of 

sand dunes (Qds). 

Cells //(b,3) and (7,3) were classified as alluvium. 

The 1981 Quarternary geologic map shows that the area 

has been highly altered by human actions via construc- 

tion of transportation routes such as highways and 

railroads.  Therefore, it is difficult to assess that 

the original granitic material still exists today and 

can be detected by LANDSAT. 

Case. 2.  The northern border of granite In the Quarternary 

geologic map along row 4 is located further north as 

compared to the 1943 geologic map because it encom- 

passed the upper Quarternary deposits (Q6m).  This 

boundary actually corresponds well with the decision 

map of the LANDSAT data. 

J 
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; Case 3.  The material In the upper portion of Cells #(8,8), 

(8,9), and (8,10) were classified as alluvium by the 

LANDSAT data.  It was mapped by the 1943 geologic map 

as "granite."  In the Quaternary geologic map it was 

mapped as non-granite bedrock (or outside gr in). 

However, a proper labeling cannot be determined.  A 

field check Is needed to determine the precise charac- 

teristics of the material at this location. 

cj.   Conclusions 

From the analyses given in previous sections, we have derived 

the following conclusions: 

a. Our developed texture analysis algorithms are Indeed general- 

izable in terms of their effectiveness in extracting granite 

versus non-g'-anlte lithologlc features in arid regions. 

b. Analyses from the second test site clearly demonstrate that 

Quarternary geologic maps are much more appropriate than the 

general geologic maps for serving as "ground truth" to the 

LANDSAT image data.  Although it is desirable to extract bedrock 

information from the LANDSAT image data. It Is definitely not 

correct to conclude that the LANDSAT data are not effective when 

the classification map (based on the image data and a certain 

set of image analysis algorithms) cannot match perfectly to the 

general geologic map regarding the distribution of lithologlc 

(bedrock) features. 

c. The success of our experiments may be attributed tc three 

Image analysis alorlthms that are not generally available to 

other researchers: 
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(1) "Training set pre-processor" for purl'vlng the train- 

ing set data so that each set is uniform internally. 

(2) "Non-Gaussian Classifier" for improving the classifica- 

tion result when the training sets data are not really 

normally distributed. 

(3) "Region Growing Texture Clustering Algorithm" for 

processing the image data in an unsupervised training 

classification mode.  This algorithm is capable of detect- 

ing the contact zone between granite and alluvium regions, 

and thus extracting the feature according to an additional 

parameter—spatial characteristics of the Lnteraction among 

Lithologic units.  Although this algorithm was not needed 

for the analyses of the Rosamond, California test site, it 

was necessary for editing out "granite pixels" that are 

distributed beyond the limit of the granite boundaries in 

the Duffer Peak, Nevada test site. 

With newly developed capability in the "Region" algo- 

rithm, we will demonstrate its ability to extract alluvium 

Including the contact zones. 

I 
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Section G:  The Duffer Peak Site Revisited 

I.   1atroduction 

Tn our Phase I effort, we employed an iterative scene segmentation algo- 

rithm to depict the evolutionary patterns of the imagery structures of the 

study area, starting from each pixel as a group, and ending with a few thou- 

sand groups in the (256x256=65,536) frame.  Since the grouping distances are 

designed to progress linearly with an even increment of one unit from one iter- 

ation to the next, interior pixels are grouped first, and the boundary pixels 

(having a larger neighbor contrast) should remain distinctive for a while 

during the continuous grouping process, revealing the contact zone between two 

lithologic units. 

To a certain degree, we were successful in identifying granite pixels 

(from the supervised classification) that should be removed from the original 

decision map because they were located beyond the "contact zones."  Neverthe- 

less, we now feel that a better algorithm can be employed to identify the 

contact zone directly. Instead of relying on a continuous, Iterative segmenta- 

tion process, the original region algorithm.  The new algorithm is called 

"Edge" algorithm because It defines feature edge (versus spurious edge) accord- 

ing to certain spatial characteristics corresponding to the physical proper- 

ties of modeled features.  And from these feature edges, we should be able to 

extract the alluvium first because the particles of alluvium are much more 

uniform than those of granite, and the contact zone between granite and allu- 

vium should be stronger than the Internal edges of alluvium. 

2.  Demonstration of the Capability of "Edge" Algorithm. 

For tills experiment, only the NW quarter of Figure 1 (Decision map from 

the supervised classification) will be used In view of the fact that it repre- 

sents the major area of mlsclasslfIcatlon by the supervised method due to the 

_. i 
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,„„,,„, ,>r the euporvlsed n,eChod to detect the eeet.ct .one. Note that a 

8uper,lSed cleeelfleatlon epproech la eesentlall, en espetial rr„ceBS.,r. No. 

Llnes, F„r better discussion., the m Quartet Is subdivided Eurthet Into the 

eour motions es Udlceted in Flenre 8; end we »1U concentrate out ana^ses 

,„ the Lower hau: of the test area, particularly the SE cell, where a.U.vlu™ 

is located. 

ut us recall that the bedrock bounder, and the granite regions ate 

_,„,, „, .diagonal .trlkas,- the  arals are classElad granite pixels and 

"blanks" are non-granite areas. 

„lth respect to the SE cell ot the m ,uartet o, Figure 8. It is essen- 

tially s non-granite country according to the geologic „ap, however, a »ajor 

poction of that cell was eiassiiied as ■•granite" according to the LMDSAT data 

 , „„r algorlth«.. Without field worR. it I» diiiieult to conclude which 

decision is right.  It is entirely possible that they are alleeiu» in ter.s oi 

the grain sUe particles, but the, were possibly derieed Iro*  the parent mater- 

ial (granite) situated at higher grounds. 

„e will attest to answer the above euestion particniarly by .cans of a 

decision map generated by our -Edge" algorithm.  Particniarly. we would llhe 

to point out that the decision map was derived by using a two-band simulta- 

„eous segmentation method:  the first bend is represented by the first compo- 

rt scores of the original four HSS bands, and the second band is the ratio 

bet„een Band 4 and Band 7.  The tesnlt is shown in Figure 9 (a region map) and 

Figure 10 (an edge map of Figure 9). 

'  By comparing Figure 9 against M  quad, of Figure 7 (elassifiestion map 

.,t„ a supervised classification method), we can immediately notice that the 

, tact sons between the granite „nit and the nUn.iem are, (as indicated in 

( 
*1        « 

i 
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Lho geologic map) was clearly detected by the Edge Algorithm with a very high 

degree of accuracy.  In addition, the alluvium area was determined as one uni- 

form region, whereas the granite area was determined as a composition of a 

great number of highly texturaltzed local features. This phenomenon corre- 

sponds closely to our earlier prediction that finer particles would group 

together sooner than coarser particles. 

From the decision map of Figure 9, we can conclude that the particles in 

the SE quarter of Figure 9 and its contlnguous part In the NE and SW quarter 

are finer than those in the rest of ehe study area particularly the NW 

quarter.  However, it is difficult to conclude that the pixels in the SE 

quarter are definitely alluvium in the general sense of lithologic classifi- 

cation.  From the terrain data, it is entirely possible that those fine part- 

icles were derived from the parent material called granite.  If those mater- 

ials are of upper Quarternary period, they could still maintain the property 

of the parent rock. Yet, one thing is sure:  the contact zone between granit? 

anii non-granite is still detectable by the two-band simultaneous segmentation 

meth i of our "Edge" algorithms.  This contact zone is clearly shown in Figure 

10, the edge version of Figure 9. 

5i  • 
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Section H:  General Conclusions 

FL-OIII Phase I and Phase II research efEorts on rock types analysis with 

LANDSAT MSS data and our texture analysis algorithms, we have come a long way 

on the understanding of the interaction between lithologic material with the 

LANDSAT sensing system on one level, and the spatial interaction among indi- 

vidual pixels and groups of pixels on another.  Only from these two aspects of 

"vertical-and-horizontal" interactions, would we have a better handle on rock 

types discrimination and identification with remote sensing technologies and 

methodologies. 

At the beginning of this project, we were told that no one in the U.S. in 

the past twenty years had been able to correctly extract granite versus non- 

granite from the Duffer Peak test site.  As demonstrated in this technical 

report, researchers at SR&E have accomplished the task that has been extremely 

difficult for other researchers to handle.  We would like to share our 

thoughts with scientists having interests in lithologic analyses with image 

djita on what we have learned from these experiments as follows. 

I.  Technical advisors and evaluators to our project have insisted on 

using the general geologic maps as "ground truth" information for the 

corresponding image data because in many cases they are the best avail- 

able materit.! to the research.  We consider this position as too rigid; 

and properly, geologic maps should be treated as one of the many informa- 

tion sources for obtaining real ground truth that can be detected by the 

sensors. 

2.   It is a well-known fact that the characteristics of training sets 

affect significantly the final classification results.  However, in the 

past, it was difficult to pre-process the training set automatically with 

sophisticated algorithms because of hardware limitations, such as not 

I 
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enough core capacity to perform clustering analyses. Our success at the 

Duffer Peak site can be partially attributed to good training sets after 

they were pre-processed. 

3.  The final classification results can also be affected by the mathe- 

matical model that the classifier uses.  If the training sets data are 

Gaussian, the Gaussian model is the best; if not, other models based on 

non-parametric distributions are better than a Gaussian model.  In the 

past and even today, the majority of researchers are still „sing Gaussian 

model for the classifier because it is easy to program, or readily avail- 

able.  However, if the data are not Gaussian even after pre-processing, 

you most likely will increase the error rate by five to ten percent in 

the decision map.  This is precisely the case for the Duffer Peak site: 

Our non-Gaussian classifier is capable of. removing a substantial amount 

of "granite" pixels in the non-granite area that are present in the 

decision map generated by a Gaussian classifier. 

With respect to the Rosamond. California test site, both the 

Gaussian and the non-Gaussian classifiers produced the same result. 

Thus, either model is acceptable. 

4.  Future research efforts should be centered around developing unsuper- 

vlsed classification methods for extracting lithologic features.  As 

demonstrated in this project, this approach can be effectively used in 

conjunction with a well-designed supervised classification to determine 

the contact zones among various lithologic units, and thus remove the 

errors made by the classifiers based on the supervised training method. 

These unsupervised classification methods can be developed into 

smart algorithms once certain decision rules are implemented into the 

feature extraction processes.  Artificial intelligence can therefore play 

an important role in the next phase or generation of Image exploitation. 

A. ..r ■--■ 
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DISCUSSION is    "^ b^b**^ G-^oU^c M*f. 
Tnts map i'j one .if  tlireo  In the U.S. Geological Survej open-files that empliasUe the nature ami distribution of 

upper (Juaiernary deposits  in the Antelope Valley and the adjacent canyons of the Iransverse Ranges ami Tehachapi 
Mountains in south-central California (see index map),    fhe area covered by the set of  three maps encronnasses about 
4200 sauare kilometers of northern los Angeles County and parts of San Bernardli nd Kern Counties, excluding Angeles 
Nation^ Fore     ana parts of Lawarus Air Force SJ.se.    Topography In the are, |es fron, rugged se and mnunta ns and 
sJeeo canyons to broad valleys ana a, HI desert flatlanqs; elevations range from about 300 peters in val ey   o« ■ nds to 
,TOrfthanyU800 meters on mountain peaks.    About   150.000 people  live  in the area, with most 0    the population  i , the 

affected by land-use decisions, and so mis map should he useful to planners and engineers as an aid in assessing 
area!   subjud  to flash f loons,  foundation and drainage prohlems,  severe ground mot urn during earthquakes,  and other 
geologic hazards.    The distribution,  age.  and pattern of faulting and folding of the deposits of this map also provide 
earth seien'   ■-. with an overview of  the nature of sediment deposition and deformation  in one of the most  tectonlcalty 
active regi        of  the world. ,   , . .     ■   i,       i. 

Tins <■■ " designed  as a  regional  appraisal  of  the distribution and properties of   late Quaternary materials.     It 
is accura'.a    or  Us scale ami purpose as an aid to earthquake hazard donation,   land-use planning,  and regional 
tectonic analysis,    however,   it should be considered only as background   information and not as a substitute tor 
large-sca'e. site-specific studies where land-use and engineering derisions require more detailed geotechnlcal 
information. 

Upper Quaternary alluvial, colluvlal.   lacustrine, and eollan deposits an   differentiated on the moo.    these 
materials have accumulated  in the valleys and canyons of the area  in response to uplift ami erosion of the Transverse 
Ranges and Tehachapi Mountains and to subsidence of the Antelope Valley Basin during the  last half-mi 11 inn years or 
so.    All  the upper Quaternary map units are unennsolidated,  they have similar, primarily granitic, clast   lithnlogies, 
and  they retain some or all of  their original  depnsitional  surfaces.    These characteristics distinguish the deoosits 
from older (juaternary and pre-Quaternary formations of diverse  lithology which are weakly to firmly consolidated and 
deformed  and which preserve none of   their original depositional  surfaces. . , 

Alluvial deposits of  seven major episodes nl   deposition are the most   wldi ly exposed upper (juaternary materials  in 
•til« area.    Correlative colluviam with generally similar textural  charactei Istlcs and alluvium whose texture has been 
modified by the aOdition of windblown sand are shown on the map with distinguishing patterns.    Materials deposited 
during the high stands of   shallow  lakes,   alluvium that has been modified by the ad.lilio, of   large amounts of calcium 
carbonati   around the   lake shorelines,  and dunes of uniform sand that migrate during dry  lake periods occupy the valley 
|i .. lands. 

,.■ determined the relative ages of the upper Quaternary deposits and the distribution of  textural  tactos  in 
dtvosits by compilation of U.S.  Soil Conservation Service soils maps,  by  interpretation of  aerial photograubs,  and by 
study  In the field.    Preliminary maps were first produced by compiling soils maps of Woodruff  and others (IW)). 
Usiflg their descriptions of   the major  soil   series   in the region, we were able to   Identify various ages of  the deposits 
and to obtain approximate gram size distributions  in soil parent materials.    We could dn this because for deposits 
that still  retain some of  their original  surfaces,  the degrees of profile development and textures of the soils 
directly reflect  the relative ages and textures of the deposits upon which the soils  formed.     The compilation nt  sons 
mapping then served as a guide to field  inspection of soil  samples from channel edge exposures,  road cuts,  und 
thousands    •  shallow auger holes  throughout  the study area.    From this  information we determined a sequence r- 
and deposits of  seven distinct  ages.    Other criteria such as superposition of deposits,   topographic positn 
degree of fan surface dissection were also useful  for relative dating of deposits,  particularly in areas 
relief,  structural complexity,  and wlndl      .■   sand veneers. ,,..,■ 

The grain size distributions with: >  tin     .ologic units differ significantly in some  localities from the dram size 
interpreted from soils descriptions,   an. Krefore relied on field reconnaissance and the examination of  several 
hundred collected and sieved samples to es... i ish the locations of the facies. Wide variations In gram size over 
small distances in some of the materials make an n Ite I llneation of fades imoossibie at map scale, and contacts 
between facies within units should be considered as      ly    . .■■   ■     itely located. 

Radiometrie ages of the upper Quaternary units are unkhOdii        iu<        '  ' U mat( 
the area,  but we can estimate their ages from stratigraphic pi.  "     "  n .;•'' 
Ihe Pleistocene Harold Formation,  containing  lano mammal  fossils    '  Rd' ibrci 
Ql deposits  in the southeastern part of the area (Noble,   10?'3;  A. ü.  Barrows, oral 
age of  the oldest Rancholabrean fossils  Is ISO,000 years (Repenning,   1980),  an- • 
deposits on this map  is thus probably no older than about 100,Qun years.    The 
ihe alluvial  sequence are estimated on the assumption that the deposits result, from climatically contro  14- 
ot   alluviation that are essentially synchronous over broad regions  {Pnnti,   IW; Ponti  and others,  1980 .    '^ "nits 
am quite extensive and can be recognized along both the Transverse Ranges and Tehachapi mountain fronts  in diver« 
tectonic settings and across the various microclimates of the Antelope Valley and adjacent highlands.    They appeal   to 
have their origins as pulses of sediment produced during fluctuations of climate from glacial  to  '"^l^'äl  times 
and can be tentatively correlated with climatically controlled deposits  in other regions.    Good correspondence occur 
between the Antelooe Valley units and the Riverbank and Modesto formations in the San Joaqum Valley.    Ql, 0?. and Q.f 
deposits appear equivalent to the upper, middle and  lower members of the Rive-bank format ion, winch have estimated 
ages from 1'.Ü,0UU to  UO.CUjl  years  (Marcnand and Allwardt,   19ÖÜ).    Units Ql, Q5,  and Qf.  appear equivalent to the 

md 
nigh 

ial   is  ...T .  i ire in deposits of 
I-  »ith  lateu deposits elsewhere. 
.;. ,   ,.,,•'.   mderHes I' •• oldest 
comnui i .!•''.   '   '■'■ .    rst ima'e ' 

i HI    |uat( ■' v .   • ,.• 
of upper Quaternary 

ages trom itiu.uuu to  1J0,0U{1 years (Marc.-. 
Modesto Formation,  which hal an age estimated to span the period from 90,000 to 9,000 years  ago (Marchand and 
Allwardt.  I980f.    Lacustrine deposits  (Upl)  and calcium carbonate affected alluvium (Ouca)  result from '1^'    'J"    n 

and oroundwater  influences of pluvial   lakes which filled the Antelope Valley basin during the most recent (POSt-Q3) ^ 
glacial periods,    units Q7, present stream beds (Qs), and sand dunes (Qds)  -re in part historic and change each season 
with winter rainfall,   SUimiet   flash floods,   and springtime winds. 

Contacts between units beneath upper Quaternary materials are compiled and simplified from large- and 
iiuermediate-scale mapping by the U.S.  Soil Conservation Service  (Woodruff  and others.   1970).  and from arrows  (1977 
and  1980), barrows and others (1970). iieeby (1977), Uibblee (19fi0.   1961,   1903,  1907),  Jahns and Muehlherqer (1°^), 
Kahle (1977),  and Kahle and others  (1975). -,,,,,., in, 
Oeoloqlc structures  in the Antelope Valley are from unpublished mapping by tl. H.. Burke and L.W. Hedel, those in the 
rift zone of the San „ndreas fault are from recent studies by the California Division of M nes and Geo ogy UWrows, 
IT//  jna 19b0; Harrows am; others.   1976;  Beeby (1977); Kahle,   1977; Kahle and others.   197!.).  those in the Car ock 
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