

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963-A

٠.

AFEOR SEC. IL ARSTRICTIVE MARKINGS UICLASS::LILU SECURITY GLASS::LILU SECURITY GLASS::LILU SECURITY GLASS::LILU SECURATION BECOFICE STUDIC TECHNOLOGY MARCO FUNCTION REPORT TOWER (SECURITY GLASS::SECURITY GLASS::SECURI		PAI	42 200 ,	ENTATION PAGE	E		
UICLASS: 4200 Scientry Classification Authonity Scientry Classification Authonity Scientry Classification Authonity DECLASSIFICATION AUTHONITY Scientry Classification Control of Classification Authonity Scientry Classification Georgia Institute of Telephicebwi Sciences, Bolling AFB DC 20332 Name of Functional Control of Classification Sciences, Bolling AFB DC 20332 ACDRESS (cl., Sum and 2P Code) Sciences, Bolling AFB DC 20332 ADDRESS (cl., Sum and 2P Code) Sciences, Bolling AFB DC 20332 ADDRESS (cl., Sum and 2P Code) Sciences, Bolling AFB DC 2(32 TTYLE Incluster and Sciences Procention Intervent Instrument Identification Numbers Macrossing Classifier NM Definit AFB DC 2(32 Procention Intervent Instrument Identification Numbers TTYLE Incluster and 2P Code) Its TME Control of Scientry Classifier Perform 1 Its TME Code Procentification Numbers TTYLE Incluster and AP DE C 2(32 Procentification Numbers TTYLE Inclandification<	REPORT SECL		-	16. RESTRICTIVE M	ARKINGS		
Approved for public release; distribution unlinited. Approved for public release; distribution unlinited. Approved for public release; distribution unlinited. Approved for public release; distribution unlinited. Aross. TR. 2 4 - 0 3 5 5 AAFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AAFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AAFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 2 4 - 0 3 5 5 ADDRESS (CIN, Sue and 2P Code) AFOSR. TR. 4 10 4 5 0 F SUBMENTION NUMBER AFOSR. TR. 4 10 4 5 0 F SUBMENTION NUMBER AFOSR. TR. 4 10 4 5 0 F SUBMENTION SUBMENTION NUMBER AFOSR. AUTHORS: Procease and 2P Code) AFOSR. TR. 4 10 4 5 0 F SUBMENTION SUBMENTION NUMBER AFOSR. TR. 4 10 4 5 0 F SUBMENTION SUBMENTION NUMBER AFOSR. TR. 4 10 4 5 0 F SUBMENTION SUBMENTION NUMBER AFOSR. 4 0 4 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1 5 FAGE COUNT AFOSR. 4 0 4 1 1 1	UNCLASSIN TED	THORITY		3 DISTRIBUTION/A	VAILABILITY OF	REPORT	
DECLASSIFICATION/DOWNGRADING SCHEDULE unlinited. PERFORMING ORGANIZATION REPORT NUMBER(B) A MONTORING ORGANIZATION REPORT NUMBER(B) AFOSR TR. 3 4 - 0 355 NAME OF FERFORMING ORGANIZATION Ex OFFICE SYMBOL ("septicable") Technology Ex OFFICE SYMBOL ("septicable") ADDRESS (Ch, Saw and XP Code) Ex OFFICE SYMBOL ("septicable") School of Electrical Engineering Atlanta GA 30332 The ADDRESS (Ch, Saw and XP Code) ADDRESS (Ch, Saw and XP Code) Ex OFFICE SYMBOL ("septicable") ANME OF FUNDING/APONSORING ORGANIZATION Ex OFFICE SYMBOL ("septicable") AND OF SUCCIONAL AUTORNIA ADDRESS (Ch, Saw and ZP Code) Ex OFFICE SYMBOL ("septicable") AND OF SUCCIONAL AUTORNIA ADDRESS (Ch, Saw and ZP Code) Ex OFFICE SYMBOL ("septicable") ADDRESS (Ch, Saw and ZP Code) MM DOILIng AFE DC 2(322 PROCUNCE OF FUNDING MOS. PROCUNCE OF FUND				Approved for public release: distribution			
PERFORMING ORGANIZATION REPORT NUMBERGI E. DOWTORING DECAMINATION BEFORT NUMBERIES AFOSR TR. 3 4 - 03 5 5 INAME OF PERFORMING ORGANIZATION Ba. OFFICE SYMBOL Georgia Institute of Technology Ta NAME OF MONITORING ORGANIZATION AFOSR TR. 3 4 - 03 5 5 Atlants GA '30332 Ta NAME OF MONITORING ORGANIZATION Atlants GA '30332 NAME OF JUNDINGSPONSORING CREAMINATION Ba. OFFICE SYMBOL (H spelesbin) ANDORESS (Chr, Sale and ZIP Code) Directorate of Mathematical & Information Sciences, Bolling AFB DC 20332 ANDORESS (Chr, Sale and ZIP Code) DAG29-B1-K-0024 Bolling AFB DC 20332 DAG29-B1-K-0024 ADDRESS (Chr, Sale and ZIP Code) PACERAM ELEMENTON INC. DEPORTION NUMBER Bolling AFB DC 20332 DAG29-B1-K-0024 NM DAG29-B1-K-0024 AFOSR ALUATION Ba. OFFICE SYMBOL (H spelesbin) INTICE (Inclust Steams and ZIP Code) PACERAM ELEMENT NO. PROCECT Bolling AFB DC 20332 NM AFOSR ALUATION Ba. OFFICE SYMBOL (H spelesbin) INTICE (Inclust Steams and ZIP Code) PACERAM ELEMENT ARY NOTATION INTELESTORY Code IS DAGE COLOR INTELESTORY AND	DECLASSIFICATION/DOWNGRA	DING SCHED		unlimited.	-		
NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL ("splicede) is NAME OF MONITORING ORGANIZATION Recript Institute of Technology Main Force Office of Scientific Research A ADDRESS (Ciry, Sum and ZIP Code) Directorate of Mathematical & Information Sciences, Bolling AFB DC 20332 NAME OF FUNDINGROUSORING ORGANIZATION D. OFFICE SYMBOL ("spliced) Directorate of Mathematical & Information Sciences, Bolling AFB DC 20332 NAME OF FUNDINGROUSORING ORGANIZATION D. OFFICE SYMBOL ("spliced) D. ROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ("spliced) A DDRESS (Ciry, Sum and ZIP Code) D. OFFICE SYMBOL ("spliced) D. ROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ("spliced) A DDRESS (Ciry, Sum and ZIP Code) D. OFFICE SYMBOL ("spliced) D. ROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ("spliced) A DDRESS (Ciry, Sum and ZIP Code) DAG29-81-K-0024 TASK ("spliced) NO. Bolling AFB DC 2(J32 INTE (Incluse Scent) Classifiestion) DAG29-81-K-0024 TASK ("spliced) ITTLE (Incluse Scent) Classifiestion) DAG29-81-K-0024 TASK (Spliced) NO. ITTLE (Incluse Scent) Classifiestion) D. Mersformation in Scences, Bolling AFB DC 2(J32 Task (Spliced) ITTLE (Incluse Scent) Classifiestion) D. Mersformation, Scence Scent) No. Pastecount (Spliced) ITTLE	PERFORMING ORGANIZATION REPORT NUMBER(S)			5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR- 34-0355			
Technology Technology ADDRESS (City, Suit and ZIP Code) School of Electrical Engineering Atlanta GA '30332 Atlanta GA '30332 MAME OF NUNNINDFONSONING Barten Stream AFOSS AFOSS Bolling AFB DC 20332 Ardores for Unploind Decomposition Bolling AFB DC 2032 Bolling AFB DC 2000 Bolling AFB DC 2032 Bolling AFB DC 2002 Bolling AFB DC 2002	L NAME OF PERFORMING ORGANIZATION Bb. OFFIC Georgia Institute of		bb. OFFICE SYMBOL (If applicable)	78. NAME OF MONITORING ORGANIZATION Air Force Office of Scientific Research			
School of Electrical Engineering Atlanta GA '30332 Directorate of Mathematical & Information Sciences, Bolling AFB DC 20332 NAME OF PUNDINGAPONSORING ORGANIZATION AFOSR Bs. OFFICE SYMBOL (17 oppleade) Bolling AFB DC 2(322 D. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (17 oppleade) Bolling AFB DC 2(322 Bolling AFB DC 2(322 IN MORGANIZATION NO. PROSENT (100 F UNDING NOS. PROSENT ELEMENT NO. PROSENT NO. Bolling AFB DC 2(32 IN MERSENT ELEMENT NO. PROSENT (100 F 2)304 AG ITTLE (Incluée Security Claunification) IN MERSENT ILL TITLE (Incluée Security Claunification) No. ULTICHANNEL LINEAR PERDICTIVE CODING OF COLOR IMAGES# IN AFE OFAT IS TYPE OF REPORT Task No. No. Personat Authonesis Is Subject TERMS (Continue on mercent (Increasery and identify by block number) Is Supresent IS Supresentation Is Subject TERMS (Continue on mercent (Increasery and identify by block number) This page reports on a preliminary study of applying single-channel (scalar) and multi- channel (vector) 2-D linear prediction to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADFCM coder is infroduced. The results of this study indicate that texture information in multispectral images can be represen- ted by linear prediction coefficients or matrices, whereas the prediction error conveys edge-information. Moreover, by using a single-channel edge-information the investigator obtained, from original color images of 24 bits/pixel, reconstructed images of good quality at information rates of 1 b	Technology		l	75 ADDRESS (City	State and ZIP Code	e)	
NAME OF FUNDINGSPONSORING ORGANIZATION B. OFFICE SYMBOL (If applicable) PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER (If applicable) AFOSR IM DAAG29-81-K-0024 E ADDRESS (CID, State and ZIP Code) ID. SOURCE OF FUNDING ODS. Bolling AFB DC 2(J32 PAGGRAM ITTLE (Include Security Classification) PAGGRAM ILITICHANNEL LINFAR PREDICTIVE CODING OF COLOR IMAGES* Petros A. Maragos, Russell M. Morsereau, and Ronald W. Schafer Reptint Is. TIME COVERED Petros A. Maragos, Russell M. Morsereau, and Ronald W. Schafer Sa TYPE OF REPORT Is. TIME COVERED Petros A. Maragos, Russell M. Morsereau, and Ronald W. Schafer Sa TYPE OF REPORT Is. TIME COVERED Point Is. TIME COVERED PD I - 4 ISBA ASSUMPCEMENTARY NOTATION ASSUMPCEMENTARY NOTA	School of Electrica Atlanta GA '30332	1 Enginee	ering	Directorate Sciences, Bo	of Mathemat	tical & Inf 00 20332	ormation
AFOSR NM DAAG29-81-K-0024 E ADDRESS (Cir, Siste and ZiP Code) ID SOURCE OF FUNDING NOS. PROSECT TASK. Bolling AFB DC 2(32 PAGEAAM PROSECT TASK. 1. TITLE (Include Security Classification) ID SOURCE OF FUNDING NOS. PROSECT TASK. 1. TITLE (Include Security Classification) ID SOURCE OF FUNDING NOS. PROSECT TASK. 1. TITLE (Include Security Classification) ID SOURCE OF FUNDING NOS. PROSECT NO. 1. TITLE (Include Security Classification) ID SOURCE OF FUNDING NOS. PROSECT NO. 2. THERMS (Continue on reverse (Income Transmitted Vir. No. Day) IS PAGE COUNT IS PAGE COUNT 2. SUPPLEMENTARY NOTATION ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) IS SUPPLEMENTARY NOTATION 7. COSATI CODES ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) IS SUPPLEMENTARY NOTATION 7. COSATI CODES ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) IS SUPPLEMENTARY NOTATION 7. COSATI CODES ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) 7. COSATI CODES ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) 7. COSATI CODES ID SUBJECT TERMS (Continue on reverse (Incomerse and identify by block number) 7. COSATI C	A NAME OF FUNDING/SPONSORIN ORGANIZATION	NG	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	INTIFICATION P	NUMBER
a DDRESS (City, State and ZIP Code) Bolling AFB DC 2(332 Bolling AFB DC 2(332 BOLL COP FUNCTION COMMENT BOLL TICHAMNEL LINEAR PREDICTIVE CODING OF COLOR IMAGES* CPROGNAL AUTHORS PETROS A. Maragos, Russell M. Mersereau, and Ronald W. Schafer Betros A. Maragos, Russell M. Mersereau Information to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADPCM coder is introduced. The results of this study indicate that texture information in multispectral images of good quality at information rates of 1 bit/pixel or less. B DISTRIBUTION/AVAILABILITY OF AESTRACT NCLASSIFIED B DAME OF REPONSIBLE MOIVIDUAL Dr. JOSEPH Bram (DOR)	AFOSR		NM	DAAG29-81-K-0	0024		·
Bolling AFB DC 2(.332 Ite Limetry No. No. No. I. TITLE (Include Security Claunification) Ite Limetry No. A. A. III. TITLE (Include Security Claunification) Ite State And Authonsis A. A. Petros A. Maragos, Russell M. Mersereau, and Ronald W. Schafer Ite State Count Ite State Count A. Ba TYPE OF REPORT Ite Subject TERMS (Continue on reverse if necessary and identify by block number) Ite Subject TERMS (Continue on reverse if necessary and identify by block number) Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 7 COSAT: CODES Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 8 Subject Count Pp 1-4 IGGM 7 COSAT: CODES Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 7 COSAT: CODES Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 7 COSAT: CODES Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 7 COSAT: CODES Ite Subject TERMS (Continue on reverse if necessary and identify by block number) 7 This paper reports on a preliminary study of applying single-channel (scalar) and multichannel (vector) 2-D linear prediction coefficients or m	c. ADDRESS (City, State and ZIP Cod	de)		10. SOURCE OF FUR	NDING NOS.	TAB#	
1. TITLE (Include Security Classification) UILTICHANNEL LINEAR PREDICTIVE CODING OF COLOR IMAGES* 2. PERSONAL AUTHORS; Petros A. Maragos, Russell M. Mersereau, and Ronald W. Schafer 3a. TYPE OF REFORT 13b. TIME COVERED 14. DATE OF REFORT 13b. TIME COVERED 14. DATE OF REFORT 15. SUPPLEMENTARY NOTATION 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) 7 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) PP 1-4 1984 14. ABSTRACT (Continue on reverse if necessary and identify by block number) This paper reports on a preliminary study of applying single-channel (scalar) and multi- channel (vector) 2-D linear prediction to rater at formation in multispectral images can be represen- ted by linear p	Bolling AFB DC	20332		ELEMENT NO.	NO. 2304	NO.	NO.
COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by black number) Pp 1-4 1964 ABSTRACT (Continue on reverse if necessary and identify by black number) This paper reports on a preliminary study of applying single-channel (scalar) and multichannel (vector) 2-D linear prediction to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADPCM coder is introduced. The results of this study indicate that texture information in multispectral images can be represented by linear prediction coefficients or matrices, whereas the prediction error conveys edge-information. Moreover, by using a single-channel edge-information the investigator obtained, from original color images of 24 bits/pixel, reconstructed images of good quality at information rates of 1 bit/pixel or less. Distraieution/Availability of ABSTRACT 21 ABSTRACT SECURITY CLASSFICAT Distraieution/Availability of ABSTRACT 21 ABSTRACT S	AULTICHANNEL LINEAR PRI 2. PERSONAL AUTHOR(S) Petros A. Maragos, F 3. TYPE OF REPORT Reprint A SUPPLEMENTARY NOTATION	EDICTIVE Russell N 136. TIME C FROM	CODING OF COLOR M. Mersereau, an OVERED TO	I IMAGES* Id Ronald W. So 14. DATE OF REPOR 1984	chafer RT (Yr., Mo., Dey)	15 PAGE 4	
ABSTRACT (Continue on reverse if necessary and identify by block number) This paper reports on a preliminary study of applying single-channel (scalar) and multi- channel (vector) 2-D linear prediction to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADPCM coder is introduced. The results of this study indicate that texture information in multispectral images can be represen- ted by linear prediction coefficients or matrices, whereas the prediction error conveys edge-information. Moreover, by using a single-channel edge-information the investigator obtained, from original color images of 24 bits/pixel, reconstructed images of good quality at information rates of 1 bit/pixel or less. DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED SAME AS RPT. DIC USENS DICLASSIFIED 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. Joseph Bram Product State Sta	7 COSATI CODES FIELD GROUP SU	B. G.R.	18. SUBJECT TERMS (Continue on reverse if ne	ecessary and identij	'y by block numb	er)
D. DISTRIBUTION/AVAILABILITY OF ABSTRACT NCLASSIFIED/UNLIMITED D SAME AS RPT. DTIC USERS D 22. NAME OF RESPONSIBLE INDIVIDUAL Dr. JOSEPH Bram (202) 767- 4939 NM	This paper reports of channel (vector) 2-I novel idea of a mult of this study indicated by linear predice edge-information. Mobtained, from original	on a prel D linear ti-input ate that ction coe Moreover, inal colc ion rates	iminary study of prediction to c single-output 2 texture informa efficients or ma by using a sin or images of 24 of 1 bit/pixel	f applying sir olor image mod -D ADPCM coder tion in multis trices, wherea gle-channel ed bits/pixel, re or less.	ngle-channe deling and r is introdu spectral ima as the pred dge-informa econstructed	l (scalar) coding. Ai uced. The ages can be iction erro tion the ir d images of	and multi- lso, the results e represen- or conveys avestigators f good
22. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER (Include Are Code) Dr. Joseph Bram (202) 767-4939 NM	quality at informati						
Dr. Joseph Bram (102) 767-4939 NM	quality at informati	OF ABSTRA		21 ABSTRACT SECU	URITY CLASSIFIC	JU	N 1 9 1984
	Quality at informati	OF ABSTRAG		21 ABSTRACT SECU UNCLASSIFIED 225 TELEPHONE N	URITY CLASSIFIC	JU 22c. OFFICE SV	N 1 9 1984

To be presented at the 1984 International Conference on Acoustics, Speech, and Signal Processing. 1 CEALI

AFOSR-TR- 84-0355

MULTICEANNEL LINEAR PREDICTIVE CODING OF COLOR INAGES"

Petros A. Maragos, Russell N. Mersereau, and Ronald W. Schefer

School of Electrical Engineering Georgia Institute of Technology Atlanta, Georgia 30332

ABSTRACT

This paper reports on a preliminary study of applying single-channel (scalar) and multichannel (vector) 2-D linear prediction to color image modeling and coding. Also, the novel idea of a multi-input single-output 2-D ADPCM coder is introduced. The results of this study indicate that texture information in multispectral images can be represented by linear prediction coefficients or matrices, whereas the prediction error conveys edge-information. Moreover, by using a single-channel edge-information we obtained, from original color images of 24 bits/pixel, reconstructed images of good quality at information rates of 1 bit/pixel or less.

ŀ

THEODOCTION

Two-dimensional linear prediction was successfully applied to coding monochrome images at rates below 1 bit/pixel [1,2] and to clustering homogeneous image textures by using 2-D LPC distances [3]. Notivated by the above success of 2-D linear prediction, we tried to extend its use to multispectral images either by autoregressively modeling each channel separately or by using a vector 2-D linear predictor which exploits crosscorrelation between channels. These two approaches ressemble the notions of component and composite encoding methods for color video signals [4]. A major contribution of this paper is the introduction of a multi-input single-output ADPCM coder whose output will be a single-channel edge-information signal; this reflects the idea that for most natural color images the edges occur at approximately the same location in every Although our results refer only to channel. 3-channel color images (red, green, blue), our theoretical formulation addresses the general case of an N-channel multispectral image.

MULTICINHURL 2-D LINEAR PREDICTION

Let $x(n,n) = [x_1(n,n), \dots, x_N(n,n)]^T$ represent an N-channel 2-D image vector signal, where $[\cdot]^T$ denotes the transpose of a vector and $x_1(n,n)$ represents a sincle-channel scalar 2-D sequence of image intensity in a certain spectral

band. By exploiting the autocorrelation of every channel and the cross-correlation between channels, we formulate the following 2-D vector autoregressive model for x(n,n):

utene en unene staantso

<u>`9</u>

DTIC

°0₽¥

NSPLCT0

 $\mathbf{x}(\mathbf{n},\mathbf{n}) = \sum_{\mathbf{k}} \sum_{\mathbf{l}} \mathbf{A}(\mathbf{k},\mathbf{l}) \mathbf{x}(\mathbf{n}-\mathbf{k},\mathbf{n}-\mathbf{l}) + \mathbf{b} + \mathbf{e}(\mathbf{n},\mathbf{n}) \quad (1)$

where we predict the vector $\mathbf{x}(\mathbf{n},\mathbf{n})$ from its neighbor vector values weighted by "prediction matrices" $A(\mathbf{k},\mathbf{l})$ of order NH. In (1), (\mathbf{k},\mathbf{l}) range over all integer pairs in a set \mathbf{I} , called the region of support of the prediction mask, and this set determines whether the mask is causal, quarter-plane, etc. The causality of the prediction mask is necessary for '.he recursive computability of (1). The bise vector $\mathbf{b} = [\mathbf{b}_1,\ldots,\mathbf{b}_N]^T$ accounts for the fact that the intensity image samples are explicitly biased by a dc-level vector $\mathbf{d} = [\mathbf{d}_1,\ldots,\mathbf{d}_N]^T$ since they are always nonnegative. The 2-D vector prediction error signal $e(\mathbf{m},\mathbf{n})$ is the output of a NAR matrix prediction error filter

$$P(z_1, z_2) = I - \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} A(k, t) z_1^{-k} z_2^{-1}$$
(2)

when the input is $\pi(\pi,n)$ and where I denotes the N RN identity matrix. The relation between b and d is

$$= \left[\mathbf{I} - \sum_{k=k} \sum_{k=k} \mathbf{A}(k, k)\right] \mathbf{d}$$
(3)

Consider the NAN average prediction error matrix

ь

$$\mathbf{E} = \sum_{n \in \mathbb{N}} \sum_{n \in \mathbb{N}} \mathbf{e}^{\mathrm{T}}(\mathbf{a}, \mathbf{n}) \qquad (4)$$

In (4), (m,m) range over all integer pairs corresponding to pixel locations inside some region of support of $\pi(m,m)$ which we call the <u>Analysis</u> frame. The i-th diagonal entry of the matrix B represents the mean-squared prediction error in the *i-th* channel. The criterion to find the optimal parameters ($\alpha(k, \beta)$, b) of the model is to minimize the trace of E. The inclusion of b in

These work was supported by sum Joint Services Electronics Program work "Cattact #DAAG29-81-R-0024.

84 06 18 157

Approved for public release distribution unlimited. the unknown parameters guarantees that the prediction error e(m,n) will be a 2-D zero-mean vector sequence. The normal equations are:

Į

$$\sum_{k=2}^{\infty} \Phi(\mathbf{i},\mathbf{j};\mathbf{k},\mathbf{i}) \mathbf{A}^{\mathsf{T}}(\mathbf{k},\mathbf{i}) + \mathbf{B}(\mathbf{i},\mathbf{j}) \mathbf{b}^{\mathsf{T}} = \Phi(\mathbf{i},\mathbf{j};\mathbf{0},\mathbf{0}) \quad (5\mathbf{a})$$

$$\sum_{k=2}^{n} \sum_{k=1}^{n} a^{T}(k, L) a^{T}(k, L) + H_{s} \cdot b^{T} = a^{T}(0, 0)$$
(5b)

where we observe the matrix correlation and vector shift lags respectively:

$$\Phi(k,l:i,j) = \sum_{\mathbf{n},\mathbf{n}} \sum_{\mathbf{n}} \mathbf{x}(\mathbf{n}-k,\mathbf{n}-l) \mathbf{x}^{\mathrm{T}}(\mathbf{n}-i,\mathbf{n}-j) \quad (6a)$$

$$s(k, \ell) = \sum_{m=1}^{n} \sum_{n=1}^{\infty} x(m-k, n-\ell)$$
 (6b)

In (5), (k,1) and (i,j) range over the set E. In (6), (m,n) range over the analysis frame, and $\rm H_g$ in (5b) denotes the number of samples inside the analysis frame.

An alternative way of modeling $\pi(n,n)$ would be to autoregressively model each channel separately: $\frac{1}{2}$

$$\mathbf{x}_{\underline{i}}(\mathbf{n},\mathbf{n}) = \sum_{\mathbf{k}} \sum_{\underline{a}} \mathbf{a}_{\underline{i}}(\mathbf{k},\underline{z}) \mathbf{x}_{\underline{i}}(\mathbf{m}-\mathbf{k},\mathbf{n}-\underline{z}) + \mathbf{b}_{\underline{i}} + \mathbf{a}_{\underline{i}}(\mathbf{m},\mathbf{n})$$
(7)

for i=1,2,...,W, where the optimal scalar linear prediction coefficients $a_i(k, t)$ and bias coefficient b_i are obtained by minimizing the mean-squared value of the scalar prediction error signal $e_i(m,n)$ over the analysis frame, as explained in [1,2]. Obviously the scalar models in (7) are a subcase of the vector model in (1) with the prediction matrices A(k, t) being diagonal.

One approach to compute the correlation and shift lags in (6) is to assume the vector image signal to be zero outside the analysis frame, which is similar to the autocorrelation method of 1-D linear prediction. Alternatively, samples on the borders of the frame could be supplied as needed in the computation of (6); this latter approach is called the covariance method. The covariance method gives better estimates of the predictor parameters and of the bias, and a smaller mean-squared prediction error than the autocorrelation method. However, neither method can guarantee stability of either the resulting scalar or matrix autoregressive models.

The stability of the matrix filter $1/P(s_1,s_2)$ is necessary for the stable reconstruction of x(w,n) from the prediction matrices, the bias, and the prediction error signal e(w,n). This stability is equivalent to the scalar 2-D polynomial $det\{P(\tau_1,s_2)\}$ being minimum phase, where "det[:]" denotes determinant of a matrix. With the covariant with the stability in

1.20

the following way: From (2) and (3) we infer that b = F(1,1)d. Therefore, if the image signal has a nonzero dc-level (d*0) and we arbitrarily require b=0 in (5), then we force the determinant of F(1,1) to become zero, which forces the model to be marginally unstable since det[F(1,1)]=0corresponds to a pole on the unit-surface. Moreover, as we proved in [2], if the prediction mask has a quarter-plane region of support, then a necessary condition for stability is

$$det[P(1,1)] > 0$$
 (8)

Finally, if we use the autocorrelation method with a 2-D <u>separable</u> prediction mask, then the stability of the inverse prediction error filter is guaranteed in both the scalar and the vector cases.

HULFICHANKL ADDON CODING

We used the above theoretical formulation of 2-D linear prediction for the design of the predictors in the feedback loops of an ADFCN image coding scheme of the feed-forward type. Initially, each channel of the multichannel image was coded separately using a single-input singleoutput ADFCN, as described in [1,2], at an average information rate of 1 bit/pixel or less. This resulted in a bit rate of about H bits/pixel for an N-channel color image. However, since our interest was in much lower bit rates and because we wanted to exploit correletion between channels, we used the multi-input single-output ADFCN scheme above in Fig. 1.

The philosophy of each feedback loop in Fig. 1 is that for the i-th channel the P_i predictor forms an estimate from past samples of the reconstructed image signal $x_i(m,n)$. This estimate is subtracted from the incoming image signal $x_i(m,n)$ to form the difference signal $d_i(m,n)$ which is quantized and encoded into the 2-D signal c(m,n) for transmission. At the receiver, the quantized difference signal $\hat{d}_i(m,n)$ excites the i-th inverse prediction error filter to produce the reconstructed image signal $x_i(m,n)$ for the i-th channel.

The design of the multi-input single-output quantizer Q in Fig. 1 is governed by the intuition that for most natural color images the edges occur at approximately the same location in every channel. The edge-information in the i-th channel is conveyed mainly by the prediction error signal $e_1(n,n)$. However, assuming small quantization errors, the difference signal $d_1(n,n)$ approximates $e_1(n,n)$. Therefore an emcoded quantized difference signal would contain mainly information about the edge-location. This is depicted in Fig. 2 where the binary images (a), (b), (c) show the encoded quantized (2-levels/pixel) difference signals of the red, green, and blue channel separately for a head and shoulders image with well defined edges. The binary image of Fig. 2(d), however, show the 2-levels/pixel common encoder quantized difference signal which is the pattern of the

2

multi-input single-output quantizer of Fig. 1. By comparing the images of Fig. 2, we realize that by using a single-channel for information about edge-location we do not loose many edges. The encoded signal c(m,n) was formed by first finding a single-channel difference signal:

$$d(\mathbf{n},\mathbf{n}) = \sum_{i=1}^{n} w_i \cdot d_i(\mathbf{n},\mathbf{n})$$
(9)

where the w_i 's are weighting coefficients, and then quantizing and encoding $d(\mathbf{x}, \mathbf{n})$ as follows:

1 ,
$$d(m,n) \ge 0$$

 $c(m,n) \ge 0$, $-0 < d(m,n) < 0$ (10)
 -1 , $d(m,n) \le 0$

The encoded signal c(m,n) represents the sequence of codewords. The quantized difference signals are determined as follows:

$$d_i(m,n) = c(m,n) \cdot \Delta_i$$
, $i=1,2,...,M$ (11)

The threshold $\hat{\Theta}$ in (10) and the step sizes Δ_i in (11) are adapted over each NHM analysis frame of the image according to the rule:

$$\mathbf{\hat{e}} = \mathbf{K} \cdot \boldsymbol{\sigma}_{\mathbf{e}} \quad , \quad \boldsymbol{\Delta}_{\mathbf{\hat{\lambda}}} = \mathbf{D} \cdot \boldsymbol{\sigma}_{\mathbf{e}_{\mathbf{\hat{\lambda}}}} \tag{12}$$

where σ_i is the rms value of the 1°th production error Signal $e_i(n,n)$ in the analysis frame, is the rms value of the i-th prediction and $\sigma_{\rm is}$ the rms value of a single-channel prediction error signal formed by a linear combination of all the $e_i(m,n)$ using the same weighting coefficients as in (9). The constants K and D are determined empirically [1,2]. The 3-level quantization logic of (10) allows us to set 0=0 and thus quantize the difference signal with 1-bit fixed length codewords. Alternetively, if 0+0, by adjusting K we can produce at the output of the quantizer a large percentage of sero levels which will reduce significantly the entropy of the quantized difference signal and enable us to use Suffman codewords of variable length in order to achieve an average bit rate of much less than 1 bit/pixel.

In addition to the encoded quantised difference signal, we must transmit to the receiver "side-information" about the predictor parameters, the bias and the step size. The predictors P_i in Fig. 1 are designed either as scalar predictors (with prediction coefficients operating on the i-th channel) or ar vector prediction (with predictor matrices operating on all the channels simultaneously). Unfortunately, the issue of stability and the limited available mathematical tools for 2-D polynomials limit our choices mong various approaches. For <u>scalar</u> predictors the autocorrelation method with a 2-D separable prediction mask guarantees stability and it allows us to quantise the prediction coefficients in the domain of the log-are-ratios, exectly as done with LFC coding of speech. Alternatively, we can use the "stabilised" as explained in [1,2], and use a logarithmic quantizer to quantize the coefficients inside a fixed range. For vector predictors, we can use the autocorrelation method with a 2-D meparable mask for guaranteed stability. The quantization of the entries of the resulting prediction matrices is still under investigation. The components of the bias vector d and the step sizes Δ_i are quantized by using log-quantizers.

EDPERIMENTAL RESULTS

We successfully applied the multichannel adaptive prediction ADPCM coding to color aerial photographs and head and shoulders images. These color images had only 3 channels (red, green and blue) with a total resolution of 24 bits/pixel. The analysis frames consisted of 16×16 or 32×32 pixels. The prediction masks had a quarter-plane region of support with 2×2 or 3×3 samples in extent. By coding each channel separately at 1 bit/pixel or less, color reconstructed images of high quality resulted at a rate of =3 bits/pixel or less. By using a multi-input single-output ADPCM with adaptive scalar prediction and 3-level quantization color reconstructed images of good quality resulted at a total rate of " bit/pixel or less (down to =0.8 bit/pixel). These rates correspond to compression factors of about 24:1 or more. The mixing of the different channels in Eq. (9) was done by using as weighting coef-ficients 0.3, 0.6 and 0.1 for the red, green and blue channel respectively, since the green color is the most important and the blue is the least important for edge-content [4].

By using multichannel ADPCN with adaptive matrix (instead of scalar) predictors we obtained coded images whose quality was similar to the quality of the images coded by using scalar predictors. Since matrix linear prediction gives a smaller prediction error residual than scalar linear prediction, we are continuing to investigate ways of achieving higher image quality using matrix predictors.

NUT THE OWNER

- P. A. Maragos, R. M. Mersereau, and R. W. Schafer," Some Experiments in ADPCM Coding of Images," Proc. ICASSP-82, Paris, France, Nay 1982, pp. 1227-1230.
 [2] , "Two-dimensional Linear Prediction
- [2] , "Two-dimensional Linear Prediction and its Application to Adaptive Predictive Coding of Images," submitted for publication to IEEE Trans. on ASSP, Aug. 1983.
- [3] , "Two-Dimensional Linear Predictive Analysis of Arbitrarily-Shaped Regions," Proc. ICASSP-83, Boston, Nass., April 1983, pp. 104-107.
- [4] J. O. Limb, C. B. Rubinstein, and J. E. Thompson, "Digital Coding of Color Video Bignals-A Review," IEEE Trans. on Commun., Vol. COM-25, No. 11, Nov. 1977, pp. :349-1385.

4

.•

.

(b)

(d)

.