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ABSTRACT

> A piecewise linear finite element-based method of lines is presented for

the numerical solution of coupled parabolic partial differential equations

which model biological and physicochemical reaction-diffusion processes in one

space dimension. The vertical lines emanating from the space nodes in this

method change at automatically selected times when, in order to control a norm

of the space discretization error, adaptive spatial regridding occurs. The

regridding algorithm is an extension of one described previously -by-t)e

kuthna-11 and is implemented in the program FEMOLI, which uses the LSODI
/II

package -4], [5] - ndmP_= .lo a.,. rai _to integrate the ordinary

differential equations in time along the vertical lines. Computational

results show that the method is efficient, that a posteriori estimates of the

space discretization error are accurate, and that the adaptive procedure

reliably controls the space discretization error.

1.

I
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1. INTRODUCTION

Reaction-diffusion processes occur in many branches of biology and

physical chemistry. Examples include substrate transport and consumption in

the microcirculation, flame propagation in combustion, nerve conduction, and

interactions of mobile populations in ecosystems. These diverse phenomena are

often modeled by initial boundary value problems (IBVPs) in which the

governing parabolic partial differential equations (P')Es) are nonlinear and

coupled only through the rates at which physical components react. Such IBVPs

in one space dimens.ion are the problems considered in this paper.

Solutions of these problems may decay to steady states, oscillate in time

or evolve as localized traveling waveforms. Spatial rezoning or regridding in

numerical methods for time-dependent PDEs with the latter type of solutions

has become quite popular. Grid evolution is generally governed by a feedback

procedure in the "physical" reference frame or by explicit mappings from

"physical" to "computational" coordinates, either in an a priori manner or as

part of a feedback procedure. Schemes utilizing coordinate mappings are

surveyed in Thompson et. al. [22].

In this paper we describe the implementation of a variation of the

classical method of lines (MOL) in which the space grid is updated in a

feedback (adaptive)1 procedure. The MOL reduces an IBVP through space

discretization into an initial value problem for a system of ordinary

differential equations (ODEs) in time. The ODEs determine spatial parameters

of the solution on vertical lines extending in time. The method described

here is based on a finite element formulation using linear elements in

IThe terms "adaptive" and "feedback" are used interchangeably to describe
numerical methods here. For analyses which distinguish between the two, see
Rheinboldt [201 and Babuska and Vogelius [1).

-t , I li
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space. We refer to this approach as the FEMOL. The ODEs in the FEMOL

determine nodal values of the solution. They are integrated via variable-

order, variable-step implicit formulas as implemented in the LSODI package of

Hindmarsh and Painter (cf. [14], [15]). In the adaptive FEMOL grids change

discontinuously in time, as nodes are both added and deleted. Such regridding

is often said to be locally "static," in contrast to "dynamic" regridding,

where changes occur continuously in time.

Most methods described in the literature which employ static, dynamic or

combinations of both types of regridding can be viewed as MOL extensions or

variations. In K. Miller and R. Miller [16], Gelinas et. al. [12] and K.

Miller (17], the moving finite element method was developed, where a fixed

number of nodes are used and nodal positions are computed together with the

solution values at the nodes. The concept of moving (in time) meshes was also

used in Davis and Flaherty [121 and Flaherty et. al. [10]. Many regridding

methods for time-dependent PDEs have attractive properties. The reader is

especially referred to Berger and Oliger [4], Dwyer et. al. [9], Gannon [11]

and Harten and Hyman [13].

While these methods incorporate various principles and constraints in

feedback approaches, all have similar objectives. Regridding is expected to

yield high accuracy, reliability and robustness per computational cost. It is

difficult to quantitatively compare various feedback (adaptive) methods,

despite the fact their goals are related, but it should be possible to measure

the success or failure of each in achieving its goals. Unfortunately, the

goals often are not well formulated, quantified or used in supporting

computational experiments.

The primary goal of the adaptive FEMOL is to control the space

discretization error of the approximate solution as measured in a weighted
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L2 gradient norm (weighted H1 norm). This norm arises naturally in

connection with the finite element formulation. Error control is achieved

through control of computed error estimates. The a posteriori estimator used

here is similar to that analyzed for linear parabolic PDEB by the authors in

[61, [7]. The estimator is obtained by summing local error indicators. These

, !are formed from PDE residuals evaluated with the approximate solution inside

each of the elements.

The regridding strategy described here extends an earlier version of the

authors 171 and was summarized for linear PDEs in Bieterman [5]. A grid is

retained until the estimated error exceeds a preset tolerance. The error is

*, lowered below this tolerance by adding and deleting nodes. The most important

part of grid construction is a pattern recognition procedure used to determine

the grid's "shape." In this procedure information is extracted from the local

error indicators, reduced to a grid-independent form, and relevant features

taken from this reduced data are compared.

This paper is organizied as follows. Section 2 contains mathematical

details of the problem and classical version of the method. The salient

features of the adaptive FEMOL are described in Section 3, along with the

method's goals and the basic strategy used to achieve them. The achievement

of the goals depends first and foremost on the quality of the error

estimator. The estimator and the local indicators used to form it are the

subjects of Section 4. In Section 5 we introduce the notions of "shape" and

"intensity" to describe a grid. The epecific strategy used to construct a

grid is to somewhat directly control these two grid properties. This strategy

and details of the refinement/derefinement algorithm are given in Section 5.

In Section 6 we describe the selection of the parameter which controls grid

intensity. The pattern recognition procedure used to select the function
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controlling grid shape is presented in Section 7. Section 8 contains the

results of many carefully conducted computational experiments with four

reaction-diffusion problems. These results enable one to quantitatively

evaluate the method's performance. They show how the regridding strategy is

carried out, how the error estimator works, and the dependence of error

control on error estimation. The final section summarizes many of the

important aspects of the method.
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2. PROBLEM AND CLASSICAL METHOD DESCRIPTION

Let 2 - (x: - < - < x < + < -}, a - ai- U an+ and U an.

We are interested in finding u = {ui(tx)}il,NPDE for t E [O,T] and

x E 5 which satisfies the differential equations

ui - (a i(x) Ui ) x  fi(t,x,u); x E Q, t E (0,T], i = 1,NPDE, (l.a), Ut  --

tl-e boundary conditions

i i i i i
a (x) u + 8 (x) u = g (t,x); x E an, t E (O,T], i = 1,NPDE. (l.b)

and the initial conditions

i iu u0 (x); x E Q, t = 0, i = 1,NPDE. (1.c)

For x E 9 it is assumed that ai(x) 0 0, i = 1,NPDE, with ai(x) > a0 >

0 for at least one index i. The functions ai  and ai  determine the type

of boundary conditions (BCs). It is assumed that Bi (a - ) < 0, 8 (a + ) > 0

and a i(x) > 0 for x E an and i - 1,NPDE. With reasonable problem data,

the solution u of Eqs. (1) exists and is a smooth mapping of [O,T] into

the Hilbert space

H - {v - {vi}i.lNDE: ,vx E L2 (n); i = 1,NPDE}.

Here, L2(2) denotes the usual space of square integrable functions on 9,

with norm and inner product 1.10  and <.,.>, respectively. Provided

appropriate conditions on {ai ,aiBiil,NPDE hold, the semi-norm

NPDE i i/2lllvlll - { I <a vi
il



is a norm on H.

We will denote by

6 - {09- -x 0 < x1 < x2  < N-1 < xN =, a+} (2)

a space grid, with nodes {xn} and elements {(xnl,xn)}, and write

hn - xn - xn I for n 1 1,N. (3)

S(6) c H denotes the finite element subspace of functions which are linear on

each element of 6.

The classical version of the FEMOL is formulated in the present setting as

follows. With given 6, the semi-discrete approximation U: (O,T] + S()

of u satisfies the equations

<i(t,.),0 i>+(ait(t,.),Di> + ai (x) 11 C x) iyi(t'x) 0i Cx)!ISI
X x x(x) 1

(4.a)

<Fii(t, , ,D ) , i > + a (x) gi (t,x) (x)/S +8iCx)-!n ; t E (O,T), i - I,NPDE,

B(x) g

0 . {O lj},NPDE ( S(6)

and

U(O,.) - U(O,.). (4.b)

U(O,.) E S(6) is the linear interpolate of uo(.) and F(t,.,t) E S(6)

interpolates f(t,.,B). Here it has been assumed for simplicity that 8i(x)

0 for all i. Otherwise, S(6) and Eqs. (4) are modified by usual finite

element techniques.

Eqs. (4) are equivalent to requiring that the vector U~t] -

I _ _ _ _ _ __ _
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v(oi(tXn)}i-1,NPDE satisfies the ODE

n-O, N

M • 'U[t] + A •U[t] = M• F[t,D] + B[t]; t E (0,T], (5.a)

and initial condition

U[01 - U[0]. (5.b)

In Eqs. (5), U[O] and F[t,U] are the NPDE * (N+1)-dimensional vec s of

nodal values of U(O,-) and F(t,.,U). M and A are symmetric matr 3

which are positive definite and nonnegative, respectively. With an

appropriate ordering of the nodal values, these matrices and the product of

M and the Jacobian of F[t,U] with respect to U[.] have half bandwidths

2.NPDE - I (i.e. at most 4.NPDE - 1 nonzero entries per row). The vector

Bit] has at most 2.NPDE nonzero entries which correspond to the values

{ai(xn)gi(txn)/Oi(x n)}i-1,NPDE

n-0 and N

i ii
Recall that i # 0 was assumed. If B (x0) = 0 and ai (x0) # 0 (Dirichlet

BC), for example, this condition is implemented by modifying entries of M,

A and B[t] to obtain the equations

~i~ du'itx d i i J nai(x 0)d-td U(t,x 0) g g ( t ' x 0 )  t > 0, and Di(0,x0) U U(0,x 0).

The FEMOL approximate solution U(.,*) is obtained by numerically solving

Eqs. (5). This is accomplished with the "stiff" implicit backward

differentiation formulas in the LSODI package of Hindmarsh and Painter (cf.

(14], (15]). LSODI takes an input time discretization error tolerance TOL >

0, advances with internally chosen time steps and integration orders, and

,: • ~ ~~~~. .. :r _
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returns U[tJ, the approximate solution of Eqs. (5) and the vector of nodal

values of U(t,.).

We modified the form of the local time error (per step) estimator in LSODI

so that an attempt is made to obtain

"DE 22NPDE
lest (t,.)I 0  (TOL)2 ( l BUi(t,.)I + 1). (6)

i =1 i=1

Here, est(t,.) = {esti (t,-)}i=l,NPDE E S(6) is the function whose nodal

values are the local time error estimates computed in LSODI.

The character of the ODE intial value problem (5) is assumed to be such

that

NPDE i 2 NPDE 2
I IU Ct, " )- (t,.)I 0  

< C(TOL)2( u0i(t,.)u0 + 1) (7)

with a reasonable constant C independent of 6. Moreover, TOL is e3sumed to

be selected such that III t-UIII is small with respect to I lu-U 1,

and hence the total error e = u - U satisfies

lell u-u~lH = 0(max hn ) as max h 0. (8)
n n

The question of how small TOL must be is not addressed here. For some results

in this direction see Babu'ka and Luskin [2].

l1
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3. THE ADAPTIVE FEMOL

The MOL variation presented here differs from the MOL just described in

two basic ways. First, reliable error information is obtained during problem

integration by computing an a posteriori estimate E(t) of IIle(t,.)IHJ

at each t in a set of initially provided, equally spaced times {tk}kI.,K c

(O,T). E is described in the next section. Second, adaptive regridding

occurs at times {Tmm 1 C {tk}kfl,K. The selection of the regridding times

depends on the computed values of E(.).

Integration begins and procedes as in the nonadaptive FEMOL until

regridding occurs at some time tk. A new grid 6+  is created from the

present grid 6 at tk by uniformly subdividing some elements and removing

groups of contiguous nodes to coalesce others. New initial data U(t,.) E+E

S(6+ ) is determined simply by interpolating the already computed

U(tk,.) E S(6) (for the present class of problems, linear interpolation is

more efficient and has been observed to be no less accurate than L2 or other

"global" projections).
+ +

The grid 6 and data U(tk,.) define a semidiscrete approximate

U(t,.) E S(6+ ) for t > tk  as in Eqs. (4) and an ODE initial value problem

of the form (5) for solution values at the nodes of 6+ . Integration of this

problem commences at time tk by restarting LSODI with the same error

tolerance TOL. ODE integration procedes smoothly through times when

regridding does not occur. It continues forward in time until regridding

again occurs or the final time T is reached.

Let us summarize the input and output for this procedure. The input

provided at the initial time TO - 0 consists of

__

p, - - - ..8.
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* a grid 60,

* a time discretization error tolerance TOL > 0,

* a space discretization error tolerance EPS > 0, and

* the times (tk}k1,K - {kT/K}k-i,K at which (.) is computed.

The output from the procedure consists of

* spatial accuracy estimates fE(tk))k-1,K,

* regridding times (Tmlm,1 c {tk}kl,K,

(10)

* corresponding grids {6 M}M>, and

* an approximate solution U, which is in S(6S) for t E [Tm,Tm+i).

There typically are a great many ODE integration time steps taken on each

(tktk+l), and many of these intervals in each (TmTm+i). The TOL-

dependent ODE time stepsize sequence generated by LSODI generally increases on

each (Tm,Tm+i) , and it increases most rapidly just after being restarted

at Tm, when LSODI is permitted to choose the initial stepsize. As in the

nonadaptive FEMOL, we assume that the errors due to the grids (6 m m>

dominate those due to time discretization.

The primary goal in selecting {Tm}m 1 and constructing {6 1 is to

obtain a reliable solution in the sense that

HIle(t,') E u(t,) l t E (0,T). (11)

i ~ ~ ~ ~ ~ ~ P m 1- I t I I I |
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The secondary goal is that {Tm } and { } should be chosen so that

the total work required to integrate the IBVP on a x (0,T)

is less than that required with the same input and any other (12)

selections of regridding times (Ts }s I c (tk}k-lK and grids

{6 I which yield (11).

The basic strategy used to achieve these goals is summarized as follows:

(i) Integration procedes only in the positive time direction and no

information is obtained from the future.

(ii) Information is collected only at the input times {tk}. The amount of

information stored at any time is small and is discarded after one

regridding takes place in the future.

(iii) Regridding occurs at some tk if, and only if E(tk) > .95

EPS IIIU(tk,)III.

(iv) Regridding is carried out at tk in order that E(t) EPSDN

ItIU(tk,.)III, where EPSDN E [.6 EPS, .9 EPS] is adaptively chosen

and E(t+) is a prediction (described in the next section) of the

H 'IIIj-error immediately after time tk with the new grid.

Pure relative IlItII-error control is used so that the reader can

better compare the method's ability to estimate and control errors in the four

problems of Section 8. In practice, EPS might better be a combined

relative/absolute error tolerance, as the time discretization error tolerance

TOL is here. Note that the constant .95 in (iii) introduces a high risk of

violating (11) on some time interval (tk,tk+l). This constant was chosen in

order to show the dependence of error control on error estimation in the

experiments described in Section 8.
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From (iii) and (iv) one sees that the regridding times are implicitly

determined by EPSDN and the constructed grids. A grid is retained until

ElI Ilull! has grown to at least G times its value just after grid

construction, where G = .95 EPS/EPSDN E (1.05, 1.60). Let us remark that the

character of the PDEs is assumed to be sufficiently dissipative so that the

influence of local errors decreases in time.

In attempting to achieve the secondary goal (12), a work expression is

employed which utilizes ODE time stepsize information and computed values of

E(.). This expression is used to select EPSDN and is described in Section 6.

II
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4. ERROR ESTIMATION

Let t be one of the given input times {tkk.1,K and 6 of the form

(2), (3) be the last space grid constructed before time t. The a posteriori

estimate E(t) of IIle(t,')HI> - IIlu(t,) - U(t,.)III is

N NPDE i 2i
E(t) - { I n i(tI. (13)

n-I i-i

i

where tn is the local error indicator for the ith PDE on the nth element:

0; if ai( Xn-1+Xn) .

In(t)12  (14)

X h2 xn
lx n -l+ x n  f r i(t,x)I2 dx; otherwise.

12 a i ( n xn-1

The function ri(t,e) is the residual of the ith PDE (neglecting the

discontinuities at the nodes):

r i(t,x) - U(t,x) - alx(x) U(t,x) - fi(t,x,U(t,x)). (15)

d
The residual is obtained via nodal values in U[t] and j U[t] from LSODI

and integrated in (14) with 2-point Gaussian quadrature.

The quality of the estimator E can be measured with the effectivity

index

ect) -- ~ ) l l ~ , ) l .(16 )

This quality was theoretically analyzed in the setting of linear uncoupled

PDE9 by the authors [6), [71, where it was shown that
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max e(t) * 1 (17)
t

as the space grid sizes converge to zero. The key assumptions used in the

proof of (17) were that the exact solution u is sufficiently smooth, uxx

does not degenerate to the zero function, ODE integrations are sufficiently

accurate, and that the grids are not too irregular or modified too frequently.

All theoretical details have not been carried out for nonlinear reaction-

diffusion systems, but computational experience suggests that similar theory

applies here. The evaluation of E is included in many experiments in

Section 8.

Let us now assume that t E {Tm}m) I and the grid 6 is about to be

modified. The llll-error immediately following a proposed regridding

- < x" < ... < X an I0 1 N+

is estimated with

N+ NPDE 

(18)

E t+ I In i (t+1} ,  (18)
J- i i-i

where {ni (t+) are predicted values of the error indicators for the grid

6+ . These indicators are determined from the already computed {nn (t)) in

the following way.

If some element (xn-lxn) is to be refined into the union

Jo-1+q

U (x+ +

of q uniform subelements, then a q-fold decrease in the contribution to the
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III. Il-error on (xn l xn) is predicted:

JO-1+q NPDE NPDE

I ri (tI 2  In (tl 2 . (19)
i-j0 i-=I i-

Alternatively, if some q contiguous elements {(XnlXn)}nwno,nol+q in the
present grid are to be coalesced to form one new element (xt_.,x), then

NPDE no-l+q 2 n0-1+q NPDEI i (t5 2  h- 2  in(t)12.Ij( hI n h n I) "Inn (20)
nuno nn i-l

0 0

If it happens that hn 0 .... hnOil+q ,  then (20) corresponds to a

predicted q-fold increase in the contribution to the IIII I -error on

(Xuo-,Xno-l+q) -_,

These predictions, as those used in [7], are based on the expectation that

for n 1 1,N

NPDE i

i-I

h 2  xn NPDE
n f I ai(x)lu i (tx)2 dx • (1+o(h )) as h + 0. (21)12 x Jlxx' n n

n-i

When the grid 6 is to be modified, additional information is extracted

from the error indicators (ni (t)}. A piecewise constant function is
n

constructed:

NPDE
w(t,x) 1(12 Ini(t)12)113; x E(Xn ,Xn), n-t,N, (22)l i n 

n-i
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which is an approximation of the cube root of the integrand in (21). From the

definition (13) of E(t), one sees that

N h2 xn
n

E (t) 1 -j.2 f w (t,x)dx. (23)
n=1 1Xn-

1

The function w(t,*) and (23) are explicitly used in determining the "shape"

of the new grid

NA -Aw
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5. GRID SHAPE AND INTENSITY

In refining and derefining a grid 6, two properties of 6 are

changed: its shape and its intensity. To explain what is meant, we begin

more generally by defining the shape of a positive integrable function E on

a as the graph of the function

R(x,y) - V(x)/y); x,y E

and the intensity of E simply as

I - f (x) dx.

Two positive functions have identical shape if and only if they are constant

multiples of one another. A positive integrable can be magnified

(multiplied by a constant) to get a function having any positive intensity and

the shape of .

The shape and intensity of a grid 6 are taken to be those of the

associated grid function

[1/hn; x E (xni ,x n ) for n - 1,N,

&6 - (24)

,.5(1/hn + 1/hn+1) ; x x n  for n- 1, N - 1.

It is easily checked that 6 has intensity E6 - N.

Let us briefly examine the effects of grid shape and intensity on the

estimated 111°111-error in the present method. To this end, at a time t

when a grid 6 is being used, we may use g, in the expression (23) for

E2 (t) to obtain

E(t) -A(w(t,), 6 )
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(1fw3(t ,X) 1/2

Since w(t,.) (cf. (22)) tends toward a grid-independent function as the

information defining it improves, let us consider it to be a known function.

Now, had each element of 6 been bisected at the grid's creation, for

example, the resulting grid would have had the same shape and twice the

intensity of 6. One sees by examining the integrand in (25) that E(t)

would have been half as large. Alternatively, if the N - I interior nodes

of 6 had been rearranged-i.e. the same number of extra nodes added as

deleted here--then the shape of 6 would have been different, but the

intensity would not. The change in Et) then would have depended strongly

on how the shape of 6 had changed with respect to the shape of w(t,.).

In constructing a grid, all reasonable refinement/derefinement algorithms

for time-dependent PDEs must select a shape and an intensity for the grid

which will work in the future. This is usually done indirectly-by focussing

completely on local error estimates, for example. In the adaptive FEMOL,

these two properties are controlled more directly. A grid is constructed by

* explicitly selecting a positive model grid function &,

* magnifying & to yield an implicitly defined model grid intensity I,

and

* refining and derefining so that the resulting grid has a shape closely

resembling that of E, with the number of elements approximately equal

to 1.

* Let Tm be the time at which a grid 6+  is to be constructed from 6.

Recalling the basic regridding strategy described in Section 3, we know that
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4
* E(Tm)

U(T m > .95 EPSIllU(Tm,'> 171

and that the predicted error immediately following time Tm with 6+ is to

satisfy

E(T')m EPSDN, (26)

IllU(Tm,)IIll

with EPSDN E [.6 EPS, .9 EPS] still to be chosen. The model intensity I is

defined by (26). 1 is the minimum intensity that 6+  can have while having

the shape of g and yielding (26).

Assume that C and EPSDN have already been selected. The construction of

8+  is then carried out as follows. The elements {(xnilXn)}n=l, N of 6

are uniformly subdivided or coalesced according to desired new local element

sizes at the midpoints {xn l12} = {n- n} of 6:

h+(x n 1l 2) C.F(x ) n = 1,N. (27)

The constant C = C(EPSDN) > 0 in (27) is initialized in a predetermined way

and iteratively adjusted until (26) holds. At each stage of the

iteration, E(T+) is obtained from the already computed local indicators

nn(T m)} for 6 as described in Section 4, with refinement indices gotten

from the ratios {hn/h+(xn _1/2 )} of old to new element sizes.

Further details of this iteration algorithm are not given here. It is

noted, however, that none of the usual mesh constraints (on element

subdivision ratio, ratio of neighboring element sizes, number of contiguous

elements coalesced, etc.) are explicitly imposed. Some are incorporated

naturally through the selection of F•
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In view of (27), one can expect that the grid function (') associated

with 6 + will resemble the function C.t(,) in shape and intensity.

Furthermore, one expects as in (25) that

E(t) ."A(w~t,.),CE)

(28)
1t= a(w(t,.),V); t T ,
C M

and from (26) that

! A((Tm,)1V " EPSDN. (29)
?C 1IJU(T )011

From (28) it is clear that g should reflect the present and predicted

future shape of w(t,.). & is chosen to be a majorant of w(Tm,*) in the

adaptive FEMOL. The selection process anticipates the future through

comparison of a small amount of information collected at Tm and the previous

regridding time Tm_.i This process is described in Section 7.

The intensity, or number of elements in 6+  (and number of ODEs in time

to be solved) depends both on & and the final value of C in (27). Once

has been selected, however, the intensity is determined by the parameter

EPSDN, as evidenced by the inverse relation between C and EPSDN in (29).

The selection of EPSDN is now described.

I
If

•
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6. CONTROL OF GRID INTENSITY

Assume that the model grid function has been chosen at a time Tm

when a grid 6 is to be constructed from 6. The parameter EPSDN

determining the intensity of 6 is selected :n an attempt to minimize the

work per future (unknown) time step Tm+ 1 - Tm  which will be required with a

grid having the shape of .

Consider two extreme values of EPSDN. If EPSDN is chosen to be .6 EPS

(smallest permitted value), Tm+i - Tm would be as large as possible, but so

also would be the number of ODEs, since this number depends inversely on

EPSDN. With EPSDN - .9 EPS (largest permitted value), the smallest ODE system

would be integrated for the shortest period of time. The sum of such

integrations could be quite costly, not only because of grid construction

costs, but also since efficient use of an ODE solver whose internal stepsizes

increase is made only if the solver is not frequently restarted.

If Tm - T1  (first regridding), EPSDN is taken to be .9 EPS. Otherwise,

it is selected by estimating the marginal benefit which would have resulted,

had the value EPSDNm_ 1 of EPSDN used at Tm_ 1 been altered. Let

e(t) ( .95 EPS ) • EPSDN
sup E(s)/lllU(s,.)lll r-i

sE(Tmit)

for t > T._I . The number c(t) is an estimate of the largest value which

EPSDN could have taken at TmI while leading to successful PDE integration

(i.e. E/IIUIII ( .95 EPS) on (Tmi,t). Note that e(.) decreases on

(TmITm) and, by the basic regridding strategy described in Section 3, that

(T+_1 ) 1 .95 EPS and c(Tm) 4EPSDm

The work per regridding time step which would have been required by

..1
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selecting EPSDN = e(t) at Tm_ can be expressed as

WORK(t) = (SEP(t) +
(t-T n_1) E(t)

Here, STEP(t) is the number of ODE time steps taken on (TmIit) with EPSDN -

EPSDNm_1. The constant c is related to the overhead incurred at T._1 in

grid construction and data initialization.

Using stepsize information returned from the ODE solver, computed values

of E) and simple extrapolation for t > Tm , profiles of E(.) and

WORK(.) are updated as time increases and are used to determine an "optimal"

value of EPSDN at Tm_1 in retrospect. This value then governs the selection

of EPSDN at Tm . Details of the final selection are not important. What is

important is that changes in EPSDN smoothly reflect observed trends. Here,

EPSDN is increased (decreased) by no more than .02 EPS (.05 EPS) from one

regridding time to the next.

I;i

I

4 1
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7. CONTROL OF GRID SHAPE

As indicated in Section 5, the shape of the grid 6+ constructed from

at time Tm resembles that of the model grid function , which is chosen as

a majorant of the function w(Tm,.). Recall that w(Tm,.) is an

approximation of a function related to the exact solution's second space

derivatives at Tm (cf. (22)) whose values are extracted from the local error

indicators for 6. The process of selecting & is introduced by considering

two extreme possibilities:

i) VC.) = W(Tm,.)

and

(ii) (.) = max w(T ,x) (i.e. a constant function).
XE '

Consider & as in (i). Using the representation (28) for the predicted

error estimate E(T) immediately after Tm and standard arguments of the

calculus of variations, as in Babu~ka and Rheinboldt [31, it can be shown that

the resulting grid 6+  would have the least intensity of all grids lowering

the estimated relative II .ill-error to any given EPSDN value. Since nothing

is known for certain about the future shape of w(t,.) and this choice yields

the ODE system of smallest possible size, one might call (i) the low cost

alternative.

The local error indicators would be approximately equilibrated with (i),

but only near time TM if the shape of w(t,.) rapidly changes. Because an

immediate and costly regridding could be necessitated, the choice (i) is not

"optimal" in any practically useful sense of the word for parabolic PDEs whose

solutions' higher derivatives undergo changes in shape. For such problems,

(i) might be better termed the highrisk alternative. The local orientation

of (i) introduces a strong dependence of error control on the input parameters
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(i.e.g. the probability of a failure occuring on some interval (tktk+I) is

high) and a strong dependence on each piece of local information (it is often

the case that a "few" of the local indicators defining w(Tm,.) are

relatively very inaccurate).

The choice (ii) of & represents the opposite end of the risk-cost

spectrum. It is a high cost alternative, since the resulting grid 6+ would

be nearly uniform and have the largest intensity of all reasonable grids

lowering E/lJUl1j to any given EPSDN value. It imposes a low risk of

losing control over errors, since unpredictable changes in the shape of higher

solution derivatives would be accounted for, as well as isolated instances of

inaccurate local information.

Neither (i) nor (ii) represents a viable alternative. Heuristics must be

employed to balance risk and cost and to predict the future. All reasonable

algorithms of the present type must use heuristics to predict the future,

since the future is generally far ahead of the present-much farther than for

which accurate and inexpensive local extrapolations can be used.

Physical reasoning can be used-i.e. mass conservation, expected wave

speeds, etc.-or numerical simulations can be adopted--i.e. global extrapola-

tions, averaged or extended information, etc. Can such prediction processes

ever be quantitatively assessed or compared, or better justified in a general

way? If so, the first step may be to see them for what they are-pattern

recognition processes. Such a process consists of three (generally

nondistinct) stages:

* Representation - reduction of (perhaps "noisy") data into a convenient

and invariant form,

* Feature Extraction - relevant measurements taken from the reduced

data, and
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* Classification - decisions made by comparing feature values in an

attempt to improve recognition or to avoid misrecognition.

Let us use this framework and terminology to describe the construction of

at time Tm. The "pattern" we wish to predict, or recognize is the shape

of the function

F w(x) max w(t,x),
tE[T iT +I]

where Tm+1  is unknown, but Tmi+I - Tm is assumed to be comparable to Tm -

Tm_ . The attempt to do this consists of constructing a piecewise linear

which majorizes w(TmG) and whose shape approximates that of 1. The

reasoning behind this choice comes from a variational principle related to the

present problem and which involves the functional A used in the

representation (28) of E.

In order to construct &, each finite element grid is required to contain

the fixed nodes of a uniform macro grid A. A is supplied as input at the

initial time and is a 3-level grid, whose several "large" level I macro

elements each have size 4H, and whose level 2 and 3 subelements have sizes 2H

and H, respectively. The size H (4H) is related to the maximum (minimum)

risk of losing control over jlie! I I that one is a priori willing to take and

the minimum (maximum) price one is willing to pay to keep it. The algorithm

for constructing tries to manage risk and cost on each level I macro

element (X,X+4H) by first

reducing data - The many pieces of data defining w(Tm,.) on

(X,X+4H) are replaced by three piecewise constant functions

(W (Tm,.)} =l,2,3, where W (Tm,.) takes the maximum value of w(Tm,.) on

each of the 21-1 level P macro elements contained in (X,X+4H). In a
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similar manner, three piecewise constant representations

{W 1(Tm1,))}U-1,2,3  of w(T m1 l,) on (X,X+4H) were formed at time

TmI1, where w(Tml,.) = 0 if Tm_1 u 0 (the initial time).

What relevant features can be extracted from these representations? In

solving many parabolic reaction-diffusion problems, it has been observed that

there often is a correlation, on some scale, between spatial differences in

W(Tml o) and the way w subsequently grows in time. The algorithm looks

for such a correlation on (X,X+4H) x (Tm_,T m ) by taking three measurements:

X+4H
M1 f IW3(Tm,X) - W (T M 1,x)Idx ; - 1,2,3.

X

These three feature values are used to classify the evolution of w on

(X,X+4H) x (Tm_ 1 ,Tm). An "active" level is taken to be that corresponding to

the largest index p* E {1,2,3} for which

MP 4I M V 1,2,3.

If U* - 3 (which always is the case at the first regridding time Td,

either w did not grow on (X,X+4H) x (Tm 1ITm) or it is concluded that

spatial differences in w at Tm I were not the source of its growth. If

* 2 (1), it is concluded that either a clear correlation existed on the

scale 2H (4H) or w evolved in a way which was unpredictable at Tm_ 1 on

any smaller space scale.

Determining an "active" level u* for (X,X+4H) can be interpreted as

choosing one of three directions in the (x,t)-plane. The directions are

defined by the magnitudes of time and space differences,

{W3(Tm,*) - 3(T WI,.) and [W3(TmI,.) - W (T M-,.) of W3, which is the

most local of the three representations of w. The direction corresponding to
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11* is that along which W3(t,.) changed the least for t E (Tm-,Tm)

Having classified the past evolution of w on each level 1 macro element

in A, these classifications are used to predict the extent to which spatial

differences in w(Tm,-) will affect the size of w(t,.) in neighboring

regions for t > Tm . A macro subgrid consisting of the boundary nodes of

every large level I element and the boundary nodes of every "active" level 2

or 3 element is formed (i.e.g. if u* - 2 for some (X,X+4H), then the

node X + 2H is in the subgrid). The model grid function is taken to be

the piecewise linear function on the subgrid whose j subgrid nodal value is

equal to the maximum of w(Tm,.) between the J-.st and J+lst subgrid nodes.

These values ar! obtained from those of the piecewise constant representations

(W (Tm,.)} , which are subsequently stored for use in computing feature

values at the next regridding time.

There are two important effects of choosing C to be continuous and

piecewise linear, as opposed to being piecewise constant. First, the

dependence of the selection process on the input macro grid A is lessened.

+
Second, the finite element grid 6 is smoothened, since the local element

size h+(x) at x E a is inversely proportional to t(x).

We show how the construction of the model grid function is carried out

in two ways. Figures 1, 2 and 3 picture the results of simulations, in

which w was an exactly known function related to the unimodal Gaussian

probability density function. Figures 4 and 5 picture the construction of

and the resulting finite element grid 6 in two of the examples in Section

8. The function w in these examples was extracted from the local error

indicacors, as described in Section 4. In each of Figures 1-5, A is the 3-

level macro grid whose level 1 elements are delineated by vertical hash marks.

In the simulations pictured in Figures la and Ib, w shifts to the right
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by H and 2H units, respectively, much as the second derivative of a

traveling wave solution might. In both cases, localizes the left side

of w(Tm,.) as much as possible, since w has not grown in that region. The

algorithm "sees" correlations (on different scales) between spatial

differences in w(T 1 ,.) and the growth of w at the right, however, and

the extensions of & to the right show how the movement of w is predicted.

in a second pair of simulations, w was taken to be a skewed Gaussian

function whose width grows from time Tm 1 to the present time Tm. Figures

2a and 2b show how the model grid function was constructed when the width

of w doubled and tripled, respectively. As in the previous simulations, the

scale of the correlation "seen" by the algorithm and used to predict the

future shape of w depends on how much w has grown in the past.

In the simulations pictured in Figures 3a and 3b, the intensity of w

grew by 25% and 100%, respectively, but the shape of w did not change. The

shape of & closely resembles that of w in the first simulation, but much

less so in the latter. There, the influence of the peak of w(Tm,.) is

predicted to spread a distance 4H before the next regridding time, since the

information available to the algorithm at Tm_ was inadequate to predict the

growth of w on any smaller space scale. One could tune the algorithm so

that & would have a near "optimal" shape for this type of problem, but not

without lowering the algorithm's performance in more interesting and complex

problems.

We now turn to two examples taken from Section 8. Figure 4 shows the

model grid function & and new finite element grid 6+  for Example 4, in

which temperature and a single species concentration propagate in a flame

+
front from right to left. Here, 6 is the grid pictured at Tm = 3.8 x

10- in Figure 14 of Section 8.
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By looking ahead of the moving front, where w is predicted to grow in

the future, we see how the shape of C determined the shape of the grid 6+ .

While E is constant on the second level 1 macro element pictured, the

corresponding nodes of 6 are not quite uniformly spaced, since regridding

consists of refining and derefining the (not pictured) previous grid. The

parameter EPSDN determining the intensity of 6+ was chosen to be .85 EPS in
the situation pictured in Figure 4. Had the relative 111-11 -error been

reduced to approximately .6 EPS by taking EPSDN equal to this value, for

example, 3/2 as many nodes would have been distributed in the same relative

way as pictured. The majority of the extra nodes would have been located in

the front at Tm, where they never will be needed to lower the

III Ill-error. The remaining portion placed ahead of the front would only

extend the next regridding time by a small amount.

Figure 5 shows the function and the grid 6+  which were constructed

in the population ecology model in Example I of Section 8. 6+  is the grid

pictured in Figure 7 at Tm - .6, when the populations are in the midst of

their evolution from one localized spike to a spatially oscillatory steady

state with seven relative maxima spread over the entire domain.

The "active" levels in the 3-level macro grid A were set equal to 2 in

the two central level 1 elements at time Tm and I in all others. This

reflects the fact that the spatial scale on which the growth of w is

correlated with differences of w(Tm_ ,.) is larger on the sides of the domain

than at the center. As in Figure 4, we see how the shape of E determined

the shape of 6 The parameter EPSDN determining the intensity of 6+ was

chosen to be .85 EPS at Tm, as it was in the previous example. Unlike in

the propagating flame problem, however, where EPSDN was changed very little

from one regridding time to the next, EPSDN was steadily decreased in
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regriddings subsequent to the one pictured in Figure 5. It becomes

computationally more efficient to increase the grids' intensities as their

shapes become more constant and predict the spreading influence of w.

The strengths of coupling multi-grid feature extraction with implicit, low

order prediction in time lie in the generality of the approach, its empirical

success in predicting shape, and the potential application of similar

techniques in two or three space dimensions. It is not important that

binary, 3-level macro grids are used. Experience indicates that the process

of keeping risk and cost low through implicit shape prediction improves with

p-level macro grids as p is increased, provided a reasonable number of large

level 1 elements are present. It does seem important, however, that explicit

shape predictors using representations of w at past regridding times not be

used. The mesh sizes H and {Tm-Tml}m 1 are not asymptotically small.

Explicit Taylor expansions using these mesh sizes can be very inaccurate and

readily destabilize the process they are meant to control.
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w at Tm

v atT

a .%

4H-

% w at Tm

* $ w at Tm

* b.

0 4 H -4

Figure 1. Construction of model grid function F

at time Tm in first pair of simulations.

w at Tm
.... w at Tm.1

a.

~4H

- w at T
...w at Tm

b. Z ..... /

Figure 2. Construction of model grid function F

at time Tm in second pair of simulations.
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w at Tm1/ \\

I w at Tm-l

a. %A

-v at Tm

I I w at Tml1
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Figure 3. Construction of model grid function

at time Tm in third pair of simulations.
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- w at Tm/......... 
w at Ti-"/ rn-i

......... ..

/ '4 . , .

, *-A 1 " and 6+

- -4H - 4

Figure 4. Construction of and g-id +at time

Tm 3.8 x 10 in Example 4 of Section 8.

w at Tm

......... w at Tin I

' " / I .. .\ "

I . .... ................ ."I.......--. .. . I........ I...I .... .. I ,' an d

- 4H --4

Figure 5. Construction of C and grid 6+ at time

T - .6 in Example I of Section 8.
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8. COMPUTATIONAL EXPERIMENTS

The results of applying the adaptive FEMOL to numerically solve four

reaction-diffusion problems are described here. These problems are of varying

difficulty and were chosen in order to give a representative evalution of the

method's performance.

Most of the experiments fall into one of two categories. In the first, a

reasonable set of input parameters was fixed in each problem and the adaptive

method was applied with a decreasing sequence of space and time discretization

error tolerances EPS and TOL, where each TOL value was small with respect to

the corresponding EPS value. In the experiments in the second category, these

same TOL values were used with the same method, but in which no feedback

related to regridding was processed, a posteriori error estimates were only

computed at few target times, and increasing numbers of uniform, time-

independent finite elements were used.

The most important component of the adaptive method is the a posteriori

error estimator E(t) (cf. Section 4), on which most automatically made

decisions are based. The quality of E(t) is examined for both changing and

unchanging grids with the effectivity index 8(t) - E(t)/Ille(t)IH1, where a

very accurate approximation was used to compute the error e - u - U when the

exact solution u was not available. Let us recall from Section 2 that

Ill'il is a weighted L2 gradient norm (weighted H1 norm), and that

IllelI is predicted by theory to converge linearly to zero with decreasing

local space grid sizes.

The primary goal (cf. (11), Section 3) of the adaptive FEMOL is to keep

the relative 111I-1-error below the tolerance EPS at all times. The method

is relatively successful in achieving this objective, and we shall see that

achievement of this goal depends strongly on the quality of E. Rough
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estimates of the cost in controlling the error are gotten by comparing the CPU

times required in the adaptive and nonadaptive runs. These times include a

small amount required in I/0 associated with the experiments, but within each

experiment they provide a fair estimate of the total cost.

The secondary goal (cf. (12), Section 3) of the adaptive FEMOL is to keep

costs as low as possible, given a set of input and the control mechanisms of

the method. Note that the CPU time comparisons mentioned above do not provide

a fair measure of performance for this goal. At the end of this section we

summarize results of an experiment designed to more adequately gage the

relative cost of the adaptive procedure.

All experimental runs were made using the program FEMOLI, double precision

arithmetic, and the FORTRAN H compiler on the IBM System 370/3081K at the

NIH. The notation used to describe the experimental results has been

introduced earlier or is self-evident, with the exceptions of

CPU - IBM 3081K seconds,

mean NO. ELTS. - (I/T) • I Nm_I(Tm-Tmi) ,

m>1

where Nm_ 1 is the number of finite elements used from time Tm_1 to time

Tm, and A(J,2J,4J), which denotes a 3-level macro grid containing J, 2J

and 4J level 1, 2 and 3 macro elements, with a total of 4J + 1 fixed,

uniformly spaced nodes (cf. Section 7'.

Example 1. Population Ecology Model

The system considered here was proposed by Murray 119] to model certain

planktonic predator-prey situations in which crowding is a factor. The

predators v (zooplankton) and essentially static prey u (phytoplankton)

satisfy

j
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u - .0125 u [f(u) - vlu
t xx 

t

Vt - I x E (0,2.5) (30)

vt - vx =[u- g(v)]v

u = v = 0 t > 0 (31)x x

x = 0, 2.5

and

U = U0, V V 0  t . 0 (32)

x E (0,2.5)
where

f(u) = (35 + 16u - 2)/9

J (33)

g(v) - (5 + 2v)/5

and the initial populations {u0 ,v0 } are as pictured in Figure 6, along with

the steady state to which {u,v} evolves. There are many steady state

solutions of Eqs. (30), (31) (the stable solution {u,v} = {5,10} of the

diffusionless ODE system, for example), and the one to which {u,v} evolves

depends on which eigenfunction of the linearized coupled elliptic operator the

perturbation of the initial data from {5,10} most resembles. These

piecewise linear initial data were represented exactly in all of the

experiments described here.

This problem is relatively easy, and a properly selected number of

uniformly spaced grid points would adequately keep the errors below a desired

tolerance. The role of the adaptive FEMOL in this problem is that of a

convenient and reliable tool, with which the probability of success in
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achieving the goal (11) in one application is high.

Tables I and II summarize the results for this problem. In computing the

relative I-llI-error and e at the 10 target times for the entries of

these tables, the "exact" solution u - {u,v} was taken to be the numerical

solution computed with 512 uniform elements and very accurate ODE time

integration in the nonadaptive FEMOL. The approximations computed with the

input parameters in rows 3 and 4 of these tables were too accurate to be

compared with u. The corresponding listed relative 111.111-errors were

therefore taken to be those estimated in the method.

The value T in Table I, row 1 was chosen as the largest value of TOL for

which the maximum relative I lI lIl-error due to time discretization was less

than .01. All other input TOL values in Tables I and II were chosen by

subdividing r, as might be done in practice. This same procedure was

repeated in Examples 2 and 3.

Note the very high quality of the error estimator E in this example, as

seen in the 16-Il columns of both Tales I and II. In no instance did the

estimated 111111-error differ from the true 111 l-error by over 3.4%.

This difference evidently diminishes as the relative I'lll-error * 0, more

rapidly in the uniform nonadaptive case than in the adaptive.

We next observe that the adaptive FEMOL successfully achieved its primary

goal in all 4 runs, as witnessed by comparing the desired maximum relative

II I Il -errors in the EPS column of Table II with the actual maximum relative

111111-errors. In doing this, the mean number of elements used in each run

exceeded the corresponding number of uniform elements by 5 - 25%. The actual

surcharge was about 100%, however, as is seen by comparing CPU times in

Tables I and II. We mention that the selection of the uniform finite element

grid providing a desired accuracy EPS could be expensive, and this cost is not
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reflected in the CPU entries of Table I. The adaptive method must have higher

overhead costs than the nonadaptive method, since the adaptive method makes

decisions during the c,)mputations and is geared to deal reliably with a large

class of problems. Because this problem is so simple, the 100% surcharge is

irrelevant.

The adaptively constructed grids in one of the runs are pictured in Figure

7. The input and results for this run are summarized in the row marked with

an asterisk (*) in Table II. The construction of the grid at t - .6 was

described in Section 7 and pictured in Figure 5. We see that the nodes lead

the spreading of fUxx,vxxl and the local errors. The selection of these

grids was "guided" with the 3-level macro grid A(8,16,32). The parameter

EPSDN, allowed in all examples to vary in [.6 EPS, 9 EPS], was chosen here to

be no less than .7 EPS.

Another set of grids for this problem are pictured in Figure 8. These

grids were constructed by the adaptive FEMOL with the parameter EPSDN fixed

as .9 EPS - i.e. the method's freedom to determine the grids' intensities

(cf. Section 5) was restricted, as the relative II" HI (-error was lowered to

just under EPS in each regridding. The number of nodes used in this run was

smaller than in that corresponding to Figure 7, but the cost as measured in

elapsed CPU time for this latter run was 60% higher, while the maximum

relative 111111-error was no lower.
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10 V (two)

W(-1O)

0 1.25 Z.5

X

Figure 6. Initial and steady state solutions of

population ecology model in Example 1.
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TABLE I.

Results for Zxample 1 (NONADAPTIVE): REL ER - 111e111 / 1lluil

u - {u,v) ) and * - E / Ilell computed at tp - p ; p * 1,10

NO. ELTS. ODE TOL REL ERR 1e-l1 cpU

(unif.) mean max mean max

tp tp tp tp

32 T 10- 3  .19 .20 .016 .030 1

64 r / 2 .09 .10 .003 .005 2

128 4 / .05 .05 - - 6

256 a / 8 .02 .02 - - 21

TABLE II.

Results for Example 1 (ADAPTIVE): REL ERR & e computed as in TABLE I,

32 unif. ELTS. initially, 3 - level macro grid A(8,16,32) used,

REL ERR estimated & regridding permitted at 50 times in (0,10).

EPS MESH NO. ELTS. ODE TOL REL ERR 19-li CPVl

MODS mean max mean max mean max
tp t tp tp

* .2 2 40 44 o- 3  .17 .18 .021 .034 2

2 5 71 78 / 2 .09 .10 .015 .025 4

a € / 4 4 134 148 r / 4 .05 .05 - - 10

c/8 6 290 332 i / 8 .02 .02 - - 43
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NUM. OF
FIN. £133.

t

148
2

- - 112

.6 **-*- 90

o - -- - - - - - 32
0 1.25 2Z5

X
Figure 7. Adaptively constructed grids for Example 1.

Parameters as in *row of Table II.

NUM. 0F
FIN. ELTS.

136

t ___ __ - ..-- 134
. ...... 124

2 ._...... 114
..... .. .. ..... 108

...... 98

S~ - -... .... 92

.6........- -... . . . .86

.2.............................72
o---------------32

o 1.25 2.5

x
Figure 8. Adaptively constructed grids foi Example 1.

Parameters as for run corresponding to Figure 7, except

that EPSDN 3 .9 EPS
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Example 2. FitzHugh-Nagumo Equations (cf. [18], [21])

The version of these equations considered here provides a conceptual model

of ionic current flow across a semi-infinite nerve membrane. An electro-

chemical potential u and "recovery" variable v satisfy

ut uxx +f(u) v

t>O
(34)IVx E (0,120)

v - b(u - cv)
t

u (t,0) -1/2

t> 0 (35)

U (t,120) 0

x

and

u - v - 0 t - 0 (36)

x E (2,120)

where

f(u) - u(u-a)(1-u) (37)

and here

a .139

b = .008

c ' *2.54 (38)

1 - .45

I represents the magnitude of a constant current applied at the left end
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of the nerve and b is the reciprocal of the time scale associated with the

nerve's recovery. Numerical studies in Mitchell and Manoranjan [181, Rinzel

(21] and elsewhere indicate the sensitivity of the solution behavior to

changes in the parameters a, b, c, and I. Preliminary studies here

suggest that with the values in (38), repetitive pulses (in u and v)

traveling at speed : .4 are generated with firing frequency : .77 x 10-2.

Firing frequency is defined as the reciprocal of the temporal period for a

solution appearing to be a traveling wave for large x and t.

The evolution of u = {u,v} is shown in Figure 9, where values were

computed in one of the most accurate nonadaptive runs. It is noted that

because of the diffusionless form of the second of Eqs. (34), only ux - Ux

is explicitly controlled in the adaptive FEMOL, and the accuracy of

approximating v enters naturally through its role in the residual of the

first of Eqs. (34).

The results for this problem are summarized in Tables III and IV. The

relative 1 llol1-error and 6 were computed with the "exact" solution as

obtained via 960 uniform elements and very accurate ODE time integration in

the nonadaptive FEMOL. Estimated values were used for the relative errors in

the most accurate entries of these tables, as was done in Example 1.

The quality of E is seen in the 18-11 columns of Tables III and IV.

At time t - 80, when a new pulse is rapidly developing at the left spatial

boundary, t.'e error was underestimated by 43% when a large (.2) relative

error was requested in the adaptive FEMOL. E estimated the error much more

accurately at the other target times, however, and the quality of E

evidently improves as the relative 111.111-error + 0, in both the adaptive

and nonadaptive cases.

By comparing the EPS and max REL ERR entries of Table IV, two failures to
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achieve error control according to the goal (11) are seen, the failure for EPS

I . being "lower level" than that for EPS - .2. These failures could have

been eliminated by "tuning" the algorithm--i.e.g. allowing regridding to occur

before E/iIIuIII > .95 EPS - or by requesting more accuracy than is actually

needed. But these failures show how dependent goal achievement is on the

performance of the error estimator in an adaptive method such as the present.

, By comparing the NO. ELT. and CPU entries of the last three rows of Tables

III and IV, one sees that the mean number of elements used in the adaptive

FEMOL was about 1/2 of the corresponding number of uniform elements, but that

the same fraction of CPU time was not saved until the 1I1Il°1-error was

about 2-3%. This is primarily due to the fact that the traveling fronts in

this problem are not very localized. As for Example 1, we emphasize that the

CPU times for the nonadaptive runs do not reflect the true cost of achieving

EPS relative 11.-111-accuracy, whereas those for the adaptive runs do.

Note that the number of regriddings remained relatively constant as EPS

and TOL * 0 and that the mean number of finite elements appears to have

linearly increased with decreasing EPS. These observations are made with

almost all of the experiments of this section. They suggest two things:

(1) The regridding strategy is being carried out exactly as planned.

Grid shapes are chosen (somewhat stablely) in adapting to the

changing nature of the solution, while the numbers of nodes (or grid

intensities) are determined by the requested accuracy EPS.

(2) Efficiency demands that pattern recognition notions be used to

predict grid shapes, since the number of regriddings will not

increase unboundedly as EPS + TOL + 0. The workhorse of the present

method is the implicit ODE solver LSODI. The time stepsizes used by

LSODI for each space grid decrease as the error tolerances decrease,

II I
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but the relative distributions (or shapes) of the stepsize sequences

change very little. These distributions depend primarily on the

shapes of the space grids and higher solution derivatives, and they

govern the most appropriate length of time to retain a grid.

The grids constructed in one of the runs for this problem are shown in

Figure 10. The input and results for this run are summarized in the row

marked with an asterisk (*) in Table IV. Here, regridding occurred at 20 of

the 100 times at which it was allowed. Grid shape selection was guided with

the 3-level macro grid A(10,20,40), and the parameter EPSDN determining grid

intensity was chosen to be no less than .8 EPS.
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Figure 9. Solutions of Fitz~ugh -Nagumo Equations in

Example 2.
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TABLE 111.

Results for Example 2 (NONADAPTIVI): REL ERR MOM 1( (tHuLU
Cu ( u,v) ) and 0 E / 11el computed at tp 20p ; p -1,.

NO. ELTS. ODE TOL EEL ERR IS-il CPU

(unit.) mean max mean max
t p t P t p t

90 -10 ~ .19 .21 .09 .19 8

ISO Y/2 .09 .10 .04 .08 25

360 7/4 .05 .05 - - 73

720 T 8 .02 .02 - - 224

TABLE IV.

Results for Example 2 (ADAPTIVE): REL ERR &e computed as in TABLE 111,

80 unif. ELTS. initially, 3 - level macro grid 6(10,20,40) used,

REL ERR estimated & regridding permitted at 100 times in (0,2003.

EPS MESH NO. ELTS. ODE TOL REL ERR 1S-il CPUJ

MODS mean max mean max mean max
t p t P t p t

c .2 15 72 80 -10- .22 .29 .17 .43 11

*c /2 20 82 105 r/2 .11 .13 .09 .32 22

C/ 17 1.90 221 / 4 .04 .05 - - 52

a 13 342 442 T / 5 .02 .02 - - 118

Z=7 -,--



50

NUM. OF
FIN. ELr5.

20010

13

. .. -. .. .. .. . . 987

7

100 83

*84

53
0 .80... .s

0 s0 120

X

Figure 10. Adaptively constructed grids for Example 2.

Parameters as in *row of Table IV.
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Example 3. Two Counter-Traveling Waves

This model problem was created in order to examine the adaptive FEMOL's

performance when two wave forms, having different front widths and directions

and speeds of travel, collide and pass through one another. The solution of

this problem is

u u ( i) + u(2) (39)

where

(1)u (t,x) .25(1 + tanh(100(x-10t)))

(40)

u(2) (t,x) = .25(1 + tanh(80(1-x-30t)))

u(1) moves to the right at speed 10 and u 2 , whose front width is 25%

larger than that of u( ), moves to the left at speed 30. At time t = .025

the waves collide, almost extinguishing one another. The PDE numerically

solved was the scalar heat equation

ut , Uxx + f t > 0, x E (0,1) (41)

where f, the initial data at t 0, and Dirichlet boundary conditions were

set according to (39) and (40).

The results for this problem are summarized in Tables V and VI. The high

quality and rapid convergence of the error estimator E are suggested by the

1-11 columns of both tables. One notices that some of this quality is

sacrificed when the grids are nonuniform and allowed to change. The

performance of E here is typical of that we have seen in linear and most

mildly nonlinear problems, in which the nonlinearities are polynomial or

rational in form.
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Error control was achieved in all adaptive runs, with the exception of t!,e

low level failure that occurred with EPS - .05. One sees by comparing CPU

times in Tables V and VI that the cost in achieving this was only less than

that for the uniform, nonadaptive case when the error was about 2-3%. This

cost comparison of course excludes the overhead associated with determining

the number of uniform elements needed to obtain a given relative

HH1" I-accuracy EPS.

The grids constructed in one of the adaptive runs are pictured in Figure

11, along with the locations of the front centers. The input and results for

this run are summarized in the row marked with an asterisk (*) in Table VI.

One sees that for 0 < t < .025, the regridding frequency was determined

automatically by the faster left-moving front, and that nodes were placed

ahead of it in an effective manner. For t > .035 the same was true of the

right-moving front.
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TABLE V.

Reaults for Example 3 (NONADAPTIVE): REL ERR- 1I6111 Illull

0 e- E / Ilielli computed at t- .01 p ; p - 1,7

NO. ELTS. ODE TOL EL ERR 1e-1l CPU

(unitf.) mean max mean max

?p tp tp tp

120 - 10 .21 .22 .031 .039 8

240 r / 2 .10 .11 .005 .006 17

480 T / 4 .05 .05 .002 .002 40

960 a / 8 .03 .03 0 -0 130

TABLE VI.

Results for Example 3 (ADAPTIVE): REL ERR & e computed as In TABLE V,

80 unif. ELTS. initially, 3 - level macro grid 6(10,20,40) used,

EEL ERR estimated & regridding permitted at 140 times In (0,.071 .

EPS MESH NO. ELTS. ODE TOL REL ERR l-il CPU

MODS mean max mean max mean max

tp tp tp tp

c - .2 27 67 83 T 10-  .18 .19 .065 .154 12

c I 2 19 105 135 r / 2 .08 .09 .018 .023 18

£ / 4 21 230 287 r / 4 .04 .06 .006 .009 40

C / a 25 374 467 T I 8 .02 .02 .002 .005 115

4'

'.. . 1-- .I''i " n 
-

*



54

NUJM. OF

.070 
FIN. ELTS.

.. ..... ......70. 96

.... .... ... ....... .... ... 98

02 91

.. .. .. ... .. ... .

Figure~~~.......... 11 dpiey cntutd gis frEape35

and~~~ wav cetr ..10 .an ..1 .30 .

Parame...ers as.... in1rw3fTbl0I



55

Example 4. Dwyer-Sanders Model Flame

This model has been proposed to simulate many of the basic features of

flame propagation. It was used as a test problem for the Moving Finite

Element method in Gelinas, et at. (121. The equations governing a single

species mass density p and temperature T are

Pt = PXX- f(T)p >

t~o (42)

Tt = Txx + f(T)p[ x E (0,1)

Px(t,0) = Px(tl) = 0

t > 0 (43)

Tx(t,O) - 0, T(t,1) = g(t)

and

p - 1, T - .2 t 0, (44)

x E (0,1)

where

f(T) - 3.52 x 106 exp(-4/T) (45)

and

.2 + t/(2 x 10- ) ; t < 2 x 10

g(t) - (46)

11.2 ; t ) 2 x 10-4

The flame is ignited at (t,x) - (0,I) and propagates from right to left

at a relatively high rate of speed. In the numerical studies here, p and
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T were computed very accurately for 0 < t < 2 x 10- 4, and the values at t

= 2 x 10- 4 were used as initial conditions for all experimental runs, in

which integrations were carried out until time t - .006.

The steep temperature profiles in the moving temperature-mass density

front which were computed in one of the most accurate runs are pictured in

Figure 12. The front propagates at approximately constant speed for .003 < t

< .006. This problem is much more difficult than the others considered thus

far, due to the nature of the nonlinear kinetics. Changing grids to control

errors and accurately resolve flame structure is more of a necessity here than

a convenience.

The results of applying the adaptive FEMOL to this problem with various

requested relative accuracies EPS are summarized in Table VII. The

experimental procedure differed from that used in Examples 1-3 in two ways.

First, it was not feasible to obtain an almost "exact" solution for comparison

by using uniform, nonadaptive finite elements. The first three entries in the

REL ERR and 18-i columns of Table VII were therefore computed by using the

approximate solution obtained with the adaptive FEMOL and the parameters in

row 5 as "exact". The estimated accuracy of this approximate solution was

better at many of the 12 target times than is indicated by the estimated mean

and max REL ERR entries in row 5. Second, the same small input ODE error

tolerance TOL was used in each run. This was done because the dependence of

the time discretization error on TOL was observed to be less smooth in this

problem than in the others.

The approximate wave speed for .003 < t < .006 in each of the runs is

listed in the last column of Table VII. The speeds were computed by

monitoring the spatial locations of the T - .5, .75, and 1.0 values on

the moving temperature front at 7 evenly spaced times. Those familiar with



0 57

this model will recognize the accuracies of these speeds, and rapid

convergence as EPS + 0 is suggested by the entries.

With the larger input EPS values, the ability of E to estimate the

I I lll-error decays significantly as time increases past .003. This can be

seen by comparing each of the mean and max 16-l1 values in Table VII and

would be expected, given the relatively inaccurate speeds of propagation. The

quality of E improves as REL ERR * 0, however. This is suggested by the

third pair of 16-11 entries and the mass density and temperature gradient

profiles computed with various EPS. The temperature gradients computed in

many of the runs at the final time are shown in Figure 13.

The ability of the adaptive scheme to control errors according to (11)

depends strongly on its ability to estimate the errors. High level failures

to achieve (11) are seen in Table VII for large EPS values and the reason for

these failures is evident from the similarity of the REL ERR and 10-i1

entries. We believe that if failures occurred for the two smallest EPS

values, however, then these failures were at a much lower level than those

observed for the large EPS values.

In order to relate the cost of the adaptive FEMOL to that incurred with

uniform, nonadaptive-elements for this problem, 1000 elements and the same TOL

value were used in one nonadaptive run. Over 1200 CPU seconds were required

to complete the integration. The mean wave speed (as measured before) was

142.19, which along with the observed mass density and temperature gradient

profiles indicates that the same accuracy would have been achieved with EPS -

.04 in the adaptive FEMOL, at less than 1/6 of the cost.

The automatically constructed grids in one of the runs are shown in Figure

14, along with the flame center locations for .003 < t < .006. The input and

results for the run in which these grids were constructed are summarized in

-. .in
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the row marked with an asterisk (*) in Table VII. The selection of the space

grids was guided with the 3-level macro grid 6(12,24,48). The construction

of the grid at t - 3.8 x 10-3 was described in Section 7 and pictured in

Figure 4. Clearly, nodes are distributed in a way which anticipates the

moving front.

9 t

J ",- f : . .. .. . . . . .. - . ..... ....
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Figure 12. Temperature T at various times in

flame model in Example 4.
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TABLE VIZ.

Results for Example 4 (ADAPTIVE): REL ERR J / Jflll

( u - (T,p) ) & 0 E / !1l1011 computed at tp - Sp x 10- 4 ; p - 1,12

192 unif. ELTS. initially, 3 - level macro $rid 6(12,24,48) used,

ODE TOL - 2 z 106 in all runs, REL ERR estimated & regridding

permitted at 290 times In (.0002 , .006)

UPS MESH NO. ELTS. REL ERR to-il CPU WAVE

MODS mean max mean max mean max SPEED

tp :p tp tp

.2 12 62 103 .55 .90 .64 .86 43 143.6 t1.1

2 22 111 126 .18 .35 .58 .83 80 142.6 ± .3

c / 4 20 170 188 .05 .07 .22 .43 133 142.23 + .05

c / 8 18 289 353 .02 .03 - - 275 142.11 ± .02

c /16 20 487 724 .01 .01 - - 680 142.08 + .01

I! I
,$ I

i.1 _____
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Figure 13. Temperature gradient at time t - .006

in Example 4 as computed with various requested relative

accuracies.
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............ 126

.............. ............................... .......... 9
97

- 78
.0002 ... . .. .. ... . .. . . 192

0 z
Figure 14. Adaptively constructed grids for Example 4

and locations of flame center for .003 <t < .006

Parameters as in *row of Table VII.
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fWe conclude by describing the results of an experiment designed to assess
the cost effectiveness of decisions made in adaptive regridding. The most

important decisions concern grid shape and intensity. A grid's intensity is

controlled by selecting the parameter EPSDN E [.6 EPS, 9 EPS] (cf. Sections

5, 6). A grid's shape is controlled by choosing 1 of 3 levels as being

"active" on each of the J level 1 macro elements contained in A(J,2J,4J)

(cf. Sections 5, 7).

In each of the four examples of this section we restricted the algorithm's

freedom to choose these parameters and compared costs with that for an

"unrestricted" run. The unrestricted run in each example is that

corresponding to the * table entries and that which produced the grids

pictured. Eleven restricted runs were made for each problem: EPSDN was fixed

as .7 EPS, .8 EPS and .9 EPS, the "active" levels in all level 1 macro

elements were fixed as the largest and the smallest possible, and all

combinations of these EPSDN and "active" level restrictions were imposed.

The CPU times used in the 44 restricted parameter runs were rounded to the

nearest multiple of 5% of the corresponding unrestricted run CPU times. These

results are summarized by the histogram in Figure 15. While some of the

restricted runs were slightly less expensive, we see that the decisions made

by the algorithm are lowering cost the vast majority of the time.

a' •___,_. ._ -
I - ICU
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NUM. OF

RUNS 4
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-15 0 15 30 45 so

2 CPU TIME OVER CORRESPONDING

UNRESTRICTED PARAMETER RUNS

Figure 15. Added cost in restricting the adaptive

algorithm's freedom in the four examples

of this section.
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9. SUMMARY

Using piecewise linear finite elements in one space dimension and implicit

integration formulas in time, an adaptive method of lines has been developed

for a class of nonlinear parabolic partial differential equations. This class

includes many equations which are used to model reaction-diffusion phenomena.

The primary goal of this adaptive method is to keep a particular norm of

the space discretization error less than a user-specified tolerance EPS at all

times. Error control is obtained by adding and deleting space nodes when a

computed estimate of the error has nearly exceeded EPS. This process is made

efficient, without raising the risk of an error control failure, by monitoring

ODE time stepsize information and utilizing multi-grid pattern recognition

notions to predict appropriate grid intensities and shapes.

Experiments presented here have shown that the computed error estimates

are accurate, that the procedure reliably controls errors, and that the

strategy to keep costs low is successful. These experiments were conducted

with the program FEMOLI, which uses the LSODI package to solve the ODE initial

value problem resulting from each space grid. Information concerning FEMOLI

can be obtained by contacting the first author.

The process of collecting information about a solution through local

estimates, assimilating this feedback at a more global level, and utilizing

features extracted from the global representations was shown here to be an

effective and efficient way to automatically construct grids. Many adaptive

schemes incorporate this process in one form or another, but the question of

how this should best be done has not been adequately addressed.

-
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