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Abstract

This paper presents a general smethod for
the transformation of algorithms described by
shift-invariant fully-specified flow graphs into
equivalent systolic realizations. The method
consists of & set of rules for the systesatic
manipulation of the flow graphs intc systolic form
utilizing a set of theorems from graph theory. It
is shown that many of the previously published sys-
tolic algorithas and many new algorithms can be
generated using this single procedure.

Introduction

~ The fundamental goal of this research is to
develop methods for the automatic and optimal
realization of a large clase of Digital Signal Pro-
cessing (DSP) algorithas on synchronous
nultiprocessors composed of multiple, identical
prograsasable processors. This research seeks to
find the most efficient possible solutions, in
which the intrinsic synchrony of the system main-
tains the data precedence relations, and in which
no cycles of any of the processors are used for
system control (1). DSP slgorithms, as a class,
are uniquely well suited to this approach both
because of their computational intensity and
because of their high level of internal structure.

One of the popular methods vhich might well be
used to accomplish this gosl is the application of
systolic arrays to DSP implementations. Over the
past several years, there has been considerable
interest in systolic implementations, and a mumber
of systolic algorithms have been published. For the
most part, these algorithms have not been derived
by any forsal method, but rather have been
developed snd presented separately, sometimes
without extensive verification. The purpose of this
paper is to present & simply applied set of
techniques which sllow for the systematic
derivations of systolic solutioas for a large and
interesting class of algorithms.

Flow Craph Representation

In this research, the algorit™us to be imple~
mented are all described using fully-specified flow
graph representations. As is illustrated in rig.
1, a fully-specified flow graph is a directed graph

in which sll operations occur at the nodes, and in
which the branches are used exclusively as sigmal

84 06 18 158

s. In addition, the graph is constrained so that :
its node operations =mre each fundamental operations i
of the constituent processors vhich are to be used i
in the in the implementation. More precisely, the
node operations represent the granularity vith which
the parallelism of the flow graph can be
manipulated, and they should be chosen accordingly.
The fullyespecified flow graph is a very powerful
representation which, 1f properly applied, 1is not
only capable of descriding such traditionmal signal
flow graph structures as digital filters aand fast
transforms, but also such nonlinear structures as
those {involving decimation, interpolation, homo~
morphic processing, and a large class of matrix
operations. In additfon, by allowing the nodes to
be lov level logic operations, these flow graphs can
also descride bit-serial, byte-serial, aad nany
other distributed aritimetic structures.

Flov €raph Bounds

Given that only ene processor type is to be
used in the eventual sultiprocessor implememtation
and given that the charscteristics of this con-
stituent processor are known, then it is possible to
compute bounds on the synchronsous smultiprocessor
realization of a fully specified f1lov graph. Two
bounds are of particulsr interest. The first bound,
called the sample perisd bound, involves the minimm
sampling period at vhich a particular algoritha can
be implemented using & particular constituest pro-
cessor. The sample pariod bound is best understood
in the context of a recursive single-time-index-
flow graph (such ss an IIR digital filter), although
the concept is also mesningful in systems which have
no explicit sampling period. For such systems, the
sample period bound is given by

T,= WAXI 4 /0]
| 4

where p varies over the set of all loops in the flow
graph, d_ is the aritimetic delay in the loop p and
n, i» tlfc number of snit delays nodes in leop p.
Tgtl result is s generalization of s result
published by Renfors asd Wuevo (2).

The second bound, called the static=pipeline
ssaple period bound, 1s of particular interest fin
the derivation of systolic implementations. This
bound is the minisua sampling period vhich can de
schieved 1f the entire graph is implemented wsing a
static pipeline. A static pipeline 1s an
Tsplementation in which the node operations of the
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graph are explicitly assigned to individual proces-
sors, and in which every applications of any
particular node operstion 1s always perforamed by
the same processor. A static pipeline realization
for a flow graph can be considered to be a complete
partitioning of the flow graph in space, in which
each node in the flow graph is asssigned to a
particular processor. This is to be contrasted with
cyclo=static implementations such as SSIMD (1) in
vhich different time-index (or space-index)
spplications of a particular node operation may be
reslized by different processors at different
tises. In general, cyclo-static implementations may
achieve the sample-period dound while static-
pipeline implementations can only achieve the
static pipeline sample period bound.

Like the sampling period bound, a static pipe-~
line sample period bound 1s first coaputed for each
loop, and then the overall bound for the graph is
computed as the maximun of the individual loop
bounds. Each loop individually can be thought of as
consisting of a set of operation nodes and a set of
delay nodes. The static pipeline bound for a loop
i{s computed by sassuming that the delays e¢lesents
may be distributed throughout the loop in any
desired configuration and by finding that dis~
tribution of delays vhich minimizes the saximus
operation time between two consecutive delay elg~-
ments. This mini-max operation time is the static~-
pipeline sanple period bdound for the loop and the
maximsun value of all such loops bounds is the
static-pipeline sample period bound for the flow
graph, and can be written as

.l

t-llu'.

P scloops
Max (14)]

Min|
all nl

partitions

Optimality

Thie work msakes use of two separate defini-
tions of optimality. An implementation is said to

partitions jei
1:{0,...,1\‘)

be rate optimal 4f it achieves the sampling period
bound lns 1s said to be processor optimal 1f it

exhibits perfect processor efficiency so that every
cycle of every processor is used directly on the
fundamental operations of the algoritha and ao
cycles are used for synchronization or system
control. Clearly, these three definitions of
optimality are non-exclusive, and any psrticular
isplementation may satisfy any combination of these
optimality criteria.

Rigorous Systolic Derivations

Two single-time=index systems are said to de
essentially equivalent if given the same input se-
quences, they always give the same output
sequences. The systolic derivation procedure is
based on two theoreas concerniag the essentisl
equivalence of systems described by flow graphs.

THE DATA INTERLEAVE TREOREM: A set of N identical
shift {nvariant systems operating on N separate

-V

data streams is essentially equivalent to a single
systen for which the N sets of inputs and estputs
have been separately interlesved as ordered sets
and the order of all the delay nodes in the flow
graph has been multiplied by K

COROLLARY: A shift invariant system is always
essentially equivalent to a shift invariant systems
where the input has besen up-sampled by K, the ocutput
has been dowvn-sampled by N, and the order of all the
delay nodes has been multiplied by K

A Nodal Cutset is defined as that set of
branches wvhich are cut when a closed surfsce 1o
constructed inside a flow graph in such a way that
it passes through no nodes.

invariant flov graph is essentially equivalemt to &
flow graph which is formed by adding 1deal delay
(advance) nodes to all the input branches in a modal
cutset and adding ideal advance (delsy) nodes teo all
the output branches in the sanme nodal cutset.

A fundamental constraint placed on systolic
arrays in their definition (3) is that the tmansfer
of data between cells must bde simultaneous. This
translates into a flow graph coastraint that every
output branch from a cell must be terminated by &
delay node (pipeline register). Hence, the gen-
eration of systolic solutions for flov graphs re-
duces to the distribution of the delay modes
throughout the flow graph so that this condition is
met. In this procedure, the static pipeline sample
period bounds for the individual loops 4n the flow
graph are used to determine vhere the delay modes
should be redistributed, the required interlesving
factor, and the appropriate nodal cutsets. If the
sample period is known, it is always simple to
introduce delay nodes into the nonrecursive postions
of the graph such that the saxisum delay betveen
pipeline registers is less than or equal teo the
sasple period.

The way in vhich these theorems are used to
derive s systolic implementation from a ful ly-speci-
fied flow graph is illustrated in Pig, 1. Other
exasples of the derivation of systolic implemsntes-
tions from flow graphs are given in (1). In perti~
cular, Pi{g. 1 1llustrates the generation of the
systolic implementation for the two multiplier
Markel=-Gray lattice filter. This example has been
chosen for four specific reasons. First, and most
important, it was chosen because it uses all of the
theoress and exhibits all of the properties which
are typical of the derivation of systolic imple~-
sentations from flow graphs. Second, it illustrates
clearly the central roll of the Data Interlesave
Theoren in finding systolic derivations for mecur-
sive systems. Third, in epite of deing typiesl 1n
the ways the theorems are applied, this partieular
derivation itself has some additional interesting
and surprising features which are worthy of mote.
Finally, the systolic implementations presented here
for this important digital filter structure hawe mot
been presented before, and are interesting inm their
own right.

From Pig. la, it 1s clear that the semple
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period bound for this form of the lattice filter is
given by T, = t_+2t,, vhere t_ and t  are the
multiply and add times. Also, since this filter s
recursive, it is clesr that there must be a bi-
directional data flow between the systolic cells.
The problem is that, in 1its original foram, there
are not enough delays nodes instide the loops to
meet the systolic requirement for positioning delay
alements at all output branches (it should be
obvious here that the Cutset Delay Traansformation
Theoren will alvays conserve the number of delay
elements in a loop, although it will allow them to
be easlly redistributed). As s result, an inter~
leaving transformation is required to genaratse the
needed delay nodes. Fig. 1b shows the filter after
8 2-way interleaving tra nsformation. Computing the
static-pipeline bound for this flov graph results
in a sampling period of T =t +2t.. However, for
this case, this is not an achievable bound since
the lattice filter has coupled, overlspping loops.
It s hence necessary to arrange the delays in each
1lo0op so they do not conflict with the delay
requirenents of other loops. With ‘this added
requirement, the achievable pipealine sample period
bound, Ty s {is given by T = 2t #2t.. With
knovledge of the sample period bounds, the cutsets
are easily constructed as shown in Fig. lb. The
resulting network i{s shown in Fig. lc. This netwvork
i3 nov in systolic form. The corresponding systolic
cell interconnection details are shown in Fig. 14,
wvhere the last cell (Type II) {s a degenerate foram
of the other cells (Type 1). When the 2=-wvay
interleaving 1is considered, this implementation can
achieve a ssupling period of T = &t #At.. Thie 18
well short of the sample pcriotr bouna. and when no
second signal is availsble to be interleaved, thi
represents 8 50X processor efficiency. :

Another important point is 1llustrated in Fig
le. The point 1s that there exists a systolic fora
vhich has s smaller sample period than the systea
of Fig. lc. This lower sampling period is achieved
by applying & 3~way interleaved transformation,
which, after the appropriate cutset transformations
have been spplied, result in the systolic network
of Fig. le. In Fig. le, the dashed lines partition
the network into systolic cells. This new petwork
has a static-pipeline sample pariod bound of T, =
T, = tytt,. With the interleaving considered, tﬂil
(!vn an achievadle sanpling period of 'r. -
3t +3t,. While this is &4/3 times faster than the 2-
way interleaved forms, it still does not achigve the
optimal sample period dbound, so it is not rate-
optimal. For this particular network, the optimal
sample period bdound cannot be schieved with &
systolic implementation, nor will any higher
interleaving factor result fn a faster processing
rate. Hovever, for any given network it is clear
that there (s an easily determined optimum
interleaving factor that achieves the minimum
possible static-pipeline ssuple period bound, and
for some networks, this is squal to the sample
pariod bound.

Optimal Pipeline Solutions

This paper has descridbed a genersl procadure
for the derivations of systolic implementations
from fully-specified flow graphs. Such derivations
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are rigorous im the sense that each step is achieved
by the application of a theorea from graph theory to
the flow graph, and so long as the theorems are
properly applied, the resulting implementatios 1s
guaranteed to be correct. This method is simple to
apply (1o fact, it can be largely automated), and
should be of grest utility in the study of systolic
algorithms. It also serves to gsin furthar insight
into the fundamentsl nsture of systolic algorithms.
For example, the 50% efficiency so often found in
systolic implemsstations csn be seen to be a result
of the required 2-way interleave transformation for
recursive systems (1/N efficlency for N-way iater-
leaved system with one dats stream). However, a
point which is msde clear in this context which is
not clear from the original systolic presentaticus
is that 100% efficiency can essily be obtained if
tvo independent dats streams are svailable to be
processed simultanecusly.

The real prebleam {s that traditiomal systolic
approsches do not necesssarily lesd to the best sye-
chronous multiprecessor implementations. A fundsmen-
tal reason for this is that the basic systolic
definition requires that all of the data transfers
between cells mmst be dons sisultaneously. This can
lead to doth very lov processor efficiency and & low
achievable sawpling rate. It is simple to understand
why this is trus. The global systolic clock leads to
a succession of information wavefronts separated by
one global clock period. The global clock peried
clearly must be greater than or ejual to the largest
cell processing delay in the system and also, as
{1lustrated above, recursive systems require inter—
leaving transformstions which lead to the introduc~-
tion of extrs, “padding” wavefronts. Therefore if
all the cell processing delays are not of equal
duration or if padding wavefronts are present, then
the processors sre not alvays doing useful work. If
the global systelic clock constraint is relsxzed,
then the information wavefronts may be separated by
less than the maximum cell processing delay, and
much more efficient implementations are possible.
SSIMD is a perfect illustration of this effect (1).
In SSIMD, the processing delay of each cell is ty-
pically quite leng (since each call gepearally im~
¢ludes all the eperations in one iteration of the
flow graph), bdat the information wavefroants are
separated by only a small fraction of a cell proces-
sing delay. This extra flexidility is oue rsason why
SSIMD and other cyclo=-static implementations can
achieve processor optimal and rate optimsl soluticas
when systolic implemantations for the saeme flow
graph cannot (1M
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